WorldWideScience

Sample records for plasma physics controlled

  1. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  2. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  3. Plasma Physics and Controlled Nuclear Fusion

    Science.gov (United States)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  4. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  5. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  6. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  7. Plasma Physics and Controlled Nuclear Fusion

    CERN Document Server

    Miyamoto, Kenro

    2005-01-01

    The primary objectives of this book are, firstly, to present the essential theoretical background needed to understand recent fusion research and, secondly, to describe the current status of fusion research for graduate students and senior undergraduates. It will also serve as a useful reference for scientists and engineers working in the related fields. In Part I, Plasma Physics, the author explains the basics of magneto-hydrodynamics and kinetic theory in a simple and compact way and, at the same time, covers important new topics for fusion studies such as the ballooning representation, instabilities driven by energetic particles and various plasma models for computer simulations. Part II, Controlled Nuclear Fusion, attempts to review the "big picture" in fusion research. All important phenomena and technologies are addressed, with a particular emphasis on the topics of most concern in current research.

  8. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  9. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  10. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  11. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  12. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  13. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  14. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  15. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  16. Contributed papers presented at the 24. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    In the report thirteen papers are compiled which were presented by members of the Centre de Recherches en Physique des Plasma, Lausanne, at the 24th EPS conference on controlled fusion and plasma physics. They mainly deal with problems of the confinement and are based on studies performed in the TCV tokamak. figs., tabs., refs.

  17. Computations in Plasma Physics.

    Science.gov (United States)

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  18. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  19. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  20. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  1. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  2. PREFACE: 30th EPS Conference on Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Koch, R.; Lebedev, S.

    2003-12-01

    The 30th EPS Conference on Controlled Fusion and Plasma Physics took place in St Petersburg, Russian Federation, on 7th--11th July 2003. It was jointly organized by the Ioffe Physico-Technical Institute, the St Petersburg State Polytechnical University and Technical University Applied Physics Ltd, on behalf of the Plasma Physics Division of the European Physical Society (EPS). The members of the local organizing committee were drawn from these institutions: B Kuteev, Chair, Polytechnical University S Lebedev, Vice-Chair, Ioffe Institute A Lebedev, Scientific Secretary, Ioffe Institute V Bakharev, TUAP Ltd V Grigor'yants, Ioffe Institute V Sergeev, Polytechnical University N Zhubr, Ioffe Institute Over the years, the annual conference of the Plasma Physics Division of the European Physical Society has widened its scope. Contributions to the present conference covered widely diversified fields of plasma physics, ranging from magnetic and inertial fusion to low temperature plasmas. Plasma sizes under investigation ranged from tiny to astronomical. The topics covered during the conference were distributed over the following categories: tokamaks, stellarators, high intensity laser produced plasmas and inertial confinement, alternative magnetic confinement, plasma edge physics, plasma heating and current drive, diagnostics, basic plasma physics, astrophysical and geophysical plasmas and low temperature plasmas. The scientific programme and paper selection were the responsibility of the Programme Committee appointed by the Board of the EPS Plasma Physics Division. The committee was composed of: R Koch, Chairman, ERM/KMS Brussels, Belgium E Ascasibar, CIEMAT Madrid, Spain S Atzeni, Università di Roma, Italy G Bonhomme, LPMI Nancy, France C Chiuderi, Università di Firenze, Italy B Kuteev, St Petersburg State Polytechnical,University, Russian Federation M Mauel, Contact person APS-DPP, Columbia University New York, USA R A Pitts, EPFL/CRPP Lausanne, Switzerland R Salomaa

  3. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  4. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence

  5. Reviews of plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Shafranov, Vitalii Dmitrievich (ed.); Bakunin, Oleg G. (comps.) [Rossijskij Nauchnyj Tsentr ' ' Kurchatovskij Inst.' ' , Moscow (Russian Federation). Nuclear Fusion Inst.; Rozhansky, V. [St. Petersburg State Polytechnical Univ. (Russian Federation)

    2008-07-01

    Reviews of Plasma Physics Volume 24, edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence (orig.)

  6. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  7. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  8. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  9. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  10. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  11. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  12. Solar Physics - Plasma Physics Workshop

    Science.gov (United States)

    Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.

    1974-01-01

    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.

  13. ECRH on ASDEX Upgrade - System Status, Feed-Back Control, Plasma Physics Results -

    Directory of Open Access Journals (Sweden)

    Flamm J.

    2012-09-01

    Full Text Available The ASDEX Upgrade (AUG ECRH system now delivers a total of 3.9 MW to the plasma at 140 GHz. Three new units are capable of 2-frequency operation and may heat the plasma alternatively with 2.1 MW at 105 GHz. The system is routinely used with X2, O2, and X3 schemes. For Bt = 3.2 T also an ITER-like O1-scheme can be run using 105 GHz. The new launchers are capable of fast poloidal movements necessary for real-time control of the location of power deposition. Here real-time control of NTMs is summarized, which requires a fast analysis of massive data streams (ECE and Mirnov correlation and extensive calculations (equilibria, ray-tracing. These were implemented at AUG using a modular concept of standardized real-time diagnostics. The new realtime capabilities have also been used during O2 heating to keep the first reflection of the non-absorbed beam fraction on the holographic reflector tile which ensures a well defined second pass of the beam through the central plasma. Sensors for the beam position are fast thermocouples at the edge of the reflector tile. The enhanced ECRH power was used for several physics studies related to the unique feature of pure electron heating without fueling and without momentum input. As an example the effect of the variation of the heating mix in moderately heated H-modes is demonstrated using the three available heating systems, i.e. ECRH, ICRH and NBI. Keeping the total input power constant, strong effects are seen on the rotation, but none on the pedestal parameters. Also global quantities as the stored energy are hardly modified. Still it is found that the central ion temperature drops as the ECRH fraction exceeds a certain threshold.

  14. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  15. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  16. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  17. Nonthermal plasma chemistry and physics

    CERN Document Server

    Meichsner, Jurgen; Schneider, Ralf; Wagner, Hans-Erich

    2013-01-01

    In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications.Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemist

  18. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  19. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  20. The Framework of Plasma Physics

    Science.gov (United States)

    Cowley, Steven

    There have been relatively few good textbooks on plasma physics. Most become simple reference books that might be titled, “Plasma Physics Recipes.” Despite their utility such books do not make good textbooks. For teaching, one needs a book that shows how the basic results and models are part of a coherent whole. Richard Hazeltine and Francois Waelbroeck have written such a textbook: The Framework of Plasma PhysicsAn this book, plasma physics is developed carefully and logically from basic physics principles. The book is not, however, overly formal; physical arguments are used to reduce mathematical complexity.

  1. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  2. EURATOM-CEA association contributions to the 26. EPS conference on controlled fusion and plasma physics, Maastricht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    This report references the EURATOM-CEA association contributions presented at the 26. EPS conference on controlled fusion and plasma physics, in Maastricht (Netherlands) the 14-18 June 1999. Two invited papers and 24 contributed papers are proposed. They deal with: tokamak devices; particle recirculation in ergodic divertor; current profile control and MHD stability in Tore Supra discharges; edge-plasma control by the ergodic divertor; electron heat transport in stochastic magnetic layer; bolometry and radiated power; particle collection by ergodic divertor; study and simulation of pa impurities; line shape modelling for plasma edge conditions; dynamical study of the radial structure of the fluctuations measured by reciprocating Langmuir probe in Tore Supra; up-down asymmetry of density fluctuations; Halo currents in a circular tokamak; real time measurement of the position, density, profile and current profile at Tore Supra; poloidal rotation measurement by reflectometry; interpretation of q-profile dependence of the LH power deposition profile during LHCD experiments; ICFR plasma production and optimization; improved core electron confinement; measurement of hard X-ray emission profile; modelling of shear effects on thermal and particles transport; ion turbulence; current drive generation based on autoresonance and intermittent trapping mechanisms. (A.L.B.)

  3. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  4. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  5. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  6. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  7. Topics in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Old Dominion Univ., Norfolk, VA (United States)

    2015-05-31

    During the period 1998-2013, research under the auspices of the Department of Energy was performed on RF waves in plasmas. This research was performed in close collaboration with Josef Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of Sciences), Martin Valovic and Vladimir Shevchenko (Culham). This research is detailed and all 38 papers which were published by this team are cited.

  8. Variational Integrators in Plasma Physics

    CERN Document Server

    Kraus, Michael

    2013-01-01

    Variational integrators are a special kind of geometric discretisation methods applicable to any system of differential equations that obeys a Lagrangian formulation. In this thesis, variational integrators are developed for several important models of plasma physics: guiding centre dynamics (particle dynamics), the Vlasov-Poisson system (kinetic theory), and ideal magnetohydrodynamics (plasma fluid theory). Special attention is given to physical conservation laws like conservation of energy and momentum. Most systems in plasma physics do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended towards nonvariational differential equations by linking it to Ibragimov's theory of integrating factors and adjoint equations. It allows us to find a Lagrangian for all ordinary and partial differential equations and systems thereof. Consequently, the applicability of variational integrators is extended to a much larger family of syst...

  9. Research in plasma physics

    Science.gov (United States)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  10. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  11. Space Plasma Physics

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).

  12. Chapter 8: Plasma operation and control

    Science.gov (United States)

    Gribov, Y.; Humphreys, D.; Kajiwara, K.; Lazarus, E. A.; Lister, J. B.; Ozeki, T.; Portone, A.; Shimada, M.; Sips, A. C. C.; Wesley, J. C.

    2007-06-01

    The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, error fields, etc) and plasma fast shutdown. This chapter considers only plasma initiation and plasma basic control. This chapter describes the progress achieved in these areas in the tokamak experiments since the ITER Physics Basis (1999 Nucl. Fusion 39 2577) was written and the results of assessment of ITER to provide the plasma initiation and basic control. This assessment was done for the present ITER design (15 MA machine) at a more detailed level than it was done for the ITER design 1998 (21 MA machine) described in the ITER Physics Basis (1999 Nucl. Fusion 39 2577). The experiments on plasma initiation performed in DIII-D and JT-60U, as well as the theoretical studies performed for ITER, have demonstrated that, within specified assumptions on the plasma confinement and the impurity influx, ITER can produce plasma initiation in a low toroidal electric field (0.3 V m-1), if it is assisted by about 2 MW of ECRF heating. The plasma basic control includes control of the plasma current, position and shape—the plasma magnetic control, as well as control of other plasma global parameters or their profiles—the plasma performance control. The magnetic control is based on more reliable and simpler models of the control objects than those available at present for the plasma kinetic control. Moreover the real time diagnostics used for the magnetic control in many cases are more precise than those used for the kinetic control. Because of these reasons, the plasma magnetic control was developed for modern tokamaks and assessed for ITER better than the kinetic control. However, significant progress has been achieved in the plasma performance control during the last few years. Although the physics basis of plasma operation

  13. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  14. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  15. Habitual physical activity and plasma metabolomic patterns distinguish individuals with low vs. high weight loss during controlled energy restriction

    Science.gov (United States)

    Weight loss (WL) induced by energy restriction is highly variable even in controlled clinical trials. An integrative analysis of the plasma metabolome coupled to traditional clinical variables may reveal a WL “responder” phenotype. Therfore, we predicted WL in overweight and obese individuals on a...

  16. Physics of the plasma universe

    CERN Document Server

    Peratt, Anthony L

    2015-01-01

    Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based ...

  17. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2014-05-01

    : Fundamentals of Plasma Physics, Fusion Plasmas, Plasmas in Astrophysics and Space Physics, Plasma Applications and Technologies, Complex Plasmas, High Energy Density Plasmas, Quantum Plasmas, Laser-Plasma Interaction and among others. A total of 180 delegates from 34 different countries took part in the ICPP-LAWPP-2010. Sixty delegates received economical assistance from the local organized committee, thanks to the support of the International Union for Pure and Applied Physics (IUPAP) and the Chilean Nuclear Energy Commission (CCHEN). The ICPP-LAWPP-2010 Program was elaborated by the following Program Committee: Carlos Alejaldre, ITER Maria Virginia Alves, Brazil Julio Herrera, Mexico Günter Mank, IAEA George Morales, USA Padma Kant Shukla, Germany Guido Van Oost, Belgium Leopoldo Soto, Chile (Chairman) This Program Committee was formed by selected members from the International Advisory Committee of the ICPP and by selected members from the International Advisory Committee of the LAWPP. In particular, Plenary Lectures and Invited Topical Lectures were selected by the Program Committee from a list of nominated presentations by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was elaborated by the Program Committee. The congress included: 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. A major part of the plenary and topical lectures were published in a special issue of the Plasma Physics and Controlled Fusion, IOP Publishing (Plasma Phys. Control Fusion Volume 53, Number 7, July 2011: http://iopscience.iop.org/0741-3335/53/7). The papers were refereed according to the standards of the journal Plasma Physics and Controlled Fusion. An large number of the participants sent their contributions articles to this volume of Journal of Physics: Conference Series, IOP Publishing. The articles received were reviewed by the local organizing committee and by

  18. Plasma physics via computer simulation

    CERN Document Server

    Birdsall, CK

    2004-01-01

    PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC

  19. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  20. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  1. Variational integrators in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael

    2013-07-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  2. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  3. Physics of Tokamak Plasma Start-up

    Science.gov (United States)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  4. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of

  5. Report of the Plasma Physics Laboratory

    Science.gov (United States)

    1982-03-01

    Theoretical and experimental work in plasma physics is summarized. Technological and engineering aspects of plasma experiments in the SPICA, TORTUR 2, and RINGBOOG 2 reactors are discussed with emphasis on screw pinch, turbulent heating, and gas blankets. The free boundary equilibrium in high beta Tokamak plasma, wave dynamics, and transport problems were investigated.

  6. The physics of non-ideal plasma

    CERN Document Server

    Fortov, Vladimir E

    2000-01-01

    This book is devoted to the physical properties of nonideal plasma which is compressed so strongly that the effects of interparticle interactions govern the plasma behavior. The interest in this plasma was generated by the development of modern technologies and facilities whose operations were based on high densities of energy. In this volume, the methods of nonideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of nonideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stabi

  7. Unifying physics of accelerators, lasers and plasma

    CERN Document Server

    Seryi, Andrei

    2015-01-01

    Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.

  8. Plasma Physics of Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2014-01-01

    Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework f...

  9. Plasma Cathode Electron Sources Physics, Technology, Applications

    CERN Document Server

    Oks, Efim

    2006-01-01

    This book fills the gap for a textbook describing this kind of electron beam source in a systematic and thorough manner: from physical processes of electron emission to examples of real plasma electron sources and their applications.

  10. Space plasma physics: I - Stationary processes

    Science.gov (United States)

    Hasegawa, Akira; Sato, Tetsuya

    1989-01-01

    The physics of stationary processes in space plasmas is examined theoretically in an introduction intended for graduate students. The approach involves the extensive use of numerical simulations. Chapters are devoted to fundamental principles, small-amplitude waves, and the stationary solar plasma system; typical measurement data and simulation results are presented graphically.

  11. The control of TCV plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J.B.; Hofmann, F.; Moret, J.M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)] [and others

    1996-07-01

    The general control of tokamak plasmas has evolved considerably over the last few years with an increase in the plasma pulse length, an increase in the control of additional heating and fuelling and an increase in the degree to which the shape of the plasma can be varied. The TCV tokamak is specifically designed to explore the operational benefits of plasma shaping over a wide variety of plasma shapes. Consequently, considerable attention has been given to the control of the poloidal field coil currents which impose the desired shape. This paper deals with all aspects of the control of TCV plasmas, from the diagnostic measurements to the power supplies, via control algorithms and overall supervision. (author) 44 figs., tabs., 25 refs.

  12. PlasmaPy: beginning a community developed Python package for plasma physics

    Science.gov (United States)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  13. Plasma physics and environmental perturbation laboratory. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Space physics and plasma physics experiments that can be performed from the space shuttle were identified. Potential experiment concepts were analyzed to derive requirements for a spaceborne experiment facility. The laboratory, known as the Plasma Physics and Environmental Perturbation Laboratory consists of a 33-foot pallet of instruments connected to a 25-foot pressurized control module. Two 50-meter booms, two subsatellites, a high power transmitter, a multipurpose accelerator array, a set of deployable canisters, and a gimbaled instrument platform are the primary systems deployed from the pallet. The pressurized module contains all the control and display equipment required to conduct the experiments, and life support and power subsystems.

  14. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  15. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  16. Report on the solar physics-plasma physics workshop

    Science.gov (United States)

    Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.

    1976-01-01

    The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.

  17. PREFACE: 1982 International Conference on Plasma Physics

    Science.gov (United States)

    Wilhelmsson, Hans

    1982-01-01

    Invited Papers: The Physics of Hot Plasmas During the last decade a dramatic evolution of plasma physics has occurred. Not only have gigantic fusion plasma machines been planned, and are now being built, and elaborate spaceships and antenna systems been constructed to explore remote parts of the cosmos; new observations have revealed fascinating structures in space, ranging from pulsar plasmas under extreme conditions in very strong magnetic fields to large-scale magnetic field and electric current systems in cosmic plasmas. X-rays from very distant sources as well as radio-waves from the plasma in the magnetosphere and in the Aurora have recently been studied with new observational techniques. Ingenious laboratory experiments are continuously being carried out to exploit new fundamental processes in plasmas. These are of great interest for the basic understanding of plasmas and also have immediate consequences for applications, like plasma heating and diagnostics. The theoretical description of new plasma phenomena, and of the plasma state in general poses challenging problems, particularly in situations where high concentration of energy is located in the plasmas. Nonlinear wave analysis and turbulence theory have accordingly been extensively developed to describe in particular the collective plasma phenomena. New concepts have been envisaged like plasma solitons, which may be thought of as excitations of local concentrations of longitudinal plasma waves which turn out to be particularly stable. More and more sophisticated structures of nonlinear nature are being revealed by means of high capacity computer facilities. Simulation experiments allow for studies of chaotic behaviour of plasma particles. Related fields of activity form new trends in the development of plasma theory. The programme of the 1982 International Conference on Plasma Physics, which was held in Göteborg, Sweden, stressed the role of the Physics of Hot Plasmas. Studies of such plasmas are

  18. Physics of quark-gluon plasma

    CERN Document Server

    Smilga, A V

    1997-01-01

    In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulne ss of various characteristics of QGP discussed in the literature.

  19. Basic Studies in Plasma Physics

    Science.gov (United States)

    2013-01-31

    close to a Maxwellian parametrized by a temperature T and mean velocity u which satisfy certain non -linear equations, which are the macroscopic equations...Simulations with Particle-to-Grid Methods 17 E. Microscopic-Shock Profiles: Exact Solution of a Non -Equilibrium System 18 IV. List of Publications...Investigator ABSTRACT An improved understanding of equilibrium and non -equilibrium properties of plasmas is central to many areas of basic science as

  20. Plasma separation: physical separation at the molecular level

    Science.gov (United States)

    Gueroult, Renaud; Rax, Jean-Marcel; Fisch, Nathaniel J.

    2016-09-01

    Separation techniques are usually divided in two categories depending on the nature of the discriminating property: chemical or physical. Further to this difference, physical and chemical techniques differ in that chemical separation typically occurs at the molecular level, while physical separation techniques commonly operate at the macroscopic scale. Separation based on physical properties can in principle be realized at the molecular or even atomic scale by ionizing the mixture. This is in essence plasma based separation. Due to this fundamental difference, plasma based separation stands out from other separation techniques, and features unique properties. In particular, plasma separation allows separating different elements or chemical compounds based on physical properties. This could prove extremely valuable to separate macroscopically homogeneous mixtures made of substances of similar chemical formulation. Yet, the realization of plasma separation techniques' full potential requires identifying and controlling basic mechanisms in complex plasmas which exhibit suitable separation properties. In this paper, we uncover the potential of plasma separation for various applications, and identify the key physics mechanisms upon which hinges the development of these techniques.

  1. Progress in Anisotropic Plasma Physics

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...

  2. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  3. Dusty plasma as a unique object of plasma physics

    Science.gov (United States)

    Norman, G. E.; Timofeev, A. V.

    2016-11-01

    The self-consistency and basic openness of dusty plasma, charge fluctuations, high dissipation and other features of dusty plasma system lead to the appearance of a number of unusual and unique properties of dusty plasma. “Anomalous” heating of dusty particles, anisotropy of temperatures and other features, parametric resonance, charge fluctuations and interaction potential are among these unique properties. Study is based on analytical approach and numerical simulation. Mechanisms of “anomalous” heating and energy transfer are proposed. Influence of charge fluctuations on the system properties is discussed. The self-consistent, many-particle, fluctuation and anisotropic interparticle interaction potential is studied for a significant range of gas temperature. These properties are interconnected and necessary for a full description of dusty plasmas physics.

  4. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  5. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  6. Plasma physics of extreme astrophysical environments

    Science.gov (United States)

    Uzdensky, Dmitri A.; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)—the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  7. Plasma Physics Approximations in Ares

    Energy Technology Data Exchange (ETDEWEB)

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  8. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  9. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  10. Space plasma physics results from Spacelab 1

    Science.gov (United States)

    Burch, J. L.

    1985-01-01

    The Spacelab 1 payload carried several instrument systems which together investigated a number of space plasma phenomena. These experiments used the Space Shuttle Orbiter as a platform for making controlled particle-beam, plasma and neutral gas inputs to the ionosphere and magnetosphere and for observing the outputs produced. Spacelab 1 space-plasma investigations included the Space Experiments with Particle Accelerators (SEPAC), Phenomena Induced by Charged Particle Beams (PICPAB), Atmospheric Emissions Photometric Imaging (AEPI) and the Low Energy Electron Spectrometer and Magnetometer. Among the major phenomena investigated both singly and jointly by these experiments are vehicle charging and neutralization, beam-plasma and wave-particle interactions, anomalous ionization phenomena produced by neutral-gas and plasma injections and several phenomena induced by modulated particle beam injections.

  11. APS presents prizes in fluid dynamics and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation.

  12. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  13. The plasma physics of shock acceleration

    Science.gov (United States)

    Jones, Frank C.; Ellison, Donald C.

    1991-01-01

    The history and theory of shock acceleration is reviewed, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. The work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks is discussed. Some of the outstanding problems that still confront theorists and observers in this field are described.

  14. Novel aspects of plasma control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A. [General Atomics P.O. Box 85608, San Diego, California 92186-5608 (United States); Ambrosino, G.; Pironti, A. [CREATE/University of Naples Federico II, Napoli (Italy); Vries, P. de; Kim, S. H.; Snipes, J.; Winter, A.; Zabeo, L. [ITER Organization, St. Paul Lez durance Cedex (France); Felici, F. [Eindhoven University of Technology, Eindhoven (Netherlands); Kallenbach, A.; Raupp, G.; Treutterer, W. [Max-Planck Institut für Plasmaphysik, Garching (Germany); Kolemen, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Lister, J.; Sauter, O. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Moreau, D. [CEA, IRFM, 13108 St. Paul-lez Durance (France); Schuster, E. [Lehigh University, Bethlehem, Pennsylvania (United States)

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  15. Novel aspects of plasma control in ITER

    Science.gov (United States)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  16. Paradigm transition in cosmic plasma physics

    Science.gov (United States)

    Alfven, H.

    1982-01-01

    New discoveries in cosmic plasma physics are described, and their applications to solar, interstellar, galactic, and cosmological problems are discussed. The new discoveries include the existence of double layers in magnetized plasmas and in the low magnetosphere, and energy transfer by electric current in the auroral circuit. It is argued that solar flares and the solar wind-magnetosphere interaction should not be interpreted in terms of magnetic merging theories, and that electric current needs to be explicitly taken account of in understanding these phenomena. The filamentary structure of cosmic plasmas may be caused by electric currents in space, and the pinch effect may have a central role to play in the evolutionary history of interstellar clouds, stars, and solar systems. Space may have a cellular structure, with the cell walls formed by thin electric current layers. Annihilation may be the source of energy for quasars and the Hubble expansion, and the big bang cosmology may well be wrong.

  17. Fractal structures in nonlinear plasma physics.

    Science.gov (United States)

    Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F

    2011-01-28

    Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

  18. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  19. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-09

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  20. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Rewoldt, G.; Tang, W.M.

    1997-10-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  1. Physics issues in long pulse plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Toda, Shinichiro; Sanuki, Heiji [National Institute for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Department of Nuclear Engineering, Kyoto University, Kyoto (Japan)

    2000-07-01

    Physics in the steady-state or long time discharge are illustrated from the view point of generic toroidal plasmas. Issues include physics process with very long time scale, dynamical phenomena of various time scales, transition nature under very slow temporal variations of parameters, statistical occurrence of transition and life time and identification of minimum circulating power. Nonlinear dependencies of transport properties of density, temperature, current, electric field and poloidal magnetic field cause self-organized dynamics. A picture of stationary oscillatory states is presented from a unified picture of nonlinear limit cycle dynamics. It is emphasized that the long time asymptotics are determined by the structure formation mechanisms. The sustainment needs a circulating power, and the circulating power in steady state plasma is also discussed. (author)

  2. Brief Introduction to the Foundation of CAI Shidong Award for Plasma Physics

    Institute of Scientific and Technical Information of China (English)

    SHENG Zhengming

    2010-01-01

    @@ The late Academician Professor CAI Shidong was an outstanding plasma physicist who had made seminal contributions in both fundamental plasma theories and controlled thermonuclear fusion energy research.Professor CAI was also one of the pioneers in China's plasma physics research.In 1973,Professor CAI decided to leave U.S.and return to China in order to help pushing forward plasma physics research in China.Professor CAI formed a research group consisting of young scientists and carried out high-level works in this important physics discipline.He worked tirelessly,set examples by his own deeds,and made outstanding contributions in plasma physics research,educating younger generations of plasma physicists,as well as establishing collaborations with plasma scientists in other Asian-African developing nations.In short,Professor CAI devoted the best years of his life to China's plasma physics research.

  3. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  4. DEVELOPMENT OF MULTI-COORDINATE VOCABULARY, PLASMA PHYSICS.

    Science.gov (United States)

    LERNER, RITA G.

    DESCRIBED IS THE DEVELOPMENT OF A THESAURUS FOR THE FIELD OF PLASMA PHYSICS, SIMILAR TO THE ONE PREVIOUSLY DEVELOPED FOR CHEMICAL PHYSICS, FOR USE WITH COMPUTER-ORIENTED RETRIEVAL SYSTEMS. AN EXPERT IN THE FIELD OF PLASMA PHYSICS SELECTED TERMS IMPORTANT TO THE INFORMATION USER FROM THE PLASMA LITERATURE. THE HIERARCHY OF CLASSIFICATION UTILIZES…

  5. Statistical Physics Experiments Using Dusty Plasmas

    Science.gov (United States)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states

  6. A plasma formulary for physics, technology, and astrophysics

    CERN Document Server

    Diver, Declan

    2011-01-01

    Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos

  7. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  8. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  9. Testing Plasma Physics in the Ionosphere

    Science.gov (United States)

    Papadopoulos, Konstantinos

    TESTING PLASMA PHYSICS IN THE IONOSPHERE K. Papadopoulos University of Maryland College Park, MD 20742 Ionospheric heaters supplemented by ground and space based diagnostic instruments, such as radars, optical cameras and photometers, HF/VLF/ELF/ULF receivers and magnetometers, radio beacons, riometers and ionosondes have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), was completed in February 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP) between .36 - 4.0 GW. The antenna can point to any direction in a cone of 30 degrees from the vertical, with a reposition time of 15 degrees in 15 microseconds resulting in super-luminous scanning speeds. The transmitter can synthesize essentially any desired waveform within the regulatory allowed bandwidth in linear and circular polarization. These capabilities far exceed those of previous ionospheric heaters and allow for new frontier research in plasma physics, geophysics and radio science. Following a brief discussion of the relationship of the new capabilities of the facility with thresholds of physical processes that could not be achieved previously, the presentation will discuss recent results in the areas of ULF/ELF/VLF generation and propagation and wave-particle interactions in the magnetosphere acquired with the completed facility. The presentation will conclude with a detailed discussion of possible frontier science experiments in the areas of Langmuir turbulence, parametric instabilities, electron acceleration, optical emissions and field aligned striations and duct generation, made

  10. Physics through the 1990s: Plasmas and fluids

    Science.gov (United States)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  11. Control of disruption-generated runaway plasmas in TFTR

    Science.gov (United States)

    Fredrickson, E. D.; Bell, M. G.; Taylor, G.; Medley, S. S.

    2015-01-01

    Many disruptions in the Tokamak Fusion Test Reactor (TFTR) (Meade and the TFTR Group 1991 Proc. Int. Conf. on Plasma Physics and Controlled Nuclear Fusion (Washington, DC, 1990) vol 1 (Vienna: IAEA) pp 9-24) produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed-shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lasting runaway plasmas, events resembling Parail-Pogutse instabilities were observed.

  12. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  13. Fusion programs in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  14. Physical controllability of complex networks

    Science.gov (United States)

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control. PMID:28074900

  15. Physical controllability of complex networks

    Science.gov (United States)

    Wang, Le-Zhi; Chen, Yu-Zhong; Wang, Wen-Xu; Lai, Ying-Cheng

    2017-01-01

    A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control.

  16. Physical processes associated with current collection by plasma contactors

    Science.gov (United States)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  17. Divertor plasma physics experiments on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.

  18. Active control of magneto-hydrodynamic instabilities in hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Igochine, Valentin (ed.) [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2015-04-01

    Written and edited by leading plasma physics researchers. Provides a toolkit for scientists and engineers aiming to optimize plasma performance. Comprehensive treatment of different plasma instabilities. During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for ''old hands'' and newcomers alike.

  19. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    Science.gov (United States)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  20. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  1. Transport Physics in Reversed Shear Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Levinton, F.M.; Batha, S.H. [Fusion Physics and Technology, Inc., Torrance, CA (United States); Beer, M.A.; Bell, M.G.; Budny, R.V.; Efthimion, P.C.; Mazzucato, E.; Nazikian, R.; Park, H.K.; Ramsey, A.T.; Schmidt, G.L.; Scott, S.D.; Synakowski, E.J.; Taylor, G.; Von Goeler, S.; Zarnstorff, M.C. [Princeton University, NJ (United States). Plasma Physics Laboratory; Bush, C.E. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    Reversed magnetic shear is considered a good candidate for improving the tokamak concept because it has the potential to stabilize MHD instabilities and reduce particle and energy transport. With reduced transport the high pressure gradient would generate a strong off-axis bootstrap current and could sustain a hollow current density profile. Such a combination of favorable conditions could lead to an attractive steady-state tokamak configuration. Indeed, a new tokamak confinement regime with reversed magnetic shear has been observed on the Tokamak Fusion Test Reactor (TFTR) where the particle, momentum, and ion thermal diffusivities drop precipitously, by over an order of magnitude. The particle diffusivity drops to the neoclassical level and the ion thermal diffusivity drops to much less than the neoclassical value in the region with reversed shear. This enhanced reversed shear (ERS) confinement mode is characterized by an abrupt transition with a large rate of rise of the density in the reversed shear region during neutral beam injection, resulting in nearly a factor of three increase in the central density to 1.2 X 10(exp 20) cube m. At the same time the density fluctuation level in the reversed shear region dramatically decreases. The ion and electron temperatures, which are about 20 keV and 7 keV respectively, change little during the ERS mode. The transport and transition into and out of the ERS mode have been studied on TFTR with plasma currents in the range 0.9-2.2 MA, with a toroidal magnetic field of 2.7-4.6 T, and the radius of the q(r) minimum, q{sub min}, has been varied from r/a = 0.35 to 0.55. Toroidal field and co/counter neutral beam injection toroidal rotation variations have been used to elucidate the underlying physics of the transition mechanism and power threshold of the ERS mode.

  2. Dynacore Final Report , Plasma Physics prototype

    NARCIS (Netherlands)

    Lourens, W.

    2001-01-01

    The generation and behaviour of plasma in a fusion device and its interaction with sur-rounding materials is studied by observing several phenomena that will accompany a plasma discharge. These phenomena are recorded by means of so called Diagnostics. These are instruments that comprise complex elec

  3. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  4. Regular physical activity influences plasma ghrelin concentration in adolescent girls.

    Science.gov (United States)

    Jürimäe, Jaak; Cicchella, Antonio; Jürimäe, Toivo; Lätt, Evelin; Haljaste, Kaja; Purge, Pritt; Hamra, Jena; von Duvillard, Serge P

    2007-10-01

    We examined the effect of regular physical activity on plasma ghrelin concentration after onset of puberty in girls. In addition, we also examined the association of fasting plasma ghrelin concentration with various plasma biochemical, body composition, and aerobic capacity variables in healthy adolescent girls. Fifty healthy schoolgirls ages 11 to 16 yr were divided either into a physically active (N = 25) or a physically inactive (N = 25) group. The physically active group consisted of swimmers who had trained on an average of 6.2 +/- 2.0 h.wk(-1) for the last 2 yr, whereas the inclusion criterion for the physically inactive group was the participation in physical education classes only. The subjects were matched for age (+/- 1 yr) and body mass index (BMI; +/- 2 kg.m(-2)). Maturation I group (14 matched pairs) included pubertal stages 2 and 3, and maturation II group (11 matched pairs) included pubertal stages 4 and 5. Physically active girls had significantly higher (P ghrelin levels than the physically inactive girls (maturation I: 1152.1 +/- 312.9 vs 877.7 +/- 114.8 pg.mL(-1); maturation II: 1084.0 +/- 252.5 vs 793.4 +/- 164.9 pg.mL(-1)). Plasma ghrelin concentration was negatively related to percent body fat, fat mass, peak oxygen consumption per kilogram of body mass, leptin, estradiol, insulin, and insulin-like growth factor-I (IGF-I) (r > -0.298; P ghrelin concentration using the variables that were significantly associated with ghrelin concentration demonstrated that plasma IGF-I was the most important predictor of plasma ghrelin concentration (beta = -0.396; P = 0.008). Regular physical activity influences plasma ghrelin concentrations in girls with different pubertal maturation levels. Plasma IGF-I concentration seems to be the main determinant of circulating ghrelin in healthy, normal-weight adolescent girls.

  5. Laser Plasma Physics - Forces and Nonlinear Principle

    CERN Document Server

    Hora, Heinrich

    2014-01-01

    This work is an electronic pre-publication of a book manuscript being under consideration in order to provide information to interested researchers about a review of mechanical forces in plasmas by electro-dynamic fields. Beginning with Kelvin's ponderomotive force of 1845 in electrostatics, the hydrodynamic force in a plasma is linked with quadratic force quantities of electric and magnetic fields. Hydrodynamics is interlinked with single particle motion of plasma particles electric field generation and double layers and sheaths due to properties of inhomogeneous plasmas. Consequences relate to laser driven particle acceleration and fusion energy. Beyond the very broad research field of fusion using nanosecond laser pulses based on thermodynamics, the new picosecond pulses of ultrahigh power opened a categorically different non-thermal interaction finally permitting proton-boron fusion with eliminating problems of nuclear radiation.

  6. Physics of collapses in toroidal helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1998-12-31

    Theoretical model for the collapse events in toroidal helical plasmas with magnetic hill is presented. There exists a turbulent-turbulent transition at a critical pressure gradient, leading to a sudden increase of the anomalous transport. When the magnetic shear is low, the nonlinear excitation of the global mode is possible. This model explains an abrupt growth of the perturbations, i.e., the trigger phenomena. Achievable limit of the plasma beta value is discussed. (author)

  7. Town Meeting on Plasma Physics at the National Science Foundation

    Science.gov (United States)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  8. Plasma Physics Issues in Gas Discharge Laser Development

    Science.gov (United States)

    1991-12-01

    WL-TR-92-2087 PLASMA PHYSICS ISSUES IN GAS DISCHARGE LASER DEVELOPMENT AD-A257 735 ALAN GARSCADDEN MARK J. KUSNER J. GARY EDEN WL/POOC-3 WRIGHT...LASERS INFRARED MOLECULAR jAS LASERS UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL Plasma Physics Issues in Gas Discharge Laser Development Alan Garscadden...the close coupling between body of work was not generally useful in laser development . vibrationally excited nitrogen and CO or CO2 . In fact. the First

  9. Applications of Symmetry Methods to the Theory of Plasma Physics

    OpenAIRE

    Giampaolo Cicogna; Francesco Ceccherini; Francesco Pegoraro

    2006-01-01

    The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-...

  10. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  11. Tokamak Plasmas : Plasma position control in SST1 tokamak

    Indian Academy of Sciences (India)

    I Bandyopadhyay; S P Deshpande

    2000-11-01

    For long duration steady state operation of SST1, it would be very crucial to maintain the plasma radial and vertical positions accurately. For designing the position controller in SST1 we have adopted the simple linear RZIP control model. While the vertical position instability is slowed down by a set of passive stabilizers placed closed to the plasma edge, a pair of in-vessel active feedback coils can adequately control vertical position perturbations of up to 1 cm. The shifts in radial position arising due to minor disruptions would be controlled by a separate pair of poloidal field (PF) coils also placed inside the vessel, however the controller would ignore fast but insignificant changes in radius arising due to edge localised modes. The parameters of both vertical and radial position control coils and their power supplies are determined based on the RZIP simulations.

  12. Plasma spraying system with distributed controlling

    Institute of Scientific and Technical Information of China (English)

    李春旭; 陈克选; 张成

    2003-01-01

    A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.

  13. Monte Carlo simulations for plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  14. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  15. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    Science.gov (United States)

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  16. PREFACE: First International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir

    2006-07-01

    The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school

  17. Reaction-diffusion problems in the physics of hot plasmas

    CERN Document Server

    Wilhelmsson, H

    2000-01-01

    The physics of hot plasmas is of great importance for describing many phenomena in the universe and is fundamental for the prospect of future fusion energy production on Earth. Nontrivial results of nonlinear electromagnetic effects in plasmas include the self-organization and self-formation in the plasma of structures compact in time and space. These are the consequences of competing processes of nonlinear interactions and can be best described using reaction-diffusion equations. Reaction-Diffusion Problems in the Physics of Hot Plasmas is focused on paradigmatic problems of a reaction-diffusion type met in many branches of science, concerning in particular the nonlinear interaction of electromagnetic fields with plasmas.

  18. Physics of High Temperature, Dense Plasmas.

    Science.gov (United States)

    1984-01-01

    34Investigation of the High-Energy Acceleration Mode in the Coaxial Gun," Phys. Fluids, Suppl., S28, (1964). I. 9. Dattner, A. and Eninger J...34Studies of a Coaxial Plasma Gun," Phys. Fluids, Suppl., S41, (1964). II. 10. Wilcox, J. M., Pugh, E., Dattner, A. and Eninger , J., "Experimental Study of

  19. Research in Pulsed Power Plasma Physics

    Science.gov (United States)

    1993-11-01

    constraints will preclude the use of channels with much with a Tesla coil. Nor is uniformity improved by the use of larger wall radii. a 3 kA prepulse. Driving...Oliphant. 12C. Bruno, J. Delvaux. A. Nicolas . and M. Roche, IEEE Trans. Plasma and P. F. Ottinger. App!. Phys. Lett. 45. 1043 (1984).ISci. PS-IS, 686

  20. Physical properties of erupting plasma associated with coronal mass ejections

    Science.gov (United States)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  1. Plasmas for controlling the synthesis of semiconductor nanocrystals

    Science.gov (United States)

    Anthony, Rebecca

    2014-10-01

    Recently, nonthermal plasma synthesis of opto-electronically active semiconductor nanomaterials has attracted interest. The plasma reactor is especially attractive for synthesis of some earth-abundant and nontoxic semiconductor nanocrystals (NCs), such as silicon and gallium nitride. These materials, with high melting temperatures, are more challenging to grow using the liquid-phase techniques that are successful for other materials, such as II-VI NCs. Here, plasma synthesis of high-quality NCs from these materials will be discussed, including investigations on controlling the NCs' light emission properties via physical changes in the NCs brought about by altering the plasma parameters. For example, nanoparticle crystallinity may be controlled by altering the power supplied to the plasma reactor, which has been revealed to influence both the density of atomic hydrogen and the ion density in the plasma. In addition, the surfaces of NCs (which have been shown to be crucial in determining NC luminescence properties) can be altered utilizing reactions that take place in the plasma after NC growth is finished. The features of the plasma reactor provide unique and selective control over the properties of NCs, and also allow for deposition of dense films of NCs directly from the gas-phase, in complete avoidance of liquid-phase methods. These features - crystallization of environmentally benign materials, capacity to control NC surfaces via plasma-intiated reactions, and direct deposition of these materials onto device substrates - unite in a method for ``green'' processing of nanomaterials. Future directions for utilizing plasma reactors for nanomaterials synthesis and processing will also be discussed.

  2. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  3. Plasma Control in Symmetric Mirror Machines

    Science.gov (United States)

    Horton, W.; Rowan, W. L.; Alvarado, Igor; Fu, X. R.; Beklemishev, A. D.

    2014-10-01

    Plasma confinement in the symmetric rotating mirror plasma at the Budker Institute shows enhanced confinement with high electron temperatures with end plates biasing. Improved confinement is achieved by biasing end plate cells in the expansion tanks so as to achieve an inward pointing radial electric field. The negative potential well produces vortex plasma rotation similar to that in the negative potential well of Ohmic heated tokamaks. This plasma state has similarity with the lower turbulence level regimes documented in the Helimak where negative biasing of the end plates produces an inward radial electric field. To understand this vortex confinement we carry out 3D simulations with nonlinear partial differential equations for the electric potential and density in plasmas with an axially localized region of unfavorable and favorable magnetic curvature. The simulations show that the plasma density rapidly adjusts to be higher in the region of favorable curvature regions and remains relatively well confined while rapidly rotating. The results support the concept of using plasma-biasing electrodes in large expander tanks to achieve enhanced mirror plasma confinement. Supported by US-DoE grant to UT, LANL and the Budker Institute for Nuclear Physics.

  4. Plasma physics analysis of SERT-2 operation

    Science.gov (United States)

    Kaufman, H. R.

    1980-01-01

    An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.

  5. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  6. ISTTOK plasma control with the tomography diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H.; Caralho, P.J.; Duarte, P.; Pereira, T.; Coelho, R.; Silva, C. [Association Euratom/IST, Institute of Plasmas and Nuclear Fusion, Technology Graduate Institute, P-1049-001 Lisbon (Portugal)

    2011-07-01

    A real-time plasma position control system is mandatory to achieve long duration (up to 250 ms), Alternating Current (AC) discharges on the ISTTOK tokamak. Such a system has been used for some time supported only on magnetic field diagnostic data. However, this system does not function accurately when the plasma current is low, rendering it inoperative during the plasma current reversal. A tomography diagnostic with 3 pinhole cameras and 8 silicone photodiode channels per camera was installed and customized to supply alternative plasma position to be used for plasma position control. As no filtering is applied, most of the radiation detected is in the visible/near-UV range. This system (i) executes a tomographic reconstruction, (ii) determines the average emissivity position from it, (iii) calculates the shift from the required position and (iv) supplies the vertical field power supply unit with the desired current value, all in less than 100 {mu}s. The horizontal magnetic field power supply unit is expected to be included in the system and will have no impact in the process time. This paper presents the tomography diagnostic architecture together with results of its scientific exploitation in ISTTOK AC discharges, where it has proven to be capable of supplying an accurate plasma position during the current reversal. The use of the tomography diagnostic for plasma position overcomes some limitations of the magnetic diagnostics, but poses challenges of its own such as blindness to plasma current direction. (authors)

  7. Effective dose delivery in atmospheric pressure plasma jets for plasma medicine: a model predictive control approach

    Science.gov (United States)

    Gidon, Dogan; Graves, David B.; Mesbah, Ali

    2017-08-01

    Atmospheric pressure plasma jets (APPJs) have been identified as a promising tool for plasma medicine. This paper aims to demonstrate the importance of using model-based feedback control strategies for safe, reproducible, and therapeutically effective application of APPJs for dose delivery to a target substrate. Key challenges in model-based control of APPJs arise from: (i) the multivariable, nonlinear nature of system dynamics, (ii) the need for constraining the system operation within an operating region that ensures safe plasma treatment, and (iii) the cumulative, nondecreasing nature of dose metrics. To systematically address these challenges, we propose a model predictive control (MPC) strategy for real-time feedback control of a radio-frequency APPJ in argon. To this end, a lumped-parameter, physics-based model is developed for describing the jet dynamics. Cumulative dose metrics are defined for quantifying the thermal and nonthermal energy effects of the plasma on substrate. The closed-loop performance of the MPC strategy is compared to that of a basic proportional-integral control system. Simulation results indicate that the MPC stategy provides a versatile framework for dose delivery in the presence of disturbances, while the safety and practical constraints of the APPJ operation can be systematically handled. Model-based feedback control strategies can lead to unprecedented opportunities for effective dose delivery in plasma medicine.

  8. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  9. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  10. A plasma process monitor/control system

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.O.; Ward, P.P.; Smith, M.L. [Sandia National Labs., Albuquerque, NM (United States); Markle, R.J. [Advanced Micro Devices, Inc., Austin, TX (United States)

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  11. Computerized tomographic imaging for space plasma physics

    Science.gov (United States)

    Zhang, Yuhong; Coplan, Michael A.; Moore, John H.; Berenstein, Carlos A.

    1990-01-01

    The measurement of plasma electron velocity distribution functions as a problem in imaging and image reconstruction is considered. A model instrument that measures the integral of the distribution function along lines in velocity space is presented. This allows the use of the powerful mathematical and numerical methods that have recently been so successful in other areas of imaging. It is found that this approach leads to classes of instruments that are qualitatively different from contemporary designs. An investigation of different methods of reconstruction of the distribution function from integral measurements reveals that the mathematical tools appropriate to one particular imaging problem may be very different from those required to deal with another.

  12. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  13. Continuous, saturation, and discontinuous tokamak plasma vertical position control systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitrishkin, Yuri V., E-mail: y_mitrishkin@hotmail.com [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Pavlova, Evgeniia A., E-mail: janerigoler@mail.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow 119991 (Russian Federation); Kuznetsov, Evgenii A., E-mail: ea.kuznetsov@mail.ru [Troitsk Institute for Innovation and Fusion Research, Moscow 142190 (Russian Federation); Gaydamaka, Kirill I., E-mail: k.gaydamaka@gmail.com [V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, Moscow 117997 (Russian Federation)

    2016-10-15

    Highlights: • Robust new linear state feedback control system for tokamak plasma vertical position. • Plasma vertical position relay control system with voltage inverter in sliding mode. • Design of full models of multiphase rectifier and voltage inverter. • First-order unit approximation of full multiphase rectifier model with high accuracy. • Wider range of unstable plant parameters of stable control system with multiphase rectifier. - Abstract: This paper is devoted to the design and comparison of unstable plasma vertical position control systems in the T-15 tokamak with the application of two types of actuators: a multiphase thyristor rectifier and a transistor voltage inverter. An unstable dynamic element obtained by the identification of plasma-physical DINA code was used as the plasma model. The simplest static feedback state space control law was synthesized as a linear combination of signals accessible to physical measurements, namely the plasma vertical displacement, the current, and the voltage in a horizontal field coil, to solve the pole placement problem for a closed-loop system. Only one system distinctive parameter was used to optimize the performance of the feedback system, viz., a multiple real pole. A first-order inertial unit was used as the rectifier model in the feedback. A system with a complete rectifier model was investigated as well. A system with the voltage inverter model and static linear controller was brought into a sliding mode. As this takes place, real time delays were taken into account in the discontinuous voltage inverter model. The comparison of the linear and sliding mode systems showed that the linear system enjoyed an essentially wider range of the plant model parameters where the feedback system was stable.

  14. Structure and structure-preserving algorithms for plasma physics

    Science.gov (United States)

    Morrison, P. J.

    2016-10-01

    Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.

  15. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2011-07-01

    , amongst others, the following topics: fundamentals of plasma physics, fusion plasmas, plasmas in astrophysics and space physics, plasma applications and technologies, complex plasmas, high energy density plasmas, quantum plasmas and laser-plasma interaction. A total of 180 delegates from 34 different countries took part in ICPP-LAWPP-2010, and 60 delegates received financial assistance from the Local Organizing Committee, thanks to the support granted by the International Union for Pure and Applied Physics (IUPAP) and by CCHEN. The ICPP-LAWPP-2010 Program was established by the following Program Committee: • Carlos Alejaldre, ITER • Maria Virginia Alves, Brazil • Julio Herrera, Mexico • Günter Mank, IAEA • George Morales, USA • Padma Kant Shukla, Germany • Guido Van Oost, Belgium • Leopoldo Soto, Chile (Chairman) This Program Committee was formed of selected members from the International Advisory Committee of the ICPP and from the International Advisory Committee of the LAWPP (http://www.icpp-lawpp-2010.cl/page/committees.php). In particular, plenary lectures and invited topical lectures were selected by the Program Committee from a list of nominated lectures presented by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was established by the Program Committee. The Congress included 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. Most of the plenary and topical lectures are published in this special issue of Plasma Physics and Controlled Fusion. The papers were refereed according to the usual standards of the journal. Prior to ICPP-LAWPP 2010, an important activity usually associated with the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from all over the world, providing basic training to students and young researchers. The School was

  16. Serpentine Geometry Plasma Actuators for Flow Control

    Science.gov (United States)

    2013-08-23

    electrical power is supplied to them. As a method of introducing perturbations for low speed flow control, dielectric barrier discharge ( DBD ) actuators...SERPENTINE GEOMETRY DBD ACTUATORS DBD actuators are devices consisting of two asymmetri- cally placed actuators separated by a dielectric material and exposed...parameters can be found in Table I. The effects of plasma actuation are FIG. 1. (a) Schematic of DBD plasma actuator and the generated body force. (b

  17. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  18. Plasma Physics Research at an Undergraduate Institution

    Science.gov (United States)

    Padalino, Stephen

    2007-11-01

    Undergraduate research experiences have motivated many physics majors to continue their studies at the graduate level. The Department of Physics and Astronomy at SUNY Geneseo, a primarily undergraduate institution, recognizes this simple reality and is committed to ensuring research opportunities are available to interested majors beginning as early as their freshman year. Every year for more than a decade, as many as two dozen students and 8 faculty members have worked on projects related to high energy density physics and inertial confinement fusion during the summer months and the academic year. By working with their research sponsors, it has been possible to identify an impressive number of projects suitable for an institution such as Geneseo. These projects tend to be hands-on and require teamwork and innovation to be successful. They also take advantage of in-house capabilities such as the 2 MV tandem pelletron accelerator, a scanning electron microscope, a duoplasmatron ion deposition system and a 64 processor computing cluster. The end products of their efforts are utilized at the sponsoring facilities in support of nationally recognized programs. In this talk, I will discuss a number of these projects and point out what made them attractive and appropriate for an institution like Geneseo, the direct and indirect benefits of the research opportunities for the students and faculty, and how the national programs benefited from the cost-effective use of undergraduate research. In addition, I will discuss the importance of exposure for both students and faculty mentors to the larger scientific community through posters presentations at annual meetings such as the DPP and DNP. Finally, I will address the need for even greater research opportunities for undergraduate students in the future and the importance of establishing longer ``educational pipelines'' to satisfy the ever growing need for top-tier scientists and engineers in industry, academia and the

  19. Physics considerations for laser-plasma linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  20. Physics of liquid and crystalline plasmas: Future perspectives

    Science.gov (United States)

    Morfill, G. E.

    It has been shown that under certain conditions "complex plasmas" (plasma containing ions, electrons and charged microspheres) may undergo spontaneous phase changes to become liquid and crystalline, without recombination of the charge components. Hence these systems may be regarded as new plasma states "condensed plasmas". The ordering forces are mainly electrostatic, but dipolar effects, anisotropic pressure due shielding, ion flow focussing etc. may all play a role, too. Complex plasmas are of great interest from a fundamental research point of view because the individual particles of one plasma component (the charged microspheres) can be visualised and hence the plasma can be studied at the kinetic level. Also, the relevant time scales (e.g. 1/plasma frequency) are of order 0.1 sec, the plasma processes occur practically in "slow motion". We will discuss some physical processes (e.g. wave propagation, shocks, phase transitions) of these systems and outline the potential of the research for the understanding of strongly coupled systems. Technologically, it is expected that colloidal plasmas will also become very important, because both plasma technology and colloid technology are widely developed already. In this overview first the basic forces between the particles are discussed, then the phase transitions, the lattice structures and results from active experiments will be presented. Finally the future perspectives will be discussed, from the scientific potential point of view and the experimental approaches in the laboratory and in space. Experiments under microgravity conditions are of great importance, because the microspheres are 10's of billions times heavier than the ions.

  1. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  2. Physics of High Performance Dueterium-Tritium Plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K. M.; White, R.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K. L.; Wurden, G. A.; Batha, S.; Lamarche, P.; LeBlanc, B.; Levinton, F. M.; Beer, M.; Bell, M. G.; Bell, R. E.; Belov, A.; Fredrickson, E. D.; Fu, G. Y.; Furth, H. P.; Gorelenkov, N. N.; Krasilnikov, A. V.; Meade, D. M.; Medley, S. S.; Mika, R.; Mikkelsen, D. R.; Mirnov, S. V.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scott, S. D.; Semenov, I.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Dorland, W.; Phillips, P.; Bretz, N. L.; Budny, R.; Bush, C.E.; Grek, B.; Grisham, L. R.; Hammett, G. W.; Herrmann, H. W.; Herrmann, M.; Hill, K. W.; Hogan, G. R.; Hosea, J. C.

    1996-01-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production,isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high -li) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF-heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-li discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier.It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  3. Physics of high performance deuterium-tritium plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K.M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States); Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I{sub i}) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I{sub i} discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  4. Physical Processes Controlling Earth's Climate

    Science.gov (United States)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  5. Tin LPP plasma control in the argon cusp source

    Science.gov (United States)

    McGeoch, Malcolm W.

    2016-03-01

    The argon cusp plasma has been introduced [1,2] for 500W class tin LPP exhaust control in view of its high power handling, predicted low tin back-scatter from a beam dump, and avoidance of hydrogen usage. The physics of tin ion control by a plasma is first discussed. Experimentally, cusp stability and exhaust disc geometry have previously been proved at full scale [2], the equivalent of 300W-500W usable EUV. Here we verify operation of the plasma barrier that maintains a high argon density next to the collector, for its protection, and a low density in the long path toward the intermediate focus, for efficiency. A pressure differential of 2Pa has been demonstrated in initial work. Other aspects of tin LPP plasma control by the cusp have now been demonstrated using tin ions from a low Hz 130mJ CO2 laser pulse onto a solid tin surface at the cusp center. Plasma is rejected at the design to match a specified exhaust power is discussed. In view of this work, argon cusp exhaust control appears to be very promising for 500W class tin LPP sources.

  6. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  7. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  8. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  9. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  10. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiationhydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of selfheating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  11. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.

    Science.gov (United States)

    Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  12. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  13. Cold plasma: Quality control and regulatory considerations

    Science.gov (United States)

    In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut produce, nuts, spices, seeds, and other foods. Research has demonstrated effective control of human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and o...

  14. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    Science.gov (United States)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  15. Fusion plasma physics during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    1999-08-01

    A review is given on the potentialities of fusion energy with respect to energy production and related environmental problems, the various approaches to controlled thermonuclear fusion, the main problem areas of research, the historical development, the present state of investigations, and future perspectives. This article also presents a personal memorandum of the author. Thereby special reference will be given to part of the research conducted at the Royal Institute of Technology in Stockholm, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. In large tokamak experiments temperatures above the ignition limit of about 10{sup 8} K have been reached under break-even conditions where the fusion power generation is comparable to the energy loss. A power producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient. The future international research programme has therefore to be conducted along broad lines, with necessary ingredients of basis research and new ideas, and also within lines of magnetic confinement being alternative to that of tokamaks.

  16. Paradigm Changes in High Temperature Plasma Physics Research and Implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon K. Park

    2008-02-22

    Significant high temperature plasma research in both the magnetic and inertial confinement regimes led to the official launching of the International Thermonuclear Experimental Reactor (ITER) project which is aimed at challenging controlled fusion power for human kind. In particular, such an endeavor originated from the fruitful research outcomes from the world wide magnetic confinement devices (primarily based on the Tokamak approach) mainly in advanced countries (US, EU, and Japan). In recent years, all new steady state capable Tokamak devices are operated and/or constructed in Asian countries and incidentally, the majority of the ITER consortium consists of Asian countries. This provides an opportunity to revisit the unresolved essential physics issues and/or extend the understanding of the transient physics to the required steady state operation so that ITER can benefit from these efforts. The core physics of a magnetically confined hot plasma has two essential components; plasma stability and cross-field energy transport physics. Complete understanding of these two areas is critical for the successful operation of ITER and perhaps, Demo reactor construction. In order to have stable high beta plasmas with a sufficiently long confinement time, the physics of an abrupt disruption and sudden deterioration of the energy transport must be understood and conquered. Physics issues associated with transient harmful MHD behavior and turbulence based energy transport are extremely complicated and theoretical understanding needs a clear validation and verification with a new research approach such as a multi-dimensional visualization.

  17. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    Science.gov (United States)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.

  18. Physical properties of dense, low-temperature plasmas

    Science.gov (United States)

    Redmer, Ronald

    1997-04-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied within linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). This linear response method is applied to partially ionized systems such as dense, low-temperature plasmas. Here, the conductivity changes from nonmetallic values up to those typical for

  19. Quasiparticle lifetimes and infrared physics in QED and QCD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, J.P. [CEA-Saclay, Gif-sur-Yvette (France)

    1997-09-22

    The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is plagued with infrared divergences which are not eliminated by the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of longwavelength, quasistatic, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed in a non-perturbative treatment based on a generalization of the Bloch-Nordsieck model at finite temperature. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a non-exponential damping at large times: S{sub R}(t) {approx} exp(-{alpha}T t ln{omega}{sub p}t), where {omega}{sub p} = eT/3 is the plasma frequency and {alpha} = e{sup 2}/4{pi}.

  20. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  1. The role of magnetohydrodynamics in heliospheric space plasma physics research

    Science.gov (United States)

    Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan

    1988-01-01

    Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.

  2. The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.

    Science.gov (United States)

    Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis

    2010-07-01

    The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

  3. Magnetic configuration control of ITER plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R.; Mattei, M. [Assoc. Euratom-ENEA-CREATE, Univ. Mediterranea RC, Loc. Feo di Vito I-89060, RC (Italy); Portone, A. [EFDA-CSU, Max Planck Institute for Plasmaphysics, Boltzmannstrasse 2, D-85748 Garching (Germany)], E-mail: alfredo.portone@tech.efda.org; Ambrosino, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Via Claudio 21, I-80125 Naples (Italy); Artaserse, G. [Assoc. Euratom-ENEA-CREATE, Univ. Mediterranea RC, Loc. Feo di Vito I-89060, RC (Italy); Crisanti, F. [Associazione EURATOM-ENEA sulla Fusione, Frascati, C.P. 65, 00044-Frascati (Italy); De Tommasi, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Via Claudio 21, I-80125 Naples (Italy); Fresa, R. [DIFA, University della Basilicata, Contrada Macchia Romana I-85100, PZ (Italy); Sartori, F. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Villone, F. [Assoc. Euratom-ENEA-CREATE, University Cassino, Via Di Biasio 43, I-03043 Cassino (Italy)

    2007-10-15

    The aim of this paper is to present some new tools used to review the capability of the ITER Poloidal Field (PF) system in controlling the broad range of plasma configurations presently forecasted during ITER operation. The attention is focused on the axi-symmetric aspects of plasma magnetic configuration control since they pose the greatest challenges in terms of control power and they have the largest impact on machine capital cost. Some preliminary results obtained during ongoing activities in collaboration between ENEA/CREATE and EFDA are presented. The paper is divided in two main parts devoted, respectively, to the presentation of a procedure for the PF current optimisation during the scenario, and of a software environment for the study of the PF system capabilities using the plasma linearized response. The proposed PF current optimisation procedure is then used to assess Scenario 2 design, also taking into account the presence of axisymmetric eddy currents and possible variations of poloidal beta and internal inductance. The numerical linear model based tool derived from the JET oriented eXtreme Shape Controller (XSC) tools is finally used to obtain results on the strike point sweeping in ITER.

  4. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    Science.gov (United States)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  5. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children.

    Science.gov (United States)

    Bezrati, Ikram; Hammami, Raouf; Ben Fradj, Mohamed Kacem; Martone, Domenico; Padulo, Johnny; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha

    2016-11-01

    Vitamin D is thought to regulate skeletal muscle function and boost physical performance. The aim of this study was to assess the relationship between vitamin D and physical performance in physically active children. This cross-sectional study included 125 children who practice football as a leisure activity. Plasma 25-hydroxyvitamin D (25-OHD) was assessed using a chemiluminescence immunoassay method. Vitamin D inadequacy was defined as 25-OHD D inadequacy may limit exercise performance. Further research should verify whether correction of vitamin D deficiency enhances physical performance.

  6. Plasma treatment of air pollution control residues.

    Science.gov (United States)

    Amutha Rani, D; Gomez, E; Boccaccini, A R; Hao, L; Deegan, D; Cheeseman, C R

    2008-01-01

    Air pollution control (APC) residues from waste incineration have been blended with silica and alumina and the mix melted using DC plasma arc technology. The chemical composition of the fully amorphous homogeneous glass formed has been determined. Waste acceptance criteria compliance leach testing demonstrates that the APC residue derived glass releases only trace levels of heavy metals (Pb (production of higher value glass-ceramic products.

  7. Integrated physics analysis of plasma start-up scenario of helical reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Seki, R.; Suzuki, C.; Yokoyama, M.; Satake, S.; Sagara, A.; The FFHR Design Group

    2015-06-01

    1D physics analysis of the plasma start-up scenario of the large helical device (LHD)-type helical reactor FFHR-d1 was conducted. The time evolution of the plasma profile is calculated using a simple model based on the LHD experimental observations. A detailed assessment of the magnetohydrodynamic equilibrium and neo-classical energy loss was conducted using the integrated transport analysis code TASK3D. The robust controllability of the fusion power was confirmed by feedback control of the pellet fuelling and a simple staged variation of the external heating power with a small number of simple diagnostics (line-averaged electron density, edge electron density and fusion power). A baseline operation control scenario (plasma start-up and steady-state sustainment) of the FFHR-d1 reactor for both self-ignition and sub-ignition operation modes was demonstrated.

  8. Plasma parameters controlled by remote electron shower in a double plasma device

    Science.gov (United States)

    Mishra, M. K.; Phukan, A.

    2012-07-01

    The principal feature of this experiment is the electron showers consisting of three tungsten wires embedded by the plasma, which are heated up consequently emitting electrons inside the diffused plasma to control the plasma parameters in the discharge section of a double plasma device. These cold electrons emitted by the heated filament are free from maintenance of discharge which is sustained in the source section. The target plasma, where electrons are injected is produced as a result of diffusion from the source section. It is found that, plasma density and plasma potential can be effectively controlled in this way.

  9. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  10. Architecture of WEST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Ravenel, N., E-mail: nathalie.ravenel@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Nouailletas, R.; Barana, O.; Brémond, S.; Moreau, P.; Guillerminet, B.; Balme, S.; Allegretti, L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Mannori, S. [ENEA C.R. Brasimone (Italy)

    2014-05-15

    To operate advanced plasma scenario (long pulse with high stored energy) in present and future tokamak devices under safe operation conditions, the control requirements of the plasma control system (PCS) leads to the development of advanced feedback control and real time handling exceptions. To develop these controllers and these exceptions handling strategies, a project aiming at setting up a flight simulator has started at CEA in 2009. Now, the new WEST (W Environment in Steady-state Tokamak) project deals with modifying Tore Supra into an ITER-like divertor tokamak. This upgrade impacts a lot of systems including Tore Supra PCS and is the opportunity to improve the current PCS architecture to implement the previous works and to fulfill the needs of modern tokamak operation. This paper is dealing with the description of the architecture of WEST PCS. Firstly, the requirements will be presented including the needs of new concepts (segments configuration, alternative (or backup) scenario, …). Then, the conceptual design of the PCS will be described including the main components and their functions. The third part will be dedicated to the proposal RT framework and to the technologies that we have to implement to reach the requirements.

  11. Programmable physical parameter optimization for particle plasma simulations

    Science.gov (United States)

    Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh

    2012-10-01

    We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.

  12. An optimal real-time controller for vertical plasma stabilization

    CERN Document Server

    Cruz, N; Coda, S; Duval, B P; Le, H B; Rodrigues, A P; Varandas, C A F; Correia, C M B A; Goncalves, B S

    2014-01-01

    Modern Tokamaks have evolved from the initial axisymmetric circular plasma shape to an elongated axisymmetric plasma shape that improves the energy confinement time and the triple product, which is a generally used figure of merit for the conditions needed for fusion reactor performance. However, the elongated plasma cross section introduces a vertical instability that demands a real-time feedback control loop to stabilize the plasma vertical position and velocity. At the Tokamak \\`a Configuration Variable (TCV) in-vessel poloidal field coils driven by fast switching power supplies are used to stabilize highly elongated plasmas. TCV plasma experiments have used a PID algorithm based controller to correct the plasma vertical position. In late 2013 experiments a new optimal real-time controller was tested improving the stability of the plasma. This contribution describes the new optimal real-time controller developed. The choice of the model that describes the plasma response to the actuators is discussed. The ...

  13. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  14. NASA/Marshall Space Flight Center's Contributions to Space Plasma Physics

    Science.gov (United States)

    Adrian, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Since the mid-l970's, the Space Plasma Physics Group at NASA's Marshall Space Flight Center has contributed critical instrumentation to numerous satellite and sounding rocket missions exploring the plasmas of near-Earth space. This talk will review major discoveries in Earth's ionosphere, plasmasphere, and magnetosphere directly attributable to the researchers of the Space Plasma Physics Group and the significance of these discoveries to the field of plasma physics.

  15. Active control of magneto-hydrodynamic instabilities in hot plasmas

    CERN Document Server

    2015-01-01

    During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity.  However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.

  16. Contributions of plasma physics to chaos and nonlinear dynamics

    Science.gov (United States)

    Escande, D. F.

    2016-11-01

    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

  17. ITER-EDA physics design requirements and plasma performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Galambos, J. [Oak Ridge National Lab., TN (United States); Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S. [ITER San Diego Joint Work Site, CA (United States)

    1996-07-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R&D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of {approximately}1.6 that produces a nominal fusion power of {approximately}1.5 GW for an ignited burn pulse length of {ge}1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement ({tau}{sub E} = 0.85 {times} {tau}{sub ITER93H}), helium exhaust ({tau}*{sub He}/{tau}{sub E} = 10), representative plasma impurities (n{sub Be}/n{sub e} = 2%), and beta limit [{beta}{sub N} = {beta}(%)/(I/aB) {le} 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power ({approximately} 1--1.5 GW) and fluence ({approximately}1 MWa/m{sup 2}) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust ({tau}*{sub He}/{tau}{sub E} {le} 5) and potential operation in reverse-shear mode significantly improve ITER performance.

  18. Tip Clearance Control Using Plasma Actuators

    Science.gov (United States)

    2007-03-01

    Clearance Control Using Plasma Actuators 4 posed by Denton (1993). A number of investigators have used partial shrouds, or " winglet " designs to...main molded blade with a span of 3.42 in., a removable molded blade segment with a span of 0.1875 in., and removable blade tip winglets made of glass...segment and the main blade to vary the distance between the blade end and the front wall of the cascade section. The winglets were machined using a

  19. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    Science.gov (United States)

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  20. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  1. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  2. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  3. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Document Server

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  4. Soft X-ray measurements in magnetic fusion plasma physics

    Science.gov (United States)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  5. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  6. Earth's magnetosphere - Global problems in magnetospheric plasma physics

    Science.gov (United States)

    Roederer, J. G.

    1979-01-01

    Magnetospheric physics is presently in a transition from the exploratory stage to one in which satellite missions and ground-based observations are planned with the specific object of achieving a global understanding and self-consistent quantitative description of the cause-and-effect relationship among the principal dynamic processes involved. Measurements turn to lower and lower energies and to higher ion mass species, in order to encompass the entire particle population, and to a broader range of the frequency spectrum of magnetic and electric field variations. In the present paper, the current status of our knowledge on magnetospheric plasma physics is reviewed, with particular reference of such fundamental advances as the discovery of layers of streaming plasma in the magnetosphere beneath its boundary surface, the identification of the terrestrial magnetosphere as a celestial source of kilometric radiation and relativistic particles, the identification of parallel electric field regions within the magnetosphere and their role in auroral particle acceleration, and the discovery of large fluxes of energetic heavy ions trapped in the magnetosphere.

  7. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  8. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    Science.gov (United States)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  9. Planetary plasma data analysis and 3D visualisation at the French Plasma Physics Data Centre

    Science.gov (United States)

    Gangloff, Michel; Génot, Vincent; Cecconi, Baptiste; Andre, Nicolas; Budnik, Elena; Bouchemit, Myriam; Jourdane, Nathanaël; Dufourg, Nicolas; Beigbeider, Laurent; Toniutti, Jean-Philippe; Durand, Joelle

    2016-10-01

    The CDPP (the French plasma physics data center http://cdpp.eu/) is engaged for nearly two decades in the archiving and dissemination of plasma data products from space missions and ground-based observatories. Besides these activities, the CDPP developed services like AMDA (http://amda.cdpp.eu/) and 3DView (http://3dview.cdpp.eu/). AMDA enables in depth analysis of a large amount of data through dedicated functionalities such as: visualisation, data mining, cataloguing. 3DView provides immersive visualisations in planetary environments: spacecraft position and attitude, ephemerides. Magnetic field models (Cain, Tsyganenko), visualisation of cubes, 2D cuts as well as spectra or time series along spacecraft trajectories are possible in 3Dview. Both tools provide a joint access to outputs of simulations (MHD or Hybrid models) in planetary sciences as well as planetary plasma observational data (from AMDA, CDAWeb, Cluster Science Archive, ...). Some of these developments were funded by the EU IMPEx project, and some of the more recent ones are done in the frame of Europlanet 2020 RI project. The role of CDPP in the analysis and visualisation of planetary data and mission support increased after a collaboration with the NASA/PDS which resulted in the access in AMDA to several planetary datasets like those of GALILEO, MESSENGER, MAVEN, etc. In 2014, AMDA was chosen as the quicklook visualisation tool for the Rosetta Plasma Consortium through a collaboration with Imperial College, London. This presentation will include several use cases demonstrating recent and new capabilities of the tools.

  10. Cybernetical Physics From Control of Chaos to Quantum Control

    CERN Document Server

    Fradkov, Alexander L

    2007-01-01

    The control of complex systems is one of the most important aspects in dealing with systems exhibiting nonlinear behaviour or similar features that defy traditional control techniques. This specific subject is gradually becoming known as cybernetical physics, borrowing methods from both theoretical physics and control engineering. This book is, perhaps, the first attempt to present a unified exposition of the subject and methodology of cybernetical physics as well as solutions to some of its problems. Emphasis of the book is on the examination of fundamental limits on energy transformation by means of control procedures in both conservative and dissipative systems. A survey of application in physics includes the control of chaos, synchronisation of coupled oscillators, pendulum chains, reactions in physical chemistry and of quantum systems such as the dissociation of diatomic molecules. This book has been written having researchers from various backgrounds in physics, mathematics and engineering in mind and i...

  11. A prospect at 11th international Toki conference. Plasma physics, quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka

    2001-01-01

    A prospect of plasma physics at the turn of next century is discussed. The theme of this conference identifies the future direction of the research related with plasmas. Main issue is the potential and structure formation in plasmas; More specifically, structures which are realized through the interaction of electromagnetic fields, in particular that with electric fields, in non-equilibrium state. An emphasis is made to clarify the fundamental physics aspects of the plasma physics in fusion research as well as that in the basic research of plasmas. The plasma physics will give an important contribution to the solution of the historical enigma, i.e., all things flow. Having an impact on human recognition of nature and showing a beauty in a law, the plasma physics/science will demonstrate to be a leading science in the 21st century. (author)

  12. Power, Control and Status in Physical Education.

    Science.gov (United States)

    Thomson, Ian

    2003-01-01

    For most of the 20th century, Scottish teacher education in physical education, sport, and recreation were divided by gender and philosophy and provided by two specialist colleges. Analysis of the government's 1986 decision to merge the colleges focuses on the shift in power and control from the self-contained world of physical education to…

  13. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    Science.gov (United States)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  14. Spatial control of processing plasmas in a multicusp plasma source equipped with a movable magnetic filter

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, O.; Naitou, H.; Sakiyama, S. (Yamaguchi Univ., Yamaguchi (Japan))

    1991-12-20

    The plasma chemical vapor deposition (p-CVD) method has been used in the preparation of various sorts of thin films such as hydrogenated amorphous silicon films and hydrogenated amorphous carbon films, etc. and the application feasibility of a magnetically filtered multicusp plasma source has been studied. In this paper, it is confirmed that plasma parameters (H {sub 2} - ch {sub 4} or Ar-CH {sub 4} plasmas) are spatially well controlled by using both a movable magnetic filter and a plasma grid. Plasma parameters change sharply across the magnetic filter at any filter position and the whole plasma is divided clearly into the region of source plasma with high-energy electrons and the region of diffused plasma without high-energy electrons. Concerning the role of the magnetic filter which reflects preferentially high-energy electrons, a study is made through computer simulation. 7 refs., 9 figs.

  15. Physics and chemistry of plasma-assisted combustion.

    Science.gov (United States)

    Starikovskiy, Andrey

    2015-08-13

    There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions. The inhomogeneous heating generates flow perturbations, which promote increased turbulence and mixing. Non-thermal mechanisms include the ionic wind effect (the momentum transfer from an electric field to the gas due to the space charge), ion and electron drift (which can lead to additional fluxes of active radicals in the gradient flows in the electric field) and the excitation, dissociation and ionization of the gas by e-impact, which leads to non-equilibrium radical production and changes the kinetic mechanisms of ignition and combustion. These mechanisms, either together or separately, can provide additional combustion control which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine relight, detonation initiation in pulsed detonation engines and distributed ignition control in homogeneous charge-compression ignition engines, among others. Despite the lack of knowledge in mechanism details, non-equilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is extremely promising technology for a very wide range of applications.

  16. A Toroidally Symmetric Plasma Simulation code for design of position and shape control on tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Haruhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Senda, Ikuo

    1999-04-01

    A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)

  17. Innovative research of plasma physics for life sciences

    Science.gov (United States)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  18. The technology of Plasma Spray Physical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    M. Góral

    2012-12-01

    Full Text Available Purpose: The deposition of thermal barrier coatings is currently the most effective means of protecting the surface of aircraft engine turbine blades from the impact of aggressive environment of combustion gases. The new technologies of TBC depositions are required.Design/methodology/approach: The essential properties of the PS-PVD process have been outlined, as well as recent literature references. In addition, the influence of a set process condition on the properties of the deposited coatings has been described.Findings: The new plasma-spraying PS-PVD method is a promising technology for the deposition of modern thermal barrier coatings on aircraft engine turbine blades.Research limitations/implications: The constant progress of engine operating temperatures and increasing pollution restrictions determine the intensive development of heat-resistant coatings, which is directed to new deposition technologies and coating materials.Practical implications: The article presents a new technology of thermal barrier coating deposition - LPPS Thin Film and Plasma Spray - Physical Vapour Deposition.Originality/value: The completely new technologies was described in article.

  19. The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1- x Sr x Co y Fe1- y O3- δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Marcano, D.; Mauer, G.; Sohn, Y. J.; Vaßen, R.; Garcia-Fayos, J.; Serra, J. M.

    2016-04-01

    La0.58Sr0.4Co0.2Fe0.8O3 - δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases.

  20. EDITORIAL: The Third Nordic Symposium on Plasma Physics

    Science.gov (United States)

    Pecseli, Hans; Trulsen, Jan

    2006-02-01

    The Third Nordic Symposium on Plasma Physics was organized at Lysebu, Oslo, Norway on 4 7 October 2004, under the auspices of the Norwegian Centre for Advanced Study (CAS). The arrangement was preceded by two similar meetings organized at the Risø National Laboratory in Denmark by one of us (HP): Nonlinear Waves in Plasmas, 13 16 August 1985, and The Second Nordic Symposium on Nonlinear Phenomena in Plasmas and Related Topics, 8 12 August 1988. The proceedings from these two previous meetings were published as Physica Scripta Reprint Series No. 2, and RS 16 (with a few copies still being available). The idea of `Nordic' in the title of this latest meeting was interpreted somewhat liberally, by including also scientific organizations in northern Germany, where a collaboration facing Nordic countries comes naturally, and indeed has solid historical roots pointing also to ongoing activities. We hope that this series of meetings can continue, suggesting that the interval should be kept to a minimum of three years to ensure that all participants present new results. (We hope not to have to wait 16 years until next time, though!) The aim of our meetings is to stimulate collaboration among plasma physicists by creating a forum where the participants can exchange ideas and seek inspiration under relaxed conditions. We have the distinct impression that the meeting was very successful in this respect. Many Nordic institutes have widespread international collaborations, and we were happy to welcome also foreign representatives for some of these activities. Altogether 28 contributed talks were presented by 30 participants. The abstracts of all talks were distributed at the meeting. The present proceedings cover a selection of the contributions. One participant had to cancel, but the contribution is included in these proceedings. All the papers have been refereed according to the usual standards of the journal We, the organizers, thank CAS for the generous financial support

  1. Preparation for the operation of ITER: EU study on the plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M., E-mail: mario.cavinato@f4e.europa.eu [Fusion for Energy, Barcelona (Spain); Ambrosino, G. [CREATE/ENEA/Euratom Association, Università di Napoli Federico II, Naples (Italy); Figini, L.; Granucci, G. [Associazione EURATOM-ENEA sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Gribov, Y. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Koechl, F. [Association EURATOM-ÖAW/ATI, Atominstitut, TU Wien, 1020 Vienna (Austria); Mattei, M. [CREATE/ENEA/Euratom Association, Seconda Università di Napoli, Naples (Italy); Parail, V. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Pironti, A. [CREATE/ENEA/Euratom Association, Università di Napoli Federico II, Naples (Italy); Ricci, D. [Associazione EURATOM-ENEA sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Saibene, G.; Sartori, R. [Fusion for Energy, Barcelona (Spain); Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    In view of the preparation for the operation of the ITER tokamak it is necessary to develop the plasma scenarios taking into account all engineering constraints coming from the plant and including a realistic control system. It is important to consider that, due to the high energy of ITER plasmas, much more stringent requirements are posed on the control of transients in order to avoid machine damage. Several activities are performed in the EU focusing on one side on the scenario optimization from a physics point of view and on the other side on the design and modeling of a realistic plasma control system driving the plasma configuration throughout the whole pulse and suitable for implementation on a real machine. The issues related to the computation of the control feed-forward component are addressed. In particular, the possibility to trigger a feed-forward component to solve controllability problems arising in the transitions from plasma L to H and H to L modes is studied in detail with the support of linear and non-linear simulations. A control strategy is designed and tested on non-linear simulations of the whole pulse, including linear and non-linear effects due to controller switching, plasma shape reconstruction and power supplies. The paper reports on the results of the studies performed and discuss the proposed design of the plasma control system.

  2. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  3. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  4. Experimental Investigation of Active Feedback Control of Turbulent Transport in a Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [University of New Mexico

    2013-07-07

    A new and unique basic plasma science laboratory device - the HelCat device (HELicon-CAThode) - has been constructed and is operating at the University of New Mexico. HelCat is a 4 m long, 0.5 m diameter device, with magnetic field up to 2.2 kG, that has two independent plasmas sources - an RF helicon source, and a thermionic cathode. These two sources, which can operate independently or simultaneously, are capable of producing plasmas with a wide range of parameters and turbulence characteristics, well suited to a variety of basic plasma physics experiments. An extensive set of plasma diagnostics is also operating. Experiments investigating the active feedback control of turbulent transport of particles and heat via electrode biasing to affect plasma ExB flows are underway, and ongoing.

  5. Development of Expert Controller for Plasma Spraying Process

    Institute of Scientific and Technical Information of China (English)

    LIChun-xu; CHENKe-xuan; LIHe-qi; LIDe-wu

    2004-01-01

    Aiming at the plasma spraying process control, the control system model is developed on the basis of analyzing control parameters and coating properties and their correlation, and the corresponding control method and regulations are also given. With the developed expert controller for plasma spraying process, stable spraying can be realized using ordinary spraying powder and the coating of compaction, homogeneity and high bonding strength can be obtained.

  6. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    Energy Technology Data Exchange (ETDEWEB)

    S. Son and N.J. Fisch

    2005-12-01

    n a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion.

  7. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  8. Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin.

    Science.gov (United States)

    Mueller, Patrick J

    2008-09-01

    Physical inactivity is an independent risk factor for cardiovascular disease. Sedentary animals compared to physically active controls exhibit enhanced sympathoexcitatory responses, including arterial baroreflex-mediated sympathoexcitation. Hypotension-induced sympathoexcitation is also associated with the release of vasoactive hormones. We hypothesized that sedentary conditions may enhance release of the vasoactive hormones AVP and ANG II. To test this hypothesis, the humoral response to hypotension was examined in conscious rats after 9-12 wk of sedentary conditions or "normally active" conditions. Normally active conditions were produced by allowing rats access to running wheels in their home cages. Running distance peaked after 4 wk (4.5 +/- 0.7 km/day), and the total distance run after 9 wk was 174 +/- 23 km (n = 25). Similar levels of hypotension were induced in conscious sedentary or physically active animals with the arterial vasodilator, diazoxide (25 mg/kg iv). Control experiments used a saline injection of equivalent volume. Plasma samples were collected and assayed for plasma AVP concentration and plasma renin activity (PRA). Sedentary conditions significantly enhanced resting and hypotension-induced PRA relative to normal physical activity. In contrast, resting and hypotension-induced AVP levels were not statistically different between groups. These data suggest that baroreflex-mediated activation of the renin-angiotensin system, but not AVP secretion, is enhanced by sedentary conditions. We speculate that augmented activation of the renin-angiotensin system may be related to enhanced sympathetic outflow observed in sedentary animals and may contribute to increased risk of cardiovascular disease in the sedentary population.

  9. Formation and Acceleration Physics on Plasma Injector 1

    Science.gov (United States)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  10. Effect of pubertal development and physical activity on plasma ghrelin concentration in boys.

    Science.gov (United States)

    Jürimäe, J; Cicchella, A; Tillmann, V; Lätt, E; Haljaste, K; Purge, P; Pomerants, T; Jürimäe, T

    2009-01-01

    The aim of the present study was to assess the influence of regular physical activity on plasma ghrelin concentration in pre-pubertal and pubertal boys. In addition, the impact of ghrelin concentration on bone mineral density (BMD) was examined. In total, 56 healthy schoolboys aged between 10 and 16 yr were divided into the swimming (no.=28) and the control (no.=28) groups. The subjects were matched by age and body mass index (BMI), generating 9 matched pairs in pubertal group I (Tanner stage 1), 11 pairs in group II (Tanner stages 2 and 3), and 8 pairs in group III (Tanner stages 4 and 5). Swimmers in pubertal groups II and III had significantly (both pghrelin levels than the controls (group II: 1126.8+/-406.0 vs 868.3+/-411.2 pg/ml; group III: 1105.5+/-337.5 vs 850.8+/-306.0 pg/ml, respectively), whereas no difference was seen in the pubertal group I (1230.8+/-386.0 vs 1272.7+/-424.4 pg/ml). Ghrelin was the most important hormonal determinant for total BMD and lumbar apparent volumetric BMD (BMAD) (R2=27.2% and R2=19.8%, respectively) in swimmers, whereas in control boys, plasma IGF-I was the most important hormonal predictor accounting for 41.8% of the variability of total BMD and 20.4% of the variability of lumbar BMAD. In conclusion, ghrelin concentration decreased during puberty in physically inactive boys, while in regularly physically active boys it remained relatively unchanged. Ghrelin appears to be an important hormonal predictor for BMD in physically active boys, while BMD is mostly determined by IGF-I in physically inactive boys.

  11. Physical activity opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Hellsten, Ylva

    2013-01-01

    AIMS: Endothelin-1 has potent constrictor and proliferative activity in vascular smooth muscle, and essential hypertension and aging are associated with increased endothelin-1-mediated vasoconstrictor tone. The aim of this study was to investigate the effect of physical activity, hypertension...... performed lifelong physical activity had similar plasma and muscle endothelin-1 levels as the young controls and had higher ET(A) receptor levels. CONCLUSION: Our findings suggest that aerobic exercise training opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes...... plasma endothelin-1 levels in individuals with essential hypertension. This effect may explain some of the beneficial effects of training on the cardiovascular system in older and hypertensive subjects....

  12. Plasma Shape and Current Density Profile Control in Advanced Tokamak Operating Scenarios

    Science.gov (United States)

    Shi, Wenyu

    -point position. Setting up a suitable toroidal current profile is related to both the stability and performance of the plasma. The requirements of ITER motivate the research on plasma current profile control. Currently, physics-based control-oriented modeling techniques of the current profile evolution can be separated into two major classes: data-driven and first-principles-driven. In this dissertation, a two-timescale linear dynamic data-driven model of the rotational transform profile and betaN is identified based on experimental data from the DIII-D tokamak. A mixed-sensitivity Hinfinity controller is developed and tested during DIII-D high-confinement (H-mode) experiments by using the heating and current drive (H&CD) systems to regulate the plasma rotational transform profile and betaN around particular target values close to the reference state used for system identification. The preliminary experimental results show good progress towards routine current profile control in DIII-D. As an alternative, a nonlinear dynamic first-principles-driven model is obtained by converting the physics-based model that describes the current profile evolution in H-mode DIII-D discharges into a form suitable for control design. The obtained control-oriented model is validated by comparing the model prediction to experimental data. An Hinfinity control design problem is formulated to synthesize a stabilizing feedback controller, with the goal of developing a closed-loop controller to drive the current profile in DIII-D to a desirable target evolution. Simulations show that the controller is capable of regulating the system around the target rotational transform profile in the presence of disturbances. When compared to a previously designed data-driven model-based controller, the proposed first-principles-driven model-based controller shows potential for improving the control performance.

  13. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  14. Asymptotic-Preserving methods and multiscale models for plasma physics

    CERN Document Server

    Degond, Pierre

    2016-01-01

    The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.

  15. Experimental and theoretical research in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  16. Plasma physics abstracts, 1 January - 31 December, 1986

    Science.gov (United States)

    Gurnett, D. A.; Dangelo, N.; Goertz, C. K.

    1987-01-01

    Topics addressed include: ion-cyclotron waves; plasma waves; solar wind lithium releases; bow shock; Pi2 wave bursts; auroral kilometric radiation; ion energization; magnetic field corrections; electric fields; magnetospheric processes; electron acceleration; inner heliosphere; nightside auroral zone; computerized simulation; plasma wave turbulence; and magnetohydrodynamic waves in plasma sheets.

  17. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  18. Physical-Chemical Characterization of Nanodispersed Powders Produced by a Plasma-Chemical Technique

    Institute of Scientific and Technical Information of China (English)

    M. GEORGIEVA; G. VISSOKOV; Iv. GRANCHAROV

    2007-01-01

    This article presents a review on the physical-chemical properties and characteristics of plasma-chemically produced nanodispersed powders (NDP), such as metals, oxides, nitrides, carbides, and catalysts. The plasma-chemical preparation of the powders was carried out in thermal plasma (TP) created by means of high-current electric arcs, plasma jets, high-frequency (HF) discharges, etc. We also discuss certain properties and characteristics of the NDPs, which are determined largely by the conditions of preparation.

  19. Physics and optimization of plasma startup in the RFP

    Science.gov (United States)

    Mao, W.; Chapman, B. E.; Ding, W. X.; Lin, L.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Duff, J.; Ko, J.; Kumar, S. T. A.; Morton, L.; Munaretto, S.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Brower, D. L.; Liu, W.

    2015-05-01

    In the tokamak and reversed-field pinch (RFP), inductively driven toroidal plasma current provides the confining poloidal magnetic field and ohmic heating power, but the magnitude and/or duration of this current is limited by the available flux swing in the poloidal field transformer. A portion of this flux is consumed during startup as the current is initiated and ramped to its final target value, and considerable effort has been devoted to understanding startup and minimizing the amount of flux consumed. Flux consumption can be reduced during startup in the RFP by increasing the toroidal magnetic field, Bti, applied to initiate the discharge, but the underlying physics is not yet entirely understood. Toward increasing this understanding, we have for the first time in the RFP employed advanced, non-invasive diagnostics on the Madison Symmetric Torus to measure the evolution of current, magnetic field, and kinetic profiles during startup. Flux consumption during startup is dominantly inductive, but we find that the inductive flux consumption drops as Bti increases. The resistive consumption of flux, while relatively small, apparently increases with Bti due to a smaller electron temperature. However, the ion temperature increases with Bti, exceeding the electron temperature and thus reflecting non-collisional heating. Magnetic fluctuations also increase with Bti, corresponding primarily to low-n modes that emerge sequentially as the safety factor profile evolves from tokamak-like to that of the RFP.

  20. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  1. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  2. 'Plasma Camp': A Different Approach to Professional Development for Physics Teachers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Post-Zwicker and Nicholas R. Guilbert

    1998-12-01

    The Plasma Physics and Fusion Energy Institute ('Plasma Camp') was inaugurated in 1998 as a way to address two areas of concern in the professional development of high-school physics teachers: involving teachers in the theory and methods of a current area of research in physics and connecting the research experience back into the classroom. The Institute, run jointly by a scientist and a teacher, immersed high-school teachers from across the country in laboratory investigations and in pedagogical projects for two weeks at Princeton University's Plasma Physics Laboratory. The goals, structure, and initial outcomes of the Institute are discussed.

  3. Investigation of dielectric barrier discharge plasma flow control

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Effects of plasma flow control are researched on the basis of plasma exciting flow experiments and numerical simulations. Turbulent model is more effective than laminar model in plasma numerical simulation as results showed. Both plasma exciting effects of acceleration and flow separation suppression are investigated through experiments carried on the flat plate and the compressor cascades. The results demonstrate that boundary layer characteristic is modified by plasma exciting. Distributions of total pressure and velocity in the wake are improved notably for 20 m/s coming velocity and the effect of plasma can still be observed while velocity is increased to 50 m/s. For low velocity flow, plasma exciting is effective in flow separation suppression.

  4. Practicality of magnetic compression for plasma density control

    CERN Document Server

    Gueroult, Renaud

    2016-01-01

    Plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations after the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and plasma $\\beta$ is estimated to be about $1$. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features could possibly be advantageous in part...

  5. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  6. Airfoil Roll Control by Bang-Bang Optimal Control Method with Plasma Actuators

    CERN Document Server

    Wei, Qingkai; Chen, Bao; Huang, Xun

    2012-01-01

    The bang-bang optimal control method was proposed for glow discharge plasma actuators, taking account of practical issues, such as limited actuation states with instantaneously varied aerodynamic control performance. Hence, the main contribution of this Note is to integrate flight control with active flow control in particular for plasma actuators. Flow control effects were examined in wind tunnel experiments, which show that the plasma authority for flow control is limited. Flow control effects are only obvious at pitch angles near stall. However, flight control simulations suggest that even those small plasma-induced roll moments can satisfactorily fulfill the maneuver tasks and meet flight quality specifications. In addition, the disturbance from volatile plasma-induced roll moments can be rejected. Hence, the proposed bang-bang control method is a promising candidate of control design methodology for plasma actuators.

  7. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model

    Science.gov (United States)

    2014-06-30

    Riemann solver for the two-fluid plasma model. Journal of Computational Physics , 187(2):620–638, 2003. [23] Jeffrey P. Freidberg. Ideal...Computational Physics , 141(2):199–224, 1998. [52] P. L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of...AFRL-OSR-VA-TR-2014-0310 PHYSICS -BASED COMPUTATIONAL ALGORITHM FOR THE MULTIFLUID PLASMA MODEL Uri Shumlak UNIVERSITY OF WASHINGTON Final Report 10

  8. Control rods in LMFBRs: a physics assessment

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, H.F.; Collins, P.J.

    1982-08-01

    This physics assessment is based on roughly 300 control rod worth measurements in ZPPR from 1972 to 1981. All ZPPR assemblies simulated mixed-oxide LMFBRs, representing sizes of 350, 700, and 900 MWe. Control rod worth measurements included single rods, various combinations of rods, and Ta and Eu rods. Additional measurements studied variations in B/sub 4/C enrichment, rod interaction effects, variations in rod geometry, neutron streaming in sodium-filled channels, and axial worth profiles. Analyses were done with design-equivalent methods, using ENDF/B Version IV data. Some computations for the sensitivities to approximations in the methods have been included. Comparisons of these analyses with the experiments have allowed the status of control rod physics in the US to be clearly defined.

  9. Role of magnetospheric plasma physics for understanding cosmic phenomena

    Science.gov (United States)

    Das, Indra M. L.

    Cosmic phenomena occur in the remote regions of space where in situ observations are not possible. For a proper understanding of these phenomena, laboratory experiments are essential, but in situ observations of magnetospheric plasma provide an even better background to test various hypothesis of cosmic interest. This is because the ionospheric-magnetospheric plasma and the solar wind are the only cosmic plasmas accessible to extensive in situ observations and experiments.

  10. Physical limitations in ferromagnetic inductively coupled plasma sources

    CERN Document Server

    Bliokh, Yury P; Slutsker, Yakov Z

    2012-01-01

    The Ferromagnetic Inductively Coupled Plasma (FICP) source, which is a version of the common inductively coupled plasma sources, has a number of well known advantages such as high efficiency, high level of ionization, low minimal gas pressure, very low required driver frequency, and even a possibility to be driven by single current pulses. We present an experimental study of such an FICP source which showed that above a certain value of the driving pulse power the properties of this device changed rather drastically. Namely, the plasma became non-stationary and non-uniform contrary to the stationary and uniform plasmas typical for this kind of plasma sources. In this case the plasma appeared as a narrow dense spike which was short compared to the driving pulse. The local plasma density could exceed the neutral atoms density by a few orders of magnitude. When that happened, the afterglow plasma decay time after the end of the pulse was long compared to an ordinary case with no plasma spike. Experiments were pe...

  11. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  12. Feedback Control for Plasma Position on HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    LIBo; SONGXianming; LILi; LIULi; WANGMinghong; FANMingjie; CHENLiaoyuan; YAOLieying; YANGQingwei

    2003-01-01

    HL-2A is a tokamak with closed divertor. It had been built at the end of 2002 and began to discharge from then on. To further study plasma discharges in HL-2A, a feedback control system (FBCS) for plasma position bad been developed in 2003.

  13. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  14. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  15. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  16. Positron plasma control techniques for the production of cold antihydrogen

    Science.gov (United States)

    Funakoshi, R.; Amoretti, M.; Bonomi, G.; Bowe, P. D.; Canali, C.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Fujiwara, M. C.; Genova, P.; Hangst, J. S.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G. C.; Rotondi, A.; Testera, G.; Variola, A.; Venturelli, L.; van der Werf, D. P.; Yamazaki, Y.; Zurlo, N.

    2007-07-01

    An observation of a clear dependence of antihydrogen production on positron plasma shapes is reported. For this purpose a plasma control method has been developed combining the plasma rotating-wall technique with a mode diagnostic system. With the help of real-time and nondestructive observations, the rotating-wall parameters have been optimized. The positron plasma can be manipulated into a wide range of shapes (aspect ratio 6.5⩽α≲80 ) and densities (1.5×108⩽n≲7×109cm-3) within a short duration (25s) compatible with the ATHENA antihydrogen production cycle.

  17. Positron plasma control techniques for the production of cold antihydrogen

    CERN Document Server

    Funakoshi, R; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A G; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macrì, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Posada, L G C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; Van der Werf, D P; Yamazaki, Y; Zurlo, N

    2007-01-01

    An observation of a clear dependence of antihydrogen production on positron plasma shapes is reported. For this purpose a plasma control method has been developed combining the plasma rotating-wall technique with a mode diagnostic system. With the help of real-time and nondestructive observations, the rotating-wall parameters have been optimized. The positron plasma can be manipulated into a wide range of shapes (aspect ratio 6.5≤α≲80) and densities (1.5×108≤n≲7×109 cm−3) within a short duration (25 s) compatible with the ATHENA antihydrogen production cycle.

  18. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-09-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  19. Physical investigation of a quad confinement plasma source

    Science.gov (United States)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  20. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  1. Control of powerful microwaves using EBG plasma structures

    Science.gov (United States)

    Simonchik, Leanid; Callegari, Thierry; Sokoloff, Jerome; Usachonak, Maxim

    2016-09-01

    Glow discharge plasmas have great potential for application as control elements in microwave devices designed on the basis of electromagnetic band gap (EBG) structures. In this report, a plasma control of powerful microwave propagation by means of 1D and 2D EBG structures is under investigation. Three pulsed discharges in argon (or helium) at atmospheric pressure are applied in the capacity of plasma inhomogeneities. Temporal behavior of electron concentration in discharge is determined. The transmission spectra of 1D EBG structure formed solely by plasma in the X-waveguide are measured. The amplitudes of short ( 200 ns) and powerful (50 kW) microwave pulses at frequency of 9.15 GHz are strongly suppressed (more than on 40 dB) when plasma structure exists. The propagation of these powerful microwave pulses through the triangular metallic 2D EBG structure with the plasma control elements is investigated, too. It is shown that the transmission of the 2D EBG structure at the angle of 45o ceases quickly (during a few tenth of nanoseconds) when plasma acts as a compensator of defect in the front row of the structure. On the contrary, the transmission arises quickly once plasma acts as an additional defect. The support of BRFBR-CNRS grant F15F-004 is acknowledged.

  2. An integrated approach to the control of magnetically confined plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R.; Ambrosino, G.; Ariola, M.; Bagatin, M.; Bellina, F.; Bettini, P.; Borghi, C.A.; Chitarin, G.; Coccorese, E.; Formisano, A.; Fresa, R.; De Magistris, M.; Gnesotto, F.; Guarnieri, M.; Marchiori, G.; Martone, R.; Pironti, A.; Ribani, P.L.; Rubinacci, G.; Stella, A. E-mail: stella@uniud.it; Trevisan, F.; Villone, F

    2001-10-01

    In this paper, a short review of the work done in the framework of a nation-wide research programme on 'Models and Methods for Plasma Control in Magnetically Confined Fusion Experiments' is presented. The broad aim of the overall programme is to develop and propose a new effective and reliable approach to the on-line plasma control for future fusion experiments, starting from the today's theoretical background, validated by experimental evidence from a number of tests performed on existing experiments. The proposed formulation to approach the control problem is a linearized model in terms of suitable state variables and input/output relationships. The basic project has been subdivided into four major areas of investigation: the linearized response plasma model, the three-dimensional electromagnetic model, the identification techniques and finally the plasma control requirements. The most remarkable results, achieved so far in each area above, are presented in the paper.

  3. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    not only by the need to further understand the fundamental principles but with an eye towards applications. Consequently in addition to furthering the cause of physics, we strive to improve increasingly complex technologies or develop new technologies. The non-equilibrium nature of plasmas that are the subject of our studies allows us to control properties that are critical and to design optimum conditions for these varied applications. We hope that this volume will serve as a useful source of information for experienced researchers, as a textbook for postgraduate students and as a reminder, for all who attended the workshop, of the wonderful time (http://www.euj07.phy.bg.ac.yu/index.php?page=p04) we had on top of the mountain Kopaonik, even though we were subjected to freezing temperatures in the middle of summer. Organization of this workshop was supported by INCO EU FP6 026328 project (Reinforcing Experimental Center for Non-equilibrium studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research), by the Ministry of Science and Environment of Serbia (project 141025) and also, to a great extend, by the individual funding of the participants some of whom traveled from remote continents in order to participate. Z Lj Petrović, G Malović, M Tasić and Ž Nikitović Editors

  4. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  5. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29 GIDC, Sec-25, Gandhinagar, 382016 Gujarat (India)

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  6. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  7. Physical fitness and plasma leptin in women with recent gestational diabetes.

    Science.gov (United States)

    Gar, C; Rottenkolber, M; Grallert, H; Banning, F; Freibothe, I; Sacco, V; Wichmann, C; Reif, S; Potzel, A; Dauber, V; Schendell, C; Sommer, N N; Wolfarth, B; Seissler, J; Lechner, A; Ferrari, U

    2017-01-01

    Low physical fitness (PF) is a risk factor for type 2 diabetes mellitus (T2D). Women with a history of gestational diabetes (GDM) are at risk for T2D at a young age, but the role of PF in this population is not clear. PF has also been found to correlate inversely with plasma leptin in previous studies. Here, we examine whether women who had GDM have lower PF than women after a normoglycemic pregnancy and, second, whether PF is associated with plasma leptin, independently of body fat mass. Cross-sectional analysis of 236 participants in the PPSDiab Study (cohort study of women 3-16 months after delivery, 152 after gestational diabetes (pGDM), 84 after normoglycemic pregnancy (control subjects); consecutively recruited 2011-16); medical history, physical examination with bioelectrical impedance analysis (BIA), whole body magnetic resonance imaging (MRI) (n = 154), 5-point oral glucose tolerance test, cardiopulmonary exercise testing, clinical chemistry including fasting plasma leptin; statistical analysis with Mann-Whitney U and t -test, Spearman correlation coefficient, multiple linear regression. Women pGDM had lower maximally achieved oxygen uptake (VO2peak/kg: 25.7(21.3-29.9) vs. 30.0(26.6-34.1)ml/min/kg; total VO2peak: 1733(1552-2005) vs. 1970(1767-2238)ml/min; pfit than control subjects. Low PF may therefore contribute to the risk for T2D after GDM. This should be tested in intervention studies. Low PF also associated with increased leptin levels-independently of body fat. PF may therefore influence leptin levels and signaling. This hypothesis requires further investigation.

  8. Dietary control of equine plasma triacylglycerols

    OpenAIRE

    Hallebeek, Johanna Maria

    2002-01-01

    The study of this thesis concerns the dietary influence on lipid metabolism in horses. The main issue is the effect of dietary medium chain triacylglycerols (MCT) on triacylglycerol metabolism. In certain conditions high-fat diets can be beneficial for horses. Diets rich in long-chain polyunsaturated fatty acids in the form of soybean oil decrease plasma triacylglycerol concentrations and increase the activity of heparin-released lipoprotein lipase activity in horses. The metabolic adaptation...

  9. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  10. Some problems of pulsar physics. [magnetospheric plasma model

    Science.gov (United States)

    Arons, J.

    1979-01-01

    The theories of particle acceleration along polar field lines are reviewed, and the total energization of the charge separated plasma is summarized, when pair creation is absent. The application of these theories and plasma supply to pulsars is discussed, with attention given to the total amount of electron-positron plasma created and its momentum distribution. Various aspects of radiation emission and transport are analyzed, based on a polar current flow model with pair creation, and the phenomenon of marching subpulses is considered. The coronation beaming and the relativistically expanding current sheet models for pulsar emission are also outlined, and the paper concludes with a brief discussion of the relation between the theories of polar flow with pair plasma and the problem of the energization of the Crab Nebula.

  11. Modelling and control of a tokamak plasma; Modelisation et commande d`un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bremond, S.

    1995-10-18

    Vertically elongated tokamak plasmas, while attractive as regards Lawson criteria, are intrinsically instable. It is found that the open-loop instability dynamics is characterised by the relative value of two dimensionless parameters: the coefficient of inductive coupling between the vessel and the coils, and the coil damping efficiency on the plasma displacement relative to that of the vessel. Applications to Tore Supra -where the instability is due to the iron core attraction- and DIII-D are given. A counter-effect of the vessel, which temporarily reverses the effect of coil control on the plasma displacement, is seen when the inductive coupling is higher than the damping ratio. Precise control of the plasma boundary is necessary if plasma-wall interaction and/or coupling to heating antennas are to be monitored. A positional drift, of a few mm/s, which had been observed in the Tore Supra tokamak, is explained and corrected. A linear plasma shape response model is then derived from magnetohydrodynamic equilibrium calculation, and proved to be in good agreement with experimental data. An optimal control law is derived, which minimizes an integral quadratic criteria on tracking errors and energy expenditure. This scheme avoids compensating coil currents, and could render local plasma shaping more precise. (authors). 123 refs., 77 figs., 6 tabs., 4 annexes.

  12. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  13. Working group report: Heavy-ion physics and quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa; Sudhir Raniwala; T Awes; B Rai; R S Bhalerao; J G Contreras; R V Gavai; S K Ghosh; P Jaikumar; G C Mishra; A P Mishra; H Mishra; B Mohanty; J Nayak; J-Y Ollitrault; S C Phatak; L Ramello; R Ray; P K Sahu; A M Srivastava; D K Srivastava; V K Tiwari

    2006-11-01

    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.

  14. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.

    Science.gov (United States)

    Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo

    2014-04-01

    Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

  15. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  16. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  17. Plasma Control of Turbine Secondary Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose Phase I and II efforts that will focus on turbomachinery flow control. Specifically, the present work will investigate active control in a high speed...

  18. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  19. Construction of an Alpha Particle Spark Detector and Fusor for research in plasma physics and radiation detection

    Science.gov (United States)

    Akinsulire, Olorunsola; Fils-Aime, Fabrice; Hecla, Jake; Short, Michael; White, Anne

    2016-10-01

    This project delves into the realms of plasma physics and nuclear engineering by exploring systems used to generate plasmas and detect radiation. Basic plasma processes can be explored using inertial electrostatic confinement, in a device commonly called a ``fusor''. The fusor will generate neutrons and x-rays. The breakdown of air within a spark gap can be achieved with alpha particles and the avalanche effect; and constitutes an Alpha Particle Spark Detector (APSD), relevant for studies of basic nuclear processes and detectors. In the fusor, preliminary data was collected on breakdown voltage versus pressure in an air plasma to see how well the current system and geometry match up with expectations for the Paschen curve. A stable plasma was observed, at voltages roughly consistent with expectations, and it was concluded that a more controlled gas introduction system is needed to maintain a steady plasma over wider pressure ranges, and will allow for introduction of D2 gas for the study of neutron and x-ray producing plasmas. This poster will discuss the design, construction, and initial operation of the Alpha Particle Spark Detector and the fusor as part of an Undergraduate Research Opportunity (UROP) project. MIT UROP Program and the NSE department.

  20. Study of Local Reconnection Physics in a Laboratory Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada

    2001-06-11

    A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory.

  1. JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

    2011-03-07

    Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  3. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    Science.gov (United States)

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  4. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  5. Jet flow and premixed jet flame control by plasma swirler

    Science.gov (United States)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang

    2017-04-01

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  6. Gas-Liquid Interfacial Non-Equilibrium Plasmas for Structure Controlled Nanoparticles

    Science.gov (United States)

    Kaneko, Toshiro

    2013-10-01

    Plasmas generated in liquid or in contact with liquid have attracted much attention as a novel reactive field in the nano-bio material creation because the brand-new chemical and biological reactions are yielded at the gas-liquid interface, which are induced by the physical actions of the non-equilibrium plasmas. In this study, first, size- and structure-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized using a pulse-driven gas-liquid interfacial discharge plasma (GLIDP) for the application to next-generation drug delivery systems. The size and assembly of the AuNPs are found to be easily controlled by changing the plasma parameters and DNA concentration in the liquid. On the other hand, the mono-dispersed, small-sized, and interval-controlled AuNPs are synthesized by using the carbon nanotubes (CNTs) as a template, where the CNTs are functionalized by the ion and radical irradiation in non-equilibrium plasmas. These new materials are now widely applied to the solar cell, optical devices, and so on. Second, highly-ordered periodic structures of the AuNPs are formed by transcribing the periodic plasma structure to the surface of the liquid, where the spatially selective synthesis of the AuNPs is realized. This phenomenon is well explained by the reduction and oxidation effects of the radicals which are generated by the non-equilibrium plasma irradiation to the liquid and resultant dissociation of the liquid. In addition, it is attempted to form nano- or micro-scale periodic structures of the AuNPs based on the self-organizing behavior of turbulent plasmas generated by the nonlinear development of plasma fluctuations at the gas-liquid interface.

  7. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Kuchina, J. A.; Shiryaev, V. N.; Pavlov, A. V.

    2017-04-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed.

  8. Numerical Modeling of Plasma Actuators for Flow Control

    OpenAIRE

    KOURTZANIDIS, Konstantinos

    2014-01-01

    As aerodynamic flow control still remains one of the top subjects of research in the aerospace scientific world, new ways to perform such a control are being constantly studied. Microwave plasma discharges have been proposed as a mean of a non-intrusive flow control method based on the creation of hot spots of air (via the creation of plasma discharges) which can eventually interact with the external flow and modify its attributes in a beneficial way to the aerodynamic coefficients of the body of i...

  9. Atmospheric Cloud Physics Laboratory thermal control

    Science.gov (United States)

    Moses, J. L.; Fogal, G. L.; Scollon, T. R., Jr.

    1978-01-01

    The paper presents the development background and the present status of the Atmospheric Cloud Physics Laboratory (ACPL) thermal control capability. The ACPL, a Spacelab payload, is currently in the initial flight hardware development phase for a first flight scheduled in June 1981. The ACPL is intended as a facility for conducting a wide variety of cloud microphysics experimentation under zero gravity conditions. The cloud chambers, which are key elements of the ACPL, have stringent thermal requirements. Thus the expansion chamber inner walls must be uniform to within + or - 0.1 C during both steady-state and transient operation over a temperature range of +30 to -25 C. Design progression of the expansion chamber, from early in-house NASA-MSFC concepts (including test results of a prototype chamber) to a thermal control concept currently under development, is discussed.

  10. An experimental study of icing control using DBD plasma actuator

    Science.gov (United States)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  11. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  12. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    Science.gov (United States)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  13. The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak

    Science.gov (United States)

    Ke, Xin; Chen, Zhipeng; Ba, Weigang; Shu, Shuangbao; Gao, Li; Zhang, Ming; Zhuang, Ge

    2016-02-01

    The plasma density feedback control system (PDFCS) has been established on the Joint Texas Experimental Tokamak (J-TEXT) for meeting the need for an accurate plasma density in physical experiments. It consists of a density measurement subsystem, a feedback control subsystem and a gas puffing subsystem. According to the characteristic of the gas puffing system, a voltage amplitude control mode has been applied in the feedback control strategy, which is accomplished by the proportion, integral and differential (PID) controller. In this system, the quantity calibration of gas injection, adjusted responding to the change of the density signal, has been carried out. Some experimental results are shown and discussed. supported by the National Magnetic Confinement Fusion Science Program (Nos. 2014GB103001 and 2013GB106001) and National Natural Science Foundation of China (Nos. 11305070 and 11105028)

  14. Examining the Effects of Oxygen Plasma on Physical and Dyeing Properties of Some Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Dilara KOCAK

    2016-09-01

    Full Text Available Cotton, Agava Americana and artichoke fibers were treated with plasma with oxygen gas in Diener Vacuum Plasma for 1, 3 and 5 minutes, with 40 kHz low frequency and at 0.3 mbar pressure. After the plasma treatment, fibers' weight loss %, tensile strength, elongation, fiber diameter, surface topography (SEM, colour changes, and light and washing fastness properties were investigated. A positive increase was observed for mechanical and fastness properties after 5 min plasma treatment. The effects of plasma treatments on dyeing properties of fibers were studied. Dyeing properties of plasma treated fibers were improved after 3 min. treatment. SEM results were also proved the improved physical properties and colour changes due to the rough surface structure.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9368

  15. Enhanced Cu-to-Cu direct bonding by controlling surface physical properties

    Science.gov (United States)

    Chiang, Po-Hao; Liang, Sin-Yong; Song, Jenn-Ming; Huang, Shang-Kun; Chiu, Ying-Ta; Hung, Chih-Pin

    2017-03-01

    Cu-to-Cu direct bonding is one of the key technologies for three-dimensional (3D) chip stacking. This research proposes a new concept to enhance Cu-to-Cu direct bonding through the control of surface physical properties. A linear relationship between bonding strength and the H/\\sqrt{R} value of the bonding face (H: subsurface hardness, R: surface roughness) was found. Low vacuum air plasma and thermal annealing were adopted to adjust the surface physical conditions. Instead of surface activation, an acceleration in copper atom diffusion due to plasma-induced compressive stress accounts for the improvement in bonding strength.

  16. Practicality of magnetic compression for plasma density control

    Science.gov (United States)

    Gueroult, Renaud; Fisch, Nathaniel J.

    2016-03-01

    Plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators [P. F. Schmit and N. J. Fisch, Phys. Rev. Lett. 109, 255003 (2012)]. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations after the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and the plasma β is estimated to be about 1. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features still might be advantageous in particle accelerators.

  17. Instability wave control in turbulent jet by plasma actuators

    Science.gov (United States)

    Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu

    2014-12-01

    Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.

  18. The physics of plasma injection events. [during magnetospheric substorms

    Science.gov (United States)

    Kivelson, M. G.; Kaye, S. M.; Southwood, D. J.

    1980-01-01

    In this paper, plasma injection is defined as an increase of particle flux in a detector of finite bandwidth. Injection can result from dynamic processes or from spacecraft penetration of a quasi-static spatial structure produced by a steady magnetospheric convection pattern. ATS-5 particle spectrograms are found to provide examples of plasma injection events of both sorts. Dynamic injection occurs both with and without local magnetic signatures. For events not associated with clear local magnetic signatures, convection theory with a steady or a time-varying uniform electric field can account for the energy dispersion of injected particles with energy less than 50 keV. The paper concludes with a discussion of the way in which the convection boundaries are related to the substorm injection boundary of Mauk and McIlwain. Several alternative expressions for the local time and K(p) dependence of the injection boundary are given.

  19. Drift waves and chaos in a LAPTAG plasma physics experiment

    Science.gov (United States)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  20. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  1. Tritium inventory control during ITER operation under carbon plasma-facing components by nitrogen-based plasma chemistry: a review

    Science.gov (United States)

    Tabarés, F. L.

    2013-06-01

    In spite of being highly suited for advanced plasma performance operation of tokamaks, as demonstrated over at least two decades of fusion plasma research, carbon is not currently considered as an integrating element of the plasma-facing components (PFCs) for the active phase of ITER. The main reason preventing its use under the very challenging scenarios foreseen in this phase, with edge-localized modes delivering several tens of MW m-2 to the divertor target every second or less, is the existing concern about reaching the tritium inventory value of 1000 g used in safety assessments in a time shorter than the projected lifetime of the divertor materials eroded by the plasma, set at 3000 shots. Although several mechanisms of tritium trapping in carbon components have been identified, co-deposition of the carbon radicals arising from chemically eroded chlorofluorocarbons in remote areas appears to play a dominant role. Several possible ways to keep control of the tritium build-up during the full operation of ITER have been put forward, mostly based on the periodic removal of the co-deposits by chemical (thermo-oxidation, plasma chemistry) or physical (laser, flash lamps) methods. In this work, we review the techniques for the inhibition and removal of tritium-rich co-deposits based on the strong chemical reactivity of some N-bearing molecules with carbon. The integration of these techniques into a possible scheme for tritium inventory control in the active phase of ITER under carbon-based PFCs with minimum down-time is discussed and the existing caveats are addressed.

  2. Energy Efficient Transient: Plasma Ignition: Physics and Technology

    Science.gov (United States)

    2007-08-30

    Wang from the University of Southern California on modeling the TPI-assisted combustion. The ethylene data taken on the PDE is intended to assist this...production of said species will assist in the development of a model for transient plasma ignition greatly. The plan for a two week experiment is to...Back-Lighted Thyratron ," 27th International Power Modulator Conference 2006, Washington, D.C., 14-18 May 2006. P.I. - Martin A. Gundersen "Energy

  3. The contribution of Nikola Tesla to plasma physics and current status of plasmas that he studied

    Directory of Open Access Journals (Sweden)

    Petrović Zoran Lj.

    2006-01-01

    Full Text Available One of the main Interests in science of Nikola Tesla were gas discharges plasmas, their application in lighting and in production of ozone as well as their role in conduction of electricity through the atmosphere. In particular Tesla is well known as the first person to produce rf plasmas. Such plasmas in the present day constitute the main technology required to produce integrated circuits (IC and have been essential in the revolution that resulted from IC technologies. In addition Tesla participated in studies of arcs especially arcs used as a source of light, corona discharges required to induce plasma chemical reactions and produce ozone and was involved in various aspects of gas breakdown and gaseous dielectrics. His ideas, level of his understanding and current status of these fields are discussed in this review.

  4. Controlled MoS₂ layer etching using CF₄ plasma.

    Science.gov (United States)

    Jeon, Min Hwan; Ahn, Chisung; Kim, HyeongU; Kim, Kyong Nam; LiN, Tai Zhe; Qin, Hongyi; Kim, Yeongseok; Lee, Sehan; Kim, Taesung; Yeom, Geun Young

    2015-09-04

    A few-layered molybdenum disulfide (MoS2) thin film grown by plasma enhanced chemical vapor deposition was etched using a CF4 inductively coupled plasma, and the possibility of controlling the MoS2 layer thickness to a monolayer of MoS2 over a large area substrate was investigated. In addition, damage and contamination of the remaining MoS2 layer surface after etching and a possible method for film recovery was also investigated. The results from Raman spectroscopy and atomic force microscopy showed that one monolayer of MoS2 was etched by exposure to a CF4 plasma for 20 s after an initial incubation time of 20 s, i.e., the number of MoS2 layers could be controlled by exposure to the CF4 plasma for a certain processing time. However, XPS data showed that exposure to CF4 plasma induced a certain amount of damage and contamination by fluorine of the remaining MoS2 surface. After exposure to a H2S plasma for more than 10 min, the damage and fluorine contamination of the etched MoS2 surface could be effectively removed.

  5. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  6. [Physical methods used to control body temperature].

    Science.gov (United States)

    Ezquerro Rodríguez, Esther; Montes García, Yolanda; Marín Fernández, Blanca

    2012-10-01

    The physical methods to control body temperature, either to induce hypothermia, or to increase body temperature, can be of two types: physical methods of external heating or cooling and invasive methods that require complex procedures and technology. There are many strategies for the induction of hypothermia, all based on three of the four basic mechanisms of heat transfer, evaporation, convection and conduction. In the hospital environment the external cooling methods or surface (blankets of cold air or water circulation, plates of hydrogel Artic Sun, methods of cooling helmet) are the most widely used for the induction of therapeutic hypothermia. The most non-invasive devices used are blades of hydrogel, which use water conduction high speed between the layers of pads. But there are quicker methods to induce hypothermia; i.e., invasive methods of internal cooling: infusion of intravenous crystalloid; endovascular catheters located in a central vein through which flows saline pumped by a closed circuit; By-pass cardio-pulmonary with extracorporeal circulation; and By-pass percutaneous venous system for continuous hemofiltration. The average physical external heating is based on the patient's ability to produce and retain heat or in the application of heat to the body surface of the patient (hot spring baths with hot water, air blankets, blankets of water). But when the answer to these methods are not sufficient or hypothermia is moderate or severe, other methods of internal heat are suggested: inhalation of oxygen or warm to 40-45 degrees C and wet by facial mask or endotracheal tube; intravenous (IV) infusion with hot solutions; Irrigation of body cavities with warm saline solution to 40-42 degrees C; peritoneal dialysis, haemodialysis and hemofiltration; Continuous reheating arterio-venous or venous-venous; extracorporeal circulation with cardiopulmonary bypass. In this article each of the methods listed above will be described for the induction of hypothermia

  7. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasma experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and

  8. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2016-01-01

    Full Text Available In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α, differentiation (retinoic acid signaling and interferon inducible factors, and cell growth (Yin Yang 1. Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1 and of the neutrophil attractant chemokine interleukin-8 (IL-8. Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  9. FPGA based Fuzzy Logic Controller for plasma position control in ADITYA Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Suratia, Pooja, E-mail: poojasuratia@yahoo.com [Electrical Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Patel, Jigneshkumar, E-mail: jjp@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Rajpal, Rachana, E-mail: rachana@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India); Kotia, Sorum, E-mail: smkotia-eed@msubaroda.ac.in [Electrical Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Govindarajan, J., E-mail: govindarajan@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat (India)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Evaluation and comparison of the working performance of FLC is done with that of PID Controller. Black-Right-Pointing-Pointer FLC is designed using MATLAB Fuzzy Logic Toolbox, and validated on ADITYA RZIP model. Black-Right-Pointing-Pointer FLC was implemented on a FPGA. The close-loop testing is done by interfacing FPGA to MATLAB/Simulink. Black-Right-Pointing-Pointer Developed FLC controller is able to maintain the plasma column within required range of {+-}0.05 m and was found to give robust control against various disturbances and faster and smoother response compared to PID Controller. - Abstract: Tokamaks are the most promising devices for obtaining nuclear fusion energy from high-temperature, ionized gas termed as Plasma. The successful operation of tokamak depends on its ability to confine plasma at the geometric center of vacuum vessel with sufficient stability. The quality of plasma discharge in ADITYA Tokamak is strongly related to the radial position of the plasma column in the vacuum vessel. If the plasma column approaches too near to the wall of vacuum vessel, it leads to minor or complete disruption of plasma. Hence the control of plasma position throughout the entire plasma discharge duration is a fundamental requirement. This paper describes Fuzzy Logic Controller (FLC) which is designed for radial plasma position control. This controller is tested and evaluated on the ADITYA RZIP control model. The performance of this FLC was compared with that of Proportional-Integral-Derivative (PID) Controller and the response was found to be faster and smoother. FLC was implemented on a Field Programmable Gate Array (FPGA) chip with the use of a Very High-Speed Integrated-Circuits Hardware Description-Language (VHDL).

  10. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    Science.gov (United States)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  11. Physics of hot hadronic matter and quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p{sub t} and collective flow, the shape of p{sub t} distribution, strangeness production, J/{psi} suppression and {phi} enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ultrasoft'' phenomena. 56 refs., 6 figs.

  12. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  13. A control-oriented self-consistent model of an inductively-coupled plasma

    Science.gov (United States)

    Keville, Bernard; Turner, Miles

    2009-10-01

    An essential first step in the design of real time control algorithms for plasma processes is to determine dynamical relationships between actuator quantities such as gas flow rate set points and plasma states such electron density. An ideal first principles-based, control-oriented model should exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This presentation describes a control-oriented model of a cylindrical low pressure planar inductive discharge with a stove top antenna. The model consists of equivalent circuit coupled to a global model of the plasma chemistry to produce a self-consistent zero-dimensional model of the discharge. The non-local plasma conductivity and the fields in the plasma are determined from the wave equation and the two-term solution of the Boltzmann equation. Expressions for the antenna impedance and the parameters of the transformer equivalent circuit in terms of the isotropic electron distribution and the geometry of the chamber are presented.

  14. Plasma Actuators for Turbomachinery Flow Control

    Science.gov (United States)

    Miles, Richard, B; Shneider, Mikhail, N.

    2012-01-01

    This report is Part I of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. The period of performance was January 1, 2007 to December 31, 2010. This report includes the project summary, a list of publications and reprints of the publications that appeared in archival journals. Part II of the final report includes a Ph.D. dissertation and is published separately as NASA/CR-2012-2172655. The research performed under this project was focused on the operation of surface dielectric barrier discharge (DBD) devices driven by high voltage, nanosecond scale pulses plus constant or time varying bias voltages. The main interest was in momentum production and the range of voltages applied eliminated significant heating effects. The approach was experimental supplemented by computational modeling. All the experiments were conducted at Princeton University. The project provided comprehensive understanding of the associated physical phenomena. Limitations on the performance of the devices for the generation of high velocity surface jets were established and various means for overcoming those limitations were proposed and tested. The major limitations included the maximum velocity limit of the jet due to electrical breakdown in air and across the dielectric, the occurrence of backward breakdown during the short pulse causing reverse thrust, the buildup of surface charge in the dielectric offsetting the forward driving potential of the bias voltage, and the interaction of the surface jet with the surface through viscous losses. It was also noted that the best performance occurred when the nanosecond pulse and the bias voltage were of opposite sign. Solutions include the development of partially conducting surface coatings, the development of a semiconductor diode inlaid surface material to suppress the backward breakdown. Extension to long discharge channels was studied and a new ozone imaging method developed for more quantitative determination of surface jet

  15. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  16. Edge plasma control using an LID configuration on CHS

    Energy Technology Data Exchange (ETDEWEB)

    Masuzaki, S.; Komori, A.; Morisaki, T. [National Inst. for Fusion Science, Oroshi, Toki (Japan)] [and others

    1997-07-01

    A Local Island Divertor (LID) has been proposed to enhance energy confinement through neutral particle control. For the case of the Large Helical Device (LHD), the separatrix of an m/n = 1/1 magnetic island, formed at the edge region, will be utilized as a divertor configuration. The divertor head is inserted in the island, and the island separatrix provides connection between the edge plasma region surrounding the core plasma and the back plate of the divertor head through the field lines. The particle flux and associated heat flux from the core plasma strike the back plate of the divertor head, and thus particle recycling is localized in this region. A pumping duct covers the divertor head to form a closed divertor system for efficient particle exhaust. The advantages of the LID are ease of hydrogen pumping because of the localized particle recycling and avoidance of the high heat load that would be localized on the leading edge of the divertor head. With efficient pumping, the neutral pressure in the edge plasma region will be reduced, and hence the edge plasma temperature will be higher, hopefully leading to a better core confinement region. A LID configuration experiment was done on the Compact Helical System (CHS) to confirm the effect of the LID. The typical effects of the LID configuration on the core plasma are reduction of the line averaged density to a half, and small or no reduction of the stored energy. In this contribution, the experimental results which were obtained in edge plasma control experiments with the LID configuration in the CHS are presented.

  17. Atmospheric Pressure Plasma Based Flame Control and Diagnostics

    Science.gov (United States)

    2015-01-01

    TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Atmospheric Pressure Plasma Based Flame Control and Diagnostics 5a...to 10%)  Flame speed enhancement (>20%)  Extension of lean limit (factor of two)  Distributed ignition  Development of new diagnostics

  18. A simulation study of a controlled tokamak plasma

    Science.gov (United States)

    Fujii, N.; Niwa, Y.

    1980-03-01

    A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.

  19. Chaos control and taming of turbulence in plasma devices

    DEFF Research Database (Denmark)

    Klinger, T.; Schröder, C.; Block, D.;

    2001-01-01

    Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply to p...

  20. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  1. Recent advances in numerical simulation of space-plasma-physics problems

    Science.gov (United States)

    Birmingham, T. J.

    1983-01-01

    Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.

  2. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  3. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    R V Gavai

    2000-07-01

    Lattice quantum chromodynamics (QCD), defined on a discrete space–time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, New York of relativistic heavy ion collisions are expected to produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the necessary theoretical concepts, I will present a critical review of the experimental results already obtained by the various experiments in order to examine whether QGP has already been observed by them.

  4. Toward Inverse Control of Physics-Based Sound Synthesis

    Science.gov (United States)

    Pfalz, A.; Berdahl, E.

    2017-05-01

    Long Short-Term Memory networks (LSTMs) can be trained to realize inverse control of physics-based sound synthesizers. Physics-based sound synthesizers simulate the laws of physics to produce output sound according to input gesture signals. When a user's gestures are measured in real time, she or he can use them to control physics-based sound synthesizers, thereby creating simulated virtual instruments. An intriguing question is how to program a computer to learn to play such physics-based models. This work demonstrates that LSTMs can be trained to accomplish this inverse control task with four physics-based sound synthesizers.

  5. First results from the MAST digital plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    McArdle, G.J. E-mail: graham.mcardle@ukaea.org.uk; Storrs, J

    2004-06-01

    The mega-amp spherical tokamak (MAST) has operated under a new digital plasma control system [Fusion Eng. Des. 66-68 (2003) 761]. The new system, based on commercially available VME hardware, has replaced most of the old analogue control electronics [Fusion Eng. Des. 56-57 (2001) 749] with algorithms implemented in the control software. General Atomics provided their PCS [B.G. Penaflor, J.R. Ferron, M.L. Walker, A structured architecture for advanced plasma control experiments, in: Proceedings of the 19th SOFT, vol. 1, Lisbon, Portugal, 1996, p. 965] software infrastructure as a generic framework for a plasma control system. A powerful configuration tool has been developed to generate the MAST-specific code from a set of structured documents written in extensible mark-up language (XML). This enables rapid development of new control algorithms and permits safe re-configuration of the code layout, whilst maintaining the coherence of multiple cross-references. The initial algorithm set emulates the behaviour of the original analogue control hardware where it is sensible to do so, but implements several new plant protection capabilities that were previously too difficult to provide with analogue electronics. Shots previously run with the old system can be converted to run in the new system, thus allowing previous campaigns to be continued without the need to develop new scenarios. During the present engineering break, a new suite of algorithms is being developed to provide plasma boundary reconstruction and control functions that fully exploit the capabilities of the digital system.

  6. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, Gwenael G.J. [Univ. of California, Berkeley, CA (United States)

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  7. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  8. Control of arc plasma torches: compensation of operational enthalpy drifts

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D H; Alexieva, J; Djakov, B E; Enikov, R [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Dimitrov, D [Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia (Bulgaria)], E-mail: dick.oliver@gmail.com

    2008-05-01

    In arc plasma torches electrode wear is the main reason for slow changes in the electrical and thermal torch characteristics. Such effects hinder technological applications of this type of plasma torches whenever the enthalpy must be maintained at a fixed level, or varied as needed. To solve this problem, a new method and algorithm for torch control are proposed. The time evolution of the arc current, voltage and thermal power loss of the torch are recorded. The values measured are used to find the required value of the enthalpy.

  9. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  10. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  11. Atomic physics of shocked plasma in winds of massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); CRESST/UMBC (United States); Swarthmore College, Swarthmore, PA 19081 (United States); Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2012-05-25

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure.

  12. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  13. Dynamics of magnetically trapped particles foundations of the physics of radiation belts and space plasmas

    CERN Document Server

    Roederer, Juan G

    2014-01-01

    This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of diff...

  14. Remote network control plasma diagnostic system for Tokamak T-10

    Science.gov (United States)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  15. Optimal control of tokamak and stellarator plasma behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Rastovic, Danilo [Control Systems Group, Nehajska 62, 10000 Zagreb (Croatia)]. E-mail: drastovi@tesla.vtszg.hr

    2007-04-15

    The control of plasma transport, laminar and turbulent, is investigated, using the methods of scaling, optimal control and adaptive Monte Carlo simulations. For this purpose, the asymptotic behaviour of kinetic equation is considered in order to obtain finite-dimensional invariant manifolds, and in this way the finite-dimensional theory of control can be applied. We imagine the labyrinth of open doors and after applying self-similarity, the motion moved through all the desired doors in repeatable ways as Brownian motions. We take local actions for each piece of contractive ergodic motion, and, after self-organization in adaptive invariant measures, the optimum movement of particles is obtained according to the principle of maximum entropy. This is true for deterministic and stochastic cases that serve as models for plasma dynamics.

  16. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  17. Virtual Visit to the ATLAS Control Room by Institute of Nuclear Physics, Cracow, Poland

    CERN Multimedia

    ATLAS Experiment

    2012-01-01

    The 12 Festival of Science "Theory-knowledge-experience...". Fest will be located on the traditional Main Square, which is visited by thousands of citizens and tourists. Institute of Nuclear Physics as usual participates in this annual event. Our visitors will learn the secrets of the CERN experiments on the Large Hadron Collider - ATLAS, LHCb, ALICE, CMS, find out more about the Higgs particles, antimatter quark-gluon plasma (beeing guided by our scientists and PhD students). One of the attractions will be ATLAS Control Room Virtual Visit. Visiting people will have an opportunity to see how ATLAS is controlled and operated to collect its exciting data and ask questions to scientists and engineers involved in LHC program at CERN. Institute of Nuclear Physics has prepared also several interactive demonstrations of Atomic Force Microscopy, Magnetic Resonance, Hadron Therapy and Crystal Physics. The Institute of Nuclear Physics of the Polish Academy of Sciences carries out basic and applied research in physics, ...

  18. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  19. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  20. Overview of modelling activities for Plasma Control Upgrade in JET

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R., E-mail: raffaele.albanese@unina.it [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Ambrosino, G.; Ariola, M.; Artaserse, G.; Bellizio, T. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Coccorese, V. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); EFDA Close Support Unit, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Crisanti, F. [ENEA Fus, EURATOM Assoc, 00040 Frascati (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); De Tommasi, G.; Fresa, R. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Lomas, P.J. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Mattei, M.; Maviglia, F. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Neto, A. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Piccolo, F. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Pironti, A. [Consorzio CREATE, Euratom-ENEA Association, DIEL, Univ. Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2011-10-15

    The JET enhancement project Plasma Control Upgrade (PCU) aimed at increasing the capabilities of the plasma vertical stabilization (VS) system. One of the activities of this project was devoted to the development of simple but sufficiently accurate models of the VS system so as to address the main design choices, use the simulation tools as reliable test-beds, and provide an adequate support to the engineering design and commissioning of the new Enhanced Radial Field Amplifier (ERFA). This paper illustrates some of the main achievements of the modelling activity, which gave rise to a closed loop model of the VS system, including plasma, PF coils and passive structures. In particular the paper deals with the selection of the set of turns to be used in the control coils and with the estimation of the eddy current effects on the VS system. The latter analysis addressed an upgrade of the converter units of ERFA, successfully implemented during its commissioning on plasma in August 2009.

  1. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  2. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  3. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    Science.gov (United States)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  4. Evolution of large-sclae plasma structures in comets: Kinematics and physics

    Science.gov (United States)

    Brandt, John C.

    1988-01-01

    Disconnection Events are the dramatic part of the periodic morphology involving the separation of the entire plasma tail from the head region of the comet and the growth of a new plasma. The coordinated observations of Comet Halley recorded approximately 30 DEs during the 7 months of plasma activity; 19 of these are obvious. The plasma physics of these events were approached via a detailed, kinematic investigation of specific DEs and the solar-wind environment associated with it. As the detailed investigations are completed, researchers should be able to answer the question of a single or multiple mechanism(s) for DEs and determine which mechanism(s) are important. At present, the mechanism of sunward magnetic reconnection caused by interplanetary sector boundary crossing in consistent with the data available.

  5. Relationship between physical activity and plasma fibrinogen concentrations in adults without chronic diseases.

    Directory of Open Access Journals (Sweden)

    Manuel A Gomez-Marcos

    Full Text Available OBJECTIVE: To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR, and plasma fibrinogen concentrations. METHODS: A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women. Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs/hour/week and GT3X ActiGraph accelerometer (counts/minute for 7 days. RESULTS: Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute and 7-day PAR (Median: 8 METs/hour/week. Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = -0.100; p<0.001 and METs/hour/week (r = -0.162; p<0.001. In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week respect to subjects who performed less (first tertile, maintained statistical significance after adjustments for age and others confounders (β = -0.03; p = 0.046 and β = -0.06; p<0.001, respectively. CONCLUSIONS: Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders.

  6. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  7. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  8. Recent development of plasma pollution control technology: a critical review

    Directory of Open Access Journals (Sweden)

    Jen-Shih Chang

    2001-01-01

    Full Text Available Gaseous pollution control, solid and liquid waste treatments have been commercialized based on incineration, catalysis, adsorption, disposal with landfill, etc. More recently technology based on plasmas has become significant due to the advantages such as lower costs, higher treatment and energy efficiencies, smaller space volume, etc. In order to commercialize this new technology, the treatment rate, energy efficiency of treatment, pressure drop of reactor, reusable by-products production rate, must be improved, based on the identifications of major fundamental mechanism of processes, optimizations of reactor, and power supply for an integrated system. In this work, recent development of plasma pollution control technology was critically reviewed and the principle of processes and reactor technologies were outlined. Special attention will be focused on material processing generated pollutants.

  9. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    , Russia, the US, China, South Korea and India (as of March 2006). It will take several years to accomplish this important task. There is no doubt that the success depends not only on funding but also on enthusiastic people willing to contribute with their skills and knowledge. Young scientists and engineers must be enrolled to the programme and trained in various disciplines of fusion science and technology. There are various education schemes and work programmes. Organization of summer schools on fusion-related plasma physics is an important part of the training process. Several schools are organized annually or every second year in Europe. Fusion-related science is so vast that it is impossible to cover all topics during an event lasting for one or two weeks. Therefore, each school has its distinctive features and focuses on a selected group of issues to be addressed in depth. This also applies to the Workshop and Summer School on Plasma Physics in Kudowa Zdrój (Poland) that, has been organised annually since 2001. It was initiated by Dr Marek Scholz with the help of his colleagues from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The idea was to create a forum for students mainly from Eastern Europe to learn and discuss subjects in general plasma physics and dense magnetized media, predominantly in plasma focus devices. Over the years the school has matured and created a clear profile. A unique feature has always been to accommodate in the programme not only tutorials delivered by invited senior scientists but also presentations prepared by the students. In June 2005 the 5th Workshop and Summer School on Plasma Physics was held under the heading 'Towards Fusion Energy: Plasma Physics, Diagnostics, Applications'. There were 59 participants, including 44 students, coming from plasma physics and material research laboratories in 17 countries: Belgium, Czech Republic, France, Germany, Georgia, Iran, Italy, Lithuania, Poland, Romania, Russia

  10. EDITORIAL: Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics

    Science.gov (United States)

    Bhattacharjee, Amitava

    2012-01-01

    To celebrate Professor Robert Dewar's 65th birthday, a Symposium was held on 31 October 2009 in Atlanta, Georgia, just before the 51st Annual Meeting of the Division of Plasma Physics of the American Physical Society. The Symposium was attended by many of Bob's colleagues, friends, postdoctoral colleagues and students (present and former). Boyd Blackwell, Anthony Cooper, Chris Hegna, Stuart Hudson, John Krommes, Alexander Pletzer, Ellen Zweibel, and I gave talks that covered various aspects of Bob's wide-ranging scholarship, and his leadership in the Australian and the US fusion program. At the Symposium, Bob gave an insightful talk, published in this issue as a paper with D Leykam. This paper makes available for the first time unpublished results from Bob's M Sc Thesis on a general method for calculating the potential around a `dressed' test particle in an isotropic and collisionless plasma. The paper is interesting not only because it provides a glimpse of the type of elegant applied mathematics that we have come to associate with Bob, but also because he discusses some leitmotifs in his intellectual evolution since the time he was a graduate student at the University of Melbourne and Princeton University. Through his early encounter with quantum field theory, Bob appreciated the power of Lagrangian and Hamiltonian formalisms, which he used with great effectiveness in nonlinear dynamics and plasma physics. A question that animates much of his work is one that underlies the `dressed' particle problem: if one is given a Hamiltonian with an unperturbed (or `bare') part and an interaction part, how is one to obtain a canonical transformation to `the oscillation centre' thatwould reduce the interaction part to an irreducible residual part while incorporating the rest in a renormalized zeroth-order Hamiltonian? One summer in Princeton, I worked with Bob on a possible variational formulation for this problem, and failed. I was daunted enough by my failure that I turned

  11. Exploration of plasma-based control for low-Reynolds number airfoil/gust interaction

    Science.gov (United States)

    Rizzetta, Donald P.; Visbal, Miguel R.

    2011-12-01

    Large-eddy simulation (LES) is employed to investigate the use of plasma-based actuation for the control of a vortical gust interacting with a wing section at a low Reynolds number. Flow about the SD7003 airfoil section at 4° angle of attack and a chord-based Reynolds number of 60,000 is considered in the simulation, which typifies micro air vehicle (MAV) applications. Solutions are obtained to the Navier-Stokes equations that were augmented by source terms used to represent body forces imparted by the plasma actuator on the fluid. A simple phenomenological model provided these body forces resulting from the electric field generated by the plasma. The numerical method is based upon a high-fidelity time-implicit scheme and an implicit LES approach which are used to obtain solutions on a locally refined overset mesh system. A Taylor-like vortex model is employed to represent a gust impinging upon the wing surface, which causes a substantial disruption to the undisturbed flow. It is shown that the fundamental impact of the gust on unsteady aerodynamic forces is due to an inviscid process, corresponding to variation in the effective angle of attack, which is not easily overcome. Plasma control is utilised to mitigate adverse effects of the interaction and improve aerodynamic performance. Physical characteristics of the interaction are described, and several aspects of the control strategy are explored. Among these are uniform and non-uniform spanwise variations of the control configuration, co-flow and counter-flow orientations of the directed force, pulsed and continuous operations of the actuator and strength of the plasma field. Results of the control situations are compared with regard to their effect upon aerodynamic forces. It was found that disturbances to the moment coefficient produced by the gust can be greatly reduced, which may be significant for stability and handling of MAV operations.

  12. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    Science.gov (United States)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  13. Physics of Plasmas in Thermonuclear Regimes. Proceedings of the 1979 Workshop, International School of Plasma Physics, Varenna, Italy, 27 August - 8 September 1979. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coppi, B.; Sadowski, W. [eds.

    1979-08-27

    The workshop was run concurrently with the International School of Plasma Physics and was organized as a sequence of afternoon meetings concerning a set of topics that correspond to the individual chapters of these proceedings. The workshop consisted of both individual presentations and moderated discussions among the participants. A selected group of topics that were found to deserve a more in-depth analysis, such as the question of anomalous particle transport and the theory of collective modes induced by alpha-particles were discussed in separate Working Groups.

  14. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    CERN Document Server

    Told, Daniel; Astfalk, Patrick; Jenko, Frank

    2016-01-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  15. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  16. Analysis of modern optimal control theory applied to plasma position and current control in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, M.A.

    1981-09-01

    The strong compression TFTR discharge has been segmented into regions where linear dynamics can approximate the plasma's interaction with the OH and EF power supply systems. The dynamic equations for these regions are utilized within the linear optimal control theory framework to provide active feedback gains to control the plasma position and current. Methods are developed to analyze and quantitatively evaluate the quality of control in a nonlinear, more realistic simulation. Tests are made of optimal control theory's assumptions and requirements, and the feasibility of this method for TFTR is assessed.

  17. Overview on the power supply systems for plasma instabilities control

    Energy Technology Data Exchange (ETDEWEB)

    Toigo, V., E-mail: vanni.toigo@igi.cnr.it [Consorzio RFX - EURATOM - ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy); Gaio, E.; Piovan, R.; Barp, M.; Bigi, M.; Ferro, A.; Finotti, C.; Novello, L.; Recchia, M.; Zamengo, A.; Zanotto, L. [Consorzio RFX - EURATOM - ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy)

    2011-10-15

    The paper presents an overview on the power supply (PS) systems for plasma instabilities control in fusion experiments, based on active control coils. First, the MHD instabilities and the approach to their control in Tokamaks and Reversed Field Pinches (RFPs) are described. Then, the features of MHD modes controls presently used in fusion experiments are reviewed. For the control systems based on active coils fed by fast power supplies, the typical requirements in terms of power, dynamics, accuracy and delay are summarized and discussed. Then, a survey on the technology available to design these types of PSs is given, together with the most suitable circuit topologies and guidelines for the design, on the basis of solutions adopted in existing experiments.

  18. AINSE Plasma Science and Technology Conference and Elizabeth and Frederick White Workshop on Fundamental Problems in the Physics of Magnetically Confined Plasmas: Conference handbook

    Science.gov (United States)

    The handbook contains abstracts of papers and posters presented at the conference. The main topics relate to plasma physics and fusion, plasma processing and uses as well as specific fusion devices and experiments. Eighty-four out of ninety-two presentations were considered to be in the INIS subject scope and have been separately indexed.

  19. Fusion programs in applied plasma physics. Technical progress report, July 11, 1992--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section.

  20. Control of collective FSBS and backscatter SRS through plasma composition

    Science.gov (United States)

    Rose, Harvey; Lushnikov, Pavel

    2005-10-01

    Nominal NIF parameters are near the collective forward SBS (FSBS) threshold (P. M. Lushnikov and H. A. Rose, Phys. Rev. Lett. 92, 255003 (2004), ``L&R''). It will be shown that being on this instability edge can be used as a control lever: a small amount of high Z dopant may lead to qualitative change in FSBS regime at fixed laser intensity, possibly reducing backscatter instability losses (Such results have already been observed, but absent SSD, a key aspect of our theory: R. M. Stevenson et al., Phys. Plasmas 11, 2709 (2004); L. J. Suter et al., 2738, ib.). Ponderomotive FSBS regimes are determined by the parameter I=F^2( vosc / vosc ve . - ve )^2( ne / ne nc . - nc ) / ( ne / ne nc . - nc ) ν . - ν, with ν the dimensionless ion acoustic damping coefficient and F the optic f/#. Analytical results will be presented which show a decrease of I1pt's threshold value through the addition of high Z dopant to low Z plasma, owing to increased thermal contribution to FSBS. Alternatively, one may raise the threshold by managing the value of νby, e.g., adding He to SiO2. For nominal NIF parameters, a range of He fraction in SiO2 plasma is predicted to suppress backscatter SRS while maintaining control of forward SBS.

  1. Objectively Measured Physical Activity Is Negatively Associated with Plasma Adiponectin Levels in Minority Female Youth

    Directory of Open Access Journals (Sweden)

    B. Adar Emken

    2010-01-01

    Full Text Available Objective. To evaluate the relationship between adiponectin and physical activity (PA in minority female youth. Methods. Plasma adiponectin was measured in 39 females (mean age 9.2±0.9 years; 30 Latina, 9 African-American; 56% overweight. PA was assessed by accelerometry. Mean minutes per day spent in daily PA (DPA (≥3 metabolic equivalents (METs, moderate PA (MPA(4–7 METs, vigorous PA (VPA(≥7 METs, and moderate-to-vigorous PA (MVPA(≥4 METs were calculated. The association between adiponectin and PA, controlling for age, fat weight, lean weight, and insulin sensitivity (SI was analyzed using linear regression. Results. Adiponectin correlated with fat weight (r=-0.43, P<.01 and SI (r=0.52, P<.01. Minutes spent in DPA (β=-0.40, P=.02, MPA (β=-0.36, P=.04, or MVPA (β=-0.37, P=.03 were predictors of adiponectin in the adjusted model. Conclusions. Higher PA levels were related to lower adiponectin levels. Potential mechanisms include upregulation of adiponectin receptors or an increase in high-molecular weight adiponectin with increasing PA.

  2. Shock Generation and Control Using DBD Plasma Actuators

    Science.gov (United States)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple

  3. Controlled trial of plasma exchange in treatment of Raynaud's syndrome.

    Science.gov (United States)

    O'Reilly, M J; Talpos, G; Roberts, V C; White, J M; Cotton, L T

    1979-01-01

    Twenty-seven patients with Raynaud's syndrome had their digital vessel patency assessed by Doppler ultrasound after different thermal stresses. Digital vessel patency rates differed significantly after stresses at 15 degrees C and 45 degrees C. In a randomised controlled trial placebo and heparin had no effect either on patients' symptoms or on the patency of their digital vessels. Plasma exchange improved both symptoms and vessel patency rates at 15 degrees C and 21 degrees C. Improvement in seven out of eight of these patients has been maintained for six months. Assessing digital vessel patency by Doppler techniques allow continuous, atraumatic, and safe evaluation of the effects of different methods of treatment on the patency of the digital vessels and has helped to indicate that plasma exchange is a useful adjunct in the management of patients with severe Raynaud's syndrome. PMID:376042

  4. Controlling the Plasma-Polymerization Process of N-Vinyl-2-pyrrolidone

    DEFF Research Database (Denmark)

    Norrman, Kion; Winther-Jensen, Bjørn

    2005-01-01

    N-vinyl-2-pyrrolidone was plasma-polymerized on glass substrates using a pulsed AC plasma. Pulsed AC plasma produces a chemical surface structure different from that produced by conventional RF plasma; this is ascribed to the different power regimes used. A high degree of control over the structure...... of the chemical surface was obtained using pulsed AC plasma, as shown by ToF-SIMS. It is demonstrated how the experimental conditions to some extent control the chemical structure of the plasma-polymerized film, e.g., film thickness, density of post-plasma-polymerized oligomeric chains, and the density of intact...

  5. Dynamic Control of Microwave Plasma Sources for Material Processing by Using Hyper-Simulation

    Science.gov (United States)

    Yasaka, Yasuyoshi; Tsuji, Akihiro

    2010-11-01

    Uniformity of etching or deposition over a wafer is one of the key features for plasma processing with large-size wafers. The uniformity can be measured as a result of a process, and correction or improvement of the uniformity is made by changing device parameters such as power levels, gas flow rates, timings, and so on. Evaluation and control are, however, not combined or unified as a problem of plasma physics. They are assigned as the input and output of a black box of empirical transfer function obtained by expert systems or neural networks. We are going to establish a novel control system based on physics, in which a fluid simulation is used to obtain a power deposition profile necessary to produce the two-dimensional density distribution of desire. A control system of a microwave slot antenna then changes power distribution dynamically according to the output of the simulation. It should be noted that this simulation has inputs and outputs opposite to conventional ones, which, we call hyper-simulation, is one of the novel features of the control system.

  6. Spacelab 1 - Scientific objectives, life sciences, space plasma physics, astronomy and solar physics

    Science.gov (United States)

    Chappell, C. R.

    1985-01-01

    A general overview of the accomplishments of the Spacelab 1 complement to the Shuttle mission of Nov. 28, 1983, is presented. Consideration is given to scientific results in the fields of life sciences, materials sciences, atmospheric physics, and earth observations. A table is given which lists the scientific objectives and the percentage of objectives accomplished in each field.

  7. Global problems in magnetospheric plasma physics and prospects for their solution

    Science.gov (United States)

    Roederer, J. G.

    1977-01-01

    Selected problems in magnetospheric plasma physics are critically reviewed. The discussion is restricted to questions that are 'global' in nature (i.e., involve the magnetosphere as a whole) and that are beyond the stage of systematic survey or isolated study requirements. Only low-energy particle aspects are discussed. The article focuses on the following subjects: (1) the effect of the interplanetary magnetic field on the topography, topology, and stability of the magnetospheric boundary; (2) solar-wind plasma entry into the magnetosphere; (3) plasma storage and release mechanisms in the magnetospheric tail; and (4) magnetic-field-aligned currents and magnetosphere-ionosphere interactions. A brief discussion of the prospects for the solution of these problems during and after the International Magnetospheric Study is given.

  8. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  9. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  10. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  11. Controlled Phase Changes of Titania Using Nitrogen Plasma

    Science.gov (United States)

    Trejo-Tzab, R.; Caballero-Espada, Liliana; Quintana, P.; Ávila-Ortega, Alejandro; Medina-Esquivel, R. A.

    2017-01-01

    In this work, the development of a new crystallization technique is reported, using nitrogen plasma (AC) to obtain nanostructured anatase and rutile from amorphous titanium oxide (TiO2). This methodology increases throughput and minimizes thermal effects. Nanostructured amorphous TiO2 was obtained by the sol-gel method and subsequently subjected to AC treatment, at a controlled pressure, applying different powers and treatment times in order to obtain phase changes. The obtained samples were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results show the crystallization in parallel with anatase and rutile phases with a proportion that is directly related to the applied power in the plasma and the treatment time. This technique allows us to obtain smaller crystals in comparison with those of classic thermal methodologies. It is also demonstrated that the application of plasma represents a novel and innovative method to obtain phase polymorphic changes in titanium oxide without needing to apply prolonged heat treatments at high temperatures and can therefore be taken into consideration as a technique with low energy costs, in comparison with conventional heat treatments.

  12. James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves

    Science.gov (United States)

    Chen, Liu

    2012-10-01

    Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

  13. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  14. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Years 2002 and 2003

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley, Editor

    2004-12-22

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2002 and 2003 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003.

  15. Study of higher excited states of some polyatomic molecules relevant for plasma physics and environment

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, B P, E-mail: bratislav.marinkovic@phy.bg.ac.y [Institute of Physics, Belgrade 11080, Pregrevica 118 (Serbia) and College for Electrical Engineering and Computing, Belgrade 11010, Vojvode Stepe 283 (Serbia)

    2009-04-01

    Studies of higher excited states of some polyatomic molecules relevant for plasma physics and environment have been presented. Spectra of chlorofluorocarbons are discussed together with their influence on ozone layer depletion and global warming. Tetrahydrofuran molecule was studied by photoabsorption and electron energy loss spectroscopy while the states are assigned following extensive ab initio calculations. Nitrous oxide and hydrogen sulphide spectra are discussed in terms of identifying valence and Rydberg character of excited states.

  16. TELEMATICS APPLICATIONS REMOT: Interfaces and Adaptations of the Plasma Physics Demonstrator

    OpenAIRE

    Kemmerling, G.; Van der Meer, E.

    1997-01-01

    In document D6.2, a textual description of the soft- and hardware components of the plasma physics demonstrator as well as a definition of remote and local site was given. In order to couple these components to a complete teleoperation system, interfaces between them have to be defined and existing soft- and hardware have to be adapted. This task will be described in this document.

  17. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  18. Controlling plasma stimulated media in cancer treatment application

    Science.gov (United States)

    Yan, Dayun; Sherman, Jonathan H.; Cheng, Xiaoqian; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-12-01

    Cold atmospheric plasma (CAP) constitutes a "cocktail" of various reactive species. Accumulating evidence shows the effectiveness of CAP in killing cancer cells and decreasing the tumor size, which provides a solid basis for its potential use in cancer treatment. Currently, CAP is mainly used to directly treat cancer cells and trigger the death of cancer cells via apoptosis or necrosis. By altering the concentration of fetal bovine serum in Dulbecco's modified Eagle's medium and the temperature to store CAP stimulated media, we demonstrated controllable strategies to harness the stimulated media to kill glioblastoma cells in vitro. This study demonstrated the significant role of media in killing cancer cells via the CAP treatment.

  19. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    Science.gov (United States)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  20. Optical boundary reconstruction of tokamak plasmas for feedback control of plasma position and shape

    NARCIS (Netherlands)

    Hommen, G.; de M. Baar,; Nuij, P.; McArdle, G.; Akers, R.; Steinbuch, M.

    2010-01-01

    A new diagnostic is developed to reconstruct the plasma boundary using visible wavelength images. Exploiting the plasma's edge localized and toroidally symmetric emission profile, a new coordinate transform is presented to reconstruct the plasma boundary from a poloidal view image. The plasma b

  1. Associations among objectively measured physical activity, fasting plasma homocysteine concentration, and MTHFR C677T genotype.

    Science.gov (United States)

    Murakami, Haruka; Iemitsu, Motoyuki; Sanada, Kiyoshi; Gando, Yuko; Ohmori, Yumi; Kawakami, Ryoko; Sasaki, Satoshi; Tabata, Izumi; Miyachi, Motohiko

    2011-12-01

    Elevated fasting plasma homocysteine (Hcy) level is a vascular disease risk factor. Plasma Hcy is affected by 5,10-methylenetetrahydofolate reductase (MTHFR) genotype and dietary folate intake. This cross-sectional study in 434 Japanese adults examined the associations among objectively measured physical activity (PA), plasma Hcy adjusting for dietary folate intake, and MTHFR C677T genotype. Daily PA was measured by triaxial accelerometry and all subjects completed a questionnaire about their dietary habits. Plasma Hcy and MTHFR C677T genotype were determined. Plasma Hcy in subjects with the TT genotype was significantly higher than in those with CC or CT genotype (p < 0.001). Plasma Hcy was significantly different between ≥ 200 (7.6 ± 0.2 nmol/mL) and <200 µg/day (8.3 ± 0.3 nmol/mL) folate intake groups (p = 0.003). There were no differences in plasma Hcy adjusting for age, sex, and folate intake between groups according to PA category in all subjects. However, there were significant interactions between time spent in light PA (p = 0.003), vigorous PA (p = 0.001), or inactivity (p = 0.004), and MTHFR genotype. In only the TT genotype, shorter time spent in light PA was associated with higher plasma Hcy than a longer time spent in light PA (11.5 ± 3.3 nmol/mL vs. 8.5 ± 3.3 nmol/mL, p < 0.001), and longer time spent in vigorous PA and inactivity were associated with higher plasma Hcy (11.8 ± 3.3 nmol/mL vs. 8.4 ± 3.2 nmol/mL, 11.6 ± 3.3 nmol/mL vs. 8.4 ± 3.3 nmol/mL, respectively, p < 0.001). In conclusion, light and vigorous PA were associated with plasma Hcy only in the TT genotype, but there were no such associations in all genotypes.

  2. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  3. Development of real-time plasma analysis and control algorithms for the TCV tokamak using SIMULINK

    Energy Technology Data Exchange (ETDEWEB)

    Felici, F., E-mail: f.felici@tue.nl [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland); Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology Group, P.O. Box 513, 5600MB Eindhoven (Netherlands); Le, H.B.; Paley, J.I.; Duval, B.P.; Coda, S.; Moret, J.-M.; Bortolon, A.; Federspiel, L.; Goodman, T.P. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland); Hommen, G. [FOM-Institute DIFFER, Association EURATOM-FOM, Nieuwegein (Netherlands); Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology Group, P.O. Box 513, 5600MB Eindhoven (Netherlands); Karpushov, A.; Piras, F.; Pitzschke, A. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland); Romero, J. [National Laboratory of Fusion, EURATOM-CIEMAT, Madrid (Spain); Sevillano, G. [Department of Automatic Control and Systems Engineering, Bilbao University of the Basque Country, Bilbao (Spain); Sauter, O.; Vijvers, W. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association EURATOM-Suisse, 1015 Lausanne (Switzerland)

    2014-03-15

    Highlights: • A new digital control system for the TCV tokamak has been commissioned. • The system is entirely programmable by SIMULINK, allowing rapid algorithm development. • Different control system nodes can run different algorithms at varying sampling times. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: One of the key features of the new digital plasma control system installed on the TCV tokamak is the possibility to rapidly design, test and deploy real-time algorithms. With this flexibility the new control system has been used for a large number of new experiments which exploit TCV's powerful actuators consisting of 16 individually controllable poloidal field coils and 7 real-time steerable electron cyclotron (EC) launchers. The system has been used for various applications, ranging from event-based real-time MHD control to real-time current diffusion simulations. These advances have propelled real-time control to one of the cornerstones of the TCV experimental program. Use of the SIMULINK graphical programming language to directly program the control system has greatly facilitated algorithm development and allowed a multitude of different algorithms to be deployed in a short time. This paper will give an overview of the developed algorithms and their application in physics experiments.

  4. Endosomal recycling controls plasma membrane area during mitosis.

    Science.gov (United States)

    Boucrot, Emmanuel; Kirchhausen, Tomas

    2007-05-08

    The shape and total surface of a cell and its daughters change during mitosis. Many cells round up during prophase and metaphase and reacquire their extended and flattened shape during cytokinesis. How does the total area of plasma membrane change to accommodate these morphological changes and by what mechanism is control of total membrane area achieved? Using single-cell imaging methods, we have found that the amount of plasma membrane in attached cells in culture decreases at the beginning of mitosis and recovers rapidly by the end. Clathrin-based endocytosis is normal throughout all phases of cell division, whereas recycling of internalized membranes back to the cell surface slows considerably during the rounding up period and resumes at the time at which recovery of cell membrane begins. Interference with either one of these processes by genetic or chemical means impairs cell division. The total cell-membrane area recovers even in the absence of a functional Golgi apparatus, which would be needed for export of newly synthesized membrane lipids and proteins. We propose a mechanism by which modulation of endosomal recycling controls cell area and surface expression of membrane-bound proteins during cell division.

  5. Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators

    Science.gov (United States)

    Singh, Ashish; Little, Jesse

    2016-11-01

    A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).

  6. Power-based control of physical systems

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Jeltsema, Dimitri; Ortega, Romeo; Scherpen, Jacquelien M. A.

    2010-01-01

    It is well known that energy-balancing control is stymied by the presence of pervasive dissipation. To overcome this problem in electrical circuits, the alternative paradigm of power shaping was introduced in Ortega, Jeltsema, and Scherpen (2003)-where, as suggested by its name, stabilization is ach

  7. Plasma process control for improved PEO coatings on magnesium alloys

    Science.gov (United States)

    Hussein, Riyad Omran

    coating growth, and to determine plasma electron temperatures. The coating requirements for good tribological properties are somewhat different than for good corrosion performance. However, good tribological performance combined with good corrosion performance can be obtained through control of the PEO processing parameters.

  8. Temperature Control in Spark Plasma Sintering: An FEM Approach

    Directory of Open Access Journals (Sweden)

    G. Molénat

    2010-01-01

    Full Text Available Powder consolidation assisted by pulsed current and uniaxial pressure, namely, Spark Plasma Sintering (SPS, is increasingly popular. One limitation however lies in the difficulty of controlling the sample temperature during compaction. The aim of this work is to present a computational method for the assembly temperature based on the finite elements method (FEM. Computed temperatures have been compared with experimental data for three different dies filled with three materials with different electrical conductivities (TiAl, SiC, Al2O3. The results obtained are encouraging: the difference between computed and experimental values is less than 5%. This allows thinking about this FEM approach as a predictive tool for selecting the right control temperatures in the SPS machine.

  9. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  10. Some physics and chemistry of Coblation® electrosurgical plasma devices

    Science.gov (United States)

    Stalder, Kenneth R.; Ryan, Thomas P.; Woloszko, Jean

    2013-02-01

    Electrosurgical devices employing plasmas to ablate, cut and otherwise treat tissues have been in widespread use for decades. Following d'Arsonval's 19th century work on the neuromuscular response from high-frequency excitation of tissue, Doyen treated skin blemishes with a spark-gap generator in 1909. In the late 1920's, physician Harvey Cushing and Harvard physicist William Bovie developed an electrosurgical device and power source that eventually became a standard of care for cutting, coagulating, desiccating, or fulgurating tissue. Beginning in the 1990's a new class of low-voltage electrosurgical devices employing electricallyconducting saline fluids were developed by ArthroCare Corp. These modern Coblation® devices are now widely used in many different surgical procedures, including those in arthroscopic surgery, otorhinolaryngology, spine surgery, urology, gynecological surgery, and others. This paper summarizes some of the research we have been doing over the last decade to elucidate the physics and chemistry underlying Coblation® electrosurgical devices. Electrical-, thermal-, fluid-, chemicaland plasma-physics all play important roles in these devices and give rise to a rich variety of observations. Experimental techniques employed include optical and mass spectroscopy, fast optical imaging, and electrical voltage and current measurements. Many of the features occur on fast time scales and small spatial scales, making laboratory measurements difficult, so coupled-physics, finite-element-modeling can also be employed to glean more information than has been acquired thus far through physical observation.

  11. Controlling Split Attention and Redundancy in Physical Therapy Instruction

    Science.gov (United States)

    Pociask, Fredrick D.; Morrison, Gary R.

    2008-01-01

    In this study, we examined the effectiveness of instructional materials designed to control redundancy and split attention in the teaching of complex orthopedic physical therapy skills. Participants included 41 first-year physical therapy students. The modified instruction group received a modified unit of instruction designed to reduce cognitive…

  12. Controlling Parenting and Physical Aggression during Elementary School

    Science.gov (United States)

    Joussemet, Mireille; Vitaro, Frank; Barker, Edward D.; Cote, Sylvana; Nagin, Daniel S.; Zoccolillo, Mark; Tremblay, Richard E.

    2008-01-01

    The goal of the present study was to examine whether controlling parenting contributes to the problem of physical aggression. Developmental trajectories of children's physical aggression were modeled from yearly teachers' ratings, from ages 6 to 12. Multinomial logistic regressions (N = 1,508) served to identify risk factors that distinguish…

  13. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschön, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Öz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tückmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  14. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  15. Control of energy and matter at nanoscales: challenges and opportunities for plasma nanoscience in a sustainability age

    Science.gov (United States)

    (Ken Ostrikov, Kostya

    2011-05-01

    Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.

  16. Validation of reported physical activity for cholesterol control using two different physical activity instruments

    Directory of Open Access Journals (Sweden)

    Amy Z Fan

    2009-08-01

    Full Text Available Amy Z Fan1, Sandra A Ham2, Shravani Reddy Muppidi3, Ali H Mokdad41Behavioral Surveillance Branch, Division of Adult and Community Health, National Center for Chronic Disease Prevention and Health Promotion; 2Physical Activity and Health Branch, Division of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 3College of Public Health, University of Georgia, Athens, GA, USA; 4Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USAAbstract: The National Cholesterol Education Program recommends increasing physical activity to improve cholesterol levels and overall cardiovascular health. We examined whether US adults who reported increasing their physical activity to control or lower blood cholesterol following physician’s advice or on their own efforts had higher levels of physical activity than those who reported that they did not. We used data from the National Health and Nutrition Examination Survey 2003–2004, which implemented two physical activity assessment instruments. The physical activity questionnaire (PAQ assessed self-reported frequency, intensity, and duration of leisure-time, household, and transportation-related physical activity in the past month. Physical movement was objectively monitored using a waist accelerometer that assessed minute-by-minute intensity (counts of movement/minute during waking time over a 7-day period. We adjusted our analysis for age, gender, race/ethnicity, educational attainment, and body mass index. Participants who reported increasing physical activity to control blood cholesterol had more PAQ-assessed physical activity and more accelerometer-assessed active days per week compared to those who did not. However, there were no significant differences in cholesterol levels between comparison groups. These findings suggest that self-report of exercising

  17. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  18. Coordinated underground measurements of gamma-ray emitting radionuclides for plasma physics research.

    Science.gov (United States)

    Tzika, Faidra; Hult, Mikael; Fenyvesi, András; Bandac, Iulian; Degering, Detlev; Ianni, Aldo; Laubenstein, Matthias; de Vismes-Ott, Anne; Marissens, Gerd; Stroh, Heiko; Lutter, Guillaume; Son, Soohyun; Hong, Suk-Ho; Kim, Jun Young; Kim, Junghee; Cheon, Mun Seung; Jo, Jungmin; Braun, Mihály; Németh, József; Zoletnik, Sándor; Bonheure, Georges

    2017-08-01

    Forty-eight samples made of CaF2, LiF and YVO4 were placed inside the KSTAR Tokamak and irradiated by neutrons and charged particles from eight plasma pulses. The aim was to provide information for plasma diagnostics. Due to the short pulse durations, the activities induced in the samples were low and therefore measurements were performed in five low-background underground laboratories. Details of the underground measurements, together with data on the quality control amongst the radiometric laboratories, are presented. Copyright © 2016. Published by Elsevier Ltd.

  19. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  20. Modeling physical chemistry of the Io plasma torus in two dimensions

    Science.gov (United States)

    Copper, M.; Delamere, P. A.; Overcast-Howe, K.

    2016-07-01

    Periodicities in the Io plasma illustrate the rich complexity of magnetosphere-ionosphere coupling in space plasmas. The confounding System IV period (slower than the rotation of Jupiter's magnetic field ≡ System III) remains a mystery of the torus. Common to both System III and IV are modulations of the superthermal electron population. The small fraction (<1%) of hot electrons plays a vital role in torus physical and chemical properties, modulating the abundance and temperature of ion species. Building on previous models of torus physical chemistry, we have developed a two-dimensional model that includes azimuthal and radial transport (diffusion equation) while averaging chemical processes in latitude. This paper presents initial results of the model, demonstrating the role of hot electrons in forming a single-peaked torus structure. The effect of azimuthal shear is investigated as plasma is transported radially outward, showing how the torus properties evolve during transport from a chemically dominated regime (inner torus) to a transport dominated regime (outer torus). Surprisingly, we find that hot electron populations influence torus properties at all radial distances. While many of our results are preliminary, suggestions for future modeling experiments are suggested to provide additional insight into the origin of the ubiquitous superthermal electrons.

  1. STUDENT AWARD FINALIST: Plasma Acid: A Chemically and Physically Metastable Substance

    Science.gov (United States)

    Shainsky, Natalie; Dobrynin, Danil; Ercan, Utku; Joshi, Suresh; Brooks, Ari; Ji, Haifeng; Fridman, Gregory; Cho, Young; Fridman, Alexander; Friedman, Gennady

    2011-10-01

    Non-thermal atmospheric pressure dielectric barrier discharge applied to the surface of a liquid creates a chemically and physically metastable substance. The properties and lifetime of the substance depend on the treatment conditions such as gas atmosphere and liquid medium used, treatment dose, and other parameters. When deionized water is used, the metastable substance becomes a strong oxidizer. We show that direct exposure of deionized water to neutral and charged species produced in plasma creates a strong oxidizer and acidic substance in this water which, for the lack of a better term, we termed plasma acid. Plasma acid can remain stable for relatively long time and its oxidizing power may be linked to the significant lowering of its pH. We report experiments that demonstrate plasma acid's metastability. We also show that observed pH of as low as 2.0 cannot be completely accounted for by the production of nitric acid; and that the conjugate base derived from superoxide is at least partly responsible for both, lowering of the pH and increase in the oxidizing power of the solution.

  2. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-08-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter heat transfer.

  3. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  4. Magnetospheric Plasma Physics : the Impact of Jim Dungey’s Research

    CERN Document Server

    Southwood, David; Mitton, Simon

    2015-01-01

    This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 w...

  5. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  6. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    Science.gov (United States)

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  7. Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children.

    Science.gov (United States)

    Cliff, Dylan P; Okely, Anthony D; Burrows, Tracy L; Jones, Rachel A; Morgan, Philip J; Collins, Clare E; Baur, Louise A

    2013-02-01

    This study examines the associations between objectively measured sedentary behavior, light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA), and plasma lipids in overweight and obese children. Cross-sectional analyses were conducted among 126 children aged 5.5-9.9 years. Sedentary behavior, LPA, and MVPA were assessed using accelerometry. Fasting blood samples were analyzed for plasma lipids (high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], total cholesterol [TC], and triglycerides [TG]). MVPA was not related to plasma lipids (P > 0.05). Independent of age, sex, energy intake, and waist circumference z-score, sedentary behavior and LPA were associated with HDL-C (β = -0.23, 95% CI -0.42 to -0.04, P = 0.020; β = 0.20, 95% CI 0.14 to 0.39, P = 0.036, respectively). The strength of the associations remained after additionally adjusting for MVPA (sedentary behavior: β = -0.22, 95% CI -0.44 to 0.006, P = 0.056; LPA: β = 0.19, 95% CI -0.005 to 0.38, P = 0.056, respectively). Substituting at least LPA for sedentary time may contribute to the development of healthy HDL-C levels among overweight and obese children, independent of their adiposity. Comprehensive prevention and treatment strategies to improve plasma HDL-C among overweight and obese children should target reductions in total sedentary time and promote the benefits of LPA, in addition to promoting healthy levels of adiposity, healthy dietary behaviors, and MVPA. Copyright © 2012 The Obesity Society.

  8. Exact Solutions of the Gardner Equation and their Applications to the Different Physical Plasmas

    Science.gov (United States)

    Daghan, D.; Donmez, O.

    2016-06-01

    Traveling wave solution of the Gardner equation is studied analytically by using the two dependent ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods and direct integration. The exact solutions of the Gardner equations are obtained. Our analytic solutions are applied to the unmagnetized four-component and dusty plasma systems consisting of hot protons and electrons to investigate dynamical features of the solitons and shock waves produced in these systems. A wide variety of parameters of the plasma is used, and the basic features of the Gardner solitons that are beyond the existing study in literature are found. It is observed that the analytic solutions from ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods only produce shock waves but the solitary waves are found from the analytic solutions derived from the direct integration. It is also noted that the superhot electrons and relative mass density of the electrons significantly effect the soliton's amplitude, width, and position. We have also numerically proved that the combination of every value of nomalized density μ 1 or temperature ratio σ 1 with the other sets of plasma parameters creates a region where the solutions have similar physical properties. The time-dependent behavior of the soliton is also studied, and a periodic motion of soliton along the phase variable η is found during the evolution. The investigations and the limits presented in this study may be helpful for studying and understanding the nonlinear properties of the solitary and shock waves seen in various physical and astrophysical plasma systems.

  9. Controllable interactions between Rydberg atoms and ultracold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, P; Vogt, T; Viteau, M; Chotia, A; Zhao, J; Comparat, D; Gallagher, T F; Tate, D [Laboratoire Aime Cotton, CNRS, Univ Paris-Sud, Bat.505, Campus d' Orsay, 91405 Orsay cedex (France); Gaetan, A; Miroshnychenko, Y; Wilk, T; Browaeys, A; Grangier, P, E-mail: pierre.pillet@lac.u-psud.f [Laboratoire Charles Fabry de l' Institut d' Optique CNRS, Univ Paris-Sud, Campus Polytechnique, RD 128, 91127 Palaiseau cedex (France)

    2009-11-15

    We discuss the control of dipole-dipole interactions in a frozen assembly of Rydberg atoms. We report the evidence of dipole blockade of the Rydberg excitation for two configurations: dipole blockade induced by electric field and dipole blockade in Foerster resonance. We demonstrate that two individual atoms separated by {approx} 4 {mu}m can act as a collective dipole if their interaction is strong enough to be in the dipole blockade regime. This observation is crucial for the quantum entanglement of two or more atoms using dipole-dipole interaction. The dipole-dipole interactions between Rydberg atoms are also responsible for Penning ionization leading to the formation of an ultracold plasma. We have demonstrated that Penning ionization of np Rydberg cesium atoms can be prevented by considering repulsive dipole-dipole interactions.

  10. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  11. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  12. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A. [eds.

    1996-02-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.

  13. Computational Plasma Physics at the Bleeding Edge: Simulating Kinetic Turbulence Dynamics in Fusion Energy Sciences

    Science.gov (United States)

    Tang, William

    2013-04-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).

  14. Developments in physical weed control in Northwest Europe

    NARCIS (Netherlands)

    Riemens, M.M.

    2016-01-01

    In North West Europe there is an increasing need for advanced weed control methods. This paper gives an overview of the developments in physical weed control methods. Current innovations in interrow weeding focus on systems that take over the steering function of the driver in order to make them mor

  15. Physical Attractiveness, Locus of Control, Sex Role, and Conversational Assertiveness.

    Science.gov (United States)

    Campbell, Keith F.; And Others

    1990-01-01

    Analyzes the relationship among physical attractiveness, locus of control, sex role orientation, and assertiveness in undergraduate students. Reviews videotapes of mixed-sex student groups engaged in discussion. Finds an internal locus of control positively correlated with assertiveness. Uses a behavioral measure of assertiveness rather than…

  16. Electron-ion relaxation in a dense plasma. [supernovae core physics

    Science.gov (United States)

    Littleton, J. E.; Buchler, J.-R.

    1974-01-01

    The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.

  17. The physics of positively biased conductors surrounded by dielectrics in contact with a plasma

    Science.gov (United States)

    Hastings, Daniel E.; Chang, Patrick

    1989-01-01

    The physics of a positively biased conductor surrounded by dielectrics in contact with plasma is investigated. It is shown that because of the presence of secondary emission from the surrounding dielectrics, the voltage of the surfaces near the conductor has three solutions. The high- and low-voltage solutions are stable, while the intermediate-voltage solution is unstable. This theory is applied to explain the snapover effect observed on high-voltage solar arrays that involve the use of highly biased surfaces in contact with the space environment.

  18. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  19. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  20. Physical, mechanical, and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying

    Science.gov (United States)

    Lepeshev, A. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2013-12-01

    The physical, mechanical, and tribological properties of quasicrystalline coatings based on the Al65Cu23Fe12 alloy prepared by plasma spraying have been investigated. The specific features of the phase formation due to the competitive interactions of the icosahedral ψ and cubic β phases have been elucidated. A correlation between the microhardness and the content of the icosahedral phase in the coating has been determined. The decisive role of the quasicrystalline phase in the formation of high tribological characteristics of the coatings has been revealed and tested.

  1. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  2. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  3. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  4. PREFACE: XII Latin American workshop on plasma physics (17-21 September 2007, Caracas, Venezuela)

    Science.gov (United States)

    Puerta, Julio

    2008-10-01

    Some years ago a group of Latin American physicists took the initiative to consult about the viability of organizing a meeting on plasma physics for researchers and students of the region. The result was that it was not only a good idea, but a necessity in order to show and share everyone's work, and to keep updated on latest advances and technologies on plasma physics. It was decided that for new researchers as well as students of Physics, it would prove to be the best way to keep them posted on such matters. This was the birth of a series of meetings known as Latin American workshops on plasma physics that take place every two years in a different Latin American country. In Venezuela we have had the opportunity to organize two editions of this interesting and important reunion of physicists. The first of these Latin American workshops on plasma physics was held in Cambuquira (Brazil) in 1982. After organizing the first six editions of the workshop, the VII LAWPP meeting was realized in Caracas in January 1997. It was designed with a structure similar to the first edition. It developed in two stages, a first week devoted to short courses with lecturers in different fields of plasma physics and a second week for contributed and invited presentations. Participants from sixteen different countries were present, half of them from this continent and the other half from overseas, demonstrating the international character of this meeting. There have been four more editions of the workshop and once again, we have had the opportunity to organize this latest edition of the series: the XII Latin American workshop on plasma physics, which took place in Caracas, Venezuela from the 17th to the 21st of September 2007. The structure was modified, because contributed and review papers were together during the first stage, with short courses realized during the second one, called mini-courses, and given by several high level contributors such as José Boedo, Leopoldo Soto, Claude

  5. Sensing controlled pulse key-holing condition in plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    JIA Chuan-bao; WU Chuan-song; ZHANG Yu-ming

    2009-01-01

    According to the strategy of controlled pulse key-holing, a new sensing and control system was developed for monitoring and controlling the keyhole condition during plasma arc welding (PAW). Through sensing and processing the efflux plasma voltage signals, the quantitative relationship among the welding current, efflux plasma voltage and backside weld width of the weld was established. PAW experiments show that the efflux plasma voltage can reflect the state of keyhole and backside weld width accurately. The closed-loop control tests validate the stability and reliability of the developed keyhole PAW system.

  6. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...

  7. Large-Eddy Simulations of Plasma Flow Control on a GOE735 Wind Turbine Airfoil

    Science.gov (United States)

    Czulak, Alexander; Franck, Jennifer

    2015-11-01

    Active flow control using plasma actuation was studied for the GOE735 airfoil and compared to non-actuated baseline cases using numerical simulations. This investigation considers two-dimensional simulations at a Reynolds number of 1,000 using direct numerical simulation (DNS) as well as three-dimensional simulations at a Reynolds number of 50,000 and 100,000 using large-eddy simulation (LES). Plasma actuation is applied in terms of a source term within the boundary layer close to the airfoil surface. Angles of attack of 0°, 5° and 15° were considered, and control is shown to be effective at increasing the lift coefficient, decreasing the drag coefficient and reducing the root mean squared deviation of both lift and drag. An analysis of the flow physics reveals that the actuated cases delay the point of separation, reduce the wake width and diminish the size and strength of the shed vortices. For this particular airfoil, there are significant differences in Reynolds number in terms of the baseline flow, control effectiveness and performance factors such as lift and drag.

  8. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  9. Analytical approximations for a conservative nonlinear singular oscillator in plasma physics

    Directory of Open Access Journals (Sweden)

    A. Mirzabeigy

    2012-10-01

    Full Text Available A modified variational approach and the coupled homotopy perturbation method with variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restoring force is inversely proportional to the dependent variable are achieved analytically. The approximate frequency obtained using the coupled method is more accurate than the modified variational approach and ones obtained using other approximate methods and the discrepancy between the approximate frequency using this coupled method and the exact one is lower than 0.31% for the whole range of values of oscillation amplitude. The coupled method provides a very good accuracy and is a promising technique to a lot of practical engineering and physical problems.

  10. Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments ...

  11. Influence of moderate physical activity on the levels of plasma lipoproteins in subjects with impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Petković-Košćal Milanka

    2012-01-01

    Full Text Available Introduction. Physical activity and healthy diet, as lifestyle factors, are essential components in the prevention of chronic noncommunicable diseases. Impared glucose intolerance (IGT is an independent cardiovascular risk factor. Dyslipidaemia is a cardiometabolic risk factor for the development of type 2 diabetes mellitus. Objective. The aim of the study was to investigate the influence of moderate physical activity of plasma lipoprotein indicators in high-risk subjects for diabetes mellitus during one-year planned intervention. Methods. We randomly assigned 60 overweight subjects with IGT aged 30-60 years. The subjects were divided into intervention group with 30 subjects, who were intensively and individually instructed on weight reduction, nutrition and increased physical activity, and control group with 30 subjects, who were counselled, as standard, on nutrition and increased exercise. Total cholesterol (TC, LDL cholesterol (LDL-C, HDL cholesterol (HDL-C and triglycerides (Tg were measured at the beginning of the study, and at 2 months, 6 months, and at the end of the study (12 months. Results. Compared to the beginning of the study, after 2 and 6 months there was no statistically significant difference in serum lipid values. After 12 months, the average values of the measured lipid levels in the intervention group decreased by 18.36% for TC, 27.3% for LDL-C, and 34.2% for Tg (compared to 10.27%, 13.45%, and 10.4%, respectively in the control group. Value of HDL-C in the intervention group increased by 19.12%, and decreased in the control group by 1.48%. Total/HDL-C ratio was reduced by 30.6% and LDL-C/H by 38.1% in the intervention group (compared to 12.36%, and 15.9% in the control group. After 12 months, significantly greater decrease in TC (p<0.01, LDL-C (p<0.01 and Tg (p<0.0001 and significantly greater increase in HDL-C (p<0.05 was detected in the intervention group compared to the control group. Conclusion. Plasma lipoproteins can

  12. An exercise-based physical therapy program for patients with patellar tendinopathy after platelet-rich plasma injection

    NARCIS (Netherlands)

    van Ark, Mathijs; van den Akker-Scheek, Inge; Meijer, L.T.B.; Zwerver, Hans

    Objectives: To describe a post platelet-rich plasma (PRP) injection, exercise-based physical therapy program, investigate feasibility and report the first results of patellar tendinopathy patients treated with PRP injection combined with the physical therapy program. Study Design: Case-series.

  13. An exercise-based physical therapy program for patients with patellar tendinopathy after platelet-rich plasma injection

    NARCIS (Netherlands)

    van Ark, Mathijs; van den Akker-Scheek, Inge; Meijer, L.T.B.; Zwerver, Hans

    2013-01-01

    Objectives: To describe a post platelet-rich plasma (PRP) injection, exercise-based physical therapy program, investigate feasibility and report the first results of patellar tendinopathy patients treated with PRP injection combined with the physical therapy program. Study Design: Case-series. Setti

  14. Human ECG signal parameters estimation during controlled physical activity

    Science.gov (United States)

    Maciejewski, Marcin; Surtel, Wojciech; Dzida, Grzegorz

    2015-09-01

    ECG signal parameters are commonly used indicators of human health condition. In most cases the patient should remain stationary during the examination to decrease the influence of muscle artifacts. During physical activity, the noise level increases significantly. The ECG signals were acquired during controlled physical activity on a stationary bicycle and during rest. Afterwards, the signals were processed using a method based on Pan-Tompkins algorithms to estimate their parameters and to test the method.

  15. An Overview of Science Education and Outreach Activities at the Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. DeLooper; A. DeMeo; P. Lucas; A. Post-Zwicker; C. Phillips; C. Ritter; J. Morgan; P. Wieser; A. Percival; E. Starkman; G. Czechowicz

    2000-11-07

    The U. S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates the changes that have occurred in this effort during the last several years. Efforts have been expanded to reach more students, as well as the public in general. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. A student's interest in science can be raised by tours, summer research experiences, in-classroom presentations, plasma expos, teacher workshops and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a de dicated core group of individuals and supplemented by other members of the PPPL staff and consultants who perform various outreach and educational activities.

  16. Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma

    Science.gov (United States)

    Juliano, Daniel R.; Ruzic, David N.; Allain, Monica M. C.; Hayden, Douglas B.

    2002-01-01

    A computer simulation was created to model the transport of sputtered atoms through an ionized physical vapor deposition (IPVD) system. The simulation combines Monte Carlo and fluid methods to track the metal atoms that are emitted from the target, interact with the IPVD plasma, and are eventually deposited somewhere in the system. Ground-state neutral, excited, and ionized metal atoms are tracked. The simulation requires plasma conditions to be specified by the user. Langmuir probe measurements were used to determine these parameters in an experimental system in order to compare simulation results with experiment. The primary product of the simulation is a prediction of the ionization fraction of the sputtered atom flux at the substrate under various conditions. This quantity was experimentally measured and the results compared to the simulation. Experiment and simulation differ significantly. It is hypothesized that heating of the background gas due to the intense sputtered atom flux at the target is primarily responsible for this difference. Heating of the background gas is not accounted for in the simulation. Difficulties in accurately measuring plasma parameters, especially electron temperature, are also significant.

  17. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men.

    Science.gov (United States)

    Vincent, Sophie; Berthon, Phanélie; Zouhal, Hassane; Moussa, Elie; Catheline, Michel; Bentué-Ferrer, Danièle; Gratas-Delamarche, Arlette

    2004-01-01

    The influence of gender on the glucose response to exercise remains contradictory. Moreover, to our knowledge, the glucoregulatory responses to anaerobic sprint exercise have only been studied in male subjects. Hence, the aim of the present study was to compare glucoregulatory metabolic (glucose and lactate) and hormonal (insulin, catecholamines and estradiol only in women) responses to a 30-s Wingate test, in physically active students. Eight women [19.8 (0.7) years] and eight men [22.0 (0.6) years] participated in a 30-s Wingate test on a bicycle ergometer. Plasma glucose, insulin, and catecholamine concentrations were determined at rest, at the end of both the warm-up and the exercise period and during the recovery (5, 10, 20, and 30 min). Results showed that the plasma glucose increase in response to a 30-s Wingate test was significantly higher in women than in men [0.99 (0.15) versus 0.33 (0.20) mmol l(-1) respectively, Pwomen than in men [14.7 (2.9) versus 2.3 (1.9) pmol l(-1) respectively, P<0.05]. However, there was no gender difference concerning the catecholamine response. The study indicates a gender-related difference in post-exercise plasma glucose and insulin responses after a supramaximal exercise.

  18. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    Science.gov (United States)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  19. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  20. Optimization and Control of Cyber-Physical Vehicle Systems

    Science.gov (United States)

    Bradley, Justin M.; Atkins, Ella M.

    2015-01-01

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined. PMID:26378541

  1. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  2. Toroidal current profile control during low confinement mode plasma discharges in DIII-D via first-principles-driven model-based robust control synthesis

    Science.gov (United States)

    Barton, Justin E.; Boyer, Mark D.; Shi, Wenyu; Schuster, Eugenio; Luce, Tim C.; Ferron, John R.; Walker, Michael L.; Humphreys, David A.; Penaflor, Ben G.; Johnson, Robert D.

    2012-12-01

    In order for ITER to be capable of operating in advanced tokamak operating regimes, characterized by a high fusion gain, good plasma confinement, magnetohydrodynamic stability and a non-inductively driven plasma current, for extended periods of time, several challenging plasma control problems still need to be solved. Setting up a suitable toroidal current density profile in the tokamak is key for one possible advanced operating scenario characterized by non-inductive sustainment of the plasma current. At the DIII-D tokamak, the goal is to create the desired current profile during the ramp-up and early flat-top phases of the plasma discharge and then actively maintain this target profile for the remainder of the discharge. The evolution in time of the toroidal current profile in tokamaks is related to the evolution of the poloidal magnetic flux profile, which is modelled in normalized cylindrical coordinates using a first-principles, nonlinear, dynamic partial differential equation (PDE) referred to as the magnetic diffusion equation. The magnetic diffusion equation is combined with empirical correlations developed from physical observations and experimental data from DIII-D for the electron temperature, the plasma resistivity and the non-inductive current drive to develop a simplified, control-oriented, nonlinear, dynamic PDE model of the poloidal flux profile evolution valid for low confinement mode discharges. In this work, we synthesize a robust feedback controller to reject disturbances and track a desired reference trajectory of the poloidal magnetic flux gradient profile by employing the control-oriented model of the system. A singular value decomposition of the static gain matrix of the plant model is utilized to identify the most relevant control channels and is combined with the dynamic response of system around a given operating trajectory to design the feedback controller. A general framework for real-time feedforward + feedback control of magnetic and

  3. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  4. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion

    Science.gov (United States)

    Montgomery, David S.

    2016-05-01

    Our understanding of laser-plasma instability (LPI) physics has improved dramatically over the past two decades through advancements in experimental techniques, diagnostics, and theoretical and modeling approaches. We have progressed from single-beam experiments—ns pulses with ˜kJ energy incident on hundred-micron-scale target plasmas with ˜keV electron temperatures—to ones involving nearly 2 MJ energy in 192 beams onto multi-mm-scale plasmas with temperatures ˜4 keV. At the same time, we have also been able to use smaller-scale laser facilities to substantially improve our understanding of LPI physics and evaluate novel approaches to their control. These efforts have led to a change in paradigm for LPI research, ushering in an era of engineering LPI to accomplish specific objectives, from tuning capsule implosion symmetry to fixing nonlinear saturation of LPI processes at acceptable levels to enable the exploration of high energy density physics in novel plasma regimes. A tutorial is provided that reviews the progress in the field from the vantage of the foundational LPI experimental results. The pedagogical framework of the simplest models of LPI will be employed, but attention will also be paid to settings where more sophisticated models are needed to understand the observations. Prospects for the application of our improved understanding for inertial fusion (both indirect- and direct-drive) and other applications will also be discussed.

  5. Rossby vortices, spiral structures, solitons astrophysics and plasma physics in shallow water experiments

    CERN Document Server

    Nezlin, Mikhail V

    1993-01-01

    This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo­ spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the...

  6. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  7. Ignitor Plasma Physics Performance in the H-Regime at Various Parameters

    Science.gov (United States)

    Detragiache, P.; Coppi, B.

    2010-11-01

    The plasma physics performance of Ignitor at full (BT = 13 T, Ip = 10 MA) as well as at reduced parameters (BT = 8 T, Ip = 5 MA) in the high confinement mode (H-regime) is assessed using global 0-D modelling. At full parameters, high-Q operation is possible if the heating power (a combination of Ohmic, α and limited ICRF power) is above the threshold value Pthr for H-regime confinement. Different scaling expressions for Pthr yield significantly different results when used with Ignitor parameters. Even with the most pessimistic among the proposed scalingsootnotetextY. R. Martin et al., Journal of Physics: Conference Series, 123, 012033 (2008). the access to H-regime confinement is possible for Ignitor at full field when the ICRH system is operated at the highest frequency and the generated power is less than at lower frequencies. At reduced parameters, the lower Pthr and the augmented ICRF power available (about 10 MW) facilitate access to H-regime confinement, while the plasma performance remains respectable.

  8. The physical properties of cubic plasma-enhanced atomic layer deposition TaN films

    Science.gov (United States)

    Kim, H.; Lavoie, C.; Copel, M.; Narayanan, V.; Park, D.-G.; Rossnagel, S. M.

    2004-05-01

    Plasma-enhanced atomic layer deposition (PE-ALD) is a promising technique to produce high quality metal and nitride thin films at low growth temperature. In this study, very thin (<10 nm) low resistivity (350 μΩ cm) cubic TaN Cu diffusion barrier were deposited by PE-ALD from TaCl5 and a plasma of both hydrogen and nitrogen. The physical properties of TaN thin films including microstructure, conformality, roughness, and thermal stability were investigated by various analytical techniques including x-ray diffraction, medium energy ion scattering, and transmission electron microscopy. The Cu diffusion barrier properties of PE-ALD TaN thin films were studied using synchrotron x-ray diffraction, optical scattering, and sheet resistance measurements during thermal annealing of the test structures. The barrier failure temperatures were obtained as a function of film thickness and compared with those of PE-ALD Ta, physical vapor deposition (PVD) Ta, and PVD TaN. A diffusion kinetics analysis showed that the microstructure of the barrier materials is one of the most critical factors for Cu diffusion barrier performance.

  9. Control of supersonic axisymmetric base flows using passive splitter plates and pulsed plasma actuators

    Science.gov (United States)

    Reedy, Todd Mitchell

    An experimental investigation evaluating the effects of flow control on the near-wake downstream of a blunt-based axisymmetric body in supersonic flow has been conducted. To better understand and control the physical phenomena that govern these massively separated high-speed flows, this research examined both passive and active flow-control methodologies designed to alter the stability characteristics and structure of the near-wake. The passive control investigation consisted of inserting splitter plates into the recirculation region. The active control technique utilized energy deposition from multiple electric-arc plasma discharges placed around the base. The flow-control authority of both methodologies was evaluated with experimental diagnostics including particle image velocimetry, schlieren photography, surface flow visualization, pressure-sensitive paint, and discrete surface pressure measurements. Using a blowdown-type wind tunnel reconstructed specifically for these studies, baseline axisymmetric experiments without control were conducted for a nominal approach Mach number of 2.5. In addition to traditional base pressure measurements, mean velocity and turbulence quantities were acquired using two-component, planar particle image velocimetry. As a result, substantial insight was gained regarding the time-averaged and instantaneous near-wake flow fields. This dataset will supplement the previous benchmark point-wise laser Doppler velocimetry data of Herrin and Dutton (1994) for comparison with new computational predictive techniques. Next, experiments were conducted to study the effects of passive triangular splitter plates placed in the recirculation region behind a blunt-based axisymmetric body. By dividing the near-wake into 1/2, 1/3, and 1/4 cylindrical regions, the time-averaged base pressure distribution, time-series pressure fluctuations, and presumably the stability characteristics were altered. While the spatial base pressure distribution was

  10. Control of autoresonance in mechanical and physical models

    Science.gov (United States)

    Kovaleva, A.

    2017-03-01

    Autoresonant energy transfer has been considered as one of the most effective methods of excitation and control of high-energy oscillations for a broad range of physical and engineering systems. Nonlinear time-invariant feedback control provides effective self-tuning and self-adaptation mechanisms targeted at preserving resonance oscillations under variations of the system parameters but its implementation may become extremely complicated. A large class of systems can avoid nonlinear feedback, still producing the required state due to time-variant feed-forward frequency control. This type of control in oscillator arrays employs an intrinsic property of a nonlinear oscillator to vary both its amplitude and the frequency when the driving frequency changes. This paper presents a survey of recently published and new results studying possibilities and limitations of time-variant frequency control in nonlinear oscillator arrays. This article is part of the themed issue 'Horizons of cybernetical physics'.

  11. Multicapillary cathode controlled by a ferroelectric plasma source

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Krasik, Ya. E.

    2008-06-01

    We present results of high-current microsecond and sub-microsecond duration electron beam generation in a ~200 kV diode with a multicapillary dielectric cathode (MCDC) assisted by a ferroelectric plasma source (FPS). Electron beam current densities are achieved up to 40 A/cm2. It was shown that the operation of the MCDC is determined by the parameters of the plasma flow generated by the FPS. Also, it was found that the high resistivity of the plasma produced inside the capillaries allows effective de-coupling of individual capillary plasma discharges which results in uniform electron beam generation.

  12. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics

    Science.gov (United States)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark

    2010-01-01

    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session

  13. Reconfigurable ATCA hardware for plasma control and data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, B.B., E-mail: bernardo@ipfn.ist.utl.p [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Batista, A.J.N.; Correia, M.; Neto, A.; Fernandes, H.; Goncalves, B.; Sousa, J. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-07-15

    The IST/EURATOM Association is developing a new generation of control and data acquisition hardware for fusion experiments based on the ATCA architecture. This emerging open standard offers a significantly higher data throughput over a reliable High Availability (HA) mechanical and electrical platform. One of this ATCA boards has 32 galvanically isolated ADC channels (18 bit) each mounted on a swappable plug-in card, 8 DAC channels (16 bit), 8 digital I/O channels and embeds a high performance XILINX Virtex 4 family field programmable gate array (FPGA). The specific modular and configurable hardware design enables adaptable utilization of the board in dissimilar applications. The first configuration, specially developed for tokamak plasma Vertical Stabilization, consists of a Multiple-Input-Multiple-Output (MIMO) controller that is capable of feedback loops faster than 1 ms using a multitude of input signals fed from different boards communicating through the Aurora{sup TM} point-to-point protocol. Massive parallel algorithms can be implemented on the FPGA either with programmed digital logic, using a HDL hardware description language, or within its internal silicon PowerPC{sup TM} running a full fledged real-time operating system. The second board configuration is dedicated for transient recording of the entire 32 channels at 2 MSamples/s to the on-board 512 MB DDR2 memory. Signal data retrieval is accelerated by a DMA-driven PCI Express{sup TM} x1 Interface to the ATCA system controller, providing an overall throughput in excess of 100 MB/s. This paper illustrates these developments and discusses possible configurations for foreseen applications.

  14. Real-time optical plasma boundary reconstruction for plasma position control at the TCV Tokamak

    NARCIS (Netherlands)

    Hommen, G.; Baar, M. de; Duval, B.P.; Andrebe, Y.; Le, H.B.; Klop, M.A.; Doelman, N.J.; Witvoet, G.; Steinbuch, M.

    2014-01-01

    A dual, high speed, real-time visible light camera setup was installed on the TCV tokamak to reconstruct optically and in real-time the plasma boundary shape. Localized light emission from the plasma boundary in tangential view, broadband visible images results in clearly resolved boundary edge-feat

  15. Experimental Investigation of Flow Separation Control Using Dielectric Barrier Discharge Plasma Actuators

    Institute of Scientific and Technical Information of China (English)

    LI Gang; NIE Chaoqun; LI Yiming; ZHU Junqiang; XU Yanji

    2008-01-01

    Influence of plasma actuators as a flow separation control device was investigated experimentally.Hump model was used to demonstrate the effect of plasma actuators on external flow separation,while for internal flow separation a set of compressor cascade was adopted.In order to investigate the modification of the flow structure by the plasma actuator,the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment.The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low.As the incoming velocity increased,the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application.Methods to increase the intensity of plasma actuator were also studied.

  16. Single channel atmospheric pressure transporting plasma and plasma stream demultiplexing: physical characterization and application to E. coli bacteria inactivation

    Science.gov (United States)

    Valinataj Omran, A.; Sohbatzadeh, F.; Siadati, S. N.; Hosseinzadeh Colagar, A.; Akishev, Y.; Arefi-Khonsari, F.

    2017-08-01

    In this article, we developed transporting plasma sources that operate at atmospheric pressure. The effect of electrode configuration on plasma transporting was investigated. In order to increase the transporting plasma cross-section, we converted a plasma stream into four plasma channels by a cylindrical housing. Electron excitation and rotational temperatures were estimated using optical emission spectroscopy. Furthermore, the electrical and temporal characteristics of the plasma, discharge power and charge deposition on the target were investigated. The propagation characteristics of single and multi-channel transporting plasma were compared with the same cross-sectional area. Two configurations for multi-channels were designed for this purpose. Escherichia coli bacteria were exposed to the single and multi-channel transporting discharge for different time durations. After exposure, the results indicated that the inactivation zones were significantly increased by a multi-channel transporting plasma. Finally, E. coli inactivation by those plasma apparatuses was compared with that of several standard antimicrobial test discs such as Gentamicin, Tetracycline, Amoxicillin and Cefixime.

  17. Controlling VUV photon fluxes in pulsed inductively coupled Ar/Cl2 plasmas and potential applications in plasma etching

    Science.gov (United States)

    Tian, Peng; Kushner, Mark J.

    2017-02-01

    UV/VUV photon fluxes in plasma materials processing have a variety of effects ranging from producing damage to stimulating synergistic reactions. Although in plasma etching processes, the rate and quality of the feature are typically controlled by the characteristics of the ion flux, to truly optimize these ion and photon driven processes, it is desirable to control the relative fluxes of ions and photons to the wafer. In prior works, it was determined that the ratio of VUV photon to ion fluxes to the substrate in low pressure inductively coupled plasmas (ICPs) sustained in rare gases can be controlled by combinations of pressure and pulse power, while the spectrum of these VUV photons can be tuned by adding additional rare gases to the plasma. In this work, VUV photon and ion fluxes are computationally investigated for Ar/Cl2 ICPs as used in etching of silicon. We found that while the overall ratio of VUV photon flux to ion flux are controlled by pressure and pulse power, by varying the fraction of Cl2 in the mixture, both the ratio of VUV to ion fluxes and the spectrum of VUV photons can be tuned. It was also found that the intensity of VUV emission from Cl(3p 44s) can be independently tuned by controlling wall surface conditions. With this ability to control ratios of ion to photon fluxes, photon stimulated processes, as observed in halogen etching of Si, can be tuned to optimize the shape of the etched features.

  18. Multi-scale physics mechanisms and spontaneous edge transport bifurcations in fusion plasmas

    Science.gov (United States)

    Hidalgo, C.; Pedrosa, M. A.; Silva, C.; Carralero, D.; Ascasibar, E.; Carreras, B. A.; Estrada, T.; Tabarés, F.; Tafalla, D.; Guasp, J.; Liniers, M.; López-Fraguas, A.; van Milligen, B.; Ochando, M. A.

    2009-09-01

    The magnitude of radial transport in magnetic confinement devices for controlled nuclear fusion suffers spontaneous bifurcations when specific system parameter values are exceeded. Here we show, for the first time, that the correlation length of the plasma potential becomes of the order of the machine size during the edge bifurcation itself, quite unlike the density fluctuations. The mechanism governing the development of this bifurcation, leading to the establishment of an edge transport barrier, is still one of the main scientific conundrums facing the magnetic fusion community after more than twenty years of intense research. The results presented here show the dominant role of long-range correlations when approaching the Low to High confinement edge transition in fusion plasmas. This is in line with the expectation that multi-scale interactions are a crucial ingredient of complex dynamics in many non-equilibrium systems.

  19. Effects of physical activity and training programs on plasma homocysteine levels: a systematic review.

    Science.gov (United States)

    e Silva, Alexandre de Souza; da Mota, Maria Paula Gonçalves

    2014-08-01

    Homocysteine is an amino acid produced in the liver that, when present in high concentrations, is thought to contribute to plaque formation and, consequently, increased risk of cardiovascular disease. However, daily physical activity and training programs may contribute to controlling atherosclerosis. Given that physical exercise induces changes in protein and amino acid metabolism, it is important to understand whether homocysteine levels are also affected by exercise and to determine possible underlying mechanisms. Moreover, regarding the possible characteristics of different training programs (intensity, duration, repetition, volume), it becomes prudent to determine which types of exercise reduce homocysteine levels. To these ends, a systematic review was conducted to examine the effects of daily physical activity and different training programs on homocysteine levels. EndNote(®) was used to locate articles on the PubMed database from 2002 to 2013 with the keyword combinations "physical activity and homocysteine", "training and homocysteine", and/or "exercise and homocysteine". After 34 studies were identified, correlative and comparative studies of homocysteine levels revealed lower levels in patients engaged in greater quantities of daily physical activity. Regarding the acute effects of exercise, all studies reported increased homocysteine levels. Concerning intervention studies with training programs, aerobic training programs used different methods and analyses that complicate making any conclusion, though resistance training programs induced decreased homocysteine levels. In conclusion, this review suggests that greater daily physical activity is associated with lower homocysteine levels and that exercise programs could positively affect homocysteine control.

  20. The plasma physics of thermal conduction in the intracluster medium of galaxy clusters

    Science.gov (United States)

    Reynolds, Christopher

    Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat

  1. Modelling and engineering aspects of the plasma shape control in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R.; Ambrosino, G.; Coccorese, E.; Pironti, A. [Naples Univ., Dip. di Ingegneria Elettrica, Consorzio CREATE, Naples (Italy); Lister, J.B.; Ward, D.J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-10-01

    As part of the ITER Engineering Design Activity, a number of questions related to plasma control has been addressed, using linearised and non-linear simulation codes to assess the control of the plasma shape given the particular design restrictions of ITER. (author) 5 figs., 1 tab., 2 refs.

  2. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Stefan P. [PPPL; Erickson, Keith [PPPL; Kaita, Robert [PPPL; Lawson, John [PPPL; Mozulay, Robert [PPPL; Mueller, Dennis [PPPL; Que, Weiguo [PPPL; Rahman, Nabidur [PPPL; Schneider, Hans [PPPL; Smalley, Gustav [PPPL; Tresemer, Kelsey [PPPL

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  3. Plasma-based Control of Supersonic Nozzle Flow

    CERN Document Server

    Gaitonde, Datta V

    2009-01-01

    The flow structure obtained when Localized Arc Filament Plasma Actuators (LAFPA) are employed to control the flow issuing from a perfectly expanded Mach 1.3 nozzle is elucidated by visualizing coherent structures obtained from Implicit Large-Eddy Simulations. The computations reproduce recent experimental observations at the Ohio State University to influence the acoustic and mixing properties of the jet. Eight actuators were placed on a collar around the periphery of the nozzle exit and selectively excited to generate various modes, including first and second mixed (m = +/- 1 and m = +/- 2) and axisymmetric (m = 0). In this fluid dynamics video http://ecommons.library.cornell.edu/bitstream/1813/13723/2/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-1.m1v, http://ecommons.library.cornell.edu/bitstream/1813/13723/3/Alljoinedtotalwithmodetextlong2-Datta%20MPEG-2.m2v}, unsteady and phase-averaged quantities are displayed to aid understanding of the vortex dynamics associated with the m = +/- 1 and m = 0 modes exci...

  4. Control of buffet onset by plasma-based actuators

    Science.gov (United States)

    Vishnyakov, O. I.; Polivanov, P. A.; Budovskiy, A. D.; Sidorenko, A. A.; Maslov, A. A.

    2016-10-01

    The paper is devoted to the experimental investigations of the influence of electrical discharges which produces local area of unsteady energy deposition and density variations on transonic flow, namely, buffet onset. Experiments are carried out in T-112 wind tunnel in TsAGI using model of rectangular wing with chord of 200 mm and span 599 mm. The profile of the wing is supercritical airfoil P184-15SR with max thickness 15% of chord length. Experiments were carried out in the range of Mach number 0.73÷0.78 for several angles of attack of the model. The flow around the model was studied by schlieren visualization, surface pressure distribution measurements and Pitot measurements in the wake of the wing using wake rake located downstream of the model. The experimentally data obtained show that excitation of plasma actuator based on spark discharge effectively influence on mean flow and characteristics of shock wave oscillations. It was found that control efficiency depends on frequency of discharge.

  5. The segmented non-uniform dielectric module design for uniformity control of plasma profile in a capacitively coupled plasma chamber

    Directory of Open Access Journals (Sweden)

    Huanxiong Xia

    2014-12-01

    Full Text Available Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance.

  6. H∞ Loop Shaping Control for Plasma Vertical Position Instability on QUEST

    Science.gov (United States)

    Liu, Xiaolong; Kazuo, Nakamura; Tatsuya, Yoshisue; Osamu, Mitarai; Makoto, Hasegawa; Kazutoshi, Tokunaga; Xue, Erbing; Hideki, Zushi; Kazuaki, Hanada; Akihide, Fujisawa; Hiroshi, Idei; Shoji, Kawasaki; Hisatoshi, Nakashima; Aki, Higashijima; Kuniaki, Araki

    2013-03-01

    QUEST has a divertor configuration with a high and a negative n-index, and the problem of plasma vertical position instability control in QUEST is still under extensive study for achieving high efficiency plasma. The instability we considered is that the toroidal plasma moves either up or down in the vacuum chamber until it meets the vessel wall and is extinguished. The actively controlled coils (HCU and HCL) outside the vacuum vessel are serially connected in feedback with a measurement of the plasma vertical position to provide stabilizing control. In this work, a robust controller is employed by using the loop synthesis method, and provides robust stability over a wide range of n-index. Moreover, the gain of the robust controller is lower than that of a typical proportional derivative (PD) controller in the operational frequency range; it indicates that the robust controller needs less power consumption than the PD controller does.

  7. Control of highly vertically unstable plasmas in TCV with internal coils and fast power supply

    Energy Technology Data Exchange (ETDEWEB)

    Favre, A.; Moret, J.M.; Chavan, R.; Fasel, D.; Hofmann, F.; Lister, J.B.; Mayor, J.M.; Perez, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Elkjaer, A. [Danfysik A/S, Jyllinge (Denmark)

    1996-10-01

    The goal of TCV (Tokamak a Configuration Variable) is to investigate effects of plasma shape, in particular high elongation (up to 3), on tokamak physics. Such elongated configurations (I{sub p}{approx_equal}1 MA) are highly vertically unstable with growth rates up to {gamma}=4000 s{sup -1}. Control of the vertical position using the poloidal coils located outside the vessel is limited to {gamma}{<=}1000 s{sup -1} because of the shielding effect of the conductive vessel and because of the relative slow time response of their power supplies (0.8 ms thyristor 12 pulse switching at 120 Hz). This dictated the necessity to install a coil set inside the vacuum vessel fed with a Fast Power Supply (FPS). The choice and design of the system with a special attention to the mechanical and electrical constraints in TCV tokamak, as the results and real performances, will be presented. (author) 3 figs., 2 tabs., 2 refs.

  8. Generation Control of ZnO Nanoparticles Using a Coaxial Gas-Flow Pulse Plasma Ar/O2 Plasma

    Directory of Open Access Journals (Sweden)

    Hiroki Shirahata

    2015-01-01

    Full Text Available Generation of ZnO nanoparticles was investigated using a coaxial gas-flow pulse plasma. We studied how zinc atoms, sputtered from a zinc target, reacted with oxygen in a plasma and/or on a substrate to form ZnO nanoparticles when the discharge parameters, such as applied pulse voltage and gas flow rate, were controlled in an O2/Ar plasma. The formation processes were estimated by SEM, TEM, and EDX. We observed many ZnO nanoparticles deposited on Si substrate. The particle yield and size were found to be controlled by changing the experimental parameters. The diameter of the particles was typically 50–200 nm.

  9. Surface Plasma Arc by Radio-Frequency Control Study (SPARCS)

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David N. [University of Illinois at Urbana-Champaign, IL (United States)

    2013-04-29

    This paper is to summarize the work carried out between April 2012 and April 2013 for development of an experimental device to simulate interactions of o -normal detrimental events in a tokamak and ICRF antenna. The work was mainly focused on development of a pulsed plasma source using theta pinch and coaxial plasma gun. This device, once completed, will have a possible application as a test stand for high voltage breakdown of an ICRF antenna in extreme events in a tokamak such as edge-localized modes or disruption. Currently, DEVeX does not produce plasma with high temperature enough to requirement for an ELM simulator. However, theta pinch is a good way to produce high temperature ions. The unique characteristic of plasma heating by a theta pinch is advantageous for an ELM simulator due to its effective ion heating. The objective of the proposed work, therefore, is to build a test facility using the existing theta pinch facility in addition to a coaxial plasma gun. It is expected to produce a similar pulsed-plasma heat load to the extreme events in tokamaks and to be applied for studying interactions of hot plasma and ICRF antennas.

  10. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  11. Upgrade of plasma density feedback control system in HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    ZHAO Da-Zheng; LUO Jia-Rong; LI Gang; JI Zhen-Shan; WANG Feng

    2004-01-01

    The HT-7 is a superconducting tokamak in China used to make researches on the controlled nuclear fusion as a national project for the fusion research. The plasma density feedback control subsystem is the one of the subsystems of the distributed control system in HT-7 tokamak (HT7DCS). The main function of the subsystem is to control the plasma density on real-time. For this reason, the real-time capability and good stability are the most significant factors, which will influence the control results. Since the former plasma density feedback control system (FPDFCS) based on Windows operation system could not fulfill such requirements well, a new subsystem has to be developed. The paper describes the upgrade of the plasma density feedback control system (UPDFCS), based on the dual operation system (Windows and Linux), in detail.

  12. Analytical solitons for Langmuir waves in plasma physics with cubic nonlinearity and perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qin [Wuhan Donghu Univ. (China). School of Electronics and Information Engineering; Mirzazadeh, M. [Guilan Univ. (Iran, Islamic Republic of). Dept. of Engineering Sciences

    2016-07-01

    We presented an analytical study on dynamics of solitons for Langmuir waves in plasma physics. The mathematical model is given by the perturbed nonlinear Schroedinger equation with full nonlinearity and Kerr law nonlinearity. There are three techniques of integrability were employed to extract exact solutions along with the integrability conditions. The topological 1-soliton solutions, singular 1-soliton solutions, and plane wave solution were reported by Ricatti equation expansion approach and then the bright 1-soliton solution, singular 1-soliton solution, periodic singular solutions, and plane wave solution were derived with the help of trial solution method. Finally, based on the G'/G-expansion scheme, we obtained the hyperbolic function travelling wave solution, trigonometric function travelling wave solution, and plane wave solution.

  13. Analytical Solitons for Langmuir Waves in Plasma Physics with Cubic Nonlinearity and Perturbations

    Science.gov (United States)

    Zhou, Qin; Mirzazadeh, M.

    2016-09-01

    We presented an analytical study on dynamics of solitons for Langmuir waves in plasma physics. The mathematical model is given by the perturbed nonlinear Schrödinger equation with full nonlinearity and Kerr law nonlinearity. There are three techniques of integrability were employed to extract exact solutions along with the integrability conditions. The topological 1-soliton solutions, singular 1-soliton solutions, and plane wave solution were reported by Ricatti equation expansion approach and then the bright 1-soliton solution, singular 1-soliton solution, periodic singular solutions, and plane wave solution were derived with the help of trial solution method. Finally, based on the G'/G-expansion scheme, we obtained the hyperbolic function travelling wave solution, trigonometric function travelling wave solution, and plane wave solution.

  14. Basic microscopic plasma physics unified and simplified by N-body classical mechanics

    CERN Document Server

    Escande, Dominique; Elskens, Yves

    2012-01-01

    Debye shielding, collisional transport, Landau damping of Langmuir waves, and spontaneous emission of these waves are introduced, in typical plasma physics textbooks, in different chapters. This paper provides a compact unified introduction to these phenomena without appealing to fluid or kinetic models, but by using Newton's second law for a system of $N$ electrons in a periodic box with a neutralizing ionic background. A rigorous equation is derived for the electrostatic potential. Its linearization and a first smoothing reveal this potential to be the sum of the shielded Coulomb potentials of the individual particles. Smoothing this sum yields the classical Vlasovian expression including initial conditions in Landau contour calculations of Langmuir wave growth or damping. The theory is extended to accommodate a correct description of trapping or chaos due to Langmuir waves. In the linear regime, the amplitude of such a wave is found to be ruled by Landau growth or damping and by spontaneous emission. Using...

  15. CMAS Interactions with Advanced Environmental Barrier Coatings Deposited via Plasma Spray- Physical Vapor Deposition

    Science.gov (United States)

    Harder, B. J.; Wiesner, V. L.; Zhu, D.; Johnson, N. S.

    2017-01-01

    Materials for advanced turbine engines are expected to have temperature capabilities in the range of 1370-1500C. At these temperatures the ingestion of sand and dust particulate can result in the formation of corrosive glass deposits referred to as CMAS. The presence of this glass can both thermomechanically and thermochemically significantly degrade protective coatings on metallic and ceramic components. Plasma Spray- Physical Vapor Deposition (PS-PVD) was used to deposit advanced environmental barrier coating (EBC) systems for investigation on their interaction with CMAS compositions. Coatings were exposed to CMAS and furnace tested in air from 1 to 50 hours at temperatures ranging from 1200-1500C. Coating composition and crystal structure were tracked with X-ray diffraction and microstructure with electron microscopy.

  16. Calculation of stochasticity threshold and universality for Hamiltonian systems - Plasma physics applications

    Science.gov (United States)

    Mohamed-Benkadda, M. S.

    The renormalization-group theory of Wilson (1975), as developed by Escande and Doveil (1981) is applied to characterize the transition to chaos in Hamiltonian systems with two degrees of freedom; the threshold of large-scale stochasticity and the degree of universality of these systems are obtained; and applications to problems in plasma physics are investigated. The problems considered include the movement of a charged particle in a packet of longitudinal waves, the movement of a charged particle in a magnetic bottle (as modeled by Chirikov, 1979, or by Cohen, 1979), and the response of nonlinear array of oscillators to simultaneous perturbation by two isolated resonances (as studied by Walker and Ford, 1969). Diagrams and graphs are provided.

  17. Investigation of physical processes limiting plasma density in H-mode on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R.; Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Jernigan, T.C. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-01

    A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmas was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.

  18. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stencel, J.R.; Finley, V.L.

    1991-12-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research since 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.

  19. Through the X-ray looking glass, and what plasma physics found there

    Science.gov (United States)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Jones, Christine; Roediger, Elke

    2017-08-01

    How energy is transported and dissipated is the most fundamental process in the thermalization and evolution of galaxy clusters. At temperatures of 1--10 keV, intracluster medium (ICM) approximates a highly ionized plasma. Contemporary X-ray observations have revealed a wealth of substructures in the ICM, even in relatively relaxed clusters. Of particular interest is the ubiquitous presence of cold fronts, resulting from the shear interface between gaseous regions of different entropies. This configuration inevitably leads to the Kelvin-Helmholtz Instability (KHI), appearing as “horn” or “roll” features in X-ray images. Both viscosity and ordered magnetic field can suppress the growth of KHI. We present results of Chandra, XMM-Newton, and Suzaku observations of Fornax and Virgo. We probe the cluster plasma physics through the gas properties of the sloshing cold fronts, merging cold fronts, AGN bubbles, and gaseous stripped tails in these systems. We found that the ICM ought to be inviscous and we can put an upper limit on the intracluster magnetic field. Our results have also provided insights into the merging history of galaxy clusters, which have been reproduced in tailored simulations.

  20. Investigations on the Nature of Ceramic Deposits in Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    He, W.; Mauer, G.; Gindrat, M.; Wäger, R.; Vaßen, R.

    2017-01-01

    In Plasma Spray-Physical Vapor Deposition (PS-PVD) process, major fractions of the feedstock powder can be evaporated so that coatings are deposited mainly from the vapor phase. In this work, Computational Fluid Dynamics (CFD) results indicate that such evaporation occurs significantly in the plasma torch nozzle and even nucleation and condensation of zirconia is highly possible there. Experimental work has been performed to investigate the nature of the deposits in the PS-PVD process, in particular coatings from condensate vapor and nano-sized clusters produced at two spraying distances of 1000 mm and 400 mm. At long spraying distance, columns in the coatings have pyramidal tops and very sharp faceted microstructures. When the spraying distance is reduced to 400 mm, the tops of columns become relatively flat and a faceted structure is not recognizable. XRD patterns show obvious preferred orientations of (110) and (002) in the coatings sprayed at 400 mm but only limited texture in the coatings sprayed at 1000 mm. Meanwhile, a non-line of sight coating was also investigated, which gives an example for pure vapor deposition. Based on these analyses, a vapor and cluster depositions are suggested to further explain the formation mechanisms of high-quality columnar-structured PS-PVD thermal barrier coatings which have already shown excellent performance in cyclic lifetime test.

  1. Bifurcation physics of magnetic islands and stochasticity explored by heat pulse propagation studies in toroidal plasmas

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Suzuki, Y.; Narushima, Y.; Evans, T. E.; Ohdachi, S.; Tsuchiya, H.; Inagaki, S.; Itoh, K.

    2016-09-01

    Bifurcation physics of a magnetic island was investigated using the heat pulse propagation technique produced by the modulation of electron cyclotron heating. There are two types of bifurcation phenomena observed in a large helical device (LHD) and DIII-D. One is a bifurcation of the magnetic topology between nested and stochastic fields. The nested state is characterized by the bi-directional (inward and outward) propagation of the heat pulse with slow propagation speed. The stochastic state is characterized by the fast propagation of the heat pulse with electron temperature flattening. The other bifurcation is between the magnetic island with larger thermal diffusivity and that with smaller thermal diffusivity. The damping of toroidal flow is observed at the O-point of the magnetic island both in helical plasmas and in tokamak plasmas during a mode locking phase with strong flow shears at the boundary of the magnetic island. Associated with the stochastization of the magnetic field, the abrupt damping of toroidal flow is observed in LHD. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that this flow damping is due to the change in the non-diffusive term of momentum transport.

  2. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  3. Fast feedback control of plasma horizontal position by using DSP and IGBT inverter

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Mitsuhiro; Kikuchi, Yusuke; Takamura, Shuichi [Nagoya Univ., Graduate School of Engineering, Nagoya, Aichi (Japan); Uesugi, Yoshihiko [Nagoya Univ., Center for Integrated Research in Science and Engineering, Nagoya, Aichi (Japan)

    2003-03-01

    To achieve high confinement properties of a tokamak plasma, it is necessary to control the plasma position, current profile, shape of magnetic surface etc. In addition to these, it has been found that a resistive wall mode (RWM) may limit the achievable plasma beta in present tokamak devices. Therefore, it is expected that an active feedback control using external coils is necessary to stabilize the RWM. A power supply for plasma control coils requires an accurate controllability and a fast response against such plasma disturbances. Recent development of high power and fast switching semiconductors, such as Insulated Gate Bipolar Transistor (IGBT) and MOSFET, improves the temporal response of power supply with a great extent. A small tokamak device, HYBTOK-II, is equipped with IGBT inverter power supplies for Joule and vertical field coils. In this paper a real-time feedback control of the plasma horizontal position has been employed with Digital Signal Processor (DSP). The experimental results on plasma response with such a feedback control have been compared with analysis of plasma column motion using transfer functions. (author)

  4. Design and realization of JT-60SA Fast Plasma Position Control Coils power supplies

    Energy Technology Data Exchange (ETDEWEB)

    Zito, P., E-mail: pietro.zito@enea.it [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Lampasi, A. [National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via E. Fermi, N. 45, 00044 Frascati (Italy); Coletti, A.; Novello, L. [Fusion for Energy (F4E) Broader Fusion Development Department, Garching (Germany); Matsukawa, M.; Shimada, K. [Japan Atomic Energy Agency (JAEA), Naka Fusion Institute, Mukouyama, Naka-si, Ibaraki-ken (Japan); Cinarelli, D.; Portesine, M. [POSEICO, via Pillea 42-44, 16152 Genova (Italy); Dorronsoro, A.; Vian, D. [JEMA, Paseo del Circuito 10, 20160 Lasarte-Oria Gipuzkoa (Spain)

    2015-10-15

    Highlights: • Fast Plasma Position Control Coils PSs control the vertical position of the plasma during a plasma shot. • The design phase was developed considering of providing full voltage at any current level. • The testing phase was successfully completed, according to the IEC60146 standards. • The measured rise time of the voltage response is 2.88 ms for a reference voltage step of 1 kV. - Abstract: Fast Plasma Position Control Coils (FPPCC) PSs control the vertical position of the plasma during a plasma shot, to prevent Vertical Displacement Event (VDE), using FPPC coils installed in vacuum vessel for JT-60SA. For this task, the FPPCC PSs have to be very fast for reacting to plasma movements. Further, an open loop feed forward voltage control is adopted in order to achieve a fast control of FPPCC PSs. The main characteristics are: 4-quadrant AC/DC converter 12-pulse with circulating current, DC load voltage ±1000 V and DC load current ±5 kA. The overvoltage induced by FPPC coil during a plasma disruption can reach 10 kV and it is protected by a nonlinear resistor in parallel to the crowbar up to its intervention. All these technical characteristics have strongly influenced the design of the FPPCC converter and transformers which have been validated by simulation model of FPPCC PS. The outcomes of the simulation allowed to finalize the performances and dynamic behavior of voltage response.

  5. Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

    Science.gov (United States)

    Booske, John

    2007-11-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).

  6. Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove; Petersen, Kaj

    1997-01-01

    An integrated plasma nozzle and a shield gas box have been investigated for laser welding of 2 mm stainless steel sheets. Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and coaxial and plasma flow show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 3000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  7. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  8. Effects of physical exercise on plasma levels of brain-derived neurotrophic factor and depressive symptoms in elderly women--a randomized clinical trial.

    Science.gov (United States)

    Pereira, Daniele S; de Queiroz, Bárbara Z; Miranda, Aline S; Rocha, Natália P; Felício, Diogo C; Mateo, Elvis C; Favero, Michelle; Coelho, Fernanda M; Jesus-Moraleida, Fabianna; Gomes Pereira, Danielle A; Teixeira, Antonio L; Máximo Pereira, Leani S

    2013-08-01

    To investigate the effect of 2 standardized exercise programs, muscle strength exercises (SE) and aerobic exercises (AE), on the plasma levels of brain-derived neurotrophic factor (BDNF) and depressive symptoms in 451 elderly women. A randomized controlled trial. Belo Horizonte/MG-Brazil. Community-dwelling older women (N=451; age, 65-89y). The participants were divided into 2 groups: SE and AE. Both protocols lasted 10 weeks, and 30 sessions (1-h sessions) in total were performed 3 times a week under the direct supervision of physical therapists. Plasma levels of BDNF (enzyme-linked immunosorbent assay) and depressive symptoms (Geriatric Depression Scale). There was a significant difference for BDNF plasma levels between the SE and AE groups (P=.009). Post hoc analysis revealed a pre-post intervention difference in BDNF levels only for the SE group (P=.008). A statistically significant difference was found for the pre- and postintervention Geriatric Depression Scale scores in both groups (P=.001), showing that the effects of both exercise protocols were comparable regarding depressive symptoms (P=.185). The present findings have demonstrated the positive effect of muscle strengthening and aerobic intervention on depressive symptoms in community-dwelling elderly women. Interestingly, only SE significantly increased the plasma levels of BDNF in our sample. The positive effects of physical exercise on depressive symptoms in the elderly were not mediated by BDNF. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  10. The Relationship between Physical Activity and Plasma Glucose Level amongst Ellisras Rural Young Adult Males and Females: Ellisras Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Moloko Matshipi

    2017-02-01

    Full Text Available Unhealthy lifestyle characteristics such as low physical activity (PA and high plasma glucose levels (PGLs may lead to the development of type 2 diabetes mellitus in adulthood. The aim of this study was to investigate (i the level of physical activity; (ii the prevalence of pre-diabetes and (iii the relationship between PA and plasma glucose level in a rural Ellisras adult population aged 18 to 28 years. A total of 713 young adults (349 males and 364 females who took part in the Ellisras Longitudinal Study participated in the study. Fasting plasma glucose levels were analysed using Accutrend glucose meters. Physical activity data was collected using a validated questionnaire. Linear regression was used to assess the relationship between PA and pre-diabetes. The prevalence of pre-diabetes was between 45.7% and 50.2% and that of physical inactivity was 67.3% and 71.0% for males and females, respectively. There was no significant (p > 0.05 relationship between PA and pre-diabetes (beta = 1.016; 95% Confidence Interval from 0.352 to 2.777. The health benefits of PA increased with the increasing frequency, duration and intensity of exercise. The prevalence of pre-diabetes was found to be very high in this population. Our results suggest that greater physical activity is associated with low plasma glucose levels.

  11. The Relationship between Physical Activity and Plasma Glucose Level amongst Ellisras Rural Young Adult Males and Females: Ellisras Longitudinal Study.

    Science.gov (United States)

    Matshipi, Moloko; Monyeki, Kotsedi Daniel; Kemper, Han

    2017-02-16

    Unhealthy lifestyle characteristics such as low physical activity (PA) and high plasma glucose levels (PGLs) may lead to the development of type 2 diabetes mellitus in adulthood. The aim of this study was to investigate (i) the level of physical activity; (ii) the prevalence of pre-diabetes and (iii) the relationship between PA and plasma glucose level in a rural Ellisras adult population aged 18 to 28 years. A total of 713 young adults (349 males and 364 females) who took part in the Ellisras Longitudinal Study participated in the study. Fasting plasma glucose levels were analysed using Accutrend glucose meters. Physical activity data was collected using a validated questionnaire. Linear regression was used to assess the relationship between PA and pre-diabetes. The prevalence of pre-diabetes was between 45.7% and 50.2% and that of physical inactivity was 67.3% and 71.0% for males and females, respectively. There was no significant (p > 0.05) relationship between PA and pre-diabetes (beta = 1.016; 95% Confidence Interval from 0.352 to 2.777). The health benefits of PA increased with the increasing frequency, duration and intensity of exercise. The prevalence of pre-diabetes was found to be very high in this population. Our results suggest that greater physical activity is associated with low plasma glucose levels.

  12. Physical and plasmachemical aspects of diffuse coplanar barrier discharge as a novel atmospheric-pressure plasma source

    Science.gov (United States)

    Cernak, M.; Kovacik, D.; Zahoranova, A.; Rahel, J.

    2008-07-01

    Collaborating Czech and Slovakian university teams have recently developed an innovative plasma source, the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD), which has the potential to move a step closer to the industry requirement for in-line treatment of low-added-value materials using a highly-nonequlibrium ambient air plasma (Simor et al. 2002, The idea is to generate a thin (on the order of 0.1 mm) layer of highly-nonequlibrium plasma with a high power density (up to 100 W/cm^3) in the immediate vicinity of the treated surface and bring it into a close contact with the treated surface. Comparing to atmospheric-pressure glow discharge, volume dielectric barrier discharge, and plasma jet plasmas, such a diffuse plasma layer is believed to provide substantial advantages in energy consumption, exposure time, and technical simplicity. A brief outline of physical mechanism and basic properties of DCSBD will given using the results of emission spectroscopy, high-speed camera, and spatially resolved cross-correlation spectroscopy studies. The presentation will review also a current state of the art in in-line plasma treatment of low-cost materials and opportunities for the use of the so-called Diffuse Coplanar Surface Dielectric Barrier Discharge (DCSBD). The results obtained on the ambient air plasma treatments of textile, paper, wood, and glass illustrate that DCSBD offers outstanding performance with extremely low energy consumption for large area, uniform surface modifications of materials under continuous process conditions.

  13. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    Science.gov (United States)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  14. Fusion programs in applied plasma physics. Final report, fiscal years 1989--1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA`s experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  15. Lowering physical activity impairs glycemic control in healthy volunteers.

    Science.gov (United States)

    Mikus, Catherine R; Oberlin, Douglas J; Libla, Jessica L; Taylor, Angelina M; Booth, Frank W; Thyfault, John P

    2012-02-01

    Postprandial glucose (PPG) is an independent predictor of cardiovascular events and death, regardless of diabetes status. Whereas changes in physical activity produce changes in insulin sensitivity, it is not clear whether changes in daily physical activity directly affect PPG in healthy free-living persons. We used continuous glucose monitors to measure PPG and PPG excursions (ΔPPG, postmeal - premeal blood glucose) at 30-min increments after meals in healthy habitually active volunteers (n = 12, age = 29 ± 1 yr, body mass index = 23.6 ± 0.9 kg·m(-2), VO2max = 53.6 ± 3.0 mL·kg(-1)·min(-1)) during 3 d of habitual (≥10,000 steps per day) and reduced (physical activity. Diets were standardized across monitoring periods, and fasting-state oral glucose tolerance tests (OGTT) were performed on the fourth day of each monitoring period. During 3 d of reduced physical activity (12,956 ± 769 to 4319 ± 256 steps per day), PPG increased at 30 and 60 min after a meal (6.31 ± 0.19 to 6.68 ± 0.23 mmol·L(-1) and 5.75 ± 0.16 to 6.26 ± 0.28 mmol·L(-1), P active time point), and ΔPPG increased by 42%, 97%, and 33% at 30, 60, and 90 min after a meal, respectively (P activity (P physical activity in otherwise healthy free-living individuals. These data indicate that daily physical activity is an important mediator of glycemic control, even among healthy individuals, and reinforce the utility of physical activity in preventing pathologies associated with elevated PPG.

  16. On the coupling of fields and particles in accelerator and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-10-15

    In accelerator and plasma physics it is generally accepted that there is no need to solve the dynamical equations for particles motion in manifestly covariant form, that is by using the coordinate-independent proper time to parameterize particle world-lines in space-time. In other words, in order to describe the dynamical processes in the laboratory frame there is no need to use the laws of relativistic kinematics. It is sufficient to take into account the relativistic dependence of the particles momentum on the velocity in the second Newton's law. Therefore, the coupling of fields and particles is based, on the one hand, on the use of result from particle dynamics treated according to Newton's laws in terms of the relativistic three-momentum and, on the other hand, on the use of Maxwell's equations in standard form. In previous papers we argued that this is a misconception. The purpose of this paper is to describe in detail how to calculate the coupling between fields and particles in a correct way and how to develop a new algorithm for a particle tracking code in agreement with the use of Maxwell's equations in their standard form. Advanced textbooks on classical electrodynamics correctly tell us that Maxwell's equations in standard form in the laboratory frame and charged particles are coupled by introducing particles trajectories as projections of particles world-lines onto coordinates of the laboratory frame and by subsequently using the laboratory time to parameterize the trajectory curves. For the first time we showed a difference between conventional and covariant particle tracking results in the laboratory frame. This essential point has never received attention in the physical community. Only the solution of the dynamical equations in covariant form gives the correct coupling between field equations in standard form and particles trajectories in the laboratory frame. We conclude that previous theoretical and simulation results in

  17. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    Science.gov (United States)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  18. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  19. Physics and Chemistry of MW Laser-induced Discharge in Gas Flows and Plasma Jets

    Science.gov (United States)

    2007-12-01

    can be quasi-stationary coaxial plasma accelerators (MPC). This type of accelerators generates plasma jets of different gases (H2, He, N2, Ar) with...gas is ionizing and accelerating in discharge processing. For this regime the plasma gun generates the plasma jets of different gases3 (H2, He, N2...spectrometers. Spectrometers 1 and 2 are used for measuring of time behavior of single spectral lines, emitting in the focus area of plasma gun . Usually

  20. Calculation of 2-temperature plasma thermo-physical properties considering condensed phases: application to CO2-CH4 plasma: part 1. Composition and thermodynamic properties

    Science.gov (United States)

    Wu, Yi; Chen, Zhexin; Rong, Mingzhe; Cressault, Yann; Yang, Fei; Niu, Chunping; Sun, Hao

    2016-10-01

    As the first part of this series of papers, a new calculation method for composition and thermodynamic properties of 2-temperature plasma considering condensed species under local chemical equilibrium (LCE) and local phase equilibrium assumption is presented. The 2-T mass action law and chemical potential are used to determine the composition of multiphase system. The thermo-physical properties of CO2-CH4 mixture, which may be a possible substitution for SF6, are calculated by this method as an example. The influence of condensed graphite, non-LTE effect, mixture ratio and pressure on the thermo-physical properties has been discussed. The results will serve as reliable reference data for computational simulation of CO2-CH4 plasmas.