WorldWideScience

Sample records for plasma physics conference

  1. PREFACE: 1982 International Conference on Plasma Physics

    Science.gov (United States)

    Wilhelmsson, Hans

    1982-01-01

    Invited Papers: The Physics of Hot Plasmas During the last decade a dramatic evolution of plasma physics has occurred. Not only have gigantic fusion plasma machines been planned, and are now being built, and elaborate spaceships and antenna systems been constructed to explore remote parts of the cosmos; new observations have revealed fascinating structures in space, ranging from pulsar plasmas under extreme conditions in very strong magnetic fields to large-scale magnetic field and electric current systems in cosmic plasmas. X-rays from very distant sources as well as radio-waves from the plasma in the magnetosphere and in the Aurora have recently been studied with new observational techniques. Ingenious laboratory experiments are continuously being carried out to exploit new fundamental processes in plasmas. These are of great interest for the basic understanding of plasmas and also have immediate consequences for applications, like plasma heating and diagnostics. The theoretical description of new plasma phenomena, and of the plasma state in general poses challenging problems, particularly in situations where high concentration of energy is located in the plasmas. Nonlinear wave analysis and turbulence theory have accordingly been extensively developed to describe in particular the collective plasma phenomena. New concepts have been envisaged like plasma solitons, which may be thought of as excitations of local concentrations of longitudinal plasma waves which turn out to be particularly stable. More and more sophisticated structures of nonlinear nature are being revealed by means of high capacity computer facilities. Simulation experiments allow for studies of chaotic behaviour of plasma particles. Related fields of activity form new trends in the development of plasma theory. The programme of the 1982 International Conference on Plasma Physics, which was held in Göteborg, Sweden, stressed the role of the Physics of Hot Plasmas. Studies of such plasmas are

  2. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  3. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    Introduction We are very pleased to present this special issue of Plasma Physics and Controlled Fusion dedicated to another annual EPS Plasma Physics Division Conference. It contains the invited papers of the 37th Conference, which was held at the Helix Arts Centre of the Dublin City University Campus, in Dublin, Ireland, from 21 to 25 June 2010. It was locally organized by a team drawn from different Irish institutions, led by Dublin City University and Queen's University Belfast. This team was coordinated by Professor Miles Turner (DCU), with the help of Dr Deborah O'Connell (QUB) as Scientific Secretary, and Ms Samantha Fahy (DCU) as Submissions Secretary. It attracted a large number of delegates (nearly 750), coming from 37 countries. Our Irish hosts provided an excellent atmosphere for the conference and social programme, very helpful for promoting personal links between conference participants. The Conference hosted three satellite meetings, and two special evening sessions. The satellite meetings were the Third Workshop on Plasma for Environmental Issues, the International Workshop on the Role of Arcing and Hot Spots in Magnetic Fusion Devices, and the Workshop on Electric Fields, Turbulence and Self-Organization in Magnetic Plasmas. The aim of this annual EPS Conference is to bring together the different communities of plasma physicists, in order to stimulate cross-collaboration and to promote in an integrated way this area of science. As in previous Conferences, we tried to attract the more relevant researchers and to present the latest developments in plasma physics and related areas. The Programme Committee was divided into four sub-committees, representing the main areas of plasma science. These four areas were magnetic confinement fusion (MCF), still the dominant area of this Conference with the largest number of participants, beam plasma and inertial fusion (BPIF), low temperature plasmas (LTP), which attracted a significant and growing number of

  4. Contributed papers presented at the 24. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    In the report thirteen papers are compiled which were presented by members of the Centre de Recherches en Physique des Plasma, Lausanne, at the 24th EPS conference on controlled fusion and plasma physics. They mainly deal with problems of the confinement and are based on studies performed in the TCV tokamak. figs., tabs., refs.

  5. A prospect at 11th international Toki conference. Plasma physics, quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka

    2001-01-01

    A prospect of plasma physics at the turn of next century is discussed. The theme of this conference identifies the future direction of the research related with plasmas. Main issue is the potential and structure formation in plasmas; More specifically, structures which are realized through the interaction of electromagnetic fields, in particular that with electric fields, in non-equilibrium state. An emphasis is made to clarify the fundamental physics aspects of the plasma physics in fusion research as well as that in the basic research of plasmas. The plasma physics will give an important contribution to the solution of the historical enigma, i.e., all things flow. Having an impact on human recognition of nature and showing a beauty in a law, the plasma physics/science will demonstrate to be a leading science in the 21st century. (author)

  6. AINSE Plasma Science and Technology Conference and Elizabeth and Frederick White Workshop on Fundamental Problems in the Physics of Magnetically Confined Plasmas: Conference handbook

    Science.gov (United States)

    The handbook contains abstracts of papers and posters presented at the conference. The main topics relate to plasma physics and fusion, plasma processing and uses as well as specific fusion devices and experiments. Eighty-four out of ninety-two presentations were considered to be in the INIS subject scope and have been separately indexed.

  7. PREFACE: 30th EPS Conference on Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Koch, R.; Lebedev, S.

    2003-12-01

    The 30th EPS Conference on Controlled Fusion and Plasma Physics took place in St Petersburg, Russian Federation, on 7th--11th July 2003. It was jointly organized by the Ioffe Physico-Technical Institute, the St Petersburg State Polytechnical University and Technical University Applied Physics Ltd, on behalf of the Plasma Physics Division of the European Physical Society (EPS). The members of the local organizing committee were drawn from these institutions: B Kuteev, Chair, Polytechnical University S Lebedev, Vice-Chair, Ioffe Institute A Lebedev, Scientific Secretary, Ioffe Institute V Bakharev, TUAP Ltd V Grigor'yants, Ioffe Institute V Sergeev, Polytechnical University N Zhubr, Ioffe Institute Over the years, the annual conference of the Plasma Physics Division of the European Physical Society has widened its scope. Contributions to the present conference covered widely diversified fields of plasma physics, ranging from magnetic and inertial fusion to low temperature plasmas. Plasma sizes under investigation ranged from tiny to astronomical. The topics covered during the conference were distributed over the following categories: tokamaks, stellarators, high intensity laser produced plasmas and inertial confinement, alternative magnetic confinement, plasma edge physics, plasma heating and current drive, diagnostics, basic plasma physics, astrophysical and geophysical plasmas and low temperature plasmas. The scientific programme and paper selection were the responsibility of the Programme Committee appointed by the Board of the EPS Plasma Physics Division. The committee was composed of: R Koch, Chairman, ERM/KMS Brussels, Belgium E Ascasibar, CIEMAT Madrid, Spain S Atzeni, Università di Roma, Italy G Bonhomme, LPMI Nancy, France C Chiuderi, Università di Firenze, Italy B Kuteev, St Petersburg State Polytechnical,University, Russian Federation M Mauel, Contact person APS-DPP, Columbia University New York, USA R A Pitts, EPFL/CRPP Lausanne, Switzerland R Salomaa

  8. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  9. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  10. 20. AINSE plasma science and technology conference. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The 20th AINSE plasma science and technology conference was held at Flinders University of South Australia on 13-14 February 1995. Topics under discussion included plasma physics studies, current status of rotamak devices, plasma processing and material studies. The handbook contains the conference program, 54 abstracts and a list of participants.

  11. International Conference on Physics

    CERN Document Server

    2016-01-01

    OMICS International, (conference series) the World Class Open Access Publisher and Scientific Event Organizer is hosting “International Conference on physics” which is going to be the biggest conference dedicated to Physics. The theme “Highlighting innovations and challenges in the field of Physics” and it features a three day conference addressing the major breakthroughs, challenges and the solutions adopted. The conference will be held during June 27-29, 2016 at New Orleans, USA. Will be published in: http://physics.conferenceseries.com/

  12. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  13. PHYSICS FOR HEALTH: CONFERENCE

    CERN Multimedia

    2016-01-01

    ICTR-PHE 2016 - International Conference on Translational Research in Radio-Oncology and Physics for Health -, co organized by CERN, aims at developing new strategies to better diagnose and treat cancer, by uniting biology and physics with clinics. Through the various sessions and symposia, the scientific programme offers the delegates the opportunity to discuss, in a friendly atmosphere, the latest progress in physics breakthroughs for health applications. The third edition of this conference took place at CICG (Centre International de Conférence Genève) from 15 to 19 Feb 2016.

  14. EURATOM-CEA association contributions to the 26. EPS conference on controlled fusion and plasma physics, Maastricht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    This report references the EURATOM-CEA association contributions presented at the 26. EPS conference on controlled fusion and plasma physics, in Maastricht (Netherlands) the 14-18 June 1999. Two invited papers and 24 contributed papers are proposed. They deal with: tokamak devices; particle recirculation in ergodic divertor; current profile control and MHD stability in Tore Supra discharges; edge-plasma control by the ergodic divertor; electron heat transport in stochastic magnetic layer; bolometry and radiated power; particle collection by ergodic divertor; study and simulation of pa impurities; line shape modelling for plasma edge conditions; dynamical study of the radial structure of the fluctuations measured by reciprocating Langmuir probe in Tore Supra; up-down asymmetry of density fluctuations; Halo currents in a circular tokamak; real time measurement of the position, density, profile and current profile at Tore Supra; poloidal rotation measurement by reflectometry; interpretation of q-profile dependence of the LH power deposition profile during LHCD experiments; ICFR plasma production and optimization; improved core electron confinement; measurement of hard X-ray emission profile; modelling of shear effects on thermal and particles transport; ion turbulence; current drive generation based on autoresonance and intermittent trapping mechanisms. (A.L.B.)

  15. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  16. International Nuclear Physics Conference

    CERN Document Server

    2016-01-01

    We are pleased to announce that the 26th International Nuclear Physics Conference (INPC2016) will take place in Adelaide (Australia) from September 11-16, 2016. The 25th INPC was held in Firenze in 2013 and the 24th INPC in Vancouver, Canada, in 2010. The Conference is organized by the Centre for the Subatomic Structure of Matter at the University of Adelaide, together with the Australian National University and ANSTO. It is also sponsored by the International Union of Pure and Applied Physics (IUPAP) and by a number of organisations, including AUSHEP, BNL, CoEPP, GSI and JLab. INPC 2016 will be held in the heart of Adelaide at the Convention Centre on the banks of the River Torrens. It will consist of 5 days of conference presentations, with plenary sessions in the mornings, up to ten parallel sessions in the afternoons, poster sessions and a public lecture. The Conference will officially start in the evening of Sunday 11th September with Registration and a Reception and will end late on the afternoon of ...

  17. Solar Physics - Plasma Physics Workshop

    Science.gov (United States)

    Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.

    1974-01-01

    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.

  18. Mini-conference and Related Sessions on Laboratory Plasma Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji

    2004-02-27

    This paper provides a summary of some major physics issues and future perspectives discussed in the Mini-Conference on Laboratory Plasma Astrophysics. This Mini-conference, sponsored by the Topical Group on Plasma Astrophysics, was held as part of the American Physical Society's Division of Plasma Physics 2003 Annual Meeting (October 27-31, 2003). Also included are brief summaries of selected talks on the same topic presented at two invited paper sessions (including a tutorial) and two contributed focus oral sessions, which were organized in coordination with the Mini-Conference by the same organizers.

  19. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  20. Second topical conference on high-temperature plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Jahoda, F.C.; Freese, K.B. (comps.)

    1978-02-01

    This report contains the program and abstracts of papers presented at the Second American Physical Society Topical Conference on High Temperature Plasma Diagnostics, March 1-3, 1978, Santa Fe, New Mexico.

  1. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  2. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  3. PHYSICS FOR HEALTH: CONFERENCE HIGHLIGHTS

    CERN Multimedia

    2016-01-01

    Highlights of ICTR-PHE 2016 - International Conference on Translational Research in Radio-Oncology and Physics for Health -, co organized by CERN, aims at developing new strategies to better diagnose and treat cancer, by uniting biology and physics with clinics. Through the various sessions and symposia, the scientific programme offers the delegates the opportunity to discuss, in a friendly atmosphere, the latest progress in physics breakthroughs for health applications. The third edition of this conference took place at CICG (Centre International de Conférence Genève) from 15 to 19 Feb 2016.

  4. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  5. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  6. International Conference on Kaon Physics

    CERN Document Server

    2016-01-01

    The Conference follows former editions with similar emphasis on kaon physics. aiming at a comprehensive discussion on the latest experimental and theoretical achievements and development of new projects. TOPICS: CP and T violation CKM matrix and Flavor Mixing Rare decays Precise SM tests CPT and Quantum Mechanics Lepton universality and flavor violation Lattice gauge theory Chiral perturbation theory Physics beyond the Standard Model Future opportunities in Kaon Physics

  7. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence

  8. Reviews of plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Shafranov, Vitalii Dmitrievich (ed.); Bakunin, Oleg G. (comps.) [Rossijskij Nauchnyj Tsentr ' ' Kurchatovskij Inst.' ' , Moscow (Russian Federation). Nuclear Fusion Inst.; Rozhansky, V. [St. Petersburg State Polytechnical Univ. (Russian Federation)

    2008-07-01

    Reviews of Plasma Physics Volume 24, edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence (orig.)

  9. 2010 Winter Conference on Plasma Spectrochemistry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ The 2010 Winter Conference on Plasma Spectrochemistry,sixteenth in a series of biennial meetings sponsored by the ICP Information Newsletter, features developments in plasma spectrochemical analysis by inductively coupled plasma (ICP), dc plasma (DCP), microwave plasma (MIP), glow discharge (GDL, HCL), and laser sources. The meeting will be held Monday, January 4 through Saturday, January 9, 2010, in Fort Myers, Florida (www. fortmyers-sanibel, corn) at the Sanibel Harbour Resort and Spa (www. sanibel-resort, com).

  10. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  11. Physics Conference TIM-15-16

    CERN Document Server

    2016-01-01

    The Conference is organized by the West University of Timisoara, Faculty of Physics. The scientific program of the conference will include invited lectures, oral and poster presentations, as well as discussions on various topics of present interest, such as, but not limited to condensed matter physics and applications, theoretical and computational physics, and applied physics.

  12. 14th High-Tech Plasma Processes Conference (HTPP 14)

    Science.gov (United States)

    2017-04-01

    Preface The High-Tech Plasma Processes Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. This conference is open to all the international community in the world involved in plasma science and plasma technology. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have achieved a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 75 people from 17 countries attended the conference with the total number of contributions being 74, consisting of 19 invited talks and 55 poster contributions. As a HTPP tradition a poster competition has been carried out during the conference. The winner of the poster competition was Fabrice Mavier from Université de Limoges, France with his paper “Pulsed arc plasma jet synchronized with drop-on-demand dispenser” All the participants also ejoyed the social program including an “unconventional” tour of the city, the visit to the famous Hofbräuhaus and the dinner at the Blutenburg, a beautiful inner-city castle. We have received papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 18 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We deeply thank the authors for their enthusiastic and high-grade contributions and we

  13. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  14. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  15. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  16. Physics at the FQMT'11 conference

    NARCIS (Netherlands)

    Špička, V.; Nieuwenhuizen, T.M.; Keefe, P.D.

    2012-01-01

    This paper deals with the recent state of the art of the following topics presented at the FQMT’11 conference: foundations of quantum physics, quantum measurement; nonequilibrium quantum statistical physics; quantum thermodynamics; quantum measurement, entanglement and coherence; dissipation,

  17. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  18. European Physical Society Conference on High Energy Physics 2015

    CERN Document Server

    2015-01-01

    The European Physical Society Conference on High Energy Physics, organized by the High Energy and Particle Physics Division of the European Physical Society, is a major international conference that reviews biennially since 1971 the state of our knowledge of the fundamental constituents of matter and their interactions. The latest conferences in this series were held in Stockholm, Grenoble, Krakow, Manchester, Lisbon, and Aachen. Jointly organized by the Institute of High Energy Physics of the Austrian Academy of Sciences, the University of Vienna, the Vienna University of Technology, and the Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, the 23rd edition of this conference took place in Vienna, Austria. Among the topics covered were Accelerators, Astroparticle Physics, Cosmology and Gravitation, Detector R&D; and Data Handling, Education and Outreach, Flavour Physics and Fundamental Symmetries, Heavy Ion Physics, Higgs and New Physics, Neutrino Physics, Non-Perturbative...

  19. Computations in Plasma Physics.

    Science.gov (United States)

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  20. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  1. International Conference on Theoretical and Computational Physics

    CERN Document Server

    2016-01-01

    Int'l Conference on Theoretical and Computational Physics (TCP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on Theoretical and Computational Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. TCP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of Theoretical and Computational Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  2. Conference for Undergraduate Women in Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Fleming

    2009-04-01

    The Yale Conference for Undergraduate Women in Physics was held on January 18th and 19th, 2008. The conference, targeted toward undergraduates in the Northeast, was a huge success. It was well attended by both a slate of impressive speakers including Janet Conrad, Mildred Dresselhaus, Elsa Garmire, Howard Georgi, Liz Rhodes, Meg Urry and Wendy Zhang, and many interested attendees. Talks were on current research, about issues for women in physics, and on the application process for graduate school. There was also a career panel, student talks, and a student poster session. The conference ran concurrently with the third annual conference at USC, as well as a first annual conference at the University of Michigan. Our purpose in creating this conference was to provide a supportive atmosphere for young physicists to connect with peers and with successful women in the field. We hope that from this conference, attendees have become confident and knowledgeable about applying to graduate school and be further inspired to pursue a career in physics. The following describes the conference program, participation and impact, logistics of running the conference and plans for the future.

  3. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  4. Nonthermal plasma chemistry and physics

    CERN Document Server

    Meichsner, Jurgen; Schneider, Ralf; Wagner, Hans-Erich

    2013-01-01

    In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications.Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemist

  5. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  6. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  7. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  8. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  9. The Framework of Plasma Physics

    Science.gov (United States)

    Cowley, Steven

    There have been relatively few good textbooks on plasma physics. Most become simple reference books that might be titled, “Plasma Physics Recipes.” Despite their utility such books do not make good textbooks. For teaching, one needs a book that shows how the basic results and models are part of a coherent whole. Richard Hazeltine and Francois Waelbroeck have written such a textbook: The Framework of Plasma PhysicsAn this book, plasma physics is developed carefully and logically from basic physics principles. The book is not, however, overly formal; physical arguments are used to reduce mathematical complexity.

  10. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  11. Physics at the FMQT’08 conference

    NARCIS (Netherlands)

    Špička, V.; Nieuwenhuizen, T.M.; Keefe, P.D.

    2010-01-01

    This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information;

  12. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  13. 1st Large Hadron Collider Physics Conference

    CERN Document Server

    Juste, A; Martínez, M; Riu, I; Sorin, V

    2013-01-01

    The conference is the result of merging two series of international conferences, "Physics at Large Hadron Collider" (PLHC2012) and "Hadron Collider Physics Symposium" (HCP2012). With a program devoted to topics such as the Standard Model and Beyond, the Higgs Boson, Supersymmetry, Beauty and Heavy Ion Physics, the conference aims at providing a lively forum for discussion between experimenters and theorists of the latest results and of new ideas. LHCP 2013 will be hosted by IFAE (Institut de Fisica d'Altes Energies) in Barcelona (Spain), and will take place from May 13 to 18, 2013. The venue will be the Hotel Catalonia Plaza, Plaza España (Barcelona). More information will be posted soon. For questions, please contact lhcp2013@ifae.es.

  14. PREFACE: XIV Conference on Theoretical Nuclear Physics in Italy

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2014-07-01

    This volume contains the invited and contributed papers presented at the 14th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 29-31 October, 2013. The meeting was held at the Palazzone, an elegant Renaissance Villa, commissioned by the Cardinal Silvio Passerini (1469-1529), Bishop of Cortona, and presently owned by the Scuola Normale Superiore di Pisa. The aim of this biennial Conference is to bring together Italian theorists working in various fields of nuclear physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to stimulate new ideas and promote collaborations between different research groups. The Conference was attended by 46 participants, coming from 13 Italian Universities and 11 Laboratories and Sezioni of the Istituto Nazionale di Fisica Nucleare - INFN. The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on the following main topics: Few-Nucleon Systems Nuclear Structure Nuclear Matter and Nuclear Dynamics Relativistic Heavy Ion Collisions and Quark-Gluon Plasma Nuclear Astrophysics Nuclear Physics with Electroweak Probes Structure of Hadrons and Hadronic Matter. In the last session of the Conference there were two invited review talks related to experimental activities of great current interest. Giacomo De Angelis from the Laboratori Nazionali di Legnaro spoke about the INFN SPES radioactive ion beam project. Sara Pirrone, INFN Sezione di Catania, gave a talk on the symmetry energy and isospin physics with the CHIMERA detector. Finally, Mauro Taiuti (Università di Genova), National Coordinator of the INFN-CSN3 (Nuclear Physics Experiments), reported on the present status and future challenges of experimental nuclear physics in Italy. We gratefully acknowledge the financial support of INFN who helped make the conference possible. I Bombaci, A Covello

  15. PREFACE: 16th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2013)

    Science.gov (United States)

    2014-12-01

    The sixteenth Russian Conference on Physics and Astronomy PhysicA.SPb was held 23-24 October 2013 in Saint-Petersburg, Russia. The Conference continues the tradition of Saint-Petersburg Seminars on Physics and Astronomy originating from mid-90s. Since then PhysicA.SPb maintains both scientific and educational quality of contributions delivered to the young audience. This is the main feature of the Conference that makes it possible to combine the whole spectrum of modern Physics and Astronomy within one event. PhysicA.SPb/2013 has brought together about 200 students, young scientists and their colleague professors from many universities and research institutes across whole Russia as well as from Belarus, Ukraine, Switzerland, Turkey, Finland and France. Oral and poster presentations were combined into a few well-defined sections among which one should name Astronomy and Astrophysics, Plasma physics, hydro- and aero-dynamics, Physics of quantum-sized structures, Nanostructured and thin-film materials, Biophysics, THz and UHF materials and devices, Optoelectronic devices, Optics and spectroscopy, Atomic and elementary particles physics, Defects and impurities in solid state, Physics and technology of the alternative energetics. This issue of the Journal of Physics: Conference Series presents the extended contributions from participants of PhysicA.SPb/2013 that were peer-reviewed by expert referees through processes administered by the Presiders of the Organising and Programme Committees to the best professional and scientific standards. The Editors: Nikita S. Averkiev, Sergey A. Poniaev and Grigorii S. Sokolovskii

  16. PREFACE: 17th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2014)

    Science.gov (United States)

    Averkiev, Nikita S.; Poniaev, Sergey A.; Sokolovskii, Grigorii S.

    2015-12-01

    The seventeenth Russian Youth Conference on Physics and Astronomy (PhysicA.SPb) was held from 28-30 October 2014 in Saint Petersburg, Russia. The Conference continues the tradition of Saint Petersburg Seminars on Physics and Astronomy originating from the mid-1990s. Since then PhysicA.SPb maintains both the scientific and educational quality of contributions delivered to the young audience. This is the main feature of the Conference that makes it possible to combine the whole spectrum of modern Physics and Astronomy within one event. PhysicA.SPb/2014 has brought together more than 200 students, young scientists and their professor colleagues from many universities and research institutes across the whole of Russia as well as from Belarus, Ukraine, Finland, the Netherlands, France and Germany. Oral and poster presentations were combined into the well-defined sections of Astronomy and Astrophysics, Optics and spectroscopy, Physics of ferroics, Nanostructured and thin-film materials, Mathematical physics and numerical methods, Biophysics, Plasma physics, hydro- and aero-dynamics, and Physics of quantum structures. This volume of Journal of Physics: Conference Series presents the extended contributions from participants of PhysicA.SPb/2014 that were peer-reviewed by expert referees through processes administered by the Presiders of the Organising and Programme Committees to the best professional and scientific standards.

  17. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  18. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  19. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  20. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  1. PREFACE: 13th High-Tech Plasma Processes Conference (HTPP-2014)

    Science.gov (United States)

    2014-11-01

    The High-Tech Plasma Processes - 13th European Plasma Conference (HTPP-2014) was held in Toulouse (France) on 22-27 June 2014. The conference series started in 1990 as a thermal plasma conference and has gradually expanded to include other related topics. Now the High-Tech Plasma Processes - European Plasma Conference (HTPP) is an international conference organised in Europe every two years with topics encompassing the whole field of plasma processing science. The aim of the conference is to bring different scientific communities together, to facilitate contacts between science, technology and industry and to provide a platform for the exploration of both the fundamental topics and new applications of plasmas. For this edition of HTPP, as was the case for the last, we have acheived a well balanced participation from the communities of both thermal and non-thermal plasma researchers. 142 people from 17 countries attended the conference with the total number of contributions being 155, consisting of 8 plenary and 8 invited talks plus 51 oral and 88 poster contributions. We have received numerous papers corresponding to the contributions of HTPP-2014 that have been submitted for publication in this volume of Journal of Physics: Conference Series. Each submitted contribution has been peer reviewed (60 referees with at least two reviewing each paper) and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In total, 52 manuscripts have been accepted for publication covering a range of topics of plasma processing science from plasma fundamentals to process applications through to experiments, diagnostics and modelling. We have grouped the papers into the following 5 topics: - Arc-Materials Interaction and Metallurgy - Plasma Torches and Spraying - Synthesis of Powders and Nanomaterials - Deposition and Surface Treatment - Non-Equilibrium Plasmas We deeply thank the authors for their enthusiastic and high

  2. Conference on Real-Time Computer Applications in Nuclear, Particle and Plasma Physics, 6th, Williamsburg, VA, May 15-19, 1989, Proceedings

    Science.gov (United States)

    Pordes, Ruth (Editor)

    1989-01-01

    Papers on real-time computer applications in nuclear, particle, and plasma physics are presented, covering topics such as expert systems tactics in testing FASTBUS segment interconnect modules, trigger control in a high energy physcis experiment, the FASTBUS read-out system for the Aleph time projection chamber, a multiprocessor data acquisition systems, DAQ software architecture for Aleph, a VME multiprocessor system for plasma control at the JT-60 upgrade, and a multiasking, multisinked, multiprocessor data acquisition front end. Other topics include real-time data reduction using a microVAX processor, a transputer based coprocessor for VEDAS, simulation of a macropipelined multi-CPU event processor for use in FASTBUS, a distributed VME control system for the LISA superconducting Linac, a distributed system for laboratory process automation, and a distributed system for laboratory process automation. Additional topics include a structure macro assembler for the event handler, a data acquisition and control system for Thomson scattering on ATF, remote procedure execution software for distributed systems, and a PC-based graphic display real-time particle beam uniformity.

  3. PREFACE: Rutherford Centennial Conference on Nuclear Physics

    Science.gov (United States)

    Freeman, Sean

    2012-09-01

    Just over one hundred years ago, Ernest Rutherford presented an interpretation of alpha-particle scattering experiments, performed a couple of years earlier by Geiger and Marsden, to the Manchester Literary and Philosophical Society. The work was summarised shortly afterwards in a paper in the Philosophical Magazine. He postulated that a dense speck of matter must exist at the centre of an atom (later to become known as the nucleus) if the details of the experiments, particularly the yield of alpha particles scattered through large angles, were to be explained. The nuclear hypothesis, combined with the experimental work by Moseley on X-rays and Bohr's theoretical ideas, both also initiated at the Victoria University of Manchester, established our view of atomic structure and gave birth to the field of nuclear physics. The Rutherford Centennial Conference on Nuclear Physics was held at The University of Manchester in August 2011 to celebrate this anniversary by addressing the wide range of contemporary topics that characterise modern nuclear physics. This set of proceedings covers areas including nuclear structure and astrophysics, hadron structure and spectroscopy, fundamental interactions studied within the nucleus and results of relativistic heavy-ion collisions. We would like to thank all those who presented their recent research results at the conference; the proceedings stand as a testament to the excitement and interest that still pervades the pursuit of this field of physics. We would also like to thank those who contributed in other ways to the conference. To colleagues at the Manchester Museum of Science and Industry for putting together an exhibition to coincide with the conference that included the manuscript of the 1911 paper, letters, notebooks and equipment used by Rutherford. These items were kindly loaned by Cambridge and Manchester Universities. Winton Capital generously supported this exhibition. We would also like to thank Professor Mary Fowler

  4. PREFACE: 12th High-Tech Plasma Processes Conference (HTPP-12)

    Science.gov (United States)

    Gleizes, Alain; Ghedini, Emanuele; Gherardi, Matteo; Sanibondi, Paolo; Dilecce, Giorgio

    2012-12-01

    The High-Tech Plasma Processes - 12th European Plasma Conference (HTPP-12) was held in Bologna (Italy) on 24-29 June 2012. The conference series started in 1990 as a thermal plasma conference and gradually expanded to include other topic fields as well. Now the High-Tech Plasma Processes - European Plasma Conference (HTPP) is a bi-annual international conference based in Europe with topics encompassing the whole area of plasma processing science. The aim of the conference is to bring different scientific communities together, facilitate the contacts between science, technology and industry and provide a platform for the exploration of both fundamental topics and new applications of plasmas. Thanks to the efforts of the conference chairman, Professor Vittorio Colombo and of the co-chair, Professor Piero Favia, a well balanced participation from both the communities of thermal and nonthermal plasma researchers was achieved; this resulted in just about 196 attendees from 39 countries, with 8 plenary and 15 invited talks, plus 50 oral and 140 poster contributions. This volume of Journal of Physics: Conference Series gathers papers from regular contributions of HTPP-12; each contribution submitted for publication has been peer reviewed and the Editors are very grateful to the referees for their careful support in improving the original manuscripts. In the end, 39 manuscripts were accepted for publication, covering different topics of plasma processing science: from plasma fundamentals and modelling to source design and process diagnostics, from nanomaterial synthesis to surface modification, from waste treatment to plasma applications in a liquid environment. It is an honour to present this volume of Journal of Physics: Conference Series and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the international scientific committee, the local

  5. PREFACE: 12th International Conference on Gas Discharge Plasmas and Their Applications

    Science.gov (United States)

    Koval, N.; Landl, N.; Bogdan, A.; Yudin, A.

    2015-11-01

    The 12th International Conference ''Gas Discharge Plasmas and Their Applications'' (GDP 2015) was held in Tomsk, Russia, on September 6-11, 2015. GDP 2015 represents a continuation of the conferences on physics of gas discharge held in Russia since 1984 and seminars and conferences on the technological applications of low temperature plasmas traditionally organized in Tomsk. The six-day Conference brought together the specialists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussions on the topics that are of interest to the Conference participants. The selected papers of the Conference cover a wide range of technical areas and modern aspects of the physical processes in the generators of low-temperature plasma, the low and high-pressure discharges, the pulsed plasma sources, the surface modification, and other gas-discharge technologies. The Conference was hosted by Institute of High Current Electronics SB RAS, Tomsk Polytechnic University, Tomsk Scientific Center, and Tomsk State University of Architecture and Building.

  6. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2014-05-01

    : Fundamentals of Plasma Physics, Fusion Plasmas, Plasmas in Astrophysics and Space Physics, Plasma Applications and Technologies, Complex Plasmas, High Energy Density Plasmas, Quantum Plasmas, Laser-Plasma Interaction and among others. A total of 180 delegates from 34 different countries took part in the ICPP-LAWPP-2010. Sixty delegates received economical assistance from the local organized committee, thanks to the support of the International Union for Pure and Applied Physics (IUPAP) and the Chilean Nuclear Energy Commission (CCHEN). The ICPP-LAWPP-2010 Program was elaborated by the following Program Committee: Carlos Alejaldre, ITER Maria Virginia Alves, Brazil Julio Herrera, Mexico Günter Mank, IAEA George Morales, USA Padma Kant Shukla, Germany Guido Van Oost, Belgium Leopoldo Soto, Chile (Chairman) This Program Committee was formed by selected members from the International Advisory Committee of the ICPP and by selected members from the International Advisory Committee of the LAWPP. In particular, Plenary Lectures and Invited Topical Lectures were selected by the Program Committee from a list of nominated presentations by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was elaborated by the Program Committee. The congress included: 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. A major part of the plenary and topical lectures were published in a special issue of the Plasma Physics and Controlled Fusion, IOP Publishing (Plasma Phys. Control Fusion Volume 53, Number 7, July 2011: http://iopscience.iop.org/0741-3335/53/7). The papers were refereed according to the standards of the journal Plasma Physics and Controlled Fusion. An large number of the participants sent their contributions articles to this volume of Journal of Physics: Conference Series, IOP Publishing. The articles received were reviewed by the local organizing committee and by

  7. PREFACE: International Nuclear Physics Conference 2010 (INPC2010)

    Science.gov (United States)

    Dilling, Jens

    2011-09-01

    Symmetries session is always one of the conference highlights. There, progress on Standard Model tests employing atomic nuclei or nuclear physics methods - which are used to probe complimentary sectors to large particle physics experiments, for example atomic and neutron EDM experiments - is reported. Recent progress was reported in the sector of nuclear beta decay as related to the testing of the CKM unitarity matrix, as well as the W-mass and the Weak Mixing Angle. The muon anomalous magnetic moment and its sensitivity for probing new physics and future experimental improvements are anticipated and showcase the activity in the field. The large oral and poster presentation program was extended to include special presentations by the IUPAP young scientist award winners. This prize is given out in the field of nuclear physics every three years during the INPC conference, and this year's winners were: Kenji Fukushima (Yukawa Institute for Theoretical Physics, Kyoto University), Peter Mueller (Argonne National Laboratory), and Lijuan Ruan (Brookhaven National Laboratory). These three scientists represent future excellence in nuclear physics in the fields of theoretical QCD, experimental techniques related to quark gluon plasma, and precision experiments in low energy nuclear halo physics. One keenly anticipated presentation, 'The Lamb shift in muonic hydrogen experiment', presented the results of the measurement of the proton rms charge radius. These results claimed a 5 sigma deviation from the established CODATA-value and in the future more tests will be needed to verify these findings. INPC 2010 made a special effort to attract many graduate students and post-doctoral fellows to the conference. This was achieved by a number of efforts, for example, TRIUMF combined its traditional summer school with the US National Science Foundation summer school for nuclear physics, and offered the school directly prior to the conference. This allowed the school to recruit some of the INPC

  8. X International Conference on Kaon Physics

    Science.gov (United States)

    2017-01-01

    The International Conference on Kaon Physics 2016 took place at the University of Birmingham (United Kingdom) on 14-17 September 2016. This conference continued the KAON series, offering an opportunity for theorists and experimentalists from the high-energy physics community to discuss all aspects of kaon physics. The 2016 edition saw a strong participation from theory and phenomenology and the first kaon results from the LHCb experiment at CERN, as well as updates from several experiments around the world including NA62 and KOTO. All papers published in this volume of KAON2016 have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The organizers and the participants wish to thank the University of Birmingham, the European Research Council, CERN, the UK Science and Technology Facility Council and the UK Institute for Particle Physics Phenomenology for their support in the organization of this successful edition. Figure for summary

  9. 26th Solvay Conference on Physics

    CERN Document Server

    Gross, David; Sevrin, Alexander; Astrophysics and Cosmology

    2016-01-01

    Ever since 1911, the Solvay Conferences have shaped modern physics. The format is quite different from other conferences as the emphasis is placed on discussion. The 26th edition held in October 2014 in Brussels and chaired by Roger Blandford continued this tradition and addressed some of the most pressing open questions in the fields of astrophysics and cosmology, gathering many of the leading figures working on a wide variety of profound problems.The proceedings contain the 'rapporteur talks' giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions: 'Neutron Stars', 'Black Holes', 'Cosmic Dawn', 'Dark Matter' and 'Cosmic Microwave Background'.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants — expert, yet lively and sometimes contentious — have been edited to retain to retain their flavor and are reproduced in full. The reader is taken on a breathtaki...

  10. The 26th International Nuclear Physics Conference

    Science.gov (United States)

    It was a pleasure to welcome all delegates and accompanying persons to Adelaide for the 26th International Conference in Nuclear Physics, INPC2016. As the major meeting in our field, it was a wonderful opportunity to catch up with colleagues from around the world, learn about the very latest developments and share ideas. We were grateful for the support of the Commission on Nuclear Physics, C12, of the International Union of Pure and Applied Physics (IUPAP), which chose Adelaide to host this meeting. We were also honoured that the President of IUPAP, Prof. Bruce McKellar was present at the meeting to welcome delegates and participate in the proceedings. We acknowledge the financial support for the conference which was made available by a number of organisations. We were especially grateful to the major sponsors, the Adelaide Convention Bureau, the University of Adelaide, the Australian National University and ANSTO, as well as IUPAP, the ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP) and several of the world's major nuclear physics laboratories, BNL, GSI, JLab and TRIUMF. As a result of these contributions we were able to offer support to attend the conference to more than 50 international students. Not only did we have a superb scientific program but, consistent with IUPAP guidelines, more than 40% of the invited plenary talks were presented by women. In order to reach out to the local community, Cynthia Keppel (from JLab) presented a public lecture on Hadron Beam Therapy on Tuesday evening, September 13th. As presenting a talk is now often a condition for financial support to attend an international conference, there were 11 simultaneous parallel sessions with more than 350 presentations. We are especially grateful to the International Advisory Committee, the Program Committee and the Conveners whose advice and hard work made it possible for all this to come together. I would also like to acknowledge the work of the Local Organising

  11. Topics in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Old Dominion Univ., Norfolk, VA (United States)

    2015-05-31

    During the period 1998-2013, research under the auspices of the Department of Energy was performed on RF waves in plasmas. This research was performed in close collaboration with Josef Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of Sciences), Martin Valovic and Vladimir Shevchenko (Culham). This research is detailed and all 38 papers which were published by this team are cited.

  12. 3rd International Conference on New Frontiers in Physics

    CERN Document Server

    Foka, Y; Kabana, S

    2015-01-01

    The International Conference on new Frontiers in Physics (ICNFP 2014) aims to promote scientific exchange and development of novel ideas in science with a particular accent on interdisciplinarity. The conference will bring together worldwide experts and promising young scientists working on experimental and theoretical aspects of particle, nuclear and astro-particle physics and cosmology, with colleagues from other disciplines, for example solid state physics, mathematics, mathematical physics, quantum physics, quantum entanglement and other. The conference will be hosted in the Conference Center of the Orthodox Academy of Creta (OAC), an exceptionally beautiful location only a few meters from the mediteranean sea.

  13. Variational Integrators in Plasma Physics

    CERN Document Server

    Kraus, Michael

    2013-01-01

    Variational integrators are a special kind of geometric discretisation methods applicable to any system of differential equations that obeys a Lagrangian formulation. In this thesis, variational integrators are developed for several important models of plasma physics: guiding centre dynamics (particle dynamics), the Vlasov-Poisson system (kinetic theory), and ideal magnetohydrodynamics (plasma fluid theory). Special attention is given to physical conservation laws like conservation of energy and momentum. Most systems in plasma physics do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended towards nonvariational differential equations by linking it to Ibragimov's theory of integrating factors and adjoint equations. It allows us to find a Lagrangian for all ordinary and partial differential equations and systems thereof. Consequently, the applicability of variational integrators is extended to a much larger family of syst...

  14. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    Science.gov (United States)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  15. Research in plasma physics

    Science.gov (United States)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  16. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  17. PREFACE: IUPAP C20 Conference on Computational Physics (CCP 2011)

    Science.gov (United States)

    Troparevsky, Claudia; Stocks, George Malcolm

    2012-12-01

    Increasingly, computational physics stands alongside experiment and theory as an integral part of the modern approach to solving the great scientific challenges of the day on all scales - from cosmology and astrophysics, through climate science, to materials physics, and the fundamental structure of matter. Computational physics touches aspects of science and technology with direct relevance to our everyday lives, such as communication technologies and securing a clean and efficient energy future. This volume of Journal of Physics: Conference Series contains the proceedings of the scientific contributions presented at the 23rd Conference on Computational Physics held in Gatlinburg, Tennessee, USA, in November 2011. The annual Conferences on Computational Physics (CCP) are dedicated to presenting an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas and from around the world. The CCP series has been in existence for more than 20 years, serving as a lively forum for computational physicists. The topics covered by this conference were: Materials/Condensed Matter Theory and Nanoscience, Strongly Correlated Systems and Quantum Phase Transitions, Quantum Chemistry and Atomic Physics, Quantum Chromodynamics, Astrophysics, Plasma Physics, Nuclear and High Energy Physics, Complex Systems: Chaos and Statistical Physics, Macroscopic Transport and Mesoscopic Methods, Biological Physics and Soft Materials, Supercomputing and Computational Physics Teaching, Computational Physics and Sustainable Energy. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), IUPAP Commission on Computational Physics (C20), American Physical Society Division of Computational Physics (APS-DCOMP), Oak Ridge National Laboratory (ORNL), Center for Defect Physics (CDP), the University of Tennessee (UT)/ORNL Joint Institute for Computational Sciences (JICS) and Cray, Inc

  18. Co-publication with Journal of Physics: Conference Series.

    Science.gov (United States)

    2009-04-22

    The 25th International Conference on Low Temperature Physics (LT25) was held in Amsterdam between 6-13 August 2008. The majority of the special invited lectures are published in Journal of Physics: Condensed Matter. Papers relating to the oral and poster presentations will appear in part II of the proceedings in a dedicated open access issue of Journal of Physics: Conference Series.

  19. Space Plasma Physics

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).

  20. ICTR-PHE Physics for Health conference 2012

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The conference represents a new reality in Oncology, as it brings together two major events in the interdisciplinary field at the intersection of Medicine, Biology and Physics: the ICTR conference and CERN’s Physics for Health workshop.Interviews with Manjit Dosangh CERN Conference co-chair, Steve Myers CERN Director for Accelerators and Technology, Alejandro Mazal Head of Physics Institut Curie and Chair of PTCOG, Ruxandra Draghia Director of the Health Directorate at the Research DG European Commission, José Mariano Gago Professor of Particle Physics and Former Minister of Science and Technology Portugal, Jacques Bernier, Genolier and Geneva Conference Co-chair, Arabinda Rath Director Hemalata Hospitals India

  1. Physics Careers, Employment and Education. AIP Conference Proceedings, No. 39.

    Science.gov (United States)

    Perl, Martin L., Ed.

    This publication contains the proceedings of a Conference on Changing Career Opportunities for Physicists, held at the Pennsylvania State University, August 1-3, 1977. The purpose of the conference was to study present and future manpower problems in the physics profession. The breadth and depth of the conference is demonstrated by these…

  2. Statistical Physics: Third Tohwa University International Conference. AIP Conference Proceedings No. 519 [ACPCS

    Energy Technology Data Exchange (ETDEWEB)

    Tokuyama, M.; Stanley, H.E. [eds.

    2000-12-01

    The main purpose of the Tohwa University International Conference on Statistical Physics is to provide an opportunity for an international group of experimentalists, theoreticians, and computational scientists who are working on various fields of statistical physics to gather together and discuss their recent advances. The conference covered six topics: complex systems, general methods of statistical physics, biological physics, cross-disciplinary physics, information science, and econophysics.

  3. XXV IUPAP Conference on Computational Physics (CCP2013): Preface

    Science.gov (United States)

    2014-05-01

    XXV IUPAP Conference on Computational Physics (CCP2013) was held from 20-24 August 2013 at the Russian Academy of Sciences in Moscow, Russia. The annual Conferences on Computational Physics (CCP) present an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas. The CCP series aims to draw computational scientists from around the world and to stimulate interdisciplinary discussion and collaboration by putting together researchers interested in various fields of computational science. It is organized under the auspices of the International Union of Pure and Applied Physics and has been in existence since 1989. The CCP series alternates between Europe, America and Asia-Pacific. The conferences are traditionally supported by European Physical Society and American Physical Society. This year the Conference host was Landau Institute for Theoretical Physics. The Conference contained 142 presentations, and, in particular, 11 plenary talks with comprehensive reviews from airbursts to many-electron systems. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), European Physical Society (EPS), Division of Computational Physics of American Physical Society (DCOMP/APS), Russian Foundation for Basic Research, Department of Physical Sciences of Russian Academy of Sciences, RSC Group company. Further conference information and images from the conference are available in the pdf.

  4. 2nd International Conference on Nuclear Physics in Astrophysics

    CERN Document Server

    Fülöp, Zsolt; Somorjai, Endre; The European Physical Journal A : Volume 27, Supplement 1, 2006

    2006-01-01

    Launched in 2004, "Nuclear Physics in Astrophysics" has established itself in a successful topical conference series addressing the forefront of research in the field. This volume contains the selected and refereed papers of the 2nd conference, held in Debrecen in 2005 and reprinted from "The European Physical Journal A - Hadrons and Nuclei".

  5. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    Science.gov (United States)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian

  6. Conference on physics from large {gamma}-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    The conference on {open_quotes}Physics from Large {gamma}-ray Detector Arrays{close_quotes} is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems.

  7. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  8. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  9. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  10. Physics of the plasma universe

    CERN Document Server

    Peratt, Anthony L

    2015-01-01

    Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based ...

  11. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  12. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    Science.gov (United States)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  13. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    Science.gov (United States)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  14. Plasma physics via computer simulation

    CERN Document Server

    Birdsall, CK

    2004-01-01

    PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC

  15. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  16. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  17. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  18. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  19. Variational integrators in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael

    2013-07-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  20. PREFACE: 25th IUPAP Conference on Computational Physics (CCP2013)

    Science.gov (United States)

    Shchur, Lev N.; Barash, Lev Yu

    2014-05-01

    Participants of the XXV IUPAP Conference on Computational physics came to Moscow at the end of the August during a hot period. It was not a hot period because of the summer; in fact, the weather was quite comfortable. It was a hot period for the atmosphere amidst scientific society in Russia, especially for scientists working for the Russian Academy of Sciences. Four years ago, the C20 IUPAP Commission on Computational Physics and Computational Physics Group of the European Physical Society chose Moscow for several reasons. The first reason was connected to the high level and deep traditions of computational physics in Russia. It is known from experience at the former CCP conferences that native participants contribute about half of the presentations which form the solid scientific background of the conference, and the good level of domestic science makes the conference interesting and successful. The second reason was due to the fact that for the last twenty years there were not many IUPAP conferences in Russia, and it was a time to open more places for information exchange and intensify scientific collaboration. Thirdly, it was common opinion four years ago that the situation in Russia had become stable enough after the transition to a modern society, which took almost a quarter of a century. The conference preface is continued in the pdf.

  1. PREFACE: First International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir

    2006-07-01

    The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school

  2. Astroparticle Physics - A Joint TeVPA/ IDM Conference

    CERN Document Server

    2014-01-01

    Astroparticle Physics: a joint IDM/TeVPA event brings together two major international conference series in Astroparticle Physics:Identification of Dark Matter andTeV Particle Astrophysics. We aim to provide the stage for the most recent advances in the booming field of Astroparticle Physics, bringing to Amsterdam - a city that has recently invested a lot into this research area through initiatives like GRAPPA and the D-ITP - leading members of the scientific communities that are contributing to its success. The topics of the conference will include: Cosmic Rays Dark Matter in Cosmology Direct Dark Matter Searches Indirect Dark Matter Searches High Energy Particle Physics Neutrinos High Energy Astrophysics The conference will be held at the Tuschinski Theatre, an extraordinary landmark built in 1921 in the heart of Amsterdam in a spectacular mix of Amsterdam School, Jugendstil, Art Nouveau and Art Deco. The main auditorium, which hosts many premieres of Dutch fi...

  3. Report of the Plasma Physics Laboratory

    Science.gov (United States)

    1982-03-01

    Theoretical and experimental work in plasma physics is summarized. Technological and engineering aspects of plasma experiments in the SPICA, TORTUR 2, and RINGBOOG 2 reactors are discussed with emphasis on screw pinch, turbulent heating, and gas blankets. The free boundary equilibrium in high beta Tokamak plasma, wave dynamics, and transport problems were investigated.

  4. The physics of non-ideal plasma

    CERN Document Server

    Fortov, Vladimir E

    2000-01-01

    This book is devoted to the physical properties of nonideal plasma which is compressed so strongly that the effects of interparticle interactions govern the plasma behavior. The interest in this plasma was generated by the development of modern technologies and facilities whose operations were based on high densities of energy. In this volume, the methods of nonideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of nonideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stabi

  5. Organization by Gordon Research Conferences of the 2012 Plasma Processing Science Conference 22-27 July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jane

    2012-07-27

    The 2012 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in plasma science and technology as well as explore the applications of this nonequilibrium medium in possible approaches relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics and chemistry, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy, the production of fuels from renewable feedstocks and carbon dioxide neutral solar fuels (from carbon dioxide and water), and plasma-enabled medicine and sterilization.

  6. Highlights From the Second Conference on Graduate Education in Physics

    Science.gov (United States)

    Diehl, Renee

    2014-03-01

    The Second Conference on Graduate Education in Physics was held in January 2013 with more than 100 participants from 74 different institutions. The participants comprised a diverse group faculty from large and small departments, staff from industry and national labs, and graduate students and postdocs. The conference was aimed at fostering innovation and creativity in our approach to graduate education in physics. Because the majority of physics PhDs ultimately find permanent employment outside academia, and because of the many competing demands on new faculty, many departments are reviewing their graduate programs. The presentations and discussions at the conference included the increasing attention being paid to broader and more flexible graduate curricula, forming industrial partnerships, strategies to increase diversity, professional skills training for graduate students and postdocs, and improving mentoring practices and instituting family-friendly policies for graduate students.

  7. 32nd International Conference on the Physics of Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chelikowsky, James [Univ. of Texas, Austin, TX (United States)

    2016-10-17

    The International Conference on the Physics of Semiconductors (ICPS) continues a series of biennial conferences that began in the 1950's. ICPS is the premier meeting for reporting all aspects of semiconductor physics including electronic, structural, optical, magnetic and transport properties with an emphasis on new materials and their applications. The meeting will reflect the state of art in the semiconductor physics field and will serve as a forum where scholars, researchers, and specialists can interact to discuss future research directions and technological advancements. The conference typically draws 1,000 international physicists, scientists, and students. This is one of the largest science meetings on semiconductors and related materials to be held in the United States.

  8. International Conference on Laser Physics and Quantum Optics

    CERN Document Server

    Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan

    2000-01-01

    Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...

  9. Unifying physics of accelerators, lasers and plasma

    CERN Document Server

    Seryi, Andrei

    2015-01-01

    Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.

  10. PREFACE: International Conference on Particle Physics and Astrophysics (ICPPA-2015)

    Science.gov (United States)

    2016-02-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) was held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Fundamental Research and Particle Physics of National Research Nuclear University ''MEPhI''. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. We bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. The conference covers a wide range of topics such as accelerator physics, (astro) particle physics, cosmic rays, cosmology and methods of experimental physics - detectors and instruments. These directions are unified by development of the Standard Model (SM) which is evidently not complete. There are deviations from the Standard Model - neutrino oscillations, the dark matter existence. Together with strong interactions, they are main subjects of the Conference. New results from LHC collider as well as its future upgrade are discussed with the Higgs as the main point for discussion. Substantial development of experimental tools for astrophysical observations and new results from cosmic ray experiments is one of the main subjects of the conference. Various aspects of strong interaction are discussed. Among them: Charmonium and Bottomonium states, Flavor physics at Super B factories, Exotic Nuclei in Astrophysics. Another subject for discussion is the neutrino physics, promising and unique way to get new knowledge. In this content, several talks on BOREXINO experiment where new results in neutrino oscillations are presented. Special session is devoted to PAMELA experiment - 9 years in orbit and to the future GAMMA-400 gamma-ray telescope with following main scientific goals: indirect dark matter origin study by the gamma-ray astronomy methods, discrete astrophysical sources observations, diffuse background γ-emission analysis

  11. Plasma Physics of Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2014-01-01

    Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework f...

  12. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  13. International Conference on Spectral Theory and Mathematical Physics

    CERN Document Server

    Raikov, Georgi; Aldecoa, Rafael

    2016-01-01

    The present volume contains the Proceedings of the International Conference on Spectral Theory and Mathematical Physics held in Santiago de Chile in November 2014. Main topics are: Ergodic Quantum Hamiltonians, Magnetic Schrödinger Operators, Quantum Field Theory, Quantum Integrable Systems, Scattering Theory, Semiclassical and Microlocal Analysis, Spectral Shift Function and Quantum Resonances. The book presents survey articles as well as original research papers on these topics. It will be of interest to researchers and graduate students in Mathematics and Mathematical Physics.

  14. Third International Satellite Conference on Mathematical Methods in Physics

    Science.gov (United States)

    The aim of the Conference is to present the latest advances in Mathematical Methods to researchers, post-docs and graduated students acting in the areas of Physics of Particles and Fields, Mathematical Physics and Applied Mathematics. Topics: Methods of Spectral and Group Theory, Differential and Algebraic Geometry and Topology in Field Theory, Quantum Gravity, String Theory and Cosmology. http://www.uel.br/eventos/isc/

  15. Plasma Cathode Electron Sources Physics, Technology, Applications

    CERN Document Server

    Oks, Efim

    2006-01-01

    This book fills the gap for a textbook describing this kind of electron beam source in a systematic and thorough manner: from physical processes of electron emission to examples of real plasma electron sources and their applications.

  16. Space plasma physics: I - Stationary processes

    Science.gov (United States)

    Hasegawa, Akira; Sato, Tetsuya

    1989-01-01

    The physics of stationary processes in space plasmas is examined theoretically in an introduction intended for graduate students. The approach involves the extensive use of numerical simulations. Chapters are devoted to fundamental principles, small-amplitude waves, and the stationary solar plasma system; typical measurement data and simulation results are presented graphically.

  17. Plasma Physics and Controlled Nuclear Fusion

    Science.gov (United States)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  18. Physics-inspired image analytics (Conference Presentation)

    Science.gov (United States)

    Jalali, Bahram; Asghari, Mohamad

    2016-09-01

    We describe a new computational approach to image analytics and its application to feature enhancement. The algorithm reveals latent features in the image by a transformation known as the Phase Stretch Transform. This computationally efficient transform emulates the propagation of light through a physical medium followed by detection of light's complex amplitude. We show that the phase of the transform reveals transitions in image intensity and can be used for edge detection with excellent low light level sensitivity. When the diffractive medium has a warped frequency response, the transform engineers the space-bandwidth product of the image with potential application in data compression. Image processing inspired by optical physics has emerged from the research on Photonic Time Stretch, a time-domain signal processing technique that employs temporal dispersion to slow down, capture, and digitally process fast waveforms in real time. This talk will focus on the Phase Stretch Transform (PST), its extension to machine learning and applications in radiology, astronomy and security image analytics.

  19. Astroparticle Physics European Consortium Town Meeting Conference

    CERN Document Server

    2016-01-01

    The Astroparticle Physics European Consortium (APPEC) invites you to a town meeting at the Grand Amphithéatre de Sorbonne in Paris on the 6th and 7th April 2016 to discuss an update of the 2011 APPEC Astroparticle Physics roadmap, to be published in September 2016. In 2014 APPEC decided to launch an update of the 2011 Roadmap, transforming it to a “resource aware” roadmap. The intention was to gauge the financial impact of the beginnings of operation of the large global scale observatories put forward in the previous roadmap and to examine the possibilities of international coordination of future global initiatives. The APPEC Scientific Advisory Committee examined the field and prepared a set of recommendations. Based on these recommendations, the APPEC General Assembly drafted a set of “considerations” to be published by end of February 2016 and be debated in an open dialogue with the community, through the web page but primarily at the town meeting of 6-7 April. Based on this debate the final re...

  20. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  1. 2013 Aspen Winter Conference on particle physics: Higgs Quo Vadis

    CERN Document Server

    2013-01-01

    By winter of 2013, the ATLAS and CMS experiments at the LHC will establish their discovery of a new Higgs-like particle with a mass around 125 GeV. The new data will shed light on its properties. Many fundamental questions in Physics will start to get their answer. The 2013 Aspen Winter Conference on particle physics will bring together experimentalists and theorists, creating an ideal environment to present and discuss the implications of the Higgs discovery in the framework of the Standrad Model and beyond. The conference will be formulated to encourage close collaborations and active exchange of information, which is crucial for making progress on this central topic of particle physics.

  2. EDITORIAL: Special issue featuring articles arising from the 11th High-Tech Plasma Processes Conference Special issue featuring articles arising from the 11th High-Tech Plasma Processes Conference

    Science.gov (United States)

    Bruggeman, Peter; Degrez, Gérard; Delplancke, Marie-Paule; Gleizes, Alain

    2011-05-01

    The 11th High-Tech Plasma Processes Conference (HTPP) was held in Brussels, Belgium, 27 June-2 July, 2010. HTPP started as a thermal plasma conference and gradually expanded to include low-temperature plasmas. The conference was founded by Jacques Amouroux and Pierre Fauchais, and aims to bring together different scientific communities to facilitate contacts between science, technology and industry, providing a platform for the exploration of elementary processes and applications in and by plasmas. The first HTPP was held in Odeillo, France, in 1990. Since then it has been held every other year in different European cities: Paris, Aachen, Athens, Strasbourg, Saint-Petersburg, Patras and Brussels. The 11th HTPP conference was attended by 125 participants from 19 countries. The program involved 14 invited talks, 34 contributed talks, 72 posters and a software demonstration and hands-on session for plasma modelling. The 12th HTPP conference will be held 24-28 June 2012, in Bologna, Italy. A larger part of the contributions to the 11th HTPP has been published in the Journal of Physics: Conference Series (JPCS) volume 275, 2011. All invited speakers and other contributors, as selected by the Steering, Scientific and Organizing Committee, were invited to submit a paper based on their contributions for this special issue which is peer reviewed by the journal. Both this special issue and the JPCS volume aim to bring the 11th HTPP to a wider audience. The publications are a nice example of the broad topic range of the conference. The JPCS volume contains papers covering fundamental aspects on radiative processes of thermal plasmas, modelling of thermal arcs and non-thermal RF plasma jets, plasma diagnostics including flow and heat flux measurements of thermal plasmas, radical density measurements and laser-induced breakdown spectroscopy. The applications-oriented contributions of the JPCS volume include plasma spraying, synthesis of (nano-sized) materials, surface

  3. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  4. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  5. PREFACE International Conference on Theoretical Physics Dubna-Nano 2010

    Science.gov (United States)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury

    2010-11-01

    The International Conference on Theoretical Physics 'Dubna-Nano2010' was held on 5-10 July 2010, at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The previous conference of this series was at Dubna in 2008. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (graphene, nanotubes, fullerenes), quantum dots, quantum transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, modelling, applications and perspectives. Approximately 120 scientists from 26 countries participated in the conference. The program included 63 oral talks and 70 posters. The 62 contributions are included in these proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference indeed successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about 'Dubna-Nano2010' is available at the homepage http://theor.jinr.ru/~nano10. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  6. Report on the solar physics-plasma physics workshop

    Science.gov (United States)

    Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.

    1976-01-01

    The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.

  7. Physics of quark-gluon plasma

    CERN Document Server

    Smilga, A V

    1997-01-01

    In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulne ss of various characteristics of QGP discussed in the literature.

  8. Basic Studies in Plasma Physics

    Science.gov (United States)

    2013-01-31

    close to a Maxwellian parametrized by a temperature T and mean velocity u which satisfy certain non -linear equations, which are the macroscopic equations...Simulations with Particle-to-Grid Methods 17 E. Microscopic-Shock Profiles: Exact Solution of a Non -Equilibrium System 18 IV. List of Publications...Investigator ABSTRACT An improved understanding of equilibrium and non -equilibrium properties of plasmas is central to many areas of basic science as

  9. International Conference on Quantum Mathematical Physics : a Bridge between Mathematics and Physics

    CERN Document Server

    Kleiner, Johannes; Röken, Christian; Tolksdorf, Jürgen

    2016-01-01

    Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fu...

  10. Progress in Anisotropic Plasma Physics

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...

  11. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  12. Dusty plasma as a unique object of plasma physics

    Science.gov (United States)

    Norman, G. E.; Timofeev, A. V.

    2016-11-01

    The self-consistency and basic openness of dusty plasma, charge fluctuations, high dissipation and other features of dusty plasma system lead to the appearance of a number of unusual and unique properties of dusty plasma. “Anomalous” heating of dusty particles, anisotropy of temperatures and other features, parametric resonance, charge fluctuations and interaction potential are among these unique properties. Study is based on analytical approach and numerical simulation. Mechanisms of “anomalous” heating and energy transfer are proposed. Influence of charge fluctuations on the system properties is discussed. The self-consistent, many-particle, fluctuation and anisotropic interparticle interaction potential is studied for a significant range of gas temperature. These properties are interconnected and necessary for a full description of dusty plasmas physics.

  13. PREFACE: The EPS High Energy Particle Physics Conference

    Science.gov (United States)

    Barlow, Roger

    2008-03-01

    HEPP2007, the EPS High Energy Particle Physics Conference, was held in Manchester from July 19-26 2007. It brought together 580 delegates across the whole subject: from string theorists to detector technologists, from young postgraduate students to senior professors. Geographically they came from the UK, from the rest of Europe, from North America, and from the rest of the world. It covered the whole spectrum of the subject, not only accelerator-based experiments but also its astrophysical and cosmological aspects. The parallel and plenary talks can be found in these proceedings. A key feature of the conference, as always, was the award of the prizes: this year the EPS prize was awarded to Makoto Kobayashi and Toshihide Maskawa for their explanation of CP violation with a 6 quark model—Kobayashi came to accept it in person. The Gribov medal went to Niklas Beisert, the outreach prize to Richard Jacobsson and Charles Timmermans and the Young Physicist prizer to I Furic, G Gomez-Ceballos and S Menzemer. Parallel sessions were held in Manchester University, and plenary talks were held in the Bridgewater Hall in Manchester Town centre, a magnificent modern venue whose positive and co-operative staff enabled the conference to make the most of the impressive surroundings. We were able to put the hall to its proper purpose one evening with a concert by the Fairey Band—one of the distinctive brass bands who form part of the rich musical tradition of the North of England, and came as something new and different to many of the delegates. The conference ran smoothly and successfully, thanks largely to hard work by the local organising committee who devoted a lot of time to planning, producing ideas, and anticipating potential problems. Many of them were not from Manchester itself but from other universities and laboratories in the North of England, so their dedication was especially appreciated. The EPS committee also played a major part, by the selection of plenary

  14. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  15. PREFACE: The Anglo-French Physical Acoustics Conference

    Science.gov (United States)

    Lhemery, Alain; Saffari, Nader; Aristegui, Christophe

    2009-11-01

    The Anglo-French Physical Acoustics Conference (AFPAC) had its 8th annual meeting at Arcachon in France, between 8 to 10 December 2008. This series of meetings is a successful collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. First established in 2001, the aim of this annual conference is to provide a forum where the most recent research developments in the field of Physical Acoustics in the UK and France are reviewed. AFPAC alternates between venues in the UK and France and the format has been designed to be 'small and friendly'. The conference attracts the main research leaders in the two countries and likes to encourage research students in particular to have their debut presentations at this event. Every year the organisers also invite a number of keynote speakers who are leading international authorities in their fields. For the meeting in Arcachon, the invited speakers included Dame Anne Dowling of Cambridge University, Anthony Kent of Nottingham University, Michel Bruneau of Université du Maine, Richard Hazelwood, Jérôme Vasseur of Institut d'Electronique, de Micro électronique et de Nanotechnologie and Michel Castaings of Laboratoire de Mécanique Physique of Université Bordeaux 1. The scope of the conference is kept intentionally wide so as to encourage cross-fertilisation of ideas across different application areas in the field of Physical Acoustics. Presentations in the past have covered non-destructive evaluation and material characterisation, medical ultrasound, underwater acoustics and ultrasonic sensors. This is the first time the proceedings of AFPAC are being published in the event's history and the participants were invited to submit manuscripts for publication. As a result there are 9 peer reviewed papers from a total of 34 that were presented at the meeting. In view of the high standard of

  16. 6th International Conference on Trapped Charged Particles and Fundamental Physics

    CERN Document Server

    Schury, Peter; Ichikawa, Yuichi

    2017-01-01

    This volume presents the proceedings of the International Conference on Trapped Charged Particles and Fundamental Physics (TCP 14). It presents recent developments in the theoretical and experimental research on trapped charged particles and related fundamental physics and applications. The content has been divided topic-wise covering basic questions of Fundamental Physics, Quantum and QED Effects, Plasmas and Collective Behavior and Anti-Hydrogen. More technical issues include Storage Ring Physics, Precision Spectroscopy and Frequency Standards, Highly Charged Ions in Traps, Traps for Radioactive Isotopes and New Techniques and Facilities. An applied aspect of ion trapping is discussed in section devoted to Applications of Particle Trapping including Quantum Information and Processing. Each topic has a more general introduction, but also more detailed contributions are included. A selection of contributions exemplifies the interdisciplinary nature of the research on trapped charged particles worldwide. Repri...

  17. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  18. Plasma physics of extreme astrophysical environments

    Science.gov (United States)

    Uzdensky, Dmitri A.; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)—the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  19. 7th International Conference on Mathematical Methods in Physics

    Science.gov (United States)

    Bonora, L.; Bytsenko, A. A.; Guimarães, M. E. X.; Helayël-Neto, J. A.

    The 7th International Conference on Mathematical Methods in Physics took place in the Centro Brasileiro de Pesquisas Físicas (CBPF/MCT), Rio de Janeiro - RJ, Brazil, from 16 to 20 April 2012, and was jointly organized by the following Institutions: Centro Brasileiro de Pesquisas Físicas (CBPF/MCT), The Abdus Salam International Centre for Theoretical Physics (ICTP, Italy), Instituto Nacional de Matemática Pura e Aplicada (IMPA, Brazil), The Academy of Sciences for the Developing World (TWAS, Italy) and The Scuola Internazionale di Studi Avanzati (SISSA,Italy). The Organizing Committees were composed by: E. ABDALLA (USP, Brazil), L. BONORA (SISSA, Italy), H. BURSZTYN (IMPA, Brazil), A. A. BYTSENKO (UEL, Brazil), B. DUBROVIN (SISSA, Italy), M.E.X. GUIMARÃES (UFF, Brazil), J.A. HELAYËL-NETO (CBPF, Brazil). Advisory Committee: A. V. ASHTEKAR (Penn State University, U.S.A.), V. M. BUCHSTABER (Steklov Mathematical Institute, Russia), L. D. FADDEEV (St. Petersburg Dept. of Steklov Mathematical Institute, Russia), I. M. KRICHEVER (Columbia Univ., U.S.A./ Landau Institute of Theoretical Physics, Russia), S. P. NOVIKOV (Univ. of Maryland, U.S.A./Landau Institute of Theoretical Physics, Russia), J. PALIS (IMPA, Brazil), A. QADIR (National University of Sciences and Technology, Pakistan), F. QUEVEDO (ICTP, Italy), S. RANDJBAR-DAEMI (ICTP, Italy), G. THOMPSON (ICTP, Italy), C. VAFA (Harvard University, U.S.A.). The Main Goal: The aim of the Conference was to present the latest advances in Mathematical Methods of Physics to researchers, young scientists and students of Latin America in general, and Brazil in particular, in the areas of High Energy Physics, Cosmology, Mathematical Physics and Applied Mathematics. The main goal was to promote an updating of knowledge and to facilitate the interaction between mathematicians and theoretical physicists, through plenary sessions and seminars. This Conference can be considered as a part of a network activity in a special effort to

  20. Plasma Physics Approximations in Ares

    Energy Technology Data Exchange (ETDEWEB)

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  1. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  2. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  3. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  4. PREFACE: 12th Conference on ''Theoretical Nuclear Physics in Italy''

    Science.gov (United States)

    Bombaci, I.; Covello, A.; Marcucci, L. E.; Rosati, S.

    2009-07-01

    These Proceedings contain the invited and contributed papers presented at the 12th Conference on Theoretical Nuclear Physics in Italy held in Cortona, Italy, from 8-10 October 2008. As usual, the meeting was held at il Palazzone, a 16th century castle owned by the Scuola Normale Superiore di Pisa. The aim of this biennal conference is to bring together Italian theorists working in various fields of Nuclear Physics to discuss their latest results and confront their points of view in a lively and informal way. This offers the opportunity to promote collaborations between different groups. There were about 50 participants at the conference, coming from 14 Italian Universities (Cagliari, Catania, Ferrara, Firenze, Genova, Lecce, Milano, Napoli, Padova, Pavia, Pisa, Roma, Trento, Trieste). The program of the conference, prepared by the Organizing Committee (Ignazio Bombaci, Aldo Covello, Laura Elisa Marcucci and Sergio Rosati) focused on six main topics: Few-Nucleon Systems, Nuclear Matter and Nuclear Dynamics, Nuclear Astrophysics, Structure of Hadrons and Hadronic Matter, Nuclear Structure, Nuclear Physics with Electroweak Probes. Winfried Leidemann, Maria Colonna, Marcello Lissia, Elena Santopinto, Silvia Lenzi and Omar Benhar took the burden of giving general talks on these topics and reviewing the research activities of the various Italian groups. In addition, 19 contributed papers were presented, most of them by young participants. In the last session of the Conference there were two invited talks related to experimental activities of great current interest. Gianfranco Prete from the Laboratori Nazionali di Legnaro spoke about the Italian radioactive ion beam facility SPES and the status of the European project EURISOL, while Nicola Colonna from the INFN, Bari, gave an overview of the perspectives of development of fourth-generation nuclear reactors. We would like to thank the authors of the general reports for their hard work in reviewing the main achievements in

  5. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  6. Proceedings of the second Asian Pacific plasma theory conference APPTC'97

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro; Nakamura, Yuji; Hayashi, Takaya [eds.

    1998-08-01

    This issue is the proceedings of the second Asian Pacific Plasma Theory Conference (APPTC'97), which was held on September 24-26, 1997 at National Institute for Fusion Science (Toki, Japan) under the auspices of the Japan Society of Plasma Science and Nuclear Fusion Research and the National Institute of Fusion Science. A part of APPTC'97 was a joint session with Japan-Australia fusion theory workshop and US-Japan JIFT workshop on Theoretical Study for Helical Plasmas. The conference covers all plasma theory areas including magnetic confinement, inertial fusion, space plasmas, astrophysical plasma, industrial processing plasmas, and dusty plasma, etc. The 43 of the presented papers are indexed individually. (J.P.N.)

  7. PREFACE: International Conference on Theoretical Physics: Dubna-Nano 2012

    Science.gov (United States)

    Osipov, Vladimir; Nesterenko, Valentin; Shukrinov, Yury M.

    2012-11-01

    The International Conference 'Dubna-Nano2012' was held on 9-14 July 2012 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference was the third one in the series started in 2008. 'Dubna-Nano2012' provided an opportunity for presentations and discussions about theoretical and experimental advances in the rapidly growing area of nanophysics. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: graphene and other carbon nanostructures, topological insulators, quantum transport, quantum dots, atomic clusters, Josephson junctions and applications of nanosystems. About 100 scientists from 22 countries participated in the conference. The program included 38 oral talks and 39 posters. This volume contains 35 contributions. We would like to express our gratitude to all participants for their presentations and discussions. We are deeply indebted to the members of the International Advisory Committee Professors K S Novoselov, T Ando, T Chakraborty, J Fabian, V M Galitski, F Guinea, M Z Hasan, P Hawrylak, K Kadowaki, R Kleiner, T Koyama, Yu I Latyshev, Yu E Lozovik, M Machida, B K Nikolic, N F Pedersen, P-G. Reinhard, J M Rost and A Ya Vul. Financial support from BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Further information about 'Dubna-Nano2012' is available on the homepage http://theor.jinr.ru/~nano12. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  8. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  9. The plasma physics of shock acceleration

    Science.gov (United States)

    Jones, Frank C.; Ellison, Donald C.

    1991-01-01

    The history and theory of shock acceleration is reviewed, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. The work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks is discussed. Some of the outstanding problems that still confront theorists and observers in this field are described.

  10. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  11. Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6. Volume 2

    Science.gov (United States)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.

  12. Conference on recent developments in high energy physics and cosmology

    CERN Document Server

    2015-01-01

    The HEP2015 Conference is organised by the Hellenic Society for the Study of High Energy Physics. The Hellenic Society for the Study of High Energy Physics (HSSHEP) was founded in 1975. The majority of the Greek scientists (both in Greece and abroad) working in this field are members of the Society. Its main objectives are to promote the scientific work of the Greek scientists and to inform the general public and the Greek state on matters concerning the subject of H.E.P. The Society organizes an annual Workshop where the research activities (both experimental and theoretical) of its members are presented. Young Greek scientists are urged to participate. At the same time foreign collegeaus are invited to cover hot topics. The Society's Executive Committee (Chair, Secretary, Treasurer and two members) is elected during the Annual General Meeting which takes place at the conclusion of the Workshop.

  13. Conference on recent developments in high energy physics and cosmology

    CERN Document Server

    2014-01-01

    The HEP2014 Conference is organised by the Hellenic Society for the Study of High Energy Physics. The HELLENIC SOCIETY FOR THE STUDY OF HIGH ENERGY PHYSICS (HSSHEP) was founded in 1975. The majority of the Greek scientists (both in Greece and abroad) working in this field are members of the Society. Its main objectives are to promote the scientific work of the Greek scientists and to inform the general public and the Greek state on matters concerning the subject of H.E.P. The Society organizes an annual Workshop where the research activities (both experimental and theoretical) of its members are presented. Young Greek scientists are urged to participate. At the same time foreign collegeaus are invited to cover hot topics. The Society's Executive Committee (Chair, Secretary, Treasurer and two members) is elected during the Annual General Meeting which takes place at the conclusion of the Workshop.

  14. Paradigm transition in cosmic plasma physics

    Science.gov (United States)

    Alfven, H.

    1982-01-01

    New discoveries in cosmic plasma physics are described, and their applications to solar, interstellar, galactic, and cosmological problems are discussed. The new discoveries include the existence of double layers in magnetized plasmas and in the low magnetosphere, and energy transfer by electric current in the auroral circuit. It is argued that solar flares and the solar wind-magnetosphere interaction should not be interpreted in terms of magnetic merging theories, and that electric current needs to be explicitly taken account of in understanding these phenomena. The filamentary structure of cosmic plasmas may be caused by electric currents in space, and the pinch effect may have a central role to play in the evolutionary history of interstellar clouds, stars, and solar systems. Space may have a cellular structure, with the cell walls formed by thin electric current layers. Annihilation may be the source of energy for quasars and the Hubble expansion, and the big bang cosmology may well be wrong.

  15. Fractal structures in nonlinear plasma physics.

    Science.gov (United States)

    Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F

    2011-01-28

    Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

  16. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  17. 16th international conference on the physics of highly charged ions

    Science.gov (United States)

    Fritzsche, Stephan; Stöhlker, Thomas; Surzhykov, Andrey

    2013-09-01

    This volume contains the proceedings of the 16th International Conference on the Physics of Highly Charged Ions (HCI 2012) held at the Ruprecht-Karls University in Heidelberg, Germany, 2-7 September 2012 (figure 1). This conference has been part of a biannual conference series that was started in Stockholm in 1982 and, since then, has been organized at various places around the world, with recent venues in Belfast (UK, 2006), Tokyo (Japan, 2008) and Shanghai (China, 2010). The physics of highly charged ions (HCI) is a rapidly developing and attractive field of research with impact upon many other research disciplines. Apart from fundamental studies on the structure and dynamics of matter in extreme fields, or the search for physics beyond the standard model, detailed knowledge about the properties and behavior of HCI is crucial for other areas, from astro- and solar physics to hot plasma and fusion research to extreme ultra-violet and ion lithography, or even to medical research, to name just a few. In fusion research, for example, of whether tokamak, stellarator or confinement fusion facilities, most models and diagnostics deeply rely on the understanding of HCI and the (theoretical) prediction of accurate atomic data for these systems. In life science, moreover, ion therapy or the laser acceleration of ions and electrons may help save and improve the quality of life in the future. Many of these and further topics are addressed in these proceedings. After 30 years, the HCI conference series, and especially the meeting in Heidelberg, is appreciated much as a key forum for bringing together senior experts with students, young researchers and scientists from related disciplines who make use and give back impact upon the research with HCI. More than 250 scientists from 23 countries participated in HCI 2012 and presented the current status of the field. About one third of them were post-graduate students, showing that the field attracts many young and talented

  18. Physics of Tokamak Plasma Start-up

    Science.gov (United States)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  19. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-09

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  20. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Rewoldt, G.; Tang, W.M.

    1997-10-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  1. Physics issues in long pulse plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Toda, Shinichiro; Sanuki, Heiji [National Institute for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Department of Nuclear Engineering, Kyoto University, Kyoto (Japan)

    2000-07-01

    Physics in the steady-state or long time discharge are illustrated from the view point of generic toroidal plasmas. Issues include physics process with very long time scale, dynamical phenomena of various time scales, transition nature under very slow temporal variations of parameters, statistical occurrence of transition and life time and identification of minimum circulating power. Nonlinear dependencies of transport properties of density, temperature, current, electric field and poloidal magnetic field cause self-organized dynamics. A picture of stationary oscillatory states is presented from a unified picture of nonlinear limit cycle dynamics. It is emphasized that the long time asymptotics are determined by the structure formation mechanisms. The sustainment needs a circulating power, and the circulating power in steady state plasma is also discussed. (author)

  2. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  3. DEVELOPMENT OF MULTI-COORDINATE VOCABULARY, PLASMA PHYSICS.

    Science.gov (United States)

    LERNER, RITA G.

    DESCRIBED IS THE DEVELOPMENT OF A THESAURUS FOR THE FIELD OF PLASMA PHYSICS, SIMILAR TO THE ONE PREVIOUSLY DEVELOPED FOR CHEMICAL PHYSICS, FOR USE WITH COMPUTER-ORIENTED RETRIEVAL SYSTEMS. AN EXPERT IN THE FIELD OF PLASMA PHYSICS SELECTED TERMS IMPORTANT TO THE INFORMATION USER FROM THE PLASMA LITERATURE. THE HIERARCHY OF CLASSIFICATION UTILIZES…

  4. Conference on the Intersections of Particle and Nuclear Physics 2003 Relativistic Heavy Ion Parallel Session Summary

    CERN Document Server

    Nagle, J L

    2003-01-01

    The Relativistic Heavy Ion Collider (RHIC) came online in 2000, and the last three years have provided a wealth of new experimental data and theoretical work in this new energy frontier for nuclear physics. The transition from quarks and gluons bound into hadrons to a deconfined quark-gluon plasma is expected to occur at these energies, and the effort to understand the time evolution of these complex systems has been significantly advanced. The heavy ion parallel session talks from the Conference on the Intersections of Particle and Nuclear Physics (CIPANP) 2003 are posted at: http://www.phenix.bnl.gov/WWW/publish/nagle/CIPANP/. We provide a brief summary of these sessions here.

  5. Co-publication with Journal of Physics: Conference Series volume 277

    Science.gov (United States)

    2011-02-01

    This is a co-publication with Journal of Physics: Conference Series volume 277, The 9th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2010). These conferences were held together from November 2-5, 2010, at Wuhan Science & Technology Convention & Exhibition Center, Wuhan, PR China.

  6. PREFACE: 14th International Conference on the Physics of Highly Charged Ions (HCI 2008)

    Science.gov (United States)

    Azuma, Toshiyuki; Nakamura, Nobuyuki; Yamada, Chikashi

    2009-07-01

    This volume contains the Proceedings of the 14th International Conference on the Physics of Highly Charged Ions (HCI2008), held at the University of Electro-Communications, Chofu, Tokyo, Japan from 1-5 September 2008. This series of conferences began in Stockholm, Sweden in 1982 and has since been held every other year; in Oxford, UK (1984), Groningen, the Netherlands (1986), Grenoble, France (1988), Giessen, Germany (1990), Manhattan, Kansas, USA (1992), Vienna, Austria (1994), Omiya, Japan (1996), Bensheim, Germany (1998), Berkeley, USA (2000), Caen, France (2002), Vilnius, Lithuania (2004) and Belfast, UK (2006). Highly charged ions (HCI), which are defined as highly ionized (i.e. positively charged atomic) ions here, mainly exist in hot plasmas such as the solar corona and fusion plasmas. It is true that its importance in plasma physics has driven researchers to the spectroscopic studies of HCIs, but the spectroscopy of few-electron ions is not only important for plasmas but also interesting for fundamental atomic physics. Electrons moving fast near a heavy nucleus give a suitable system to test the fundamental atomic theory involving relativistic and quantum electro-dynamic effects in a strong field. Also, the huge potential energy of a HCI induces drastic reaction in the interaction with matter. This unique property of HCIs, coupled with the recent development of efficient ion sources, is opening the possibility to utilize them in new technologies in the field such as nano-fabrication, surface analysis, medical physics, and so on. Hence, this conference is recognized as a valuable gathering place for established practitioners and also for newcomers; we exchange information, we are introduced to the subject itself, and to unexpected interfaces with other fields. On 31 August, the day before the opening of HCI2008, we welcomed the delegates at the university's restaurant—and we were greeted with an unusually heavy summer shower! The conference then opened on

  7. Statistical Physics Experiments Using Dusty Plasmas

    Science.gov (United States)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states

  8. PREFACE: XIV International Conference on Calorimetry in High Energy Physics

    Science.gov (United States)

    Wang, Yifang

    2011-03-01

    The International Conferences on Calorimetry in High Energy Physics (also known as the Calor Conference series, started in October 1990 at Fermilab) address all aspects of calorimetric particle detection and measurement, with an emphasis on high energy physics experiments. The XIV International Conference on Calorimetry in High Energy Physics (Calor 2010) was held at the campus of the Institute of High Energy Physics, Beijing, China, from May 10-14, 2010. This conference brought together more than 110 participants from 20 countries, including senior scientists and young physicists. During the five days of the conference, 98 presentations were given in seven plenary sessions. The attendees had in-depth discussions on the latest developments and innovations in calorimetry, including the exciting new LHC results. From the presentations, 83 papers were published in this proceedings. The success of the conference was due to the participants' enthusiasm and the excellent talks given by the speakers, and to the conveners for organizing the individual sessions. We would like to thank the International Advisory Committee for giving us the opportunity to host this Conference in Beijing. Finally we would like to thank all the people involved in the organization of the Conference, who have provided valuable local support. Yifang WangChair of Local Organizing Committee International Advisory Committee M DanilovITEP Moscow M DiemozINFN Roma I A EreditatoBern F L FabbriINFN Frascati T KobayashiICEPP Tokyo M LivanPavia University & INFN P LubranoINFN Perugia S MagillANL Argonne A MaioLIPP Lisbon H OberlackMPI Munich A ParaFermilab R WigmansTTU Lubbock R YoshidaANL Argonne R ZhuCaltech Local Organizing Committee Y WangIHEP (Chair) Y GaoTshinghua University T HuIHEP (Scientific secretary) C LiUSTC W LiIHEP J LuIHEP P WangIHEP T XuIHEP L ZhouIHEP Session Conveners 1) Materials and detectors - Junguang Lu (IHEP), Francesca Nessi (CERN) 2) Algorithm and simulation - Nural Akchurin

  9. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    Science.gov (United States)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." The conference publication consists of the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference. Ninety papers are presented in 21 technical sessions, and a special exposition session presents 32 posters describing the work of principal investigators new to NASA's program in this discipline. Eighty-eight papers and 25 posters are presented in their entirety on the CD-ROM.

  10. A plasma formulary for physics, technology, and astrophysics

    CERN Document Server

    Diver, Declan

    2011-01-01

    Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos

  11. Summary of the Conference "The Physics of Evolved Stars"

    Science.gov (United States)

    De Marco, O.

    2015-12-01

    Olivier Chesneau was an astronomer of many talents. His expertise was on optical and infrared interferometry. Olivier*s tool of choice, the Very Large Telescope Interferometer (VLTI), allowed him to see solutions to open questions in stellar astrophysics. These visions led to collaborations with experts in each of the fields where VLTI observations could be useful. As a result Olivier was a man in the middle of a phenomenal network of astronomers, collaborators and friends. I am fortunate to have been one of them. In this contribution I summarise the conference "Physics of Evolved Stars", held in Nice in June 2015 in memory of Olivier. The conference neatly showcased the science that Olivier had been involved with during his life and laid out the advancements that were made thanks in great part to him and to the collaborations he started. Without doubt his bubbly, happy personality, child-like in a way, made him the perfect connector bringing the technique, the questions and the experts in diverse fields together. Dear to all who worked with him, he was truly the little prince of Astronomy. We shall miss him every day.

  12. PREFACE: 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) and 25th Symposium on Plasma Science for Materials (SPSM-25)

    Science.gov (United States)

    Watanabe, Takayuki; Kaneko, Toshio; Sekine, Makoto; Tanaka, Yasunori

    2013-06-01

    The 11th Asia-Pacific Conference on Plasma Science and Technology (APCPST-11) was held in Kyoto, Japan on 2-5 October 2012 with the 25th Symposium on Plasma Science for Materials (SPSM-25). SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. APCPST and SPSM are jointly held biennially to survey the current status of low temperature and thermal plasma physics and chemistry for industrial applications. The whole area of plasma processing was covered from fundamentals to applications. Previous meetings were held in China, Japan, Korea, and Australia, attended by scientists from the Asia-Pacific and other countries. The joint conference was organized in plenary lectures, invited, contributed oral presentations and poster sessions. At this meeting, we had 386 participants from 10 countries and 398 presentations, including 26 invited presentations. This year, we arranged special topical sessions that covered green innovation, life innovation, and technical reports from industry. This conference seeks to bring the plasma community together and to create a forum for discussing the latest developments and issues, the challenges ahead in the field of plasma research and applications among engineers and scientists in Asia, the Pacific Rim, as well as Europe. This volume presents 44 papers that were selected via a strict peer-review process from full papers submitted for the proceedings of the conference. The topics range from the basic physics and chemistry of plasma processing to a broad variety of materials processing and environmental applications. This volume offers an overview of recent

  13. Plasma Physics and Controlled Nuclear Fusion

    CERN Document Server

    Miyamoto, Kenro

    2005-01-01

    The primary objectives of this book are, firstly, to present the essential theoretical background needed to understand recent fusion research and, secondly, to describe the current status of fusion research for graduate students and senior undergraduates. It will also serve as a useful reference for scientists and engineers working in the related fields. In Part I, Plasma Physics, the author explains the basics of magneto-hydrodynamics and kinetic theory in a simple and compact way and, at the same time, covers important new topics for fusion studies such as the ballooning representation, instabilities driven by energetic particles and various plasma models for computer simulations. Part II, Controlled Nuclear Fusion, attempts to review the "big picture" in fusion research. All important phenomena and technologies are addressed, with a particular emphasis on the topics of most concern in current research.

  14. PREFACE: 15th International Conference on the Physics of Highly Charged Ions

    Science.gov (United States)

    Zou, Yaming; Hutton, Roger

    2011-07-01

    This issue contains papers presented at the 15th International Conference on the Physics of Highly Charged Ions, HCI2010. The conference was held at Fudan University, Shanghai, 29 August-3 September 2010. HCI is a biannual conference series going back to the very first conference held in Stockholm, Sweden in 1982. Previous editions in this millennium were held in Berkeley, USA, 2000; Caen, France, 2002; Vilnius, Lithuania, 2004; Belfast, UK, 2006, and Tokyo, Japan, 2008. The physics of highly charged ions, HCIs, is of great interest due to their key role in testing quantum electrodynamics in strong fields, and possible testing of parity non-conservation. However, HCIs also play crucial roles in the physics of hot plasmas, for example those produced in tokamak fusion devices and in inertial confinement fusion experiments. Much of the diagnostics of matter under such extreme environments relies very heavily on high quality atomic data of HCIs. The field of x-ray astronomy hinges almost entirely on the use of spectral lines from HCIs to provide information from distant astrophysical plasmas and objects. Given these fundamental interests and the current rapid developments in fusion and x-ray astronomy, it is clear that the physics of HCIs is a rich area of research with strong and important connections to many important subfields of physics. New application areas of HCI physics are also under development: two examples are (a) to provide 13.5 nm—and later half of this wavelength—radiation for lithography and (b) applications in medical research. The need for high quality atomic data of HCIs is as important now as it has ever been. HCI2010 was attended by over 200 scientists from around 20 countries; see the following table. Over 70 of the participants were students, which is very encouraging for the future of HCI related physics. The academic programme was organized based on the suggestions from the International Advisory Board, and consisted of six review lectures

  15. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  16. Second Topical Conference on High-Temperature Plasma Diagnostics

    Science.gov (United States)

    1978-02-01

    1 and is employed to make routine measurements of the evolution of plasma density in the high density ( n > 5 x 1011* cm-3) Alcator A tokamak...plasmas. To exemplify the use of these techniques in fusion plasmas, studies of density fluc- tuations in the ATC and ALCATOR tokamaks will be...character- istics for the excessive incidence of plasma light. Video signals are recorded with a video tape recorder, which starts and stops recording

  17. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  18. 12th Anglo-French Physical Acoustics Conference (AFPAC2013)

    Science.gov (United States)

    2014-04-01

    The Anglo-French Physical Acoustics Conference (AFPAC) had its 12th annual meeting in Villa Clythia, Fréjus, France, from 16th to 18th January 2013. This series of meetings is a collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. This year, attendees got the opportunity to see the French Riviera with its Mediterranean vegetation covered by a nice thick snow layer. The participants heard 34 excellent oral presentations and saw 3 posters covering an exciting and diverse range of subjects and of frequencies, from ultrasonic wave propagation in chocolate to metamaterials applied to seismic waves for protecting buildings. Among them, invited talks were given by Pr F A Duck ( Enhanced healing by ultrasound: clinical effects and mechanisms), Pr. J-C Valiére, who actually gave two invited talks ( 1. Measurement of audible acoustic particle velocity using laser: Principles, signal processing and applications, 2. Acoustic pots in ancient and medieval buildings: Literary analysis of ancient texts and comparison with recent observations in French churches), Dr P Huthwaite ( Ultrasonic imaging through the resolution of inverse problems), Dr X Lurton ( Underwater acoustic systems on oceanographic research vessels: principles and applications), Dr S Guenneau ( From platonics to seismic metamaterials). For the fifth consecutive year AFPAC is followed by the publication of its proceedings with 12 peer-reviewed papers which cover the most recent research developments in the field of Physical Acoustics in the UK and France. Alain Lhémery (CEA, France) and Nader Saffari (UCL, United Kingdom) French Riviera 12th AFPAC — Villa Clythia, Fréjus (French Riviera), the 17th of January 2013

  19. Proceedings of the conference on numerical methods in high temperature physics

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Holm, D.D.; O' Rourke, P.J. (comps.)

    1988-11-01

    These proceedings contain full papers presented at the Los Alamos Conference on High Temperature Physics. This conference discussed many aspects of high temperature physics including hydrodynamics, radiation and particle transport and some computational issues important for efficient calculations. The meetings was held between researchers from Los Alamos and the French Commissariat a L'Energy Atomique (CEA).

  20. 2012 CHEMISTRY & PHYSICS OF GRAPHITIC CARBON MATERIALS GORDON RESEARCH CONFERENCE, JUNE 17-22, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Herbert

    2012-06-22

    This conference will highlight the urgency for research on graphitic carbon materials and gather scientists in physics, chemistry, and engineering to tackle the challenges in this field. The conference will focus on scalable synthesis, characterization, novel physical and electronic properties, structure-properties relationship studies, and new applications of the carbon materials. Contributors

  1. PREFACE: 8th International Conference on the Physics of Highly Charged Ions (HCI-96)

    Science.gov (United States)

    Awaya, Yohko; Kambara, Tadashi

    1997-01-01

    These proceedings contain the papers presented at the Eighth International Conference on the Physics of Highly Charged Ions (HCI-96) which was held on September 23-26, 1996 in Omiya, Saitama, Japan, hosted by the Institute of Physical and Chemical Research (RIKEN). The first conference of this series was held in Stockholm, Sweden in 1982. The subject was the "Production and Physics of Highly Charged Ions". The conference has since been held every other year; in Oxford, UK (1984), Groningen, the Netherlands (1986), Grenoble, France (1988), Giessen, Germany (1990), Manhattan, Kansas, USA (1992) and Vienna, Austria (1994). When the first conference of this series was held, various highly charged ions were available from many heavy ion accelerators, which had been constructed since the 1960's, and ion sources such as EBIS and ECRIS, which were then new facilities. Subsequently, many other experimental techniques have been developed to study or to control highly charged ions, such as ion traps, EBIT's, storage rings, high-brilliance synchrotron radiation, and so forth. Now the properties of highly charged ions themselves and their interactions with various kinds of materials can be studied systematically using ions of any element at various collision energies. These studies will result in a deeper insight into their nature as well as giving us important basic data for use in the fields closely related to atomic physics. About 190 scientists from 18 countries registered at the HCI-96. The number of invited talks was 21 and that of contrib- uted papers 215. In these proceedings, 20 papers of invited talks and 116 papers on contributions are included. They are classified into categories of "Structure and Spectroscopy of Highly Charged Ions and Fundamental Aspects", "Highly Charged Ions in Plasmas and Strong Fields", "Interactions of Highly Charged Ions with Atoms and Ions", "Dynamic Processes Related to Molecules and Clusters", "Interactions of Highly Charged Ions with

  2. Testing Plasma Physics in the Ionosphere

    Science.gov (United States)

    Papadopoulos, Konstantinos

    TESTING PLASMA PHYSICS IN THE IONOSPHERE K. Papadopoulos University of Maryland College Park, MD 20742 Ionospheric heaters supplemented by ground and space based diagnostic instruments, such as radars, optical cameras and photometers, HF/VLF/ELF/ULF receivers and magnetometers, radio beacons, riometers and ionosondes have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), was completed in February 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP) between .36 - 4.0 GW. The antenna can point to any direction in a cone of 30 degrees from the vertical, with a reposition time of 15 degrees in 15 microseconds resulting in super-luminous scanning speeds. The transmitter can synthesize essentially any desired waveform within the regulatory allowed bandwidth in linear and circular polarization. These capabilities far exceed those of previous ionospheric heaters and allow for new frontier research in plasma physics, geophysics and radio science. Following a brief discussion of the relationship of the new capabilities of the facility with thresholds of physical processes that could not be achieved previously, the presentation will discuss recent results in the areas of ULF/ELF/VLF generation and propagation and wave-particle interactions in the magnetosphere acquired with the completed facility. The presentation will conclude with a detailed discussion of possible frontier science experiments in the areas of Langmuir turbulence, parametric instabilities, electron acceleration, optical emissions and field aligned striations and duct generation, made

  3. Physics through the 1990s: Plasmas and fluids

    Science.gov (United States)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  4. FPCP 2003. Proceedings of the Second International Conference on Flavor Physics and CP Violation

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Pascal (ed.) [Direction de la Recherche and Laboratoire Leprince-Ringuet, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2003-07-01

    The second International Conference on Flavor Physics and CP Violation, FPCP 2003, was held on the former campus of Ecole Polytechnique, in the heart of the 'Quartier Latin', in Paris, France, June 3-6, 2003. The 'Carre des Sciences' organization, located on the Descartes site within the French Ministry of Research and Technology, hosted the Conference which was open to all experimental and theoretical physicists interested in the field. FPCP 2003 is the second in a series of conferences, the first one in 2002 at the University of Pennsylvania in Philadelphia, USA. The third conference will be held in fall 2004 in Daegu, Korea, October 4-9. FPCP came about as the result of the merging of two major high-energy physics events: the annual Heavy Flavor Physics Conference (founded by Klaus Schubert), and the bi-annual International Conference on B Physics and CP Violation (founded by A.I. [Tony] Sanda). The proceedings of the FPCP 2003 has the following contents: Foreword; Conference Organization; Contents; Introduction and Hot Topics; More Experimental Results and Theoretical Interpretations; Sub-dominant B{sub d} and B{sub s} decays, B lifetime, mixing, etc.; Radiative and other B decays; Charm Physics; Kaon Physics and Theoretical Contributions; Theory for hadronic B decays, charmonium and semileptonic, etc.; Experiments; {tau} physics and other c-factory/Tevatron topics; Neutrino physics and Cosmology; Summary and Outlook.

  5. EDITORIAL: The 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases The 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases

    Science.gov (United States)

    Petrović, Zoran Lj; Marić, Dragana; Malović, Gordana

    2011-03-01

    This special issue consists of papers that are associated with invited lectures, workshop papers and hot topic papers presented at the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG XX). This conference was organized in Novi Sad (Serbia) from 13 to 17 July 2010 by the Institute of Physics of the University of Belgrade. It is important to note that this is not a conference 'proceedings'. Following the initial selection process by the International Scientific Committee, all papers were submitted to the journal by the authors and have been fully peer reviewed to the standard required for publication in Plasma Sources Science and Technology (PSST). The papers are based on presentations given at the conference but are intended to be specialized technical papers covering all or part of the topic presented by the author during the meeting. The ESCAMPIG conference is a regular biennial Europhysics Conference of the European Physical Society focusing on collisional and radiative aspects of atomic and molecular physics in partially ionized gases as well as on plasma-surface interaction. The conference focuses on low-temperature plasma sciences in general and includes the following topics: Atomic and molecular processes in plasmas Transport phenomena, particle velocity distribution function Physical basis of plasma chemistry Plasma surface interaction (boundary layers, sheath, surface processes) Plasma diagnostics Plasma and discharges theory and simulation Self-organization in plasmas, dusty plasmas Upper atmospheric plasmas and space plasmas Low-pressure plasma sources High-pressure plasma sources Plasmas and gas flows Laser-produced plasmas During ESCAMPIG XX special sessions were dedicated to workshops on: Atomic and molecular collision data for plasma modeling, organized by Professors Z Lj Petrovic and N Mason Plasmas in medicine, organized by Dr N Puac and Professor G Fridman. The conference topics were represented in the

  6. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  7. Second international conference on infrared physics. Proceedings [ETH Zurich, March 5-9, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Affolter, E.; Kneubuehl, F. (eds.)

    1979-07-01

    Twenty-one invited papers and nearly 100 contributed papers were presented at this conference on such topics as laser physics, ir detection, spectroscopy, solid state physics, astrophysics, atmospheric physics, and applications of ir lasers in chemistry, medicine, and car manufacture. Two of the papers given at the conference have already been entered into the TIC data base; these papers can be located by means of the entry CONF-790355--. (RWR)

  8. Support for 26th International Conference on Neutrino Physics and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Univ., MA (United States); Feldman, Gary [Harvard Univ., Cambridge, MA (United States)

    2014-06-08

    The XXVI International Conference on Neutrino Physics and Astrophysics (Neutrino 2014) was held in Boston, U.S.A. from June 2 to 7, 2014. The Conference was co-­hosted by Boston University, Harvard University, M.I.T., and Tufts University. The Conference welcomed 549 registered participants from 33 countries. The Boston University Student Village offered an inexpensive housing option and was taken advantage of by 282 attendees. The lecture venue was the George Sherman Union at Boston University. There were 63 scientific presentations by speakers from 15 countries. The Conference held two poster sessions with a total of 287 posters. The Conference featured a reception at the M.I.T. Museum plus a multi-­week exhibition on neutrino physics capped by public presentations on the closing date of the conference. The banquet was a strolling buffet dinner held at the New England Aquarium.

  9. PARTICIPANT SUPPORT FOR THE 2010 GORDON RESEARCH CONFERENCE ON PLASMA PROCESSING SCIENCE (JULY 11-16,2010)

    Energy Technology Data Exchange (ETDEWEB)

    Uwe Kortshagen

    2011-06-14

    The 2010 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in low temperature plasma science and will explore the applications of low temperature plasma technology relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy and the production of fuels from renewable feedstocks, plasma-enabled medicine and sterilization, and environmental remediation and waste treatment. The conference will bring together in an informal atmosphere leaders in the field with junior investigators and graduate students. The special format of the Gordon Conferences, with programmed discussion sessions and ample time for informal gatherings in the afternoons and evenings, will provide for a fertile atmosphere of brainstorming and creative thinking among the attendees.

  10. Fusion programs in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  11. Co-publication with Journal of Physics: Conference Series volume 276

    Science.gov (United States)

    2011-02-01

    This is a co-publication with Journal of Physics: Conference Series volume 276, the 3rd International Photonics & OptoElectronics Meetings (POEM 2010). These conferences were held together from November 2-5, 2010, at Wuhan Science & Technology Convention & Exhibition Center, Wuhan, PR China.

  12. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2011-07-01

    attended by 44 participants and 7 lecturers from 11 different countries. All participants received financial assistance from the Local Organizing Committee. The topics covered by the School were: a general description of plasmas, space and astrophysical plasmas, plasma diagnostic techniques, high temperature and fusion plasmas, and low temperature and industrial plasmas. The organizers of ICPP-LAWPP-2010 are grateful to the lecturers of the LAWPP Plasma Physics School: Luis Felipe Delgado-Aparicio (USA), Homero Maciel (Brazil), and Marina Stepanova, J Alejandro Valdivia, Victor Muñoz, Felipe Veloso and Leopoldo Soto (Chile). On 27 February 2010, Chile suffered a major earthquake, one of the worst in the recorded history of the world up to that time. Although Santiago was little affected, the region located 200 km to the south was seriously damaged. After this event, the Local Organizing Committee received many messages from members of the plasma physics community around the world expressing their concern. The Local Organizing Committee greatly appreciates the support of the participants from all over the world who decided to come to Chile to attend the Conference. Their solidarity is highly appreciated. The Chairman of ICPP-LAWPP-2010 is grateful to the members of the Local Organizing Committee for the conference: Karla Cubillos, José Moreno, Cristian Pavez, Felipe Veloso, Marcelo Zambra, Luis Huerta and Fabian Reyes, and to the members of the Program Committee for their work and commitment. The Guest Editor of this special issue is grateful to the Publishers, in particular to Caroline Wilkinson, for their excellent work and cooperation.

  13. Laser amplifier based on Raman amplification in plasma (Conference Presentation)

    Science.gov (United States)

    Vieux, Gregory; Cipiccia, Silvia; Lemos, Nuno R. C.; Ciocarlan, Cristian; Grant, Peter A.; Grant, David W.; Ersfeld, Bernhard; Hur, MinSup; Lepipas, Panagiotis; Manahan, Grace; Reboredo Gil, David; Subiel, Anna; Welsh, Gregor H.; Wiggins, S. Mark; Yoffe, Samuel R.; Farmer, John P.; Aniculaesei, Constantin; Brunetti, Enrico; Yang, Xue; Heathcote, Robert; Nersisyan, Gagik; Lewis, Ciaran L. S.; Pukhov, Alexander; Dias, João. Mendanha; Jaroszynski, Dino A.

    2017-05-01

    The increasing demand for high laser powers is placing huge demands on current laser technology. This is now reaching a limit, and to realise the existing new areas of research promised at high intensities, new cost-effective and technically feasible ways of scaling up the laser power will be required. Plasma-based laser amplifiers may represent the required breakthrough to reach powers of tens of petawatt to exawatt, because of the fundamental advantage that amplification and compression can be realised simultaneously in a plasma medium, which is also robust and resistant to damage, unlike conventional amplifying media. Raman amplification is a promising method, where a long pump pulse transfers energy to a lower frequency, short duration counter-propagating seed pulse through resonant excitation of a plasma wave that creates a transient plasma echelon that backscatters the pump into the probe. Here we present the results of an experimental campaign conducted at the Central Laser Facility. Pump pulses with energies up to 100 J have been used to amplify sub-nanojoule seed pulses to near-joule level. An unprecedented gain of eight orders of magnitude, with a gain coefficient of 180 cm-1 has been measured, which exceeds high-power solid-state amplifying media by orders of magnitude. High gain leads to strong competing amplification from noise, which reaches similar levels to the amplified seed. The observation of 640 Jsr-1 directly backscattered from noise, implies potential overall efficiencies greater than 10%.

  14. Physics Computing '92: Proceedings of the 4th International Conference

    Science.gov (United States)

    de Groot, Robert A.; Nadrchal, Jaroslav

    1993-04-01

    * Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on

  15. Physical processes associated with current collection by plasma contactors

    Science.gov (United States)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  16. PREFACE: The 19th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases Preface: The 19th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases

    Science.gov (United States)

    Gordillo-Vazquez, F. J.

    2009-07-01

    The 19th Europhysics Sectional Conference on the Atomic and Molecular Physics of Ionized Gases (ESCAMPIG-2008) took place in Granada (Spain) from 15 to 19 July 2008. The conference was mainly organized by the Spanish National Research Council (CSIC), with the collaboration and support of the University of Córdoba (UCO) and the Research Center for Energy, Environment and Technology (CIEMAT). It is already 35 years since the first ESCAMPIG in 1973. The first editions of ESCAMPIG were in consecutive years (1973 and 1974) but later on it became a biennial conference of the European Physical Society (EPS) initially focusing on the collisional and radiative atomic and molecular processes in low temperature plasmas. The successive ESCAMPIGs took place in Bratislava in 1976 (3rd), Essen in 1978 (4th), Dubrovnik in 1980 (5th) and so on until the last one organized in Granada in 2008 (19th), the first ESCAMPIG in Spain. A number of changes have taken place in the Granada edition of ESCAMPIG. First, the previous six topics that have remained unchanged for almost two decades (since 1990) have now been updated to become twelve new topics which, in the opinion of the International Scientific Committee (ISC), will enhance the opportunity for discussions and communication of new findings and developments in the field of low temperature plasmas. The new list of topics for ESCAMPIG is: • Atomic and molecular processes in plasmas • Transport phenomena, particle velocity distribution function • Physical basis of plasma chemistry • Plasma surface interaction (boundary layers, sheath, surface processes) • Plasma diagnostics • Plasma and dicharges theory and simulation • Self-organization in plasmas, dusty plasmas • Upper atmospheric plasmas and space plasmas • Low pressure plasma sources • High pressure plasma sources • Plasmas and gas flows • Laser produced plasmas Secondly, a new prize has been created, the `William Crookes' prize in Plasma Physics to be

  17. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP'07)

    Science.gov (United States)

    Sobie, Randall; Tafirout, Reda; Thomson, Jana

    2007-07-01

    The 2007 International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held on 2-7 September 2007 in Victoria, British Columbia, Canada. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community, Computer Science and Information Technology. The CHEP conference provides an international forum to exchange information on computing experience and needs for the community, and to review recent, ongoing, and future activities. The CHEP'07 conference had close to 500 attendees with a program that included plenary sessions of invited oral presentations, a number of parallel sessions comprising oral and poster presentations, and an industrial exhibition. Conference tracks covered topics in Online Computing, Event Processing, Software Components, Tools and Databases, Software Tools and Information Systems, Computing Facilities, Production Grids and Networking, Grid Middleware and Tools, Distributed Data Analysis and Information Management and Collaborative Tools. The conference included a successful whale-watching excursion involving over 200 participants and a banquet at the Royal British Columbia Museum. The next CHEP conference will be held in Prague in March 2009. We would like thank the sponsors of the conference and the staff at the TRIUMF Laboratory and the University of Victoria who made the CHEP'07 a success. Randall Sobie and Reda Tafirout CHEP'07 Conference Chairs

  18. News Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

    Science.gov (United States)

    2012-03-01

    Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

  19. News Competition: Physics Olympiad hits Thailand Report: Institute carries out survey into maths in physics at university Event: A day for everyone teaching physics Conference: Welsh conference celebrates birthday Schools: Researchers in Residence scheme set to close Teachers: A day for new physics teachers Social: Network combines fun and physics Forthcoming events

    Science.gov (United States)

    2011-09-01

    Competition: Physics Olympiad hits Thailand Report: Institute carries out survey into maths in physics at university Event: A day for everyone teaching physics Conference: Welsh conference celebrates birthday Schools: Researchers in Residence scheme set to close Teachers: A day for new physics teachers Social: Network combines fun and physics Forthcoming events

  20. Support for the 38th International Conference on High Energy Physics, 3-10 August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Kee [Univ. of Chicago, IL (United States)

    2017-06-19

    The 38th International Conference on High Energy Physics (ICHEP) held in Chicago from August 3 to 10, 2016 was for physicists from around the world to gather to share the latest advancements in particle physics, astrophysics/cosmology, and accelerator science and to discuss plans for major future facilities. DOE funding provided partial support for space rental audio-visual services for scientific presentations at the conference.

  1. EDITORIAL: The Third Nordic Symposium on Plasma Physics

    Science.gov (United States)

    Pecseli, Hans; Trulsen, Jan

    2006-02-01

    The Third Nordic Symposium on Plasma Physics was organized at Lysebu, Oslo, Norway on 4 7 October 2004, under the auspices of the Norwegian Centre for Advanced Study (CAS). The arrangement was preceded by two similar meetings organized at the Risø National Laboratory in Denmark by one of us (HP): Nonlinear Waves in Plasmas, 13 16 August 1985, and The Second Nordic Symposium on Nonlinear Phenomena in Plasmas and Related Topics, 8 12 August 1988. The proceedings from these two previous meetings were published as Physica Scripta Reprint Series No. 2, and RS 16 (with a few copies still being available). The idea of `Nordic' in the title of this latest meeting was interpreted somewhat liberally, by including also scientific organizations in northern Germany, where a collaboration facing Nordic countries comes naturally, and indeed has solid historical roots pointing also to ongoing activities. We hope that this series of meetings can continue, suggesting that the interval should be kept to a minimum of three years to ensure that all participants present new results. (We hope not to have to wait 16 years until next time, though!) The aim of our meetings is to stimulate collaboration among plasma physicists by creating a forum where the participants can exchange ideas and seek inspiration under relaxed conditions. We have the distinct impression that the meeting was very successful in this respect. Many Nordic institutes have widespread international collaborations, and we were happy to welcome also foreign representatives for some of these activities. Altogether 28 contributed talks were presented by 30 participants. The abstracts of all talks were distributed at the meeting. The present proceedings cover a selection of the contributions. One participant had to cancel, but the contribution is included in these proceedings. All the papers have been refereed according to the usual standards of the journal We, the organizers, thank CAS for the generous financial support

  2. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  3. International Conference-Session of the Section of Nuclear Physics of the Physical Sciences Division of RAS

    CERN Document Server

    2014-01-01

    From November 17 to 21, 2014 the Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences and the National Research Nuclear University MEPhI will hold in MEPhI, Moscow, the International Conference-Session of SNP PSD RAS "Physics of Fundamental Interactions". The program of the session covers basic theoretical and experimental aspects of particle physics and related problems of nuclear physics and cosmology, and will consist of 30-minute highlight and review talks as well as 10-15-minute contributed reports. All highlight talks and part of contributed reports will be presented at plenary sessions of the conference. The remaining reports will be presented at the sections which will be formed after receiving of abstracts. On the recommendation of the Organizing Committee reports and talks containing new unpublished results will be published in special issues of journals "Nuclear Physics" and "Nuclear Physics and Engineering". For the institutions belonging to the Rosatom s...

  4. PREFACE: Conference of Theoretical Physics and Nonlinear Phenomena (CTPNP) 2014: ''From Universe to String's Scale''

    Science.gov (United States)

    2014-10-01

    Theoretical physics is the first step for the development of science and technology. For more than 100 years it has delivered new and sophisticated discoveries which have changed human views of their surroundings and universe. Theoretical physics has also revealed that the governing law in our universe is not deterministic, and it is undoubtedly the foundation of our modern civilization. Contrary to its importance, research in theoretical physics is not well advanced in some developing countries such as Indonesia. This workshop provides the formal meeting in Indonesia devoted to the field of theoretical physics and is organized to cover all subjects of theoretical physics as well as nonlinear phenomena in order to create a gathering place for the theorists in Indonesia and surrounding countries, to motivate young physicists to keep doing active researches in the field and to encourage constructive communication among the community members. Following the success of the tenth previous meetings in this conference series, the eleventh conference was held in Sebelas Maret University (UNS), Surakarta, Indonesia on 15 February 2014. In addition, the conference was proceeded by School of Advance Physics at Gadjah Mada University (UGM), Yogyakarta, on 16-17 February 2014. The conference is expected to provide distinguished experts and students from various research fields of theoretical physics and nonlinear phenomena in Indonesia as well as from other continents the opportunities to present their works and to enhance contacts among them. The introduction to the conference is continued in the pdf.

  5. Transport Physics in Reversed Shear Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Levinton, F.M.; Batha, S.H. [Fusion Physics and Technology, Inc., Torrance, CA (United States); Beer, M.A.; Bell, M.G.; Budny, R.V.; Efthimion, P.C.; Mazzucato, E.; Nazikian, R.; Park, H.K.; Ramsey, A.T.; Schmidt, G.L.; Scott, S.D.; Synakowski, E.J.; Taylor, G.; Von Goeler, S.; Zarnstorff, M.C. [Princeton University, NJ (United States). Plasma Physics Laboratory; Bush, C.E. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    Reversed magnetic shear is considered a good candidate for improving the tokamak concept because it has the potential to stabilize MHD instabilities and reduce particle and energy transport. With reduced transport the high pressure gradient would generate a strong off-axis bootstrap current and could sustain a hollow current density profile. Such a combination of favorable conditions could lead to an attractive steady-state tokamak configuration. Indeed, a new tokamak confinement regime with reversed magnetic shear has been observed on the Tokamak Fusion Test Reactor (TFTR) where the particle, momentum, and ion thermal diffusivities drop precipitously, by over an order of magnitude. The particle diffusivity drops to the neoclassical level and the ion thermal diffusivity drops to much less than the neoclassical value in the region with reversed shear. This enhanced reversed shear (ERS) confinement mode is characterized by an abrupt transition with a large rate of rise of the density in the reversed shear region during neutral beam injection, resulting in nearly a factor of three increase in the central density to 1.2 X 10(exp 20) cube m. At the same time the density fluctuation level in the reversed shear region dramatically decreases. The ion and electron temperatures, which are about 20 keV and 7 keV respectively, change little during the ERS mode. The transport and transition into and out of the ERS mode have been studied on TFTR with plasma currents in the range 0.9-2.2 MA, with a toroidal magnetic field of 2.7-4.6 T, and the radius of the q(r) minimum, q{sub min}, has been varied from r/a = 0.35 to 0.55. Toroidal field and co/counter neutral beam injection toroidal rotation variations have been used to elucidate the underlying physics of the transition mechanism and power threshold of the ERS mode.

  6. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  7. Dynacore Final Report , Plasma Physics prototype

    NARCIS (Netherlands)

    Lourens, W.

    2001-01-01

    The generation and behaviour of plasma in a fusion device and its interaction with sur-rounding materials is studied by observing several phenomena that will accompany a plasma discharge. These phenomena are recorded by means of so called Diagnostics. These are instruments that comprise complex elec

  8. Space plasma physics results from Spacelab 1

    Science.gov (United States)

    Burch, J. L.

    1985-01-01

    The Spacelab 1 payload carried several instrument systems which together investigated a number of space plasma phenomena. These experiments used the Space Shuttle Orbiter as a platform for making controlled particle-beam, plasma and neutral gas inputs to the ionosphere and magnetosphere and for observing the outputs produced. Spacelab 1 space-plasma investigations included the Space Experiments with Particle Accelerators (SEPAC), Phenomena Induced by Charged Particle Beams (PICPAB), Atmospheric Emissions Photometric Imaging (AEPI) and the Low Energy Electron Spectrometer and Magnetometer. Among the major phenomena investigated both singly and jointly by these experiments are vehicle charging and neutralization, beam-plasma and wave-particle interactions, anomalous ionization phenomena produced by neutral-gas and plasma injections and several phenomena induced by modulated particle beam injections.

  9. Papers presented at the eleventh topical conference on high-temperature plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report contains the following eleven papers presented at the conference: Neutral Beam Diagnostics for Alcator C-Mod; A Study for the Installation of the TEXT HIBP on DIII-D; Time-domain Triple-probe Measurement of Edge Plasma Turbulence on TEXT-U; A Langmuir/Mach Probe Array for Edge Plasma Turbulence and Flow; Determination of Field Line Location and Safety Factor in TEXT-U; Hybrid ECE Imaging Array System for TEXT-U; First Results from the Phase Contrast Imaging System on TEXT-U; A Fast Tokamak Plasma Flux and Electron Density Reconstruction Technique; Time-series Analysis of Nonstationary Plasma Fluctuations Using Wavelet Transforms; Quantitative Modeling of 3-D Camera Views for Tokamak Divertors; and Variable-frequency Complex Demodulation Technique for Extracting Amplitude and Phase Information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Energy Efficient Transient: Plasma Ignition: Physics and Technology

    Science.gov (United States)

    2007-08-30

    Wang from the University of Southern California on modeling the TPI-assisted combustion. The ethylene data taken on the PDE is intended to assist this...production of said species will assist in the development of a model for transient plasma ignition greatly. The plan for a two week experiment is to...Back-Lighted Thyratron ," 27th International Power Modulator Conference 2006, Washington, D.C., 14-18 May 2006. P.I. - Martin A. Gundersen "Energy

  11. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  12. Regular physical activity influences plasma ghrelin concentration in adolescent girls.

    Science.gov (United States)

    Jürimäe, Jaak; Cicchella, Antonio; Jürimäe, Toivo; Lätt, Evelin; Haljaste, Kaja; Purge, Pritt; Hamra, Jena; von Duvillard, Serge P

    2007-10-01

    We examined the effect of regular physical activity on plasma ghrelin concentration after onset of puberty in girls. In addition, we also examined the association of fasting plasma ghrelin concentration with various plasma biochemical, body composition, and aerobic capacity variables in healthy adolescent girls. Fifty healthy schoolgirls ages 11 to 16 yr were divided either into a physically active (N = 25) or a physically inactive (N = 25) group. The physically active group consisted of swimmers who had trained on an average of 6.2 +/- 2.0 h.wk(-1) for the last 2 yr, whereas the inclusion criterion for the physically inactive group was the participation in physical education classes only. The subjects were matched for age (+/- 1 yr) and body mass index (BMI; +/- 2 kg.m(-2)). Maturation I group (14 matched pairs) included pubertal stages 2 and 3, and maturation II group (11 matched pairs) included pubertal stages 4 and 5. Physically active girls had significantly higher (P ghrelin levels than the physically inactive girls (maturation I: 1152.1 +/- 312.9 vs 877.7 +/- 114.8 pg.mL(-1); maturation II: 1084.0 +/- 252.5 vs 793.4 +/- 164.9 pg.mL(-1)). Plasma ghrelin concentration was negatively related to percent body fat, fat mass, peak oxygen consumption per kilogram of body mass, leptin, estradiol, insulin, and insulin-like growth factor-I (IGF-I) (r > -0.298; P ghrelin concentration using the variables that were significantly associated with ghrelin concentration demonstrated that plasma IGF-I was the most important predictor of plasma ghrelin concentration (beta = -0.396; P = 0.008). Regular physical activity influences plasma ghrelin concentrations in girls with different pubertal maturation levels. Plasma IGF-I concentration seems to be the main determinant of circulating ghrelin in healthy, normal-weight adolescent girls.

  13. Proceedings, 3rd International Satellite Conference on Mathematical Methods in Physics (ICMP13)

    CERN Document Server

    2013-01-01

    The aim of the Conference is to present the latest advances in Mathematical Methods to researchers, post-docs and graduated students acting in the areas of Physics of Particles and Fields, Mathematical Physics and Applied Mathematics. Topics: Methods of Spectral and Group Theory, Differential and Algebraic Geometry and Topology in Field Theory, Quantum Gravity, String Theory and Cosmology.

  14. PREFACE: Part II of the Proceedings of the 25th International Conference on Low Temperature Physics

    Science.gov (United States)

    Kes, Peter; Jochemsen, Reyer

    2009-03-01

    This Issue of Journal of Physics: Conference Series forms Part II of the Proceedings of the 25th International Conference on Low Temperature Physics (LT25) held in Amsterdam, The Netherlands, 6-13 August 2008. Part II contains the papers of short oral and poster presentations. In addition, it provides general information about the LT25 conference, such as a Report from the Organizers, an Activity Report to the IUPAP of the C5 Chairs, an overview of Committees, Sponsors and Exhibitors, and some Conference Statistics. Part I of the Proceedings of LT25 is a special issue of Journal of Physics: Condensed Matter. It contains the majority of the special invited lectures, such as the London Prize Lectures, the IUPAP Young Scientist Award Lectures, the Plenary and Half Plenary and Public Lectures, and the Historical Lectures presented at the conference excursion to Leiden. The JPCM LT25 special issue is available for free for a period of one year from publication (Journal of Physics: Condensed Matter). To ensure the high publication standard mandated by Journal of Physics: Condensed Matter and Journal of Physics: Conference Series, every paper was reviewed by at least one referee before it was accepted for publication. The Editors are indebted to many colleagues for invaluable assistance in the preparation and with the reviewing of the 900 papers appearing in Parts I and II of these Proceedings. In particular, we like to thank Carlo Beenakker, Jeroen van den Brink, Hans Brom, Jos de Jongh, Horst Rogalla, and Fons de Waele. Guest Editors Peter Kes and Reijer Jochemsen Leiden University, The Netherlands Conference logo

  15. Laser Plasma Physics - Forces and Nonlinear Principle

    CERN Document Server

    Hora, Heinrich

    2014-01-01

    This work is an electronic pre-publication of a book manuscript being under consideration in order to provide information to interested researchers about a review of mechanical forces in plasmas by electro-dynamic fields. Beginning with Kelvin's ponderomotive force of 1845 in electrostatics, the hydrodynamic force in a plasma is linked with quadratic force quantities of electric and magnetic fields. Hydrodynamics is interlinked with single particle motion of plasma particles electric field generation and double layers and sheaths due to properties of inhomogeneous plasmas. Consequences relate to laser driven particle acceleration and fusion energy. Beyond the very broad research field of fusion using nanosecond laser pulses based on thermodynamics, the new picosecond pulses of ultrahigh power opened a categorically different non-thermal interaction finally permitting proton-boron fusion with eliminating problems of nuclear radiation.

  16. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  17. Physics of collapses in toroidal helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1998-12-31

    Theoretical model for the collapse events in toroidal helical plasmas with magnetic hill is presented. There exists a turbulent-turbulent transition at a critical pressure gradient, leading to a sudden increase of the anomalous transport. When the magnetic shear is low, the nonlinear excitation of the global mode is possible. This model explains an abrupt growth of the perturbations, i.e., the trigger phenomena. Achievable limit of the plasma beta value is discussed. (author)

  18. 5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2016)

    CERN Document Server

    2016-01-01

    The conference is to be held at Athens, Greece during May 23-26, 2016. The conference aims to promote the knowledge and the development of high-quality research in mathematical fields that have to do with the applications of other scientific fields and the modern technological trends that appear in them, these fields being those of Physics, Chemistry, Biology, Medicine, Economics, Sociology, Environmental sciences etc. All Conference related actions (submission, registration etc) are performed on-line by creating an account. After that, authors can login and have access to a number of tools for submitting a paper, proposing for a workshop, registering, send requests, manage their reviews etc.

  19. Town Meeting on Plasma Physics at the National Science Foundation

    Science.gov (United States)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  20. Plasma Physics Issues in Gas Discharge Laser Development

    Science.gov (United States)

    1991-12-01

    WL-TR-92-2087 PLASMA PHYSICS ISSUES IN GAS DISCHARGE LASER DEVELOPMENT AD-A257 735 ALAN GARSCADDEN MARK J. KUSNER J. GARY EDEN WL/POOC-3 WRIGHT...LASERS INFRARED MOLECULAR jAS LASERS UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL Plasma Physics Issues in Gas Discharge Laser Development Alan Garscadden...the close coupling between body of work was not generally useful in laser development . vibrationally excited nitrogen and CO or CO2 . In fact. the First

  1. Applications of Symmetry Methods to the Theory of Plasma Physics

    OpenAIRE

    Giampaolo Cicogna; Francesco Ceccherini; Francesco Pegoraro

    2006-01-01

    The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-...

  2. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  3. PREFACE: 17th International Conference on the Physics of Highly Charged Ions

    Science.gov (United States)

    2015-01-01

    The 17th edition of the International Conference on the Physics of Highly Charged Ions (HCI 2014) was held in San Carlos de Bariloche, in the southern region of Argentina known as Patagonia, from August 31 to September 5, 2014. This meeting corresponds to a series of HCI conferences, which has been held every other year since 1982 in cities in Europe, USA, Japan and China. This was the first time that the conference took place in Latin America. This edition was organized by a Local Committee made up of physicists mainly from the cities of Bariloche and Rosario and also from Buenos Aires and Bahía Blanca, all sites where research on Atomic Collisions is developed. The conference was attended by delegates coming from 18 countries, more that 23% of whom were women. The field of highly charged ions has seen in recent years a promising evolution originating from bold progress in theory and significant advances in experimental techniques. The HCI conferences aim at bringing together experimentalists and theoreticians from as wide a range of fields as, for instance, Fundamental Aspects, Structure and Spectroscopy, Collisions with Electrons, Ions, Atoms and Molecules, Interaction with Clusters, Surfaces and Solids, Interactions with Photons and Plasmas, Strong Field Processes, and Production, Experimental Developments and Applications. The Scientific Programme, selected by an International Advisory Board, included 5 Review Lectures, 11 Progress Reports, 1 Local Report and 24 Special Reports. In addition, the results of 132 contributed works were presented as poster communications and a Public Lecture on 'The wonders of the Southern Skies' was delivered by an Argentinean expert. Thus, a wide range of subjects comprising a balanced mix of topics was covered throughout the course of the conference. The HCI 2014 was a resounding success for the international and local communities, from both the scientific and social aspects, considering that the attendees and accompanying

  4. PlasmaPy: beginning a community developed Python package for plasma physics

    Science.gov (United States)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  5. Plasma separation: physical separation at the molecular level

    Science.gov (United States)

    Gueroult, Renaud; Rax, Jean-Marcel; Fisch, Nathaniel J.

    2016-09-01

    Separation techniques are usually divided in two categories depending on the nature of the discriminating property: chemical or physical. Further to this difference, physical and chemical techniques differ in that chemical separation typically occurs at the molecular level, while physical separation techniques commonly operate at the macroscopic scale. Separation based on physical properties can in principle be realized at the molecular or even atomic scale by ionizing the mixture. This is in essence plasma based separation. Due to this fundamental difference, plasma based separation stands out from other separation techniques, and features unique properties. In particular, plasma separation allows separating different elements or chemical compounds based on physical properties. This could prove extremely valuable to separate macroscopically homogeneous mixtures made of substances of similar chemical formulation. Yet, the realization of plasma separation techniques' full potential requires identifying and controlling basic mechanisms in complex plasmas which exhibit suitable separation properties. In this paper, we uncover the potential of plasma separation for various applications, and identify the key physics mechanisms upon which hinges the development of these techniques.

  6. Monte Carlo simulations for plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  7. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    Science.gov (United States)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.

  8. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    Science.gov (United States)

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  9. Reaction-diffusion problems in the physics of hot plasmas

    CERN Document Server

    Wilhelmsson, H

    2000-01-01

    The physics of hot plasmas is of great importance for describing many phenomena in the universe and is fundamental for the prospect of future fusion energy production on Earth. Nontrivial results of nonlinear electromagnetic effects in plasmas include the self-organization and self-formation in the plasma of structures compact in time and space. These are the consequences of competing processes of nonlinear interactions and can be best described using reaction-diffusion equations. Reaction-Diffusion Problems in the Physics of Hot Plasmas is focused on paradigmatic problems of a reaction-diffusion type met in many branches of science, concerning in particular the nonlinear interaction of electromagnetic fields with plasmas.

  10. Asilomar conference on managing complexity in high energy physics: A summary and renaming of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Nash, T.

    1987-02-01

    The complex aspects of high energy physics work are briefly described, and approaches to managing them are discussed. Management of software and data are covered. For managing complexity in experimental physics, the choice of building or buying processor systems is addressed and the issues of compatibility and standardization are discussed. (LEW)

  11. Physics of High Temperature, Dense Plasmas.

    Science.gov (United States)

    1984-01-01

    34Investigation of the High-Energy Acceleration Mode in the Coaxial Gun," Phys. Fluids, Suppl., S28, (1964). I. 9. Dattner, A. and Eninger J...34Studies of a Coaxial Plasma Gun," Phys. Fluids, Suppl., S41, (1964). II. 10. Wilcox, J. M., Pugh, E., Dattner, A. and Eninger , J., "Experimental Study of

  12. Research in Pulsed Power Plasma Physics

    Science.gov (United States)

    1993-11-01

    constraints will preclude the use of channels with much with a Tesla coil. Nor is uniformity improved by the use of larger wall radii. a 3 kA prepulse. Driving...Oliphant. 12C. Bruno, J. Delvaux. A. Nicolas . and M. Roche, IEEE Trans. Plasma and P. F. Ottinger. App!. Phys. Lett. 45. 1043 (1984).ISci. PS-IS, 686

  13. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP'09)

    Science.gov (United States)

    Gruntorad, Jan; Lokajicek, Milos

    2010-11-01

    The 17th International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held on 21-27 March 2009 in Prague, Czech Republic. CHEP is a major series of international conferences for physicists and computing professionals from the worldwide High Energy and Nuclear Physics community, Computer Science, and Information Technology. The CHEP conference provides an international forum to exchange information on computing experience and needs for the community, and to review recent, ongoing and future activities. Recent conferences were held in Victoria, Canada 2007, Mumbai, India in 2006, Interlaken, Switzerland in 2004, San Diego, USA in 2003, Beijing, China in 2001, Padua, Italy in 2000. The CHEP'09 conference had 600 attendees with a program that included plenary sessions of invited oral presentations, a number of parallel sessions comprising 200 oral and 300 poster presentations, and an industrial exhibition. We thanks all the presenters, for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Software Components, Tools and Databases, Hardware and Computing Fabrics, Grid Middleware and Networking Technologies, Distributed Processing and Analysis and Collaborative Tools. The conference included excursions to Prague and other Czech cities and castles and a banquet held at the Zofin palace in Prague. The next CHEP conference will be held in Taipei, Taiwan on 18-22 October 2010. We would like thank the Ministry of Education Youth and Sports of the Czech Republic and the EU ACEOLE project for the conference support, further to commercial sponsors, the International Advisory Committee, the Local Organizing Committee members representing the five collaborating Czech institutions Jan Gruntorad (co-chair), CESNET, z.s.p.o., Prague Andrej Kugler, Nuclear Physics Institute AS CR v.v.i., Rez Rupert Leitner, Charles University in Prague, Faculty of Mathematics and

  14. Physical properties of erupting plasma associated with coronal mass ejections

    Science.gov (United States)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  15. Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference

    Science.gov (United States)

    Singh, Bhim S. (Editor)

    2000-01-01

    The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provided the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program and research opportunities and plans for the near future. Consistent with the conference theme "Microgravity Research an Agency-Wide Asset" the conference focused not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. The conference included 14 invited plenary talks, 61 technical paper presentations, 61 poster presentations, exhibits and a forum on emerging research themes focusing on nanotechnology and biofluid mechanics. This web-based proceeding includes the presentation and poster charts provided by the presenters of technical papers and posters that were scanned at the conference site. Abstracts of all the papers and posters are included and linked to the presentations charts. The invited and plenary speakers were not required to provide their charts and are generally not available for scanning and hence not posted. The conference program is also included.

  16. Plasma physics and environmental perturbation laboratory. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Space physics and plasma physics experiments that can be performed from the space shuttle were identified. Potential experiment concepts were analyzed to derive requirements for a spaceborne experiment facility. The laboratory, known as the Plasma Physics and Environmental Perturbation Laboratory consists of a 33-foot pallet of instruments connected to a 25-foot pressurized control module. Two 50-meter booms, two subsatellites, a high power transmitter, a multipurpose accelerator array, a set of deployable canisters, and a gimbaled instrument platform are the primary systems deployed from the pallet. The pressurized module contains all the control and display equipment required to conduct the experiments, and life support and power subsystems.

  17. Plasma physics analysis of SERT-2 operation

    Science.gov (United States)

    Kaufman, H. R.

    1980-01-01

    An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.

  18. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  19. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  20. At the European Physical Society (EPS) 1979 International Conference on High Energy Physics

    CERN Multimedia

    1979-01-01

    To mark CERN's 25th Anniversary this year conference was held in Geneva from 27 June to 4 July, at the International Conference Centre. Here is Abdus Salam addressing theorists (on the first raw from left, Viki Weisskopf, Leon Van Hove, Giuliano Preparata).

  1. The ICTR-PHE 2012 conference : alliance between the physics and medical communities

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The ICTR-PHE 2012 conference, which closed its doors on March 2 after five busy days, sealed the alliance between the physics and medical communities. Some of the most futuristic research in medical physics was presented at the conference. Special emphasis was placed on medical imaging devices, currently used for diagnosis but with the potential to provide crucial real-time monitoring of treatment in the future. Radio-oncologists and radiotherapists represented a large proportion of the doctors and clinicians who attended the conference. With them were also biologists and doctors of nuclear medicine. They presented the state of the art of their research that touches on the genetics and biology of tumours as well as on futuristic drugs that selectively target malignant cells. The future of cancer treatment seems to lie in the personalised approach.

  2. Summary of the ICTR-PHE Physics for Health 2012 conference (with english subtitles)

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The ICTR-PHE 2012 conference, which closed its doors on March 2 after five busy days, sealed the alliance between the physics and medical communities. Some of the most futuristic research in medical physics was presented at the conference. Special emphasis was placed on medical imaging devices, currently used for diagnosis but with the potential to provide crucial real-time monitoring of treatment in the future. Radio-oncologists and radiotherapists represented a large proportion of the doctors and clinicians who attended the conference. With them were also biologists and doctors of nuclear medicine. They presented the state of the art of their research that touches on the genetics and biology of tumours as well as on futuristic drugs that selectively target malignant cells. The future of cancer treatment seems to lie in the personalised approach.

  3. Summary of the ICTR-PHE Physics for Health 2012 conference (with french subtitles)

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The ICTR-PHE 2012 conference, which closed its doors on March 2 after five busy days, sealed the alliance between the physics and medical communities. Some of the most futuristic research in medical physics was presented at the conference. Special emphasis was placed on medical imaging devices, currently used for diagnosis but with the potential to provide crucial real-time monitoring of treatment in the future. Radio-oncologists and radiotherapists represented a large proportion of the doctors and clinicians who attended the conference. With them were also biologists and doctors of nuclear medicine. They presented the state of the art of their research that touches on the genetics and biology of tumours as well as on futuristic drugs that selectively target malignant cells. The future of cancer treatment seems to lie in the personalised approach.

  4. APS presents prizes in fluid dynamics and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation.

  5. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  6. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  7. Computerized tomographic imaging for space plasma physics

    Science.gov (United States)

    Zhang, Yuhong; Coplan, Michael A.; Moore, John H.; Berenstein, Carlos A.

    1990-01-01

    The measurement of plasma electron velocity distribution functions as a problem in imaging and image reconstruction is considered. A model instrument that measures the integral of the distribution function along lines in velocity space is presented. This allows the use of the powerful mathematical and numerical methods that have recently been so successful in other areas of imaging. It is found that this approach leads to classes of instruments that are qualitatively different from contemporary designs. An investigation of different methods of reconstruction of the distribution function from integral measurements reveals that the mathematical tools appropriate to one particular imaging problem may be very different from those required to deal with another.

  8. General conference of the French Society of Physics SFP 2007; Congres general de la Societe Francaise de Physique SFP 2007

    Energy Technology Data Exchange (ETDEWEB)

    Colliex, Ch.; Stephan, O.; Kociak, M.; Nelayah, J.; Gloter, A.; Zobelli, A.; Tence, M.; Girard, B.; Chomaz, Ph.; Nozieres, Ph.; Lebrun, Ph.; Chetelier, M.; Von Oertzen, W.; David, S.; Duchesneau, D.; Etienne, A.I.; Grojean, Ch.; Moortgat, F.; Moreau, G.; Protasov, K.; Taillet, R.; Tournefier, E.; Tuchming, B.; Unal, G.; Sanchez-Palencia, L.; Clement, D.; Lugan, P.; Bouyer, Ph.; Shlyapnikov, G.; Aspect, A.; Boiron, D.; Browaeys, A.; Beugnon, J.; Gaetan, A.; Miroshnychenko, Y.; Messin, J.M.; Grangier, Ph.; Cadoret, M.; Mirandes, E. de; Clade, P.; Guellati-Khelifa, S.; Schwob, C.; Nez, F.; Julien, L.; Biraben, F.; Fasoli, A.; Garbet, X.; Macor, A.; Doveil, F.; Barre, B.; Bauquis, P.R.; Criqui, P.; Ngo, Ch

    2007-07-01

    This document gathers 28 resumes of the presentations made at this SFP-2007 conference. The contributions deal mainly with the following issues: -) the perspectives of nuclear energy, -) the instabilities in fusion plasmas, -) atomic optics, -) experimentations in LHC, and -) neutrinos.

  9. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    Science.gov (United States)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  10. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  11. 3rd International Conference on High-energy Physics and Nuclear Structure

    CERN Document Server

    High energy physics and nuclear structure

    1970-01-01

    In preparing the program for this Conference, the third in the series, it soon became evident that it was not possible to in­ clude in a conference of reasonable duration all the topics that might be subsumed under the broad title, "High Energy Physics and Nuclear Structure. " From their initiation, in 1963, it has been as much the aim of these Conferences to provide some bridges between the steadily separating domains of particle and nuclear physics, as to explore thoroughly the borderline territory between the two -­ the sort of no-man's-land that lies unclaimed, or claimed by both sides. The past few years have witnessed the rapid development of many new routes connecting the two major areas of 'elementary par­ ticles' and 'nuclear structure', and these now spread over a great expanse of physics, logically perhaps including the whole of both subjects. (As recently as 1954, an International Conference on 'Nuclear and Meson Physics' did, in fact, embrace both fields!) Since it is not now possibl...

  12. 1st Joint METU-IPM Conference on LHC Physics

    CERN Document Server

    2015-01-01

    This meeting will focus on the LHC physics as well as upgrades. It intends to introduce the subjects to the young students and scientists of the region. The main experimental and technical topics related to the LHC will be reviewed by the leading scientists of the field.

  13. Twentieth ANZIP condensed matter physics meeting. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope

  14. PREFACE: 1st International Conference in Applied Physics and Materials Science

    Science.gov (United States)

    2015-06-01

    We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host

  15. Structure and structure-preserving algorithms for plasma physics

    Science.gov (United States)

    Morrison, P. J.

    2016-10-01

    Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.

  16. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  17. International Conference on Differential Equations and Mathematical Physics

    CERN Document Server

    Saitō, Yoshimi

    1987-01-01

    The meeting in Birmingham, Alabama, provided a forum for the discussion of recent developments in the theory of ordinary and partial differential equations, both linear and non-linear, with particular reference to work relating to the equations of mathematical physics. The meeting was attended by about 250 mathematicians from 22 countries. The papers in this volume all involve new research material, with at least outline proofs; some papers also contain survey material. Topics covered include: Schrödinger theory, scattering and inverse scattering, fluid mechanics (including conservative systems and inertial manifold theory attractors), elasticity, non-linear waves, and feedback control theory.

  18. Plasma Physics Research at an Undergraduate Institution

    Science.gov (United States)

    Padalino, Stephen

    2007-11-01

    Undergraduate research experiences have motivated many physics majors to continue their studies at the graduate level. The Department of Physics and Astronomy at SUNY Geneseo, a primarily undergraduate institution, recognizes this simple reality and is committed to ensuring research opportunities are available to interested majors beginning as early as their freshman year. Every year for more than a decade, as many as two dozen students and 8 faculty members have worked on projects related to high energy density physics and inertial confinement fusion during the summer months and the academic year. By working with their research sponsors, it has been possible to identify an impressive number of projects suitable for an institution such as Geneseo. These projects tend to be hands-on and require teamwork and innovation to be successful. They also take advantage of in-house capabilities such as the 2 MV tandem pelletron accelerator, a scanning electron microscope, a duoplasmatron ion deposition system and a 64 processor computing cluster. The end products of their efforts are utilized at the sponsoring facilities in support of nationally recognized programs. In this talk, I will discuss a number of these projects and point out what made them attractive and appropriate for an institution like Geneseo, the direct and indirect benefits of the research opportunities for the students and faculty, and how the national programs benefited from the cost-effective use of undergraduate research. In addition, I will discuss the importance of exposure for both students and faculty mentors to the larger scientific community through posters presentations at annual meetings such as the DPP and DNP. Finally, I will address the need for even greater research opportunities for undergraduate students in the future and the importance of establishing longer ``educational pipelines'' to satisfy the ever growing need for top-tier scientists and engineers in industry, academia and the

  19. Physics considerations for laser-plasma linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  20. Physics of liquid and crystalline plasmas: Future perspectives

    Science.gov (United States)

    Morfill, G. E.

    It has been shown that under certain conditions "complex plasmas" (plasma containing ions, electrons and charged microspheres) may undergo spontaneous phase changes to become liquid and crystalline, without recombination of the charge components. Hence these systems may be regarded as new plasma states "condensed plasmas". The ordering forces are mainly electrostatic, but dipolar effects, anisotropic pressure due shielding, ion flow focussing etc. may all play a role, too. Complex plasmas are of great interest from a fundamental research point of view because the individual particles of one plasma component (the charged microspheres) can be visualised and hence the plasma can be studied at the kinetic level. Also, the relevant time scales (e.g. 1/plasma frequency) are of order 0.1 sec, the plasma processes occur practically in "slow motion". We will discuss some physical processes (e.g. wave propagation, shocks, phase transitions) of these systems and outline the potential of the research for the understanding of strongly coupled systems. Technologically, it is expected that colloidal plasmas will also become very important, because both plasma technology and colloid technology are widely developed already. In this overview first the basic forces between the particles are discussed, then the phase transitions, the lattice structures and results from active experiments will be presented. Finally the future perspectives will be discussed, from the scientific potential point of view and the experimental approaches in the laboratory and in space. Experiments under microgravity conditions are of great importance, because the microspheres are 10's of billions times heavier than the ions.

  1. Physics of High Performance Dueterium-Tritium Plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K. M.; White, R.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K. L.; Wurden, G. A.; Batha, S.; Lamarche, P.; LeBlanc, B.; Levinton, F. M.; Beer, M.; Bell, M. G.; Bell, R. E.; Belov, A.; Fredrickson, E. D.; Fu, G. Y.; Furth, H. P.; Gorelenkov, N. N.; Krasilnikov, A. V.; Meade, D. M.; Medley, S. S.; Mika, R.; Mikkelsen, D. R.; Mirnov, S. V.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scott, S. D.; Semenov, I.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Dorland, W.; Phillips, P.; Bretz, N. L.; Budny, R.; Bush, C.E.; Grek, B.; Grisham, L. R.; Hammett, G. W.; Herrmann, H. W.; Herrmann, M.; Hill, K. W.; Hogan, G. R.; Hosea, J. C.

    1996-01-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production,isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high -li) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF-heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-li discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier.It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  2. Physics of high performance deuterium-tritium plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K.M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States); Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I{sub i}) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I{sub i} discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  3. 2nd Annual Conference of Bangladesh Medical Physics Society

    Directory of Open Access Journals (Sweden)

    Bangladesh Medical Physics Society (BMPS

    2013-10-01

    Full Text Available Following abstracts proceedings are available in PDF:Challenges in brachytherapy dosimetryEssentials of periodic QA in radiation therapyInterventional radiotherapy or brachytherapy: new challenges for a successful techniqueExternal beam radiotherapy and high dose rate (HDR brachytherapy treatment for carcinoma cervix practice in BPKMCH, Bharatpur, NepalTransition from 2D to 3D-CRT (NICRH experienceConformal HDR brachytherapy for prostate cancer: comparison between boost and monotherapyImportance and procedures of quality control of diagnostic CT and CT simulator using for modern radiation therapyMedical physics and biomedical engineering education in Gono UniversityPlan verification in tomotherapy using 3D semiconductor detectorComparison of the miniaturized Co-60 and Ir-192 sources in HDR brachytherpy applicationsA Supine based cranio-spinal irradiation technique using moving field junctions radiotherapyStatistical variation and significance in the responses of thyroid follicular cells of two areas of Bangladesh due to radiotherapy into head and neck regionDetermining proper patient’s set-up parameters like IFD, gantry angles, and field width in Ca. breast to achieve precise treatment, in a center where TPS & simulators are not availableAccidental exposure of cancer patient and its preventionComparison of physical and enhanced dynamic wedges beam characteristics for 6 MV photon energy using pencil-beam convolution (PBC algorithmProcedure to set up a radiotherapy unit & low cost unit analysisPatient setup verification and quality control (QC of electronic portal imaging device (EPID

  4. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  5. PREFACE: International conference on Computer Simulation in Physics and beyond (CSP2015)

    Science.gov (United States)

    2016-02-01

    The International conference on Computer Simulations in Physics and beyond (CSP2015) was held from 6-10 September 2015 at the campus of the Moscow Institute for Electronics and Mathematics (MIEM), National Research University Higher School of Economics, Moscow. Computer simulations are in increasingly popular tool for scientific research, supplementing experimental and analytical research. The main goal of the conference is contributing to the development of methods and algorithms which take into account trends in hardware development, which may help with intensive research. The conference also allowed senior scientists and students to have the opportunity to speak each other and exchange ideas and views on the developments in the area of high-performance computing in science. We would like to take this opportunity to thank our sponsors: the Russian Foundation for Basic Research, Federal Agency of Scientific Organizations, and Higher School of Economics.

  6. 1st International Conference on Machine Learning for Cyber Physical Systems and Industry 4.0

    CERN Document Server

    Beyerer, Jürgen

    2016-01-01

    The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.

  7. Japan - UK Conference: Trends in Physics and Chemistry Education in Secondary Schools

    Science.gov (United States)

    1998-11-01

    This conference, held in Tokyo between 3-5 April 1998, was the most recent product of a now longstanding involvement between British and Japanese physics teachers which has grown out of a personal friendship between Brenda Jennison (Cambridge University and Vice Chair of the Education Group) and Tae Ryu (Sophia University). For a number of years British teachers have hosted Japanese counterparts at the annual ASE meetings and in visits to schools following the conference. For this conference a team of four physicists, Brenda Jennison, lan Lawrence (King's School Worcester), Philip Britton (Leeds Grammar School) and Phil Scott (University of Leeds) travelled to Japan to contribute to a conference and visit schools and University Departments. Feelings on reading a conference report can too often resemble the experience of being shown a friend's holiday snaps. They are clearly very interesting but equally clearly your friend is enjoying it more than you are, because the snaps are rekindling memories and thoughts. This set of reflections is an attempt to report on just four of those memories and thoughts rather than describe the pictures. Why organize an international conference? The conference was an event that almost took more months of tireless organization than it lasted in hours. It was conceived and brought to fruition amongst a welter of e-mail communications between Brenda Jennison, Tae Ryu and Maurice Jenkins of the British Council, who sponsored the event. Given this immense organizational task, just why did we bother? What can be gained by holding such an international event? The significant benefit of discussing issues between two cultures is clarifying which are the issues that are intrinsically due to the nature of physics teaching rather than the extrinsic effects of educational systems and customs. Unsurprisingly pupil motivation, pupil numbers, relevance, `up-to-date-ness' and the role of mathematics emerged as concerns in both cultures. Also there are

  8. Summary Talk of the X Latin American Workshop on Plasma Physics

    CERN Document Server

    Opher, R

    2004-01-01

    Of the many important topics that were discussed at the workshop, I summarize and comment on 25 presentations, which I found to be particularly interesting. They fall into all of the areas covered in the conference: basic plasma phenomena, space and astrophysical plasmas, technological applications of plasma, and thermonuclear fusion.

  9. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  10. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  11. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiationhydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of selfheating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  12. 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics

    CERN Document Server

    Passante, Roberto; Trapani, Camillo

    2016-01-01

    This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.

  13. American Nuclear Society 1994 student conference eastern region

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains abstracts from the 1994 American Nuclear Society Student Conference. The areas covered by these abstracts are: fusion and plasma physics; nuclear chemistry; radiation detection; reactor physics; thermal hydraulics; and corrosion science and waste issues.

  14. AINSE`s 40th anniversary conference. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Highlights of 40 years of activity of the Australian Institute of Nuclear Science and Engineering (AINSE) were the main focus of this conference. Topics covered include nuclear physics, plasma physics, radiation chemistry, radiation biology, neutron diffraction, nuclear techniques of analysis and other relevant aspects of nuclear science and technology. The conference handbook contains the summaries of the 78 papers and posters presented and the list of participants

  15. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    Science.gov (United States)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  16. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.

    Science.gov (United States)

    Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  17. PREFACE: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences

    Science.gov (United States)

    Kosmas, Theocharis; Vagenas, Elias; Vlachos, Dimitrios

    2013-02-01

    The first International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) took place in Budapest, Hungary, from Monday 3 to Friday 7 September 2012. The conference was attended by more than 130 participants, and hosted about 290 oral, poster and virtual papers by more than 460 pre-registered authors. The first IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields in which mathematical modelling is used, such as theoretical/mathematical physics, neutrino physics, non-integrable systems, dynamical systems, computational nanoscience, biological physics, computational biomechanics, complex networks, stochastic modelling, fractional statistics, DNA dynamics, and macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, two parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The mounting question is whether this occurred accidentally, or whether IC-MSQUARE is a necessity in the field of physical and mathematical modelling. For all of us working in the field, the existing and established conferences in this particular field suffer from two distinguished and recognized drawbacks: the first is the increasing orientation, while the second refers to the extreme specialization of the meetings. Therefore, a conference which aims to promote the knowledge and development of high-quality research in mathematical fields concerned with applications of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology, environmental sciences etc., appears to be a necessity. This is the key role that IC-MSQUARE will play. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contributions to IC-MSQUARE. We would also

  18. Material science and Condensed matter Physics. 8th International Conference. Abstracts.

    Science.gov (United States)

    Kulyuk, L. L.; Paladi, Florentin; Canter, Valeriu; Nikorich, Valentina; Filippova, Irina

    2016-08-01

    The book includes the abstracts of the communications presented at the 8th International Conference on Materials Science and Condensed Matter Physics (MSCMP 2016), a traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP).A total of 346 abstracts has been included in the book. The Conference programm included plenary lectures, topical keynote lectures, contributed oral and poster presentations distributed into 7 sections: * Condensed Matter Theory; * Advanced Bulk Materials; * Design and Structural Characterization of Materials; * Solid State Nanophysics and Nanotechnology; * Energy Conversion and Storage. Solid State Devices; * Surface Engineering and Applied Electrochemistry; * Digital and Optical holography: Materials and Methods. The abstracts are arranged according to the sections mentioned above. The Abstracts book includes a table of matters at the beginning of the book and an index of authors at the finish of the book.

  19. Trieste conference on digital microelectronics and microprocessors in particle physics: Summary and concluding remarks

    Energy Technology Data Exchange (ETDEWEB)

    Nash, T.

    1988-08-01

    This paper is a written version of the Concluding Remarks presented at the International Conference on the Impact of Digital Microelectronics and Microprocessors on Particle Physics. The Conference emphasized on-line data acquisition and triggering problems in high energy physics. Among the participants there was a clearly growing consensus that as these real time systems become larger they require more attention from the beginning to overall system coherence and manageability issues. We consider what this means for SSC/LHC era detectors. Given the interesting results on pixel silicon, neural networks, and parallel microprocessor based computers presented at Trieste, we speculate on some surprisingly simple, though still very radical, ideas on systems solutions for those huge detectors.

  20. Large Hadron Collider Physics (LHCP2017) conference | 15-20 May 2017 | Shanghai

    CERN Multimedia

    2016-01-01

    The fifth Annual Large Hadron Collider Physics will be held in Shanghai and hosted by Shanghai Jiao Tong University in the period of May 15-20, 2017. The main goal of the conference is to provide intense and lively discussions between experimenters and theorists in such research areas as the Standard Model Physics and Beyond, the Higgs Boson, Supersymmetry, Heavy Quark Physics and Heavy Ion Physics as well as to share a recent progress in the high luminosity upgrades and future colliders developments.     The LHCP2017 website: http://lhcp2017.physics.sjtu.edu.cn/ Event date: 15 - 20 May 2017 Location: Shanghai, China

  1. 2016 International Conference on Physics and Mechanics of New Materials and Their Applications

    CERN Document Server

    Chang, Shun-Hsyung; Jani, Muaffaq

    2017-01-01

    This book presents 50 selected peer-reviewed reports from the 2016 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2016 (Surabaya, Indonesia, 19–22 July, 2016). The Proceedings are devoted to processing techniques, physics, mechanics, and applications of advanced materials. As such, they examine a wide spectrum of nanostructures, ferroelectric crystals, materials and composites, as well as other promising materials with special properties. They present nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques, and physical and mechanical studies of the structural and physical-mechanical properties of the materials discussed.  Further, a broad range of original mathematical and numerical methods is applied to solve various technological, mechanical and physical problems, which are inte resting for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilitie...

  2. PREFACE: 7th International Conference on Applications of Physics in Financial Analysis

    Science.gov (United States)

    Takayasu, M.; Watanabe, T.; Ikeda, Y.; Takayasu, H.

    2010-04-01

    This volume contains contributed papers from the 7th international conference on 'Applications of Physics in Financial Analysis (APFA)' held at Tokyo on 1-5 March 2009. The conference was organized jointly by Tokyo Institute of Technology and Hitotsubashi University with support from the Research Institute of Economy, Trade, and Industry (RIETI), Physical Society of Japan, Japanese Economic Association, Information Processing Society of Japan, Japanese Society for Artificial Intelligence, and Japan Association for Evolutionary Economics. The first APFA conference (APFA1) was held in 1999 at Dublin, followed by APFA2 at Liege in 2000, APFA3 at London in 2001, APFA4 at Warsaw in 2003, APFA5 at Torino in 2006, and APFA6 at Lisbon in 2007. The 7th APFA conference, which is the first meeting held outside Europe, was attended by 223 researchers in physics and economics from 23 countries world-wide. In keeping with past APFA conferences, we paid special attention to issues in financial markets, which turned out to be very timely. The conference was held in March 2009, in the middle of the global financial crisis that originally started in the US and spread quickly to every corner of the world. The topic of the conference is 'New Approaches to the Analysis of Large Scale Business and Economic data'. The rapid development of information and communication technology has enabled financial/non-financial firms to keep detailed records of their business activities in the form of, for example, tick-by-tick data in financial markets, point-of-sale (POS) data on individual household's purchasing activity, and interfirm network data describing relationships among firms in terms of suppliers/customers transactions and ownerships. This growth in the scope and amount of business data available to researchers has led to a far-reaching expansion in research possibilities. Researchers not only in social sciences but also in physics, mathematics, and information sciences have recently

  3. 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics

    Science.gov (United States)

    Suris, Robert A.; Vorobjev, Leonid E.; Firsov, Dmitry A.

    2015-01-01

    The 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics was held on November 24 - 28 at St. Petersburg Polytechnic University. The program of the Conference included semiconductor technology, heterostructures with quantum wells and quantum dots, opto- and nanoelectronic devices, and new materials. A large number of participants with about 200 attendees from many regions of Russia provided a perfect platform for the valuable discussions between students and experienced scientists. The Conference included two invited talks given by a corresponding member of RAS P.S. Kopyev ("Nitrides: the 4th Nobel Prize on semiconductor heterostructures") and Dr. A.V. Ivanchik ("XXI century is the era of precision cosmology"). Students, graduate and postgraduate students presented their results on plenary and poster sessions. The total number of accepted papers published in Russian (the official conference language) was 92. Here we publish 18 of them in English. Like previous years, the participants were involved in the competition for the best report. Certificates and cash prizes were awarded to a number of participants for the presentations selected by the Program Committee. Two special E.F. Gross Prizes were given for the best presentations in semiconductor optics. Works with potential applications were recommended for participation in the following competition for support from the Russian Foundation for Assistance to Small Innovative Enterprises in Science and Technology. The Conference was supported by the Russian Foundation for Basic Research, the "Dynasty" foundation and the innovation company "ATC - Semiconductor Devices", St. Petersburg. The official Conference website is http://www.semicond.spbstu.ru/conf2014-eng.html

  4. CALOR2012 XVth International Conference on Calorimetry in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, Nural .

    2015-05-04

    The International Conferences on Calorimetry in High Energy Physics, or the CALOR series, have always been where the calorimeter experts come together to review the state of calorimetry and bring forth new ideas every two years. The fteenth conference, CALOR2012, in Santa Fe was no exception. Although they were built roughly a decade ago, we are now witnessing the exceptional power of the LHC calorimeters and the crucial role they have been playing in the discovery of the 125 GeV Higgs-like boson. As we ruminate on the coming generation of experiments at the next (linear) collider and on the upgrades at the LHC, we are heartened by the substantial advances we made in calorimetry in the last decade. These advances will certainly help uncover new physics in the years to come, not only at colliders but also in astroparticle experiments that take advantage of natural elements such as air, water, and ice. The proceedings were published by the IOP in Journal of Physics, Vol 404 2011. The conference web site is calor2012.ttu.edu.

  5. Preface of 16th International conference on Defects, Recognition, Imaging and Physics in Semiconductors

    Science.gov (United States)

    Yang, Deren; Xu, Ke

    2016-11-01

    The 16th International conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP-XVI) was held at the Worldhotel Grand Dushulake in Suzhou, China from 6th to 10th September 2015, around the 30th anniversary of the first DRIP conference. It was hosted by the Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences. On this occasion, about one hundred participants from nineteen countries attended the event. And a wide range of subjects were addressed during the conference: physics of point and extended defects in semiconductors: origin, electrical, optical and magnetic properties of defects; diagnostics techniques of crystal growth and processing of semiconductor materials (in-situ and process control); device imaging and mapping to evaluate performance and reliability; defect analysis in degraded optoelectronic and electronic devices; imaging techniques and instruments (proximity probe, x-ray, electron beam, non-contact electrical, optical and thermal imaging techniques, etc.); new frontiers of atomic-scale-defect assessment (STM, AFM, SNOM, ballistic electron energy microscopy, TEM, etc.); new approaches for multi-physic-parameter characterization with Nano-scale space resolution. Within these subjects, there were 58 talks, of which 18 invited, and 50 posters.

  6. PREFACE: The International Conference on Theoretical Physics `Dubna-Nano2008'

    Science.gov (United States)

    Osipov, V. A.; Nesterenko, V. O.; Shukrinov, Y. M.

    2008-07-01

    The International Conference on Theoretical Physics `Dubna-Nano2008' was held on 7-11 July 2008 at the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, Russia. The conference provided the opportunity for the presentation and discussion of theoretical and experimental advances in the rapidly growing area of the nanophysics, with the accent on its theoretical aspects. The multidisciplinary character of the conference allowed an effective exchange of ideas between different areas of nanophysics. The following topics were covered: carbon nanosystems (fullerenes, nanotubes, graphene), quantum dots, electron and spin transport, spectroscopy and dynamics of atomic clusters, Josephson junctions, bio-complexes, and applications of nanosystems. Approximately 90 scientists from 16 countries participated in the conference. The program included 48 oral talks and 40 posters. The 51 contributions are included in this proceedings. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference so successful. We are deeply indebted to the members of the International Advisory Committee (Professors T Ando, S Datta, A V Eletskii, J Fabian, F Guinea, P Hawrylak, K Kadowaki, T Koyama, Yu I Latushev, N F Pedersen, P-G Reinhard, J M Rost, A Ya Vul') and the Local Organizing Committee for their fruitful work. The financial support of BLTP JINR, Russian Foundation for Basic Research, Heisenberg-Landau Program and Bogoliubov-Infeld Program was of a great importance. Additional information about `Dubna-Nano2008' is available at the homepage http://theor.jinr.ru/~nano08. Vladimir Osipov, Valentin Nesterenko and Yury Shukrinov Editors

  7. 24th IUPAP Conference on Computational Physics (2012): Introduction, acknowledgements, program

    Science.gov (United States)

    Baiotti, Luca; Takabe, Hideaki

    2013-08-01

    Welcome to CCP2012, held next to the K computer site in Kobe and in Japan's best season. The Conference on Computational Physics (CCP) is organized annually under the auspices of Commission 20 of the IUPAP (International Union of Pure and Applied Physics). This is the first time it has been held in Japan. I was asked to be the chairman about two and half years ago and when I accepted the request I decided to make the conference very unique and different from the traditional style of CCP. I was not satisfied when I attended big conferences where the parallel sessions are classified with the name of the research field. These days we have many opportunities to attend domestic and international conferences, where it is possible to listen to many talks on the same topics. If the topics are very new, then the conference is very useful for my research. However, I wanted to have a conference where I could listen to a variety of topics carried out with the same method. Computational science is very unique and it is easy to organize a new type of conference with the classification in the horizontal direction of the matrix made of the names of research fields and the name of numerical methods. You may be able to list the names of methods easily; finite difference, Monte Carlo, particle, molecular dynamics and so on. I was dissatisfied to find that most conferences focus solely on research fields and the method that brings to the scientific research is not highlighted as much. I wanted to listen to topics from fundamental physics to industrial science in a systematic way. In order to create such a conference, a small number of experts is not enough, so I asked for the help of more than 100 Japanese computer scientists, in a variety of fields. We called this group the Japan Advisory Board (JAB). I asked them to recommend a member of the International Advisory Board (IAB). Then, we could start making the list of plenary and invited speakers. This was almost the end of March last

  8. PREFACE: 13th Anglo-French Physical Acoustics Conference (AFPAC2014)

    Science.gov (United States)

    Gélat, Pierre; Pinfield, Valerie; Cegla, Frederic; Saffari, Nader; Lhémery, Alain

    2015-01-01

    The 13th Anglo-French Physical Acoustics Conference (AFPAC) was held at Selsdon Park Hotel, Croydon near London, United Kingdom, on 15-17 January 2014. The venue was an excellent location to exchange ideas, regardless whether this happened in the conference room, over lunch at the drinks reception in the conservatory, in the oak panelled bar after the conference dinner or in the local pub next door. Over 45 papers were presented at the conference. There were over 60 delegates from institutions covering four countries. The invited speakers from the French side shared their knowledge about the generation of sound from supersonic jets (Prof Christophe Bailly, École Centrale de Lyon) and the application of ultrasonic microscropy in the nuclear industry (Prof Gilles Despaux, Université de Montpellier). The UK invited speakers included Prof Malcolm Povey (University of Leeds), who talked about characterisation of the nucleation of crystals using ultrasound, and Prof Bruce Drinkwater (University of Bristol), who captured the audience by speaking about "ultrasonic lassos" and ultrasonic particle manipulation. There was a strong representation of laser ultrasonics at the meeting with scientific considerations of problems and applications that range from the macro to the nanoscale. There were also numerous papers on the interaction of elastic and acoustic waves with complex materials and scattering of these waves by materials such as foams or cavitating liquids. Presentations on biomedical applications are increasingly being featured at AFPAC meetings. Talks this year covered topics such as imaging and high-intensity focused ultrasound for therapeutic applications. Finally, there were also several contributions from the field of Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) with talks ranging from the determination of the properties of in vivo wood to ultrasonic scattering techniques and tomographic reconstructions to recover the size and shape of

  9. Physical properties of dense, low-temperature plasmas

    Science.gov (United States)

    Redmer, Ronald

    1997-04-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied within linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). This linear response method is applied to partially ionized systems such as dense, low-temperature plasmas. Here, the conductivity changes from nonmetallic values up to those typical for

  10. Quasiparticle lifetimes and infrared physics in QED and QCD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, J.P. [CEA-Saclay, Gif-sur-Yvette (France)

    1997-09-22

    The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is plagued with infrared divergences which are not eliminated by the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of longwavelength, quasistatic, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed in a non-perturbative treatment based on a generalization of the Bloch-Nordsieck model at finite temperature. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a non-exponential damping at large times: S{sub R}(t) {approx} exp(-{alpha}T t ln{omega}{sub p}t), where {omega}{sub p} = eT/3 is the plasma frequency and {alpha} = e{sup 2}/4{pi}.

  11. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  12. Center for Theoretical Underground Physics and Related Fields. CETUP2015/ Particle Physics and Cosmology Conference. PPC2015)

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbinska, Barbara [Dakota State Univ., Madison, SD (United States)

    2016-02-22

    For last five years Center for Theoretical Underground Physics and Related Areas (CETUP*) serves as a collaboration point for scientists from around the world interested in theoretical and experimental aspects of underground science. The mission of CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Scientists invited to participate in the program will not only provide theoretical support to the underground science, but they will also examine core questions of the 21st century including: What is dark matter? How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, How were the heavy elements made?, What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? How do supernovae explode? Studies of Neutrino Physics and Dark Matter are of high interest to particle and nuclear physicists, astrophysicists and cosmologists. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. This year summer program was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle physics, nuclear physics and astrophysics and cosmology. CETUP*2015 consisted of 5 week long program (June 14 – July 18, 2015) covering various theoretical and experimental aspects in these research areas. The two week long session on Dark Matter physics (June 14 – June 26) was followed by two week long program on Neutrino physics (July 6 – July 18). The international conference entitled IXth International Conference on Interconnection Between Particle Physics and Cosmology (PPC) was hosted at CETUP

  13. The role of magnetohydrodynamics in heliospheric space plasma physics research

    Science.gov (United States)

    Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan

    1988-01-01

    Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.

  14. 2015 International Conference on Physics and Mechanics of New Materials and their Applications

    CERN Document Server

    Chang, Shun-Hsyung; Topolov, Vitaly

    2016-01-01

    This proceedings volume presents selected and peer reviewed 50 reports of the 2015 International Conference on “Physics and Mechanics of New Materials and Their Applications” (Azov, Russia, 19-22 May, 2015), devoted to 100th Anniversary of the Southern Federal University, Russia. The book presents processing techniques, physics, mechanics, and applications of advanced materials. The book is concentrated on some nanostructures, ferroelectric crystals, materials and composites and other materials with specific properties. In this book are presented nanotechnology approaches, modern piezoelectric techniques, physical and mechanical studies of the structure-sensitive properties of the materials. A wide spectrum of mathematical and numerical methods is applied to the solution of different technological, mechanical and physical problems for applications. Great attention is devoted to novel devices with high accuracy, longevity and extended possibilities to work in a large scale of  temperatures and pressure r...

  15. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    Science.gov (United States)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  16. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children.

    Science.gov (United States)

    Bezrati, Ikram; Hammami, Raouf; Ben Fradj, Mohamed Kacem; Martone, Domenico; Padulo, Johnny; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha

    2016-11-01

    Vitamin D is thought to regulate skeletal muscle function and boost physical performance. The aim of this study was to assess the relationship between vitamin D and physical performance in physically active children. This cross-sectional study included 125 children who practice football as a leisure activity. Plasma 25-hydroxyvitamin D (25-OHD) was assessed using a chemiluminescence immunoassay method. Vitamin D inadequacy was defined as 25-OHD D inadequacy may limit exercise performance. Further research should verify whether correction of vitamin D deficiency enhances physical performance.

  17. Seventh annual National Conference of Black Physics students. Summary report, February 12--13, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The 1993 conference hosted a wide variety of presentations and activities. Continuing the NCBPS tradition, we offered technical physics presentations, tours of physics research facilities, a career and educational fair, technical presentations by students, dinner speakers and a dance. New this, year were the interactive workshops (described in the section entitled ``New Features``). We included a ``celebrity`` speaker -- Col. Fred Gregory, an African-American NASA astronaut This presentation was featured on the local TV news. There were two last minute changes to the program They included: the replacement of Howard Adams and Tim Childs with Sylvia Wilson and Warren Buck, respectively. Howard Adams was ill and canceled a couple of days in advance. He recommended Sylvia Wilson, also of the GEM Program, as a replacement speaker. The substitution worked quite well, especially since our program was lacking in female speakers. Tim Childs missed his flight so Warren Buck, who attended the conference as an observer, generously filled in at the last minute. We ran a brief survey of the corporate, governmental and educational recruiters who were part of our Career/Educational Fair. Of 15 recruiters, 9 responded to the survey. All who responded said they were pleased with the conference arrangements. See Appendix C for the complete results of the Survey for Recruiters.

  18. PREFACE: 16th International Conference on Calorimetry in High Energy Physics (CALOR 2014)

    Science.gov (United States)

    Novotny, Rainer W.

    2015-02-01

    The XVIth International Conference on Calorimetry in High Energy Physics - CALOR 2014 - was held in Giessen, Germany from 6-11 April 2014 at the Science Campus of the University. It was hosted by the Justus-Liebig-University and the HIC for FAIR Helmholtz International Center. The series of conferences on calorimetry were started in 1990 at Fermilab and are focusing primarily on operating and future calorimeter systems within the Hadron and High-Energy Physics community without neglecting the impact on other fields such as Astrophysics or Medical Imaging. Confirmed by the impressive list of over 70 oral presentations, 5 posters and over 100 attendees, the field of calorimetry appears alive and attractive. The present volume contains the written contributions of almost all presentations which can be found at http://calor2014.de. Time slots of 15 or 30 minutes including discussion were allocated. The conference was accompanied by a small exhibition of several industrial companies related to the field. The day before the opening of the scientific program, Richard Wigmans gave an excellent and vivid tutorial on basic aspects on calorimetry meant as an introduction for students and conference attendees new in the field. The opening ceremony was used to give an impression of the present and future status and the scientific program of the new FAIR facility nearby at Darmstadt presented by Klaus Peters from GSI. The conference program of the first day was dedicated to the performance and required future upgrade of the LHC experiments, dominated by ATLAS, CMS and LHCb. The program of the next day contained specific aspects on electronics and readout as well as calorimetry in outer space. Several contributions discussed in detail new concepts for hadron calorimeters within the CALICE collaboration completed by a session on sampling calorimeters. The next sections were dedicated to operating and future calorimeters at various laboratories and covering a wide range of

  19. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    Science.gov (United States)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  20. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    Science.gov (United States)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  1. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    Science.gov (United States)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  2. 21st International Conference on Few-Body Problems in Physics

    CERN Document Server

    2015-01-01

    The 21st International Conference on Few-Body Problems in Physics (FB21) will take place at the Crowne Plaza Chicago Metro Downtown Hotel in the West Loop area of Chicago, Illinois, USA, from May 18th to 22nd, 2015. The first conference of this series took place in London in 1959 and subsequent meetings were held in Brela (1967), Birmingham (1969), Budapest (1971), Los Angeles (1972), Laval (1974), Delhi (1976), Graz (1978), Eugene (1980), Karlsruhe (1983), Sendai (1986), Vancouver (1989), Adelaide (1992), Williamsburg (1994), Groningen (1997), Taipei (2000), Durham (2003),Santos (2006),Bonn (2009),and Fukuoka (2012) see also "History". FB21 will be conducted with the principles passed by the General Assembly in 2008. In particular, no bona fide scientist will be excluded from participation on the grounds of national origin, nationality, or political considerations unrelated to science.

  3. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010)

    Science.gov (United States)

    Lin, Simon C.; Shen, Stella; Neufeld, Niko; Gutsche, Oliver; Cattaneo, Marco; Fisk, Ian; Panzer-Steindel, Bernd; Di Meglio, Alberto; Lokajicek, Milos

    2011-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at Academia Sinica in Taipei from 18-22 October 2010. CHEP is a major series of international conferences for physicists and computing professionals from the worldwide High Energy and Nuclear Physics community, Computer Science, and Information Technology. The CHEP conference provides an international forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18 month intervals, alternating between Europe, Asia, America and other parts of the world. Recent CHEP conferences have been held in Prauge, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, California(2003); Beijing, China (2001); Padova, Italy (2000) CHEP 2010 was organized by Academia Sinica Grid Computing Centre. There was an International Advisory Committee (IAC) setting the overall themes of the conference, a Programme Committee (PC) responsible for the content, as well as Conference Secretariat responsible for the conference infrastructure. There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 260 oral and 200 poster presentations, and industrial exhibitions. We thank all the presenters, for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Software Engineering, Data Stores, and Databases, Distributed Processing and Analysis, Computing Fabrics and Networking Technologies, Grid and Cloud Middleware, and Collaborative Tools. The conference included excursions to various attractions in Northern Taiwan, including Sanhsia Tsu Shih Temple, Yingko, Chiufen Village, the Northeast Coast National Scenic Area, Keelung, Yehliu Geopark, and Wulai Aboriginal Village

  4. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012)

    Science.gov (United States)

    Ernst, Michael; Düllmann, Dirk; Rind, Ofer; Wong, Tony

    2012-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at New York University on 21- 25 May 2012. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community and related scientific and technical fields. The CHEP conference provides a forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18-month intervals, alternating between Europe, Asia, the Americas and other parts of the world. Recent CHEP conferences have been held in Taipei, Taiwan (2010); Prague, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, United States (2003); Beijing, China (2001); Padova, Italy (2000). CHEP 2012 was organized by Brookhaven National Laboratory (BNL) and co-sponsored by New York University. The organizational structure for CHEP consists of an International Advisory Committee (IAC) which sets the overall themes of the conference, a Program Organizing Committee (POC) that oversees the program content, and a Local Organizing Committee (LOC) that is responsible for local arrangements (lodging, transportation and social events) and conference logistics (registration, program scheduling, conference site selection and conference proceedings). There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 125 oral and 425 poster presentations and industrial exhibitions. We thank all the presenters for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Distributed Processing and Analysis on Grids and Clouds, Computer Facilities, Production Grids and Networking, Software Engineering, Data Stores and Databases and

  5. Conference on Yang-Mills Gauge Field Theories : C. N. Yang's Contributions to Physics

    CERN Document Server

    Phua, K K

    2016-01-01

    During the last six decades, Yang–Mills theory has increasingly become the cornerstone of theoretical physics. It is seemingly the only fully consistent relativistic quantum many-body theory in four space-time dimensions. As such it is the underlying theoretical framework for the Standard Model of Particle Physics, which has been shown to be the correct theory at the energies we now can measure. It has been investigated also from many other perspectives, and many new and unexpected features have been uncovered from this theory. In recent decades, apart from high energy physics, the theory has been actively applied in other branches of physics, such as statistical physics, condensed matter physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics.The conference celebrated the exceptional achievements using Yang–Mills theory over the years but also many other truly remarkable contributions to different branches of physics from Prof C N Yang. This volum...

  6. Ignitor Plasma Physics Performance in the H-Regime at Various Parameters

    Science.gov (United States)

    Detragiache, P.; Coppi, B.

    2010-11-01

    The plasma physics performance of Ignitor at full (BT = 13 T, Ip = 10 MA) as well as at reduced parameters (BT = 8 T, Ip = 5 MA) in the high confinement mode (H-regime) is assessed using global 0-D modelling. At full parameters, high-Q operation is possible if the heating power (a combination of Ohmic, α and limited ICRF power) is above the threshold value Pthr for H-regime confinement. Different scaling expressions for Pthr yield significantly different results when used with Ignitor parameters. Even with the most pessimistic among the proposed scalingsootnotetextY. R. Martin et al., Journal of Physics: Conference Series, 123, 012033 (2008). the access to H-regime confinement is possible for Ignitor at full field when the ICRH system is operated at the highest frequency and the generated power is less than at lower frequencies. At reduced parameters, the lower Pthr and the augmented ICRF power available (about 10 MW) facilitate access to H-regime confinement, while the plasma performance remains respectable.

  7. Divertor plasma physics experiments on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.

  8. REPORT FROM THE ORGANIZERS: The 25th International Conference on Low Temperature Physics

    Science.gov (United States)

    Kes, Peter

    2009-03-01

    The 25th International Conference on Low Temperature Physics (LT25) was hosted by the Kamerlingh Onnes Laboratorium of the Leiden Institute of Physics and held in the RAI Convention Center in Amsterdam, The Netherlands, 6-13 August 2008. It was the second time that the Kamerlingh Onnes Laboratory had the privilege of organizing an LT conference. In 1958, at LT6, 50 years of liquid helium temperatures were commemorated; in 2008 we celebrated the 100th anniversary of the remarkable achievements of Heike Kamerlingh Onnes and his collaborators in Leiden. In 1958 there were 323 participants and 145 papers appeared in the proceedings; in 2008 these numbers had increased to 1390 participants and 900 papers, of which eventually 849 were accepted. This large participation required adequate conference and housing facilities. These could not be found in Leiden, but were conveniently available in Amsterdam. The triennial International Low Temperature Conferences are organized under the auspices of the International Union of Pure and Applied Physics (IUPAP) through Commission C5 on Low Temperature Physics. It is the most important global meeting that brings together the international scientific community in the broad field of Low Temperature Physics. Because the meeting is held only every third year the 11 plenary and 22 half plenary talks (of 45 or 30 min.) generally provide an overview of important new discoveries over the last few years, whereas the 161 short oral presentations (20 min.) are mainly focused on very recent developments. Since the field is broad, embracing a large section of condensed matter physics, the program is divided into five parallel program lines: A. Quantum Gases, Fluids and Solids B. Superconductivity C. Quantum Phase Transitions and Magnetism D. Electronic Quantum Transport in Condensed Matter E. Cryogenic Techniques and Applications This distinction was used both to group the 1625 accepted abstracts, and the short-oral and poster presentations; the

  9. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  10. Programmable physical parameter optimization for particle plasma simulations

    Science.gov (United States)

    Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh

    2012-10-01

    We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.

  11. Bunsen conference 1999. Atmospheric physical chemistry; Bunsentagung 1999. Physikalische Chemie der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, P.J.; Zellner, R. [comps.

    2000-07-01

    The main subject of the 1999 Bunsen conference was atmospheric physical chemistry. There were lectures and posters on measurement and distribution of atmospheric trace gases, photochemical reactions in the different parts of the atmosphere, natural and anthropogenic emissions resulting from biomass combustion, thermodynamics and microphysics of aerosol, and air pollution abatement. [German] Die Bunsentagung 1999 beschaeftigte sich mit dem Thema Physikalische Chemie der Atmosphaere. Themen der Vortraege und Poster waren u.a. die Messung und Verteilung von Spurengasen in der Atmosphaere, photochemische Reaktionen in den verschiedenen Schichten der Atmosphaere, natuerliche und anthropogene Emissionen durch Verbrennung von Biomasse, Thermodynamik und Microphysik von Aerosolen und Klimaschutz.

  12. News Conference: The Big Bangor Day Meeting Lecture: Charterhouse plays host to a physics day Festival: Science on Stage festival 2013 arrives in Poland Event: Scottish Physics Teachers' Summer School Meeting: Researchers and educators meet at Lund University Conference: Exeter marks the spot Recognition: European Physical Society uncovers an historic site Education: Initial teacher education undergoes big changes Forthcoming events

    Science.gov (United States)

    2013-09-01

    Conference: The Big Bangor Day Meeting Lecture: Charterhouse plays host to a physics day Festival: Science on Stage festival 2013 arrives in Poland Event: Scottish Physics Teachers' Summer School Meeting: Researchers and educators meet at Lund University Conference: Exeter marks the spot Recognition: European Physical Society uncovers an historic site Education: Initial teacher education undergoes big changes Forthcoming events

  13. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  14. NASA/Marshall Space Flight Center's Contributions to Space Plasma Physics

    Science.gov (United States)

    Adrian, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Since the mid-l970's, the Space Plasma Physics Group at NASA's Marshall Space Flight Center has contributed critical instrumentation to numerous satellite and sounding rocket missions exploring the plasmas of near-Earth space. This talk will review major discoveries in Earth's ionosphere, plasmasphere, and magnetosphere directly attributable to the researchers of the Space Plasma Physics Group and the significance of these discoveries to the field of plasma physics.

  15. Contributions of plasma physics to chaos and nonlinear dynamics

    Science.gov (United States)

    Escande, D. F.

    2016-11-01

    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

  16. ITER-EDA physics design requirements and plasma performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Galambos, J. [Oak Ridge National Lab., TN (United States); Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S. [ITER San Diego Joint Work Site, CA (United States)

    1996-07-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R&D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of {approximately}1.6 that produces a nominal fusion power of {approximately}1.5 GW for an ignited burn pulse length of {ge}1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement ({tau}{sub E} = 0.85 {times} {tau}{sub ITER93H}), helium exhaust ({tau}*{sub He}/{tau}{sub E} = 10), representative plasma impurities (n{sub Be}/n{sub e} = 2%), and beta limit [{beta}{sub N} = {beta}(%)/(I/aB) {le} 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power ({approximately} 1--1.5 GW) and fluence ({approximately}1 MWa/m{sup 2}) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust ({tau}*{sub He}/{tau}{sub E} {le} 5) and potential operation in reverse-shear mode significantly improve ITER performance.

  17. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  18. International conference on high-energy physics. Volume 1. Sessions I to III. [Geneva, June 27-July 4, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Volume 1 of the conference proceedings contains sessions on neutrino physics and weak interactions, e/sup +/e/sup -/ physics, and theory. Five of the papers have already been cited in ERA, and can be found by reference to the entry CONF-790642-- in the Report Number Index. The remaining 30 will be processed as they are received on the Atomindex tape. (RWR)

  19. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  20. Proceedings of the GPU computing in high-energy physics conference 2014 GPUHEP2014

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, Claudio; D' Elia, Massimo; Lamanna, Gianluca; Sozzi, Marco (eds.)

    2015-06-15

    The International Conference on GPUs in High-Energy Physics was held from September 10 to 12, 2014 at the University of Pisa, Italy. It represented a larger scale follow-up to a set of workshops which indicated the rising interest of the HEP community, experimentalists and theorists alike, towards the use of inexpensive and massively parallel computing devices, for very diverse purposes. The conference was organized in plenary sessions of invited and contributed talks, and poster presentations on the following topics: - GPUs in triggering applications - Low-level trigger systems based on GPUs - Use of GPUs in high-level trigger systems - GPUs in tracking and vertexing - Challenges for triggers in future HEP experiments - Reconstruction and Monte Carlo software on GPUs - Software frameworks and tools for GPU code integration - Hard real-time use of GPUs - Lattice QCD simulation - GPUs in phenomenology - GPUs for medical imaging purposes - GPUs in neutron and photon science - Massively parallel computations in HEP - Code parallelization. ''GPU computing in High-Energy Physics'' attracted 78 registrants to Pisa. The 38 oral presentations included talks on specific topics in experimental and theoretical applications of GPUs, as well as review talks on applications and technology. 5 posters were also presented, and were introduced by a short plenary oral illustration. A company exhibition was hosted on site. The conference consisted of 12 plenary sessions, together with a social program which included a banquet and guided excursions around Pisa. It was overall an enjoyable experience, offering an opportunity to share ideas and opinions, and getting updated on other participants' work in this emerging field, as well as being a valuable introduction for newcomers interested to learn more about the use of GPUs as accelerators for scientific progress on the elementary constituents of matter and energy.

  1. Brief Introduction to the Foundation of CAI Shidong Award for Plasma Physics

    Institute of Scientific and Technical Information of China (English)

    SHENG Zhengming

    2010-01-01

    @@ The late Academician Professor CAI Shidong was an outstanding plasma physicist who had made seminal contributions in both fundamental plasma theories and controlled thermonuclear fusion energy research.Professor CAI was also one of the pioneers in China's plasma physics research.In 1973,Professor CAI decided to leave U.S.and return to China in order to help pushing forward plasma physics research in China.Professor CAI formed a research group consisting of young scientists and carried out high-level works in this important physics discipline.He worked tirelessly,set examples by his own deeds,and made outstanding contributions in plasma physics research,educating younger generations of plasma physicists,as well as establishing collaborations with plasma scientists in other Asian-African developing nations.In short,Professor CAI devoted the best years of his life to China's plasma physics research.

  2. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  3. PREFACE: 21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015)

    Science.gov (United States)

    Sakamoto, H.; Bonacorsi, D.; Ueda, I.; Lyon, A.

    2015-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) is a major series of international conferences intended to attract physicists and computing professionals to discuss on recent developments and trends in software and computing for their research communities. Experts from the high energy and nuclear physics, computer science, and information technology communities attend CHEP events. This conference series provides an international forum to exchange experiences and the needs of a wide community, and to present and discuss recent, ongoing, and future activities. At the beginning of the successful series of CHEP conferences in 1985, the latest developments in embedded systems, networking, vector and parallel processing were presented in Amsterdam. The software and computing ecosystem massively evolved since then, and along this path each CHEP event has marked a step further. A vibrant community of experts on a wide range of different high-energy and nuclear physics experiments, as well as technology explorer and industry contacts, attend and discuss the present and future challenges, and shape the future of an entire community. In such a rapidly evolving area, aiming to capture the state-of-the-art on software and computing through a collection of proceedings papers on a journal is a big challenge. Due to the large attendance, the final papers appear on the journal a few months after the conference is over. Additionally, the contributions often report about studies at very heterogeneous statuses, namely studies that are completed, or are just started, or yet to be done. It is not uncommon that by the time a specific paper appears on the journal some of the work is over a year old, or the investigation actually happened in different directions and with different methodologies than originally presented at the conference just a few months before. And by the time the proceedings appear in journal form, new ideas and explorations have

  4. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    Science.gov (United States)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  5. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Document Server

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  6. Soft X-ray measurements in magnetic fusion plasma physics

    Science.gov (United States)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  7. The Copenhagen Consensus Conference 2016: children, youth, and physical activity in schools and during leisure time.

    Science.gov (United States)

    Bangsbo, Jens; Krustrup, Peter; Duda, Joan; Hillman, Charles; Andersen, Lars Bo; Weiss, Maureen; Williams, Craig A; Lintunen, Taru; Green, Ken; Hansen, Peter Riis; Naylor, Patti-Jean; Ericsson, Ingegerd; Nielsen, Glen; Froberg, Karsten; Bugge, Anna; Lundbye-Jensen, Jesper; Schipperijn, Jasper; Dagkas, Symeon; Agergaard, Sine; von Seelen, Jesper; Østergaard, Charlotte; Skovgaard, Thomas; Busch, Henrik; Elbe, Anne-Marie

    2016-10-01

    From 4 to 7 April 2016, 24 researchers from 8 countries and from a variety of academic disciplines gathered in Snekkersten, Denmark, to reach evidence-based consensus about physical activity in children and youth, that is, individuals between 6 and 18 years. Physical activity is an overarching term that consists of many structured and unstructured forms within school and out-of-school-time contexts, including organised sport, physical education, outdoor recreation, motor skill development programmes, recess, and active transportation such as biking and walking. This consensus statement presents the accord on the effects of physical activity on children's and youth's fitness, health, cognitive functioning, engagement, motivation, psychological well-being and social inclusion, as well as presenting educational and physical activity implementation strategies. The consensus was obtained through an iterative process that began with presentation of the state-of-the art in each domain followed by plenary and group discussions. Ultimately, Consensus Conference participants reached agreement on the 21-item consensus statement.

  8. The Copenhagen Consensus Conference 2016: children, youth, and physical activity in schools and during leisure time

    Science.gov (United States)

    Bangsbo, Jens; Duda, Joan; Hillman, Charles; Andersen, Lars Bo; Weiss, Maureen; Williams, Craig A; Lintunen, Taru; Green, Ken; Hansen, Peter Riis; Naylor, Patti-Jean; Ericsson, Ingegerd; Nielsen, Glen; Froberg, Karsten; Bugge, Anna; Lundbye-Jensen, Jesper; Dagkas, Symeon; Agergaard, Sine; von Seelen, Jesper; Østergaard, Charlotte; Skovgaard, Thomas; Busch, Henrik; Elbe, Anne-Marie

    2016-01-01

    From 4 to 7 April 2016, 24 researchers from 8 countries and from a variety of academic disciplines gathered in Snekkersten, Denmark, to reach evidence-based consensus about physical activity in children and youth, that is, individuals between 6 and 18 years. Physical activity is an overarching term that consists of many structured and unstructured forms within school and out-of-school-time contexts, including organised sport, physical education, outdoor recreation, motor skill development programmes, recess, and active transportation such as biking and walking. This consensus statement presents the accord on the effects of physical activity on children's and youth's fitness, health, cognitive functioning, engagement, motivation, psychological well-being and social inclusion, as well as presenting educational and physical activity implementation strategies. The consensus was obtained through an iterative process that began with presentation of the state-of-the art in each domain followed by plenary and group discussions. Ultimately, Consensus Conference participants reached agreement on the 21-item consensus statement. PMID:27354718

  9. Earth's magnetosphere - Global problems in magnetospheric plasma physics

    Science.gov (United States)

    Roederer, J. G.

    1979-01-01

    Magnetospheric physics is presently in a transition from the exploratory stage to one in which satellite missions and ground-based observations are planned with the specific object of achieving a global understanding and self-consistent quantitative description of the cause-and-effect relationship among the principal dynamic processes involved. Measurements turn to lower and lower energies and to higher ion mass species, in order to encompass the entire particle population, and to a broader range of the frequency spectrum of magnetic and electric field variations. In the present paper, the current status of our knowledge on magnetospheric plasma physics is reviewed, with particular reference of such fundamental advances as the discovery of layers of streaming plasma in the magnetosphere beneath its boundary surface, the identification of the terrestrial magnetosphere as a celestial source of kilometric radiation and relativistic particles, the identification of parallel electric field regions within the magnetosphere and their role in auroral particle acceleration, and the discovery of large fluxes of energetic heavy ions trapped in the magnetosphere.

  10. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  11. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  12. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    Science.gov (United States)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  13. FOREWORD: TAUP 2005: Proceedings of the Ninth International Conference on Topics in Astroparticle and Underground Physics

    Science.gov (United States)

    Bottino, Alessandro; Coccia, Eugenio; Morales, Julio; Puimedónv, Jorge

    2006-04-01

    The ninth meeting of the TAUP Workshop Series, TAUP 2005, was organized by the University of Zaragoza and Laboratorio Subterráneo de Canfranc, jointly with the Laboratori Nazionali del Gran Sasso of the Italian Institute of Nuclear Physics (INFN). It was dedicated to the memory of professor Angel Morales, co-founder of the TAUP Series and a central figure in the scientific shaping and organization of the TAUP conferences since their inception in 1989. He and his group of collaborators laid, twenty years ago, the foundations of underground physics in Spain. To have TAUP 2005 hosted by the University of Zaragoza was a tangible way of honouring his memory. The Conference was concluded by a visit to the new installations of the Canfranc Laboratory, where a memorial ceremony was held in honour of Angel Morales, the driving force for the creation of that Laboratory. In TAUP 2005 all the various aspects of Astroparticle Physics have been covered, from Cosmology and Dark Constituents, to Gravitational Waves, to Neutrino Physics and Astrophysics, to High Energy Astrophysics, to Cosmic Rays and Gamma-Rays Astronomy. New and important scientific results were presented and debated in the plenary review talks and in a very large number of contributions in topical parallel sessions. As editors of these proceedings, we hope that this volume, which contains most of the talks and contributions presented at TAUP 2005, will provide a detailed state-of-the-art account of the various facets of Astroparticle Physics. We thank all the invited speakers and contributors who made this possible. Full coverage of the transparencies presented at the conference can be found on the website http://www.unizar.es/taup2005. At TAUP 2005 a memorial lecture was delivered by Art McDonald to commemorate John Bahcall, who passed away prematurely in August 2005. In this talk, his figure, as a pioneer and leader in the fields of Neutrino Physics, Astronomy and Astrophysics and as a man of great personal

  14. Planetary plasma data analysis and 3D visualisation at the French Plasma Physics Data Centre

    Science.gov (United States)

    Gangloff, Michel; Génot, Vincent; Cecconi, Baptiste; Andre, Nicolas; Budnik, Elena; Bouchemit, Myriam; Jourdane, Nathanaël; Dufourg, Nicolas; Beigbeider, Laurent; Toniutti, Jean-Philippe; Durand, Joelle

    2016-10-01

    The CDPP (the French plasma physics data center http://cdpp.eu/) is engaged for nearly two decades in the archiving and dissemination of plasma data products from space missions and ground-based observatories. Besides these activities, the CDPP developed services like AMDA (http://amda.cdpp.eu/) and 3DView (http://3dview.cdpp.eu/). AMDA enables in depth analysis of a large amount of data through dedicated functionalities such as: visualisation, data mining, cataloguing. 3DView provides immersive visualisations in planetary environments: spacecraft position and attitude, ephemerides. Magnetic field models (Cain, Tsyganenko), visualisation of cubes, 2D cuts as well as spectra or time series along spacecraft trajectories are possible in 3Dview. Both tools provide a joint access to outputs of simulations (MHD or Hybrid models) in planetary sciences as well as planetary plasma observational data (from AMDA, CDAWeb, Cluster Science Archive, ...). Some of these developments were funded by the EU IMPEx project, and some of the more recent ones are done in the frame of Europlanet 2020 RI project. The role of CDPP in the analysis and visualisation of planetary data and mission support increased after a collaboration with the NASA/PDS which resulted in the access in AMDA to several planetary datasets like those of GALILEO, MESSENGER, MAVEN, etc. In 2014, AMDA was chosen as the quicklook visualisation tool for the Rosetta Plasma Consortium through a collaboration with Imperial College, London. This presentation will include several use cases demonstrating recent and new capabilities of the tools.

  15. 6th Annual Midwest Conference for Undergraduate Women in Physics, January 18-20, 2013, Urbana, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Kevin T. [University of Illinois at Urbana-Champaign

    2016-04-28

    This document is the program for the 6th Annual Midwest Conference for Undergraduate Women in Physics, which was held at the University of Illinois at Urbana-Champaign on January 18-20, 2013. The goals of the conference were to foster a culture in which undergraduate women are encouraged and supported to pursue, and also to succeed in, higher education in physics; to provide career information to students in physics and related fields; to give women the resources, motivation, and confidence to apply to graduate school and successfully complete a Ph.D. program in Physics; to provide information and dispel misconceptions about the application process for graduate school and the diverse employment opportunities in physics and related fields, enabling women to make more informed decisions about their goals and attain them; and to connect female physics students with successful female physicists to whom they can relate and who can act as inspirational role models and mentors.

  16. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    This volume is a collection of papers associated with a series of invited lectures presented at the First Workshop on Nonequilibrium processes in Plasma Physics and studies of Environment that was held at Mt Kopaonik in August 2006. The workshop originated as a part of the FP6 COE 026328 which had the basic aim of promoting centers of excellence in Western Balkan countries, to facilitate dissemination of their results and to help them establish themselves in the broader arena of European and international science. So the best way to achieve all those goals was to prepare a workshop associated with the local conference SPIG (Symposium on Physics of Ionized Gases) where the participants could attend sessions in which the host Laboratory presented progress reports and papers and thereby gain a full perspective of our results. At the same time this allowed participants in the COE the opportunity to compare their results with the results of external speakers and to gain new perspectives and knowledge. The program of the workshop was augmented by inviting some of our colleagues who visited the COE in recent years or have an active collaboration with a participating member. In that respect this volume is not only a proceedings of the workshop but a collection of papers related to the topic of the workshop: Non-equilibrium phenomena in plasmas and in the science of our environment. The idea is to offer review articles either summarizing a broader area of published or about to be published work or to give overviews showing preliminary results of the works in progress. The refereeing of the papers consisted of two parts, first in selection of the invitees and second in checking the submitted manuscripts. The papers were refereed to the standard of the Journal. As the program of the COE covers a wide area of topics from application of plasmas in nano- electronics to monitoring and removal of pollutants in the atmosphere, so the program of the workshop covered an even broader

  17. CONFERENCES AND SYMPOSIA: Nuclear physics, lasers, and medicine(Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 14 December 2009)

    Science.gov (United States)

    2010-09-01

    The scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the Conference Hall of the Lebedev Physical Institute, RAS, on 14 December 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Kotov Yu D (National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Institute of Astrophysics, Moscow) "High-energy solar flare processes and their investigation onboard Russian satellite missions CORONAS"; (2) Pakhlov P N (Russian Federation State Scientific Center 'Alikhanov Institute for Theoretical and Experimental Physics,' Moscow) "Exotic charmonium"; (3) Shcherbakov I A (Prokhorov General Physics Institute, RAS, Moscow) "Laser and plasma technologies in medicine"; (4) Balakin V E (Center for Physics and Technology, Lebedev Physical Institute, RAS, Protvino, Moscow region) "New-generation equipment and technologies for the ray therapy of oncological diseases using a proton beam"; (5) Kravchuk L V (Institute for Nuclear Research, RAS, Moscow) "Development of nuclear physics medicine at the Institute for Nuclear Research, RAS." Papers based on reports 1, 3, and 5 are published below. The expanded content of the report by Pakhlov is presented in review form in Physics-Uspekhi 53 219 (2010). • High-energy solar flare processes and their investigation onboard Russian satellite missions CORONAS, Yu D Kotov Physics-Uspekhi, 2010, Volume 53, Number 6, Pages 619-631 • Laser physics in medicine, I A Shcherbakov Physics-Uspekhi, 2010, Volume 53, Number 6, Pages 631-635 • Development of nuclear physics medicine at the Institute for Nuclear Research, RAS, L V Kravchuk Physics-Uspekhi, 2010, Volume 53, Number 6, Pages 635-639

  18. Thirty-first annual gaseous electronic conference. A topical conference of the American Physical Socity. Program and abstracts. [Buffalo, New York, October 17--20, 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This volume contains the program and abstracts of the conference. The following topics are included: metal vapor molecular lasers, magnetohydrodynamics, rare gas halide and nuclear pumped lasers, transfer mechanisms in arcs, kinetic processes in rare gas halide lasers, arcs and flows, XeF kinetics and lasers, fundamental processes in excimer lasers, electrode effects and vacuum arcs, electron and ion transport, ion interactions and mobilities, glow discharges, diagnostics and afterglows, dissociative recombination, electron ionization and excitation, rare gas excimers and group VI lasers, breakdown, novel laser pumping techniques, electrode-related discharge phenomena, photon interactions, attachment, plasma chemistry and infrared lasers, electron scattering, and reactions of excited species. (RWR)

  19. Foreword to Special Issue: Papers from the 54th Annual Meeting of the APS Division of Plasma Physics, Providence, Rhode Island, USA, 2012

    Science.gov (United States)

    Skiff, Fred; Davidson, Ronald C.

    2013-05-01

    Each year, the annual meeting of the APS Division of Plasma Physics (DPP) brings together a broad representation of the many active subfields of plasma physics and enjoys an audience that is equally diverse. The meeting was well attended and largely went as planned despite the interventions of hurricane Sandy which caused the city of Providence to shut-down during the first day of the conference. The meeting began on Monday morning with a review of the physics of cosmic rays, 2012 being the 100th year since their discovery, which illustrated the central importance of plasma physics to astrophysical problems. Subsequent reviews covered the importance of tokamak plasma boundaries, progress towards ignition on the National Ignition Facility (NIF), and magnetized plasma turbulence. The Maxwell prize address, by Professor Liu Chen, covered the field of nonlinear Alfvén wave physics. Tutorial lectures were presented on the verification of gyrokinetics, new capabilities in laboratory astrophysics, magnetic flux compression, and tokamak plasma start-up.

  20. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    Science.gov (United States)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  1. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  2. The technology of Plasma Spray Physical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    M. Góral

    2012-12-01

    Full Text Available Purpose: The deposition of thermal barrier coatings is currently the most effective means of protecting the surface of aircraft engine turbine blades from the impact of aggressive environment of combustion gases. The new technologies of TBC depositions are required.Design/methodology/approach: The essential properties of the PS-PVD process have been outlined, as well as recent literature references. In addition, the influence of a set process condition on the properties of the deposited coatings has been described.Findings: The new plasma-spraying PS-PVD method is a promising technology for the deposition of modern thermal barrier coatings on aircraft engine turbine blades.Research limitations/implications: The constant progress of engine operating temperatures and increasing pollution restrictions determine the intensive development of heat-resistant coatings, which is directed to new deposition technologies and coating materials.Practical implications: The article presents a new technology of thermal barrier coating deposition - LPPS Thin Film and Plasma Spray - Physical Vapour Deposition.Originality/value: The completely new technologies was described in article.

  3. 24th Solvay Conference on Physics on Quantum Theory of Condensed Matter

    CERN Document Server

    Sevrin, Alexander

    2010-01-01

    Ever since 1911, the Solvay Conferences have shaped modern physics. The 24th edition chaired by Bertrand Halperin did not break the tradition. Held in October 2008, it gathered in Brussels most of the leading figures working on the quantum theory of condensed matter, addressing some of the most profound open problems in the field. The proceedings contain the rapporteur talks giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions treating: mesoscopic and disordered systems; exotic phases and quantum phase transitions in model systems; experimentally realized correlated-electron materials; quantum Hall systems, and one-dimensional systems; and, systems of ultra-cold atoms, and advanced computational methods. In the Solvay tradition, the proceedings include also the prepared comments to the rapporteur talks. The discussions among the participants - some of which are quite lively and involving dramatically divergent points of view - have been care...

  4. PREFACE: 11th Anglo-French Physical Acoustics Conference (AFPAC 2012)

    Science.gov (United States)

    Saffari, Nader; Lhémery, Alain; Lowe, Mike

    2013-08-01

    The 11th Anglo-French Physical Acoustics Conference (AFPAC) was held in Brighton, UK on 18-20 January 2012. This event, which is an annual collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique, successfully achieved its main aim of being a small, friendly meeting of high scientific quality, welcoming younger researchers and PhD students and covering a broad range of subjects in Acoustics. The participants heard 44 excellent presentations covering an exciting and diverse range of subjects, from audio acoustics to guided waves in composites and from phononic crystals to ultrasound surgery. As is the custom at these meetings, four prominent invited speakers set the pace for the event; these were Keith Attenborough (The Open University, UK), Claire Prada (Institut Langevin, France), David Moore (University of Nottingham, UK) and Philippe Roux (IS Terre, France). The submission of manuscripts for publication in the proceedings was, as in previous years, on a voluntary basis and in these proceedings we present 11 peer reviewed papers. Due to some unforeseen problems there has been a longer than planned delay in preparing these proceedings, for which the Editors sincerely apologise to the authors and the community. Nader Saffari, Mike Lowe and Alain Lhémery

  5. PREFACE: 20th International Conference on the Application of High Magnetic Fields in Semiconductor Physics (HMF-20)

    Science.gov (United States)

    Faugeras, Clément; Orlita, Milan; Piot, Benjamin; Potemski, Marek

    2013-08-01

    The 20th International Conference on 'High Magnetic Fields in Semiconductor Physics' (HMF-20) was held on 22-27 July 2012, in Chamonix Mont Blanc, France, as a satellite meeting to the 31st International Conference on the Physics of Semiconductors. HMF-20 followed a series of biennial conferences, initiated by Gottfried Landwehr, in Wurzburg, Germany, in 1972. Primarily focused on 'semiconductors' and 'magnetic fields', the main topics of the conference have evolved with time and are now dominated by current themes related to the physics of low dimensional systems in conjunction with the application of magnetic fields. The list of HMF-20 topics included: quantum Hall effect phenomena, graphene and carbon nanotubes, quantum wells, dots and wires, bulk semiconductors, topological insulators and organic conductors, magneto-transport and magneto-spectroscopy, electron correlations and magnetic field driven phases, spin-dependent phenomena and non-equilibrium effects, as well as novel phenomena and new techniques in high magnetic fields. The HMF-20 conference gathered 200 participants from 23 different countries. It was organized by the Laboratoire National des Champs Magnétiques Intenses, Grenoble, France, and greatly sponsored by the European High Magnetic Field Laboratory under the EC-FP7 framework. The 21st edition of the HMF conference series will take place during the summer of 2014 in Florida, USA. We thank the participants who, through their presentations, convivial discussions, and the papers presented here, contributed to the success of HMF-20 and advancements in the physics related to the applications of high magnetic fields. Clément Faugeras, Milan Orlita, Benjamin Piot and Marek Potemski Laboratoire National des Champs Magnétiques Intenses CNRS/UJF/UPS/INSA, Grenoble France

  6. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  7. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    Science.gov (United States)

    Akchurin, Nural

    2012-12-01

    The XVth International Conference on Calorimetry in High Energy Physics, CALOR2012, was held in Santa Fe, New Mexico from 4-8 June 2012. The series of conferences on calorimetry started in 1990 at Fermilab, and they have been the premier event for calorimeter aficionados, a trend that CALOR2012 upheld. This year, several presentations focused on the status of the major calorimeter systems, especially at the LHC. Discussions on new and developing techniques in calorimetry took a full day. Excellent updates on uses of calorimeters or about ideas that are deeply rooted in particle physics calorimetry in astrophysics and neutrino physics were followed by talks on algorithms and special triggers that rely on calorimeters. Finally, discussions of promising current developments and ongoing R&D work for future calorimeters capped the conference. The field of calorimetry is alive and well, as evidenced by the more than 100 attendees and the excellent quality of over 80 presentations. You will find the written contributions in this volume. The presentations can be found at calor2012.ttu.edu. The first day of the conference was dedicated to the LHC. In two invited talks, Guillaume Unal (CERN) and Tommaso Tabarelli de Fatis (Universita' & INFN Milano Bicocca) discussed the critical role electromagnetic calorimeters play in the hunt for the Standard Model Higgs boson in ATLAS and CMS, respectively. The enhanced sensitivity for light Higgs in the two-gamma decay channel renders electromagnetic calorimeters indispensible. Much of the higher mass region was already excluded for the SM Higgs by the time of this conference, and after less than a month, on 4 July, CERN announced the discovery of a new boson at 125 GeV, a particle that seems consistent with the Higgs particle so far. Once again, without the electromagnetic calorimeters, this would not have been possible. Professor Geoffrey West from the Santa Fe Institute gave the keynote address. His talk, 'Universal Scaling Laws

  8. PREFACE: Tenth International Conference on Topics in Astroparticle and Underground Physics (TAUP2007)

    Science.gov (United States)

    Inoue, Kunio; Suzuki, Atsuto; Mitsui, Tadao

    2008-07-01

    The tenth meeting of the TAUP Workshop Series, TAUP 2007, was organized by the Research Center for Neutrino Science, Tohoku University. In TAUP 2007 all the various aspects of Astroparticle Physics have been covered, from Cosmology and Dark Constituents, to Gravitational Waves, to Neutrino Physics and Astrophysics, to High Energy Astrophysics, to Cosmic Rays and Gamma-Rays Astronomy. New and important scientific results were presented and debated in the plenary review talks and in a very large number of contributions in topical parallel sessions. As editors of these proceedings, we hope that this volume, which contains most of the talks and contributions presented at TAUP 2007, will provide a detailed state-of-the-art account of the various facets of Astroparticle Physics. We thank all the invited speakers, conveners, and contributors who made this possible. Full coverage of the transparencies presented at the conference can be found on the website http://www.awa.tohoku.ac.jp/taup2007. The TAUP 2007 Organizing Committee thanks IUPAP/PaNAGIC, Sendai Tourism and Convention Bureau, COE program: Exploring New Science by Bridging Particle-Matter Hierarchy, SEIKO EG&G, and REPIC corporation for sponsoring the Conference, and Sendai Civic Auditorium, where the meeting was held, for their hospitality. We wish to thank Alessandro Bottino, Junpei Shirai, Fumihiko Suekane, David Sinclair, Takaaki Kajita, Takeo Moroi, Masaki Mori, Masahiro Kawasaki, Yoshihito Gando, Sei Yoshida, Kyoko Tamae, Sanshiro Enomoto, Alexandre Kozlov, Yasuhiro Kishimoto, Itaru Shimizu, Kengo Nakamura, Haruo Ikeda, and Kyo Nakajima for their invaluable contribution in the scientific shaping of the conference and in the preparation of the present volume. The Organizing Committee is grateful to the members of the International Advisory Committee and of the TAUP Steering Committee for assistance and advice on the scientific program. Very special thanks are due to Ms Rika Bizen, Mr Fujio Miura, Ms Akemi

  9. PREFACE: 19th International Conference on the Application of High Magnetic Fields in Semiconductor Physics and Nanotechnology (HMF-19)

    Science.gov (United States)

    Muraki, Koji; Takeyama, Shojiro

    2011-12-01

    This volume contains invited and contributed papers from the 19th International Conference on the Application of High Magnetic Fields in Semiconductor Physics and Nanotechnology (HMF-19) held in Fukuoka, Japan, from 1-6 August 2010. This conference was mainly sponsored by the Tokyo University-'Horiba International fund', which was donated by Dr Masao Horiba, the founder of Horiba Ltd. The scientific program of HMF-19 consisted of 37 invited talks, 24 contributed talks, and 83 posters, which is available from the conference homepage http://www.hmf19.iis.u-tokyo.ac.jp/index.html. Each manuscript submitted for publication in this volume has been independently reviewed. The Editor is very grateful to all the reviewers for their quick responses and helpful reports and to all the authors for their submissions and patience for the delay in the editorial process. Finally, the Editor would like to express his sincere gratitude to all the individuals involved in the conference organization and all the attendees, who made this conference so successful. Koji Muraki Conference photograph Committees Chair Conference chairS Takeyama(ISSP-UT) Conference secretary T Machida (IIS-UT) Program chair K Muraki (NTT) Local organizing chair K Oto (Chiba Univ.) Advisory Committee International Domestic L Brey (ES) T Ando (TIT) Z H Chen (CN) Y Hirayama (Tohoku Univ.) S Das Sarma (US) G Kido (NIMS) L Eaves (GB) N Miura (JP) J P Eisenstein (US) J Nitta (Tohoku Univ.) K Ensslin (CH) T Takamasu (NIMS) J Furdyna (US) G M Gusev (BR) I Kukushkin (RU) Z D Kvon (RU) G Landwehr (DE) J C Maan (NL) A H MacDonald (US) N F Oliveira Jr (BR) A Pinczuk (US) J C Portal (FR) A Sachrajda (CA) M K Sanyal(IN) R Stepniewski(PL) Program Committee Chair: K Muraki(NTT) International Domestic G Bauer (AU) H Ajiki (Osaka Univ.) G Boebinger (US) H Aoki (Hongo, UT) S Ivanov (RU) K Nomura (RIKEN) K von Klitzing (DE) T Okamoto (Hongo, UT) R Nicholas (GB) T Osada (ISSP-UT ) M Potemski (FR) N Studart (BR) U Zeitler (NL

  10. Asymptotic-Preserving methods and multiscale models for plasma physics

    CERN Document Server

    Degond, Pierre

    2016-01-01

    The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.

  11. Experimental and theoretical research in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  12. Plasma physics abstracts, 1 January - 31 December, 1986

    Science.gov (United States)

    Gurnett, D. A.; Dangelo, N.; Goertz, C. K.

    1987-01-01

    Topics addressed include: ion-cyclotron waves; plasma waves; solar wind lithium releases; bow shock; Pi2 wave bursts; auroral kilometric radiation; ion energization; magnetic field corrections; electric fields; magnetospheric processes; electron acceleration; inner heliosphere; nightside auroral zone; computerized simulation; plasma wave turbulence; and magnetohydrodynamic waves in plasma sheets.

  13. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  14. The sixth Conference on Advanced Topics in the Interdisciplinary Fields of Particle Physics, Nuclear Physics and Cosmology

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ The sixth Conference on Advanced Topics in the Interdisciplinary Fields of Particle Paysics.Nuclear Paysic8and Cosmology was held on July 22-27,2007 in Lijiang,Yunan Province.Over 70 scientists who were activelv working in the fields attended the conference and 42 physicists gave talks.9 papers have been selected to be published in the proceedings.

  15. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    Science.gov (United States)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  16. Physical-Chemical Characterization of Nanodispersed Powders Produced by a Plasma-Chemical Technique

    Institute of Scientific and Technical Information of China (English)

    M. GEORGIEVA; G. VISSOKOV; Iv. GRANCHAROV

    2007-01-01

    This article presents a review on the physical-chemical properties and characteristics of plasma-chemically produced nanodispersed powders (NDP), such as metals, oxides, nitrides, carbides, and catalysts. The plasma-chemical preparation of the powders was carried out in thermal plasma (TP) created by means of high-current electric arcs, plasma jets, high-frequency (HF) discharges, etc. We also discuss certain properties and characteristics of the NDPs, which are determined largely by the conditions of preparation.

  17. Physics and optimization of plasma startup in the RFP

    Science.gov (United States)

    Mao, W.; Chapman, B. E.; Ding, W. X.; Lin, L.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Duff, J.; Ko, J.; Kumar, S. T. A.; Morton, L.; Munaretto, S.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Brower, D. L.; Liu, W.

    2015-05-01

    In the tokamak and reversed-field pinch (RFP), inductively driven toroidal plasma current provides the confining poloidal magnetic field and ohmic heating power, but the magnitude and/or duration of this current is limited by the available flux swing in the poloidal field transformer. A portion of this flux is consumed during startup as the current is initiated and ramped to its final target value, and considerable effort has been devoted to understanding startup and minimizing the amount of flux consumed. Flux consumption can be reduced during startup in the RFP by increasing the toroidal magnetic field, Bti, applied to initiate the discharge, but the underlying physics is not yet entirely understood. Toward increasing this understanding, we have for the first time in the RFP employed advanced, non-invasive diagnostics on the Madison Symmetric Torus to measure the evolution of current, magnetic field, and kinetic profiles during startup. Flux consumption during startup is dominantly inductive, but we find that the inductive flux consumption drops as Bti increases. The resistive consumption of flux, while relatively small, apparently increases with Bti due to a smaller electron temperature. However, the ion temperature increases with Bti, exceeding the electron temperature and thus reflecting non-collisional heating. Magnetic fluctuations also increase with Bti, corresponding primarily to low-n modes that emerge sequentially as the safety factor profile evolves from tokamak-like to that of the RFP.

  18. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  19. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  20. 'Plasma Camp': A Different Approach to Professional Development for Physics Teachers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Post-Zwicker and Nicholas R. Guilbert

    1998-12-01

    The Plasma Physics and Fusion Energy Institute ('Plasma Camp') was inaugurated in 1998 as a way to address two areas of concern in the professional development of high-school physics teachers: involving teachers in the theory and methods of a current area of research in physics and connecting the research experience back into the classroom. The Institute, run jointly by a scientist and a teacher, immersed high-school teachers from across the country in laboratory investigations and in pedagogical projects for two weeks at Princeton University's Plasma Physics Laboratory. The goals, structure, and initial outcomes of the Institute are discussed.

  1. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  2. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  3. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model

    Science.gov (United States)

    2014-06-30

    Riemann solver for the two-fluid plasma model. Journal of Computational Physics , 187(2):620–638, 2003. [23] Jeffrey P. Freidberg. Ideal...Computational Physics , 141(2):199–224, 1998. [52] P. L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of...AFRL-OSR-VA-TR-2014-0310 PHYSICS -BASED COMPUTATIONAL ALGORITHM FOR THE MULTIFLUID PLASMA MODEL Uri Shumlak UNIVERSITY OF WASHINGTON Final Report 10

  4. 64 International conference "NUCLEUS-2014" Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies

    OpenAIRE

    Vlasnikov, A. K.

    2014-01-01

    Тезисы 64 международной конференции «ЯДРО-2014» (Фундаментальные проблемы ядерной физики, атомной энергетики и ядерных технологий), БГУ, Минск, 1 – 4 июля 2014 года. The scientific program of the conference covers almost all problems in nuclear physics and its applications such as: neutron-rich nuclei, nuclei far from stability valley, giant resonances, many-phonon and many-quasiparticle states in nuclei, high-spin and super-deformed states in nuclei, synthesis of super-heavy elements, ...

  5. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    Science.gov (United States)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19

  6. Role of magnetospheric plasma physics for understanding cosmic phenomena

    Science.gov (United States)

    Das, Indra M. L.

    Cosmic phenomena occur in the remote regions of space where in situ observations are not possible. For a proper understanding of these phenomena, laboratory experiments are essential, but in situ observations of magnetospheric plasma provide an even better background to test various hypothesis of cosmic interest. This is because the ionospheric-magnetospheric plasma and the solar wind are the only cosmic plasmas accessible to extensive in situ observations and experiments.

  7. Physical limitations in ferromagnetic inductively coupled plasma sources

    CERN Document Server

    Bliokh, Yury P; Slutsker, Yakov Z

    2012-01-01

    The Ferromagnetic Inductively Coupled Plasma (FICP) source, which is a version of the common inductively coupled plasma sources, has a number of well known advantages such as high efficiency, high level of ionization, low minimal gas pressure, very low required driver frequency, and even a possibility to be driven by single current pulses. We present an experimental study of such an FICP source which showed that above a certain value of the driving pulse power the properties of this device changed rather drastically. Namely, the plasma became non-stationary and non-uniform contrary to the stationary and uniform plasmas typical for this kind of plasma sources. In this case the plasma appeared as a narrow dense spike which was short compared to the driving pulse. The local plasma density could exceed the neutral atoms density by a few orders of magnitude. When that happened, the afterglow plasma decay time after the end of the pulse was long compared to an ordinary case with no plasma spike. Experiments were pe...

  8. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  9. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  10. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  11. International Conference on Vacuum Ultraviolet Radiation Physics, 8th, Lunds Universitet, Sweden, Aug. 4-8, 1986, Proceedings

    Science.gov (United States)

    Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)

    1987-01-01

    The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.

  12. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-09-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  13. Highlights of PBTI Coimbra Conference on PRT of Plasma & Current Opinions on Pathogen Reduction Treatment of Blood Components.

    Science.gov (United States)

    de Sousa, Gracinda; Seghatchian, Jerard

    2015-04-01

    Two experts from Octapharma and from Cerus addressed, in very concise ways, the concerns about non-viral inactivated FFP and how they managed to obtain highest standard of safety margin for pathogen reduction treatment [PRT] of plasma. The session was moderated by Portuguese Institute of Blood and Transplantation (PIBT) consultant advisor [Jerard Seghatchian] with long standing familiarity and international recognition in PR technologies for plasma, platelets and WB/red cells. The focus of conference was mainly on the criteria of acceptability of PRT-FFP; added values of having diversity in choice without fears of liability, as both of PRT technologies provide an excellent safeguard margins, for more than a decade of usage. In most European countries, it is believed that patients' safety come first followed by the safe usage initiatives, in particular using locally available products. Portugal is finally going forward with the implementation PRT plasma using its own FFP for their clinical use. The round table Q&A session focused on the impacts of the additional processing, which is still continuously improving, on the residual/emerging pathogen infectivity; eliminating the clinical impacts of donors viable leukocytes; the degree of altered product potency in particular cold activation of FVII; and loss of endothelial permeability factors during fluid storage of plasma. Both speakers highlighted their product safety and clinical efficacy using both routine in vitro, including the modern proteomic tests to establish the relevant changes in various parameters and in the overall clinical outcomes. The advancements in pharmacovigilance and hemovigilance, regulatory aspects and cost effectiveness were also highlighted. A local speaker [from the PIBT] described the state of the art of local processing issues and overall required standards used both during validation and the intercept process scale up, which is going ahead smoothly to providing the highest safety standards

  14. Physical investigation of a quad confinement plasma source

    Science.gov (United States)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  15. News Astronomy: Science and beauty combined Africa: Physics technicians offer valuable skills Conference: ESERA2013 brings researchers together in Cyprus Physics Olympiad: UK team bring home more medals from the Physics Olympics in Copenhagen Physics Tournament: IOC backs Shrewsbury to host IYPT 2014 Conference: MPTL18 looks at the latest multimedia developments Workshop: The selective absorption of light Science on Stage: Illuminating Science Education in London in 2015

    Science.gov (United States)

    2013-11-01

    Astronomy: Science and beauty combined Africa: Physics technicians offer valuable skills Conference: ESERA2013 brings researchers together in Cyprus Physics Olympiad: UK team bring home more medals from the Physics Olympics in Copenhagen Physics Tournament: IOC backs Shrewsbury to host IYPT 2014 Conference: MPTL18 looks at the latest multimedia developments Workshop: The selective absorption of light Science on Stage: Illuminating Science Education in London in 2015

  16. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  17. 8th International Conference on Solid State Physics (SSP 2004), Workshop “Mössbauer Spectroscopy of Locally Heterogeneous Systems”

    CERN Document Server

    Kadyrzhanov, K. K; SSP 2004

    2006-01-01

    This volume contains papers presented at the 8th International Conference on Solid State Physics (SSP 2004), Workshop "Mössbauer Spectroscopy of Locally Heterogeneous Systems", held in Almaty, Kazakhstan, 23–26 August 2004. It should be of interest to researchers and PhD students working or interested in recent results in the locally inhomogeneous system investigations by Mössbauer Spectroscopy and the new concepts of data evaluation of complex Mössbauer spectra.

  18. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  19. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29 GIDC, Sec-25, Gandhinagar, 382016 Gujarat (India)

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  20. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  1. Video News release (A-roll) International Conference on Translational Research in Radio-Oncology and Physics for Health in Europe

    CERN Multimedia

    CERN Visual Media Office; Paola Catapano

    2012-01-01

    Video News Release (A-roll) accompanying the Press Release announcing the International Conference on Translational Research in Radio-Oncology and Physics for Health in Europe, organized by CERN at the International Conference Centre Geneva from February 27 to March 2.

  2. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  3. News Outreach: Polish physics club reaches out with practical demonstrations Networking: Online workspace helps teachers to share ideas Mauritius: Telescope inspires science specification Fusion: EFDA sparks resources Olympiad: British team enjoys success at the International Physics Olympiad 2009 Nanoscience: 'Quietest' building in the world opens in Bristol, UK Conference: University of Leicester hosts the GIREP EPEC 2009 international conference

    Science.gov (United States)

    2009-11-01

    Outreach: Polish physics club reaches out with practical demonstrations Networking: Online workspace helps teachers to share ideas Mauritius: Telescope inspires science specification Fusion: EFDA sparks resources Olympiad: British team enjoys success at the International Physics Olympiad 2009 Nanoscience: 'Quietest' building in the world opens in Bristol, UK Conference: University of Leicester hosts the GIREP EPEC 2009 international conference

  4. News Event: UK to host Science on Stage Travel: Gaining a more global perspective on physics Event: LIYSF asks students to 'cross scientific boundaries' Competition: Young Physicists' tournament is international affair Conference: Learning in a changing world of new technologies Event: Nordic physical societies meet in Lund Conference: Tenth ESERA conference to publish ebook Meeting: Rugby meeting brings teachers together Note: Remembering John L Lewis OBE

    Science.gov (United States)

    2013-03-01

    Event: UK to host Science on Stage Travel: Gaining a more global perspective on physics Event: LIYSF asks students to 'cross scientific boundaries' Competition: Young Physicists' tournament is international affair Conference: Learning in a changing world of new technologies Event: Nordic physical societies meet in Lund Conference: Tenth ESERA conference to publish ebook Meeting: Rugby meeting brings teachers together Note: Remembering John L Lewis OBE

  5. Some problems of pulsar physics. [magnetospheric plasma model

    Science.gov (United States)

    Arons, J.

    1979-01-01

    The theories of particle acceleration along polar field lines are reviewed, and the total energization of the charge separated plasma is summarized, when pair creation is absent. The application of these theories and plasma supply to pulsars is discussed, with attention given to the total amount of electron-positron plasma created and its momentum distribution. Various aspects of radiation emission and transport are analyzed, based on a polar current flow model with pair creation, and the phenomenon of marching subpulses is considered. The coronation beaming and the relativistically expanding current sheet models for pulsar emission are also outlined, and the paper concludes with a brief discussion of the relation between the theories of polar flow with pair plasma and the problem of the energization of the Crab Nebula.

  6. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  7. Working group report: Heavy-ion physics and quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa; Sudhir Raniwala; T Awes; B Rai; R S Bhalerao; J G Contreras; R V Gavai; S K Ghosh; P Jaikumar; G C Mishra; A P Mishra; H Mishra; B Mohanty; J Nayak; J-Y Ollitrault; S C Phatak; L Ramello; R Ray; P K Sahu; A M Srivastava; D K Srivastava; V K Tiwari

    2006-11-01

    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.

  8. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.

    Science.gov (United States)

    Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo

    2014-04-01

    Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

  9. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    Science.gov (United States)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the

  10. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  11. Report on the Conference on Physics Teaching Held at the Weizmann Institute of Science, Rehovot, Israel, August 19-24, 1979.

    Science.gov (United States)

    Cox, Margaret

    This report discusses the current problems in teaching physics to teachers and new techniques for teaching vibrations and waves to students with limited mathematical ability. The author summarizes the topics covered at the Conference within the two categories. (SA)

  12. Report on the Conference on Physics Teaching Held at the Weizmann Institute of Science, Rehovot, Israel, August 19-24, 1979.

    Science.gov (United States)

    Cox, Margaret

    This report discusses the current problems in teaching physics to teachers and new techniques for teaching vibrations and waves to students with limited mathematical ability. The author summarizes the topics covered at the Conference within the two categories. (SA)

  13. PREFACE: Quark Matter 2006 Conference Quark Matter 2006 Conference

    Science.gov (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14-20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  14. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  15. JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

    2011-03-07

    Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

  16. 20th IEEE-NPSS Real Time Conference

    CERN Document Server

    2016-01-01

    We invite you at the Centro Congressi “A. Luciani” in Padova for the 2016 Real Time Conference (RT2016). It will take place Monday 6 through Friday 10 June 2016, with optional pre-conference tutorials Sunday, June 5. Like the previous editions, RT2016 will be a multidisciplinary conference devoted to the latest developments on realtime techniques in the fields of Plasma and Nuclear Fusion, particle physics, nuclear physics and astrophysics, space science, accelerators, medical physics, nuclear power instrumentation and other radiation instrumentation.

  17. PREFACE: Quark Matter 2006 Conference

    Science.gov (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  18. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    Science.gov (United States)

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  19. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  20. Calendar of Conferences

    Science.gov (United States)

    1996-08-01

    8 - 18 August 1996 International Summer School on Plasma Physics and Technology La Jolla, CA, USA Contact: Mr V Stefan, Institute for Advanced Physics Studies, PO Box 2964, La Jolla, CA 92038, USA. Tel +1-619-456-5737. 26 - 30 August 1996 Joint Varenna - Lausanne International Workshop on Theory of Fusion Plasmas Villa Monastero, Varenna, Italy Contact: Centro di Cultura Villa Monastero, 1 Piazza Venini, 22050 Varenna (Lecco), Italy. Tel +39-341-831261, Fax +39-341-831281. Application and abstract deadline: 15 June 1996. 2 - 5 September 1996 EU - US Workshop on Transport in Fusion Plasmas Villa Monastero, Varenna, Italy Further information: G Gorini, ISPP, 16 Via Celoria, I-20133 Milano, Italy. Tel +39-2-2392637, Fax +39-2-2392205, E-mail ggorini@mi.infn.it. Administrative contact: Centro di Cultura Villa Monastero, 1 Piazza Venini, 22050 Varenna (Lecco), Italy. Tel +39-341-831261, Fax +39-341-831281. Application and abstract deadline: 15 June 1996. 9 - 13 September 1996 International Conference on Plasma Physics Nagoya, Japan Contact: Conference Secretariat, c/o Prof. Hiromu Momota, National Institute for Fusion Science, Nagoya 464-01, Japan. Tel +81-52-789-4260, Fax +81-52-789-1037, E-mail icpp96@nifs.ac.jp. Abstract deadline: 31 March 1996. 16 - 20 September 1996 19th Symposium on Fusion Technology Lisbon, Portugal Contact: Professor Carlos Varandas, Centro de Fusão Nuclear, 1096 Lisboa Codex, Portugal. Fax +351-1-8417819, E-mail cvarandas@cfn.ist.utl.pt. General information will be available via WWW with URL http://www.cfn.ist.utl.pt. 25 - 29 September 1996 Summer University of Plasma Physics Garching, Germany Contact: Ms Ch Stahlberg, Max-Planck-Institut für PlasmaPhysik, Boltzmannstr 2, D-85748 Garching, Germany. Tel +49-89-3299-2232, Fax +49-89-3299-1001. 11 - 15 November 1996 38th Annual Meeting of the Division of Plasma Physics, APS Denver, CO, USA Contact: Dr Richard Hazeltine, University of Texas, Institute for Fusion Studies, RLM 11.314, Austin, TX

  1. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Kuchina, J. A.; Shiryaev, V. N.; Pavlov, A. V.

    2017-04-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed.

  2. PREFACE: 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013)

    Science.gov (United States)

    Groep, D. L.; Bonacorsi, D.

    2014-06-01

    In this age and time, capturing 'state of the art' of computing in a conference proceedings gets to be increasingly hard. It is quite common too for the submitted abstracts to refer to studies yet to be done - and the time span between abstract submission and the actual conference is often less than six months. By the time the proceedings appear in journal form, a similar period after its closing session, some of the work is over a year old, by which time new ideas will have been formed and the deployment of current ones progressed - at times beyond recognition. The preface is continued in the pdf.

  3. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  4. Papers presented at the Tenth Topical Conference on High-Temperature Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report contains papers on the following topics: Effects of limited spatial resolution on fluctuation measurements; vertical viewing of electron-cyclotron radiation in Text-U; measurement of temperature fluctuations from electron-cyclotron emission; a varying cross section magnetic coil diagnostic used in digital feedback control of plasma position in Text-Upgrade; high-sensitivity, high resolution measurements of radiated power on Text-U; wave launching as a diagnostic tool to investigate plasma turbulence; edge parameters from an energy analyzer and particle transport on Text-U; initial results from a charge exchange q-Diagnostic on Text-U; a method for neutral spectra analysis taking ripple-trapped particle losses into account; application of a three sample volume{sup S(k,{omega}}) estimate to optical measurements of turbulence on Text; initial operation of the 2D Firsis on Text-Upgrade; horizontal-view interferometer on Text-Upgrade; plasma potential measurements on Text-Upgrade with A 2 MeV heavy ion beam; fluctuation measurements using the 2 MeV heavy ion beam probe on Text-U; the time domain triple probe method; a phase contrast imaging system for Text-U; and development of rugged corner cube detectors for the Text-U-Fir interferometer. These papers have been placed on the database elsewhere.

  5. Intenational conference on high-energy physics. Volume 2. Sessions IV to VIII. [Geneva, June 27-July 4, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    Volume 2 of the conference proceedings contains sessions on hadron physics, charged-lepton physics, the p-p-bar collider at CERN, future European accelerator possibilities, parallel discussion sessions (on high-energy) hadron-induced reactions, deep inelastic phenomena, hadron spectroscopy, weak ineractions and gauge theories, and quark confinement), and a closing session on gauge appreciation of developments in particle physics. A list of participants is also included. Three of the papers in this volume have already been cited in ERA, and can be found as reference to the entry CONF-790642-- in the Report Number Index. The remaining 36 will be processed as they are received on the Atomindex tape. (RWR)

  6. Examining the Effects of Oxygen Plasma on Physical and Dyeing Properties of Some Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Dilara KOCAK

    2016-09-01

    Full Text Available Cotton, Agava Americana and artichoke fibers were treated with plasma with oxygen gas in Diener Vacuum Plasma for 1, 3 and 5 minutes, with 40 kHz low frequency and at 0.3 mbar pressure. After the plasma treatment, fibers' weight loss %, tensile strength, elongation, fiber diameter, surface topography (SEM, colour changes, and light and washing fastness properties were investigated. A positive increase was observed for mechanical and fastness properties after 5 min plasma treatment. The effects of plasma treatments on dyeing properties of fibers were studied. Dyeing properties of plasma treated fibers were improved after 3 min. treatment. SEM results were also proved the improved physical properties and colour changes due to the rough surface structure.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9368

  7. The physics of plasma injection events. [during magnetospheric substorms

    Science.gov (United States)

    Kivelson, M. G.; Kaye, S. M.; Southwood, D. J.

    1980-01-01

    In this paper, plasma injection is defined as an increase of particle flux in a detector of finite bandwidth. Injection can result from dynamic processes or from spacecraft penetration of a quasi-static spatial structure produced by a steady magnetospheric convection pattern. ATS-5 particle spectrograms are found to provide examples of plasma injection events of both sorts. Dynamic injection occurs both with and without local magnetic signatures. For events not associated with clear local magnetic signatures, convection theory with a steady or a time-varying uniform electric field can account for the energy dispersion of injected particles with energy less than 50 keV. The paper concludes with a discussion of the way in which the convection boundaries are related to the substorm injection boundary of Mauk and McIlwain. Several alternative expressions for the local time and K(p) dependence of the injection boundary are given.

  8. Drift waves and chaos in a LAPTAG plasma physics experiment

    Science.gov (United States)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  9. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  10. Tertiary particle physics with ELI: from challenge to chance (Conference Presentation)

    Science.gov (United States)

    Drska, Ladislav

    2017-05-01

    . Concrete application study: muon tomography. (22) Antilepton gravity studies [14]: Possibility of antimattter gravity research using positronium and muonium [15] [16]. Lepton / antilepton gravity studiesactive with relativistic particle beams [17]. First-phase practical application : positron production for filling (commertial) particle traps, development base for multiple microtrap systems. (23) Hidden world searching [18] : Potential laser-based production / detection of selected dark mattter particles - axions, hidden photons [19] [20]. Search for hidden particles in nuclear decay processes [21]. Potential application output: intense positronium source. Conclusion: The extensive feasibility study confirms the potential of ELI to contribute to the solution of Grand Challenge Problems of physics. Laser-produced tertiary particles will play important role in this effort. : References [1] L.Drska et al.: Physics of Extreme Systems. Course ATHENS CTU18, Prague 12 - 19 Nov., 2016. http://vega.fjfi.cvut.cz/docs/athens2016/ [2] L.Drska : Lepton Diagnostics and Antimatter Physics. In: SPIE Optics+Optoelectronics, Prague, April 13 - 16, 2015 . [3] H. Chen et al.: Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysics Applications. Rep. LLNL-JRNL-665381, Dec. 11, 2014. [4] E Liang et al.: High e+ / e- Ratio Dense Pair Creation with 1022 W.cm-2 Laser Irradiating Solid Targets. Scientific Reports, Sept. 14, 2015. www.nature.com/scientificreports [5] G. Sarri et al.: Spectral and Spatial Characterization of Laser-driven Positron Beams. Plasma Phys. Control. Fusion 59 (2017) 014015. [6] B. Schoch: A Method to Produce Intense Positron Beams via Electro Pair Production on Electrons. arXiv:1607.03847v1 [physics.acc-ph] [7] I. Pomerantz: Laser Generation of Neutrons: Science and Applications. In: ELI-NP Summer School, Magurele, Sept. 21 - 25, 2015. http://www.eli-np.ro/2015-summer-school/presentations/23.09/Pomerantz_Eli-NP-Summer-school-2015.pdf [8] V

  11. Innovative research of plasma physics for life sciences

    Science.gov (United States)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  12. The contribution of Nikola Tesla to plasma physics and current status of plasmas that he studied

    Directory of Open Access Journals (Sweden)

    Petrović Zoran Lj.

    2006-01-01

    Full Text Available One of the main Interests in science of Nikola Tesla were gas discharges plasmas, their application in lighting and in production of ozone as well as their role in conduction of electricity through the atmosphere. In particular Tesla is well known as the first person to produce rf plasmas. Such plasmas in the present day constitute the main technology required to produce integrated circuits (IC and have been essential in the revolution that resulted from IC technologies. In addition Tesla participated in studies of arcs especially arcs used as a source of light, corona discharges required to induce plasma chemical reactions and produce ozone and was involved in various aspects of gas breakdown and gaseous dielectrics. His ideas, level of his understanding and current status of these fields are discussed in this review.

  13. PREFACE: International Conference on Advancement in Science and Technology 2012 (iCAST): Contemporary Mathematics, Mathematical Physics and their Applications

    Science.gov (United States)

    Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin

    2013-04-01

    The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.

  14. The conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK

    Directory of Open Access Journals (Sweden)

    V.M. Yakubson

    2014-04-01

    Full Text Available On April, 11th, in Lenexpo the XVI conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK “Effective HVAC and Heat Supply Systems” took place. There were a lot of presentations of new equipment for building systems and networks. All these reports were dedicated to the ways to make buildings more comfortable for people, to increase the energy efficiency, to reduce expenses and to improve the production efficiency. But besides the specific equipment, there were some reports dedicated to more general problems in design, installation and maintenance of building systems and networks

  15. Proceedings of the 28th International Conference on High Energy Physics (in 2 Volumes)

    Science.gov (United States)

    Ajduk, Z.; Wroblewski, A. K.

    1997-04-01

    The Table of Contents for the book is as follows: * VOLUME I * Foreword * Conference Organization * Welcome Address * PLENARY SESSIONS * Pl-01 New Results in Spectroscopy * New Results in Spectroscopy * Pl-02 Soft Interactions and Diffraction Phenomena * Soft Interactions and Diffraction Phenomena * Pl-03 Spin Structure of the Nucleon * Spin Structure of the Nucleon * Pl-04 QCD, Low x and High pT Physics * Tests of QCD at Low x * High pT QCD Physics Results from the Tevatron * Pl-05 QCD and Hard Scattering * Status of the Strong Coupling Constant * Hard Scattering in QCD * Pl-06 Top Quark Properties and Their Theoretical Implications * Experimental Top Quark Physics * Top Quark Theory * Pl-07 Heavy Flavours * Progress in Understanding Heavy Flavor Decays * Theoretical Review of Heavy Flavour Physics * Pl-08 Quark Masses and Mixing from Weak Processes * Status of Weak Quark Mixing * Pl-09 Status of the Electroweak Interactions * Experimental Tests of the Electroweak Theory * Electroweak Interactions - Theory * Pl-10 FCNC Processes: Experimental Status and Theoretical Implications * Flavour Changing Neutral Current Processes * Pl-11 Neutrino Masses and Oscillations * Neutrino Masses and Oscillations - Experiment * Neutrino Masses and Oscillations - Theory * Pl-12 Searches for New Particles * Searches for New Particles * Pl-13 Developments in Non-Perturbative Quantum Field Theory * Recent Developments in Non-Perturbative Quantum Field Theory * Development in Lattice QCD * Pl-14 Supersymmetry and GUT's * Supersymmetry and (Grand) Unification * Pl-15 Non-Supersymmetric Extensions of the Standard Model * Non-Supersymmetric Extensions of the Standard Model * Pl-16 High Energy Nuclear Interactions and Heavy Ion Collisions * High Energy Nuclear Interactions and Heavy Ion Collisions * Pl-17 Particle Physics, Astrophysics and Cosmology * Experimental Particle Astrophysics * Zeroing in on the Fundamental Parameters of Cosmology * Pl-18 New Experimental Techniques and Detectors

  16. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2016-01-01

    Full Text Available In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α, differentiation (retinoic acid signaling and interferon inducible factors, and cell growth (Yin Yang 1. Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1 and of the neutrophil attractant chemokine interleukin-8 (IL-8. Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  17. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    Science.gov (United States)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  18. Physics of hot hadronic matter and quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p{sub t} and collective flow, the shape of p{sub t} distribution, strangeness production, J/{psi} suppression and {phi} enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ultrasoft'' phenomena. 56 refs., 6 figs.

  19. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  20. Physics and chemistry of plasma-assisted combustion.

    Science.gov (United States)

    Starikovskiy, Andrey

    2015-08-13

    There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions. The inhomogeneous heating generates flow perturbations, which promote increased turbulence and mixing. Non-thermal mechanisms include the ionic wind effect (the momentum transfer from an electric field to the gas due to the space charge), ion and electron drift (which can lead to additional fluxes of active radicals in the gradient flows in the electric field) and the excitation, dissociation and ionization of the gas by e-impact, which leads to non-equilibrium radical production and changes the kinetic mechanisms of ignition and combustion. These mechanisms, either together or separately, can provide additional combustion control which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine relight, detonation initiation in pulsed detonation engines and distributed ignition control in homogeneous charge-compression ignition engines, among others. Despite the lack of knowledge in mechanism details, non-equilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is extremely promising technology for a very wide range of applications.

  1. Formation and Acceleration Physics on Plasma Injector 1

    Science.gov (United States)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  2. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  3. Paradigm Changes in High Temperature Plasma Physics Research and Implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon K. Park

    2008-02-22

    Significant high temperature plasma research in both the magnetic and inertial confinement regimes led to the official launching of the International Thermonuclear Experimental Reactor (ITER) project which is aimed at challenging controlled fusion power for human kind. In particular, such an endeavor originated from the fruitful research outcomes from the world wide magnetic confinement devices (primarily based on the Tokamak approach) mainly in advanced countries (US, EU, and Japan). In recent years, all new steady state capable Tokamak devices are operated and/or constructed in Asian countries and incidentally, the majority of the ITER consortium consists of Asian countries. This provides an opportunity to revisit the unresolved essential physics issues and/or extend the understanding of the transient physics to the required steady state operation so that ITER can benefit from these efforts. The core physics of a magnetically confined hot plasma has two essential components; plasma stability and cross-field energy transport physics. Complete understanding of these two areas is critical for the successful operation of ITER and perhaps, Demo reactor construction. In order to have stable high beta plasmas with a sufficiently long confinement time, the physics of an abrupt disruption and sudden deterioration of the energy transport must be understood and conquered. Physics issues associated with transient harmful MHD behavior and turbulence based energy transport are extremely complicated and theoretical understanding needs a clear validation and verification with a new research approach such as a multi-dimensional visualization.

  4. 2nd International Conference on Ion Implantation in Semiconductors, Physics and Technology, Fundamental and Applied Aspects

    CERN Document Server

    Graul, Jürgen

    1971-01-01

    In recent years great progress has been made in the field of ion implantation, particularly with respect to applications in semiconductors. It would be impos­ sible not to note the growing interest in this field, both by research groups and those directly concerned with production of devices. Furthermore, as several papers have pointed out, ion implantation and its associated technologies promise exciting advances in the development of new kinds of devices and provide power­ ful new tools for materials investigations. It was, therefore, appropriate to arrange the II. International Conference on Ion Implantation in Semiconductors within the rather short time of one year since the first conference was held in 1970 in Thousand Oaks, California. Although ori­ ginally planned on a small scale with a very limited number of participants, more than two hundred scientists from 15 countries participated in the Conference which was held May 24 - 28, 1971 at the Congress Center in Garmisch-Partenkirchen. This volume c...

  5. Recent advances in numerical simulation of space-plasma-physics problems

    Science.gov (United States)

    Birmingham, T. J.

    1983-01-01

    Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.

  6. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  7. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    R V Gavai

    2000-07-01

    Lattice quantum chromodynamics (QCD), defined on a discrete space–time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, New York of relativistic heavy ion collisions are expected to produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the necessary theoretical concepts, I will present a critical review of the experimental results already obtained by the various experiments in order to examine whether QGP has already been observed by them.

  8. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  9. The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.

    Science.gov (United States)

    Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis

    2010-07-01

    The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

  10. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  11. STRATEGIC PRIORITIES FOR INCREASING PHYSICAL ACTIVITY AMONG ADULTS AGE 50 AND OLDER: THE NATIONAL BLUEPRINT CONSENSUS CONFERENCE SUMMARY REPORT

    Directory of Open Access Journals (Sweden)

    Terry Bazzarre

    2003-12-01

    Full Text Available On May 1, 2001, a coalition of national organizations released a major planning document designed to develop a national strategy for the promotion of physically active lifestyles among the mid-life and older adult population. The National Blueprint: Increasing Physical Activity Among Adults Age 50 and Older was developed with input from 46 organizations with expertise in health, medicine, social and behavioral sciences, epidemiology, gerontology/geriatrics, clinical science, public policy, marketing, medical systems, community organization, and environmental issues. The Blueprint notes that, despite a wealth of evidence about the benefits of physical activity for mid-life and older persons, there has been little success in convincing age 50+ Americans to adopt physically active lifestyles. The Blueprint identifies barriers in the areas of research, home and community programs, medical systems, public policy and advocacy, and marketing and communications. In addition to identifying barriers, the Blueprint proposes a number of concrete strategies that could be employed in order to overcome the barriers to physical activity in society at large. This report summarizes the outcome of the National Blueprint Consensus Conference that was held in October 2002. In this conference, representatives of more than 50 national organizations convened in Washington, D.C. with the goal of identifying high priority and high feasibility strategies which would advance the National Blueprint and which could be initiated within the next 12 to 24 months. Participants in the consensus conference were assigned to one of five breakout groups: home and community, marketing, medical systems, public policy, and research. Each breakout group was charged with identifying the three highest priority strategies within their area for effectively increasing physical activity levels in the mid-life and older adult population. In addition to the 15 strategies identified by the

  12. Proceedings of the 29th International Conference on High Energy Physics: Ichep '98 (in 2 Volumes)

    Science.gov (United States)

    Astbury, Alan; Axen, David; Robinson, Jacob

    1999-06-01

    The Table of Contents for the book is as follows: * VOLUME I * Foreword * Conference Organization * PLENARY SESSIONS * Pl-01 Recent Results from the Super-Kamiokande * Recent Results from the Super-Kamiokande * Pl-02 Recent Results on Neutrino Oscillations * Recent Results on Neutrino Oscillations * Pl-03 Experimental Status of the Standard Model * Experimental Status of the Standard Model * Pl-04 Standard Model Theory * Standard Model Theory * Pl-05 Searches at Existing Machines * Searches at Existing Machines * Pl-06 Heavy Quark Production and Decay (t, b, and Onia) * Heavy Quark Production and Decay: (t, b, and Onia) * Pl-07 Heavy Quark Decay * Heavy Quark Decay * Pl-08 CP Violation, Rare Decays and Lepton Flavor Violation * CP Violation, Rare Decays and Lepton Flavor Violation * Pl-09 Light and Charmed Hadron Spectroscopy * Light and Charmed Hadron Spectroscopy * Pl-10 Progress in Lattice Gauge Theory * Progress in Lattice Gauge Theory * Pl-11 Structure Functions * Structure Functions * Pl-12 Diffraction and Low-Q2 Physics Including Two-Photon Physics * Diffraction and Low-Q2 Physics Including Two-Photon Physics * Pl-13 Heavy Ion Collisions at High Energy * Heavy Ion Collisions at High Energy * Pl-14 "Non-Perturbative Methods" in Field Theory * "Non-Perturbative Methods" in Field Theory * Pl-15 Experimental Aspects of QCD in e+e- Collisions * Experimental Aspects of QCD in e+e- Collisions * Pl-16 QCD at High Energy (Hadron-Hadron, Lepton-Hadron, and Gamma-Hadron) * QCD at High Energy (Hadron-Hadron, Lepton-Hadron, Gamma-Hadron) * Pl-17 Perturbative QCD Theory (Includes Our Knowledge of αs) * Perturbative QCD Theory (Includes our Knowledge of αs) * Pl-18 Experimental Particle Astrophysics * Experimental Particle Astrophysics * Pl-19 Particle Cosmology * Particle Cosmology * Pl-20 Guide to Physics Beyond the Standard Model * Guide to Physics Beyond the Standard Model * Pl-21 Developments in Superstring Theory * Developments in Superstring Theory * Pl-22 Future

  13. Microfabrication of through holes in polydimethylsiloxane (PDMS) sheets using a laser plasma EUV source (Conference Presentation)

    Science.gov (United States)

    Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki

    2017-03-01

    Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.

  14. Atomic physics of shocked plasma in winds of massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); CRESST/UMBC (United States); Swarthmore College, Swarthmore, PA 19081 (United States); Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2012-05-25

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure.

  15. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  16. Dynamics of magnetically trapped particles foundations of the physics of radiation belts and space plasmas

    CERN Document Server

    Roederer, Juan G

    2014-01-01

    This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of diff...

  17. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  18. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    Science.gov (United States)

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  19. 5th International Heidelberg Conference on Dark Matter in Astro- and Particle Physics

    CERN Document Server

    Arnowitt, Richard; DARK 2004; Dark Matter in Astro- and Particle Physics

    2006-01-01

    The search for dark matter in the universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.

  20. Evolution of large-sclae plasma structures in comets: Kinematics and physics

    Science.gov (United States)

    Brandt, John C.

    1988-01-01

    Disconnection Events are the dramatic part of the periodic morphology involving the separation of the entire plasma tail from the head region of the comet and the growth of a new plasma. The coordinated observations of Comet Halley recorded approximately 30 DEs during the 7 months of plasma activity; 19 of these are obvious. The plasma physics of these events were approached via a detailed, kinematic investigation of specific DEs and the solar-wind environment associated with it. As the detailed investigations are completed, researchers should be able to answer the question of a single or multiple mechanism(s) for DEs and determine which mechanism(s) are important. At present, the mechanism of sunward magnetic reconnection caused by interplanetary sector boundary crossing in consistent with the data available.

  1. Relationship between physical activity and plasma fibrinogen concentrations in adults without chronic diseases.

    Directory of Open Access Journals (Sweden)

    Manuel A Gomez-Marcos

    Full Text Available OBJECTIVE: To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR, and plasma fibrinogen concentrations. METHODS: A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women. Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs/hour/week and GT3X ActiGraph accelerometer (counts/minute for 7 days. RESULTS: Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute and 7-day PAR (Median: 8 METs/hour/week. Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = -0.100; p<0.001 and METs/hour/week (r = -0.162; p<0.001. In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week respect to subjects who performed less (first tertile, maintained statistical significance after adjustments for age and others confounders (β = -0.03; p = 0.046 and β = -0.06; p<0.001, respectively. CONCLUSIONS: Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders.

  2. Study of Local Reconnection Physics in a Laboratory Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada

    2001-06-11

    A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory.

  3. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  4. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  5. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  6. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    , Russia, the US, China, South Korea and India (as of March 2006). It will take several years to accomplish this important task. There is no doubt that the success depends not only on funding but also on enthusiastic people willing to contribute with their skills and knowledge. Young scientists and engineers must be enrolled to the programme and trained in various disciplines of fusion science and technology. There are various education schemes and work programmes. Organization of summer schools on fusion-related plasma physics is an important part of the training process. Several schools are organized annually or every second year in Europe. Fusion-related science is so vast that it is impossible to cover all topics during an event lasting for one or two weeks. Therefore, each school has its distinctive features and focuses on a selected group of issues to be addressed in depth. This also applies to the Workshop and Summer School on Plasma Physics in Kudowa Zdrój (Poland) that, has been organised annually since 2001. It was initiated by Dr Marek Scholz with the help of his colleagues from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The idea was to create a forum for students mainly from Eastern Europe to learn and discuss subjects in general plasma physics and dense magnetized media, predominantly in plasma focus devices. Over the years the school has matured and created a clear profile. A unique feature has always been to accommodate in the programme not only tutorials delivered by invited senior scientists but also presentations prepared by the students. In June 2005 the 5th Workshop and Summer School on Plasma Physics was held under the heading 'Towards Fusion Energy: Plasma Physics, Diagnostics, Applications'. There were 59 participants, including 44 students, coming from plasma physics and material research laboratories in 17 countries: Belgium, Czech Republic, France, Germany, Georgia, Iran, Italy, Lithuania, Poland, Romania, Russia

  7. EDITORIAL: Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics

    Science.gov (United States)

    Bhattacharjee, Amitava

    2012-01-01

    To celebrate Professor Robert Dewar's 65th birthday, a Symposium was held on 31 October 2009 in Atlanta, Georgia, just before the 51st Annual Meeting of the Division of Plasma Physics of the American Physical Society. The Symposium was attended by many of Bob's colleagues, friends, postdoctoral colleagues and students (present and former). Boyd Blackwell, Anthony Cooper, Chris Hegna, Stuart Hudson, John Krommes, Alexander Pletzer, Ellen Zweibel, and I gave talks that covered various aspects of Bob's wide-ranging scholarship, and his leadership in the Australian and the US fusion program. At the Symposium, Bob gave an insightful talk, published in this issue as a paper with D Leykam. This paper makes available for the first time unpublished results from Bob's M Sc Thesis on a general method for calculating the potential around a `dressed' test particle in an isotropic and collisionless plasma. The paper is interesting not only because it provides a glimpse of the type of elegant applied mathematics that we have come to associate with Bob, but also because he discusses some leitmotifs in his intellectual evolution since the time he was a graduate student at the University of Melbourne and Princeton University. Through his early encounter with quantum field theory, Bob appreciated the power of Lagrangian and Hamiltonian formalisms, which he used with great effectiveness in nonlinear dynamics and plasma physics. A question that animates much of his work is one that underlies the `dressed' particle problem: if one is given a Hamiltonian with an unperturbed (or `bare') part and an interaction part, how is one to obtain a canonical transformation to `the oscillation centre' thatwould reduce the interaction part to an irreducible residual part while incorporating the rest in a renormalized zeroth-order Hamiltonian? One summer in Princeton, I worked with Bob on a possible variational formulation for this problem, and failed. I was daunted enough by my failure that I turned

  8. 19th High-Energy Physics International Conference in Quantum Chromodynamics (QCD)

    CERN Document Server

    2016-01-01

    Experimental and Theoretical Issues on: Perturbative and Non-Perturbative QCD QCD at colliders Tau, Kaon and B decays, CP-violation Exotic Hadrons Spectroscopy Precision Tests of the Standard Model Physics Beyond the Standard Model.

  9. 12th international conference on elastic and diffractive scattering forward physics and QCD. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Borras, K.; Diehl, M.; Jung, H. (eds.)

    2007-12-15

    The following topics are dealt with: Lepton-proton collisions, pp and anti pp collisions, heavy ion collisions, opportunities at future colliders, cosmic rays and astropoarticle physics, theoretical developments in high-energy QCD. (HSI)

  10. Physics of Plasmas in Thermonuclear Regimes. Proceedings of the 1979 Workshop, International School of Plasma Physics, Varenna, Italy, 27 August - 8 September 1979. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coppi, B.; Sadowski, W. [eds.

    1979-08-27

    The workshop was run concurrently with the International School of Plasma Physics and was organized as a sequence of afternoon meetings concerning a set of topics that correspond to the individual chapters of these proceedings. The workshop consisted of both individual presentations and moderated discussions among the participants. A selected group of topics that were found to deserve a more in-depth analysis, such as the question of anomalous particle transport and the theory of collective modes induced by alpha-particles were discussed in separate Working Groups.

  11. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    CERN Document Server

    Told, Daniel; Astfalk, Patrick; Jenko, Frank

    2016-01-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  12. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  13. 44th Annual Anomalous Absorption Conference

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2014-03-03

    beyond ICF-related laser-plasma interactions to encompass closely related technical areas including laser particle acceleration, high-intensity laser effects, short­ pulse laser interactions, PIC and Vlasov/rad-hydro modeling, inertial and magnetic fusion plasmas, advanced plasma diagnostics, alternate ignition schemes, EOS/transport/opacity, and this year, x­ ray free-electron lasers and their applications. The conference continues to be a showcase for the presentation and discussion of the latest developments in these areas. II. Meeting Report The conference was extremely successful with more than one hundred participants. There were ninety-nine (99) abstracts submitted. There were forty-four (44) presentations including eleven (11) invited talks. The following topics were covered: a) Radiation Hydrodynamics b) Implosion Plasma Kinetic Effects c) Alternate Ignition Schemes d) Astrophysical Phenomena e) Opacity/Transport/EOS f) High Power Lasers and Facilities g) High-Intensity Laser-Matter Interactions h) Hydrodynamics and Hydro-instabilities i) Hot Dense Plasma Atomic Processes j) High Energy Density Physics k) Laser Particle Acceleration Physics l) Advanced Plasma Diagnostics m) Advanced light sources and applications Despite significant advertising, there were two students who applied for the travel grants: Charlie Jarrott and Joohwan Kim. The total funds expended were $3,216.14.

  14. Fusion programs in applied plasma physics. Technical progress report, July 11, 1992--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section.

  15. FOM-Rijnhuizen contributions to the 23. European Physical Society conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Electron Cyclotron Current Drive (ECCD) experiments on the Rijnhuizen tokamak RTP have been performed utilizing 60 GHz waves launched from the high field side of the torus. The ECCD efficiency as a function of the position of the cold resonance layer has been measured and compared with Fokker-Planck simulations. The experimental results are consistent with these simulations. (orig.).

  16. The Shelter Island Conferences Revisited: "Fundamental" Physics in the Decade 1975-1985

    Science.gov (United States)

    Schweber, S. S.

    2016-04-01

    The focus of this broad historical overview of "the steady evolution of theoretical ideas" from Shelter Island I in 1947 to Shelter Island II in 1983 is some of the developments in "fundamental" physics after the establishment of the standard model, in particular, the adoption of the view that all present day field theories are "effective field theories" based on the gauge concept; taking seriously big bang cosmology, grand unified field theories (GUTs), and inflation; and the emergence of a new symbiosis of physics and mathematics.

  17. PREFACE: Proceedings of the 25th International Conference on Low Temperature Physics (LT25) (Amsterdam, The Netherlands, 6-13 August 2008) Proceedings of the 25th International Conference on Low Temperature Physics (LT25) (Amsterdam, The Netherlands, 6-13 August 2008)

    Science.gov (United States)

    Kes, Peter; Jochemsen, Reijer

    2009-04-01

    This issue forms part I of the Proceedings of the 25th International Conference on Low Temperature Physics (LT25) (Amsterdam, The Netherlands, 67-13 August 2008). The majority of the special invited lectures, such as the London prize lectures, the international union of pure and applied physics (IUPAP) young scientist award lectures, the plenary, half-plenary and public lectures, and the historical lectures presented at the LT25 conference, are included. The papers relating to the oral and poster presentations will appear in part II of the proceedings in a dedicated open access issue of Journal of Physics: Conference Series (2009 J. Phys.: Conf. Ser. 150). In addition to the organizer's report and a summary of the new developments in low temperature physics, which can also be found in this issue, part II provides useful information about LT25, such as an overview of committees, sponsors, exhibitors, and some conference statistics. To ensure the high publication standard mandated by Journal of Physics: Condensed Matter and Journal of Physics: Conference Series every paper was reviewed by at least one referee before it was accepted for publication. The editors are indebted to many colleagues for invaluable assistance in the preparation and review of 900 papers appearing in both parts I and II of these proceedings. In particular, we would like to thank Carlo Beenakker, Jeroen van den Brink, Hans Brom, Jos de Jongh, Horst Rogalla, Fons de Waele, and Jan Zaanen.

  18. 2014 consensus statement from the first Economics of Physical Inactivity Consensus (EPIC) conference (Vancouver).

    Science.gov (United States)

    Davis, Jennifer C; Verhagen, Evert; Bryan, Stirling; Liu-Ambrose, Teresa; Borland, Jeff; Buchner, David; Hendriks, Marike R C; Weiler, Richard; Morrow, James R; van Mechelen, Willem; Blair, Steven N; Pratt, Mike; Windt, Johann; al-Tunaiji, Hashel; Macri, Erin; Khan, Karim M

    2014-06-01

    This article describes major topics discussed from the 'Economics of Physical Inactivity Consensus Workshop' (EPIC), held in Vancouver, Canada, in April 2011. Specifically, we (1) detail existing evidence on effective physical inactivity prevention strategies; (2) introduce economic evaluation and its role in health policy decisions; (3) discuss key challenges in establishing and building health economic evaluation evidence (including accurate and reliable costs and clinical outcome measurement) and (4) provide insight into interpretation of economic evaluations in this critically important field. We found that most methodological challenges are related to (1) accurately and objectively valuing outcomes; (2) determining meaningful clinically important differences in objective measures of physical inactivity; (3) estimating investment and disinvestment costs and (4) addressing barriers to implementation. We propose that guidelines specific for economic evaluations of physical inactivity intervention studies are developed to ensure that related costs and effects are robustly, consistently and accurately measured. This will also facilitate comparisons among future economic evidence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Spacelab 1 - Scientific objectives, life sciences, space plasma physics, astronomy and solar physics

    Science.gov (United States)

    Chappell, C. R.

    1985-01-01

    A general overview of the accomplishments of the Spacelab 1 complement to the Shuttle mission of Nov. 28, 1983, is presented. Consideration is given to scientific results in the fields of life sciences, materials sciences, atmospheric physics, and earth observations. A table is given which lists the scientific objectives and the percentage of objectives accomplished in each field.

  20. Global problems in magnetospheric plasma physics and prospects for their solution

    Science.gov (United States)

    Roederer, J. G.

    1977-01-01

    Selected problems in magnetospheric plasma physics are critically reviewed. The discussion is restricted to questions that are 'global' in nature (i.e., involve the magnetosphere as a whole) and that are beyond the stage of systematic survey or isolated study requirements. Only low-energy particle aspects are discussed. The article focuses on the following subjects: (1) the effect of the interplanetary magnetic field on the topography, topology, and stability of the magnetospheric boundary; (2) solar-wind plasma entry into the magnetosphere; (3) plasma storage and release mechanisms in the magnetospheric tail; and (4) magnetic-field-aligned currents and magnetosphere-ionosphere interactions. A brief discussion of the prospects for the solution of these problems during and after the International Magnetospheric Study is given.

  1. Integrated physics analysis of plasma start-up scenario of helical reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Seki, R.; Suzuki, C.; Yokoyama, M.; Satake, S.; Sagara, A.; The FFHR Design Group

    2015-06-01

    1D physics analysis of the plasma start-up scenario of the large helical device (LHD)-type helical reactor FFHR-d1 was conducted. The time evolution of the plasma profile is calculated using a simple model based on the LHD experimental observations. A detailed assessment of the magnetohydrodynamic equilibrium and neo-classical energy loss was conducted using the integrated transport analysis code TASK3D. The robust controllability of the fusion power was confirmed by feedback control of the pellet fuelling and a simple staged variation of the external heating power with a small number of simple diagnostics (line-averaged electron density, edge electron density and fusion power). A baseline operation control scenario (plasma start-up and steady-state sustainment) of the FFHR-d1 reactor for both self-ignition and sub-ignition operation modes was demonstrated.

  2. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  3. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  4. 9th International Conference on Interconnections between Particle Physics and Cosmology

    CERN Document Server

    2015-01-01

    Recent advances in observational astronomy and the discovery of 125-GeV Higgs boson have brought paradigm shifts on the potential connections between new fundamental particles and our understanding of their impact on the early universe and its evolution. With the content of the universe well known from astrophysical observations, a key aspect is that 27% of the universe appears to consist of dark matter. If current theories are correct, the particle physics candidate for this matter may well be observed in ongoing direct and/or indirect dark matter detection experiments or at the LHC. In addition, about 69% of the universe, the dark energy, still remains a significant mystery that major theoretical attempts are trying to understand. The objectives of PPC 2015 are to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results, explore predictions for ongoing and forthcoming experiments, develop a theore...

  5. Active 2D and carbon-based materials: physics and devices (Conference Presentation)

    Science.gov (United States)

    Sorger, Volker J.

    2016-09-01

    In nanophotonics we create material-systems, which are structured at length scales smaller than the wavelength of light. When light propagates inside such effective materials numerous novel physics phenomena emerge including thresholdless lasing, atto-joule per bit efficient modulators, and exciton-polariton effects. However, in order to make use of these opportunities, synergistic device designs have to be applied to include materials, electric and photonic constrains - all at the nanoscale. In this talk, I present our recent progress in exploring 2D and TCO materials for active optoelectronics. I highlight nanoscale device demonstrations including their physical operation principle and performance benchmarks. Details include epsilon-bear-zero tuning of thin-film ITO, Graphene electro-static gating via Pauli-blocking, plasmonic electro-optic modulation, and hetero-integrated III-V and carbon-based plasmon lasers on Silicon photonics.

  6. 2012 Gordon Research Conference on Graphitic Carbon Materials, Chemistry and Physics of - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Fertig, Herbert A. [Indiana Univ., Bloomington, IN (United States)

    2012-06-22

    The Gordon Research Conference on GRAPHITIC CARBON MATERIALS, CHEMISTRY AND PHYSICS OF was held at the Davidson College, Davidson, North Carolina, June 17 – 22, 2012. The Conference was well-attended with 95 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 95 attendees, 41 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 41 respondents, 49% were Minorities – 5% Hispanic, 44% Asian and 0% African American. Approximately 2% of the participants at the 2012 meeting were women. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, "free time" was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. Carbon materials play an extremely important role in our society. They not only constitute the largest supply of energy we use today (i.e., coal) but also are the bases of many important technologies ranging from pencils, adsorbents, and metal strengtheners, to batteries and many others. Recent studies on graphitic carbon, including fullerenes, carbon nanotubes, and graphene, have further revealed novel optical and electrical properties, making it possible to use them for new applications in renewable energy as well as

  7. News Conference: Take a hold of Hands-on Science Meeting: Prize-winning physics-education talks are a highlight of the DPG spring meeting in Jena Event: Abstracts flow in for ICPE-EPEC 2013 Schools: A new Schools Physics Partnership in Oxfordshire Conference: 18th MPTL is forum for multimedia in education Meeting: Pursuing playful science with Science on Stage Forthcoming events

    Science.gov (United States)

    2013-03-01

    Conference: Take a hold of Hands-on Science Meeting: Prize-winning physics-education talks are a highlight of the DPG spring meeting in Jena Event: Abstracts flow in for ICPE-EPEC 2013 Schools: A new Schools Physics Partnership in Oxfordshire Conference: 18th MPTL is forum for multimedia in education Meeting: Pursuing playful science with Science on Stage Forthcoming events

  8. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  9. James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves

    Science.gov (United States)

    Chen, Liu

    2012-10-01

    Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

  10. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  11. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Years 2002 and 2003

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley, Editor

    2004-12-22

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2002 and 2003 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003.

  12. Study of higher excited states of some polyatomic molecules relevant for plasma physics and environment

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, B P, E-mail: bratislav.marinkovic@phy.bg.ac.y [Institute of Physics, Belgrade 11080, Pregrevica 118 (Serbia) and College for Electrical Engineering and Computing, Belgrade 11010, Vojvode Stepe 283 (Serbia)

    2009-04-01

    Studies of higher excited states of some polyatomic molecules relevant for plasma physics and environment have been presented. Spectra of chlorofluorocarbons are discussed together with their influence on ozone layer depletion and global warming. Tetrahydrofuran molecule was studied by photoabsorption and electron energy loss spectroscopy while the states are assigned following extensive ab initio calculations. Nitrous oxide and hydrogen sulphide spectra are discussed in terms of identifying valence and Rydberg character of excited states.

  13. TELEMATICS APPLICATIONS REMOT: Interfaces and Adaptations of the Plasma Physics Demonstrator

    OpenAIRE

    Kemmerling, G.; Van der Meer, E.

    1997-01-01

    In document D6.2, a textual description of the soft- and hardware components of the plasma physics demonstrator as well as a definition of remote and local site was given. In order to couple these components to a complete teleoperation system, interfaces between them have to be defined and existing soft- and hardware have to be adapted. This task will be described in this document.

  14. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  15. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  16. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  17. 6th International Conference on Physics of Liquid Matter : Modern Problems

    CERN Document Server

    Lebovka, Nikolai

    2015-01-01

    These proceedings comprise invited and contributed papers presented at PLMMP-2014, addressing modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The book focuses on state-of-the-art developments in contemporary physics of liquid matter. The papers presented here are organized into four parts: (i) structure of liquids in confined systems, (ii) phase transitions, supercritical liquids and glasses, (iii) colloids, and (iv) medical and biological aspects and cover the most recent developments in the broader field of liquid state including interdisciplinary problems.

  18. International Conference on $p$-Adic Mathematical Physics and its Applications

    CERN Document Server

    2015-01-01

    Since 1987, there have been many interesting and promissing applications of p-adic (non-Archimedean, ultrametric) analysis to some problems of modern mathematical and theoretical physics, and also to some other related fields of sciences. As a result, it emerged a new field of research called p-adic mathematical physics. During this time, there has been permanent interest in investigation of relevant mathematical tools, as well as of possible applications -- from strings to the universe as a whole. In particular, there have been remarkable achievements in some complex biosystems with hierarchy. Enthusiastic researchers believe that application of p-adic analysis and ultrametric methods becomes one of scientific challenges of the 21st century. For the progress in this field in period 1987-2008 one can see review paper http://arxiv.org/abs/0904.4205. For an insight to investigations after 2008 one can look at publications of the journal p-Adic Numbers, Ultrametric Analysis and Applications. To promote this fiel...

  19. Associations among objectively measured physical activity, fasting plasma homocysteine concentration, and MTHFR C677T genotype.

    Science.gov (United States)

    Murakami, Haruka; Iemitsu, Motoyuki; Sanada, Kiyoshi; Gando, Yuko; Ohmori, Yumi; Kawakami, Ryoko; Sasaki, Satoshi; Tabata, Izumi; Miyachi, Motohiko

    2011-12-01

    Elevated fasting plasma homocysteine (Hcy) level is a vascular disease risk factor. Plasma Hcy is affected by 5,10-methylenetetrahydofolate reductase (MTHFR) genotype and dietary folate intake. This cross-sectional study in 434 Japanese adults examined the associations among objectively measured physical activity (PA), plasma Hcy adjusting for dietary folate intake, and MTHFR C677T genotype. Daily PA was measured by triaxial accelerometry and all subjects completed a questionnaire about their dietary habits. Plasma Hcy and MTHFR C677T genotype were determined. Plasma Hcy in subjects with the TT genotype was significantly higher than in those with CC or CT genotype (p < 0.001). Plasma Hcy was significantly different between ≥ 200 (7.6 ± 0.2 nmol/mL) and <200 µg/day (8.3 ± 0.3 nmol/mL) folate intake groups (p = 0.003). There were no differences in plasma Hcy adjusting for age, sex, and folate intake between groups according to PA category in all subjects. However, there were significant interactions between time spent in light PA (p = 0.003), vigorous PA (p = 0.001), or inactivity (p = 0.004), and MTHFR genotype. In only the TT genotype, shorter time spent in light PA was associated with higher plasma Hcy than a longer time spent in light PA (11.5 ± 3.3 nmol/mL vs. 8.5 ± 3.3 nmol/mL, p < 0.001), and longer time spent in vigorous PA and inactivity were associated with higher plasma Hcy (11.8 ± 3.3 nmol/mL vs. 8.4 ± 3.2 nmol/mL, 11.6 ± 3.3 nmol/mL vs. 8.4 ± 3.3 nmol/mL, respectively, p < 0.001). In conclusion, light and vigorous PA were associated with plasma Hcy only in the TT genotype, but there were no such associations in all genotypes.

  20. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  1. Pushing the physical limits of spectroscopic imaging for new biology and better medicine (Conference Presentation)

    Science.gov (United States)

    Cheng, Ji-Xin

    2017-02-01

    In vivo molecular spectroscopic imaging is not a simple addition of a spectrometer to a microscope. Innovations are needed to break the physical limits in sensitivity, depth, speed and resolution perspectives. I will present our most recent advances in modality development, biological application, and clinical translation. My talk will focus on the development of mid-infrared photothermal microscope for depth-resolved vibrational imaging of living cells (Science Advances, in press), the discovery of a metabolic signature in cancer stem cells by hyperspectral stimulated Raman scattering imaging (Cell Stem Cell, in press), and the development of an intravascular vibrational photoacoustic catheter for label-free sensing of lipid laden plaques (Scientific Report 2016, 6:25236).

  2. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  3. 9. European fusion theory conference. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    The aim of the conference was to provide a discussion forum covering all areas of magnetic fusion-oriented theoretical activities in Europe. The following main topics are included: multidimensional equilibria and operational limits; magnetic topology, macroinstabilities and magnetic reconnection; microinstabilities, turbulence, structures and transport processes; plasma rotation and radial electric fields; RF heating, current drive, helicity injection and non-resonant forces; plasma edge and divertor physics; computational modelling in magnetic fusion research. (LN)

  4. Some physics and chemistry of Coblation® electrosurgical plasma devices

    Science.gov (United States)

    Stalder, Kenneth R.; Ryan, Thomas P.; Woloszko, Jean

    2013-02-01

    Electrosurgical devices employing plasmas to ablate, cut and otherwise treat tissues have been in widespread use for decades. Following d'Arsonval's 19th century work on the neuromuscular response from high-frequency excitation of tissue, Doyen treated skin blemishes with a spark-gap generator in 1909. In the late 1920's, physician Harvey Cushing and Harvard physicist William Bovie developed an electrosurgical device and power source that eventually became a standard of care for cutting, coagulating, desiccating, or fulgurating tissue. Beginning in the 1990's a new class of low-voltage electrosurgical devices employing electricallyconducting saline fluids were developed by ArthroCare Corp. These modern Coblation® devices are now widely used in many different surgical procedures, including those in arthroscopic surgery, otorhinolaryngology, spine surgery, urology, gynecological surgery, and others. This paper summarizes some of the research we have been doing over the last decade to elucidate the physics and chemistry underlying Coblation® electrosurgical devices. Electrical-, thermal-, fluid-, chemicaland plasma-physics all play important roles in these devices and give rise to a rich variety of observations. Experimental techniques employed include optical and mass spectroscopy, fast optical imaging, and electrical voltage and current measurements. Many of the features occur on fast time scales and small spatial scales, making laboratory measurements difficult, so coupled-physics, finite-element-modeling can also be employed to glean more information than has been acquired thus far through physical observation.

  5. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschön, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Öz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tückmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  6. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  7. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  8. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  9. Physical and environmental factors affecting the persistence of explosives particles (Conference Presentation)

    Science.gov (United States)

    Papantonakis, Michael R.; Nguyen, Viet K.; Furstenberg, Robert; White, Caitlyn; Shuey, Melissa; Kendziora, Christopher A.; McGill, R. Andrew

    2017-05-01

    Knowledge of the persistence of trace explosives materials is critical to aid the security community in designing detection methods and equipment. The physical and environmental factors affecting the lifetimes of particles include temperature, airflow, interparticle distance, adlayers, humidity, particle field size and vapor pressure. We are working towards a complete particle persistence model that captures the relative importance of these effects to allow the user, with known environmental conditions, to predict particle lifetimes for explosives or other chemicals. In this work, particles of explosives are sieved onto smooth glass substrates using particle sizes and loadings relevant to those deposited by fingerprint deposition. The coupon is introduced into a custom flow cell and monitored under controlled airflow, humidity and temperature. Photomicroscopy images of the sample taken at fixed time intervals are analyzed to monitor particle sublimation and characterized as a size-independent radial sublimation velocity for each particle in the ensemble. In this paper we build on previous work by comparing the relationship between sublimation of different materials and their vapor pressures. We also describe the influence of a sebum adlayer on particle sublimation, allowing us to better model `real world' samples.

  10. Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin.

    Science.gov (United States)

    Mueller, Patrick J

    2008-09-01

    Physical inactivity is an independent risk factor for cardiovascular disease. Sedentary animals compared to physically active controls exhibit enhanced sympathoexcitatory responses, including arterial baroreflex-mediated sympathoexcitation. Hypotension-induced sympathoexcitation is also associated with the release of vasoactive hormones. We hypothesized that sedentary conditions may enhance release of the vasoactive hormones AVP and ANG II. To test this hypothesis, the humoral response to hypotension was examined in conscious rats after 9-12 wk of sedentary conditions or "normally active" conditions. Normally active conditions were produced by allowing rats access to running wheels in their home cages. Running distance peaked after 4 wk (4.5 +/- 0.7 km/day), and the total distance run after 9 wk was 174 +/- 23 km (n = 25). Similar levels of hypotension were induced in conscious sedentary or physically active animals with the arterial vasodilator, diazoxide (25 mg/kg iv). Control experiments used a saline injection of equivalent volume. Plasma samples were collected and assayed for plasma AVP concentration and plasma renin activity (PRA). Sedentary conditions significantly enhanced resting and hypotension-induced PRA relative to normal physical activity. In contrast, resting and hypotension-induced AVP levels were not statistically different between groups. These data suggest that baroreflex-mediated activation of the renin-angiotensin system, but not AVP secretion, is enhanced by sedentary conditions. We speculate that augmented activation of the renin-angiotensin system may be related to enhanced sympathetic outflow observed in sedentary animals and may contribute to increased risk of cardiovascular disease in the sedentary population.

  11. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  12. Chipscale optical frequency combs: from soliton physics to coherent communication (Conference Presentation)

    Science.gov (United States)

    Brasch, Victor; Geiselmann, Michael; Herr, Tobias; Lihachev, Grigoriy; Pfeiffer, Martin H. P.; Gorodetsky, Michael L.; Kippenberg, Tobias J.

    2016-04-01

    In our experiment we use silicon nitride waveguides embedded in silicon dioxide on a silicon chip. The cross section of the waveguide is approximately 1.8µm width by 0.8µm height and the ring resonator has a radius of 120µm. This resonator is coupled to a bus waveguide that is used to couple the continuous wave pump light into the resonator and the light from the resonator out again. The pump laser is an amplified diode laser which provides around 2W of pump power in the bus waveguide on the photonic chip. If the pump light is in resonance with one of the resonances of the resonator we can generate a frequency comb from the pump light via the Kerr nonlinearity of the material. The spacing in between the lines of the frequency comb is close to the free spectral range of the resonator, which is 190 GHz for the resonator used. By tuning the pump laser through the resonance and modulating the power of the pump light we can achieve a stable state with a pulsed-shape waveform circulating inside the microresonator. These states are known as dissipative Kerr soliton states and they are solutions to the Lugiato-Lefever equation, which describes the nonlinear physics of the system. So far they had been experimentally demonstrated in fiber-ring cavities as well as crystalline microresonators. The main benefits of these states for Kerr frequency combs is that they allow for low-noise but broadband frequency combs with low modulation in the spectrum. In our case we report a 3-dB bandwidth of 10THz which is equivalent to sub-30fs pulses inside the resonator. Because of the chosen geometry of the waveguide cross section we also observe an effect which is caused by higher-order dispersion. Higher-order dispersion are terms that describe the dispersion beyond the quadratic group velocity dispersion. In order for dissipative Kerr solitons to form, anomalous group velocity dispersion is required. If higher-order terms are present as well, the soliton can still exist but additional

  13. Proceedings of the Eleventh International Conference on Calorimetry in Particle Physics

    Science.gov (United States)

    Cecchi, Claudia

    primitive generation / N. Regnault -- Optical data links for the CMS ECAL / J. Grahl (contribution not received) -- CMS ECAL off-detector electronics / R. Alemany Fernandez -- Performance of a low noise readout ASIC for the W-Si calorimeter physics prototype for the future linear collider / C. de la Taille -- Properties of a sampling calorimeter with warm-liquid ionization chambers / S. Plewnia -- Calorimetry and the DO experiment / R. Zitoun (contribution not received) -- Data quality monitoring for the DØ calorimeter / V. Shary -- Status of the construction of the ATLAS electromagnetic liquid argon calorimeter, overview of beam test performance studies / L. Serin -- Uniformity of response of ATLAS liquid argon EM calorimeter / O. Gaunter -- Status of the ATLAS liquid argon hadronic endcap calorimeter construction / M. Vincter -- Results from particle beam tests of the ATLAS liquid argon endcap calorimeters / M. Lefebvre -- First results of the DREAM project / R. Wigmans -- Electron and muon detection with a dual-readout (DREAM) calorimeter / N. Akchurin -- The neutron zero degree calorimeter for the ALICE experiment / M. Gallio -- The liquid xenon scintillation calorimeter of the MEG experiment: operation of a large prototype / G. Signorelli -- Detection of high energy particles using radio frequency signals / C. Hebert -- Hadronic shower simulation / J.-P. Wellisch -- E.M. and hadronic shower simulation with FLUKA / G. Battistoni -- Simulation of the LHCb electromagnetic calorimeter response with GEANT4 / P. Robbe -- Comparison of beam test results of the combined ATLAS liquid argon endcap calorimeters with GEANT3 and GEANT4 simulations / D. Salihagić -- GEANT4 hadronic physics validation with LHC test-beam data / C. Alexa -- The full simulation of the GLAST LAT high energy gamma ray telescope / F. Longo -- Response of the KLOE electromagnetic calorimeter to low-energy particles / T. Spadaro -- Calorimeter algorithms for DØ; / S. Trincaz-Duvoid -- Identification of

  14. Modeling physical chemistry of the Io plasma torus in two dimensions

    Science.gov (United States)

    Copper, M.; Delamere, P. A.; Overcast-Howe, K.

    2016-07-01

    Periodicities in the Io plasma illustrate the rich complexity of magnetosphere-ionosphere coupling in space plasmas. The confounding System IV period (slower than the rotation of Jupiter's magnetic field ≡ System III) remains a mystery of the torus. Common to both System III and IV are modulations of the superthermal electron population. The small fraction (<1%) of hot electrons plays a vital role in torus physical and chemical properties, modulating the abundance and temperature of ion species. Building on previous models of torus physical chemistry, we have developed a two-dimensional model that includes azimuthal and radial transport (diffusion equation) while averaging chemical processes in latitude. This paper presents initial results of the model, demonstrating the role of hot electrons in forming a single-peaked torus structure. The effect of azimuthal shear is investigated as plasma is transported radially outward, showing how the torus properties evolve during transport from a chemically dominated regime (inner torus) to a transport dominated regime (outer torus). Surprisingly, we find that hot electron populations influence torus properties at all radial distances. While many of our results are preliminary, suggestions for future modeling experiments are suggested to provide additional insight into the origin of the ubiquitous superthermal electrons.

  15. STUDENT AWARD FINALIST: Plasma Acid: A Chemically and Physically Metastable Substance

    Science.gov (United States)

    Shainsky, Natalie; Dobrynin, Danil; Ercan, Utku; Joshi, Suresh; Brooks, Ari; Ji, Haifeng; Fridman, Gregory; Cho, Young; Fridman, Alexander; Friedman, Gennady

    2011-10-01

    Non-thermal atmospheric pressure dielectric barrier discharge applied to the surface of a liquid creates a chemically and physically metastable substance. The properties and lifetime of the substance depend on the treatment conditions such as gas atmosphere and liquid medium used, treatment dose, and other parameters. When deionized water is used, the metastable substance becomes a strong oxidizer. We show that direct exposure of deionized water to neutral and charged species produced in plasma creates a strong oxidizer and acidic substance in this water which, for the lack of a better term, we termed plasma acid. Plasma acid can remain stable for relatively long time and its oxidizing power may be linked to the significant lowering of its pH. We report experiments that demonstrate plasma acid's metastability. We also show that observed pH of as low as 2.0 cannot be completely accounted for by the production of nitric acid; and that the conjugate base derived from superoxide is at least partly responsible for both, lowering of the pH and increase in the oxidizing power of the solution.

  16. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-08-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter heat transfer.

  17. Nostradamus conference 2013

    CERN Document Server

    Chen, Guanrong; Rössler, Otto; Snasel, Vaclav; Abraham, Ajith; Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems

    2013-01-01

    Prediction of behavior of the dynamical systems, analysis and modeling of its structure is vitally important problem in engineering, economy and science today. Examples of such systems can be seen in the world around us and of course in almost every scientific discipline including such “exotic” domains like the earth’s atmosphere, turbulent fluids, economies (exchange rate and stock markets), population growth, physics (control of plasma), information flow in social networks and its dynamics, chemistry and complex networks. To understand such dynamics and to use it in research or industrial applications, it is important to create its models. For this purpose there is rich spectra of methods, from classical like ARMA models or Box Jenkins method to such modern ones like evolutionary computation, neural networks, fuzzy logic, fractal geometry, deterministic chaos and more. This proceeding book is a collection of the accepted papers to conference Nostradamus that has been held in Ostrava, Czech Republic. P...

  18. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  19. Magnetospheric Plasma Physics : the Impact of Jim Dungey’s Research

    CERN Document Server

    Southwood, David; Mitton, Simon

    2015-01-01

    This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 w...

  20. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.