WorldWideScience

Sample records for plasma physics basics

  1. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  2. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  3. Basic Studies in Plasma Physics

    Science.gov (United States)

    2013-01-31

    close to a Maxwellian parametrized by a temperature T and mean velocity u which satisfy certain non -linear equations, which are the macroscopic equations...Simulations with Particle-to-Grid Methods 17 E. Microscopic-Shock Profiles: Exact Solution of a Non -Equilibrium System 18 IV. List of Publications...Investigator ABSTRACT An improved understanding of equilibrium and non -equilibrium properties of plasmas is central to many areas of basic science as

  4. The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics.

    Science.gov (United States)

    Gekelman, W; Pribyl, P; Lucky, Z; Drandell, M; Leneman, D; Maggs, J; Vincena, S; Van Compernolle, B; Tripathi, S K P; Morales, G; Carter, T A; Wang, Y; DeHaas, T

    2016-02-01

    In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

  5. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    Science.gov (United States)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  6. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  7. Basics of plasma astrophysics

    CERN Document Server

    Chiuderi, Claudio

    2015-01-01

    This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.

  8. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  9. Physical Activity Basics

    Science.gov (United States)

    ... Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Physical Activity Basics Recommend on Facebook Tweet Share Compartir How much physical activity do you need? Regular physical activity helps improve ...

  10. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  11. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  12. Basic microscopic plasma physics unified and simplified by N-body classical mechanics

    CERN Document Server

    Escande, Dominique; Elskens, Yves

    2012-01-01

    Debye shielding, collisional transport, Landau damping of Langmuir waves, and spontaneous emission of these waves are introduced, in typical plasma physics textbooks, in different chapters. This paper provides a compact unified introduction to these phenomena without appealing to fluid or kinetic models, but by using Newton's second law for a system of $N$ electrons in a periodic box with a neutralizing ionic background. A rigorous equation is derived for the electrostatic potential. Its linearization and a first smoothing reveal this potential to be the sum of the shielded Coulomb potentials of the individual particles. Smoothing this sum yields the classical Vlasovian expression including initial conditions in Landau contour calculations of Langmuir wave growth or damping. The theory is extended to accommodate a correct description of trapping or chaos due to Langmuir waves. In the linear regime, the amplitude of such a wave is found to be ruled by Landau growth or damping and by spontaneous emission. Using...

  13. Basic physics for all

    CERN Document Server

    Kumar, B N

    2012-01-01

    This is a simple, concise book for both student and non-physics students, presenting basic facts in straightforward form and conveying fundamental principles and theories of physics. This book will be helpful as a supplement to class teaching and to aid those who have difficulty in mastering concepts and principles.

  14. Nonthermal plasma chemistry and physics

    CERN Document Server

    Meichsner, Jurgen; Schneider, Ralf; Wagner, Hans-Erich

    2013-01-01

    In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications.Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemist

  15. Basic Nuclear Physics.

    Science.gov (United States)

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  16. New Basic Physics Derived from Laser Plasma Interaction (lirpp Vol. 10)

    Science.gov (United States)

    Hora, Heinrich

    2016-10-01

    The following sections are included: * INTRODUCTION * VARIOUS PHENOMENA * COMPLETION OF THE EQUATION OF MOTION BY NONLINEAR FORCES * NONLINEAR PRINCIPLE * CONTAINMENT FORCE OF HADRONS IN NUCLEI AND PHASE TRANSITION INTO QUARK GLUON PLASMA * Acknowledgements * References

  17. Basic Semiconductor Physics

    CERN Document Server

    Hamaguchi, Chihiro

    2010-01-01

    This book presents a detailed description of the basic semiconductor physics. The reader is assumed to have a basic command of mathematics and some elementary knowledge of solid state physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. The reader can understand three different methods of energy band calculations, empirical pseudo-potential, k.p perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for full band Monte Carlo simulation are discussed. Experiments and theoretical analysis of cyclotron resonance are discussed in detail because the results are essential to the understanding of semiconductor physics. Optical and transport properties, magneto-transport, two dimensional electron gas transport (HEMT and MOSFET), and quantum transport are reviewed, explaining optical transition, electron phonon interactions, electron mob...

  18. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  19. Basics of statistical physics

    CERN Document Server

    Müller-Kirsten, Harald J W

    2013-01-01

    Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles, and attempts to explain these in simple terms supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Eins...

  20. The Framework of Plasma Physics

    Science.gov (United States)

    Cowley, Steven

    There have been relatively few good textbooks on plasma physics. Most become simple reference books that might be titled, “Plasma Physics Recipes.” Despite their utility such books do not make good textbooks. For teaching, one needs a book that shows how the basic results and models are part of a coherent whole. Richard Hazeltine and Francois Waelbroeck have written such a textbook: The Framework of Plasma PhysicsAn this book, plasma physics is developed carefully and logically from basic physics principles. The book is not, however, overly formal; physical arguments are used to reduce mathematical complexity.

  1. New foundations and unification of basic plasma physics by means of classical mechanics

    CERN Document Server

    Escande, Dominique F; Elskens, Yves

    2013-01-01

    The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas requires many pages of heavy kinetic calculations in classical textbooks and is done in distinct, unrelated chapters. Using Newton's second law for the $N$-body system, we perform this derivation in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered on the way to Landau damping. The theory is extended to accommodate a correct description of trapping or chaos due to Langmuir waves, and to avoid the small amplitude assumption for the electrostatic potential. Using the shielded potential, collisional transport is computed for the first time by a convergent expression including the correct calculation of deflections for all impact parameters. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons.

  2. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  3. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  4. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  5. Basic research in solar physics

    Science.gov (United States)

    Linsky, Jeffrey L.

    1991-01-01

    heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.

  6. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  7. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  8. Nuclear medicine physics the basics

    CERN Document Server

    Chandra, Ramesh

    2012-01-01

    For decades this classic reference has been the book to review to master the complexities of nuclear-medicine physics. Part of the renowned The Basics series of medical physics books, Nuclear Medicine Physics has become an essential resource for radiology residents and practitioners, nuclear cardiologists, medical physicists, and radiologic technologists. This thoroughly revised Seventh Edition retains all the features that have made The Basics series a reliable and trusted partner for board review and reference. This handy manual contains key points at the end of each chapter that help to underscore principal concepts. You'll also find review questions at the end of each chapter—with detailed answers at the end of the book—to help you master the material. This edition includes useful appendices that elaborate on specific topics, such as physical characteristics of radionuclides and CGS and SI Units.

  9. Basic concepts in computational physics

    CERN Document Server

    Stickler, Benjamin A

    2016-01-01

    This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes. The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. In addition, the book offers a number of appendices to provide the read...

  10. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence

  11. Reviews of plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Shafranov, Vitalii Dmitrievich (ed.); Bakunin, Oleg G. (comps.) [Rossijskij Nauchnyj Tsentr ' ' Kurchatovskij Inst.' ' , Moscow (Russian Federation). Nuclear Fusion Inst.; Rozhansky, V. [St. Petersburg State Polytechnical Univ. (Russian Federation)

    2008-07-01

    Reviews of Plasma Physics Volume 24, edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence (orig.)

  12. Basic radiotherapy physics and biology

    CERN Document Server

    Chang, David S; Das, Indra J; Mendonca, Marc S; Dynlacht, Joseph R

    2014-01-01

    This book is a concise and well-illustrated review of the physics and biology of radiation therapy intended for radiation oncology residents, radiation therapists, dosimetrists, and physicists. It presents topics that are included on the Radiation Therapy Physics and Biology examinations and is designed with the intent of presenting information in an easily digestible format with maximum retention in mind. The inclusion of mnemonics, rules of thumb, and reader-friendly illustrations throughout the book help to make difficult concepts easier to grasp. Basic Radiotherapy Physics and Biology is a

  13. Basic concepts in computational physics

    CERN Document Server

    A Stickler, Benjamin

    2014-01-01

    With the development of ever more powerful computers a new branch of physics and engineering evolved over the last few decades: Computer Simulation or Computational Physics. It serves two main purposes: - Solution of complex mathematical problems such as, differential equations, minimization/optimization, or high-dimensional sums/integrals. - Direct simulation of physical processes, as for instance, molecular dynamics or Monte-Carlo simulation of physical/chemical/technical processes. Consequently, the book is divided into two main parts: Deterministic methods and stochastic methods. Based on concrete problems, the first part discusses numerical differentiation and integration, and the treatment of ordinary differential equations. This is augmented by notes on the numerics of partial differential equations. The second part discusses the generation of random numbers, summarizes the basics of stochastics which is then followed by the introduction of various Monte-Carlo (MC) methods. Specific emphasis is on MARK...

  14. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  15. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  16. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  17. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  18. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  19. Solar Physics - Plasma Physics Workshop

    Science.gov (United States)

    Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Sturrock, P. A.; Wentzel, D. G.

    1974-01-01

    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.

  20. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  1. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  2. Computations in Plasma Physics.

    Science.gov (United States)

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  3. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  4. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  5. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  6. Visual Basic Applications to Physics Teaching

    Science.gov (United States)

    Chitu, Catalin; Inpuscatu, Razvan Constantin; Viziru, Marilena

    2011-01-01

    Derived from basic language, VB (Visual Basic) is a programming language focused on the video interface component. With graphics and functional components implemented, the programmer is able to bring and use their components to achieve the desired application in a relatively short time. Language VB is a useful tool in physics teaching by creating…

  7. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  8. Plasma Physics of Extreme Astrophysical Environments

    CERN Document Server

    Uzdensky, Dmitri A

    2014-01-01

    Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework f...

  9. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  10. Fundamental aspects of plasma chemical physics Thermodynamics

    CERN Document Server

    Capitelli, Mario; D'Angola, Antonio

    2012-01-01

    Fundamental Aspects of Plasma Chemical Physics - Thermodynamics develops basic and advanced concepts of plasma thermodynamics from both classical and statistical points of view. After a refreshment of classical thermodynamics applied to the dissociation and ionization regimes, the book invites the reader to discover the role of electronic excitation in affecting the properties of plasmas, a topic often overlooked by the thermal plasma community. Particular attention is devoted to the problem of the divergence of the partition function of atomic species and the state-to-state approach for calculating the partition function of diatomic and polyatomic molecules. The limit of ideal gas approximation is also discussed, by introducing Debye-Huckel and virial corrections. Throughout the book, worked examples are given in order to clarify concepts and mathematical approaches. This book is a first of a series of three books to be published by the authors on fundamental aspects of plasma chemical physics.  The next bo...

  11. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  12. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  13. Basic Health Physics: Problems and Solutions

    Science.gov (United States)

    Bevelacqua, Joseph John

    1999-01-01

    Radiation litigation, the cleanup and decommissioning of nuclear facilities, radon exposure, nuclear medicine, food irradiation, stricter regulatory climate--these are some of the reasons health physics and radiation protection professionals are increasingly called upon to upgrade their skills. Designed to prepare candidates for the American Board of Health Physics Comprehensive examination (Part I) and other certification examinations, Basic Health Physics: Problems and Solutions introduces professionals in the field to radiation protection principles and their practical application in routine and emergency situations. It features more than 650 worked examples illustrating concepts under discussion along with an in-depth coverage of sources of radiation, standards and regulations, biological effects of ionizing radiation, instrumentation, external and internal dosimetry, counting statistics, monitoring and interpretations, operational health physics, transportation and waste, nuclear emergencies, and more. Reflecting for the first time the true scope of health physics at an introductory level, Basic Health Physics: Problems and Solutions gives readers the tools to properly evaluate challenging situations in all areas of radiation protection, including the medical, university, power reactor, fuel cycle, research reactor, environmental, non-ionizing radiation, and accelerator health physics.

  14. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  15. Basic theoretical physics a concise overview

    CERN Document Server

    Krey, Uwe

    2007-01-01

    This concise treatment embraces, in four parts, all the main aspects of theoretical physics (I . Mechanics and Basic Relativity, II. Electrodynamics and Aspects of Optics, III. Non-relativistic Quantum Mechanics, IV. Thermodynamics and Statistical Physics). It summarizes the material that every graduate student, physicist working in industry, or physics teacher should master during his or her degree course. It thus serves both as an excellent revision and preparation tool, and as a convenient reference source, covering the whole of theoretical physics. It may also be successfully employed to deepen its readers' insight and add new dimensions to their understanding of these fundamental concepts. Recent topics such as holography and quantum cryptography are included, thus making this a unique contribution to the learning material for theoretical physics.

  16. Fundamental aspects of plasma chemical physics transport

    CERN Document Server

    Capitelli, Mario; Laricchiuta, Annarita

    2013-01-01

    Fundamental Aspects of Plasma Chemical Physics: Tranpsort develops basic and advanced concepts of plasma transport to the modern treatment of the Chapman-Enskog method for the solution of the Boltzmann transport equation. The book invites the reader to consider actual problems of the transport of thermal plasmas with particular attention to the derivation of diffusion- and viscosity-type transport cross sections, stressing the role of resonant charge-exchange processes in affecting the diffusion-type collision calculation of viscosity-type collision integrals. A wide range of topics is then discussed including (1) the effect of non-equilibrium vibrational distributions on the transport of vibrational energy, (2) the role of electronically excited states in the transport properties of thermal plasmas, (3) the dependence of transport properties on the multitude of Saha equations for multi-temperature plasmas, and (4) the effect of the magnetic field on transport properties. Throughout the book, worked examples ...

  17. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  18. Plasma physics of extreme astrophysical environments

    Science.gov (United States)

    Uzdensky, Dmitri A.; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)—the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  19. Dusty plasma as a unique object of plasma physics

    Science.gov (United States)

    Norman, G. E.; Timofeev, A. V.

    2016-11-01

    The self-consistency and basic openness of dusty plasma, charge fluctuations, high dissipation and other features of dusty plasma system lead to the appearance of a number of unusual and unique properties of dusty plasma. “Anomalous” heating of dusty particles, anisotropy of temperatures and other features, parametric resonance, charge fluctuations and interaction potential are among these unique properties. Study is based on analytical approach and numerical simulation. Mechanisms of “anomalous” heating and energy transfer are proposed. Influence of charge fluctuations on the system properties is discussed. The self-consistent, many-particle, fluctuation and anisotropic interparticle interaction potential is studied for a significant range of gas temperature. These properties are interconnected and necessary for a full description of dusty plasmas physics.

  20. Theoretical physics 6 quantum mechanics : basics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This textbook offers a clear and comprehensive introduction to the basics of quantum mechanics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the physical understanding further on to quantized states. The first part of the book introduces wave equations while exploring the Schrödinger equation and the hydrogen atom. More complex themes are covered in the second part of the book, which describes the Dirac formulism of quantum mechanics. Ideally suited to undergraduate students with some grounding in classical mechanics and electrodynamics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this...

  1. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  2. The plasma physics of shock acceleration

    Science.gov (United States)

    Jones, Frank C.; Ellison, Donald C.

    1991-01-01

    The history and theory of shock acceleration is reviewed, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. The work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks is discussed. Some of the outstanding problems that still confront theorists and observers in this field are described.

  3. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    Science.gov (United States)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  4. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    1984-01-01

    This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons.

  5. Topics in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Old Dominion Univ., Norfolk, VA (United States)

    2015-05-31

    During the period 1998-2013, research under the auspices of the Department of Energy was performed on RF waves in plasmas. This research was performed in close collaboration with Josef Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of Sciences), Martin Valovic and Vladimir Shevchenko (Culham). This research is detailed and all 38 papers which were published by this team are cited.

  6. Differential geometry basic notions and physical examples

    CERN Document Server

    Epstein, Marcelo

    2014-01-01

    Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and local and distant symmetries of the constitutive response of continuous media. Once these ideas have been grasped at the topological level, the differential structure needed for the description of physical fields is introduced in terms of differentiable manifolds and principal frame bundles. These mathematical concepts are then illustrated with examples from continuum kinematics, Lagrangian and Hamiltonian mechanics, Cauchy fluxes and dislocation theory. This book will be useful for researchers and graduate students in science and engineering.

  7. Protein Folding: Search for Basic Physical Models

    Directory of Open Access Journals (Sweden)

    Ivan Y. Torshin

    2003-01-01

    Full Text Available How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context of in vivo protein folding (which has been studied only for a few proteins, the roles of the fundamental physical forces in the in vitro folding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces. Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.

  8. Variational Integrators in Plasma Physics

    CERN Document Server

    Kraus, Michael

    2013-01-01

    Variational integrators are a special kind of geometric discretisation methods applicable to any system of differential equations that obeys a Lagrangian formulation. In this thesis, variational integrators are developed for several important models of plasma physics: guiding centre dynamics (particle dynamics), the Vlasov-Poisson system (kinetic theory), and ideal magnetohydrodynamics (plasma fluid theory). Special attention is given to physical conservation laws like conservation of energy and momentum. Most systems in plasma physics do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended towards nonvariational differential equations by linking it to Ibragimov's theory of integrating factors and adjoint equations. It allows us to find a Lagrangian for all ordinary and partial differential equations and systems thereof. Consequently, the applicability of variational integrators is extended to a much larger family of syst...

  9. Research in plasma physics

    Science.gov (United States)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  10. PREFACE: 1982 International Conference on Plasma Physics

    Science.gov (United States)

    Wilhelmsson, Hans

    1982-01-01

    Invited Papers: The Physics of Hot Plasmas During the last decade a dramatic evolution of plasma physics has occurred. Not only have gigantic fusion plasma machines been planned, and are now being built, and elaborate spaceships and antenna systems been constructed to explore remote parts of the cosmos; new observations have revealed fascinating structures in space, ranging from pulsar plasmas under extreme conditions in very strong magnetic fields to large-scale magnetic field and electric current systems in cosmic plasmas. X-rays from very distant sources as well as radio-waves from the plasma in the magnetosphere and in the Aurora have recently been studied with new observational techniques. Ingenious laboratory experiments are continuously being carried out to exploit new fundamental processes in plasmas. These are of great interest for the basic understanding of plasmas and also have immediate consequences for applications, like plasma heating and diagnostics. The theoretical description of new plasma phenomena, and of the plasma state in general poses challenging problems, particularly in situations where high concentration of energy is located in the plasmas. Nonlinear wave analysis and turbulence theory have accordingly been extensively developed to describe in particular the collective plasma phenomena. New concepts have been envisaged like plasma solitons, which may be thought of as excitations of local concentrations of longitudinal plasma waves which turn out to be particularly stable. More and more sophisticated structures of nonlinear nature are being revealed by means of high capacity computer facilities. Simulation experiments allow for studies of chaotic behaviour of plasma particles. Related fields of activity form new trends in the development of plasma theory. The programme of the 1982 International Conference on Plasma Physics, which was held in Göteborg, Sweden, stressed the role of the Physics of Hot Plasmas. Studies of such plasmas are

  11. Introduction to plasma physics and controlled fusion

    CERN Document Server

    Chen, Francis F

    2016-01-01

    The third edition of this classic text presents a complete introduction to plasma physics and controlled fusion, written by one of the pioneering scientists in this expanding field.  It offers both a simple and intuitive discussion of the basic concepts of the subject matter and an insight into the challenging problems of current research. This outstanding text offers students a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly.  In a wholly lucid manner the second edition covered charged-particle motions, plasmas as fluids, kinetic theory, and nonlinear effects.  For the third edition, two new chapters have been added to incorporate discussion of more recent advances in the field.  The new chapter 9 on Special Plasmas covers non-neutral plasmas, pure electron plasmas, solid and ultra-cold plasmas, pair-ion plasmas, d...

  12. Space Plasma Physics

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).

  13. On basic equation of statistical physics

    Institute of Scientific and Technical Information of China (English)

    邢修三

    1996-01-01

    Considering that thermodynamic irreversibility, the principle of entropy increase and hydrodynamic equations cannot be derived rigorously and in a unified way from the Liouville equations, the anomalous Langevin equation in Liouville space or its equivalent generalized Liouville equation is proposed as a basic equation of statistical physics. This equation reflects the fact that the law of motion of statistical thermodynamics is stochastic, but not deterministic. From that the nonequilibrium entropy, the principle of entropy increase, the theorem of minimum entropy production and the BBGKY diffusion equation hierarchy have been derived. The hydrodynamic equations, such as the generalized Navier-Stokes equation and the mass drift-diffusion equation, etc. have been derived from the BBGKY diffusion equation hierarchy. This equation has the same equilibrium solution as that of the Liouville equation. All these are unified and rigorous without adding any extra assumption. But it is difficult to prove that th

  14. Town Meeting on Plasma Physics at the National Science Foundation

    Science.gov (United States)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  15. Plasma Physics and Controlled Nuclear Fusion

    CERN Document Server

    Miyamoto, Kenro

    2005-01-01

    The primary objectives of this book are, firstly, to present the essential theoretical background needed to understand recent fusion research and, secondly, to describe the current status of fusion research for graduate students and senior undergraduates. It will also serve as a useful reference for scientists and engineers working in the related fields. In Part I, Plasma Physics, the author explains the basics of magneto-hydrodynamics and kinetic theory in a simple and compact way and, at the same time, covers important new topics for fusion studies such as the ballooning representation, instabilities driven by energetic particles and various plasma models for computer simulations. Part II, Controlled Nuclear Fusion, attempts to review the "big picture" in fusion research. All important phenomena and technologies are addressed, with a particular emphasis on the topics of most concern in current research.

  16. Numerical Simulation of Basic Parameters in Plasma Spray

    Institute of Scientific and Technical Information of China (English)

    范群波; 王鲁; 王富耻

    2004-01-01

    On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, which can be directly calculated just by inputting the general spraying parameters, such as current, voltage, flow rates of gases, etc. Based on this method, the effects of plasma current and the flow rate of Ar on the basic parameters at the torch exit are discussed. The results show that the temperature, velocity and ionization degrees of gas species will increase with increasing the plasma current; while increasing Ar flow rate can increase the velocity at the exit but decrease the temperature and ionization degrees of plasma species. The method would be helpful to predict the temperature and velocity fields in a plasma jet in future, and direct the practical plasma spray operations.

  17. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2014-05-01

    invited peers. The criteria for review focused on the demand for a consistent research and the clear statement of results. Most of the articles received report the work of research groups where advanced students and young investigators are prominent. Thanks to their enthusiasm, we would like to express our appreciation to the authors. Previous to the ICPP-LAWPP 2010, an important activity associated to the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from over the world, providing basic training to students and young researchers. The School was attended by 44 participants and 6 lecturers from 11 different countries. All participants received economical assistance from the local organizing committee. The topics covered by the school were: general description of plasmas, space and astrophysical plasmas, plasma diagnostic techniques, high temperature and fusion plasmas, and low temperature and industrial plasmas. The organizers of the ICPP-LAWPP-2010 are grateful to the lectures of the LAWPP Plasma Physics School: Luis Felipe Delgado-Aparicio (USA), Homero Maciel (Brazil), and Marina Stepanova, J Alejandro Valdivia, Victor Muñoz, Felipe Veloso, Leopoldo Soto from Chile. On 27 February, 2010, one of the worst earthquakes in the recorded history of the world struck Chile. Although Santiago was affected little, the region located 200 km South of Santiago was seriously damaged. After this event, the local organizing committee received many messages from members of the plasma physics community around the world expressing their concern. The local organizing committee greatly appreciates the support of the participants from the entire world that decided to come to Chile and attend the Conference. Their solidarity is highly appreciated. During the celebration of the ICPP-LAWPP in Chile the two pioneers of plasma physics in Chile were affected by grave illness. Albeit that, Dr Hern

  18. Physics of the plasma universe

    CERN Document Server

    Peratt, Anthony L

    2015-01-01

    Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based ...

  19. Plasma physics via computer simulation

    CERN Document Server

    Birdsall, CK

    2004-01-01

    PART 1: PRIMER Why attempting to do plasma physics via computer simulation using particles makes good sense Overall view of a one dimensional electrostatic program A one dimensional electrostatic program ES1 Introduction to the numerical methods used Projects for ES1 A 1d electromagnetic program EM1 Projects for EM1 PART 2: THEORY Effects of the spatial grid Effects of the finitw time ste Energy-conserving simulation models Multipole models Kinetic theory for fluctuations and noise; collisions Kinetic properties: theory, experience and heuristic estimates PART 3: PRACTIC

  20. PREFACE: 31st European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Dendy, Richard

    2004-12-01

    This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee

  1. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  2. The HelCat basic plasma science device

    Science.gov (United States)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  3. Variational integrators in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Michael

    2013-07-01

    To a large extent, research in plasma physics is concerned with the description and analysis of energy and momentum transfer between different scales and different kinds of waves. In the numerical modelling of such phenomena it appears to be crucial to describe the transfer processes preserving the underlying conservation laws in order to prevent physically spurious solutions. In this work, special numerical methods, so called variational integrators, are developed for several models of plasma physics. Special attention is given to conservation properties like conservation of energy and momentum. By design, variational integrators are applicable to all systems that have a Lagrangian formulation. Usually, equations of motion are derived by Hamilton's action principle and then discretised. In the application of the variational integrator theory, the order of these steps is reversed. At first, the Lagrangian and the accompanying variational principle are discretised, such that discrete equations of motion can be obtained directly by applying the discrete variational principle to the discrete Lagrangian. The advantage of this approach is that the resulting discretisation automatically retains the conservation properties of the continuous system. Following an overview of the geometric formulation of classical mechanics and field theory, which forms the basis of the variational integrator theory, variational integrators are introduced in a framework adapted to problems from plasma physics. The applicability of variational integrators is explored for several important models of plasma physics: particle dynamics (guiding centre dynamics), kinetic theory (the Vlasov-Poisson system) and fluid theory (magnetohydrodynamics). These systems, with the exception of guiding centre dynamics, do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended by linking it to Ibragimov's theory of

  4. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  5. Basic Physics of Tokamak Transport Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to

  6. Medical Imaging with Ultrasound: Some Basic Physics.

    Science.gov (United States)

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  7. Operational symmetries basic operations in physics

    CERN Document Server

    Saller, Heinrich

    2017-01-01

    This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups an...

  8. Basics of particle therapy I: physics.

    Science.gov (United States)

    Park, Seo Hyun; Kang, Jin Oh

    2011-09-01

    With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

  9. EDITORIAL 37th European Physical Society Conference on Plasma Physics 37th European Physical Society Conference on Plasma Physics

    Science.gov (United States)

    Mendonça, Tito; Hidalgo, Carlos

    2010-12-01

    participants, and finally basic and astrophysical plasmas (BAP). New strategies are required to achieve a more balanced participation of these four areas of knowledge in future meetings, but the large number of participants and the overall high quality of the invited talks were particularly relevant this year. In the preparation of the Conference Programme we tried to present an updated view of plasma physics and to integrate suggestions coming from the scientific community, in particular through the use of the EPS PPD Open Forum. As mentioned, two evening sessions took place during the Conference. This year, the traditional evening on ITER was replaced by a session dedicated to inertial fusion, organized by D Batani, where the main installations and experiments on laser fusion around the world were presented and critically discussed. The other session, dedicated to plasma physics education, was organized by N Lopes-Cardoso, and discussed the specific educational issues of plasma physics and fusion, and presented the training programmes existing in Europe. As a concluding remark, we would like to thank our colleagues of the Programme Committee and, in particular, the coordinators of the subcommittees, Clarisse Bourdelle and Arthur Peters for MCF, Javier Honrubia for BPIF, Christoph Hollenstein for LTP, and Uli Stroth for BAP, for their generous help, suggestions and support. Due to the large number of participants, the smooth and efficient local organization, and the high overall quality of the plenary and invited presentations, the 37th EPS Conference on Plasma Physics can be considered an undeniable success. I hope you will find, in this special issue of Plasma Physics and Controlled Fusion, an interesting and useful account of this event. Outstanding scientists honoured at the 37th European Physical Society Conference on Plasma Physics During the Conference the EPS Plasma Physics Division rewarded researchers who have achieved outstanding scientific or technological results

  10. Report of the Plasma Physics Laboratory

    Science.gov (United States)

    1982-03-01

    Theoretical and experimental work in plasma physics is summarized. Technological and engineering aspects of plasma experiments in the SPICA, TORTUR 2, and RINGBOOG 2 reactors are discussed with emphasis on screw pinch, turbulent heating, and gas blankets. The free boundary equilibrium in high beta Tokamak plasma, wave dynamics, and transport problems were investigated.

  11. Nuclear Medicine Physics: The Basics. 7th ed.

    Science.gov (United States)

    Mihailidis, Dimitris

    2012-10-01

    Nuclear Medicine Physics: The Basics. 7th ed. Ramesh Chandra, Lippincott Williams and Wilkins, a Wolters Kluwer Business. Philadelphia, 2012. Softbound, 224 pp. Price: $69.99. ISBN: 9781451109412. © 2012 American Association of Physicists in Medicine.

  12. The physics of non-ideal plasma

    CERN Document Server

    Fortov, Vladimir E

    2000-01-01

    This book is devoted to the physical properties of nonideal plasma which is compressed so strongly that the effects of interparticle interactions govern the plasma behavior. The interest in this plasma was generated by the development of modern technologies and facilities whose operations were based on high densities of energy. In this volume, the methods of nonideal plasma generation and diagnostics are considered. The experimental results are given and the main theoretical models of nonideal plasma state are discussed. The problems of thermodynamics, electro-physics, optics and dynamic stabi

  13. Physics and basic parameters of brachytherapy.

    Science.gov (United States)

    Lee, E J; Weinhous, M S

    1997-06-01

    Brachytherapy (short-distance therapy) is the therapeutic process whereby radioactive sources are placed into very close proximity to target tissue. Radioactive materials were so used beginning shortly after the discovery of radium by Marie and Pierre Curie in 1898. For the purposes of brachytherapy, radioactive materials are those that emit "rays" that can cause ionization (and hence DNA damage and the destruction of target cells). The potentially useful rays include beta, gamma, and other possibilities such as neutrons. Beta rays, properly beta particles, are simply high energy electrons. Gamma rays are high energy photons (part of the electromagnetic spectrum like visible light, but with much higher energy). These particles are produced during the radioactive decay of certain isotopes. The physics of those events and the parameters that apply to the therapeutic use of the isotopes are the primary topics of this report.

  14. Plasma separation: physical separation at the molecular level

    Science.gov (United States)

    Gueroult, Renaud; Rax, Jean-Marcel; Fisch, Nathaniel J.

    2016-09-01

    Separation techniques are usually divided in two categories depending on the nature of the discriminating property: chemical or physical. Further to this difference, physical and chemical techniques differ in that chemical separation typically occurs at the molecular level, while physical separation techniques commonly operate at the macroscopic scale. Separation based on physical properties can in principle be realized at the molecular or even atomic scale by ionizing the mixture. This is in essence plasma based separation. Due to this fundamental difference, plasma based separation stands out from other separation techniques, and features unique properties. In particular, plasma separation allows separating different elements or chemical compounds based on physical properties. This could prove extremely valuable to separate macroscopically homogeneous mixtures made of substances of similar chemical formulation. Yet, the realization of plasma separation techniques' full potential requires identifying and controlling basic mechanisms in complex plasmas which exhibit suitable separation properties. In this paper, we uncover the potential of plasma separation for various applications, and identify the key physics mechanisms upon which hinges the development of these techniques.

  15. Basic Physics Questions Addressed by Astrophysics

    Science.gov (United States)

    Mather, John C.

    2009-01-01

    Dark matter, dark energy, the Big Bang, testing relativity -- all are physics questions accessible to astrophysicists -- but all require new equipment. As Harwit's "Cosmic Discovery" pointed out, almost all great surprises in astronomy came from new equipment or new uses of equipment designed for other purposes, and many of those had military applications. I will outline prospects for new equipment and discuss how that equipment can be developed and built. Bigger and lighter mirrors, wavefront sensing and control, new detector technology, cryogenics -- each has its own social network, its own special possibilities, and its own funding sources outside science. I will discuss some examples drawn from real-life experience with the James Webb Space Telescope, a telescope that was said to have a "giggle factor" when it was proposed in 1995. Now each of the 10 major technologies has been brought to maturity, flight hardware is being built, and launch is planned for 2014. As an instrument builder all my life, I will speculate a little on what may be within our reach over the next few decades.

  16. Unifying physics of accelerators, lasers and plasma

    CERN Document Server

    Seryi, Andrei

    2015-01-01

    Unifying Physics of Accelerators, Lasers and Plasma introduces the physics of accelerators, lasers and plasma in tandem with the industrial methodology of inventiveness, a technique that teaches that similar problems and solutions appear again and again in seemingly dissimilar disciplines. This unique approach builds bridges and enhances connections between the three aforementioned areas of physics that are essential for developing the next generation of accelerators.

  17. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    Science.gov (United States)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  18. Basic concepts in physics from the cosmos to quarks

    CERN Document Server

    Chaichian, Masud; Tureanu, Anca

    2014-01-01

    "Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear....

  19. Plasma Cathode Electron Sources Physics, Technology, Applications

    CERN Document Server

    Oks, Efim

    2006-01-01

    This book fills the gap for a textbook describing this kind of electron beam source in a systematic and thorough manner: from physical processes of electron emission to examples of real plasma electron sources and their applications.

  20. Space plasma physics: I - Stationary processes

    Science.gov (United States)

    Hasegawa, Akira; Sato, Tetsuya

    1989-01-01

    The physics of stationary processes in space plasmas is examined theoretically in an introduction intended for graduate students. The approach involves the extensive use of numerical simulations. Chapters are devoted to fundamental principles, small-amplitude waves, and the stationary solar plasma system; typical measurement data and simulation results are presented graphically.

  1. Plasma Physics and Controlled Nuclear Fusion

    Science.gov (United States)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  2. Basic structures of reality essays in meta-physics

    CERN Document Server

    McGinn, Colin

    2011-01-01

    In Basic Structures of Reality, Colin McGinn deals with questions of metaphysics, epistemology, and philosophy of mind from the vantage point of physics. Combining general philosophy with physics, he covers such topics as the definition of matter, the nature of space, motion, gravity, electromagnetic fields, the character of physical knowledge, and consciousness and meaning. Throughout, McGinn maintains an historical perspective and seeks to determine how much we really know of the world described by physics. He defends a version of "structuralism": the thesis that our knowledge is p

  3. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  4. Electroweak symmetry breaking and Higgs physics. Basic concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, G.; Noriega-Papaqui, R.; Pedraza, I. [Benemerita Univ. Auton. de Puebla, Pue (Mexico). Inst. de Fisica ' ' LRT' ' ; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)]|[Laboratoire d' Annecy-le-Vieux Physique Theorique, LAPTH, Annecy-le-Vieux (France); Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-09-01

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and implications for future experiments at the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  5. Report on the solar physics-plasma physics workshop

    Science.gov (United States)

    Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.

    1976-01-01

    The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.

  6. Physics of quark-gluon plasma

    CERN Document Server

    Smilga, A V

    1997-01-01

    In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulne ss of various characteristics of QGP discussed in the literature.

  7. Basic MRI Physics - A Visual Introduction for Laymen

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    not as difficult to understand as often said [1]. In fact, the basic magnetic resonance phenomenon can be understood intuitively and even demonstrated with very simple means, including freely available software running directly in any browser [2]. A wide range of MRI techniques can be visualized [3] and understood...... in detail, certainly also by people who are not trained in physics [4]. The presentation is aimed at those new to MR, and those who will teach it. But can simple explanations based on classical mechanics be trusted? The basic magnetic resonance (MR) phenomenon is often said to rely on quantum mechanics...

  8. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  9. A prospect at 11th international Toki conference. Plasma physics, quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka

    2001-01-01

    A prospect of plasma physics at the turn of next century is discussed. The theme of this conference identifies the future direction of the research related with plasmas. Main issue is the potential and structure formation in plasmas; More specifically, structures which are realized through the interaction of electromagnetic fields, in particular that with electric fields, in non-equilibrium state. An emphasis is made to clarify the fundamental physics aspects of the plasma physics in fusion research as well as that in the basic research of plasmas. The plasma physics will give an important contribution to the solution of the historical enigma, i.e., all things flow. Having an impact on human recognition of nature and showing a beauty in a law, the plasma physics/science will demonstrate to be a leading science in the 21st century. (author)

  10. Progress in Anisotropic Plasma Physics

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...

  11. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  12. Physics of liquid and crystalline plasmas: Future perspectives

    Science.gov (United States)

    Morfill, G. E.

    It has been shown that under certain conditions "complex plasmas" (plasma containing ions, electrons and charged microspheres) may undergo spontaneous phase changes to become liquid and crystalline, without recombination of the charge components. Hence these systems may be regarded as new plasma states "condensed plasmas". The ordering forces are mainly electrostatic, but dipolar effects, anisotropic pressure due shielding, ion flow focussing etc. may all play a role, too. Complex plasmas are of great interest from a fundamental research point of view because the individual particles of one plasma component (the charged microspheres) can be visualised and hence the plasma can be studied at the kinetic level. Also, the relevant time scales (e.g. 1/plasma frequency) are of order 0.1 sec, the plasma processes occur practically in "slow motion". We will discuss some physical processes (e.g. wave propagation, shocks, phase transitions) of these systems and outline the potential of the research for the understanding of strongly coupled systems. Technologically, it is expected that colloidal plasmas will also become very important, because both plasma technology and colloid technology are widely developed already. In this overview first the basic forces between the particles are discussed, then the phase transitions, the lattice structures and results from active experiments will be presented. Finally the future perspectives will be discussed, from the scientific potential point of view and the experimental approaches in the laboratory and in space. Experiments under microgravity conditions are of great importance, because the microspheres are 10's of billions times heavier than the ions.

  13. Plasma Physics Approximations in Ares

    Energy Technology Data Exchange (ETDEWEB)

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  14. The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.

    Science.gov (United States)

    Hendrick, R E

    1994-07-01

    This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.

  15. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  16. Basic concepts in physics. From the cosmos to quarks

    Energy Technology Data Exchange (ETDEWEB)

    Chaichian, M.; Tureanu, A. [Helsinki Univ. (Finland). Dept. of Physics; Perez Rojas, H. [ICIMAF, La Habana (Cuba). Dept. of Theoretical Physics

    2014-08-01

    A clear, concise and beautifully written presentation of modern physics. Readers will not only learn physics, they will learn to enjoy it. Self-contained and comprehensive History, concepts and formal treatment go hand-in-hand. Suppresses mathematical technicalities in favor of a wide scope of topics. Suited for class use, e.g. as a textbook for the course ''Modern Physics'', but also ideal for ''lone explorers'' and other newcomers to physics. ''Basic Concepts in Physics: From the Cosmos to Quarks'' is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book's fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn

  17. Basic Studies of Non-Diffusive Transport in Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morales, George J. [University of California, Los Angeles, CA (United States); Maggs, James E. [University of California, Los Angeles, CA (United States)

    2014-10-25

    The project expanded and developed mathematical descriptions, and corresponding numerical modeling, of non-diffusive transport to incorporate new perspectives derived from basic transport experiments performed in the LAPD device at UCLA, and at fusion devices throughout the world. By non-diffusive it is meant that the transport of fundamental macroscopic parameters of a system, such as temperature and density, does not follow the standard diffusive behavior predicted by a classical Fokker-Planck equation. The appearance of non-diffusive behavior is often related to underlying microscopic processes that cause the value of a system parameter, at one spatial position, to be linked to distant events, i.e., non-locality. In the LAPD experiments the underlying process was traced to large amplitude, coherent drift-waves that give rise to chaotic trajectories. Significant advances were made in this project. The results have lead to a new perspective about the fundamentals of edge transport in magnetically confined plasmas; the insight has important consequences for worldwide studies in fusion devices. Progress was also made in advancing the mathematical techniques used to describe fractional diffusion.

  18. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  19. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  20. [Physical activity in basic and primary prevention of cardiovascular disease].

    Science.gov (United States)

    Sobieszczańska, Małgorzata; Kałka, Dariusz; Pilecki, Witold; Adamus, Jerzy

    2009-06-01

    On account of the frequency of appearing and character of atherosclerosis cardiac vascular disease, one of the most crucial elements of effective fight against it is preparation of complex preventive programs including as vast number of population as possible. Consequently, Benjamin and Smitch suggested attaching the notion of basic prevention to the standard division into primary and secondary one. The basic prevention, carrying out in the general population, should concern genetic predisposition, psychosocial factors, keeping up proper body weight, healthy eating and physical activity. Especially high hopes are connected with high efficiency, simplicity and low money-consumption of preventive activities associated with physical activity modification, which has a crucial influence on reducing negative impact of atherosclerosis hazard. The results of numerous scientific research, carried out in many countries and on various, large groups, proved undoubtedly that at the healthy adult people of both sex the systematic physical activity of moderate intensification plays an essential part in preventing CVD and decreasing the death risk because of that reason as well. Moreover, systematic physical exercises show many other health-oriented actions, thanks to which they have an influence on decreasing premature and total death rate. The risk of incidence of civilization-related diseases such as diabetes type II, hypertension, obesity, osteoporosis, tumors (of large intestine, breast, prostatic gland) and depression has decreased significantly. Unequivocally positive influence has been proved at many observations dedicated to health recreational physical activity and physical activity connected with professional work based on aerobe effort. The positive effects have been also observed at children population and senior population which is more and more numerous and the most at risk. The beneficial action of physical activity is connected with direct effect on organism

  1. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges

    NARCIS (Netherlands)

    Profijt, H. B.; Potts, S. E.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A angstrom-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processi

  2. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges

    NARCIS (Netherlands)

    Profijt, H. B.; Potts, S. E.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with A angstrom-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in

  3. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  4. Basics of Lasers: History, Physics, and Clinical Applications.

    Science.gov (United States)

    Franck, Philipp; Henderson, Peter W; Rothaus, Kenneth O

    2016-07-01

    Lasers are increasingly used by plastic surgeons to address issues such as wrinkles and textural changes, skin laxity, hyperpigmentation, vascularity, and excess fat accumulation. A fundamental understanding of the underlying science and physics of laser technology is important for the safe and efficacious use of laser in medical settings. The purpose of this article was to give clinicians with limited exposure to lasers a basic understanding of the underlying science. In that manner, they can confidently make appropriate decisions as to the best device to use on a patient (or the best device to purchase for a practice).

  5. BOOK REVIEW: Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Engelmann, F.

    2007-07-01

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  6. Hadron Physics and QCD: Just the Basic Facts

    CERN Document Server

    Roberts, Craig D

    2015-01-01

    With discovery of the Higgs boson, the Standard Model of Particle Physics became complete. Its formulation is a remarkable story; and the process of verification is continuing, with the most important chapter being the least well understood. Quantum Chromodynamics (QCD) is that part of the Standard Model which is supposed to describe all of nuclear physics and yet, almost fifty years after the discovery of quarks, we are only just beginning to understand how QCD moulds the basic bricks for nuclei: pious, neutrons, protons. QCD is characterized by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB), whose implications are extraordinary. This contribution describes how DCSB, not the Higgs boson, generates more than 98% of the visible mass in the Universe, explains why confinement guarantees that condensates, those quantities that were commonly viewed as constant mass-scales that fill all spacetime, are instead wholly contained within hadrons, and elucidates a range of observable co...

  7. Paradigm transition in cosmic plasma physics

    Science.gov (United States)

    Alfven, H.

    1982-01-01

    New discoveries in cosmic plasma physics are described, and their applications to solar, interstellar, galactic, and cosmological problems are discussed. The new discoveries include the existence of double layers in magnetized plasmas and in the low magnetosphere, and energy transfer by electric current in the auroral circuit. It is argued that solar flares and the solar wind-magnetosphere interaction should not be interpreted in terms of magnetic merging theories, and that electric current needs to be explicitly taken account of in understanding these phenomena. The filamentary structure of cosmic plasmas may be caused by electric currents in space, and the pinch effect may have a central role to play in the evolutionary history of interstellar clouds, stars, and solar systems. Space may have a cellular structure, with the cell walls formed by thin electric current layers. Annihilation may be the source of energy for quasars and the Hubble expansion, and the big bang cosmology may well be wrong.

  8. Fractal structures in nonlinear plasma physics.

    Science.gov (United States)

    Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F

    2011-01-28

    Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

  9. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  10. Physics of Tokamak Plasma Start-up

    Science.gov (United States)

    Mueller, Dennis

    2012-10-01

    This tutorial describes and reviews the state-of-art in tokamak plasma start-up and its importance to next step devices such as ITER, a Fusion Nuclear Science Facility and a Tokamak/ST demo. Tokamak plasma start-up includes breakdown of the initial gas, ramp-up of the plasma current to its final value and the control of plasma parameters during those phases. Tokamaks rely on an inductive component, typically a central solenoid, which has enabled attainment of high performance levels that has enabled the construction of the ITER device. Optimizing the inductive start-up phase continues to be an area of active research, especially in regards to achieving ITER scenarios. A new generation of superconducting tokamaks, EAST and KSTAR, experiments on DIII-D and operation with JET's ITER-like wall are contributing towards this effort. Inductive start-up relies on transformer action to generate a toroidal loop voltage and successful start-up is determined by gas breakdown, avalanche physics and plasma-wall interaction. The goal of achieving steady-sate tokamak operation has motivated interest in other methods for start-up that do not rely on the central solenoid. These include Coaxial Helicity Injection, outer poloidal field coil start-up, and point source helicity injection, which have achieved 200, 150 and 100 kA respectively of toroidal current on closed flux surfaces. Other methods including merging reconnection startup and Electron Bernstein Wave (EBW) plasma start-up are being studied on various devices. EBW start-up generates a directed electron channel due to wave particle interaction physics while the other methods mentioned rely on magnetic helicity injection and magnetic reconnection which are being modeled and understood using NIMROD code simulations.

  11. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-09

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  12. Symbolic Vector Analysis in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Rewoldt, G.; Tang, W.M.

    1997-10-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  13. Physics issues in long pulse plasma confinement

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Toda, Shinichiro; Sanuki, Heiji [National Institute for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I; Yagi, Masatoshi [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Department of Nuclear Engineering, Kyoto University, Kyoto (Japan)

    2000-07-01

    Physics in the steady-state or long time discharge are illustrated from the view point of generic toroidal plasmas. Issues include physics process with very long time scale, dynamical phenomena of various time scales, transition nature under very slow temporal variations of parameters, statistical occurrence of transition and life time and identification of minimum circulating power. Nonlinear dependencies of transport properties of density, temperature, current, electric field and poloidal magnetic field cause self-organized dynamics. A picture of stationary oscillatory states is presented from a unified picture of nonlinear limit cycle dynamics. It is emphasized that the long time asymptotics are determined by the structure formation mechanisms. The sustainment needs a circulating power, and the circulating power in steady state plasma is also discussed. (author)

  14. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  15. DEVELOPMENT OF MULTI-COORDINATE VOCABULARY, PLASMA PHYSICS.

    Science.gov (United States)

    LERNER, RITA G.

    DESCRIBED IS THE DEVELOPMENT OF A THESAURUS FOR THE FIELD OF PLASMA PHYSICS, SIMILAR TO THE ONE PREVIOUSLY DEVELOPED FOR CHEMICAL PHYSICS, FOR USE WITH COMPUTER-ORIENTED RETRIEVAL SYSTEMS. AN EXPERT IN THE FIELD OF PLASMA PHYSICS SELECTED TERMS IMPORTANT TO THE INFORMATION USER FROM THE PLASMA LITERATURE. THE HIERARCHY OF CLASSIFICATION UTILIZES…

  16. Statistical Physics Experiments Using Dusty Plasmas

    Science.gov (United States)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states

  17. A plasma formulary for physics, technology, and astrophysics

    CERN Document Server

    Diver, Declan

    2011-01-01

    Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering.Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings.The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline - a unique approach made pos

  18. Basic Nuclear Physics Research Needs for Nuclear Energy

    Science.gov (United States)

    Hill, Tony

    2008-10-01

    Basic nuclear physics research will play a central role in the development of the future nuclear facilities. Federal requirements for higher efficiencies, lower operating and construction costs, and advanced safeguards can all be impacted by the quality of nuclear data used in the fuel cycle calculations for design and licensing. Uncertainties in the underlying nuclear data propagate to uncertainties in integral and operational parameters, which drive margins and cost. Department of Energy (DOE) programs are underway to help develop the necessary nuclear research infrastructure. The Nuclear Energy office of DOE leads the development of new nuclear energy generation technologies to meet energy and climate change goals and advanced, proliferation resistant nuclear fuel technologies that maximize energy from nuclear fuel, while maintaining and enhancing the national nuclear infrastructure. These activities build on important work started over the last three years to deploy new nuclear plants in the United States by early in the next decade, and to develop advanced, next-generation nuclear technology. In this talk, I will discuss some of the foreseen opportunities and needs for basic nuclear research in nuclear energy.

  19. Modelling of a water plasma flow: I. Basic results

    Energy Technology Data Exchange (ETDEWEB)

    KotalIk, Pavel [INP Greifswald, Friedrich-Ludwig-Jahn-Strasse 19, 17489 Greifswald (Germany)

    2006-06-21

    One-fluid MHD equations are numerically solved for an axisymmetric flow of thermal water plasma inside and outside a discharge chamber of a plasma torch with water vortex stabilization of electric arc. Comparisons with experimental data and previous calculations are given. For arc currents of 300-600 A, the respective temperatures and velocities in the range 16 700-26 400 K and 2300-6900 m s{sup -1} are obtained at the centre of the nozzle exit. The flow velocity on axis increases by 1-2 km s{sup -1} in the 5 mm long nozzle. Ohmic heating and radiative losses are two competitive processes influencing most the plasma temperature and velocity. The radiative losses represent 39% to 46% of the torch power of 69-174 kW when optical thickness of 3 mm is assumed for the plasma column. In front of the cathode, inside the discharge chamber, a recirculation zone is predicted and discussed. Effects of the temperature dependence of the plasma viscosity and sound velocity and of the optical thickness are examined. It is shown that the results such as waviness of the Mach number isolines are direct consequences of these dependences. Different lengths of 55 and 60 mm of the water vortex stabilized part of the electric arc do not substantially influence the plasma temperature and velocity at the nozzle exit.

  20. Particle transport and deposition: basic physics of particle kinetics.

    Science.gov (United States)

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research.

  1. Basic analytical investigation of plasma-chemically modified carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Bubert, H.; Ai, X.; Haiber, S.; Heintze, M.; Brueser, V.; Pasch, E.; Brandl, W.; Marginean, G

    2002-10-15

    The background of the present investigation is to enhance the overall adherence of vapor grown carbon fibers (VGCF) to the surrounding polymer matrix in different applications by forming polar groups at their surfaces and by modifying the surface morphology. This has been done by plasma treatments using a low-pressure plasma with different gases, flow rates, pressures and powers. Two different types of carbon fibers were investigated: carbon microfibers and carbon nanofibers. The characterization of fiber surfaces was achieved by photoelectron spectroscopy (XPS), contact angle measurements and titration. These investigations were accompanied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The oxygen plasma treatment of the fibers changes the surfaces by forming a layer with a thickness of the order of one nanometer mainly consisting of functional groups like hydroxyl, carbonyl and carboxyl. After functionalization of the complete surface, a further plasma treatment does not enhance the superficial oxygen content but changes slightly the portions of the functional groups. A comparison of the methods applied provides a largely consistent image of the effect of plasma treatment.

  2. Physics of Collisional Plasmas Introduction to High-Frequency Discharges

    CERN Document Server

    Moisan, Michel

    2012-01-01

    The Physics of Collisional Plasmas deals with the plasma physics of interest to laboratory research and industrial applications, such as lighting, fabrication of microelectronics, destruction of greenhouse gases. Its emphasis is on explaining the physical mechanisms, rather than the detailed mathematical description and theoretical analysis. At the introductory level, it is important to convey the characteristic physical phenomena of plasmas, before addressing the ultimate formalism of kinetic theory, with its microscopic, statistical mechanics approach. To this aim, this text translates the physical phenomena into more tractable equations, using the hydrodynamic model; this considers the plasma as a fluid, in which the macroscopic physical parameters are the statistical averages of the microscopic (individual) parameters. This book is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter intr...

  3. Dynamics of magnetically trapped particles foundations of the physics of radiation belts and space plasmas

    CERN Document Server

    Roederer, Juan G

    2014-01-01

    This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of diff...

  4. Physical properties of dense, low-temperature plasmas

    Science.gov (United States)

    Redmer, Ronald

    1997-04-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied within linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). This linear response method is applied to partially ionized systems such as dense, low-temperature plasmas. Here, the conductivity changes from nonmetallic values up to those typical for

  5. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  6. Testing Plasma Physics in the Ionosphere

    Science.gov (United States)

    Papadopoulos, Konstantinos

    TESTING PLASMA PHYSICS IN THE IONOSPHERE K. Papadopoulos University of Maryland College Park, MD 20742 Ionospheric heaters supplemented by ground and space based diagnostic instruments, such as radars, optical cameras and photometers, HF/VLF/ELF/ULF receivers and magnetometers, radio beacons, riometers and ionosondes have for a long time being used to conduct plasma physics, geophysical and radio science investigations. The latest entry to ionospheric heating, the HF transmitter associated with the High Frequency Active Ionospheric Research Program (HAARP), was completed in February 2007. The transmitter consists of 180 antenna elements spanning 30.6 acres and can radiate 3.6 MW of HF power in the 2.8-10.0 MHz frequency range. With increasing frequency the beam-width varies from 15-5 degrees, corresponding to 20-30 dB gain and resulting in Effective Radiating Power (ERP) between .36 - 4.0 GW. The antenna can point to any direction in a cone of 30 degrees from the vertical, with a reposition time of 15 degrees in 15 microseconds resulting in super-luminous scanning speeds. The transmitter can synthesize essentially any desired waveform within the regulatory allowed bandwidth in linear and circular polarization. These capabilities far exceed those of previous ionospheric heaters and allow for new frontier research in plasma physics, geophysics and radio science. Following a brief discussion of the relationship of the new capabilities of the facility with thresholds of physical processes that could not be achieved previously, the presentation will discuss recent results in the areas of ULF/ELF/VLF generation and propagation and wave-particle interactions in the magnetosphere acquired with the completed facility. The presentation will conclude with a detailed discussion of possible frontier science experiments in the areas of Langmuir turbulence, parametric instabilities, electron acceleration, optical emissions and field aligned striations and duct generation, made

  7. Plasma in dentistry: a review of basic concepts and applications in dentistry.

    Science.gov (United States)

    Kim, Jae-Hoon; Lee, Mi-Ae; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-01-01

    Plasma-related technologies are essential in modern industries. Recently, plasma has attracted increased attention in the biomedical field. This paper provides a basic knowledge of plasma and a narrative review of plasma applications in dentistry. To review plasma applications in dentistry, an electronic search in PubMed, SCOPUS and Google scholar up to December 2012 was done. This was followed by extensive hand searching using reference lists from relevant articles. There have been attempts to apply plasma technology in various fields of dentistry including surface modifications of dental implants, adhesion, caries treatment, endodontic treatment and tooth bleaching. Although many studies were in early stages, the potential value of plasma for dental applications has been demonstrated. To enlarge the scope of plasma applications and put relevant research to practical use, interdisciplinary research with participation of dental professionals is required.

  8. Physics through the 1990s: Plasmas and fluids

    Science.gov (United States)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  9. Plasma properties. Annual report, January 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Weitzner, H

    1992-06-01

    This report discusses the following topics: MHD equilibrium and stability; MHD transport; statistical analysis; edge physics studies; wave propagation; basic plasma physics; and, space plasma physics.

  10. Plasma Thruster Development: Magnetoplasmadynamic Propulsion, Status and Basic Problems.

    Science.gov (United States)

    1986-02-01

    Closed Drift Hall-Ion Thruster Flown on the Russian Satellite Meteor I, 1971, from Reference 13 12 4 Flat Coil Induction Thruster Schematic from...the Russian Satellite Meteor 1, 1971. from Ref. 1-3. 13 COIL Br PLASMA SWITCH0 0 FZ jeBr 0 CAPACITOR 0 Fig.- 4:Fa olInuto huse ceai fromRef-22 40 14 is...minute crater (on the order of 10- 4 cm diameter). High pressures, on the order of 100 bar, and vaporization rates in these craters have been

  11. Basic characteristics of an atmospheric pressure rf generated plasma jet

    Institute of Scientific and Technical Information of China (English)

    Wang Shou-Guo; Li Hai-Jiang; Ye Tian-Chun; Zhao Ling-Li

    2004-01-01

    A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O2. Two "failure" modes of the discharge are identified.One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O2 approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes.In addition, Ⅰ-Ⅴ curves as a function of pure helium and for 1% addition of oxygen have been studied.

  12. The Earth's ionosphere plasma physics and electrodynamics

    CERN Document Server

    Kelley, Michael C

    2007-01-01

    Although interesting in its own right, due to the ever-increasing use of satellites for communication and navigation, weather in the ionosphere is of great concern. Every such system uses trans-ionospheric propagation of radio waves, waves which must traverse the commonly turbulent ionosphere. Understanding this turbulence and predicting it are one of the major goals of the National Space Weather program. Acquiring such a prediction capability will rest on understanding the very topics of this book, the plasma physics and electrodynamics of the system. Fully updated to reflect advances in the field in the 20 years since the first edition published Explores the buffeting of the ionosphere from above by the sun and from below by the lower atmosphere Unique text appropriate both as a reference and for coursework.

  13. [Basic mechanisms: structure, function and metabolism of plasma lipoproteins].

    Science.gov (United States)

    Errico, Teresa L; Chen, Xiangyu; Martin Campos, Jesús M; Julve, Josep; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this work is to present basic information on the lipoprotein physiology. The protein fraction of lipoproteins consists of several apolipoproteins and enzymes whose functions are lipid transport and metabolism. Classification of lipoproteins is based on their density. Chylomicrons, VLDL, IDL, LDL and HDL can be isolated by ultracentrifugation. Both chylomicrons- and VLDL-triglycerides are transported from the intestine and liver, respectively, to the peripheral tissues. The metabolism of VLDL originates IDL and LDL. LDL is the main transporter of cholesterol to extrahepatic tissues. HDL mobilizes cholesterol from peripheral tissues to the liver where it is secreted to bile as free cholesterol or bile salts, a process termed reverse cholesterol transport. Lipoprotein metabolism can be regulated by nuclear receptors that regulate the expression of genes involved in triglyceride and apolipoprotein metabolism. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  14. Modulational Instability in Basic Plasma and Geophysical Models

    CERN Document Server

    Quinn, Brenda; Connaughton, Colm; Gallagher, Steven; Hnat, Bogdan

    2013-01-01

    This is a review of the theory of the modulational instability in idealised fluid models of strongly magnetised plasmas and reduced models of geophysical fluid dynamics, particularly the role it plays in the formation of zonal flows. The discussion focusses on the Charney-Hasegawa-Mima and Hasegawa-Wakatani models. Particular attention is paid to the wave turbulence - zonal flow feedback loop whereby large scale zonal flows which are initially generated by modulational instability of small-scale drift/Rossby waves tend to subsequently suppress these small scale waves by their shearing action. This negative feedback can result in a dynamic equilibrium in which large scale zonal flows grow by drawing energy from small scale turbulence but suppress the small scale turbulence in the process until a balance is reached. In this regime, the level of small scale turbulence is greatly reduced compared to the level one would observe in the absence of the zonal flows.

  15. Fusion programs in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  16. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    Science.gov (United States)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  17. Physical processes associated with current collection by plasma contactors

    Science.gov (United States)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  18. Focus on Freshman: Basic Instruction Programs Enhancing Physical Activity

    Science.gov (United States)

    Curry, Jarred; Jenkins, Jayne M.; Weatherford, Jennifer

    2015-01-01

    Physical activity sharply decreases after different life stages, particularly high school graduation to beginning university education. The purpose of this study was to investigate the effect of a specifically designed university physical activity class, Exercise Planning for Freshman (EPF), on students' physical activity and group cohesion…

  19. Focus on Freshman: Basic Instruction Programs Enhancing Physical Activity

    Science.gov (United States)

    Curry, Jarred; Jenkins, Jayne M.; Weatherford, Jennifer

    2015-01-01

    Physical activity sharply decreases after different life stages, particularly high school graduation to beginning university education. The purpose of this study was to investigate the effect of a specifically designed university physical activity class, Exercise Planning for Freshman (EPF), on students' physical activity and group cohesion…

  20. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  1. Basic aspects of professional training of future specialists in physical rehabilitation in Poland

    Directory of Open Access Journals (Sweden)

    Bielicova N.O.

    2010-03-01

    Full Text Available The basic going is analysed near the system of training of professional personnels on a physical rehabilitation (to physical therapy in Poland. Legal frameworks of profession of physical internist are exposed. The substantive provisions of the State educational standard are reflected to direction of preparation Physiotherapy. The features of acquisition of specialization for the master's degrees of physical therapy and physical rehabilitation are presented. Basic differences between the systems of preparation of physical internists in Poland and Ukraine represent priorities of social policy and health protection of these countries.

  2. Basic Amino Acid Transport in Plasma Membrane Vesicles of Penicillium chrysogenum

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumul

  3. Chemical and physical basics of routine formaldehyde fixation

    Directory of Open Access Journals (Sweden)

    Rooban Thavarajah

    2012-01-01

    Full Text Available Formaldehyde is the widely employed fixative that has been studied for decades. The chemistry of fixation has been studied widely since the early 20 th century. However, very few studies have been focused on the actual physics/chemistry aspect of process of this fixation. This article attempts to explain the chemistry of formaldehyde fixation and also to study the physical aspects involved in the fixation. The factors involved in the fixation process are discussed using well documented mathematical and physical formulae. The deeper understanding of these factors will enable pathologist to optimize the factors and use them in their favor.

  4. Transport Physics in Reversed Shear Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Levinton, F.M.; Batha, S.H. [Fusion Physics and Technology, Inc., Torrance, CA (United States); Beer, M.A.; Bell, M.G.; Budny, R.V.; Efthimion, P.C.; Mazzucato, E.; Nazikian, R.; Park, H.K.; Ramsey, A.T.; Schmidt, G.L.; Scott, S.D.; Synakowski, E.J.; Taylor, G.; Von Goeler, S.; Zarnstorff, M.C. [Princeton University, NJ (United States). Plasma Physics Laboratory; Bush, C.E. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    Reversed magnetic shear is considered a good candidate for improving the tokamak concept because it has the potential to stabilize MHD instabilities and reduce particle and energy transport. With reduced transport the high pressure gradient would generate a strong off-axis bootstrap current and could sustain a hollow current density profile. Such a combination of favorable conditions could lead to an attractive steady-state tokamak configuration. Indeed, a new tokamak confinement regime with reversed magnetic shear has been observed on the Tokamak Fusion Test Reactor (TFTR) where the particle, momentum, and ion thermal diffusivities drop precipitously, by over an order of magnitude. The particle diffusivity drops to the neoclassical level and the ion thermal diffusivity drops to much less than the neoclassical value in the region with reversed shear. This enhanced reversed shear (ERS) confinement mode is characterized by an abrupt transition with a large rate of rise of the density in the reversed shear region during neutral beam injection, resulting in nearly a factor of three increase in the central density to 1.2 X 10(exp 20) cube m. At the same time the density fluctuation level in the reversed shear region dramatically decreases. The ion and electron temperatures, which are about 20 keV and 7 keV respectively, change little during the ERS mode. The transport and transition into and out of the ERS mode have been studied on TFTR with plasma currents in the range 0.9-2.2 MA, with a toroidal magnetic field of 2.7-4.6 T, and the radius of the q(r) minimum, q{sub min}, has been varied from r/a = 0.35 to 0.55. Toroidal field and co/counter neutral beam injection toroidal rotation variations have been used to elucidate the underlying physics of the transition mechanism and power threshold of the ERS mode.

  5. Dynacore Final Report , Plasma Physics prototype

    NARCIS (Netherlands)

    Lourens, W.

    2001-01-01

    The generation and behaviour of plasma in a fusion device and its interaction with sur-rounding materials is studied by observing several phenomena that will accompany a plasma discharge. These phenomena are recorded by means of so called Diagnostics. These are instruments that comprise complex elec

  6. Space plasma physics results from Spacelab 1

    Science.gov (United States)

    Burch, J. L.

    1985-01-01

    The Spacelab 1 payload carried several instrument systems which together investigated a number of space plasma phenomena. These experiments used the Space Shuttle Orbiter as a platform for making controlled particle-beam, plasma and neutral gas inputs to the ionosphere and magnetosphere and for observing the outputs produced. Spacelab 1 space-plasma investigations included the Space Experiments with Particle Accelerators (SEPAC), Phenomena Induced by Charged Particle Beams (PICPAB), Atmospheric Emissions Photometric Imaging (AEPI) and the Low Energy Electron Spectrometer and Magnetometer. Among the major phenomena investigated both singly and jointly by these experiments are vehicle charging and neutralization, beam-plasma and wave-particle interactions, anomalous ionization phenomena produced by neutral-gas and plasma injections and several phenomena induced by modulated particle beam injections.

  7. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

    CERN Document Server

    Manini, Nicola

    2014-01-01

    This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

  8. Heisenberg uncertainty principle and economic analogues of basic physical quantities

    CERN Document Server

    Soloviev, Vladimir

    2011-01-01

    From positions, attained by modern theoretical physics in understanding of the universe bases, the methodological and philosophical analysis of fundamental physical concepts and their formal and informal connections with the real economic measurings is carried out. Procedures for heterogeneous economic time determination, normalized economic coordinates and economic mass are offered, based on the analysis of time series, the concept of economic Plank's constant has been proposed. The theory has been approved on the real economic dynamic's time series, including stock indices, Forex and spot prices, the achieved results are open for discussion.

  9. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  10. Regular physical activity influences plasma ghrelin concentration in adolescent girls.

    Science.gov (United States)

    Jürimäe, Jaak; Cicchella, Antonio; Jürimäe, Toivo; Lätt, Evelin; Haljaste, Kaja; Purge, Pritt; Hamra, Jena; von Duvillard, Serge P

    2007-10-01

    We examined the effect of regular physical activity on plasma ghrelin concentration after onset of puberty in girls. In addition, we also examined the association of fasting plasma ghrelin concentration with various plasma biochemical, body composition, and aerobic capacity variables in healthy adolescent girls. Fifty healthy schoolgirls ages 11 to 16 yr were divided either into a physically active (N = 25) or a physically inactive (N = 25) group. The physically active group consisted of swimmers who had trained on an average of 6.2 +/- 2.0 h.wk(-1) for the last 2 yr, whereas the inclusion criterion for the physically inactive group was the participation in physical education classes only. The subjects were matched for age (+/- 1 yr) and body mass index (BMI; +/- 2 kg.m(-2)). Maturation I group (14 matched pairs) included pubertal stages 2 and 3, and maturation II group (11 matched pairs) included pubertal stages 4 and 5. Physically active girls had significantly higher (P ghrelin levels than the physically inactive girls (maturation I: 1152.1 +/- 312.9 vs 877.7 +/- 114.8 pg.mL(-1); maturation II: 1084.0 +/- 252.5 vs 793.4 +/- 164.9 pg.mL(-1)). Plasma ghrelin concentration was negatively related to percent body fat, fat mass, peak oxygen consumption per kilogram of body mass, leptin, estradiol, insulin, and insulin-like growth factor-I (IGF-I) (r > -0.298; P ghrelin concentration using the variables that were significantly associated with ghrelin concentration demonstrated that plasma IGF-I was the most important predictor of plasma ghrelin concentration (beta = -0.396; P = 0.008). Regular physical activity influences plasma ghrelin concentrations in girls with different pubertal maturation levels. Plasma IGF-I concentration seems to be the main determinant of circulating ghrelin in healthy, normal-weight adolescent girls.

  11. Establishing the Basic Concepts of a Healthy Physical Education through an Expert Method

    Directory of Open Access Journals (Sweden)

    Carlos Javier López Gutiérrez

    2011-11-01

    Full Text Available This paper investigates the basic knowledge needed by the sports practitioner who wishes to have a healthy physical education. To determine the necessary basic knowledge, we used a methodology of standard expertise, delving further into the subject by means of a semistructured interview. The interview was taped, transcribed and analyzed through the program Nudist NVivo. We have grouped the common responses emerging from the analysis into different categories, thus obtaining a total of 9 basic considerations which should be habitually transmitted to Physical Education students, so that they may achieve adequate self-management in the practice of physical activity.

  12. Laser Plasma Physics - Forces and Nonlinear Principle

    CERN Document Server

    Hora, Heinrich

    2014-01-01

    This work is an electronic pre-publication of a book manuscript being under consideration in order to provide information to interested researchers about a review of mechanical forces in plasmas by electro-dynamic fields. Beginning with Kelvin's ponderomotive force of 1845 in electrostatics, the hydrodynamic force in a plasma is linked with quadratic force quantities of electric and magnetic fields. Hydrodynamics is interlinked with single particle motion of plasma particles electric field generation and double layers and sheaths due to properties of inhomogeneous plasmas. Consequences relate to laser driven particle acceleration and fusion energy. Beyond the very broad research field of fusion using nanosecond laser pulses based on thermodynamics, the new picosecond pulses of ultrahigh power opened a categorically different non-thermal interaction finally permitting proton-boron fusion with eliminating problems of nuclear radiation.

  13. Physics of collapses in toroidal helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1998-12-31

    Theoretical model for the collapse events in toroidal helical plasmas with magnetic hill is presented. There exists a turbulent-turbulent transition at a critical pressure gradient, leading to a sudden increase of the anomalous transport. When the magnetic shear is low, the nonlinear excitation of the global mode is possible. This model explains an abrupt growth of the perturbations, i.e., the trigger phenomena. Achievable limit of the plasma beta value is discussed. (author)

  14. Computer applications in physics with FORTRAN, BASIC and C

    CERN Document Server

    Chandra, Suresh

    2014-01-01

    Because of encouraging response for first two editions of the book and for taking into account valuable suggestion from teachers as well as students, the text for Interpolation, Differentiation, Integration, Roots of an Equation, Solution of Simultaneous Equations, Eigenvalues and Eigenvectors of Matrix, Solution of Differential Equations, Solution of Partial Differential Equations, Monte Carlo Method and Simulation, Computation of some Functions is improved throughout and presented in a more systematic manner by using simple language. These techniques have vast applications in Science, Engineering and Technology. The C language is becoming popular in universities, colleges and engineering institutions. Besides the C language, programs are written in FORTRAN and BASIC languages. Consequently, this book has rather wide scope for its use. Each of the topics are developed in a systematic manner; thus making this book useful for graduate, postgraduate and engineering students. KEY FEATURES: Each topic is self exp...

  15. Basics of laser physics for students of science and engineering

    CERN Document Server

    Renk, Karl F

    2017-01-01

    This textbook provides an introductory presentation of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers. This expanded and updated second edition of the book presents a description of the dynamics of free-electron laser oscillation using a model introduced in the first edition that allows a reader to understand basic properties of a free-electron laser and makes the difference to “conventional” lasers. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses graduate and undergraduate students in science and engineering, featuring problems with solutions and over 400 illustrations.

  16. Inorganic scintillators—a basic material for instrumentation in physics

    Science.gov (United States)

    Novotny, Rainer

    2005-01-01

    Since more than 100 years inorganic scintillators provide an efficient signal for photon and particle detection up to the highest energies. The paper provides a short review on the application of the most common scintillator materials used in nuclear and high-energy physics. Based on the general requirements for energy and momentum measurement, as well as particle identification, typical examples of detector concepts and operated systems are presented.

  17. Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts

    Science.gov (United States)

    Howling, A. A.; Guittienne, Ph; Jacquier, R.; Furno, I.

    2015-12-01

    The coupling between an inductive source and the plasma determines the power transfer efficiency and the reflected impedance in the primary circuit. Usually, the plasma coupling is analysed by means of a transformer equivalent circuit, where the plasma inductance and resistance are estimated using a global plasma model. This paper shows that, for planar RF antennas, the mutual inductance between the plasma and the primary circuit can be calculated using partial inductances and the complex image method, where the plasma coupling is determined in terms of the plasma skin depth and the distance to the plasma. To introduce the basic concepts, the mutual inductance is calculated here for a linear conductor parallel to the plasma surface. In the accompanying paper part II Guittienne et al (2015 Plasma Sources Sci. Technol. 24 065015), impedance measurements on a RF resonant planar plasma source are modeled using an impedance matrix where the plasma-antenna mutual impedances are calculated using the complex image method presented here.

  18. Plasma Physics Issues in Gas Discharge Laser Development

    Science.gov (United States)

    1991-12-01

    WL-TR-92-2087 PLASMA PHYSICS ISSUES IN GAS DISCHARGE LASER DEVELOPMENT AD-A257 735 ALAN GARSCADDEN MARK J. KUSNER J. GARY EDEN WL/POOC-3 WRIGHT...LASERS INFRARED MOLECULAR jAS LASERS UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL Plasma Physics Issues in Gas Discharge Laser Development Alan Garscadden...the close coupling between body of work was not generally useful in laser development . vibrationally excited nitrogen and CO or CO2 . In fact. the First

  19. Applications of Symmetry Methods to the Theory of Plasma Physics

    OpenAIRE

    Giampaolo Cicogna; Francesco Ceccherini; Francesco Pegoraro

    2006-01-01

    The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-...

  20. PlasmaPy: beginning a community developed Python package for plasma physics

    Science.gov (United States)

    Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration

    2016-10-01

    In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.

  1. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Nathan Muruganathan [ORNL; Shrestha, Lok Kumar [International Center for Materials Nanoarchitectonics (MANA); Mori, Taizo [International Center for Materials Nanoarchitectonics (MANA); Ji, Dr. Qingmin [National Institute for Materials Science, Tsukuba, Japan; Hill, Dr. Jonathan P [National Institute for Materials Science, Tsukuba, Japan; Ariga, Katsuhiko [National Institute for Materials Science, Tsukuba, Japan

    2013-01-01

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as, assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments on nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this pespective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological technique, this perspective attempts to mirro this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  2. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.

    Science.gov (United States)

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko

    2013-07-14

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  3. Ultra-high energy physics and standard basic principles

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV associated to a privileged local reference frame (the "vacuum rest frame", VRF. If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological

  4. Monte Carlo simulations for plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  5. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  6. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    Science.gov (United States)

    Soto, Leopoldo

    2011-07-01

    , amongst others, the following topics: fundamentals of plasma physics, fusion plasmas, plasmas in astrophysics and space physics, plasma applications and technologies, complex plasmas, high energy density plasmas, quantum plasmas and laser-plasma interaction. A total of 180 delegates from 34 different countries took part in ICPP-LAWPP-2010, and 60 delegates received financial assistance from the Local Organizing Committee, thanks to the support granted by the International Union for Pure and Applied Physics (IUPAP) and by CCHEN. The ICPP-LAWPP-2010 Program was established by the following Program Committee: • Carlos Alejaldre, ITER • Maria Virginia Alves, Brazil • Julio Herrera, Mexico • Günter Mank, IAEA • George Morales, USA • Padma Kant Shukla, Germany • Guido Van Oost, Belgium • Leopoldo Soto, Chile (Chairman) This Program Committee was formed of selected members from the International Advisory Committee of the ICPP and from the International Advisory Committee of the LAWPP (http://www.icpp-lawpp-2010.cl/page/committees.php). In particular, plenary lectures and invited topical lectures were selected by the Program Committee from a list of nominated lectures presented by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was established by the Program Committee. The Congress included 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. Most of the plenary and topical lectures are published in this special issue of Plasma Physics and Controlled Fusion. The papers were refereed according to the usual standards of the journal. Prior to ICPP-LAWPP 2010, an important activity usually associated with the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from all over the world, providing basic training to students and young researchers. The School was

  7. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    Science.gov (United States)

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  8. Superallowed nuclear beta decay: Precision measurements for basic physics

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J. C. [Cylotron Institute, Texas A and M University, College station, TX, 77843-3366 (United States)

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  9. PREFACE: First International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir

    2006-07-01

    The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school

  10. Reaction-diffusion problems in the physics of hot plasmas

    CERN Document Server

    Wilhelmsson, H

    2000-01-01

    The physics of hot plasmas is of great importance for describing many phenomena in the universe and is fundamental for the prospect of future fusion energy production on Earth. Nontrivial results of nonlinear electromagnetic effects in plasmas include the self-organization and self-formation in the plasma of structures compact in time and space. These are the consequences of competing processes of nonlinear interactions and can be best described using reaction-diffusion equations. Reaction-Diffusion Problems in the Physics of Hot Plasmas is focused on paradigmatic problems of a reaction-diffusion type met in many branches of science, concerning in particular the nonlinear interaction of electromagnetic fields with plasmas.

  11. Physics of High Temperature, Dense Plasmas.

    Science.gov (United States)

    1984-01-01

    34Investigation of the High-Energy Acceleration Mode in the Coaxial Gun," Phys. Fluids, Suppl., S28, (1964). I. 9. Dattner, A. and Eninger J...34Studies of a Coaxial Plasma Gun," Phys. Fluids, Suppl., S41, (1964). II. 10. Wilcox, J. M., Pugh, E., Dattner, A. and Eninger , J., "Experimental Study of

  12. Research in Pulsed Power Plasma Physics

    Science.gov (United States)

    1993-11-01

    constraints will preclude the use of channels with much with a Tesla coil. Nor is uniformity improved by the use of larger wall radii. a 3 kA prepulse. Driving...Oliphant. 12C. Bruno, J. Delvaux. A. Nicolas . and M. Roche, IEEE Trans. Plasma and P. F. Ottinger. App!. Phys. Lett. 45. 1043 (1984).ISci. PS-IS, 686

  13. Physical properties of erupting plasma associated with coronal mass ejections

    Science.gov (United States)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  14. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  15. Meltblowing: I-basic physical mechanisms and threadline model

    Science.gov (United States)

    Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi, B.

    2010-08-01

    The work aims at the experimental and theoretical study of the mechanism of meltblowing. Meltblowing is a popular method of producing polymer microfibers and nanofibers en masse in the form of nonwovens via aerodynamic blowing of polymer melt jets. However, its physical aspects are still not fully understood. The process involves a complex interplay of the aerodynamics of turbulent gas jets with strong elongational flows of polymer melts, none of them fully uncovered and explained. To evaluate the role of turbulent pulsations (produced by turbulent eddies in the gas jet) in meltblowing, we studied first a model experimental situation where solid flexible sewing threadlines were subjected to parallel high speed gas jet. After that a comprehensive theory of meltblowing is developed, which encompasses the effects of the distributed drag and lift forces, as well as turbulent pulsations acting on polymer jets, which undergo, as a result, severe bending instability leading to strong stretching and thinning. Linearized theory of bending perturbation propagation over threadlines and polymer jets in meltblowing is given and some successful comparisons with the experimental data are demonstrated.

  16. Plasma physics and environmental perturbation laboratory. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Space physics and plasma physics experiments that can be performed from the space shuttle were identified. Potential experiment concepts were analyzed to derive requirements for a spaceborne experiment facility. The laboratory, known as the Plasma Physics and Environmental Perturbation Laboratory consists of a 33-foot pallet of instruments connected to a 25-foot pressurized control module. Two 50-meter booms, two subsatellites, a high power transmitter, a multipurpose accelerator array, a set of deployable canisters, and a gimbaled instrument platform are the primary systems deployed from the pallet. The pressurized module contains all the control and display equipment required to conduct the experiments, and life support and power subsystems.

  17. Plasma physics analysis of SERT-2 operation

    Science.gov (United States)

    Kaufman, H. R.

    1980-01-01

    An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.

  18. Plasma physics for controlled fusion. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2016-08-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

  19. Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory

    Science.gov (United States)

    Vanko, Peter

    2007-01-01

    First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…

  20. The Primary Student Teachers' Views about a Blended Learning Application in a Basic Physics Course

    Science.gov (United States)

    Taskin Ekici, Fatma; Kara, Izzet; Ekici, Erhan

    2012-01-01

    In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share…

  1. Guest investigator program study: Physics of equatorial plasma bubbles

    Science.gov (United States)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  2. Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas

    Science.gov (United States)

    2014-09-26

    Plasma Physics , Magneto-optical imaging , Space Plasma Physics , Multiscale Phenomena 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT... plasma is rich research field to understand basic physics of various phenomena through the observation of dust particles by naked eyes with the help of...TERMS Plasma Physics , Magneto-optical imaging , Space Plasma Physics , Multiscale Phenomena 16. SECURITY CLASSIFICATION OF: 17.

  3. APS presents prizes in fluid dynamics and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation.

  4. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  5. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  6. Computerized tomographic imaging for space plasma physics

    Science.gov (United States)

    Zhang, Yuhong; Coplan, Michael A.; Moore, John H.; Berenstein, Carlos A.

    1990-01-01

    The measurement of plasma electron velocity distribution functions as a problem in imaging and image reconstruction is considered. A model instrument that measures the integral of the distribution function along lines in velocity space is presented. This allows the use of the powerful mathematical and numerical methods that have recently been so successful in other areas of imaging. It is found that this approach leads to classes of instruments that are qualitatively different from contemporary designs. An investigation of different methods of reconstruction of the distribution function from integral measurements reveals that the mathematical tools appropriate to one particular imaging problem may be very different from those required to deal with another.

  7. The MaPLE device of Saha Institute of Nuclear Physics: construction and its plasma aspects.

    Science.gov (United States)

    Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis; Chowdhuri, Manis

    2010-07-01

    The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density approximately 3-5x10(10) cm(-3) and temperature approximately 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

  8. Basic investigations of electrostatic turbulence and its interaction with plasma and suprathermal ions in a simple magnetized toroidal plasma

    Science.gov (United States)

    Fasoli, A.; Avino, F.; Bovet, A.; Furno, I.; Gustafson, K.; Jolliet, S.; Loizu, J.; Malinverni, D.; Ricci, P.; Riva, F.; Theiler, C.; Spolaore, M.; Vianello, N.

    2013-06-01

    Progress in basic understanding of turbulence and its influence on the transport both of the plasma bulk and of suprathermal components is achieved in the TORPEX simple magnetized torus. This configuration combines a microwave plasma production scheme with a quasi-equilibrium generated by a toroidal magnetic field, onto which a small vertical component is superimposed, simulating a simplified form of tokamak scrape-off layers. After having clarified the formation of blobs in ideal interchange turbulence, TORPEX experiments elucidated the mechanisms behind the blob motion, with a general scaling law relating their size and speed. The parallel currents associated with the blobs, responsible for the damping of the charge separation that develops inside them, hence determining their cross-field velocity, have been measured. The blob dynamics is influenced by creating convective cells with biased electrodes, arranged in an array on a metal limiter. Depending on the biasing scheme, radial and vertical blob velocities can be varied. Suprathermal ion transport in small-scale turbulence is also investigated on TORPEX. Suprathermal ions are generated by a miniaturized lithium source, and are detected using a movable double-gridded energy analyser. We characterize vertical and radial spreading of the ion beam, associated with the ideal interchange-dominated plasma turbulence, as a function of the suprathermal ion energy and the plasma temperature. Experimental results are in good agreement with global fluid simulations, including in cases of non-diffusive behaviour. To investigate the interaction of plasma and suprathermal particles with instabilities and turbulence in magnetic configurations of increasing complexity, a closed field line configuration has recently been implemented on TORPEX, based on a current-carrying wire suspended in the vacuum chamber. First measurements indicate the creation of circular symmetric profiles centred on the magnetic axis, and instabilities

  9. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  10. Analysis of Research in Physical Activities of Slovenian Basic School Children in Recent Years

    Directory of Open Access Journals (Sweden)

    Klavdija Strniša

    2015-06-01

    Full Text Available Nowadays, physical activity is an extremely important segment of a healthy lifestyle not only for children but also for adults. Technological advances allow us to reach our goals with much less physical effort than was required of the individual in the past. Additionally, the fast pace of life and an increasingly sedentary lifestyle also contribute to reduced physical activity among the population. Analysis of published scientific articles in the field of physical activity among basic school students includes 15 research studies. They were included regardless of the origin of the publication and citation frequency. It can be seen that the most common segment of research in children’s physical activity is the gender perspective. Researchers are further interested in the effects of age, educational success, BMI, place of residence, frequency and time spent in physical activity, education and physical activity of parents, as well as the level of organization (organized / unorganized activity. Therefore it can be concluded that children’s physical activities are influenced by external and internal factors. Analysis of published research has shown that physical activity depends upon many internal and external factors. A higher level of physical activity is often detected with boys and children in urban areas, compared to rural ones. Physically active parents have physically more active children. A higher proportion of interviewed basic school students was found to participate in organized forms of exercise in comparison to the unorganized ones.

  11. Structure and structure-preserving algorithms for plasma physics

    Science.gov (United States)

    Morrison, P. J.

    2016-10-01

    Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.

  12. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  13. Plasma Physics Research at an Undergraduate Institution

    Science.gov (United States)

    Padalino, Stephen

    2007-11-01

    Undergraduate research experiences have motivated many physics majors to continue their studies at the graduate level. The Department of Physics and Astronomy at SUNY Geneseo, a primarily undergraduate institution, recognizes this simple reality and is committed to ensuring research opportunities are available to interested majors beginning as early as their freshman year. Every year for more than a decade, as many as two dozen students and 8 faculty members have worked on projects related to high energy density physics and inertial confinement fusion during the summer months and the academic year. By working with their research sponsors, it has been possible to identify an impressive number of projects suitable for an institution such as Geneseo. These projects tend to be hands-on and require teamwork and innovation to be successful. They also take advantage of in-house capabilities such as the 2 MV tandem pelletron accelerator, a scanning electron microscope, a duoplasmatron ion deposition system and a 64 processor computing cluster. The end products of their efforts are utilized at the sponsoring facilities in support of nationally recognized programs. In this talk, I will discuss a number of these projects and point out what made them attractive and appropriate for an institution like Geneseo, the direct and indirect benefits of the research opportunities for the students and faculty, and how the national programs benefited from the cost-effective use of undergraduate research. In addition, I will discuss the importance of exposure for both students and faculty mentors to the larger scientific community through posters presentations at annual meetings such as the DPP and DNP. Finally, I will address the need for even greater research opportunities for undergraduate students in the future and the importance of establishing longer ``educational pipelines'' to satisfy the ever growing need for top-tier scientists and engineers in industry, academia and the

  14. Physics considerations for laser-plasma linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

    2010-06-11

    Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

  15. KARAKTERISASI CANGKANG KERANG MENGGUNAKAN XRD DAN X RAY PHYSICS BASIC UNIT

    OpenAIRE

    2012-01-01

    Cangkang kerang jenis Anadara Granosa merupakan bahan keramik yang  termasuk ke dalam jenis zat padat kristal. Sebagai langkah awal dilakukan penelitian dengan sampel cangkang kerang (CaCO3)  yaitu melakukan karakterisasi menggunakan dua  alat yang berbeda yaitu X Ray Diffraction (XRD) dan X Ray Physics Basic Unit, ini dilakukan untuk mengetahui perbedaan antara kedua alat tersebut. Dalam karakterisasi cangkang kerang (CaCO3) menggunakan X–Ray Diffraction dan X – Ray Physics Basic  Unit  taha...

  16. Physics of High Performance Dueterium-Tritium Plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K. M.; White, R.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K. L.; Wurden, G. A.; Batha, S.; Lamarche, P.; LeBlanc, B.; Levinton, F. M.; Beer, M.; Bell, M. G.; Bell, R. E.; Belov, A.; Fredrickson, E. D.; Fu, G. Y.; Furth, H. P.; Gorelenkov, N. N.; Krasilnikov, A. V.; Meade, D. M.; Medley, S. S.; Mika, R.; Mikkelsen, D. R.; Mirnov, S. V.; Schilling, G.; Schivell, J.; Schmidt, G. L.; Scott, S. D.; Semenov, I.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Dorland, W.; Phillips, P.; Bretz, N. L.; Budny, R.; Bush, C.E.; Grek, B.; Grisham, L. R.; Hammett, G. W.; Herrmann, H. W.; Herrmann, M.; Hill, K. W.; Hogan, G. R.; Hosea, J. C.

    1996-01-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production,isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high -li) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF-heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-li discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier.It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  17. Physics of high performance deuterium-tritium plasmas in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K.M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States); Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1996-11-01

    During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I{sub i}) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I{sub i} discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

  18. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  19. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  20. The basic science of platelet-rich plasma (PRP): what clinicians need to know.

    Science.gov (United States)

    Arnoczky, Steven P; Sheibani-Rad, Shahin; Shebani-Rad, Shahin

    2013-12-01

    Platelet-rich plasma (PRP) has been advocated for the biological augmentation of tissue healing and regeneration through the local introduction of increased levels (above baseline) of platelets and their associated bioactive molecules. In theory, the increased levels of autologous growth factors and secretory proteins provided by the concentrated platelets may enhance the wound healing process, especially in degenerative tissues or biologically compromised individuals. Although PRP has been increasingly utilized in the treatment of a variety of sports-related injuries, improvements in healing and clinical outcomes have not been universally reported. One reason for this may be the fact that all PRP preparations are not the same. Variations in the volume of whole blood taken, the platelet recovery efficacy, the final volume of plasma in which the platelets are suspended, and the presence or absence of white blood cells, and the addition of exogenous thrombin to activate the platelets or calcium chloride to induce fibrin formation, can all affect the character and potential efficacy of the final PRP product. This article will review the basic principles involved in creating PRP and examine the potential basic scientific significance of the individual blood components contained in the various forms of PRP currently used in sports medicine.

  1. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  2. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  3. High-fidelity plasma codes for burn physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Graziani, Frank [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marinak, Marty [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murillo, Michael [Michigan State Univ., East Lansing, MI (United States)

    2016-10-19

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiationhydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of selfheating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes are a relatively recent computational tool that augments both experimental data and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.

  4. Berimbau: A simple instrument for teaching basic concepts in the physics and psychoacoustics of music

    Science.gov (United States)

    Vilão, Rui C.; Melo, Santino L. S.

    2014-12-01

    We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.

  5. Adaption and validation of the German version of the basic psychological needs in physical education scale

    OpenAIRE

    Heckmann, Philip

    2013-01-01

    It is important to understand students’ motivation regarding physical activity to investigate the global issue physical inactivity. Based on the self-determination theory (SDT: Ryan & Deci, 2002), which is one of the most important frameworks in explaining motivation, students need to be emotionally satisfied in order to put effort towards a certain goal. The Basic Psychological Needs Theory is one sub-theory of the self-determination theory, which explains that constructs of a...

  6. Preliminary validation of a questionnaire to measure basic psychological needs in Physical Education

    OpenAIRE

    Pires, A; Cid, L.; Borrego, C.; Alves, J.; Silva, C.

    2010-01-01

    The self-determination theory is a psychological approach to motivation that focuses on causes and consequences of human behavior regulation. According several authors, this theoretical framework could provide important information about the student’s motivational process to physical education class, however, in Portugal does not exists any instrument to measure the basic psychological needs in this domain. So, the main propose of this study is the preliminary adaptation to physical education...

  7. Comparing The Physical and Selected Basic Motoric Properties Of Sportsmen In Racket Sports

    OpenAIRE

    ATAR, Özdemir; Koç, Hürmüz

    2015-01-01

    ABSTRACTThe objective of this study was to compare the physical and selected basic motoric properties of sportsmen in racket sports. The study group consisted of 14 tennis and 12 badminton students who received education in the Department of Coaching Training of Erciyes University School of Physical Education and Sports and participated in the study voluntarily. The volunteers who participated in the study were measured in terms of length, weight, body mass index, static and dynamic balance, ...

  8. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available The central nervous system (CNS insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP. MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.

  9. Student Physical Education Teachers' Well-Being: Contribution of Basic Psychological Needs

    Science.gov (United States)

    Ciyin, Gülten; Erturan-Ilker, Gökçe

    2014-01-01

    This study adopted Self-Determination Theory tenets and aimed to explore whether student physical education (PE) teachers' satisfaction of the three basic psychological needs independently predicts well-being. 267 Turkish student PE teachers were recruited for the study. Two stepwise multiple regression analysis was performed in which each outcome…

  10. Ferroelectric Thin Films Basic Properties and Device Physics for Memory Applications

    CERN Document Server

    Okuyama, Masanori

    2005-01-01

    Ferroelectric thin films continue to attract much attention due to their developing, diverse applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. All authors are acknowledged experts in the field.

  11. Experimental program for investigating the basic physics of the lunar atmosphere

    Science.gov (United States)

    Munsat, T.; Hodges, R.; Gruen, E.; Horanyi, M.; Robertson, S.; Srama, R.; Sternovsky, Z.; Wang, X.

    2008-12-01

    The tenuous lunar atmosphere is a surface-bound exosphere (SBE) similar to that found throughout the solar system, for example on Mercury, various icy satellites, over the rings of Saturn, on large asteroids, and on Kuiper Belt objects. Its time-dependent constituents arise from a dynamic balance between sources that may be sporadic (solar wind, sputtering, micrometeoroid impacts, outgassing) and loss mechanisms (escape, ionization). In an SBE, the atoms and molecules released from the surface follow approximately ballistic orbits, either returning to the surface or escaping to space without collisions. The mechanisms by which the lunar atmosphere is formed, in particular the role of constant micrometeoroid bombardment of the lunar surface, are subject to ongoing debate. We discuss here a series of open questions regarding the lunar atmosphere as well as an experimental program to address them. Particular outstanding questions include: What is the relative role of hypervelocity micrometeoroid impacts vs. Solar wind sputtering in regolith escape? Similarly, what is their relative role in the production of the observed Na in the exosphere? What is the physical mechanism by which He is released from the regolith, and under what conditions is it released with sub-escape velocities? How is implanted He freed preferentially to 40Ar? How do the particulate ejecta and plasma clouds released from micrometeoroid impacts interact, and how do they affect the lofting of fine regolith material? Laboratory investigation of these basic physical mechanisms can additionally provide input to the analysis and interpretation of the forthcoming LADEE measurements. The necessary experimental program considerations include appropriate sources, including a hypervelocity dust accelerator with the ability to accelerate micron-sized dust particles to realistic velocities (tens of km/s), and the capability for sputtering by solar wind constituent ions at realistic energies (~1 keV). Diagnostic

  12. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    CERN Document Server

    Cardall, Christian Y

    2015-01-01

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. These classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  13. An experimental program for physical education of rugby players at the stage of specialized basic training

    Directory of Open Access Journals (Sweden)

    Artur Martyrosyan

    2017-06-01

    Full Text Available Purpose: to develop a program of general physical training of rugby players at the stage of specialized basic training and to investigate the dynamics of indicators of general physical preparedness using computer technology. Material & Methods: study involved 60 athletes aged 16-18 years. Results: content of the comprehensive program of general physical training of rugby athletes at the stage of specialized basic training and the results of an experimental verification of its implementation are presented. Conclusion: in the course of the pedagogical experiment, the effectiveness of using the developed experimental program for improving the training process of rugby players of 16-18 years is proved, which is confirmed by the results of the research.

  14. Quasiparticle lifetimes and infrared physics in QED and QCD plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, J.P. [CEA-Saclay, Gif-sur-Yvette (France)

    1997-09-22

    The perturbative calculation of the lifetime of fermion excitations in a QED plasma at high temperature is plagued with infrared divergences which are not eliminated by the screening corrections. The physical processes responsible for these divergences are the collisions involving the exchange of longwavelength, quasistatic, magnetic photons, which are not screened by plasma effects. The leading divergences can be resummed in a non-perturbative treatment based on a generalization of the Bloch-Nordsieck model at finite temperature. The resulting expression of the fermion propagator is free of infrared problems, and exhibits a non-exponential damping at large times: S{sub R}(t) {approx} exp(-{alpha}T t ln{omega}{sub p}t), where {omega}{sub p} = eT/3 is the plasma frequency and {alpha} = e{sup 2}/4{pi}.

  15. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  16. The Effects of Multimedia Computer- Assisted Instruction on Learning Basic Ballet Skills with Physical Education Students

    Directory of Open Access Journals (Sweden)

    El-Moneim Doaa Abd

    2014-09-01

    Full Text Available Computer technology has become an integral part of physical education, yet there have been few studies exploring the use of multimedia technology in the instruction of Physical Education. The purpose of this study was to investigate if multimedia technology affected the learning of basic ballet skills. A total of 32 female students, mean age 18.1 years, studying at the Faculty of Physical Education Zagazig university were divided into two groups. The experimental group comprised 16 students. Participants in this group participated in a ballet class with multimedia technology for six weeks. Group two participated in the ballet class with the traditional method as the control group. Parameters assessed height, weight, age, and academic level. All participants were free of any disorders known to affect performance, such as bone fractures, osteoporosis, diabetes, or cardiovascular disease. Participants reported no use of anti-seizure drugs or alcohol. In addition, all participants were fully informed of the aims of the study, and gave their voluntary consent prior to participation. The measurement procedures were in accordance with ethical human experimentation. All statistical analyses were calculated with the SPSS statistical package. Results indicated significant differences between the two groups in learning the basic skills and levels of knowledge of ballet. Applying the proposed educational program meant using multimedia to teach basic ballet skills to second-year female students enrolled in the Faculty of Physical Education

  17. The role of magnetohydrodynamics in heliospheric space plasma physics research

    Science.gov (United States)

    Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan

    1988-01-01

    Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.

  18. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

  19. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    Science.gov (United States)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  20. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children.

    Science.gov (United States)

    Bezrati, Ikram; Hammami, Raouf; Ben Fradj, Mohamed Kacem; Martone, Domenico; Padulo, Johnny; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha

    2016-11-01

    Vitamin D is thought to regulate skeletal muscle function and boost physical performance. The aim of this study was to assess the relationship between vitamin D and physical performance in physically active children. This cross-sectional study included 125 children who practice football as a leisure activity. Plasma 25-hydroxyvitamin D (25-OHD) was assessed using a chemiluminescence immunoassay method. Vitamin D inadequacy was defined as 25-OHD D inadequacy may limit exercise performance. Further research should verify whether correction of vitamin D deficiency enhances physical performance.

  1. PREFACE: 14th Latin American Workshop on Plasma Physics (LAWPP 2011)

    Science.gov (United States)

    Bilbao, Luis; Minotti, Fernando; Kelly, Hector

    2012-06-01

    These proceedings present the written contributions from participants of the Latin American Workshop on Plasma Physics (LAWPP), which was held in Mar del Plata, Argentina, on 20-25 November 2011. This was the 14th session of the series of LAWPP biennial meetings, which started in 1982. The five-day scientific program of LAWPP 2011 consisted of 32 talks and various poster sessions, with the participation of 135 researchers from Argentina, Brazil, Canada, Chile, Colombia, Mexico, Puerto Rico, USA, Venezuela, as well as others from Europe and Asia. In addition, a School on Plasma Physics and a Workshop on Industrial Applications of Plasma Technology (AITP) were organized together with the main meeting. The five-day School held in the week previous to the meeting was intended for young scientists starting their research in Plasma Physics. On the other hand, the objective of the AITP Workshop was to enhance regional academic and industrial cooperation in the field of plasma assisted surface technology. Topics addressed at LAWPP 2011 included space plasmas, dusty plasmas, nuclear fusion, non-thermal plasmas, basic plasma processes, plasma simulation and industrial plasma applications. This variety of subjects is reflected in these proceedings, which the editors hope will result in enjoyable and fruitful reading for those interested in Plasma Physics. It is a pleasure to thank the Institutions that sponsored the meeting, as well as all the participants and collaborators for making this meeting possible. The Editors Luis Bilbao, Fernando Minotti and Hector Kelly LAWPP participants Participants of the 14th Latin American Workshop on Plasma Physics, 20-25 November 2011, Mar del Plata, Argentina International Scientific Committee Carlos Alejaldre, Spain María Virginia Alves, Brazil Ibere Caldas, Brazil Luis Felipe Delgado-Aparicio, Peru Mayo Villagrán, Mexico Kohnosuke Sato, Japan Héctor Kelly, Argentina Edberto Leal-Quirós, Puerto Rico George Morales, USA Julio Puerta

  2. PREFACE: 30th EPS Conference on Controlled Fusion and Plasma Physics

    Science.gov (United States)

    Koch, R.; Lebedev, S.

    2003-12-01

    The 30th EPS Conference on Controlled Fusion and Plasma Physics took place in St Petersburg, Russian Federation, on 7th--11th July 2003. It was jointly organized by the Ioffe Physico-Technical Institute, the St Petersburg State Polytechnical University and Technical University Applied Physics Ltd, on behalf of the Plasma Physics Division of the European Physical Society (EPS). The members of the local organizing committee were drawn from these institutions: B Kuteev, Chair, Polytechnical University S Lebedev, Vice-Chair, Ioffe Institute A Lebedev, Scientific Secretary, Ioffe Institute V Bakharev, TUAP Ltd V Grigor'yants, Ioffe Institute V Sergeev, Polytechnical University N Zhubr, Ioffe Institute Over the years, the annual conference of the Plasma Physics Division of the European Physical Society has widened its scope. Contributions to the present conference covered widely diversified fields of plasma physics, ranging from magnetic and inertial fusion to low temperature plasmas. Plasma sizes under investigation ranged from tiny to astronomical. The topics covered during the conference were distributed over the following categories: tokamaks, stellarators, high intensity laser produced plasmas and inertial confinement, alternative magnetic confinement, plasma edge physics, plasma heating and current drive, diagnostics, basic plasma physics, astrophysical and geophysical plasmas and low temperature plasmas. The scientific programme and paper selection were the responsibility of the Programme Committee appointed by the Board of the EPS Plasma Physics Division. The committee was composed of: R Koch, Chairman, ERM/KMS Brussels, Belgium E Ascasibar, CIEMAT Madrid, Spain S Atzeni, Università di Roma, Italy G Bonhomme, LPMI Nancy, France C Chiuderi, Università di Firenze, Italy B Kuteev, St Petersburg State Polytechnical,University, Russian Federation M Mauel, Contact person APS-DPP, Columbia University New York, USA R A Pitts, EPFL/CRPP Lausanne, Switzerland R Salomaa

  3. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts.

    Science.gov (United States)

    Pandey, Shilpa; Hakky, Michael; Kwak, Ellie; Jara, Hernan; Geyer, Carl A; Erbay, Sami H

    2013-05-01

    Neurovascular imaging studies are routinely used for the assessment of headaches and changes in mental status, stroke workup, and evaluation of the arteriovenous structures of the head and neck. These imaging studies are being performed with greater frequency as the aging population continues to increase. Magnetic resonance (MR) angiographic imaging techniques are helpful in this setting. However, mastering these techniques requires an in-depth understanding of the basic principles of physics, complex flow patterns, and the correlation of MR angiographic findings with conventional MR imaging findings. More than one imaging technique may be used to solve difficult cases, with each technique contributing unique information. Unfortunately, incorporating findings obtained with multiple imaging modalities may add to the diagnostic challenge. To ensure diagnostic accuracy, it is essential that the radiologist carefully evaluate the details provided by these modalities in light of basic physics principles, the fundamentals of various imaging techniques, and common neurovascular imaging pitfalls.

  4. Charac terization of anatomical structure and basic physical pro perties of Velenje xylite

    OpenAIRE

    Gorišek, Željko; Čufar, Katarina; Straže, Aleš

    2012-01-01

    Xylite is a lithotype of lignite, mainly used for fuel. The wood from which it was formed in a long term process (duration ca. 2 millions of years) was subjected to drastic changes. We conducted anatomical characterization of xylite, evaluated preservation of wood from which it was formed, defined its basic physical properties, and compared it with modern wood. We recognized ground tissue composed of tracheids, uniseriate and homocellular rays, taxodioid like crossfield pits, and abu...

  5. Introduction to the basic concepts of modern physics special relativity, quantum and statistical physics

    CERN Document Server

    Becchi, Carlo Maria

    2016-01-01

    This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third...

  6. Preliminary validation of a questionnaire to measure basic psychological needs in Physical Education

    Directory of Open Access Journals (Sweden)

    A. Pires

    2010-01-01

    Full Text Available The self-determination theory is a psychological approach to motivation that focuses on causes and consequences of human behavior regulation. According several authors, this theoretical framework could provide important information about the student’s motivational process to physical education class, however, in Portugal does not exists any instrument to measure the basic psychological needs in this domain. So, the main propose of this study is the preliminary adaptation to physical education contexts of Basic Psychological Needs Exercise Scale (Portuguese version: BPNESp, and determine their initial psychometrics properties through an exploratory factor analysis. This propose was accomplished with a sample of 150 students (n=150 from de 2nd and 3rd CEB, aged from 11 to 16 years (M = 13.39, SD = 1.44 with different levels of sports practice. Results revealed a factorial structure just like the original model (12 items grouped in 3 factors, with 4 items hitch factor and presents acceptable values of validity and reliability. Those findings allow us to conclude, that questionnaire can be used in future investigations to measure the basic psychological needs in physical education.

  7. Divertor plasma physics experiments on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.

  8. Promoting Plasma Physics as a Career: A Generational Approach

    Science.gov (United States)

    Morgan, James

    2005-10-01

    A paradigm shift is occurring in education physics programs. Educators are shifting from the traditional teaching focus to concentrate on student learning. Students are unaware of physics as a career, plasma physics or the job opportunities afforded to them with a physics degree. The physics profession needs to promote itself to the younger generations, or specifically the millennial generation (Born in the 1980's-2000's). Learning styles preferred by ``Millennials'' include a technological environment that promotes learning through active task performance rather than passive attendance at lectures. Millennials respond well to anything experiential and will be motivated by opportunities for creativity and challenging learning environments. The open-ended access to information, the ability to tailor learning paths, and continuous and instantaneous performance assessment offer flexibility in the design of curricula as well as in the method of delivery. Educators need to understand the millennial generation, appeal to their motivations and offer a learning environment designed for their learning style. This poster suggests promoting a physics career by focusing on generational learning styles and preferences.

  9. Computer literacy of future teacher of physical culture, as one of basic elements of professional development.

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2011-08-01

    Full Text Available he problem of computer literacy of future teacher of physical culture is examined in the article, as one of basic elements of professional development. The necessity of introduction of multimedia technologies opens up for practice of athletic education, which enables to combine the didactics functions of computer, as teaching facilities, with possibilities of traditional methods of teaching and to renew an educational process information technologies etc Specified, that professional development of future teacher of physical culture must create a new specialist in the field of knowledge „Physical education, sport and health of man" which will be competitive on the European and World labour-markets in the conditions of informatization and computerization of higher education.

  10. AMORPHOUS SILICON ELECTRONIC STRUCTURE MODELING AND BASIC ELECTRO-PHYSICAL PARAMETERS CALCULATION

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2014-01-01

    Full Text Available Summary. The amorphous semiconductor has any unique processing characteristics and it is perspective material for electronic engineering. However, we have not authentic information about they atomic structure and it is essential knot for execution calculation they electronic states and electro physical properties. The author's methods give to us decision such problem. This method allowed to calculation the amorphous silicon modeling cluster atomics Cartesian coordinates, determined spectrum and density its electronic states and calculation the basics electro physical properties of the modeling cluster. At that determined numerical means of the energy gap, energy Fermi, electron concentration inside valence and conduction band for modeling cluster. The find results provides real ability for purposeful control to type and amorphous semiconductor charge carriers concentration and else provides relation between atomic construction and other amorphous substance physical properties, for example, heat capacity, magnetic susceptibility and other thermodynamic sizes.

  11. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    Plasma, the fourth state of matter, is actually the first state of Nature. The great fireball, the Sun, entirely decides the existence of our tiny planet immersed in the ocean of cosmic plasma. Mankind has also learnt how to produce and use plasma under terrestrial conditions, though it is not at all easy to domesticate this unstable ionized medium. Plasma finds countless applications that improve the quality of our daily life. Some of them, such as fluorescent light tubes, are so obvious to us that we do not give any thought to the processes underlying colourful neon signs. Another vast field is the production of materials with tailored-to-demand properties: mechanical, chemical, optical, electrical, magnetic, etc. Thin layers formed on solid surfaces by various plasma--material interactions play important roles in present-day computer technology, communication, space research, machinery and even many decorative items. However, the most demanding challenge in using plasma is to harness on Earth the processes that power stars. The endeavour is to confine and stabilize hot plasmas and to achieve the ultimate goal: to benefit from the might of thermonuclear reactions for environmentally benign energy production. The goal is clear, as the demand for energy is unquestionable. But the challenges are also enormous. Two basic plasma confinement schemes have been explored: inertial (using ultra-strong laser pulses or ion beams), and magnetic confinement (using strong magnetic fields). Hot plasma must be maintained in a vacuum vessel. The temperature gradients between the plasma and the surrounding wall are probably the greatest in the Universe. The history of fusion research began in the 1940s. Since then we have observed significant progress in fusion science and technology. We have come to the point when it has been decided to construct a reactor-class device. ITER International Thermonuclear Experimental Reactor will be built by seven co-operating parties: the EU, Japan

  12. Construction of an Alpha Particle Spark Detector and Fusor for research in plasma physics and radiation detection

    Science.gov (United States)

    Akinsulire, Olorunsola; Fils-Aime, Fabrice; Hecla, Jake; Short, Michael; White, Anne

    2016-10-01

    This project delves into the realms of plasma physics and nuclear engineering by exploring systems used to generate plasmas and detect radiation. Basic plasma processes can be explored using inertial electrostatic confinement, in a device commonly called a ``fusor''. The fusor will generate neutrons and x-rays. The breakdown of air within a spark gap can be achieved with alpha particles and the avalanche effect; and constitutes an Alpha Particle Spark Detector (APSD), relevant for studies of basic nuclear processes and detectors. In the fusor, preliminary data was collected on breakdown voltage versus pressure in an air plasma to see how well the current system and geometry match up with expectations for the Paschen curve. A stable plasma was observed, at voltages roughly consistent with expectations, and it was concluded that a more controlled gas introduction system is needed to maintain a steady plasma over wider pressure ranges, and will allow for introduction of D2 gas for the study of neutron and x-ray producing plasmas. This poster will discuss the design, construction, and initial operation of the Alpha Particle Spark Detector and the fusor as part of an Undergraduate Research Opportunity (UROP) project. MIT UROP Program and the NSE department.

  13. Programmable physical parameter optimization for particle plasma simulations

    Science.gov (United States)

    Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh

    2012-10-01

    We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.

  14. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  15. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  16. Basic Properties of Plasma-Neutral Coupling in the Solar Atmosphere

    Science.gov (United States)

    Goodman, Michael

    2015-04-01

    Plasma-neutral coupling (PNC) in the solar atmosphere concerns the effects of collisions between charged and neutral species’. It is most important in the chromosphere, which is the weakly ionized, strongly magnetized region between the weakly ionized, weakly magnetized photosphere and the strongly ionized, strongly magnetized corona. The charged species’ are mainly electrons, protons, and singly charged heavy ions. The neutral species’ are mainly hydrogen and helium. The resistivity due to PNC can be several orders of magnitude larger than the Spitzer resistivity. This enhanced resistivity is confined to the chromosphere, and provides a highly efficient dissipation mechanism unique to the chromosphere. PNC may play an important role in many processes such as heating and acceleration of plasma; wave generation, propagation, and dissipation; magnetic reconnection; maintaining the near force-free state of the corona; and limiting mass flux into the corona. It might play a major role in chromospheric heating, and be responsible for the existence of the chromosphere as a relatively thin layer of plasma that emits a net radiative flux 10-100 times greater than that of the overlying corona. The required heating rate might be generated by Pedersen current dissipation triggered by the rapid increase of magnetization with height in the lower chromosphere, where most of the net radiative flux is emitted. Relatively cool regions of the chromosphere might be regions of minimal Pedersen current dissipation due to smaller magnetic field strength or perpendicular current density. This talk will discuss PNC from an MHD point of view, and focus on the basic parameters that determine its effectiveness. These parameters are ionization fraction, magnetization, and the electric field that drives current perpendicular to the magnetic field. By influencing this current and the electric field that drives it, PNC directly influences the rate at which energy is exchanged between the

  17. NASA/Marshall Space Flight Center's Contributions to Space Plasma Physics

    Science.gov (United States)

    Adrian, M. L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Since the mid-l970's, the Space Plasma Physics Group at NASA's Marshall Space Flight Center has contributed critical instrumentation to numerous satellite and sounding rocket missions exploring the plasmas of near-Earth space. This talk will review major discoveries in Earth's ionosphere, plasmasphere, and magnetosphere directly attributable to the researchers of the Space Plasma Physics Group and the significance of these discoveries to the field of plasma physics.

  18. Managing a Basic Unit Responsible for a Basic Discipline: The Physics Department at the Technical University, Aachen.

    Science.gov (United States)

    Felderhof, B. U.

    1983-01-01

    The administrative structure of the physics department in a major European technical university is described, particularly with regard to the organization of teaching and research functions. The department is subdivided into an institute of theoretical physics and several institutes of experimental physics, with a more important subdivision into…

  19. Contributions of plasma physics to chaos and nonlinear dynamics

    Science.gov (United States)

    Escande, D. F.

    2016-11-01

    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

  20. ITER-EDA physics design requirements and plasma performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Galambos, J. [Oak Ridge National Lab., TN (United States); Wesley, J.; Boucher, D.; Perkins, F.; Post, D.; Putvinski, S. [ITER San Diego Joint Work Site, CA (United States)

    1996-07-01

    Physics design guidelines, plasma performance estimates, and sensitivity of performance to changes in physics assumptions are presented for the ITER-EDA Interim Design. The overall ITER device parameters have been derived from the performance goals using physics guidelines based on the physics R&D results. The ITER-EDA design has a single-null divertor configuration (divertor at the bottom) with a nominal plasma current of 21 MA, magnetic field of 5.68 T, major and minor radius of 8.14 m and 2.8 m, and a plasma elongation (at the 95% flux surface) of {approximately}1.6 that produces a nominal fusion power of {approximately}1.5 GW for an ignited burn pulse length of {ge}1000 s. The assessments have shown that ignition at 1.5 GW of fusion power can be sustained in ITER for 1000 s given present extrapolations of H-mode confinement ({tau}{sub E} = 0.85 {times} {tau}{sub ITER93H}), helium exhaust ({tau}*{sub He}/{tau}{sub E} = 10), representative plasma impurities (n{sub Be}/n{sub e} = 2%), and beta limit [{beta}{sub N} = {beta}(%)/(I/aB) {le} 2.5]. The provision of 100 MW of auxiliary power, necessary to access to H-mode during the approach to ignition, provides for the possibility of driven burn operations at Q = 15. This enables ITER to fulfill its mission of fusion power ({approximately} 1--1.5 GW) and fluence ({approximately}1 MWa/m{sup 2}) goals if confinement, impurity levels, or operational (density, beta) limits prove to be less favorable than present projections. The power threshold for H-L transition, confinement uncertainties, and operational limits (Greenwald density limit and beta limit) are potential performance limiting issues. Improvement of the helium exhaust ({tau}*{sub He}/{tau}{sub E} {le} 5) and potential operation in reverse-shear mode significantly improve ITER performance.

  1. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  2. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  3. Summary Talk of the X Latin American Workshop on Plasma Physics

    CERN Document Server

    Opher, R

    2004-01-01

    Of the many important topics that were discussed at the workshop, I summarize and comment on 25 presentations, which I found to be particularly interesting. They fall into all of the areas covered in the conference: basic plasma phenomena, space and astrophysical plasmas, technological applications of plasma, and thermonuclear fusion.

  4. Brief Introduction to the Foundation of CAI Shidong Award for Plasma Physics

    Institute of Scientific and Technical Information of China (English)

    SHENG Zhengming

    2010-01-01

    @@ The late Academician Professor CAI Shidong was an outstanding plasma physicist who had made seminal contributions in both fundamental plasma theories and controlled thermonuclear fusion energy research.Professor CAI was also one of the pioneers in China's plasma physics research.In 1973,Professor CAI decided to leave U.S.and return to China in order to help pushing forward plasma physics research in China.Professor CAI formed a research group consisting of young scientists and carried out high-level works in this important physics discipline.He worked tirelessly,set examples by his own deeds,and made outstanding contributions in plasma physics research,educating younger generations of plasma physicists,as well as establishing collaborations with plasma scientists in other Asian-African developing nations.In short,Professor CAI devoted the best years of his life to China's plasma physics research.

  5. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  6. Modeling of physical fitness of young karatyst on the pre basic training

    Directory of Open Access Journals (Sweden)

    Galimskyi V.A.

    2014-05-01

    Full Text Available Purpose : to develop a program of physical fitness for the correction of the pre basic training on the basis of model performance. Material: 57 young karate sportsmen of 9-11 years old took part in the research. Results : the level of general and special physical preparedness of young karate 9-11 years old was determined. Classes in the control group occurred in the existing program for yous sports school Muay Thai (Thailand boxing. For the experimental group has developed a program of selective development of general and special physical qualities of model-based training sessions. Special program contains 6 direction: 1. Development of static and dynamic balance; 2. Development of vestibular stability (precision movements after rotation; 3. Development rate movements; 4. The development of the capacity for rapid restructuring movements; 5. Development capabilities to differentiate power and spatial parameters of movement; 6. Development of the ability to perform jumping movements of rotation. Development of special physical qualities continued to work to improve engineering complex shock motions on the place and with movement. Conclusions : the use of selective development of special physical qualities based models of training sessions has a significant performance advantage over the control group.

  7. Fusion Plasma Physics and ITER - An Introduction (1/4)

    CERN Document Server

    CERN. Geneva

    2011-01-01

    In November 2006, ministers representing the world’s major fusion research communities signed the agreement formally establishing the international project ITER. Sited at Cadarache in France, the project involves China, the European Union (including Switzerland), India, Japan, the Russian Federation, South Korea and the United States. ITER is a critical step in the development of fusion energy: its role is to confirm the feasibility of exploiting magnetic confinement fusion for the production of energy for peaceful purposes by providing an integrated demonstration of the physics and technology required for a fusion power plant. The ITER tokamak is designed to study the “burning plasma” regime in deuterium-tritium (D-T) plasmas by achieving a fusion amplification factor, Q (the ratio of fusion output power to plasma heating input power), of 10 for several hundreds of seconds with a nominal fusion power output of 500MW. It is also intended to allow the study of steady-state plasma operation at Q≥5 by me...

  8. Soft X-ray measurements in magnetic fusion plasma physics

    Science.gov (United States)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  9. Earth's magnetosphere - Global problems in magnetospheric plasma physics

    Science.gov (United States)

    Roederer, J. G.

    1979-01-01

    Magnetospheric physics is presently in a transition from the exploratory stage to one in which satellite missions and ground-based observations are planned with the specific object of achieving a global understanding and self-consistent quantitative description of the cause-and-effect relationship among the principal dynamic processes involved. Measurements turn to lower and lower energies and to higher ion mass species, in order to encompass the entire particle population, and to a broader range of the frequency spectrum of magnetic and electric field variations. In the present paper, the current status of our knowledge on magnetospheric plasma physics is reviewed, with particular reference of such fundamental advances as the discovery of layers of streaming plasma in the magnetosphere beneath its boundary surface, the identification of the terrestrial magnetosphere as a celestial source of kilometric radiation and relativistic particles, the identification of parallel electric field regions within the magnetosphere and their role in auroral particle acceleration, and the discovery of large fluxes of energetic heavy ions trapped in the magnetosphere.

  10. Space plasma physics at the Applied Physics Laboratory over the past half-century

    Science.gov (United States)

    Potemra, Thomas A.

    1992-01-01

    An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.

  11. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    Science.gov (United States)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  12. Semi-quantitative diagram about temporal evolution in basic physics learning: a study with engineering students

    CERN Document Server

    Talero, Paco; Organista, Orlando; Barbosa, Luis

    2012-01-01

    We show a new semi-quantitative technique of analysis about of temporal evolution of learning of basic physics concepts. In this technique we arrange a geometric diagram with the score and the homogeneity (H-S), in this diagram we have a quantitative and qualitative information about the learning of students and the effectiveness instruction. We applied this technique to study the temporal evolution of the graphical interpretation of motion in one dimension through tutorials in a introductory course physics with 20 students of engineering at the Universidad Central de Bogot\\'a Colombia for a period of 6 weeks. We found in the general diagram that (Smax,Hmax)=(0.75,0.75).

  13. BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion

    Science.gov (United States)

    Brambilla, Marco

    1998-04-01

    Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The

  14. Planetary plasma data analysis and 3D visualisation at the French Plasma Physics Data Centre

    Science.gov (United States)

    Gangloff, Michel; Génot, Vincent; Cecconi, Baptiste; Andre, Nicolas; Budnik, Elena; Bouchemit, Myriam; Jourdane, Nathanaël; Dufourg, Nicolas; Beigbeider, Laurent; Toniutti, Jean-Philippe; Durand, Joelle

    2016-10-01

    The CDPP (the French plasma physics data center http://cdpp.eu/) is engaged for nearly two decades in the archiving and dissemination of plasma data products from space missions and ground-based observatories. Besides these activities, the CDPP developed services like AMDA (http://amda.cdpp.eu/) and 3DView (http://3dview.cdpp.eu/). AMDA enables in depth analysis of a large amount of data through dedicated functionalities such as: visualisation, data mining, cataloguing. 3DView provides immersive visualisations in planetary environments: spacecraft position and attitude, ephemerides. Magnetic field models (Cain, Tsyganenko), visualisation of cubes, 2D cuts as well as spectra or time series along spacecraft trajectories are possible in 3Dview. Both tools provide a joint access to outputs of simulations (MHD or Hybrid models) in planetary sciences as well as planetary plasma observational data (from AMDA, CDAWeb, Cluster Science Archive, ...). Some of these developments were funded by the EU IMPEx project, and some of the more recent ones are done in the frame of Europlanet 2020 RI project. The role of CDPP in the analysis and visualisation of planetary data and mission support increased after a collaboration with the NASA/PDS which resulted in the access in AMDA to several planetary datasets like those of GALILEO, MESSENGER, MAVEN, etc. In 2014, AMDA was chosen as the quicklook visualisation tool for the Rosetta Plasma Consortium through a collaboration with Imperial College, London. This presentation will include several use cases demonstrating recent and new capabilities of the tools.

  15. Physical and plasmachemical aspects of diffuse coplanar barrier discharge as a novel atmospheric-pressure plasma source

    Science.gov (United States)

    Cernak, M.; Kovacik, D.; Zahoranova, A.; Rahel, J.

    2008-07-01

    Collaborating Czech and Slovakian university teams have recently developed an innovative plasma source, the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD), which has the potential to move a step closer to the industry requirement for in-line treatment of low-added-value materials using a highly-nonequlibrium ambient air plasma (Simor et al. 2002, The idea is to generate a thin (on the order of 0.1 mm) layer of highly-nonequlibrium plasma with a high power density (up to 100 W/cm^3) in the immediate vicinity of the treated surface and bring it into a close contact with the treated surface. Comparing to atmospheric-pressure glow discharge, volume dielectric barrier discharge, and plasma jet plasmas, such a diffuse plasma layer is believed to provide substantial advantages in energy consumption, exposure time, and technical simplicity. A brief outline of physical mechanism and basic properties of DCSBD will given using the results of emission spectroscopy, high-speed camera, and spatially resolved cross-correlation spectroscopy studies. The presentation will review also a current state of the art in in-line plasma treatment of low-cost materials and opportunities for the use of the so-called Diffuse Coplanar Surface Dielectric Barrier Discharge (DCSBD). The results obtained on the ambient air plasma treatments of textile, paper, wood, and glass illustrate that DCSBD offers outstanding performance with extremely low energy consumption for large area, uniform surface modifications of materials under continuous process conditions.

  16. Bringing Javanesse Traditional Dance into Basic Physics Class: Exemplifying Projectile Motion through Video Analysis

    Science.gov (United States)

    Handayani, Langlang; Prasetya Aji, Mahardika; Susilo; Marwoto, Putut

    2016-08-01

    An alternative approach of an arts-based instruction for Basic Physics class has been developed through the implementation of video analysis of a Javanesse traditional dance: Bambangan Cakil. A particular movement of the dance -weapon throwing- was analyzed by employing the LoggerPro software package to exemplify projectile motion. The results of analysis indicated that the movement of the thrown weapon in Bambangan Cakil dance provides some helping explanations of several physics concepts of projectile motion: object's path, velocity, and acceleration, in a form of picture, graph and also table. Such kind of weapon path and velocity can be shown via a picture or graph, while such concepts of decreasing velocity in y direction (weapon moving downward and upward) due to acceleration g can be represented through the use of a table. It was concluded that in a Javanesse traditional dance there are many physics concepts which can be explored. The study recommends to bring the traditional dance into a science class which will enable students to get more understanding of both physics concepts and Indonesia cultural heritage.

  17. Exact Solutions of the Gardner Equation and their Applications to the Different Physical Plasmas

    Science.gov (United States)

    Daghan, D.; Donmez, O.

    2016-06-01

    Traveling wave solution of the Gardner equation is studied analytically by using the two dependent ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods and direct integration. The exact solutions of the Gardner equations are obtained. Our analytic solutions are applied to the unmagnetized four-component and dusty plasma systems consisting of hot protons and electrons to investigate dynamical features of the solitons and shock waves produced in these systems. A wide variety of parameters of the plasma is used, and the basic features of the Gardner solitons that are beyond the existing study in literature are found. It is observed that the analytic solutions from ( G '/ G,1/ G)-expansion and (1/ G ')-expansion methods only produce shock waves but the solitary waves are found from the analytic solutions derived from the direct integration. It is also noted that the superhot electrons and relative mass density of the electrons significantly effect the soliton's amplitude, width, and position. We have also numerically proved that the combination of every value of nomalized density μ 1 or temperature ratio σ 1 with the other sets of plasma parameters creates a region where the solutions have similar physical properties. The time-dependent behavior of the soliton is also studied, and a periodic motion of soliton along the phase variable η is found during the evolution. The investigations and the limits presented in this study may be helpful for studying and understanding the nonlinear properties of the solitary and shock waves seen in various physical and astrophysical plasma systems.

  18. Overview of Space Station attached payloads in the areas of solar physics, solar terrestrial physics, and plasma processes

    Science.gov (United States)

    Roberts, W. T.; Kropp, J.; Taylor, W. W. L.

    1986-01-01

    This paper outlines the currently planned utilization of the Space Station to perform investigations in solar physics, solar terrestrial physics, and plasma physics. The investigations and instrumentation planned for the Solar Terrestrial Observatory (STO) and its associated Space Station accommodation requirements are discussed as well as the planned placement of the STO instruments and typical operational scenarios. In the area of plasma physics, some preliminary plans for scientific investigations and for the accommodation of a plasma physics facility attached to the Space Station are outlined. These preliminary experiment concepts use the space environment around the Space Station as an unconfined plasma laboratory. In solar physics, the initial instrument complement and associated accommodation requirements of the Advanced Solar Observatory are described. The planned evolutionary development of this observatory is outlined, making use of the Space Station capabilities for servicing and instrument reconfiguration.

  19. The technology of Plasma Spray Physical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    M. Góral

    2012-12-01

    Full Text Available Purpose: The deposition of thermal barrier coatings is currently the most effective means of protecting the surface of aircraft engine turbine blades from the impact of aggressive environment of combustion gases. The new technologies of TBC depositions are required.Design/methodology/approach: The essential properties of the PS-PVD process have been outlined, as well as recent literature references. In addition, the influence of a set process condition on the properties of the deposited coatings has been described.Findings: The new plasma-spraying PS-PVD method is a promising technology for the deposition of modern thermal barrier coatings on aircraft engine turbine blades.Research limitations/implications: The constant progress of engine operating temperatures and increasing pollution restrictions determine the intensive development of heat-resistant coatings, which is directed to new deposition technologies and coating materials.Practical implications: The article presents a new technology of thermal barrier coating deposition - LPPS Thin Film and Plasma Spray - Physical Vapour Deposition.Originality/value: The completely new technologies was described in article.

  20. Monitoring and evaluation of physical abilities, as the basic elements of learning management students, aiming at the development of personality in the physical training.

    Directory of Open Access Journals (Sweden)

    Volkov V.L.

    2011-01-01

    Full Text Available It is considered the problem of managing of pedagogical influence on the identity of university students in the process of physical training. The study involved 237 boys 17-19 years, who are trained in basic medical group for physical education. It is defined the content control over the physical fitness of students of pedagogical specialists. It is developed a differentiated evaluation of the physical abilities of youth with age-appropriate development of the organism.

  1. THE PRIMARY STUDENT TEACHERS’ VIEWS ABOUT A BLENDED LEARNING APPLICATION IN A BASIC PHYSICS COURSE

    Directory of Open Access Journals (Sweden)

    Fatma EKICI

    2012-04-01

    Full Text Available In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share knowledge through different kinds of supervised activities, chats and forums. Students have to enter Moodle and they have participated activities that have been offered by the instructor after the lesson every week. After the study, results have shown that teacher candidates using Moodle processing have positive thoughts about the course. In the study, it has been emphasized views of prospective primary teachers about MOODLE in some subjects of physics. Students are challenged to doing research. Prospective teachers tend to use this method in their professional life; therefore, it is recommend that offering challenging possibilities to them about their using. It is recommended that this application is become widespread in education (especially higher education in Turkey.

  2. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    Science.gov (United States)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    This volume is a collection of papers associated with a series of invited lectures presented at the First Workshop on Nonequilibrium processes in Plasma Physics and studies of Environment that was held at Mt Kopaonik in August 2006. The workshop originated as a part of the FP6 COE 026328 which had the basic aim of promoting centers of excellence in Western Balkan countries, to facilitate dissemination of their results and to help them establish themselves in the broader arena of European and international science. So the best way to achieve all those goals was to prepare a workshop associated with the local conference SPIG (Symposium on Physics of Ionized Gases) where the participants could attend sessions in which the host Laboratory presented progress reports and papers and thereby gain a full perspective of our results. At the same time this allowed participants in the COE the opportunity to compare their results with the results of external speakers and to gain new perspectives and knowledge. The program of the workshop was augmented by inviting some of our colleagues who visited the COE in recent years or have an active collaboration with a participating member. In that respect this volume is not only a proceedings of the workshop but a collection of papers related to the topic of the workshop: Non-equilibrium phenomena in plasmas and in the science of our environment. The idea is to offer review articles either summarizing a broader area of published or about to be published work or to give overviews showing preliminary results of the works in progress. The refereeing of the papers consisted of two parts, first in selection of the invitees and second in checking the submitted manuscripts. The papers were refereed to the standard of the Journal. As the program of the COE covers a wide area of topics from application of plasmas in nano- electronics to monitoring and removal of pollutants in the atmosphere, so the program of the workshop covered an even broader

  3. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif.

    Science.gov (United States)

    Geissler, Brett; Ahrens, Sebastian; Satchell, Karla J F

    2012-02-01

    Plasma membrane targeting is essential for the proper function of many bacterial toxins. A conserved fourhelical bundle membrane localization domain (4HBM) was recently identified within three diverse families of toxins: clostridial glucosylating toxins, MARTX toxins and Pasteurella multocida-like toxins. When expressed in tissue culture cells or in yeast, GFP fusions to at least one 4HBM from each toxin family show significant peripheral membrane localization but with differing profiles. Both in vivo expression and in vitro binding studies reveal that the ability of these domains to localize to the plasma membrane and bind negatively charged phospholipids requires a basic-hydrophobic motif formed by the L1 and L3 loops. The different binding capacity of each 4HBM is defined by the hydrophobicity of an exposed residue within the motif. This study establishes that bacterial effectors utilize a normal host cell mechanism to locate the plasma membrane where they can then access their intracellular targets.

  4. EDITORIAL: The Third Nordic Symposium on Plasma Physics

    Science.gov (United States)

    Pecseli, Hans; Trulsen, Jan

    2006-02-01

    The Third Nordic Symposium on Plasma Physics was organized at Lysebu, Oslo, Norway on 4 7 October 2004, under the auspices of the Norwegian Centre for Advanced Study (CAS). The arrangement was preceded by two similar meetings organized at the Risø National Laboratory in Denmark by one of us (HP): Nonlinear Waves in Plasmas, 13 16 August 1985, and The Second Nordic Symposium on Nonlinear Phenomena in Plasmas and Related Topics, 8 12 August 1988. The proceedings from these two previous meetings were published as Physica Scripta Reprint Series No. 2, and RS 16 (with a few copies still being available). The idea of `Nordic' in the title of this latest meeting was interpreted somewhat liberally, by including also scientific organizations in northern Germany, where a collaboration facing Nordic countries comes naturally, and indeed has solid historical roots pointing also to ongoing activities. We hope that this series of meetings can continue, suggesting that the interval should be kept to a minimum of three years to ensure that all participants present new results. (We hope not to have to wait 16 years until next time, though!) The aim of our meetings is to stimulate collaboration among plasma physicists by creating a forum where the participants can exchange ideas and seek inspiration under relaxed conditions. We have the distinct impression that the meeting was very successful in this respect. Many Nordic institutes have widespread international collaborations, and we were happy to welcome also foreign representatives for some of these activities. Altogether 28 contributed talks were presented by 30 participants. The abstracts of all talks were distributed at the meeting. The present proceedings cover a selection of the contributions. One participant had to cancel, but the contribution is included in these proceedings. All the papers have been refereed according to the usual standards of the journal We, the organizers, thank CAS for the generous financial support

  5. 60th Scottish Universities Summer School in Physics: 6th Laser-plasma interactions

    CERN Document Server

    Cairns, R A; Jaroszinski, D A

    2009-01-01

    Presents diagnostic methods, experimental techniques, and simulation tools used to study and model laser-plasma interactions. This book discusses the basic theory of the interaction of intense electromagnetic radiation fields with matter.

  6. Early involvement in physics through the study of the basics of digital electronics

    Science.gov (United States)

    Egorov, A. D.; Zuykov, V. V.

    2017-01-01

    Motivation has a major impact on the results of a child's learning at school and a student's learning at the University. Moreover, school education creates a foundation for the study at the university, which is used by a student for in-depth and rapid development of specialized disciplines, reaching the level of independent research and development. The modern system of teaching physics at school is built in such a way that, basically, a teacher is demonstrating and a child is looking. Such a system, in addition to the logical lack of practical skills, leads to a significant reduction in the motivation for further engineering study, which is now a priority for Russia. There are original methods of practical teaching for students starting from the 5th grade, which allow each student to try to assemble on their own a variety of devices, reaching quick practical results. The principles of this technique are discussed in the article. Prototyping boards without solder were chosen as the basic platform to showcase the methodology.

  7. Does Physical Environment Contribute to Basic Psychological Needs? A Self-Determination Theory Perspective on Learning in the Chemistry Laboratory

    Science.gov (United States)

    Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti

    2016-01-01

    The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…

  8. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    Science.gov (United States)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and

  9. Observation and identification of zonal flows in a basic physics experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V; Wei, X; Sen, A K; Avinash, K [Plasma Research Laboratory, Columbia University, New York, New York 10027 (United States)

    2006-04-15

    The role of self-generated zonal flows (ZF) in transport regulation in magnetic confinement devices via its shear is a potent concept and a physics issue. However, as the experimental evidence of its existence in tokamaks is meagre, a basic physics experimental study of ZF associated with ion temperature gradient (ITG) drift modes has been performed in the Columbia Linear Machine. The difficult problem of detection of ZF has been solved via a novel diagnostic using the paradigm of frequency modulation (FM) in radio transmission. Using this and discrete short time Fourier transform, we find a power spectrum peak at ITG ('carrier') frequency of {approx}120 kHz and FM sidebands at frequency of {approx}2 kHz, which is identified as a ZF. It has all the signatures of a ZF: a potential at near zero frequency and poloidal symmetry (m = 0), toroidal symmetry (k{sub ||} = 0) and radial variations only. The results roughly agree with theoretical estimates given here.

  10. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-08-01

    Comparing the atom to a `tiny solar system' is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate how they understood the forces acting within the two systems. A sample of just over 100 across the 15-18 age range responded to a pencil-and-paper instrument that asked about four aspects of the two systems. It was found that for both systems, about four fifths of students expected forces to decrease with increasing distance; but that only a little over half expected there to be interactions between the minor constituents (electrons and planets). Most students failed to apply Newton's third law to either system. There was a considerable difference in the extent to which respondents were able to identify the type of force acting in the systems (nearly all for the solar system, but only a small proportion in the case of the atom). The findings are considered in terms of both the limitations of students' understanding of the basic physics and possible implications for the use of the teaching analogy.

  11. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  12. Physics Courses X-Rayed - A Comparative Analysis of High School Physics Courses in Terms of Basic Assumptions

    Science.gov (United States)

    Hobbs, E. D.

    1974-01-01

    Reports an attempt to infer from official statements and from course materials some of the assumptions and theoretical positions which underlie four high school physics courses: Nuffield Physics, ECCP's "The Man Made World," Harvard Project Physics, and PSSC Physics. (PEB)

  13. Asymptotic-Preserving methods and multiscale models for plasma physics

    CERN Document Server

    Degond, Pierre

    2016-01-01

    The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.

  14. Experimental and theoretical research in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.

    1992-01-01

    This report discusses research in the following areas: fusion theory and computations; theory of thermonuclear plasmas; user service center; high poloidal beta studies on PBX-M; fast ECE fluctuation diagnostic for balloning mode studies; x-ray imaging diagnostic; millimeter/submillimeter-wave fusion ion diagnostics; small scale turbulence and nonlinear dynamics in plasmas; plasma turbulence and transport; phase contrast interferometer diagnostic for long wavelength fluctuations in DIII-D; and charged and neutral fusion production for fusio plasmas.

  15. Plasma physics abstracts, 1 January - 31 December, 1986

    Science.gov (United States)

    Gurnett, D. A.; Dangelo, N.; Goertz, C. K.

    1987-01-01

    Topics addressed include: ion-cyclotron waves; plasma waves; solar wind lithium releases; bow shock; Pi2 wave bursts; auroral kilometric radiation; ion energization; magnetic field corrections; electric fields; magnetospheric processes; electron acceleration; inner heliosphere; nightside auroral zone; computerized simulation; plasma wave turbulence; and magnetohydrodynamic waves in plasma sheets.

  16. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  17. Theoretical study of nonlinear waves and shock-like phenomena in hot plasmas

    Science.gov (United States)

    Fried, B. D.; Banos, A., Jr.; Kennel, C. F.

    1973-01-01

    Summaries are presented of research in basic plasma physics. Nonlinear waves and shock-like phenomena were studied which are pertinent to space physics applications, and include specific problems of magnetospheric and solar wind plasma physics.

  18. Physical-Chemical Characterization of Nanodispersed Powders Produced by a Plasma-Chemical Technique

    Institute of Scientific and Technical Information of China (English)

    M. GEORGIEVA; G. VISSOKOV; Iv. GRANCHAROV

    2007-01-01

    This article presents a review on the physical-chemical properties and characteristics of plasma-chemically produced nanodispersed powders (NDP), such as metals, oxides, nitrides, carbides, and catalysts. The plasma-chemical preparation of the powders was carried out in thermal plasma (TP) created by means of high-current electric arcs, plasma jets, high-frequency (HF) discharges, etc. We also discuss certain properties and characteristics of the NDPs, which are determined largely by the conditions of preparation.

  19. Physics and optimization of plasma startup in the RFP

    Science.gov (United States)

    Mao, W.; Chapman, B. E.; Ding, W. X.; Lin, L.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Duff, J.; Ko, J.; Kumar, S. T. A.; Morton, L.; Munaretto, S.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J.; Brower, D. L.; Liu, W.

    2015-05-01

    In the tokamak and reversed-field pinch (RFP), inductively driven toroidal plasma current provides the confining poloidal magnetic field and ohmic heating power, but the magnitude and/or duration of this current is limited by the available flux swing in the poloidal field transformer. A portion of this flux is consumed during startup as the current is initiated and ramped to its final target value, and considerable effort has been devoted to understanding startup and minimizing the amount of flux consumed. Flux consumption can be reduced during startup in the RFP by increasing the toroidal magnetic field, Bti, applied to initiate the discharge, but the underlying physics is not yet entirely understood. Toward increasing this understanding, we have for the first time in the RFP employed advanced, non-invasive diagnostics on the Madison Symmetric Torus to measure the evolution of current, magnetic field, and kinetic profiles during startup. Flux consumption during startup is dominantly inductive, but we find that the inductive flux consumption drops as Bti increases. The resistive consumption of flux, while relatively small, apparently increases with Bti due to a smaller electron temperature. However, the ion temperature increases with Bti, exceeding the electron temperature and thus reflecting non-collisional heating. Magnetic fluctuations also increase with Bti, corresponding primarily to low-n modes that emerge sequentially as the safety factor profile evolves from tokamak-like to that of the RFP.

  20. Princeton Plasma Physics Laboratory FY2003 Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Editors: Carol A. Phillips; Anthony R. DeMeo

    2004-08-23

    The Princeton Plasma Physics Laboratory FY2003 Annual Highlights report provides a summary of the activities at the Laboratory for the fiscal year--1 October 2002 through 30 September 2003. The report includes the Laboratory's Mission and Vision Statements, a message ''From the Director,'' summaries of the research and engineering activities by project, and sections on Technology Transfer, the Graduate and Science Education Programs, Awards and Honors garnered by the Laboratory and the employees, and the Year in Pictures. There is also a listing of the Laboratory's publications for the year and a section of the abbreviations, acronyms, and symbols used throughout the report. In the PDF document, links have been created from the Table of Contents to each section. You can also return to the Table of Contents from the beginning page of each section. The PPPL Highlights for fiscal year 2003 is also available in hardcopy format. To obtain a copy e-mail Publications and Reports at: pub-reports@pppl.gov. Be sure to include your complete mailing address

  1. Development of the program visualizing the lunar physical libration with Visual Basic

    Science.gov (United States)

    Zagidullin, Arthur; Petrova, Natalia

    Study of the Moon, of its spin-orbital characteristics and parameters of the lunar interior is one of the traditional fields of the Kazan astronomical school. However, despite the incredible successes in space investigations of the planets and of the Moon, in last years the interest to celestial mechanics, ephemerides astronomy and astrometry is significantly decreased, especially among the young scientists and students. Therefore, it is encouraging to see the work of the third-year student, which is devoted to the study of the physical libration of the Moon. This report presents the results of the first stage of the above study associated with the study of Cassini's laws in the rotation of the Moon and the visualization of these laws by means the programming language Visual Basic. The Earth moves on the Moon's orbit in selenocentric frame. Dynamic coordinate system is based on the principal axes of inertia of the Moon. The x-axis is directed along the largest principal axis of inertia A, the axis z is a dynamic pole of the Moon associated with the smallest principal axis of inertia C. According to the first Cassini’s law the lunar pole is inclined at a constant angle approximately equal to 1.5 degree. The ascending node of the orbit is coincides with descending node of the lunar equator (the second Cassini’s law) and, as a result, the ecliptic pole lies between the orbit pole and spin pole. Therefore the three vectors directed from the lunar centre of mass to orbit pole, ecliptic pole and spin pole form a single plane. The third Cassini’s law reflects the uniform rotation of the Moon synchronised with orbital motion of the Moon around the Earth (in the selenocentric frame the Earth moves around the Moon). It’s necessary a significant time to calculate the corresponding coordinates of points, which move synchronously on the orbit and on the equator. In any time t the Earth moves with the mean velocity n and forms the angle n*t in the orbit plane. At the

  2. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine

    Science.gov (United States)

    Laroussi, M.; Lu, X.; Keidar, M.

    2017-07-01

    Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources was elucidated. Starting in the mid-1990s, low temperature plasma discharges have been used as sources of chemically reactive species that can be transported to interact with biological media, cells, and tissues and induce impactful biological effects. However, many of the biochemical pathways whereby plasma affects cells remain not well understood. This situation is changing rather quickly because the field, known today as "plasma medicine," has experienced exponential growth in the last few years thanks to a global research community that engaged in fundamental and applied research involving the use of cold plasma for the inactivation of bacteria, dental applications, wound healing, and the destruction of cancer cells/tumors. In this perspective, the authors first review the physics as well as the diagnostics of the principal plasma sources used in plasma medicine. Then, brief descriptions of their biomedical applications are presented. To conclude, the authors' personal assessment of the present status and future outlook of the field is given.

  3. 'Plasma Camp': A Different Approach to Professional Development for Physics Teachers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Post-Zwicker and Nicholas R. Guilbert

    1998-12-01

    The Plasma Physics and Fusion Energy Institute ('Plasma Camp') was inaugurated in 1998 as a way to address two areas of concern in the professional development of high-school physics teachers: involving teachers in the theory and methods of a current area of research in physics and connecting the research experience back into the classroom. The Institute, run jointly by a scientist and a teacher, immersed high-school teachers from across the country in laboratory investigations and in pedagogical projects for two weeks at Princeton University's Plasma Physics Laboratory. The goals, structure, and initial outcomes of the Institute are discussed.

  4. Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

    CERN Multimedia

    2005-01-01

    Tech-X Corporation releases simulation code for solving complex problems in plasma physics : VORPAL code provides a robust environment for simulating plasma processes in high-energy physics, IC fabrications and material processing applications

  5. Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate

    Science.gov (United States)

    Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya

    2016-01-01

    This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.

  6. Issues in access to safe drinking water and basic hygiene for persons with physical disabilities in rural Cambodia.

    Science.gov (United States)

    MacLeod, Marin; Pann, Mala; Cantwell, Ray; Moore, Spencer

    2014-12-01

    An estimated 1.6 million people die from diarrheal diseases each year due to lack of access to safe water and sanitation, and persons with physical disabilities face additional barriers. In Cambodia, approximately 5% of the population is disabled, presenting substantial obstacles in accessing these basic services. The purpose of this study was twofold: first, to identify the challenges facing persons with physical disabilities in accessing safe household water and basic hygiene in rural Cambodia; and, second, to use these results to generate policy and practice recommendations for the water and sanitation hygiene sector implementing water treatment system interventions in rural settings. Fifteen field interviews were conducted with persons with physical disabilities. Thematic analysis was used to identify six main themes. The results indicated that environmental barriers to access were greater in the workplace than household settings and those persons with disabilities had greater awareness about safe drinking water compared to basic hygiene. Additionally, lack of physical strength, distance to water, and lack of financial means were noted as common access barriers. The findings support ongoing research and offer insight into the particular challenges facing persons with physical disabilities in rural areas in accessing safe drinking water and basic hygiene.

  7. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model

    Science.gov (United States)

    2014-06-30

    Riemann solver for the two-fluid plasma model. Journal of Computational Physics , 187(2):620–638, 2003. [23] Jeffrey P. Freidberg. Ideal...Computational Physics , 141(2):199–224, 1998. [52] P. L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of...AFRL-OSR-VA-TR-2014-0310 PHYSICS -BASED COMPUTATIONAL ALGORITHM FOR THE MULTIFLUID PLASMA MODEL Uri Shumlak UNIVERSITY OF WASHINGTON Final Report 10

  8. Role of magnetospheric plasma physics for understanding cosmic phenomena

    Science.gov (United States)

    Das, Indra M. L.

    Cosmic phenomena occur in the remote regions of space where in situ observations are not possible. For a proper understanding of these phenomena, laboratory experiments are essential, but in situ observations of magnetospheric plasma provide an even better background to test various hypothesis of cosmic interest. This is because the ionospheric-magnetospheric plasma and the solar wind are the only cosmic plasmas accessible to extensive in situ observations and experiments.

  9. Physical limitations in ferromagnetic inductively coupled plasma sources

    CERN Document Server

    Bliokh, Yury P; Slutsker, Yakov Z

    2012-01-01

    The Ferromagnetic Inductively Coupled Plasma (FICP) source, which is a version of the common inductively coupled plasma sources, has a number of well known advantages such as high efficiency, high level of ionization, low minimal gas pressure, very low required driver frequency, and even a possibility to be driven by single current pulses. We present an experimental study of such an FICP source which showed that above a certain value of the driving pulse power the properties of this device changed rather drastically. Namely, the plasma became non-stationary and non-uniform contrary to the stationary and uniform plasmas typical for this kind of plasma sources. In this case the plasma appeared as a narrow dense spike which was short compared to the driving pulse. The local plasma density could exceed the neutral atoms density by a few orders of magnitude. When that happened, the afterglow plasma decay time after the end of the pulse was long compared to an ordinary case with no plasma spike. Experiments were pe...

  10. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  11. Princeton University, Plasma Physics Laboratory annual report, October 1, 1988--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report contains discussions on the following topics: principal parameters achieved in experimental devices (FY89); tokamak fusion test reactor; compact ignition tokamak; princeton beta experiment- modification; current drive experiment; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for (FY89); graduate education: plasma physics; graduate education: plasma science and technology; and Princeton Plasmas Physics Laboratory Reports (FY89).

  12. Princeton Plasma Physics Laboratory. Annual report, October 1, 1989--September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  13. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-09-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  14. Characterization of the Basic Operational Properties of the Capillary Plasma Electrode (CPE) Discharge

    Science.gov (United States)

    Lopez, Jose; Zhu, Weidong; Figus, Margaret; Becker, Kurt

    2008-10-01

    Various approaches have been pursued to create stable atmospheric pressure discharges by extending the lifetime of the diffuse phase of the discharge to hundreds of microseconds. Previous research showed that the stability of the diffuse mode is dependent on the frequency (in the kHz range), gas type, power, mode of the excitation, and geometrical confinement. The Capillary Plasma Electrode (CPE) discharge is able to produce stable atmospheric pressure nonequilibrium plasmas. The CPE is similar in design to a barrier-electrode discharge, but has perforated dielectrics. This configuration, aside from exhibiting a diffuse mode of operation, also exhibits the so-called ``capillary jet'' mode, in which the capillaries ``turn on'' and a bright plasma jet emerges from the capillaries. The capillary jets from adjacent capillaries overlap so that the discharge appears uniform when the electrode contains an array of holes. There appears to be a threshold frequency for the capillary jet formation, which is strongly dependent on the L/D ratio of the capillaries, where D is the diameter of a capillary and L its length. This current work explores these modes of operation of the CPE by characterizing the electrical and optical emission properties of this discharge.

  15. Physical investigation of a quad confinement plasma source

    Science.gov (United States)

    Knoll, Aaron; Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2016-10-01

    Quad magnetic confinement plasma sources are novel magnetized DC discharges suitable for applications in a broad range of fields, particularly space propulsion, plasma etching and deposition. These sources contain a square discharge channel with magnetic cusps at the four lateral walls, enhancing plasma confinement and electron residence time inside the device. The magnetic field topology is manipulated using four independent electromagnets on each edge of the channel, tuning the properties of the generated plasma. We characterize the plasma ejected from the quad confinement sources using a combination of traditional electrostatic probes and non-intrusive laser-based diagnostics. Measurements show a strong ion acceleration layer located 8 cm downstream of the exit plane, beyond the extent of the magnetic field. The ion velocity field is investigated with different magnetic configurations, demonstrating how ion trajectories may be manipulated. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  16. Princeton University Plasma Physics Laboratory, Princeton, New Jersey. Annual report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report discusses the following topics: Principal parameters of experimental devices; Tokamak Fusion Test Reactor; Burning Plasma Experiment; Princeton Beta Experiment-Modification; Current Drive Experiment-Upgrade; International Thermonuclear Experimental Reactor; International Collaboration; X-Ray Laser Studies; Hyperthermal Atomic Beam Source; Pure Electron Plasma Experiments; Plasma Processing: Deposition and Etching of Thin Films; Theoretical Studies; Tokamak Modeling; Engineering Department; Environment, Safety, and Health and Quality Assurance; Technology Transfer; Office of Human Resources and Administration; PPPL Patent Invention Disclosures; Office of Resource Management; Graduate Education: Plasma Physics; Graduate Education: Program in Plasma Science and Technology; and Science Education Program.

  17. The influence of physical exertion on basic hematological parameters values and heart rate in trotters

    Directory of Open Access Journals (Sweden)

    Slijepčević Dajana

    2014-01-01

    Full Text Available One of very important prerequisites for achieving good results in races, in addition to genetic predisposition, quality training and good health, are optimal values for number of erythrocytes, concentration of haemoglobin and hematocrit, of which depends efficient oxygen supply of muscles during great efforts. The stated values, along with data on heart rate, are useful indicators of the degree of horse fitness and readiness for horse race. The influence of physical exertion on the values of basic hematological parameters as well as on heart rate, was investigated on 6 trotters, in training at the Belgrade racetrack (one head of Italian trotter, male, 3 years old; 3 heads of American trotter, male, 3,4 and 6 years old and two heads of Serbian trotter, female, 4 and 5 years old. The blood samples for hematological tests were taken by punction of jugular vein in resting phase - immediately before the commencement of work, after light trot warming for 3000 m and fast trot for 1000 m, with 30 minutes rest between the two runnings. The heart rate was monitored continuously by radio telemetry cardiometer, from the moment they were taken from their boxes and harnessing to the completion of work. The obtained results confirm the relationship between the rise of heart rate and hematocrit values: maximal hematocrit values were determined after the first running (0.49±0.05, in regard to 0.42±0.03 in resting phase, but 30 minutes after the second running there was a slight drop of hematocrit values (0.46±0.04. The blood samples in both cases were taken after fast trot during which there were recorded maximal pulse values, so in the moment of sampling the pulse lowered close to the values in resting - after the first running from 192.23±19.66, and after the second from 180.33±17.22 to 40.67±5.76.

  18. The plasma physics of thermal conduction in the intracluster medium of galaxy clusters

    Science.gov (United States)

    Reynolds, Christopher

    Most of the baryons in a galaxy cluster reside in a hot (10-100 million K) and tenuous gaseous atmosphere confined by the gravitational potential of the cluster's dark matter halo. Understanding the microphysics of this intracluster medium (ICM), particularly the transport processes such as thermal conduction and viscosity, is important to any understanding of the thermodynamic state of ICM atmospheres. For example, the current paradigm is that radiative losses in the ICM core are offset by energy from a central jetted active galactic nucleus (AGN), preventing a cooling catastrophe in the cluster core. However, the mechanism by which the jet-injected energy is thermalized in the ICM is highly uncertain - the dissipation of waves or turbulence by thermal conduction or plasma viscosity is a leading contender. A knowledge of thermal conduction in the ICM is also important for any attempts to understand the global temperature profiles of clusters, with consequences for e.g. cosmological studies based on observations of the SunyaevZeldovich (SZ) effect. The basic physics of thermal conduction in the ICM is very poorly understood, however, leading to a huge uncertainty in the relevant coefficients. The ICM resides in a poorly studied regime of plasma physics - it is a highly magnetized (gyroradii path), high-beta (thermal pressure >> magnetic pressure), and weakly collisional (mean-free path only moderately less than global scale lengths) plasma. Thermal conduction will be strongly suppressed perpendicular to magnetic fields lines. But even along field lines, the growth of small scale and fast kinetic instabilities may strongly suppress thermal conduction. Hence the usual assumption, that conduction along the field has its classical Spitzer value, has a shaky theoretical basis and may well be wildly inaccurate. In this proposal, we use analytical theory and computer models to explore thermal conduction in ICM-like plasmas. Recently, we have found that a strong heat

  19. Realization basic directions of the Bologna process in preparation of teachers physical cultures in Polish Institutes of higher

    Directory of Open Access Journals (Sweden)

    Pasichnik V.R.

    2010-06-01

    Full Text Available Basic progress of higher school trends are presented in Poland. Directions of introduction of decisions of Bologna declaration and European educational standards are considered in preparation of teachers of physical culture. Information is resulted about the improvement of process of preparation of specialists of physical education and sport in the Warsaw academy of physical education. Growth of the state financing of research projects and introduction of the European educational projects is marked. It renders assistance to perfection of process of training of pedagogical personnels.

  20. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, S. [ed.] [Tokyo Univ. (Japan). Dept. of Physics; Tajima, T. [ed.] [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  1. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, S. (ed.) (Tokyo Univ. (Japan). Dept. of Physics); Tajima, T. (ed.) (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies)

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  2. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  3. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29 GIDC, Sec-25, Gandhinagar, 382016 Gujarat (India)

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  4. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  5. 179th International School of Physics "Enrico Fermi" : Laser-Plasma Acceleration

    CERN Document Server

    Gizzi, L A; Faccini, R

    2012-01-01

    Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: "Laser-Plasma Acceleration" , held in Varenna, Italy, in June 2011. The school provided an opportunity for young scientists to experience the best from the worlds of laser-plasma and accelerator physics, with intensive training and hands-on opportunities related to key aspects of laser-plasma acceleration. Subjects covered include: the secrets of lasers; the power of numerical simulations; beam dynamics; and the elusive world of laboratory plasmas. The object...

  6. Some problems of pulsar physics. [magnetospheric plasma model

    Science.gov (United States)

    Arons, J.

    1979-01-01

    The theories of particle acceleration along polar field lines are reviewed, and the total energization of the charge separated plasma is summarized, when pair creation is absent. The application of these theories and plasma supply to pulsars is discussed, with attention given to the total amount of electron-positron plasma created and its momentum distribution. Various aspects of radiation emission and transport are analyzed, based on a polar current flow model with pair creation, and the phenomenon of marching subpulses is considered. The coronation beaming and the relativistically expanding current sheet models for pulsar emission are also outlined, and the paper concludes with a brief discussion of the relation between the theories of polar flow with pair plasma and the problem of the energization of the Crab Nebula.

  7. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  8. Working group report: Heavy-ion physics and quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa; Sudhir Raniwala; T Awes; B Rai; R S Bhalerao; J G Contreras; R V Gavai; S K Ghosh; P Jaikumar; G C Mishra; A P Mishra; H Mishra; B Mohanty; J Nayak; J-Y Ollitrault; S C Phatak; L Ramello; R Ray; P K Sahu; A M Srivastava; D K Srivastava; V K Tiwari

    2006-11-01

    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.

  9. Contributed papers presented at the 24. EPS conference on controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    In the report thirteen papers are compiled which were presented by members of the Centre de Recherches en Physique des Plasma, Lausanne, at the 24th EPS conference on controlled fusion and plasma physics. They mainly deal with problems of the confinement and are based on studies performed in the TCV tokamak. figs., tabs., refs.

  10. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.

    Science.gov (United States)

    Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo

    2014-04-01

    Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

  11. Sources and detectors of fast ions for basic devices

    OpenAIRE

    Furno, Ivo; Fasoli, Ambrogio; Plyushchev, Gennady

    2009-01-01

    The physics of supra thermal test ions in turbulent plasmas can be conveniently studied in basic plasma physics devices, which allow high-resolution measurements of plasma and fast ion parameters and wave fields throughout the whole plasma cross-section. We describe recent advances in the development of an experimental setup consisting of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and drift/interchange–dr...

  12. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  13. Plasma facilities measuring equipment and high-voltage systems for basic research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M.; Pawlowicz, W. [eds.] [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    The report presents short description and the main technical data of various devices and systems designed and constructed at the Thermonuclear Research Dept. of the Soltan Institute for Nuclear Studies (SINS) in Swierk n. Warsaw, Poland. Different Plasma-Focus (PF) facilities of energy ranging from several kJ to 360 kJ, as well as the Ion Implosion Facilities of energy equal to 400 kJ, are shortly described. We present different cameras and analyzers used for studies of ions and X-rays. We also describe e.g. IONOTRONs used for material engineering. High-Voltage Pulse Generators developed for the voltage range from 40 kV to 2.4 MV, various Data Acquisition Systems, and special Vacuum Stands. Some selected technical units used in high-voltage systems are also presented. (author). 32 figs.

  14. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    Science.gov (United States)

    Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

    1995-01-01

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

  15. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  16. JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

    2011-03-07

    Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

  17. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    Science.gov (United States)

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  18. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  19. Analysis of Physics Processes in the AC Plasma Torch Discharge under High Pressure

    Science.gov (United States)

    Safronov, A. A.; Vasilieva, O. B.; Dudnik, J. D.; E Kuznetsov, V.; Kuchina, J. A.; Shiryaev, V. N.; Pavlov, A. V.

    2017-04-01

    The paper is devoted to investigation of electrophysical processes in the electric discharge generated by a three-phase AC plasma torch when using a high pressure inert working gas. AC plasma torch design with end electrodes intended for work on inert gases at pressures up to 81 bar is studied. Current-voltage characteristics for different gas flow rates and pressures are presented. Physical processes characteristics of the arising voltage ripples which depend on various working parameters of the plasma torch have been investigated. Arc burning processes in the electric discharge chamber of the three-phase AC plasma torch at various working parameters were photographed.

  20. Treatment of traumatised refugees with basic body awareness therapy versus mixed physical activity as add-on treatment

    DEFF Research Database (Denmark)

    Nordbrandt, Maja Sticker; Carlsson, Jessica; Lindberg, Laura Glahder

    2015-01-01

    on this topic. METHODS/DESIGN: This study will include approximately 310 patients, randomised into three groups. All three groups receive psychiatric treatment as usual for the duration of 6-7 months, consisting of consultations with a medical doctor including pharmacological treatment and manual......-based Cognitive Behavioural Therapy. The first group only receives treatment as usual while the second and the third groups receive either Basic-Body Awareness Therapy or mixed physical activity as add-on treatments. Each physical activity is provided for an individual 1-hour consultation per week...

  1. Testing satisfaction of basic psychological needs as a mediator of the relationship between socioeconomic status and physical and mental health.

    Science.gov (United States)

    González, Maynor G; Swanson, Dena P; Lynch, Martin; Williams, Geoffrey C

    2016-06-01

    This research applied self-determination theory to examine the degree to which satisfaction of basic psychological needs for autonomy, relatedness, and competence explained the association between socioeconomic status and physical and mental health outcomes, while controlling for age, exercise, and smoking status. This was a survey research study with 513 full-time employees in professions representative of a hierarchal organization. The results of the structural equation model verify that psychological need satisfaction mediates the inverse association between socioeconomic status and physical and mental health. Self-determination theory contributes to understanding the psychosocial roots of the uneven distribution of health across the socioeconomic gradient.

  2. Effects of different training options on the basic movements physical fitness 4-year-old girls with different motor asymmetry

    Directory of Open Access Journals (Sweden)

    Galamandjuk L. L.

    2015-04-01

    Full Text Available Purpose : to determine the effectiveness of different training options basic movements in terms of physical fitness girls with different orientation manual motor asymmetry (MMA. Material : the study involved 53 girls with ambidexterity: 68 - on the right, 62 - left oriented MMA. Age - 4 years. Results : there is a significant improvement in absolute muscle strength, speed-strength, coordination and cyclic locomotion tossing on the leading and non-leading range of hands regardless of the approach to teaching basic movements in girls. At the same time the increase of these qualities and the coordination of the throws on the accuracy of each hand is significantly higher when using one of the options "symmetric" approach. If you are using one of the options "symmetric" approach to teaching basic movements focus MMA defines the features of the development of physical qualities. Conclusions : regardless of the direction of MMA both versions of "symmetric" approach to improve the effectiveness of traditional indicators of physical fitness; the effectiveness of the first among themselves no different.

  3. Examining the Effects of Oxygen Plasma on Physical and Dyeing Properties of Some Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Dilara KOCAK

    2016-09-01

    Full Text Available Cotton, Agava Americana and artichoke fibers were treated with plasma with oxygen gas in Diener Vacuum Plasma for 1, 3 and 5 minutes, with 40 kHz low frequency and at 0.3 mbar pressure. After the plasma treatment, fibers' weight loss %, tensile strength, elongation, fiber diameter, surface topography (SEM, colour changes, and light and washing fastness properties were investigated. A positive increase was observed for mechanical and fastness properties after 5 min plasma treatment. The effects of plasma treatments on dyeing properties of fibers were studied. Dyeing properties of plasma treated fibers were improved after 3 min. treatment. SEM results were also proved the improved physical properties and colour changes due to the rough surface structure.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9368

  4. Physical properties of organic thiones; part IV. The basicity of the thiocarbonyl group in various thiones

    NARCIS (Netherlands)

    Janssen, M.L.

    1962-01-01

    The basicities of four N,N‐dimethylthioamides, of thiourea and all the N‐methylated thioureas, of ethylenethiourea, N,N′‐dimethylethylenethiourea and trimethylenethiourea, of S‐methyl N,N‐dimethyldithiocarbamate and ‐dimethyl trithiocarbonate, were determined. Measurements were made spectrophotometr

  5. The physics of plasma injection events. [during magnetospheric substorms

    Science.gov (United States)

    Kivelson, M. G.; Kaye, S. M.; Southwood, D. J.

    1980-01-01

    In this paper, plasma injection is defined as an increase of particle flux in a detector of finite bandwidth. Injection can result from dynamic processes or from spacecraft penetration of a quasi-static spatial structure produced by a steady magnetospheric convection pattern. ATS-5 particle spectrograms are found to provide examples of plasma injection events of both sorts. Dynamic injection occurs both with and without local magnetic signatures. For events not associated with clear local magnetic signatures, convection theory with a steady or a time-varying uniform electric field can account for the energy dispersion of injected particles with energy less than 50 keV. The paper concludes with a discussion of the way in which the convection boundaries are related to the substorm injection boundary of Mauk and McIlwain. Several alternative expressions for the local time and K(p) dependence of the injection boundary are given.

  6. Drift waves and chaos in a LAPTAG plasma physics experiment

    Science.gov (United States)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  7. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  8. Energy Efficient Transient: Plasma Ignition: Physics and Technology

    Science.gov (United States)

    2007-08-30

    Wang from the University of Southern California on modeling the TPI-assisted combustion. The ethylene data taken on the PDE is intended to assist this...production of said species will assist in the development of a model for transient plasma ignition greatly. The plan for a two week experiment is to...Back-Lighted Thyratron ," 27th International Power Modulator Conference 2006, Washington, D.C., 14-18 May 2006. P.I. - Martin A. Gundersen "Energy

  9. Innovative research of plasma physics for life sciences

    Science.gov (United States)

    Boonyawan, D.

    2017-06-01

    In medicine, cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air-CAPs are O3, OH, NxOx, and HNOx. The current developments in this field have fuelled the hope that CAP could be an interesting new therapeutic approach in the treatment of cancer. CAP apparently demonstrated effect on cancer cell apoptosis which did not induce cell necrosis or disruption. Moreover, CAP seemed to be selective for cancer cells since it was more effective in tumor cells than in normal non-neoplastic cells. In bioscience, dentistry and veterinary medicine : Since CAP, is delivered at room temperature, which results in less damaging effects on living tissue, while still has the efficiency in disinfection and sterilization. Recent studies proved that it is able to inactivate gram-negative and gram-positive bacteria, fungi, virus, spore, various parasites, and foreign organisms or pathogens without harming tissue. Moreover, cold plasma has been used effectively in medical field such as dental use, inducing apoptosis of malignant cells, stopping bleeding, promoting wound healing and tissue regeneration. Sericin hydrolysates, originating from silkworm is found support cell proliferation, expand cell adhesion and increase cell yield. The covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer can slow down the release rate of protein compound into the phosphate buffer saline (PBS) solution. We found that a-C films and a-C:N2 films show good attachment of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). All of carbon modified-Polystyrene(PS) dishes revealed the less release rate of sericin molecules into PBS solution than PS control.

  10. The contribution of Nikola Tesla to plasma physics and current status of plasmas that he studied

    Directory of Open Access Journals (Sweden)

    Petrović Zoran Lj.

    2006-01-01

    Full Text Available One of the main Interests in science of Nikola Tesla were gas discharges plasmas, their application in lighting and in production of ozone as well as their role in conduction of electricity through the atmosphere. In particular Tesla is well known as the first person to produce rf plasmas. Such plasmas in the present day constitute the main technology required to produce integrated circuits (IC and have been essential in the revolution that resulted from IC technologies. In addition Tesla participated in studies of arcs especially arcs used as a source of light, corona discharges required to induce plasma chemical reactions and produce ozone and was involved in various aspects of gas breakdown and gaseous dielectrics. His ideas, level of his understanding and current status of these fields are discussed in this review.

  11. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  12. Basics of programming exercises using health and fitness technology in physical education pupils of secondary schools

    Directory of Open Access Journals (Sweden)

    Verkhovska M.V.

    2015-01-01

    Full Text Available Purpose : to present a framework for programming model classes using athletic health technologies at physical training lessons to pupils of general education schools. Material : the information base on research constitute official documents of the governing bodies of the European Union for the development of sports education. Also - the curricula and training programs for teachers of physical training, training programs on physical training of general educational institutions, research papers, reference and encyclopaedias, periodicals, national and foreign publications. The study involved 178 teachers of physical culture. Results : The general education schools were given the right choice of the existing options of training and education. Also - the construction of new ones. Therefore, the logical focus is physical education teachers to use technology in improving physical fitness physical training lessons, changing the concept of sports orientation of physical training on wellness. This concept aims at developing various curricula, development and testing of new technologies and more. Conclusions : Programming exercises using athletic health technologies do not change the logic of the training and educational process. They cancel stringent regulatory and authoritarian school programs, form the subject of a positive motivation to contribute to improving and training effect, adjust the health status of all participants.

  13. Basic physics with ultra cold neutrons; Physique fondamentale avec des neutrons ultra froids

    Energy Technology Data Exchange (ETDEWEB)

    Protasov, K. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3, Universite Joseph Fourier, INPG, Grenoble (France)

    2007-07-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  14. Investigation of the relationship between aggression levels and basic psychological needs school of physical education and sports students

    Directory of Open Access Journals (Sweden)

    Mehmet Çağrı Çetin

    2013-06-01

    Full Text Available The search has been made for fixing if it varies or not regarding some variations aggressive levels and basic psychological needs of physical education and sports school students; and for if it has any relationship between aggression tendency and basic psychological need of the students. The research has been made in the year of 2010-2011 Education and Teaching. The students chosen by random sampling method (female students: 138, male students: 233 and totally: 371 participated to the searching from those majoring in the University of Mustafa Kemal Physical Education and Sports School, Physical Education and Sports Teacher (female students: 33, male students: 86, totally: 119, Coaching Training (female students: 32, male students: 44, totally: 76, Sports Management (female students: 29, male students: 55; totally: 84, Recreation (female students: 44, male students: 48, totally: 92. In the research had been used as the data collection tools “Aggression inventory’’ developed by Kiper (1984, “Basic psychological needs scale’’ adapted to Turkish by Kesici et al (2003, developed by Deci and Ryan (2000 and Personal Information Form developed by the researchers. As a result of the research it has been defined that the aggression degree has meaningful differences for female students at the destructive aggression subdimension, the aggression degree does not have a meaningful difference between those doing sports and those not doing sports. It has been seen that the individual need of the student at the subdimension of his basic psychological needs has a high considerate level for male students, those doing active sports have a considerate level in comparison with those not doing it about being individual, need of competence relationship.

  15. Numerical simulation of dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D.

    1995-09-01

    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  16. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    Science.gov (United States)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The

  17. Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2016-01-01

    Full Text Available In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α, differentiation (retinoic acid signaling and interferon inducible factors, and cell growth (Yin Yang 1. Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1 and of the neutrophil attractant chemokine interleukin-8 (IL-8. Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.

  18. Quantum field theory I: Basics in mathematics and physics. A bridge between mathematicians and physicists

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, Eberhard [Max-Planck-Institut fuer Mathematik in den Naturwissenschaften, Leipzig (Germany)

    2009-07-01

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics. (orig.)

  19. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    Science.gov (United States)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  20. Physics of hot hadronic matter and quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p{sub t} and collective flow, the shape of p{sub t} distribution, strangeness production, J/{psi} suppression and {phi} enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ultrasoft'' phenomena. 56 refs., 6 figs.

  1. Princeton Plasma Physics Laboratory annual report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This report discusses the following topics: Principal parameters achieved in experimental devices for fiscal year 1992; tokamak fusion test reactor; princeton beta experiment-modification; current drive experiment-upgrade; tokamak physics experiment/steady-state advanced tokamak; international thermonuclear experimental reactor; international collaboration; x-ray laser studies; plasma processing: Deposition and etching of thin films; pure electron plasma experiments; theoretical studies; tokamak modeling; high-field magnet project; engineering department; environment, safety, and health and quality assurance; technology transfer; office of human resources and administration; PPPL invention disclosures for fiscal year 1992; office of resource management; graduate education: plasma physics; graduate education: program in plasma science and technology; and science education program.

  2. Physics and chemistry of plasma-assisted combustion.

    Science.gov (United States)

    Starikovskiy, Andrey

    2015-08-13

    There are several mechanisms that affect a gas when using discharge plasma to initiate combustion or to stabilize a flame. There are two thermal mechanisms-the homogeneous and inhomogeneous heating of the gas due to 'hot' atom thermalization and vibrational and electronic energy relaxation. The homogeneous heating causes the acceleration of the chemical reactions. The inhomogeneous heating generates flow perturbations, which promote increased turbulence and mixing. Non-thermal mechanisms include the ionic wind effect (the momentum transfer from an electric field to the gas due to the space charge), ion and electron drift (which can lead to additional fluxes of active radicals in the gradient flows in the electric field) and the excitation, dissociation and ionization of the gas by e-impact, which leads to non-equilibrium radical production and changes the kinetic mechanisms of ignition and combustion. These mechanisms, either together or separately, can provide additional combustion control which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine relight, detonation initiation in pulsed detonation engines and distributed ignition control in homogeneous charge-compression ignition engines, among others. Despite the lack of knowledge in mechanism details, non-equilibrium plasma demonstrates great potential for controlling ultra-lean, ultra-fast, low-temperature flames and is extremely promising technology for a very wide range of applications.

  3. Formation and Acceleration Physics on Plasma Injector 1

    Science.gov (United States)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  4. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  5. Contributions to 28th European physical society conference on controlled fusion and plasma physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001) from LHD experiment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The LHD experimental group has presented nineteen papers at the 28th European Physical Society Conference on Controlled Fusion and Plasma Physics (Madeira Tecnopolo, Funchal, Portugal, 18-22 June 2001). The contributed papers are collected in this report. (author)

  6. Paradigm Changes in High Temperature Plasma Physics Research and Implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon K. Park

    2008-02-22

    Significant high temperature plasma research in both the magnetic and inertial confinement regimes led to the official launching of the International Thermonuclear Experimental Reactor (ITER) project which is aimed at challenging controlled fusion power for human kind. In particular, such an endeavor originated from the fruitful research outcomes from the world wide magnetic confinement devices (primarily based on the Tokamak approach) mainly in advanced countries (US, EU, and Japan). In recent years, all new steady state capable Tokamak devices are operated and/or constructed in Asian countries and incidentally, the majority of the ITER consortium consists of Asian countries. This provides an opportunity to revisit the unresolved essential physics issues and/or extend the understanding of the transient physics to the required steady state operation so that ITER can benefit from these efforts. The core physics of a magnetically confined hot plasma has two essential components; plasma stability and cross-field energy transport physics. Complete understanding of these two areas is critical for the successful operation of ITER and perhaps, Demo reactor construction. In order to have stable high beta plasmas with a sufficiently long confinement time, the physics of an abrupt disruption and sudden deterioration of the energy transport must be understood and conquered. Physics issues associated with transient harmful MHD behavior and turbulence based energy transport are extremely complicated and theoretical understanding needs a clear validation and verification with a new research approach such as a multi-dimensional visualization.

  7. Sonographic physical diagnosis 101: teaching senior medical students basic ultrasound scanning skills using a compact ultrasound system.

    Science.gov (United States)

    Angtuaco, Teresita L; Hopkins, Robert H; DuBose, Terry J; Bursac, Zoran; Angtuaco, Michael J; Ferris, Ernest J

    2007-06-01

    This project was designed to test the feasibility of introducing ultrasound to senior medical students as a primary diagnostic tool in the evaluation of patients. Specifically, its aim was to determine if it is possible for medical students untrained in sonography to gain basic competence in performing abdominal ultrasound with limited didactic and hands-on instructions. Registered sonographers provided the students with hands-on instructions on the use of a compact ultrasound system. They were likewise shown how to evaluate specific organs and perform measurements. The results of the student measurements and those obtained by the sonographers were compared. There was close correlation between the results obtained by sonographers and students on both normal and abnormal findings. This supports the concept that medical students can be taught basic ultrasound skills with limited didactic and hands-on instructions with the potential of using these skills in the patient clinics as an adjunct to routine physical diagnosis.

  8. Plasma etching an introduction

    CERN Document Server

    Manos, Dennis M

    1989-01-01

    Plasma etching plays an essential role in microelectronic circuit manufacturing. Suitable for researchers, process engineers, and graduate students, this book introduces the basic physics and chemistry of electrical discharges and relates them to plasma etching mechanisms. Throughout the volume the authors offer practical examples of process chemistry, equipment design, and production methods.

  9. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  10. Recent advances in numerical simulation of space-plasma-physics problems

    Science.gov (United States)

    Birmingham, T. J.

    1983-01-01

    Computer simulations have become an increasingly popular, important and insightful tool for studying space plasmas. This review describes MHD and particle simulations, both of which treat the plasma and the electromagnetic field in which it moves in a self consistent fashion but on drastically different spatial and temporal scales. The complementary roles of simulation, observations and theory are stressed. Several examples of simulations being carried out in the area of magnetospheric plasma physics are described to illustrate the power, potential and limitations of the approach.

  11. Physics and applications of high energy density plasmas. Extreme state driven by pulsed electromagnetic energy

    Energy Technology Data Exchange (ETDEWEB)

    Horioka, Kazuhiko (ed.)

    2002-06-01

    The papers presented at the symposium on ''Physics and application of high energy density plasmas, held December 20-21, 2001 at NIFS'' are collected in this proceedings. The topics covered in the meeting include dense z-pinches, plasma focus, intense charged particle beams, intense radiation sources, discharge pumped X-ray lasers, their diagnostics, and applications of them. The papers reflect the present status and trends in the research field of high energy density plasmas. (author)

  12. Indicators of special physical training archers on the stage of special basic training

    Directory of Open Access Journals (Sweden)

    Antonov S.V.

    2012-10-01

    Full Text Available The features of the special physical training of archers are considered from a bow on the stage of the specialized base training. To research 45 sportsmen (24 youths and a 21 girls were brought over from the anchorwomen of sporting schools of Ukraine (Lvov, Kharkov. Testing of leading physical qualities is conducted for archery. It is set that the special physical training of sportsmen is characterized prevailing of displays of power qualities. It is not discovered differences for the displays of co-ordinating capabilities (complex display, feelings of the bow and separate power qualities (force of bow, multiple traction of bow on gender features. It is set that skilled sportsmen do not show the proper level of contiguous development of co-ordinating and power qualities. Recommended for the training process of skilled sportsmen is an increase of volume of exercises with the directed development of co-ordinating capabilities.

  13. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    R V Gavai

    2000-07-01

    Lattice quantum chromodynamics (QCD), defined on a discrete space–time lattice, leads to a spectacular non-perturbative prediction of a new state of matter, called quark-gluon plasma (QGP), at sufficiently high temperatures or equivalently large energy densities. The experimental programs of CERN, Geneva and BNL, New York of relativistic heavy ion collisions are expected to produce such energy densities, thereby providing us a chance to test the above prediction. After a brief introduction of the necessary theoretical concepts, I will present a critical review of the experimental results already obtained by the various experiments in order to examine whether QGP has already been observed by them.

  14. Waves in plasmas (part 1 - wave-plasma interaction general background); Ondes dans les plasmas (Partie 1 - interaction onde / plasma: bases physiques)

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, R

    2004-07-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  15. The Analysis of Learning Obstacle and Students Learning Motivation of Prospective Math Teachers in Basic Physics Class

    Science.gov (United States)

    Kurniawan, D. T.; Suhandi, A.; Kaniawati, I.; Rusdiana, D.

    2017-02-01

    Learning motivation revealed as a whole intrinsic factor that created, maintained and supported students to achieve the goal of learning. As the bigger motivation came with bigger success, motivation was considered as the main key to reach what students have planned. There were intrinsic and extrinsic factors that influence both the students and lecturers’ motivation. The factors in one hand, were essential to be defined by the lecturers in order to maintain and enhance the students’ enthusiasm. On the other hand, they also encouraged and thrilled the students to learn. The study aimed to expose and describe the motivational tendency and to knowledge and analyze learning obstacles faced by the students in basic physics class on students of prospective math teachers in FKIP Unswagati Cirebon. In addition, the study focused on the description of the six motivational components stated by Glyn and Koballa. The six were intrinsic motivation, extrinsic motivation, the relevance of studying physics for subjective purposes, willpower, self assessment and anxiety. Class responses were determined through questionnaire with four main indicators; the causes of being less popular subject, the cause of being disfavored subject, the description of the way the students draw the examination on basic physics subject and the academic background of the students. The results showed that 54% students stated that physics was disfavored because the subject was difficult to understand, 49% stated that the cause of being disfavored of the subject was because physics required complicated mathematics. Most of the students preferred to have game based activities that boosted thinking skill. According to the analysis of the students’ motivation, the findings revealed that the students’ had high level of anxiety in learning the subject. They mostly expressed their anxiety appeared from the material density and text book based assignments.

  16. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  17. Some Aspects of Rubberlike Elasticity Useful in Teaching Basic Concepts in Physical Chemistry.

    Science.gov (United States)

    Mark, J. E.

    2002-01-01

    Explains the benefits of including polymer topics in both graduate and undergraduate physical chemistry courses. Provides examples of how to use rubberlike elasticity to demonstrate some of the general and thermodynamic concepts including equations of state, Carnot cycles and mechanochemistry, gel collapse, energy storage and hysteresis, and…

  18. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  19. {sup 7}Be radioactive beam production at CIRCE and its utilization in basic and applied physics

    Energy Technology Data Exchange (ETDEWEB)

    Limata, Benedicta Normanna [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy)], E-mail: limata@na.infn.it; Gialanella, Lucio; Leva, Antonino Di [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Cesare, Nicola De [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze della Vita, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); D' Onofrio, Antonio [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy); Gyurky, G. [ATOMKI, POB 51, Debrecen H-4001 (Hungary); Rolfs, Claus [Institut fuer Experimentalphysik III, RuhrUniversitaet, Universitatetstrasse 150, Bochum D-44780 (Germany); Romano, Mario [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Ed. G Via Cintia, Napoli 80126 (Italy); Rogalla, Detlef [Institut fuer Experimentalphysik III, RuhrUniversitaet, Universitatetstrasse 150, Bochum D-44780 (Germany); Rossi, Cesare; Russo, Michele [DIME, Universita di Napoli Federico II, Via Claudio, Napoli 80126 (Italy); Somorjai, Endre [ATOMKI, POB 51, Debrecen H-4001 (Hungary); Terrasi, Filippo [Sezione di Napoli, INFN, Ed. G, Via Cintia, Napoli 80126 (Italy); Dipartimento di Scienze Ambientali, II Universita di Napoli, Via Vivaldi 43, Caserta 81100 (Italy)

    2008-05-15

    A pure {sup 7}Be beam with an energy E = 1-8 MeV is available for nuclear and applied physics at the 3 MV Pelletron tandem accelerator CIRCE in Caserta. The beam is produced using an offline technique. Typical analyzed beam intensities are about 2 ppA, using cathodes with an activity of the order of 200 MBq. The {sup 7}Be implantation has been used for both fundamental nuclear physics and applied physics. In particular, different metals have been implanted with {sup 7}Be in order to study the influence of the chemical composition and of the number of quasi-free electrons of the host material on the {sup 7}Be half-life. In the field of applied physics, the {sup 7}Be implantation turns out to be very interesting for wear measurement. In fact, in this case {sup 7}Be is used as a depth-sensitive tracer. The continuous detection of the sample activity during the wear allows a high sensitivity measurement of wearing speed. The {sup 7}Be beam production at CIRCE, the implantation procedure and the results obtained from the {sup 7}Be half-life measurements and the wear characterization of implanted steel samples are described.

  20. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  1. The Physical Meanings of 5 Basic Parameters for an X-Ray Diffraction Peak and Their Application

    Institute of Scientific and Technical Information of China (English)

    周健; 王河锦

    2003-01-01

    This paper derives the physical meanings of peak position, peak width and height ofan X-ray diffraction peak from the analyses of the Bragg's equation, the Scherrer' s formula andthe principle of peak intensity calculation. The geometric characteristics of an asymmetric peakare clarified by means of experiment. The relationships between neak shape and domain size/lattice strain have been verified by geological events. Therefore this paper integrates the physicalmeanings of all 5 basic parameters for an X-ray diffraction peak. Applications of these 5 parame-ters are exemplified.

  2. Review of Burning Plasma Physics. Fusion Energy Sciences Advisory Committee (FESAC)

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herb [Univ. of Texas, Austin, TX (United States); Betti, Riccardo [Univ. of Rochester, NY (United States); Dahlburg, Jill [Univ. of Georgia, Athens, GA (United States); Freidberg, Jeff [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hopper, Bick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meade, Dale [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Navritil, Jerry [Columbia Univ., New York, NY (United States); Nevins, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ono, Masa [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Perkins, Rip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Prager, Stewart [Univ. of Wisconsin, Madison, WI (United States); Schoenburg, Kurt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Tony [Univ. of Georgia, Athens, GA (United States); Uckan, Nermin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-09-01

    The next frontier in the quest for magnetic fusion energy is the development of a basic understanding of plasma behavior in the regime of strong self-heating, the so called “burning plasma” regime. The general consensus in the fusion community is that the exploration of this frontier requires a new, relatively large experimental facility - a burning plasma experiment. The motivation, justification, and steps required to build such a facility are the primary focus of our report. The specific goals of the report are as follows. First, the report describes the critical scientific and engineering phenomena that are expected to arise for the first time, or else in a strongly modified form, in a burning plasma. Second, the report shows that the capabilities of existing experiments are inadequate to investigate these phenomena, thereby providing a major justification for a new facility. Third, the report compares the features and predicted performance of the three major next generation burning plasma experiments under current consideration (ITER-FEAT, FIRE, and IGNITOR), which are aimed at addressing these problems. Deliberately, no selection of the best option is made or attempted since such a decision involves complex scientific and cost issues that are beyond the scope of the present panel report. Fourth, the report makes specific recommendations regarding a process to move the burning plasma program forward, including a procedure for choosing the best option and the future activities of the Next Step Option (NSO) program. Fifth, the report attempts to provide a proper perspective for the role of burning plasmas with respect to the overall U.S. fusion program. The introduction provides the basic background information required for understanding the context in which the U.S. fusion community thinks about burning plasma issues. It “sets the stage” for the remainder of the report.

  3. Physics of Ionized Gases

    Science.gov (United States)

    Reiss, Howard R.; Smirnov, Boris M.

    2001-03-01

    A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.

  4. Atomic physics of shocked plasma in winds of massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); CRESST/UMBC (United States); Swarthmore College, Swarthmore, PA 19081 (United States); Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2012-05-25

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure.

  5. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  6. [Concepts of basic physics that every cardiovascular surgeon should know: part I - mechanics of fluids].

    Science.gov (United States)

    Oliveira, Marcos Aurélio Barboza de; Alves, Fernanda Tomé; Silva, Marcos Vinícius Pinto e; Croti, Ulisses Alexandre; Godoy, Moacir Fernandes de; Braile, Domingo Marcolino

    2010-01-01

    The professional activity that the cardiovascular surgeon performs is much more than a simple gesture to mechanically operate the patient's heart. There is in every act of intraoperative most notions of physiology and physics than we generally realize. This paper discusses, in the light of mathematics, on the dynamics of fluids, ie blood, focused on invasive measurements of blood pressure, the effect of vessel size on its internal resistance and the flow passing through it in conversion of various units of measurements of pressure and resistance, blood viscosity and its relationship to the vessel, hemodilution, differences in laminar and turbulent flow, velocity and blood pressure and wall tension after a stenosis and the origin of poststenotic aneurysm. This study is not to enable the reader to the knowledge of all physics, but to show it as a useful tool in explaining phenomena known in the routine of cardiovascular surgery.

  7. The basic physics of the binary black hole merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2017-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  8. The Effects of Basic Gymnastics Training Integrated with Physical Education Courses on Selected Motor Performance Variables

    Science.gov (United States)

    Alpkaya, Ufuk

    2013-01-01

    The purpose of this study is to determine the influence of gymnastics training integrated with physical education courses on selected motor performance variables in seven year old girls. Subjects were divided into two groups: (1) control group (N=15, X=7.56 plus or minus 0.46 year old); (2) gymnastics group (N=16, X=7.60 plus or minus 0.50 year…

  9. Benefits of physical exercise on basic visuo-motor functions across age

    Directory of Open Access Journals (Sweden)

    Marika eBerchicci

    2014-03-01

    Full Text Available Motor performance deficits of older adults are due to dysfunction at multiple levels. Age-related differences have been documented on executive functions; motor control becomes more reliant on cognitive control mechanisms, including the engagement of the prefrontal cortex (PFC, possibly compensating for age-related sensorimotor declines. Since at functional level the PFC showed the largest age-related differences during discriminative response task, we wonder whether those effects are mainly due to the cognitive difficulty in stimulus discrimination or they could be also detected in a much easier task. In the present study, we measured the association of physical exercise with the PFC activation and response times (RTs using a simple response task (SRT, in which the participants were asked to respond as quickly as possible by manual key-press to visual stimuli. Simultaneous behavioral (RTs and electroencephalographic (EEG recordings were performed on 84 healthy participants aged 19-86 years. The whole sample was divided into three cohorts (young, middle-aged and older; each cohort was further divided into two equal sub-cohorts (exercise and not-exercise based on a self-report questionnaire measuring physical exercise. The EEG signal was segmented in epochs starting 1100 prior to stimulus onset and lasting 2-s. Behavioral results showed age effects, indicating a slowing of RTs with increasing age. The EEG results showed a significant interaction between age and exercise on the activities recorded on the PFC. The results indicates that: a the brain of older adults needs the PFC engagement also to perform elementary task, such as the SRT, while this activity is not necessary in younger adults, b physical exercise could reduce this age-related reliance on extra cognitive control also during the performance of a SRT, and c the activity of the PFC is a sensitive index of the benefits of physical exercise on sensorimotor decline.

  10. Basic Physical Applications and the Mathematical Development of a Glint Visual Threshold Domain Model

    Science.gov (United States)

    2009-11-01

    approach will provide a basis for developing a mathematical model that calculates a locus of points that define a glint visual threshold domain...observer. This approach will provide a basis for developing a mathematical model that calculates a locus of points that define a glint visual...response to physical stimuli is involved, the eye retinal receptor response to the visual wavelength spectrum of 0.38 - 0.74 !lID could be better

  11. New Progress Achieved by NSFC Project in Basic Research of Black Hole Physics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Supported by NSFC,Prof.Wu Shuangqing from Huazhong Normal University conducted independent research on gravitation theory,discovered the exact solutions for the five-dimensional G(o)del charged rota-ting black hole in the universe,and made important headway in the characteristic research of black hole so-lutions.Part of the research results has been published in international top journal Physical Review Letters 100,121301 (2008).

  12. The Effects of Basic Gymnastics Training Integrated with Physical Education Courses on Selected Motor Performance Variables

    Science.gov (United States)

    Alpkaya, Ufuk

    2013-01-01

    The purpose of this study is to determine the influence of gymnastics training integrated with physical education courses on selected motor performance variables in seven year old girls. Subjects were divided into two groups: (1) control group (N=15, X=7.56 plus or minus 0.46 year old); (2) gymnastics group (N=16, X=7.60 plus or minus 0.50 year…

  13. X-ray phase sensitive imaging methods: basic physical principles and potential medical applications

    OpenAIRE

    Chen, Guang-Hong; Zambelli, Joseph; Bevins, Nicholas; Qi, Zhihua; Li, Ke

    2010-01-01

    Phase sensitive imaging theoretically allows for a drastic reduction in x-ray dose while simultaneously achieving comparable or better spatial and contrast resolution compared to traditional x-ray absorption based imaging. Several techniques exist to extract the phase information from an x-ray signal, including x-ray interferometry, diffraction enhanced imaging, in-line holography, coded aperture x-ray imaging, and grating-based interferometry. The physics of each method is reviewed, along wi...

  14. Scientific study in solar and plasma physics relative to rocket and balloon projects

    Science.gov (United States)

    Wu, S. T.

    1993-01-01

    The goals of this research are to provide scientific and technical capabilities in the areas of solar and plasma physics contained in research programs and instrumentation development relative to current rocket and balloon projects; to develop flight instrumentation design, flight hardware, and flight program objectives and participate in peer reviews as appropriate; and to participate in solar-terrestrial physics modeling studies and analysis of flight data and provide theoretical investigations as required by these studies.

  15. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    Science.gov (United States)

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  16. High-energy cosmic rays and tests of basic principles of Physics

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres L.

    2014-04-01

    Full Text Available With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and “static” properties, effective space dimensions, quark confinement… can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV in patterns incorporating a privileged local reference frame (the “vacuum rest frame”, VRF. But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a “grand unification” view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon patterns… The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.

  17. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

    Science.gov (United States)

    El Abed, Mohamed

    2016-01-01

    The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

  18. Investigation of basic physical properties and dielectric behavior of a-Se-Sn-Ge-Sb system

    Science.gov (United States)

    Chaudhary, Shobhna; Modgil, Vivek; Nidhi, Anant Vidya; Kumar, Prashant; Rangra, V. S.

    2015-05-01

    The material is investigated for various physical parameters which gives us the formation about glass rigidity and glass forming ability. The cohesive energy has been interpreted using Chemical Bond Approach and glass transition temperature (Tg) has been calculated by using Tichy-Ticha approach. The decrease in glass transition temperature and weakening of structure of the material has been observed due to decrease in mean bond energy. The effect of Sb addition on the dielectric behavior of a bulk glassy material has also been studied at room temperature in the frequency range 20Hz to 1MHz.

  19. Using Video Games to Support Pre-Service Elementary Teachers Learning of Basic Physics Principles

    Science.gov (United States)

    Anderson, Janice; Barnett, Michael

    2011-08-01

    The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with pre-service elementary teachers. To this end we explored the impact of using a game called Supercharged! on pre-service teachers' understanding of electromagnetic concepts compared to students who conducted a more traditional inquiry oriented investigation of the same concepts. This study was a part of a larger design experiment examining the pedagogical potential of Supercharged! the control group learned through a series of guided inquiry methods while the experimental group played Supercharged! during the laboratory sections of the science course. There was significant difference F(2,134) = 4.8, p positive learning outcomes, as demonstrated by the increase in test scores from pre- to post-assessment. Additionally, this study also suggests that a complementary approach, in which video games and hands-on activities are integrated, with each activity informing the other, could be a very powerful technique for supporting student scientific understanding. Further, our findings suggest that video game designers should embed meta-cognitive activities such as reflective opportunities into educational video games to provide scaffolds for students and to reinforce that they are engaged in an educational learning experience.

  20. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    Science.gov (United States)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  1. New Ideas for the Extra Dimensions and for Deriving the Basic Laws of Physics

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2010-01-01

    Full Text Available As geometry is constructed from points and their separating distances, physics may be similarly constructed using identical material points and their separating distances with the additional requirement that all points have infinitesimal masses and move all the time at the speed of light. Pairs of such points can get locked together in circles to make doublet particles that can have any speed from zero to that of light, at which point the doublet disintegrates. Using this construct together with the rich mathematical properties of a 3D space, a mechanical definition of time, and simple symmetry rule for displacement, it is possible to derive many of the fundamental laws of physics such as the inverse square laws of gravitation and static electricity, many of the relativistic and quantum mechanical results such as the mass-energy conversion of Einstein and the quantized energy levels of Planck and Bohr. In addition, a better understanding of some illusive terms like inertia and force becomes possible. No arbitrary constants are needed in the process. Extra dimensions (variables that are not a distance are created as a result of this setup --- but they are all found to be discrete. Mass, charge, spin, and time are some notable examples.

  2. New Ideas for the Extra Dimensions and for Deriving the Basic Laws of Physics

    Directory of Open Access Journals (Sweden)

    Al Rabeh R. H.

    2010-01-01

    Full Text Available As geometry is constructed from points and their separating distances, physics may be similarly constructed using identical material points and their separating distances with the additional requirement that all points have infinitesimal masses and move all the time at the speed of light. Pairs of such points can get locked together in circles to make doublet particles that can have any speed from zero to that of light, at which point the doublet disintegrates. Using this construct together with the rich mathematical properties of a 3D space, a mechanical definition of time, and simple symmetry rule for displacement, it is possible to derive many of the fundamental laws of physics such as the inverse square laws of gravitation and static electricity, many of the relativistic and quantum mechanical results such as the mass-energy conversion of Einstein and the quantized energy levels of Planck and Bohr. In addition, a better understanding of some illusive terms like inertia and force becomes possible. No arbitrary constants are needed in the process. Extra dimensions (variables that are not a distance are created as a result of this setup — but they are all found to be discrete. Mass, charge, spin, and time are some notable examples.

  3. Internet and web projects for fusion plasma science and education. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Timothy E. [Senior Research Associate, Silver Spring, MD (United States)

    1999-08-30

    The plasma web site at http://www.plasmas.org provides comprehensive coverage of all plasma science and technology with site links worldwide. Prepared to serve the general public, students, educators, researchers, and decision-makers, the site covers basic plasma physics, fusion energy, magnetic confinement fusion, high energy density physics include ICF, space physics and astrophysics, pulsed-power, lighting, waste treatment, plasma technology, plasma theory, simulations and modeling.

  4. Evolution of large-sclae plasma structures in comets: Kinematics and physics

    Science.gov (United States)

    Brandt, John C.

    1988-01-01

    Disconnection Events are the dramatic part of the periodic morphology involving the separation of the entire plasma tail from the head region of the comet and the growth of a new plasma. The coordinated observations of Comet Halley recorded approximately 30 DEs during the 7 months of plasma activity; 19 of these are obvious. The plasma physics of these events were approached via a detailed, kinematic investigation of specific DEs and the solar-wind environment associated with it. As the detailed investigations are completed, researchers should be able to answer the question of a single or multiple mechanism(s) for DEs and determine which mechanism(s) are important. At present, the mechanism of sunward magnetic reconnection caused by interplanetary sector boundary crossing in consistent with the data available.

  5. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    Science.gov (United States)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we

  6. Relationship between physical activity and plasma fibrinogen concentrations in adults without chronic diseases.

    Directory of Open Access Journals (Sweden)

    Manuel A Gomez-Marcos

    Full Text Available OBJECTIVE: To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR, and plasma fibrinogen concentrations. METHODS: A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women. Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs/hour/week and GT3X ActiGraph accelerometer (counts/minute for 7 days. RESULTS: Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute and 7-day PAR (Median: 8 METs/hour/week. Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = -0.100; p<0.001 and METs/hour/week (r = -0.162; p<0.001. In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week respect to subjects who performed less (first tertile, maintained statistical significance after adjustments for age and others confounders (β = -0.03; p = 0.046 and β = -0.06; p<0.001, respectively. CONCLUSIONS: Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders.

  7. Study of Local Reconnection Physics in a Laboratory Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; Troy Carter; Scott Hsu; Masaaki Yamada

    2001-06-11

    A short review of physics results obtained in the Magnetic Reconnection Experiment (MRX) is given with an emphasis on the local features of magnetic reconnection in a controlled environment. Stable two-dimensional current sheets are formed and sustained by induction using two internal coils. The observed reconnection rates are found to be quantitatively consistent with a generalized Sweet-Parker model which incorporates compressibility, unbalanced upstream-downstream pressure, and the effective resistivity. The latter is significantly enhanced over its classical values in the low collisionality regime. Strong local ion heating is measured by an optical probe during the reconnection process, and at least half of the increased ion energy must be due to nonclassical processes, consistent with the resistivity enhancement. Characteristics of high-frequency electrostatic and electromagnetic fluctuations detected in the current sheet suggest presence of the lower-hybrid-drift-like waves with significant magnetic components. The detailed structures of the current sheet are measured and compared with Harris theory and two-fluid theory.

  8. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  9. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  10. NATO Advanced Study Institute entitled Physics of Plasma-Wall Interactions in Controlled Fusion

    CERN Document Server

    Behrisch, R; Physics of plasma-wall interactions in controlled fusion

    1986-01-01

    Controlled thermonuclear fusion is one of the possible candidates for long term energy sources which will be indispensable for our highly technological society. However, the physics and technology of controlled fusion are extremely complex and still require a great deal of research and development before fusion can be a practical energy source. For producing energy via controlled fusion a deuterium-tritium gas has to be heated to temperatures of a few 100 Million °c corres­ ponding to about 10 keV. For net energy gain, this hot plasma has to be confined at a certain density for a certain time One pro­ mising scheme to confine such a plasma is the use of i~tense mag­ netic fields. However, the plasma diffuses out of the confining magnetic surfaces and impinges on the surrounding vessel walls which isolate the plasma from the surrounding air. Because of this plasma wall interaction, particles from the plasma are lost to the walls by implantation and are partially reemitted into the plasma. In addition, wall...

  11. EDITORIAL: Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics

    Science.gov (United States)

    Bhattacharjee, Amitava

    2012-01-01

    To celebrate Professor Robert Dewar's 65th birthday, a Symposium was held on 31 October 2009 in Atlanta, Georgia, just before the 51st Annual Meeting of the Division of Plasma Physics of the American Physical Society. The Symposium was attended by many of Bob's colleagues, friends, postdoctoral colleagues and students (present and former). Boyd Blackwell, Anthony Cooper, Chris Hegna, Stuart Hudson, John Krommes, Alexander Pletzer, Ellen Zweibel, and I gave talks that covered various aspects of Bob's wide-ranging scholarship, and his leadership in the Australian and the US fusion program. At the Symposium, Bob gave an insightful talk, published in this issue as a paper with D Leykam. This paper makes available for the first time unpublished results from Bob's M Sc Thesis on a general method for calculating the potential around a `dressed' test particle in an isotropic and collisionless plasma. The paper is interesting not only because it provides a glimpse of the type of elegant applied mathematics that we have come to associate with Bob, but also because he discusses some leitmotifs in his intellectual evolution since the time he was a graduate student at the University of Melbourne and Princeton University. Through his early encounter with quantum field theory, Bob appreciated the power of Lagrangian and Hamiltonian formalisms, which he used with great effectiveness in nonlinear dynamics and plasma physics. A question that animates much of his work is one that underlies the `dressed' particle problem: if one is given a Hamiltonian with an unperturbed (or `bare') part and an interaction part, how is one to obtain a canonical transformation to `the oscillation centre' thatwould reduce the interaction part to an irreducible residual part while incorporating the rest in a renormalized zeroth-order Hamiltonian? One summer in Princeton, I worked with Bob on a possible variational formulation for this problem, and failed. I was daunted enough by my failure that I turned

  12. Geographic-didactical games as interactive tools to test and improve student's basic knowledge in Physical Geography

    Science.gov (United States)

    Winkler, S.; Tintrup Gen. Suntrup, A.

    2009-04-01

    Due to an increasing disproportion between experienced teaching staff and student numbers at German universities, the time available for teaching the fundamental basic knowledge in Physical Geography was condensed during the past decade. Unfortunately, this mainly has been achieved at the expense of practical lessons of testing student's knowledge. The recent introduction of the Bachelor/Master degree has not solved this problem, but rather accelerated that tend. The "losers" of this tendency are those students enrolled in trainee teacher studies in Geography. In conjunction with the recent modifications of the study programs putting more focus on applied or specialized fields of Geography and its methodology, the trainee teacher students often express their critics and urgently demand opportunities to improve and test their basic knowledge (because it is especially that knowledge, they need at school and for their traditional examination). As the study program is quite dense, there is no room for special courses or seminars. By contrast, one has to use some free time slots available e.g. in the evenings of the usually quite long German excursions or of weekend seminars. However, after a day in the field or in the classroom, the teacher has to find a method owing enough excitement and clearly visible benefit for the students to achieve sufficient motivation. Interactive geographic-didactical games have been developed exclusively for this purpose and applied at different occasions. Those games had the goal of testing student's basic knowledge in a rather unconventional and "casual" style in order to motivate active participation. Most of the games could be played in small groups of students with the teacher only occasionally being involved as referee. Of course, the games had the general aim of improving the basic knowledge - or at least give the students the possibility to discover their own strength (or weakness) just before it is too late (as it e.g. would be

  13. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    Science.gov (United States)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  14. Physics of Plasmas in Thermonuclear Regimes. Proceedings of the 1979 Workshop, International School of Plasma Physics, Varenna, Italy, 27 August - 8 September 1979. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Coppi, B.; Sadowski, W. [eds.

    1979-08-27

    The workshop was run concurrently with the International School of Plasma Physics and was organized as a sequence of afternoon meetings concerning a set of topics that correspond to the individual chapters of these proceedings. The workshop consisted of both individual presentations and moderated discussions among the participants. A selected group of topics that were found to deserve a more in-depth analysis, such as the question of anomalous particle transport and the theory of collective modes induced by alpha-particles were discussed in separate Working Groups.

  15. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    CERN Document Server

    Told, Daniel; Astfalk, Patrick; Jenko, Frank

    2016-01-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm's law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  16. The basic physics of the binary black hole merger GW150914

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here those features of the signal visible in these data are used, along with only such concepts from Newtonian and General Relativity as are accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as 350 km apart and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  17. AINSE Plasma Science and Technology Conference and Elizabeth and Frederick White Workshop on Fundamental Problems in the Physics of Magnetically Confined Plasmas: Conference handbook

    Science.gov (United States)

    The handbook contains abstracts of papers and posters presented at the conference. The main topics relate to plasma physics and fusion, plasma processing and uses as well as specific fusion devices and experiments. Eighty-four out of ninety-two presentations were considered to be in the INIS subject scope and have been separately indexed.

  18. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  19. Fusion programs in applied plasma physics. Technical progress report, July 11, 1992--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section.

  20. AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: basic concepts and new technology.

    Science.gov (United States)

    Hangiandreou, Nicholas J

    2003-01-01

    Ultrasonography (US) has been used in medical imaging for over half a century. Current US scanners are based largely on the same basic principles used in the initial devices for human imaging. Modern equipment uses a pulse-echo approach with a brightness-mode (B-mode) display. Fundamental aspects of the B-mode imaging process include basic ultrasound physics, interactions of ultrasound with tissue, ultrasound pulse formation, scanning the ultrasound beam, and echo detection and signal processing. Recent technical innovations that have been developed to improve the performance of modern US equipment include the following: tissue harmonic imaging, spatial compound imaging, extended field of view imaging, coded pulse excitation, electronic section focusing, three-dimensional and four-dimensional imaging, and the general trend toward equipment miniaturization. US is a relatively inexpensive, portable, safe, and real-time modality, all of which make it one of the most widely used imaging modalities in medicine. Although B-mode US is sometimes referred to as a mature technology, this modality continues to experience a significant evolution in capability with even more exciting developments on the horizon.

  1. Basic Physical – Mechanical Properties of Geopolymers Depending on the Content of Ground Fly Ash and Fines of Sludge

    Directory of Open Access Journals (Sweden)

    Sičáková Alena

    2017-06-01

    Full Text Available The binding potential of fly ash (FA as a typical basic component of building mixtures can be improved in mechanical way, which unfolds new possibilities of its utilization. This paper presents the possibilities of preparing the geopolymer mixtures based on ground (dm = 31.0 μm FA, used in varying percentages to the original (unground; dm = 74.1 μm one. As a modification, fine-grain sludge from the process of washing the crushed aggregates was used as filler in order to obtain mortar-type material. The basic physical-mechanical properties of mixtures are presented and discussed in the paper, focusing on time dependence. The following standard tests were executed after 2, 7, 28, and 120 days: density, total water absorption, flexural strength, and compressive strength. Ground FA provided for positive effect in all tested parameters, while incorporation of fine portion of sludge into the geopolymer mixture does not offer a significant technical profit. On the other hand, it does not cause the decline in the properties, so the environmental effect (reduction of environmental burden can be applied through its incorporation into the geopolymer mixtures.

  2. Measurement and Basic Physics Committee of the U.S. Cross-Section Evaluation Working Group annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L. [ed.] [comp.] [Argonne National Lab., IL (United States); McLane, V. [ed.] [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-10-01

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. It`s main product is the official US evaluated nuclear data file, ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the Us and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  3. Spacelab 1 - Scientific objectives, life sciences, space plasma physics, astronomy and solar physics

    Science.gov (United States)

    Chappell, C. R.

    1985-01-01

    A general overview of the accomplishments of the Spacelab 1 complement to the Shuttle mission of Nov. 28, 1983, is presented. Consideration is given to scientific results in the fields of life sciences, materials sciences, atmospheric physics, and earth observations. A table is given which lists the scientific objectives and the percentage of objectives accomplished in each field.

  4. Global problems in magnetospheric plasma physics and prospects for their solution

    Science.gov (United States)

    Roederer, J. G.

    1977-01-01

    Selected problems in magnetospheric plasma physics are critically reviewed. The discussion is restricted to questions that are 'global' in nature (i.e., involve the magnetosphere as a whole) and that are beyond the stage of systematic survey or isolated study requirements. Only low-energy particle aspects are discussed. The article focuses on the following subjects: (1) the effect of the interplanetary magnetic field on the topography, topology, and stability of the magnetospheric boundary; (2) solar-wind plasma entry into the magnetosphere; (3) plasma storage and release mechanisms in the magnetospheric tail; and (4) magnetic-field-aligned currents and magnetosphere-ionosphere interactions. A brief discussion of the prospects for the solution of these problems during and after the International Magnetospheric Study is given.

  5. Integrated physics analysis of plasma start-up scenario of helical reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Seki, R.; Suzuki, C.; Yokoyama, M.; Satake, S.; Sagara, A.; The FFHR Design Group

    2015-06-01

    1D physics analysis of the plasma start-up scenario of the large helical device (LHD)-type helical reactor FFHR-d1 was conducted. The time evolution of the plasma profile is calculated using a simple model based on the LHD experimental observations. A detailed assessment of the magnetohydrodynamic equilibrium and neo-classical energy loss was conducted using the integrated transport analysis code TASK3D. The robust controllability of the fusion power was confirmed by feedback control of the pellet fuelling and a simple staged variation of the external heating power with a small number of simple diagnostics (line-averaged electron density, edge electron density and fusion power). A baseline operation control scenario (plasma start-up and steady-state sustainment) of the FFHR-d1 reactor for both self-ignition and sub-ignition operation modes was demonstrated.

  6. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  7. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  8. Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning.

    Science.gov (United States)

    Pellegrin, Eric; Sics, Igors; Reyes-Herrera, Juan; Perez Sempere, Carlos; Lopez Alcolea, Juan Josep; Langlois, Michel; Fernandez Rodriguez, Jose; Carlino, Vincent

    2014-03-01

    Although the graphitic carbon contamination of synchrotron beamline optics has been an obvious problem for several decades, the basic mechanisms underlying the contamination process as well as the cleaning/remediation strategies are not understood and the corresponding cleaning procedures are still under development. In this study an analysis of remediation strategies all based on in situ low-pressure RF plasma cleaning approaches is reported, including a quantitative determination of the optimum process parameters and their influence on the chemistry as well as the morphology of optical test surfaces. It appears that optimum results are obtained for a specific pressure range as well as for specific combinations of the plasma feedstock gases, the latter depending on the chemical aspects of the optical surfaces to be cleaned.

  9. Modelling of impurity transport and plasma-wall interaction in fusion devices with the ERO code: basics of the code and examples of application

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, A.; Borodin, D.; Brezinsek, S.; Linsmeier, C.; Romazanov, J. [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik, Juelich (Germany); Tskhakaya, D. [Fusion rate at OeAW, Institute of Applied Physics, TU Wien (Austria); Institute of Theoretical Physics, University of Innsbruck (Austria); Kawamura, G. [National Institute for Fusion Science, Gifu (Japan); Ding, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-08-15

    The 3D ERO code, which simulates plasma-wall interaction and impurity transport in magnetically confined fusion-relevant devices is described. As application, prompt deposition of eroded tungsten has been simulated at surfaces with shallow magnetic field of 3 T. Dedicated PIC simulations have been performed to calculate the characteristics of the sheath in front of plasma-exposed surfaces to use as input for these ERO simulations. Prompt deposition of tungsten reaches 100% at the highest electron temperature and density. In comparison to more simplified assumptions for the sheath the amount of prompt deposition is in general smaller if the PIC-calculated sheath is used. Due to friction with the background plasma the impact energy of deposited tungsten can be significantly larger than the energy gained in the sheath potential. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  10. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  11. James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves

    Science.gov (United States)

    Chen, Liu

    2012-10-01

    Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

  12. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  13. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Years 2002 and 2003

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley, Editor

    2004-12-22

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2002 and 2003 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003.

  14. Study of higher excited states of some polyatomic molecules relevant for plasma physics and environment

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, B P, E-mail: bratislav.marinkovic@phy.bg.ac.y [Institute of Physics, Belgrade 11080, Pregrevica 118 (Serbia) and College for Electrical Engineering and Computing, Belgrade 11010, Vojvode Stepe 283 (Serbia)

    2009-04-01

    Studies of higher excited states of some polyatomic molecules relevant for plasma physics and environment have been presented. Spectra of chlorofluorocarbons are discussed together with their influence on ozone layer depletion and global warming. Tetrahydrofuran molecule was studied by photoabsorption and electron energy loss spectroscopy while the states are assigned following extensive ab initio calculations. Nitrous oxide and hydrogen sulphide spectra are discussed in terms of identifying valence and Rydberg character of excited states.

  15. TELEMATICS APPLICATIONS REMOT: Interfaces and Adaptations of the Plasma Physics Demonstrator

    OpenAIRE

    Kemmerling, G.; Van der Meer, E.

    1997-01-01

    In document D6.2, a textual description of the soft- and hardware components of the plasma physics demonstrator as well as a definition of remote and local site was given. In order to couple these components to a complete teleoperation system, interfaces between them have to be defined and existing soft- and hardware have to be adapted. This task will be described in this document.

  16. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    Science.gov (United States)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the

  17. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    Science.gov (United States)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  18. Associations among objectively measured physical activity, fasting plasma homocysteine concentration, and MTHFR C677T genotype.

    Science.gov (United States)

    Murakami, Haruka; Iemitsu, Motoyuki; Sanada, Kiyoshi; Gando, Yuko; Ohmori, Yumi; Kawakami, Ryoko; Sasaki, Satoshi; Tabata, Izumi; Miyachi, Motohiko

    2011-12-01

    Elevated fasting plasma homocysteine (Hcy) level is a vascular disease risk factor. Plasma Hcy is affected by 5,10-methylenetetrahydofolate reductase (MTHFR) genotype and dietary folate intake. This cross-sectional study in 434 Japanese adults examined the associations among objectively measured physical activity (PA), plasma Hcy adjusting for dietary folate intake, and MTHFR C677T genotype. Daily PA was measured by triaxial accelerometry and all subjects completed a questionnaire about their dietary habits. Plasma Hcy and MTHFR C677T genotype were determined. Plasma Hcy in subjects with the TT genotype was significantly higher than in those with CC or CT genotype (p < 0.001). Plasma Hcy was significantly different between ≥ 200 (7.6 ± 0.2 nmol/mL) and <200 µg/day (8.3 ± 0.3 nmol/mL) folate intake groups (p = 0.003). There were no differences in plasma Hcy adjusting for age, sex, and folate intake between groups according to PA category in all subjects. However, there were significant interactions between time spent in light PA (p = 0.003), vigorous PA (p = 0.001), or inactivity (p = 0.004), and MTHFR genotype. In only the TT genotype, shorter time spent in light PA was associated with higher plasma Hcy than a longer time spent in light PA (11.5 ± 3.3 nmol/mL vs. 8.5 ± 3.3 nmol/mL, p < 0.001), and longer time spent in vigorous PA and inactivity were associated with higher plasma Hcy (11.8 ± 3.3 nmol/mL vs. 8.4 ± 3.2 nmol/mL, 11.6 ± 3.3 nmol/mL vs. 8.4 ± 3.3 nmol/mL, respectively, p < 0.001). In conclusion, light and vigorous PA were associated with plasma Hcy only in the TT genotype, but there were no such associations in all genotypes.

  19. Basic Detonation Physics Algorithms

    Science.gov (United States)

    2011-12-01

    vhi real*8 sqrl real*8 sqrr real*8 rsumi real*8 rav real*8 ri real*8 uav real*8 zav real*8 eav...denm vhi = (drc*drd + eps)/denm rl = r(i-1) + iext*(epsm*phi*drc & + epsp* vhi ...drb) denm = dra*dra + drb*drb + eps phi = (drb*dre + eps)/denm vhi = (dra*dre + eps)/denm

  20. The Numerical Tokamak Project (NTP) simulation of turbulent transport in the core plasma: A grand challenge in plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The long-range goal of the Numerical Tokamak Project (NTP) is the reliable prediction of tokamak performance using physics-based numerical tools describing tokamak physics. The NTP is accomplishing the development of the most advanced particle and extended fluid model`s on massively parallel processing (MPP) environments as part of a multi-institutional, multi-disciplinary numerical study of tokamak core fluctuations. The NTP is a continuing focus of the Office of Fusion Energy`s theory and computation program. Near-term HPCC work concentrates on developing a predictive numerical description of the core plasma transport in tokamaks driven by low-frequency collective fluctuations. This work addresses one of the greatest intellectual challenges to our understanding of the physics of tokamak performance and needs the most advanced computational resources to progress. We are conducting detailed comparisons of kinetic and fluid numerical models of tokamak turbulence. These comparisons are stimulating the improvement of each and the development of hybrid models which embody aspects of both. The combination of emerging massively parallel processing hardware and algorithmic improvements will result in an estimated 10**2--10**6 performance increase. Development of information processing and visualization tools is accelerating our comparison of computational models to one another, to experimental data, and to analytical theory, providing a bootstrap effect in our understanding of the target physics. The measure of success is the degree to which the experimentally observed scaling of fluctuation-driven transport may be predicted numerically. The NTP is advancing the HPCC Initiative through its state-of-the-art computational work. We are pushing the capability of high performance computing through our efforts which are strongly leveraged by OFE support.

  1. MEASUREMENT AND BASIC PHYSICS COMMITTEE OF THE U.S. CROSS-SECTION EVALUATION WORKING GROUP, ANNUAL REPORT 1997

    Energy Technology Data Exchange (ETDEWEB)

    SMITH,D.L.; MCLANE,V.

    1998-10-20

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  2. A dependence of a sports result on physical development, morphofunctional and special strength preparedness data of weightlifters at the stage of preliminary basic training

    OpenAIRE

    Півень, Олександр; Дорофєєва, Тетяна

    2017-01-01

    Oleksandr Piven & Tetiana Dorofieieva Purpose: establishing the nature of the relationship between the sporting result of weightlifters 15–17 years and the level of their special physical and morphofunctional preparedness at the stage of preliminary basic training. Material & Methods: 30 athletes of the group of preliminary basic training of the second year of training were involved in the experiment. The study was conducted on the basis of the department of weightlifting and boxing o...

  3. Autonomy supportive environments and mastery as basic factors to motivate physical activity in children: a controlled laboratory study

    Directory of Open Access Journals (Sweden)

    Roemmich James N

    2012-02-01

    Full Text Available Abstract Background Choice promotes the experience of autonomy, which enhances intrinsic motivation. Providing a greater choice of traditional active toys may increase children's activity time. Mastery also increases intrinsic motivation and is designed into exergames, which may increase play time of a single exergame, reducing the need for choice to motivate activity compared to traditional active toys. Providing both choice and mastery could be most efficacious at increasing activity time. The energy expenditure (EE of an active play session is dependent on the duration of play and the rate of EE during play. The rate of EE of exergames and the same game played in traditional fashion is not known. The purpose was to test the basic parameters of choice and mastery on children's physical activity time, activity intensity, and energy expenditure. Methods 44 children were assigned to low (1 toy or high (3 toys choice groups. Children completed 60 min sessions with access to traditional active toys on one visit and exergame versions of the same active toys on another visit. Results Choice had a greater effect on increasing girls' (146% than boys' (23% activity time and on girls' (230% than boys' (minus 24% activity intensity. When provided choice, girls' activity time and intensity were no longer lower than boys' activity time and intensity. The combination of choice and mastery by providing access to 3 exergames produced greater increases in physical activity time (1 toy 22.5 min, 3 toys 41.4 min than choice alone via access to 3 traditional games (1 toy 13.6 min, 3 toys 19.5 min. Energy expenditure was 83% greater when engaging in traditional games than exergames. Conclusions Boys and girls differ in their behavioral responses to autonomy supportive environments. By providing girls with greater autonomy they can be motivated to engage in physical activity equal to boys. An environment that provides both autonomy and mastery is most efficacious at

  4. Some physics and chemistry of Coblation® electrosurgical plasma devices

    Science.gov (United States)

    Stalder, Kenneth R.; Ryan, Thomas P.; Woloszko, Jean

    2013-02-01

    Electrosurgical devices employing plasmas to ablate, cut and otherwise treat tissues have been in widespread use for decades. Following d'Arsonval's 19th century work on the neuromuscular response from high-frequency excitation of tissue, Doyen treated skin blemishes with a spark-gap generator in 1909. In the late 1920's, physician Harvey Cushing and Harvard physicist William Bovie developed an electrosurgical device and power source that eventually became a standard of care for cutting, coagulating, desiccating, or fulgurating tissue. Beginning in the 1990's a new class of low-voltage electrosurgical devices employing electricallyconducting saline fluids were developed by ArthroCare Corp. These modern Coblation® devices are now widely used in many different surgical procedures, including those in arthroscopic surgery, otorhinolaryngology, spine surgery, urology, gynecological surgery, and others. This paper summarizes some of the research we have been doing over the last decade to elucidate the physics and chemistry underlying Coblation® electrosurgical devices. Electrical-, thermal-, fluid-, chemicaland plasma-physics all play important roles in these devices and give rise to a rich variety of observations. Experimental techniques employed include optical and mass spectroscopy, fast optical imaging, and electrical voltage and current measurements. Many of the features occur on fast time scales and small spatial scales, making laboratory measurements difficult, so coupled-physics, finite-element-modeling can also be employed to glean more information than has been acquired thus far through physical observation.

  5. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschön, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Öz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tückmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  6. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  7. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  8. Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin.

    Science.gov (United States)

    Mueller, Patrick J

    2008-09-01

    Physical inactivity is an independent risk factor for cardiovascular disease. Sedentary animals compared to physically active controls exhibit enhanced sympathoexcitatory responses, including arterial baroreflex-mediated sympathoexcitation. Hypotension-induced sympathoexcitation is also associated with the release of vasoactive hormones. We hypothesized that sedentary conditions may enhance release of the vasoactive hormones AVP and ANG II. To test this hypothesis, the humoral response to hypotension was examined in conscious rats after 9-12 wk of sedentary conditions or "normally active" conditions. Normally active conditions were produced by allowing rats access to running wheels in their home cages. Running distance peaked after 4 wk (4.5 +/- 0.7 km/day), and the total distance run after 9 wk was 174 +/- 23 km (n = 25). Similar levels of hypotension were induced in conscious sedentary or physically active animals with the arterial vasodilator, diazoxide (25 mg/kg iv). Control experiments used a saline injection of equivalent volume. Plasma samples were collected and assayed for plasma AVP concentration and plasma renin activity (PRA). Sedentary conditions significantly enhanced resting and hypotension-induced PRA relative to normal physical activity. In contrast, resting and hypotension-induced AVP levels were not statistically different between groups. These data suggest that baroreflex-mediated activation of the renin-angiotensin system, but not AVP secretion, is enhanced by sedentary conditions. We speculate that augmented activation of the renin-angiotensin system may be related to enhanced sympathetic outflow observed in sedentary animals and may contribute to increased risk of cardiovascular disease in the sedentary population.

  9. All basic condensed matter physics phenomena and notions mirror in biology – A hypothesis, two examples and a novel prediction

    Indian Academy of Sciences (India)

    G Baskaran

    2002-02-01

    A few billion years of evolutionary time and the complex process of ‘selection’ has given biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have been discovered by humans in the laboratory, that too only in extreme non-biological conditions such as low temperatures, high purity, high pressure etc., in the last centuries. Biology, at some level, is a complex and self-regulated condensed matter system compared to the ‘inanimate’ condensed matter systems such as liquid 4He, liquid water or a piece of graphite. In this article I propose a hypothesis that ‘all basic condensed matter physics phenomena and notions (already known and ones yet to be discovered) mirror in biology’. I explain this hypothesis by considering the idea of ‘Bose condensation’ or ‘momentum space order’ and discuss two known example of quantum magnetism encountered in biology. I also provide some new and rather speculative possibility, from light harvesting in biological photosynthesis, of mesoscopic exciton condensation related phenomena at room temperature.

  10. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  11. Modeling physical chemistry of the Io plasma torus in two dimensions

    Science.gov (United States)

    Copper, M.; Delamere, P. A.; Overcast-Howe, K.

    2016-07-01

    Periodicities in the Io plasma illustrate the rich complexity of magnetosphere-ionosphere coupling in space plasmas. The confounding System IV period (slower than the rotation of Jupiter's magnetic field ≡ System III) remains a mystery of the torus. Common to both System III and IV are modulations of the superthermal electron population. The small fraction (<1%) of hot electrons plays a vital role in torus physical and chemical properties, modulating the abundance and temperature of ion species. Building on previous models of torus physical chemistry, we have developed a two-dimensional model that includes azimuthal and radial transport (diffusion equation) while averaging chemical processes in latitude. This paper presents initial results of the model, demonstrating the role of hot electrons in forming a single-peaked torus structure. The effect of azimuthal shear is investigated as plasma is transported radially outward, showing how the torus properties evolve during transport from a chemically dominated regime (inner torus) to a transport dominated regime (outer torus). Surprisingly, we find that hot electron populations influence torus properties at all radial distances. While many of our results are preliminary, suggestions for future modeling experiments are suggested to provide additional insight into the origin of the ubiquitous superthermal electrons.

  12. STUDENT AWARD FINALIST: Plasma Acid: A Chemically and Physically Metastable Substance

    Science.gov (United States)

    Shainsky, Natalie; Dobrynin, Danil; Ercan, Utku; Joshi, Suresh; Brooks, Ari; Ji, Haifeng; Fridman, Gregory; Cho, Young; Fridman, Alexander; Friedman, Gennady

    2011-10-01

    Non-thermal atmospheric pressure dielectric barrier discharge applied to the surface of a liquid creates a chemically and physically metastable substance. The properties and lifetime of the substance depend on the treatment conditions such as gas atmosphere and liquid medium used, treatment dose, and other parameters. When deionized water is used, the metastable substance becomes a strong oxidizer. We show that direct exposure of deionized water to neutral and charged species produced in plasma creates a strong oxidizer and acidic substance in this water which, for the lack of a better term, we termed plasma acid. Plasma acid can remain stable for relatively long time and its oxidizing power may be linked to the significant lowering of its pH. We report experiments that demonstrate plasma acid's metastability. We also show that observed pH of as low as 2.0 cannot be completely accounted for by the production of nitric acid; and that the conjugate base derived from superoxide is at least partly responsible for both, lowering of the pH and increase in the oxidizing power of the solution.

  13. [August Weismann's concept of germ plasma as the basic reason for the inadequacy of neo-Darwinism].

    Science.gov (United States)

    Grodnitskiĭ, D L

    2000-01-01

    Neo-Darwinism is a result of synthesis of Darwinian concept of natural selection with Weismannian concept of germ plasma. The concept of germ plasma is based on a hypothesis that phenotypic traits are completely determined by genes. Hence, neo-Darwinism describes evolution as a process of alternation of gene frequencies under the effect of natural selection. This is an inadequate approach to the study of evolution. In the course of evolution, genes change their functions, whereas phenotypic characters change their corresponding genes. As a result, every step of evolutionary transformation changes the structure of phenotype-to-genotype correspondence. Therefore, phenotypic evolution cannot be described in genetic terms, the same as to human languages cannot be translated one into another whenever the meaning of words is constantly changing. Consequently, Weismannian germ-plasma concept adequately describes the relation of characters to genes only during stasis, but is inapplicable to evolution.

  14. Longitudinal changes in C-reactive protein, proform of eosinophil major basic protein, and pregnancy-associated plasma protein-A during weight changes in obese children

    DEFF Research Database (Denmark)

    Lausten-Thomsen, Ulrik; Gamborg, Michael; Bøjsøe, Christine

    2015-01-01

    BACKGROUND: Childhood obesity is associated with several complications, including cardiovascular comorbidity. Several biomarkers, such as high-sensitive C-reactive protein (hs-CRP), proform of eosinophil major basic protein (Pro-MBP) and pregnancy associated plasma protein-A (PAPP-A), have equally...... been linked to increased cardiovascular susceptibility. This study investigates these biomarkers during weight loss and regain in obese children. MATERIALS AND METHODS: A longitudinal study during a 12-week weight loss program with a 28 months follow-up was conducted. Anthropometrics and plasma......), and 2.70 (girls) were included. Ninety children completed the weight loss program and 68 children entered the follow-up program. Pro-MBP and PAPP-A, but not hs-CRP, exhibited individual-specific levels (tracking) during weight loss and regain. The PAPP-A/Pro-MBP correlation was strong, whereas the hs...

  15. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-08-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter heat transfer.

  16. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  17. Magnetospheric Plasma Physics : the Impact of Jim Dungey’s Research

    CERN Document Server

    Southwood, David; Mitton, Simon

    2015-01-01

    This book makes good background reading for much of modern magnetospheric physics. Its origin was a Festspiel for Professor Jim Dungey, former professor in the Physics Department at Imperial College on the occasion of his 90th birthday, 30 January 2013. Remarkably, although he retired 30 years ago, his pioneering and, often, maverick work in the 50’s through to the 70’s on solar terrestrial physics is probably more widely appreciated today than when he retired. Dungey was a theoretical plasma physicist. The book covers how his reconnection model of the magnetosphere evolved to become the standard model of solar-terrestrial coupling. Dungey’s open magnetosphere model now underpins a holistic picture explaining not only the magnetic and plasma structure of the magnetosphere, but also its dynamics which can be monitored in real time. The book also shows how modern day simulation of solar terrestrial coupling can reproduce the real time evolution of the solar terrestrial system in ways undreamt of in 1961 w...

  18. pypk - A Python extension module to handle chemical kinetics in plasma physics modeling

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available PLASMAKIN is a package to handle physical and chemical data used in plasma physics modeling and to compute gas-phase and gas-surface kinetics data: particle production and loss rates, photon emission spectra and energy exchange rates. A large number of species properties and reaction types are supported, namely: gas or electron temperature dependent collision rate coefficients, vibrational and cascade levels, evaluation of branching ratios, superelastic and other reverse processes, three-body collisions, radiation imprisonment and photoelectric emission. Support of non-standard rate coefficient functions can be handled by a user-supplied shared library.

    The main block of the PLASMAKIN package is a Fortran module that can be included in an user's program or compiled as a shared library, libpk. pypk is a new addition to the package and provides access to libpk from Python programs. It is build on top of the ctypes foreign function library module and is prepared to work with several Fortran compilers. However pypk is more than a wrapper and provides its own classes and functions taking advantage of Python language characteristics. Integration with Python tools allows substantial productivity gains on program development and insight on plasma physics problems.

  19. Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children.

    Science.gov (United States)

    Cliff, Dylan P; Okely, Anthony D; Burrows, Tracy L; Jones, Rachel A; Morgan, Philip J; Collins, Clare E; Baur, Louise A

    2013-02-01

    This study examines the associations between objectively measured sedentary behavior, light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA), and plasma lipids in overweight and obese children. Cross-sectional analyses were conducted among 126 children aged 5.5-9.9 years. Sedentary behavior, LPA, and MVPA were assessed using accelerometry. Fasting blood samples were analyzed for plasma lipids (high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], total cholesterol [TC], and triglycerides [TG]). MVPA was not related to plasma lipids (P > 0.05). Independent of age, sex, energy intake, and waist circumference z-score, sedentary behavior and LPA were associated with HDL-C (β = -0.23, 95% CI -0.42 to -0.04, P = 0.020; β = 0.20, 95% CI 0.14 to 0.39, P = 0.036, respectively). The strength of the associations remained after additionally adjusting for MVPA (sedentary behavior: β = -0.22, 95% CI -0.44 to 0.006, P = 0.056; LPA: β = 0.19, 95% CI -0.005 to 0.38, P = 0.056, respectively). Substituting at least LPA for sedentary time may contribute to the development of healthy HDL-C levels among overweight and obese children, independent of their adiposity. Comprehensive prevention and treatment strategies to improve plasma HDL-C among overweight and obese children should target reductions in total sedentary time and promote the benefits of LPA, in addition to promoting healthy levels of adiposity, healthy dietary behaviors, and MVPA. Copyright © 2012 The Obesity Society.

  20. Pulsed Power and Transient Plasmas: Basic Research With Application to Ignition, Emissions, and New Pulsed Power Technology

    Science.gov (United States)

    2007-11-02

    approach. Figure 2. Apparatus for quiescent fuel mixture studies. Pulse generator employs either thyratron (100 nsec or longer pulses) or pseudospark...International Conference on Plasma Science, June 28-July 1, 2004, Baltimore, MD. A. Kuthi and M. Gundersen, “Simple Model of Pseudospark discharge

  1. Effect of pubertal development and physical activity on plasma ghrelin concentration in boys.

    Science.gov (United States)

    Jürimäe, J; Cicchella, A; Tillmann, V; Lätt, E; Haljaste, K; Purge, P; Pomerants, T; Jürimäe, T

    2009-01-01

    The aim of the present study was to assess the influence of regular physical activity on plasma ghrelin concentration in pre-pubertal and pubertal boys. In addition, the impact of ghrelin concentration on bone mineral density (BMD) was examined. In total, 56 healthy schoolboys aged between 10 and 16 yr were divided into the swimming (no.=28) and the control (no.=28) groups. The subjects were matched by age and body mass index (BMI), generating 9 matched pairs in pubertal group I (Tanner stage 1), 11 pairs in group II (Tanner stages 2 and 3), and 8 pairs in group III (Tanner stages 4 and 5). Swimmers in pubertal groups II and III had significantly (both pghrelin levels than the controls (group II: 1126.8+/-406.0 vs 868.3+/-411.2 pg/ml; group III: 1105.5+/-337.5 vs 850.8+/-306.0 pg/ml, respectively), whereas no difference was seen in the pubertal group I (1230.8+/-386.0 vs 1272.7+/-424.4 pg/ml). Ghrelin was the most important hormonal determinant for total BMD and lumbar apparent volumetric BMD (BMAD) (R2=27.2% and R2=19.8%, respectively) in swimmers, whereas in control boys, plasma IGF-I was the most important hormonal predictor accounting for 41.8% of the variability of total BMD and 20.4% of the variability of lumbar BMAD. In conclusion, ghrelin concentration decreased during puberty in physically inactive boys, while in regularly physically active boys it remained relatively unchanged. Ghrelin appears to be an important hormonal predictor for BMD in physically active boys, while BMD is mostly determined by IGF-I in physically inactive boys.

  2. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  3. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wiezcorek, M.A.

    1995-01-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.

  4. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A. [eds.

    1996-02-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.

  5. Computational Plasma Physics at the Bleeding Edge: Simulating Kinetic Turbulence Dynamics in Fusion Energy Sciences

    Science.gov (United States)

    Tang, William

    2013-04-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research in the 21st Century. The imperative is to translate the combination of the rapid advances in super-computing power together with the emergence of effective new algorithms and computational methodologies to help enable corresponding increases in the physics fidelity and the performance of the scientific codes used to model complex physical systems. If properly validated against experimental measurements and verified with mathematical tests and computational benchmarks, these codes can provide more reliable predictive capability for the behavior of complex systems, including fusion energy relevant high temperature plasmas. The magnetic fusion energy research community has made excellent progress in developing advanced codes for which computer run-time and problem size scale very well with the number of processors on massively parallel supercomputers. A good example is the effective usage of the full power of modern leadership class computational platforms from the terascale to the petascale and beyond to produce nonlinear particle-in-cell simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. Illustrative results provide great encouragement for being able to include increasingly realistic dynamics in extreme-scale computing campaigns to enable predictive simulations with unprecedented physics fidelity. Some illustrative examples will be presented of the algorithmic progress from the magnetic fusion energy sciences area in dealing with low memory per core extreme scale computing challenges for the current top 3 supercomputers worldwide. These include advanced CPU systems (such as the IBM-Blue-Gene-Q system and the Fujitsu K Machine) as well as the GPU-CPU hybrid system (Titan).

  6. Exercise Motivation of College Students in Online, Face-to-Face, and Blended Basic Studies Physical Activity and Wellness Course Delivery Formats

    Science.gov (United States)

    Sidman, Cara Lynn; Fiala, Kelly Ann; D'Abundo, Michelle Lee

    2011-01-01

    Objective: The purpose of this study was to assess exercise motivation among college students self-selected into 4 online (OL) and face-to-face (F2F) basic studies' physical activity and wellness course delivery formats. Participants/Methods: Out of 1,037 enrolled students during the Spring 2009 semester, 602 responded online to demographic…

  7. Electron-ion relaxation in a dense plasma. [supernovae core physics

    Science.gov (United States)

    Littleton, J. E.; Buchler, J.-R.

    1974-01-01

    The microscopic physics of the thermonuclear runaway in highly degenerate carbon-oxygen cores is investigated to determine if and how a detonation wave is generated. An expression for the electron-ion relaxation time is derived under the assumption of large degeneracy and extreme relativity of the electrons in a two-temperature plasma. Since the nuclear burning time proves to be several orders of magnitude shorter than the relaxation time, it is concluded that in studying the structure of the detonation wave the electrons and ions must be treated as separate fluids.

  8. The physics of positively biased conductors surrounded by dielectrics in contact with a plasma

    Science.gov (United States)

    Hastings, Daniel E.; Chang, Patrick

    1989-01-01

    The physics of a positively biased conductor surrounded by dielectrics in contact with plasma is investigated. It is shown that because of the presence of secondary emission from the surrounding dielectrics, the voltage of the surfaces near the conductor has three solutions. The high- and low-voltage solutions are stable, while the intermediate-voltage solution is unstable. This theory is applied to explain the snapover effect observed on high-voltage solar arrays that involve the use of highly biased surfaces in contact with the space environment.

  9. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  10. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  11. Physical, mechanical, and tribological properties of quasicrystalline Al-Cu-Fe coatings prepared by plasma spraying

    Science.gov (United States)

    Lepeshev, A. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2013-12-01

    The physical, mechanical, and tribological properties of quasicrystalline coatings based on the Al65Cu23Fe12 alloy prepared by plasma spraying have been investigated. The specific features of the phase formation due to the competitive interactions of the icosahedral ψ and cubic β phases have been elucidated. A correlation between the microhardness and the content of the icosahedral phase in the coating has been determined. The decisive role of the quasicrystalline phase in the formation of high tribological characteristics of the coatings has been revealed and tested.

  12. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    V. Finley

    2000-03-06

    The results of the 1998 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1998. One significant initiative is the Integrated Safety Management (ISM) program that embraces environment, safety, and health principles as one.

  13. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Stencel, J.R.

    1992-11-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY91. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  14. Princeton Plasma Physics Laboratory (PPPL) annual site environmental report for Calendar Year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L.; Wieczorek, M.A.

    1994-03-01

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY92. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health.

  15. Efficacy and retention of Basic Life Support education including Automated External Defibrillator usage during a physical education period

    Directory of Open Access Journals (Sweden)

    Kae Watanabe

    2017-03-01

    Full Text Available The American Heart Association (AHA advocates for CPR education as a requirement of secondary school curriculum. Unfortunately, many states have not adopted CPR education. Our aim was to investigate a low-cost, time effective method to educate students on Basic Life Support (BLS, including reeducation. This is a prospective, randomized study. Retention was assessed at 4 months post-initial education. Education was performed by AHA-certified providers during a 45-minute physical education class in a middle school in Florida. This age provides opportunities for reinforcement through high school, with ability for efficient learning. The study included 41 Eighth grade students. Students were randomized into two groups; one group received repeat education 2 months after the first education, the second group did not. All students received BLS education limited to chest compressions and usage of an Automated External Defibrillator. Students had skills and knowledge tests administered pre- and post-education after initial education, and repeated 2 and 4 months later to assess retention. There was a significant increase in CPR skills and knowledge when comparing pre- and post-education results for all time-points (p < 0.001. When assessing reeducation, a significant improvement was noted in total knowledge scores but not during the actual steps of CPR. Our study indicates significant increase in CPR knowledge and skills following a one-time 45-minute session. Reeducation may be useful, but the interval needs further investigation. If schools across the United States invested one 45–60-minute period every school year, this would ensure widespread CPR knowledge with minimal cost and loss of school time.

  16. PREFACE: XII Latin American workshop on plasma physics (17-21 September 2007, Caracas, Venezuela)

    Science.gov (United States)

    Puerta, Julio

    2008-10-01

    Some years ago a group of Latin American physicists took the initiative to consult about the viability of organizing a meeting on plasma physics for researchers and students of the region. The result was that it was not only a good idea, but a necessity in order to show and share everyone's work, and to keep updated on latest advances and technologies on plasma physics. It was decided that for new researchers as well as students of Physics, it would prove to be the best way to keep them posted on such matters. This was the birth of a series of meetings known as Latin American workshops on plasma physics that take place every two years in a different Latin American country. In Venezuela we have had the opportunity to organize two editions of this interesting and important reunion of physicists. The first of these Latin American workshops on plasma physics was held in Cambuquira (Brazil) in 1982. After organizing the first six editions of the workshop, the VII LAWPP meeting was realized in Caracas in January 1997. It was designed with a structure similar to the first edition. It developed in two stages, a first week devoted to short courses with lecturers in different fields of plasma physics and a second week for contributed and invited presentations. Participants from sixteen different countries were present, half of them from this continent and the other half from overseas, demonstrating the international character of this meeting. There have been four more editions of the workshop and once again, we have had the opportunity to organize this latest edition of the series: the XII Latin American workshop on plasma physics, which took place in Caracas, Venezuela from the 17th to the 21st of September 2007. The structure was modified, because contributed and review papers were together during the first stage, with short courses realized during the second one, called mini-courses, and given by several high level contributors such as José Boedo, Leopoldo Soto, Claude

  17. FY93 Princeton Plasma Physics Laboratory. Annual report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This is the annual report from the Princeton Plasma Physics Laboratory for the period October 1, 1992 to September 30, 1993. The report describes work done on TFTR during the year, as well as preparatory to beginning of D-T operations. Design work is ongoing on the Tokamak Physics Experiment (TPX) which is to test very long pulse operations of tokamak type devices. PBX has come back on line with additional ion-Bernstein power and lower-hybrid current drive. The theoretical program is also described, as well as other small scale programs, and the growing effort in collaboration on international design projects on ITER and future collaborations at a larger scale.

  18. Analytical approximations for a conservative nonlinear singular oscillator in plasma physics

    Directory of Open Access Journals (Sweden)

    A. Mirzabeigy

    2012-10-01

    Full Text Available A modified variational approach and the coupled homotopy perturbation method with variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restoring force is inversely proportional to the dependent variable are achieved analytically. The approximate frequency obtained using the coupled method is more accurate than the modified variational approach and ones obtained using other approximate methods and the discrepancy between the approximate frequency using this coupled method and the exact one is lower than 0.31% for the whole range of values of oscillation amplitude. The coupled method provides a very good accuracy and is a promising technique to a lot of practical engineering and physical problems.

  19. Photon Physics and Plasma Research, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. This paper is the third part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Photon Physics and Plasma Research. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments ...

  20. An exercise-based physical therapy program for patients with patellar tendinopathy after platelet-rich plasma injection

    NARCIS (Netherlands)

    van Ark, Mathijs; van den Akker-Scheek, Inge; Meijer, L.T.B.; Zwerver, Hans

    Objectives: To describe a post platelet-rich plasma (PRP) injection, exercise-based physical therapy program, investigate feasibility and report the first results of patellar tendinopathy patients treated with PRP injection combined with the physical therapy program. Study Design: Case-series.

  1. An exercise-based physical therapy program for patients with patellar tendinopathy after platelet-rich plasma injection

    NARCIS (Netherlands)

    van Ark, Mathijs; van den Akker-Scheek, Inge; Meijer, L.T.B.; Zwerver, Hans

    2013-01-01

    Objectives: To describe a post platelet-rich plasma (PRP) injection, exercise-based physical therapy program, investigate feasibility and report the first results of patellar tendinopathy patients treated with PRP injection combined with the physical therapy program. Study Design: Case-series. Setti

  2. An Overview of Science Education and Outreach Activities at the Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. DeLooper; A. DeMeo; P. Lucas; A. Post-Zwicker; C. Phillips; C. Ritter; J. Morgan; P. Wieser; A. Percival; E. Starkman; G. Czechowicz

    2000-11-07

    The U. S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates the changes that have occurred in this effort during the last several years. Efforts have been expanded to reach more students, as well as the public in general. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. A student's interest in science can be raised by tours, summer research experiences, in-classroom presentations, plasma expos, teacher workshops and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a de dicated core group of individuals and supplemented by other members of the PPPL staff and consultants who perform various outreach and educational activities.

  3. Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma

    Science.gov (United States)

    Juliano, Daniel R.; Ruzic, David N.; Allain, Monica M. C.; Hayden, Douglas B.

    2002-01-01

    A computer simulation was created to model the transport of sputtered atoms through an ionized physical vapor deposition (IPVD) system. The simulation combines Monte Carlo and fluid methods to track the metal atoms that are emitted from the target, interact with the IPVD plasma, and are eventually deposited somewhere in the system. Ground-state neutral, excited, and ionized metal atoms are tracked. The simulation requires plasma conditions to be specified by the user. Langmuir probe measurements were used to determine these parameters in an experimental system in order to compare simulation results with experiment. The primary product of the simulation is a prediction of the ionization fraction of the sputtered atom flux at the substrate under various conditions. This quantity was experimentally measured and the results compared to the simulation. Experiment and simulation differ significantly. It is hypothesized that heating of the background gas due to the intense sputtered atom flux at the target is primarily responsible for this difference. Heating of the background gas is not accounted for in the simulation. Difficulties in accurately measuring plasma parameters, especially electron temperature, are also significant.

  4. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men.

    Science.gov (United States)

    Vincent, Sophie; Berthon, Phanélie; Zouhal, Hassane; Moussa, Elie; Catheline, Michel; Bentué-Ferrer, Danièle; Gratas-Delamarche, Arlette

    2004-01-01

    The influence of gender on the glucose response to exercise remains contradictory. Moreover, to our knowledge, the glucoregulatory responses to anaerobic sprint exercise have only been studied in male subjects. Hence, the aim of the present study was to compare glucoregulatory metabolic (glucose and lactate) and hormonal (insulin, catecholamines and estradiol only in women) responses to a 30-s Wingate test, in physically active students. Eight women [19.8 (0.7) years] and eight men [22.0 (0.6) years] participated in a 30-s Wingate test on a bicycle ergometer. Plasma glucose, insulin, and catecholamine concentrations were determined at rest, at the end of both the warm-up and the exercise period and during the recovery (5, 10, 20, and 30 min). Results showed that the plasma glucose increase in response to a 30-s Wingate test was significantly higher in women than in men [0.99 (0.15) versus 0.33 (0.20) mmol l(-1) respectively, Pwomen than in men [14.7 (2.9) versus 2.3 (1.9) pmol l(-1) respectively, P<0.05]. However, there was no gender difference concerning the catecholamine response. The study indicates a gender-related difference in post-exercise plasma glucose and insulin responses after a supramaximal exercise.

  5. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    Science.gov (United States)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  6. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  7. LEVEL OF KNOWLEDGE OF THE BASIC CONCEPTS OF PHYSICAL EVALUATION FOR THE PROFESSIONALS IN THE ACADEMICS OF THE CITY OF JOÃO PESSOA - PB

    Directory of Open Access Journals (Sweden)

    Rodrigo Benevides Ceriani

    2005-10-01

    Full Text Available The objective of this study is to verify the level of knowledge of the basic concepts of physical evaluation for the responsible professionals for this practice in the academies. He/she/you elapses of a traverse study, of field, with professionals that act in the area of Physical Evaluation, registered by CREF 10 - PB/RN. questionnaire of open and closed questions was Applied in 39 individuals. The statistics was applied of percentile of frequency through spreadsheet Excel. The results found that: 61,54% collect for the physical activity, being in 41,66% of the cases, 15 real; 69,23% don't include in the registration; 84,61% have knowledge of the one that is test; 61,54% of the one that it is to measure and 53,45% of the one that it is to evaluate. Three people were found without graduation in physical education, or in another course of superior level, acting in the area Conclusions: They still act inside of the academies, directly with the physical evaluation, professionals not graduated in physical education or in another course of superior level. Many appraisers don't possess the basic theoretical knowledge regarding the concepts that involve to test, to measure and to evaluate. In general it is collected by the physical evaluation, being most included in the customer's registration

  8. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  9. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  10. Rossby vortices, spiral structures, solitons astrophysics and plasma physics in shallow water experiments

    CERN Document Server

    Nezlin, Mikhail V

    1993-01-01

    This book can be looked upon in more ways than one. On the one hand, it describes strikingly interesting and lucid hydrodynamic experiments done in the style of the "good old days" when the physicist needed little more than a piece of string and some sealing wax. On the other hand, it demonstrates how a profound physical analogy can help to get a synoptic view on a broad range of nonlinear phenomena involving self-organization of vortical structures in planetary atmo­ spheres and oceans, in galaxies and in plasmas. In particular, this approach has elucidated the nature and the mechanism of such grand phenomena as the Great of galaxies. A number of our Red Spot vortex on Jupiter and the spiral arms predictions concerning the dynamics of spiral galaxies are now being confirmed by astronomical observations stimulated by our experiments. This book is based on the material most of which was accumulated during 1981-88 in close cooperation with our colleagues, experimenters from the Plasma Physics Department of the...

  11. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  12. Ignitor Plasma Physics Performance in the H-Regime at Various Parameters

    Science.gov (United States)

    Detragiache, P.; Coppi, B.

    2010-11-01

    The plasma physics performance of Ignitor at full (BT = 13 T, Ip = 10 MA) as well as at reduced parameters (BT = 8 T, Ip = 5 MA) in the high confinement mode (H-regime) is assessed using global 0-D modelling. At full parameters, high-Q operation is possible if the heating power (a combination of Ohmic, α and limited ICRF power) is above the threshold value Pthr for H-regime confinement. Different scaling expressions for Pthr yield significantly different results when used with Ignitor parameters. Even with the most pessimistic among the proposed scalingsootnotetextY. R. Martin et al., Journal of Physics: Conference Series, 123, 012033 (2008). the access to H-regime confinement is possible for Ignitor at full field when the ICRH system is operated at the highest frequency and the generated power is less than at lower frequencies. At reduced parameters, the lower Pthr and the augmented ICRF power available (about 10 MW) facilitate access to H-regime confinement, while the plasma performance remains respectable.

  13. The physical properties of cubic plasma-enhanced atomic layer deposition TaN films

    Science.gov (United States)

    Kim, H.; Lavoie, C.; Copel, M.; Narayanan, V.; Park, D.-G.; Rossnagel, S. M.

    2004-05-01

    Plasma-enhanced atomic layer deposition (PE-ALD) is a promising technique to produce high quality metal and nitride thin films at low growth temperature. In this study, very thin (<10 nm) low resistivity (350 μΩ cm) cubic TaN Cu diffusion barrier were deposited by PE-ALD from TaCl5 and a plasma of both hydrogen and nitrogen. The physical properties of TaN thin films including microstructure, conformality, roughness, and thermal stability were investigated by various analytical techniques including x-ray diffraction, medium energy ion scattering, and transmission electron microscopy. The Cu diffusion barrier properties of PE-ALD TaN thin films were studied using synchrotron x-ray diffraction, optical scattering, and sheet resistance measurements during thermal annealing of the test structures. The barrier failure temperatures were obtained as a function of film thickness and compared with those of PE-ALD Ta, physical vapor deposition (PVD) Ta, and PVD TaN. A diffusion kinetics analysis showed that the microstructure of the barrier materials is one of the most critical factors for Cu diffusion barrier performance.

  14. Physical fitness and plasma leptin in women with recent gestational diabetes.

    Science.gov (United States)

    Gar, C; Rottenkolber, M; Grallert, H; Banning, F; Freibothe, I; Sacco, V; Wichmann, C; Reif, S; Potzel, A; Dauber, V; Schendell, C; Sommer, N N; Wolfarth, B; Seissler, J; Lechner, A; Ferrari, U

    2017-01-01

    Low physical fitness (PF) is a risk factor for type 2 diabetes mellitus (T2D). Women with a history of gestational diabetes (GDM) are at risk for T2D at a young age, but the role of PF in this population is not clear. PF has also been found to correlate inversely with plasma leptin in previous studies. Here, we examine whether women who had GDM have lower PF than women after a normoglycemic pregnancy and, second, whether PF is associated with plasma leptin, independently of body fat mass. Cross-sectional analysis of 236 participants in the PPSDiab Study (cohort study of women 3-16 months after delivery, 152 after gestational diabetes (pGDM), 84 after normoglycemic pregnancy (control subjects); consecutively recruited 2011-16); medical history, physical examination with bioelectrical impedance analysis (BIA), whole body magnetic resonance imaging (MRI) (n = 154), 5-point oral glucose tolerance test, cardiopulmonary exercise testing, clinical chemistry including fasting plasma leptin; statistical analysis with Mann-Whitney U and t -test, Spearman correlation coefficient, multiple linear regression. Women pGDM had lower maximally achieved oxygen uptake (VO2peak/kg: 25.7(21.3-29.9) vs. 30.0(26.6-34.1)ml/min/kg; total VO2peak: 1733(1552-2005) vs. 1970(1767-2238)ml/min; pfit than control subjects. Low PF may therefore contribute to the risk for T2D after GDM. This should be tested in intervention studies. Low PF also associated with increased leptin levels-independently of body fat. PF may therefore influence leptin levels and signaling. This hypothesis requires further investigation.

  15. Clinical implications of basic science discoveries: janus resurrected--two faces of B cell and plasma cell biology.

    Science.gov (United States)

    Woodle, E S; Rothstein, D M

    2015-01-01

    B cells play a complex role in the immune response. In addition to giving rise to plasma cells (PCs) and promoting T cell responses via antigen presentation, they perform immunoregulatory functions. This knowledge has created concerns regarding nonspecific B cell depletional therapy because of the potential to paradoxically augment immune responses. Recent studies now indicate that PCs have immune functions beyond immunoglobulin synthesis. Evidence for a new role for PCs as potent regulatory cells (via IL-10 and IL-35 production) is discussed including the implications for PC-targeted therapies currently being developed for clinical transplantation.

  16. Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid

    2016-01-01

    , electrolysis in the sample and acceptor solution was kept at an acceptable level with no detrimental consequences. For the polar model analytes, representing a log P range from -0.40 to 1.32, recoveries in the range 25-91% were obtained from human plasma. Strong hydrogen bonding and dipole interactions were...... probably responsible for efficient transfer of the model analytes into the SLM, and this is the first report on efficient EME of highly polar analytes without using any ionic carrier in the SLM....

  17. Physical activity opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Hellsten, Ylva

    2013-01-01

    AIMS: Endothelin-1 has potent constrictor and proliferative activity in vascular smooth muscle, and essential hypertension and aging are associated with increased endothelin-1-mediated vasoconstrictor tone. The aim of this study was to investigate the effect of physical activity, hypertension...... performed lifelong physical activity had similar plasma and muscle endothelin-1 levels as the young controls and had higher ET(A) receptor levels. CONCLUSION: Our findings suggest that aerobic exercise training opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes...... plasma endothelin-1 levels in individuals with essential hypertension. This effect may explain some of the beneficial effects of training on the cardiovascular system in older and hypertensive subjects....

  18. 等离子体天线的基本特性仿真%Simulation on the basic characteristics of plasma antenna

    Institute of Scientific and Technical Information of China (English)

    边明明; 周菊

    2016-01-01

    等离子体天线具有隐身、动态重构等不同于金属天线的独特的物理性质,在卫星遥感、通信、导航领域具有潜在的应用前景。为了研究等离子体频率对天线特性的影响,采用三维电磁仿真软件建立了柱形等离子体天线模型,在此基础上,针对等离子体频率对等离子体天线的S11曲线、方向图、增益等性能的影响进行了仿真分析,并给出了相关结论。%Plasma antenna has unique physical properties of stealth, dynamic reconfiguration etc., which is different from metal antenna, and it shows broad application prospects in remote sensing, communications and navigation. In order to study the influence of the plasma frequency on the characteristics of the antenna, a cylindrical plasma antenna model is established in the three-dimensional electromagnetic simulation software. It is analyzed how the plasma collision frequency influences the performance ofS11 curve, pattern and gain etc. and some conclusions are given.

  19. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  20. Single channel atmospheric pressure transporting plasma and plasma stream demultiplexing: physical characterization and application to E. coli bacteria inactivation

    Science.gov (United States)

    Valinataj Omran, A.; Sohbatzadeh, F.; Siadati, S. N.; Hosseinzadeh Colagar, A.; Akishev, Y.; Arefi-Khonsari, F.

    2017-08-01

    In this article, we developed transporting plasma sources that operate at atmospheric pressure. The effect of electrode configuration on plasma transporting was investigated. In order to increase the transporting plasma cross-section, we converted a plasma stream into four plasma channels by a cylindrical housing. Electron excitation and rotational temperatures were estimated using optical emission spectroscopy. Furthermore, the electrical and temporal characteristics of the plasma, discharge power and charge deposition on the target were investigated. The propagation characteristics of single and multi-channel transporting plasma were compared with the same cross-sectional area. Two configurations for multi-channels were designed for this purpose. Escherichia coli bacteria were exposed to the single and multi-channel transporting discharge for different time durations. After exposure, the results indicated that the inactivation zones were significantly increased by a multi-channel transporting plasma. Finally, E. coli inactivation by those plasma apparatuses was compared with that of several standard antimicrobial test discs such as Gentamicin, Tetracycline, Amoxicillin and Cefixime.