WorldWideScience

Sample records for plasma parathyroid hormone

  1. Parathyroid hormone-related peptide plasma concentrations in patients on hemodialysis

    DEFF Research Database (Denmark)

    Nordholm, Anders; Rix, M.; Olgaard, K.

    2014-01-01

    BACKGROUND: Uremic patients develop hyperplasia of the parathyroid glands due to disturbances in the mineral metabolism. The hyperplastic parathyroids are associated with significant expression of parathyroid hormone (PTH)-related peptide (PTHrP). PTHrP has been shown to have an autocrine...... not derive from the uremic hyperplastic parathyroid glands...

  2. Cinacalcet reduces plasma intact parathyroid hormone, serum phosphate and calcium levels in patients with secondary hyperparathyroidism irrespective of its severity.

    LENUS (Irish Health Repository)

    2011-09-01

    To evaluate the relationship between the severity of secondary hyperparathyroidism (SHPT) - defined in terms of baseline plasma intact parathyroid hormone (iPTH) level - and the magnitude of response to cinacalcet.

  3. Parathyroid hormone-related protein stimulates plasma renin activity via its anorexic effects on sodium chloride intake

    OpenAIRE

    Atchison, Douglas K.; Westrick, Elizabeth; Szandzik, David L.; Gordish, Kevin L; Beierwaltes, William H.

    2012-01-01

    Parathyroid hormone-related protein (PTHrP) increases renin release from isolated perfused kidneys and may act as an autacoid regulator of renin secretion, but its effects on renin in vivo are unknown. In vivo, PTHrP causes hypercalcemia and anorexia, which may affect renin. We hypothesized that chronically elevated PTHrP would increase plasma renin activity (PRA) indirectly via its anorexic effects, reducing sodium chloride (NaCl) intake and causing NaCl restriction. We infused male Sprague-...

  4. Parathyroid hormone-related protein blood test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003691.htm Parathyroid hormone-related protein blood test To use the ... features on this page, please enable JavaScript. The parathyroid hormone-related protein (PTH-RP) test measures the ...

  5. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, pParathyroid hormone may be associated with cognitive performance.

  6. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, pcognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  7. Parathyroid Hormone in Osteoporosis Treatment

    Directory of Open Access Journals (Sweden)

    İ. Özkul

    2002-03-01

    Full Text Available Parathyroid hormone stimulates bone formation, prevents or reverses bone loss, increases bone mass, bone strength and provides protection against fractures. PTH treatment for postmenopausal, male and glucocorticoid- induced osteoporosis proved to be effective in a number of RCTs.

  8. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, pself-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  9. Parathyroid Carcinoma: Current Understanding and New Insights into Gene Expression and Intraoperative Parathyroid Hormone Kinetics

    OpenAIRE

    Abdelgadir Adam, Mohamed; Untch, Brian R.; Olson, John A.

    2010-01-01

    This review summarizes the current knowledge on parathyroid carcinoma and describes new information on parathyroid carcinoma gene expression and operative management using intraoperative parathyroid hormone monitoring.

  10. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, p<.01). There was no significant group difference in ionized calcium levels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  11. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, p<.01). There was no significant group difference in ionized calcium levels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  12. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  13. Parathyroid hormone and bone healing

    DEFF Research Database (Denmark)

    Ellegaard, M; Jørgensen, N R; Schwarz, P

    2010-01-01

    , no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial...... in the treatment of fractures and could thus be a potentially new treatment option for induction of fracture healing in humans. Furthermore, fractures in animals with experimental conditions of impaired healing such as aging, estrogen withdrawal, and malnutrition can heal in an expedited manner after PTH treatment...

  14. Plasma calcidiol, calcitriol, and parathyroid hormone and risk of new onset heart failure in a population-based cohort study

    NARCIS (Netherlands)

    Meems, Laura M G; Brouwers, Frank P; Joosten, Michel M; Lambers Heerspink, Hiddo J; de Zeeuw, Dick; Bakker, Stephan J L; Gansevoort, Ron T; van Gilst, Wiek H; van der Harst, Pim; de Boer, Rudolf A

    2016-01-01

    BACKGROUND: Heart failure (HF) is a major problem in the Western world, with increasing prevalence and incidence. Because HF cannot be cured, prevention of HF is of utter importance. Calcidiol, calcitriol, and parathyroid hormone (PTH) have been identified as risk factors for cardiovascular disease.

  15. A mathematical/physiological model of parathyroid hormone secretion in response to blood-ionized calcium lowering in vivo

    DEFF Research Database (Denmark)

    Momsen, G; Schwarz, P

    1997-01-01

    The aim of the present study was to test a mathematical model of the biochemical processes in the parathyroid glands responsible for the secretion of parathyroid hormone resulting from extracellular calcium reduction. A double exponential curve described the parathyroid hormone secretion induced...... plasma and the rate of cellular production/secretion was observed. This could be interpreted as an adaptation of the parathyroid gland's ability to produce parathyroid hormone depending on the average demand from the body....

  16. Active acromegaly enhances spontaneous parathyroid hormone pulsatility.

    Science.gov (United States)

    Mazziotti, Gherardo; Cimino, Vincenzo; De Menis, Ernesto; Bonadonna, Stefania; Bugari, Giovanna; De Marinis, Laura; Veldhuis, Johannes D; Giustina, Andrea

    2006-06-01

    In healthy subjects, parathyroid hormone (PTH) is secreted in a dual fashion, with low-amplitude and high-frequency pulses superimposed on tonic secretion. These 2 components of PTH secretion seem to have different effects on target organs. The aim of our study was to evaluate whether growth hormone excess in acromegaly may modify the spontaneous pulsatility of PTH. Five male patients with newly diagnosed active acromegaly and 8 healthy subjects were evaluated by 3-minute blood sampling for 6 hours. Plasma PTH concentrations were evaluated by multiparameter deconvolution analysis. Plasma PTH release profiles were also subjected to an approximate entropy (ApEn) estimate, which provides an ensemble measure of the serial regularity or orderliness of the release process. In acromegalic patients, baseline serum PTH values were not significantly different from those measured in the healthy subjects, as well as tonic PTH secretion rate, number of bursts, fractional pulsatile PTH secretion, and ApEn ratio. Conversely, PTH pulse half-duration was significantly longer in acromegalic patients vs healthy subjects (11.8+/-0.95 vs 6.9+/-1.6 minutes; P=.05), whereas PTH pulse mass showed a tendency (P=.06) to be significantly greater in acromegalic patients. These preliminary data suggest that growth hormone excess may affect PTH secretory dynamics in patients with acromegaly. Potentially negative bone effects of the modifications of PTH secretory pattern in acromegaly should be investigated.

  17. Parathyroid hormone-related protein stimulates plasma renin activity via its anorexic effects on sodium chloride intake.

    Science.gov (United States)

    Atchison, Douglas K; Westrick, Elizabeth; Szandzik, David L; Gordish, Kevin L; Beierwaltes, William H

    2012-08-15

    Parathyroid hormone-related protein (PTHrP) increases renin release from isolated perfused kidneys and may act as an autacoid regulator of renin secretion, but its effects on renin in vivo are unknown. In vivo, PTHrP causes hypercalcemia and anorexia, which may affect renin. We hypothesized that chronically elevated PTHrP would increase plasma renin activity (PRA) indirectly via its anorexic effects, reducing sodium chloride (NaCl) intake and causing NaCl restriction. We infused male Sprague-Dawley rats with the vehicle (control) or 125 μg PTHrP/day (PTHrP) via subcutaneous osmotic minipumps for 5 days. To replenish NaCl consumption, a third group of PTHrP-infused rats received 0.3% NaCl (PTHrP + NaCl) in their drinking water. PTHrP increased PRA from a median control value of 3.68 to 18.4 ng Ang I·ml(-1)·h(-1) (P PTHrP + NaCl PRA value was normal (7.82 ng Ang I·ml(-1)·h(-1), P PTHrP). Plasma Ca(2+) (median control: 10.2 mg/dl; PTHrP: 13.7 mg/dl; PTHrP + NaCl: 14.1 mg/dl; P PTHrP (median control: 0.03 ng/ml; PTHrP: 0.12 ng/ml; PTHrP + NaCl: 0.15 ng/ml; P PTHrP- and PTHrP + NaCl-treated rats. Body weights and caloric consumption were lower in PTHrP- and PTHrP + NaCl-treated rats. NaCl consumption was lower in PTHrP-treated rats (mean Na(+): 28.5 ± 4.1 mg/day; mean Cl(-): 47.8 mg/day) compared with controls (Na(+): 67.3 ± 2.7 mg/day; Cl(-): 112.8 ± 4.6 mg/day; P PTHrP + NaCl group; 0.3% NaCl in the drinking water had no effect on PRA in normal rats. Thus, our data support the hypothesis that PTHrP increases PRA via its anorexic effects, reducing NaCl intake and causing NaCl restriction.

  18. Parathyroid hormone (PTH) blood test

    Science.gov (United States)

    ... excess calcium supplements or certain antacids, that contain calcium carbonate or sodium bicarbonate (baking soda) Parathyroid glands do ... More 25-hydroxy vitamin D test Bone tumor Calcium ... level Malabsorption Milk-alkali syndrome Multiple endocrine neoplasia (MEN) I Multiple ...

  19. Failure of tooth eruption and brachydactyly in pseudohypoparathyroidism are not related to plasma parathyroid hormone-related protein levels.

    Science.gov (United States)

    Reis, Mariana Tenorio Antunes; Matias, Diogo Toledo; Faria, Maria Estela Justamante de; Martin, Regina Matsunaga

    2016-04-01

    Pseudohypoparathyroidism (PHP) is a genetic disorder characterized by resistance to the peripheral action of PTH due to maternally inherited heterozygous inactivating mutations in the coding sequence of Gsα or intronic regions of GNAS leading to aberrant splice variants (PHP1A), or methylation defects at GNAS (PHP1B). Brachydactyly is a clinical feature associated with both PHP1A and PHP1B, although it is more frequent in PHP1A patients. Loss-of-function mutations in PTHLH, the gene coding for parathyroid hormone related protein (PTHrP) were previously described in some patients with brachydactyly. Primary failure of tooth eruption (PFE) is related to some syndromes involving skeletal development, but it is also known as a nonsyndromic autosomal dominant condition. Previous studies showed that familial nonsyndromic PFE is caused by heterozygous mutations in the gene encoding the G protein-coupled receptor (PTH1R) for PTH and PTHrP. Thus, we hypothesized that PTHrP resistance could result in failure of tooth eruption (FTE) and/or brachydactyly in PHP. Nineteen patients with a molecular diagnosis of PHP underwent dental panoramic radiography (DPR), hand radiography and had their PTHrP levels measured. Patients with alterations at DPR were submitted to clinical dental evaluation. Nine patients had FTE and 7 patients had brachydactyly; 4 patients presented both features and none of them presented high PTHrP levels. Fourteen patients had PTHrP levels within the normal range and only one patient had slightly elevated PTHrP levels. Additionally, three novel GNAS mutations were described. We described the dental abnormalities in a large series of PHP patients that were followed in a single tertiary center. No relationship between plasma PTHrP levels and failure of tooth eruption, dental manifestations of PHP or brachydactyly was found. It is important that doctors pay attention to dental manifestations of the disease in order to refer patients to a proper care with

  20. Parathyroid hormone secretion in chronic renal failure

    DEFF Research Database (Denmark)

    Madsen, J C; Rasmussen, A Q; Ladefoged, S D

    1996-01-01

    The aim of study was to introduce and evaluate a method for quantifying the parathyroid hormone (PTH) secretion during hemodialysis in secondary hyperparathyroidism due to end-stage renal failure. We developed a method suitable for inducing sequential hypocalcemia and hypercalcemia during....../ionized calcium curves were constructed, and a mean calcium set-point of 1.16 mmol/liter was estimated compared to the normal mean of about 1.13 mmol/liter. In conclusion, we demonstrate that it is important to use a standardized method to evaluate parathyroid hormone dynamics in chronic renal failure. By the use...... of a standardized method we show that the calcium set-point is normal or slightly elevated, indicating normal parathyroid reactivity to calcium in chronic renal failure....

  1. Transient modulation of calcium and parathyroid hormone stimulates bone formation.

    Science.gov (United States)

    Chen, Andy B; Minami, Kazumasa; Raposo, João F; Matsuura, Nariaki; Koizumi, Masahiko; Yokota, Hiroki; Ferreira, Hugo G

    2016-10-01

    Intermittent administration of parathyroid hormone can stimulate bone formation. Parathyroid hormone is a natural hormone that responds to serum calcium levels. In this study, we examined whether a transient increase and/or decrease in the serum calcium can stimulate bone formation. Using a mathematical model previously developed, we first predicted the effects of administration of parathyroid hormone, neutralizing parathyroid hormone antibody, calcium, and EGTA (calcium chelator) on the serum concentration of parathyroid hormone and calcium. The model predicted that intermittent injection of parathyroid hormone and ethylene glycol tetraacetic acid transiently elevated the serum parathyroid hormone, while that of parathyroid hormone antibody and calcium transiently reduced parathyroid hormone in the serum. In vitro analysis revealed that parathyroid hormone's transient changes (both up and down) elevated activating transcription factor 4-mediated osteocalcin expression. In the mouse model of osteoporosis, both intermittent administration of calcium and ethylene glycol tetraacetic acid showed tendency to increase bone mineral density of the upper limb (ulna and humerus) and spine, but the effects varied in a region-specific manner. Collectively, the study herein supports a common bone response to administration of calcium and its chelator through their effects on parathyroid hormone.

  2. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curacao

    NARCIS (Netherlands)

    vanderKlis, FRM; Jonxis, JHP; vanDoormaal, JJ; Sikkens, P; Saleh, AEC; Muskiet, FAJ

    1996-01-01

    To study the effect on plasma 25-hydroxycholecalciferol (25(OH)D), 1, 25-dihydroxycholecalciferol (1, 25(OH)(2)D) and parathyroid hormone (PTH) we supplemented premenopausal (aged 30 (so 7) years) and postmenopausal (aged 61 (so 2) years) white women living in The Netherlands in late winter/early sp

  3. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats

    Science.gov (United States)

    Gowen, Maxine; Stroup, George B.; Dodds, Robert A.; James, Ian E.; Votta, Bart J.; Smith, Brian R.; Bhatnagar, Pradip K.; Lago, Amparo M.; Callahan, James F.; DelMar, Eric G.; Miller, Michael A.; Nemeth, Edward F.; Fox, John

    2000-01-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a “calcilytic”) of the parathyroid cell Ca2+ receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17β-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca2+ receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  4. Therapy of hypoparathyroidism by replacement with parathyroid hormone

    DEFF Research Database (Denmark)

    Rejnmark, Lars; Underbjerg, Line; Sikjaer, Tanja

    2014-01-01

    Hypoparathyroidism (HypoPT) is a state of hypocalcemia due to inappropriate low levels of parathyroid hormone (PTH). HypoPT is normally treated by calcium supplements and activated vitamin D analogues. Although plasma calcium is normalized in response to conventional therapy, quality of life (Qo......L) seems impaired and patients are at increased risk of renal complications. A number of studies have suggested subcutaneous injections with PTH as an alternative therapy. By replacement with the missing hormone, urinary calcium may be lowered and QoL may improve. PTH replacement therapy (PTH-RT) possesses...

  5. The thyroid hormone, parathyroid hormone and vitamin D associated hypertension

    Directory of Open Access Journals (Sweden)

    Sandeep Chopra

    2011-01-01

    Full Text Available Thyroid disorders and primary hyperparathyroidism have been known to be associated with increases in blood pressure. The hypertension related to hypothyroidism is a result of increased peripheral resistance, changes in renal hemodynamics, hormonal changes and obesity. Treatment of hypothyroidism with levo-thyroxine replacement causes a decrease in blood pressure and an overall decline in cardiovascular risk. High blood pressure has also been noted in patients with subclinical hypothyroidism. Hyperthyroidism, on the other hand, is associated with systolic hypertension resulting from an expansion of the circulating blood volume and increase in stroke volume. Increased serum calcium levels associated with a primary increase in parathyroid hormone levels have been also associated with high blood pressure recordings. The mechanism for this is not clear but the theories include an increase in the activity of the renin-angiotensin-aldosterone system and vasoconstriction. Treatment of primary hyperparathyroidism by surgery results in a decline in blood pressure and a decrease in the plasma renin activity. Finally, this review also looks at more recent evidence linking hypovitaminosis D with cardiovascular risk factors, particularly hypertension, and the postulated mechanisms linking the two.

  6. Parathyroid hormone 7-84 induces hypocalcemia and inhibits the parathyroid hormone 1-84 secretory response to hypocalcemia in rats with intact parathyroid glands.

    Science.gov (United States)

    Huan, Jinxing; Olgaard, Klaus; Nielsen, Lars Bo; Lewin, Ewa

    2006-07-01

    Biologic effects of large C-terminal parathyroid hormone (PTH) fragments, opposite to those of N-terminal PTH, have been demonstrated. C-terminal PTH fragments are co-secreted with N-terminal PTH from the parathyroids. The aim of our study was to examine whether C-terminal PTH 7-84 regulates secretion of PTH 1-84 and affects the expression of genes of relevance for parathyroid function, PTH, calcium-sensing receptor (CaR), PTH type 1 receptor (PTHR1), and PTH-related peptide (PTHrP) genes in rat parathyroid glands. PTH 7-84 induced a significant decrease in plasma Ca2+ in rats with intact parathyroid glands. Despite the reduction of plasma Ca2+, no stimulation of PTH 1-84 secretion took place. Furthermore, the PTH 1-84 secretory response to EGTA-induced acute and severe hypocalcemia was significantly inhibited by PTH 7-84. During recovery from hypocalcemia, plasma Ca2+ levels were significantly lower in the PTH 7-84-treated group, as compared with the vehicle group, and at the same time plasma PTH 1-84 levels were significantly suppressed. The expression of PTH, CaR, PTHR1, and PTHrP genes in the rat parathyroid glands was not affected by PTH 7-84. The peripheral metabolism of PTH 1-84 was not affected by PTH 7-84. PTH 7-84 did not cross-react with the rat bioactive PTH 1-84 assay. In normal rats with intact parathyroid glands, PTH 7-84 inhibited the PTH 1-84 secretory response to hypocalcemia and induced a significant decrease in plasma Ca2+. These effects of PTH 7-84 on PTH 1-84 secretion and on plasma Ca2+ levels were not associated with significant changes in PTH, PTHR1, CaR, and PTHrP gene expressions in the rat parathyroid glands. It is hypothesized that PTH 7-84 regulates PTH secretion via an autocrine/paracrine regulatory mechanism.

  7. A mathematical/physiological model of parathyroid hormone secretion in response to blood-ionized calcium lowering in vivo

    DEFF Research Database (Denmark)

    Momsen, G; Schwarz, P

    1997-01-01

    The aim of the present study was to test a mathematical model of the biochemical processes in the parathyroid glands responsible for the secretion of parathyroid hormone resulting from extracellular calcium reduction. A double exponential curve described the parathyroid hormone secretion induced...... plasma and the rate of cellular production/secretion was observed. This could be interpreted as an adaptation of the parathyroid gland's ability to produce parathyroid hormone depending on the average demand from the body....... by rapid lowering of blood-ionized calcium in humans with normal as well as abnormal parathyroid tissue. Our data show that it was possible to establish a simple mathematical model of the parathyroid hormone response to blood-ionized calcium lowering, sufficient to fit experimental data obtained from...

  8. Anabolic Action Of Bovine Parathyroid Hormone In Male Rats ...

    African Journals Online (AJOL)

    Anabolic Action Of Bovine Parathyroid Hormone In Male Rats. ... bovine parathyroid hormone (bPTH) and to throw more lights on the mechanisms of these ... DNA, RNA and activities of some lipogenic enzymes such as ATP-citrate lyase, malic ...

  9. Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis.

    Science.gov (United States)

    Augustine, Marilyn; Horwitz, Mara J

    2013-12-01

    Osteoporotic fractures result in significant morbidity and mortality. Anabolic agents reverse the negative skeletal balance that characterizes osteoporosis by stimulating osteoblast-dependent bone formation to a greater degree than osteoclast-dependent bone resorption. Parathyroid hormone (PTH) and parathyroid hormone- related protein (PTHrP) are peptide hormones, which have anabolic actions when administered intermittently. The only FDA-approved anabolic bone agent for the treatment of osteoporosis in the United States is PTH 1-34, or teriparatide, administered by daily subcutaneous injections. However, PTH 1-84 is also available in Europe. Synthetic human PTHrP 1-36 and a PTHrP 1-34 analog, BA058, have also been shown to increase lumbar spine bone density. These agents and several other PTH and PTHrP analogs, including some which are not administered as injections, continue to be investigated as potential anabolic therapies for osteoporosis.

  10. Correlation between plasma calcium, parathyroid hormone (PTH) and the metabolic syndrome (MetS) in a community-based cohort of men and women.

    Science.gov (United States)

    Ahlström, Tommy; Hagström, Emil; Larsson, Anders; Rudberg, Claes; Lind, Lars; Hellman, Per

    2009-11-01

    In recent years, an association has been noted between several abnormalities that characterize the metabolic syndrome (MetS) and primary hyperparathyroidism (pHPT). These abnormalities include dyslipidaemia, obesity, insulin resistance and hypertension. The correlations between plasma calcium, parathyroid hormone (PTH) and the variables in the MetS in a normal population are still unclear. To describe correlations between plasma calcium and PTH and the various abnormalities present in the MetS in a healthy population. We studied 1016 healthy individuals from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) population of 70 years old, by means of plasma analyses of calcium, PTH, creatinine, lipids, insulin and glucose, as well as by standardized blood pressure measurements. Further, body mass index (BMI) and waist circumference were determined. The more National Cholesterol Education Program (NCEP) criteria for the MetS that were met, the higher the s-PTH and albumin-corrected s-calcium. Further, positive correlations between plasma calcium and BMI (P = 0.0003), waist circumference (P = 0.0009) and insulin resistance (P = 0.079) were found. PTH and BMI (P < 0.0001), waist circumference (P < 0.0001), systolic blood pressure (P = 0.0034), diastolic blood pressure (P = 0.0008), serum triglycerides (P = 0.0003) and insulin resistance (P = 0.0003) were positively correlated, whereas serum high density lipoproteins (HDL) (P = 0.036) and PTH were negatively correlated. We conclude that PTH correlates with several of the metabolic factors included in the MetS within a normocalcaemic population. In addition, individuals with mild pHPT present significantly more NCEP criteria for MetS. We postulate that increased levels of PTH in pHPT may be associated with the increased cardiovascular morbidity and mortality seen in pHPT.

  11. Effects of Parathyroid Hormone on Immune Function

    Directory of Open Access Journals (Sweden)

    Abdallah Sassine Geara

    2010-01-01

    Full Text Available Parathyroid hormone (PTH function as immunologic mediator has become interesting with the recent usage of PTH analogue (teriparatide in the management of osteoporosis. Since the early 1980s, PTH receptors were found on most immunologic cells (neutrophils, B and T cells. The in vitro evaluations for a possible role of PTH as immunomodulator have shown inconsistent results mainly due to methodological heterogeneity of these studies: it used different PTH formulations (rat, bovine, and human, at different dosages and different incubating periods. In some of these studies, the lymphocytes were collected from uremic patients or animals, which renders the interpretation of the results problematic due to the effect of uremic toxins. Parathyroidectomy has been found to reverse the immunologic defect in patients with high PTH levels. Nonetheless, the clinical significance of these findings is unclear. Further studies are needed to define if PTH does have immunomodulatory effects.

  12. [Rare abnormalities of parathyroid gland function and parathyroid hormone receptor action].

    Science.gov (United States)

    Krysiak, Robert; Bartecka, Anna; Okopień, Bogusław

    2014-01-01

    The parathyroid glands, located near or within the posterior surface of the thyroid gland and secreting parathyroid hormone, are essential organs for the regulation of calcium and phosphate metabolism. As they are necessary to sustain life and maintain homeostasis, undetected or misdiagnosed parathyroid disorders may pose a significant threat to health outcomes, as their presence may increase morbidity and mortality in affected individuals. The clinical picture of some disorders associated with abnormal parathyroid hormone secretion and receptor action is sometimes complicated by coexisting abnormalities, and in these cases establishing the correct diagnosis is challenging. The remarkable progress of recent years in the area of hormonal assessment, imaging procedures and molecular biology, has resulted in a great improvement in the identification, differentiation and treatment of various parathyroid disorders and has made it possible to identify several new clinical entities. In this paper, we discuss the present state-of-art on the etiopathogenesis, clinical manifestations, diagnosis and treatment of chosen rare abnormalities of parathyroid gland function and parathyroid hormone receptor action.

  13. Hypoparathyroidism: Replacement Therapy with Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Lars Rejnmark

    2015-12-01

    Full Text Available Hypoparathyroidism (HypoPT is characterized by low serum calcium levels caused by an insufficient secretion of parathyroid hormone (PTH. Despite normalization of serum calcium levels by treatment with activated vitamin D analogues and calcium supplementation, patients are suffering from impaired quality of life (QoL and are at increased risk of a number of comorbidities. Thus, despite normalization of calcium levels in response to conventional therapy, this should only be considered as an apparent normalization, as patients are suffering from a number of complications and calcium-phosphate homeostasis is not normalized in a physiological manner. In a number of recent studies, replacement therapy with recombinant human PTH (rhPTH(1-84 as well as therapy with the N-terminal PTH fragment (rhPTH(1-34 have been investigated. Both drugs have been shown to normalize serum calcium while reducing needs for activated vitamin D and calcium supplements. However, once a day injections cause large fluctuations in serum calcium. Twice a day injections diminish fluctuations, but don't restore the normal physiology of calcium homeostasis. Recent studies using pump-delivery have shown promising results on maintaining normocalcemia with minimal fluctuations in calcium levels. Further studies are needed to determine whether this may improve QoL and lower risk of complications. Such data are needed before replacement with the missing hormone can be recommended as standard therapy.

  14. SIKs control osteocyte responses to parathyroid hormone

    Science.gov (United States)

    Wein, Marc N.; Liang, Yanke; Goransson, Olga; Sundberg, Thomas B.; Wang, Jinhua; Williams, Elizabeth A.; O'Meara, Maureen J.; Govea, Nicolas; Beqo, Belinda; Nishimori, Shigeki; Nagano, Kenichi; Brooks, Daniel J.; Martins, Janaina S.; Corbin, Braden; Anselmo, Anthony; Sadreyev, Ruslan; Wu, Joy Y.; Sakamoto, Kei; Foretz, Marc; Xavier, Ramnik J.; Baron, Roland; Bouxsein, Mary L.; Gardella, Thomas J.; Divieti-Pajevic, Paola; Gray, Nathanael S.; Kronenberg, Henry M.

    2016-01-01

    Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH. PMID:27759007

  15. SIKs control osteocyte responses to parathyroid hormone.

    Science.gov (United States)

    Wein, Marc N; Liang, Yanke; Goransson, Olga; Sundberg, Thomas B; Wang, Jinhua; Williams, Elizabeth A; O'Meara, Maureen J; Govea, Nicolas; Beqo, Belinda; Nishimori, Shigeki; Nagano, Kenichi; Brooks, Daniel J; Martins, Janaina S; Corbin, Braden; Anselmo, Anthony; Sadreyev, Ruslan; Wu, Joy Y; Sakamoto, Kei; Foretz, Marc; Xavier, Ramnik J; Baron, Roland; Bouxsein, Mary L; Gardella, Thomas J; Divieti-Pajevic, Paola; Gray, Nathanael S; Kronenberg, Henry M

    2016-10-19

    Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH.

  16. Parathyroid hormone is not an inhibitor of lipoprotein lipase activity.

    Science.gov (United States)

    Arnadottir, M; Nilsson-Ehle, P

    1994-01-01

    The reduced lipoprotein lipase (LPL) activities in uraemia are reflected by increased serum triglyceride concentrations and reduced HDL cholesterol concentrations. Both hyperparathyroidism and circulating inhibitor(s) of LPL have been associated with the disturbances of lipid metabolism in uraemia. The aim of the present study was to investigate if parathyroid hormone (PTH) had an inhibitory effect on LPL activity. Plasma post-heparin LPL activities, plasma LPL inhibitory activities, serum PTHintact and serum PTHC-terminal concentrations were analysed in 20 patients on haemodialysis and 20 healthy controls. The effects of purified, human PTHintact and a carboxyterminal fragment of PTH (PTH39-84) on LPL activities in post-heparin plasma from healthy individuals and on the enzyme activity of purified, bovine milk LPL, activated with apolipoprotein CII, were studied. Patients had significantly higher plasma LPL inhibitory activities than controls, but there was no correlation between plasma LPL inhibitory activities and serum PTH concentrations. Neither PTHintact nor PTH39-84 had a significant effect on LPL activities in vitro. Thus there was no evidence of a direct inhibition of LPL activity by PTH under the present in-vivo or in-vitro conditions.

  17. Intraoperative parathyroid hormone assay-cutting the Gordian knot

    Directory of Open Access Journals (Sweden)

    Chandralekha Tampi

    2014-01-01

    Full Text Available Background: Hyperparathyroidism is treated by surgical excision of the hyperfunctioning parathyroid gland. In case of adenoma the single abnormal gland is removed, while in hyperplasias, a subtotal excision, that is, three-and-a-half of the four glands are removed. This therapeutic decision is made intraoperatively through frozen section evaluation and is sometimes problematic, due to a histological overlap between hyperplasia and the adenoma. The intraoperative parathyroid hormone (IOPTH assay, propogated in recent years, offers an elegant solution, with a high success rate, due to its ability to identify the removal of all hyperfunctioning parathyroid tissue. Aim: To study the feasibility of using IOPTH in our setting. Materials and Methods: Seven patients undergoing surgery for primary hyperparathyroidism had their IOPTH levels evaluated, along with the routine frozen and paraffin sections. Results: All seven patients showed more than a 50% intraoperative fall in serum PTH after excision of the abnormal gland. This was indicative of an adenoma and was confirmed by histopathological examination and normalization of serum calcium postoperatively. Conclusion: The intraoperative parathyroid hormone is a sensitive and specific guide to a complete removal of the abnormal parathyroid tissue. It can be incorporated without difficulty as an intraoperative guide and is superior to frozen section diagnosis in parathyroid surgery.

  18. 21 CFR 862.1545 - Parathyroid hormone test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Parathyroid hormone test system. 862.1545 Section 862.1545 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...) resulting from disorders of calcium metabolism. (b) Classification. Class II....

  19. Intraoperative parathyroid hormone as an indicator for parathyroid gland preservation in thyroid surgery.

    Science.gov (United States)

    Ezzat, Waleed Farag; Fathey, Hanaa; Fawaz, Samya; El-Ashri, Alaa; Youssef, Tamer; Othman, Hala Badr

    2011-11-08

    Intra-operative parathyroid hormone (PTH) levels have successfully been used to assess surgical ablation of parathyroid adenomas, the use of this same test to predict preservation of viable gland has not been widely used. to test the sensitivity and specificity of intraoperative rapid PTH assay test in predicting permanent postoperative hypoparathyroidism, and applicability to guide the search for inadvertently removed parathyroid glands for possible auto transplantation. 52 patients undergoing total thyroidectomy for non-malignant thyroid diseases were included. Intraoperative rapid PTH assay test was performed. If levels were reduced, or less than 3 parathyroid glands were detected, removed thyroid gland was examined for unintentionally removed parathyroid tissue for possible auto transplantation. There was a strong correlation between intraoperative rapid PTH assays and those taken 24 hours after surgery, 16 out of 52 patients had reduction of the PTH intraoperatively to levels below 25 pg/ml, of them, 11 patients (who had values between 15-24 pg/ml) recovered to normal PTH levels within 4 weeks, while the 5 patients with intraoperative PTH levels below 15 pg/ml failed to regain normal PTH levels up to 12 weeks postoperatively, even in those patients where parathyroid tissue was auto transplantated. The 4 patients who had parathyroid tissue reimplanted intraoperatively restored some of their parathyroid function as indicated by relative rise of their PTH levels, but did not reach even the low normal levels. (ROC) curve for prediction of early hypoparathyroidism using intraoperative rapid PTH assay was statistically highly significant with optimal cutoff value for predicting early hypocalcaemia level <27 pg/ml, (sensitivity 100%, specificity 68.2%). (ROC) curves for predicting permanent hypoparathyroidism using intraoperative rapid PTH assay or standard PTH assay taken 24 hours after surgery were statistically significant with optimal cutoff value PTH level <12

  20. Role of the metabolism of parathyroid hormone. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Teitelbaum, Anne P. [Univ. of Rochester, NY (United States)

    1978-01-01

    The heterogeneity of parathyroid hormone (PTH) in plasma has prompted investigations of the metabolism of PTH and its relationship to hormone action. The time course of tissue distribution and metabolism of electrolytically iodinated PTH (E-PTH) previously shown to retain biological activity was compared with that of inactive PTH iodinated with Chloramine-T (CT-PTH). Labeled PTH (0.4 μg) was injected in the saphenous veins of anesthetized rats which were sacrificed at 1, 3, 5, 10, and 20 min. Tissue extracts from kidney, liver, and serum were chromatographed to separate intact PTH from its metabolites. In the kidney, the initial rate of degradation of E-PTH was greater than that of CT-PTH. The difference in initial rates of metabolism may be due, in part, to receptor-specific hydrolysis on peritubular cell membranes which selectively act on biologically active PTH molecules. PTH-responsive adenyl cyclase activity in isolated kidney cortex plasma membranes was measured and PTH metabolism was monitored simultaneously. When degradation was completely blocked by histone f3 (1 mg/ml), adenyl cyclase activity was significantly increased over control. In addition, when adenyl cyclase activity was negligible, the rate of PTH degradation by the membranes was not significantly diminished. Consistent with the in vivo data was the observation that E-PTH is metabolized by these membranes at a greater rate than CT-PTH. The data demonstrate the existence of a receptor-specific metabolism at sites which are independent of PTH receptor mediated adenyl cyclase activity.

  1. Ultrasonographic evaluation of parathyroid hyperplasia in multiple endocrine neoplasia type 1: Positive correlation between parathyroid volume and circulating parathyroid hormone concentration.

    Science.gov (United States)

    Tamiya, Hiroyuki; Miyakawa, Megumi; Takeshita, Akira; Miura, Daishu; Takeuchi, Yasuhiro

    2015-09-01

    There are few reports on parathyroid ultrasonography of multiple endocrine neoplasia type 1 (MEN1). This study investigated the ultrasonographic features of parathyroid glands in 10 patients with MEN1 who underwent preoperative neck ultrasonography and parathyroidectomy between 2006 and 2010 at Toranomon Hospital. We retrospectively analyzed clinical features, laboratory and ultrasonographic data, and pathological diagnosis. A total of 38 parathyroid glands were surgically removed (three to five glands from each patient). All removed parathyroids were pathologically diagnosed as hyperplasia. Seven cases (70.0 %) had adenomatous thyroid nodules. Twenty-five enlarged parathyroid glands (65.8 %) were detected by preoperative ultrasonography with a detection rate of 81.8 % (9/11) and 59.3 % (16/27) for patients without and with adenomatous nodules, respectively. Total parathyroid gland weight and potentially predictable total parathyroid volume by preoperative ultrasonography were significantly correlated with preoperative serum intact parathyroid hormone (iPTH) concentration (R = 0.97, P parathyroid glands by ultrasonography difficult, the positive correlation between the predictable parathyroid volume by ultrasonography and serum iPTH suggests that their measurement is useful in the preoperative detection and localization of enlarged parathyroid glands in patients with MEN1. Furthermore, the presence of parathyroid glands that should be resected can be predicted before surgery using the equation proposed here.

  2. Calcium-sensing receptor expression and parathyroid hormone secretion in hyperplastic parathyroid glands from humans.

    Science.gov (United States)

    Cañadillas, Sagrario; Canalejo, Antonio; Santamaría, Rafael; Rodríguez, Maria E; Estepa, Jose C; Martín-Malo, Alejandro; Bravo, Juan; Ramos, Blanca; Aguilera-Tejero, Escolastico; Rodríguez, Mariano; Almadén, Yolanda

    2005-07-01

    In uremic patients, severe parathyroid hyperplasia is associated with reduced parathyroid calcium-sensing receptor (CaR) expression. Thus, in these patients, a high serum Ca concentration may be required to inhibit parathyroid hormone (PTH) secretion. This study compares the magnitude of reduction in CaR expression and the degree of the abnormality in Ca-regulated PTH release in vitro. A total of 50 glands from 23 hemodialysis patients with refractory hyperparathyroidism were studied. Tissue slices were incubated in vitro to evaluate (1) the PTH secretory output in a normal Ca concentration (1.25 mM) and (2) the PTH secretory response to high (1.5 mM) and low (0.6 mM) Ca concentration. Tissue aliquots were processed for determination of CaRmRNA expression. The results showed that, corrected for DNA, parathyroid tissue with lowest CaR expression secreted more PTH than that with relatively high CaR expression (146 +/- 23 versus 60 +/- 2 pg/microg DNA; P < 0.01). Furthermore, glands with low CaR expression demonstrated a blunted PTH secretory response to both the inhibitory effect of high Ca and the stimulatory effect of low Ca. The study also showed that the larger the gland, the lower the CaRmRNA expression. Thus, large parathyroid glands produce a large amount of PTH not only as a result of the increased gland size but also because the parathyroid tissue secretory output is increased. These abnormalities in PTH regulation are related to low CaR expression.

  3. Inhibition effects of parathyroid hormone on human medullary thyroid carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Yaqiong Ni; Qinjiang Liu; Shihong Ma; Ruihui Chen

    2014-01-01

    Objective:The purpose of the study was to investigate the ef ects of parathyroid hormone and parathyroid hor-mone receptor monoclonal antibody on in vitro growth and proliferation of human medul ary thyroid carcinoma celllines. Methods:The medul ary thyroid carcinoma cellline was cultured in vitro, with parathyroid hormone and parathyroid hormone receptor monoclonal antibody treatment intervention, the growth of the cells was observed under an inverted contrast micro-scope, the MTT assay was used to detect the cellgrowth inhibition rate. Results:Under the inverted contrast microscope, the cells changed significantly, the parathyroid hormone and parathyroid hormone receptor monoclonal antibodies can ef ectively inhibit the proliferation of medul ary thyroid cancer cells in a time and dose dependent. When parathyroid hormone concentra-tion reached a concentration of 2.0μmol/L, the parathyroid hormone receptor monoclonal antibody reached a concentration of 1.0μmol/L, the cellgrowth was most significantly inhibited (P<0.05). Conclusion:Parathyroid hormone and parathyroid hormone receptor monoclonal antibody were able to inhibit the proliferation of medul ary thyroid carcinoma cells and signifi-cantly reduce the proliferation index.

  4. Purification of human parathyroid hormone: recent studies and further observations.

    Science.gov (United States)

    Keutmann, H T; Hendy, G N; Boehnert, M; O'Riordan, J L; Potts, J T

    1978-07-01

    During the isolation of human parathyroid hormone there is an extensive loss of immuno-assayble hormone over the successive extraction steps, due in part to the presence of fragments that are soluble in 4% trichloroacetic acid. These fragments are derived from both the amino- and carboxyl-terminal regions of the hormone. The hormonal fractions precipitated with trichloroacetic acid were further purified by gel filtration and ion-exchange chromatography. At the final ion-exchange purification step, some preparations of the hormone eluted in multiple fractions. When the various components were characterized separately by immunoassay, amino acid composition, enzymic cleavage and partial sequence analysis, they were found to be closely comparable, although the most acidic fraction contained a blocked terminal amino group. Extraction of a number of batches of tissue permitted revision of the amino acid composition of human parathyroid hormone. Biosynthetic studies with labelled amino acids confirmed the absence of tyrosine and the presence of phenylalanine and threonine and localized these residues to definite regions of the molecule.

  5. Expression of parathyroid hormone-related protein in ameloblastomas.

    Science.gov (United States)

    Ohtsuru, Mitsunobu

    2005-12-01

    Parathyroid hormone-related protein (PTHrP) was first discovered as a causative protein for hypercalcemia, which is often seen in the malignant tumor. PTHrP binds to the parathyroid hormone 1 receptor (PTH1R) for signal transduction. PTHrP-PTH1R interactions were associated with bone resorption. The present study, therefore, sought to clarify the expression of PTHrP, parathyroid hormone (PTH) and PTH1R in ameloblastoma, using RT-PCR (N = 8), immunohistochemistry (N = 23) and ELISA (N = 11) techniques. PTHrP and B-actin mRNA were detected in the all samples. Expression of PTHrP was also seen in all of the 23 cases in ameloblastoma by immunohistochemistry. There was a significant difference in PTHrP concentration by ELISA between typical unicystic type and solid type including unicystic type 3 (p = 0.0427). Only one exhibited the weak expression of PTH1R mRNA. PTH1R was observed on osteoblasts in bone around the tumor but no expression was observed on ameloblastoma cells in tumor parenchyma by immunohistochemistry. PTH was not detected in ameloblastoma by RT-PCR, immunohistochemistory as well as ELISA. In addition, hypercalcemia and increase of serum PTHrP level was observed in one case of 8 ameloblastomas. It was suggested that PTHrP level may be associated with local bone infiltration and hypercalcemia in ameloblastoma.

  6. Interspecies comparison of renal cortical receptors for parathyroid hormone and parathyroid hormone-related protein

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, J.J.; Goumas, D.; Wu, T.L.; Stewart, A.F. (West Haven Veterans Administration Medical Center, CT (USA))

    1991-03-01

    Parathyroid hormone (PTH) and PTH-related proteins (PTHrP) interact with a common receptor in rat bone cells and in canine renal membranes with similar affinity, but PTHrP are substantially less potent than PTH in stimulating adenylate cyclase in canine renal membranes; in contrast, PTH and PTHrP are equipotent in stimulating adenylate cyclase in rat bone cells. This discrepancy has been largely viewed as reflecting differences in the relative efficiency of signal transduction of PTHrP between bone and kidney assay systems. To test the alternative (but not mutually exclusive) hypothesis that these differences could reflect interspecies differences in PTH receptors, we have characterized the bioactivity of amino-terminal PTHrP and PTH in rat and human renal cortical membranes (RCM) and compared them to results we previously reported in canine RCM. The stability of PTH and PTHrP peptides under binding and adenylate cyclase assay conditions was greater than 80% for each species. Competitive inhibition of ({sup 125}I)(Tyr36)hPTHrP-(1-36)NH{sub 2} binding to rat RCM by bPTH-(1-34) and (Tyr36)hPTHrP-(1-36)NH{sub 2} yielded nearly identical binding dissociation constants (3.7 and 3.6 nM, respectively), and binding to human RCM demonstrated slightly greater potency for PTHrP (0.5 nM) than for PTH (0.9 nM). Similarly, adenylate cyclase stimulating activity was equivalent for the two peptides in rat RCM, but PTHrP was twofold more potent than PTH in human RCM. Covalent photoaffinity labeling of protease-protected rat RCM yielded an apparent 80 kD receptor protein, and cross-linking of human RCM labeled an 85 kD receptor, indistinguishable in size from the canine renal PTH receptor. We conclude that rat, canine, and human renal cortical PTH receptors exhibit species specificity.

  7. Parathyroid hormone-related protein and calcium regulation in vitamin D-deficient sea bream (Sparus auratus).

    NARCIS (Netherlands)

    Abbink, W.; Hang, X.M.; Guerreiro, P.M.; Spanings, F.A.T.; Ross, H.A.; Canario, A.V.; Flik, G.

    2007-01-01

    Gilthead sea bream (Sparus auratus L.) were fed a vitamin D-deficient diet for 22 weeks. Growth rate, whole body mineral pools and calcium balance were determined. Plasma parathyroid hormone-related protein (PTHrP) and calcitriol levels were assessed. Expression of mRNA for pthrp and pth1r was

  8. Osteopontin negatively regulates parathyroid hormone receptor signaling in osteoblasts.

    Science.gov (United States)

    Ono, Noriaki; Nakashima, Kazuhisa; Rittling, Susan R; Schipani, Ernestina; Hayata, Tadayoshi; Soma, Kunimichi; Denhardt, David T; Kronenberg, Henry M; Ezura, Yoichi; Noda, Masaki

    2008-07-11

    Systemic hormonal control exerts its effect through the regulation of local target tissues, which in turn regulate upstream signals in a feedback loop. The parathyroid hormone (PTH) axis is a well defined hormonal signaling system that regulates calcium levels and bone metabolism. To understand the interplay between systemic and local signaling in bone, we examined the effects of deficiency of the bone matrix protein osteopontin (OPN) on the systemic effects of PTH specifically within osteoblastic cell lineages. Parathyroid hormone receptor (PPR) transgenic mice expressing a constitutively active form of the receptor (caPPR) specifically in cells of the osteoblast lineage have a high bone mass phenotype. In these mice, OPN deficiency further increased bone mass. This increase was associated with conversion of the major intertrabecular cell population from hematopoietic cells to stromal/osteoblastic cells and parallel elevations in histomorphometric and biochemical parameters of bone formation and resorption. Treatment with small interfering RNA (siRNA) for osteopontin enhanced H223R mutant caPPR-induced cAMP-response element (CRE) activity levels by about 10-fold. Thus, in addition to the well known calcemic feedback system for PTH, local feedback regulation by the bone matrix protein OPN also plays a significant role in the regulation of PTH actions.

  9. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  10. Association between serum 25-hydroxyvitamin D3 concentration,parathyroid hormone,and arterial stiffness in patients with type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    马笑堃

    2013-01-01

    Objective To evaluate the association between serum 25-hydroxyvitamin D3[25 (OH) D3],parathyroid hormone,and arterial stiffness in patients with type 2 diabetes.Methods Serum 25 (OH) D3and parathyroid hormone (PTH) were determined in a cross-sectional sample of 258 patients aged 30 years or over.Arterial stiffness was assessed by pulse wave velocity (PWV) obtained with a VP-1000 pulse wave unit.Fasting plasma HbA1C,

  11. Actions of parathyroid hormone related peptide in mouse parietal endoderm formation

    NARCIS (Netherlands)

    Veltmaat, J.M.

    2001-01-01

    Summary Since about a decade, several reports have strongly suggested a role for parathyroid hormone related peptide (PTHrP) in the formation of parietal endoderm (PE) in the mouse embryo. This thesis is aimed first at elucidating the biological significance of parathyroid hormone related peptide

  12. Parathyroid hormone-related peptide in lactation and in umbilical cord blood.

    Science.gov (United States)

    Khosla, S; Johansen, K L; Ory, S J; O'Brien, P C; Kao, P C

    1990-11-01

    Parathyroid hormone-related peptide (PTHrP) is expressed in lactating rat mammary glands after suckling, as a result of increases in prolactin rather than suckling per se. In addition, PTHrP produced in the fetal parathyroid glands and placenta may be responsible for stimulation of placental calcium transport. In the current study, we used a radioimmunoassay for human PTHrP to measure levels of the peptide in (1) human breast milk, cow's milk, and two infant formulas; (2) sequential plasma samples in prepartum and postpartum lactating women; (3) women with pathologic hyperprolactinemia; and (4) human umbilical cord blood. In normal subjects, plasma PTHrP levels ranged from less than 2 to 5 pmol/liter. In contrast, human breast milk contained substantially increased levels of immunoreactive PTHrP. Similar elevations were found in cow's milk and in one infant formula. Column chromatography of breast milk demonstrated that PTHrP immunoreactivity included a region of adenylate cyclase stimulating activity, consistent with the presence of biologically active PTHrP. Plasma prepartum PTHrP values did not differ from corresponding postpartum values in lactating women. Women with hyperprolactinemia had a mean plasma PTHrP value in the high-normal range. Umbilical cord blood had considerably suppressed parathyroid hormone values but PTHrP levels that were indistinguishable from those in normal human plasma. Thus, PTHrP is present in high concentrations in breast milk but apparently does not gain access to the maternal circulation in significant amounts. In addition, women with pathologic hyperprolactinemia seem not to have increased levels of circulating PTHrP.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Premenstrual Symptoms in Dysmenorrheic College Students: Prevalence and Relation to Vitamin D and Parathyroid Hormone Levels

    Directory of Open Access Journals (Sweden)

    Bayan A. Obeidat

    2012-11-01

    Full Text Available Objectives: To determine the prevalence of premenstrual symptoms (PMS due to primary dysmenorrhea among a sample of university female students, and to explore possible association with vitamin D and parathyroid (PTH levels, as well as frequency of consumption of dairy products. Design: A cross-sectional study. Setting: One Jordanian university. Subjects: A total of 177 female students aged between 18 and 24 years who experienced primary dysmenorrhea participated in the study and completed a self administered questionnaire to collect information concerning demographics, menstruation- related information, associated specified premenstrual symptoms, and consumption of dairy products. Plasma 25-hydroxyvitamin vitamin D level and intact parathyroid hormone level were measured. Results: Of the 177 participants 91.5% had two or more symptoms among which fatigue, mood swings, anxiety, abdominal bloating, and depression were the most prevalent symptoms. There was no evident association between presence of symptoms and vitamin D status, PTH level or dairy products consumption. Headaches and social withdrawal were significantly lower in those women who consumed high amounts of dairy products. Conclusion: Premenstrual symptoms are very common in young women with primary dysmenorrhea. PMS has no relation to levels of vitamin D, parathyroid hormone or dairy products consumption. Headache and social withdrawal may be affected by dairy product consumption.

  14. Hypoparathyroidism: clinical features, skeletal microstructure and parathyroid hormone replacement

    Science.gov (United States)

    Rubin, Mishaela R.; Bilezikian, John P.

    2013-01-01

    Objective Hypoparathyroidism is a disorder in which parathyroid hormone is deficient in the circulation due most often to immunological destruction of the parathyroids or to their surgical removal. The objective of this work was to define the abnormalities in skeletal microstructure as well as to establish the potential efficacy of PTH(1-84) replacement in this disorder. Subjects and methods Standard histomorphometric and μCT analyses were performed on iliac crest bone biopsies obtained from patients with hypoparathyroidism. Participants were treated with PTH(1-84) for two years. Results Bone density was increased and skeletal features reflected the low turnover state with greater BV/TV, Tb. Wi and Ct. Wi as well as suppressed MS and BFR/BS as compared to controls. With PTH(1-84), bone turnover and bone mineral density increased in the lumbar spine. Requirements for calcium and vitamin D fell while serum and urinary calcium concentrations did not change. Conclusion Abnormal microstructure of the skeleton in hypoparathyroidism reflects the absence of PTH. Replacement therapy with PTH has the potential to correct these abnormalities as well as to reduce the requirements for calcium and vitamin D. PMID:20485912

  15. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase.

    Science.gov (United States)

    Larsson, Sara; Jones, Helena A; Göransson, Olga; Degerman, Eva; Holm, Cecilia

    2016-03-01

    Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our

  16. Parathyroid hormone pulsatility:physiological and clinical aspects

    Institute of Scientific and Technical Information of China (English)

    Silvia Chiavistelli; Andrea Giustina; Gherardo Mazziotti

    2015-01-01

    Parathyroid hormone (PTH) secretion is characterized by an ultradian rhythm with tonic and pulsatile components. In healthy subjects, the majority of PTH is secreted in tonic fashion, whereas approximately 30%is secreted in low-amplitude and high-frequency bursts occurring every 10–20 min, superimposed on tonic secretion. Changes in the ultradian PTH secretion were shown to occur in patients with primary and secondary osteoporosis, with skeletal effects depending on the reciprocal modifications of pulsatile and tonic components. Indeed, pathophysiology of spontaneous PTH secretion remains an area potentially suitable to be explored, particularly in those conditions such as secondary forms of osteoporosis, in which conventional biochemical and densitometric parameters may not always give reliable diagnostic and therapeutic indications. This review will highlight the literature data supporting the hypothesis that changes of ultradian PTH secretion may be correlated with skeletal fragility in primary and secondary osteoporosis.

  17. Compliance and persistence with treatment with parathyroid hormone for osteoporosis

    DEFF Research Database (Denmark)

    Thorsteinsson, Anne-Luise; Vestergaard, Peter; Eiken, Pia

    2015-01-01

    UNLABELLED: Medical intervention is important in the treatment of osteoporosis, and compliance with medical treatment is essential for an optimal outcome. Based on Danish national registers, we found that compliance with parathyroid hormone (PTH) treatment is high and associated with marital status......, working status, and type of PTH treatment. PURPOSE: Compliance and persistence are essential for an optimal outcome during medical treatment of osteoporosis. We aimed to evaluate compliance and persistence with treatment with PTH in daily clinical practice in Danish patients and to describe factors...... affecting compliance. METHODS: Register-based nationwide cohort study on all patients in Denmark initiates PTH or analogue treatment for osteoporosis in 2003-2010 (n = 4281). PTH drugs included were the PTH analogue teriparatide(1-34) and recombinant human PTH (rhPTH(1-84)). Compliance with treatment...

  18. Parathyroid hormone related protein (PTHrP) in tumor progression.

    Science.gov (United States)

    Kremer, Richard; Li, Jiarong; Camirand, Anne; Karaplis, Andrew C

    2011-01-01

    Parathyroid hormone-related protein (PTHrP) is widely expressed in fetal and adult tissues and is a key regulator for cellular calcium transport and smooth muscle cell contractility, as well as a crucial control factor in cell proliferation, development and differentiation. PTHrP stimulates or inhibits apoptosis in an autocrine/paracrine and intracrine fashion, and is particularly important for hair follicle and bone development, mammary epithelial development and tooth eruption. PTHrP's dysregulated expression has traditionally been associated with oncogenic pathologies as the major causative agent of malignancy-associated hypercalcemia, but recent evidence revealed a driving role in skeletal metastasis progression. Here, we demonstrate that PTHrP is also closely involved in breast cancer initiation, growth and metastasis through mechanisms separate from its bone turnover action, and we suggest that PTHrP as a facilitator of oncogenes would be a novel target for therapeutic purposes.

  19. Parathyroid hormone dependent T cell proliferation in uremic rats

    DEFF Research Database (Denmark)

    Lewin, E; Ladefoged, Jens; Brandi, L

    1993-01-01

    Chronic renal failure (CRF) is combined with an impairment of the immune system. The T cell may be a target for the action of parathyroid hormone (PTH). Rats with CRF have high blood levels of PTH. Therefore, the present investigation examined some aspects of the T cell function in both normal...... and CRF rats before and after parathyroidectomy and after an isogenic kidney transplantation. The T cell proliferative response to phytohemagglutinin (PHA) stimulation was significantly higher in peripheral blood mononuclear cell (PBMC) cultures obtained from CRF rats than from normal rats. After...... parathyroidectomy the T cells of normal as well as of uremic rats could still be significantly stimulated by PHA, but now no significant difference was seen. When CRF was reversed after an isogenic kidney transplantation and PTH reversed to levels in the normal range, the T cell proliferative response to PHA...

  20. Parathyroid carcinoma survival: improvements in the era of intact parathyroid hormone monitoring?

    Directory of Open Access Journals (Sweden)

    Steve R. Martinez

    2013-02-01

    Full Text Available The intact parathyroid hormone (iPTH assay is a critical test in the diagnosis and management of PTH-mediated hypercalcemia, including parathyroid carcinoma (PCa. We hypothesized that the survival of patients diagnosed with PCa has improved since adoption of the iPTH assay into clinical practice. We identified all confirmed cases of PCa within the Surveillance, Epidemiology and End Results database from 1973 to 2006. Patients were categorized into two eras based upon introduction of the iPTH assay: 1973 to 1997 (era I and 1997 to 2006 (era II, when the iPTH assay was in standard use. We estimated overall survival (OS and disease-specific survival (DSS using the Kaplan-Meier method, with differences among survival curves assessed via log rank. Multivariate Cox proportional hazards models compared the survival rates between treatment eras while controlling for patient age, sex, race/ethnicity, tumor size, nodal status, extent of disease, and type of surgery. Multivariate models included patients undergoing potentially curative surgery and excluded those with dis- tant metastases. Risks of overall and disease-specific mortality were reported as hazard ratios with 95% confidence intervals. Study criteria were met by 370 patients. Median survival was 15.6 years. Five-year rates of OS and DSS were 78% and 88% for era I and 82% and 96% for era II. On multivariate analysis, age, black race, and unknown extent of disease predicted an increased risk of death from any cause. Treatment era did not predict OS. No factor predicted PCa-specific mortality. In multivariate analysis, neither OS nor DSS have improved in the current era that utilizes iPTH for the detection and management of PCa.

  1. Physiological and clinical studies of calcium-regulating hormones calcitonin and parathyroid hormone-related protein

    OpenAIRE

    1997-01-01

    The present studies were performed to elucidate several physiological and clinical questions of calcitonin (CT) and parathyroid hormone-related protein (PTHrP) such as: a) Does age influence the basal and calcium-stimulated levels and circulating molecular forms of CT in healthy females? b) Are osteoporotic patients lacking circulating monomeric CT? c) How is salmon CT (sCT) absorbed and cleared during treatment of diseases? d) Is there any effect of acute physical activity ...

  2. Negative regulation of parathyroid hormone-related protein expression by steroid hormones.

    Science.gov (United States)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  4. Modulation of experimental renal dysfunction of hereditary fructose intolerance by circulating parathyroid hormone.

    Science.gov (United States)

    Morris, R C; McSherry, E; Sebastian, A

    1971-01-01

    In a woman with hereditary fructose intolerance and intact parathyroid function, the experimental administration of fructose at different dosage schedules invariably induced the dose-dependent, complex dysfunction of the proximal renal tubule now recognized as characteristic. But in a woman with hereditary fructose intolerance and hypoparathyroidism given similar amounts of fructose, the experimental dysfunction was strikingly attenuated or nondemonstrable unless or until fructose and parathyroid hormone were administered in sustained combination. Thereupon, a renal dysfunction of characteristic type and severity occurred invariably and almost immediately. Thus, the concentration of circulating parathyroid hormone can modulate the functional expression of the experimental renal disorder. This effect of parathyroid hormone, which appears to involve more than simple physiologic summation, may have important clinical implications.

  5. Parathyroid hormone mediates hematopoietic cell expansion through interleukin-6.

    Directory of Open Access Journals (Sweden)

    Flavia Q Pirih

    Full Text Available Parathyroid hormone (PTH stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6 is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L, PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45(+ and CD11b(+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin(- Sca-1(+c-Kit(+ (LSK hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.

  6. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis.

    Science.gov (United States)

    Ferrandon, Sébastien; Feinstein, Timothy N; Castro, Marian; Wang, Bin; Bouley, Richard; Potts, John T; Gardella, Thomas J; Vilardaga, Jean-Pierre

    2009-10-01

    Cell signaling mediated by the G protein-coupled parathyroid hormone receptor type 1 (PTHR) is fundamental to bone and kidney physiology. It has been unclear how the two ligand systems--PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine--can effectively operate with only one receptor and trigger different durations of the cAMP responses. Here we analyze the ligand response by measuring the kinetics of activation and deactivation for each individual reaction step along the PTHR signaling cascade. We found that during the time frame of G protein coupling and cAMP production, PTHrP(1-36) action was restricted to the cell surface, whereas PTH(1-34) had moved to internalized compartments where it remained associated with the PTHR and Galpha(s), potentially as a persistent and active ternary complex. Such marked differences suggest a mechanism by which PTH and PTHrP induce differential responses, and these results indicate that the central tenet that cAMP production originates exclusively at the cell membrane must be revised.

  7. Parathyroid Hormone-Related Protein Analogs as Osteoporosis Therapies.

    Science.gov (United States)

    Esbrit, Pedro; Herrera, Sabina; Portal-Núñez, Sergio; Nogués, Xavier; Díez-Pérez, Adolfo

    2016-04-01

    The only bone anabolic agent currently available for osteoporosis treatment is parathyroid hormone (PTH)-either its N-terminal 1-34 fragment or the whole molecule of 1-84 aminoacids-whose intermittent administration stimulates new bone formation by targeting osteoblastogenesis and osteoblast survival. PTH-related protein (PTHrP) is an abundant factor in bone which shows N-terminal homology with PTH and thus exhibits high affinity for the same PTH type 1 receptor in osteoblasts. Therefore, it is not surprising that intermittently administered N-terminal PTHrP peptides induce bone anabolism in animals and humans. Furthermore, the C-terminal region of PTHrP also elicits osteogenic features in vitro in osteoblastic cells and in various animal models of osteoporosis. In this review, we discuss the current concepts about the cellular and molecular mechanisms whereby PTHrP may induce anabolic actions in bone. Pre-clinical studies and clinical data using N-terminal PTHrP analogs are also summarized, pointing to PTHrP as a promising alternative to current bone anabolic therapies.

  8. Parathyroid hormone intermittent administration promotes delay on rat incisor eruption.

    Science.gov (United States)

    Silva, M A D; Vasconcelos, D F P; Marques, M R; Barros, S P

    2016-09-01

    This study evaluated the influence of parathyroid hormone (PTH) (1-34) intermittent administration on rat eruption rates of lower incisors under normo, hyper and hypofunctional conditions, Sharpey fibers insertion, and alveolar bone formation. Wistar male rats received PTH (1-34) three times a week during the entire experimental period, 31days. Control animals received the same concentration of the vehicle solution during the same period. Three injections of alizarin were also performed. The experiment evaluated the eruptive rate, the alveolar bone formation and also the morphology, and the area density of Sharpey fibers. After the sacrifice, the mandibles were dissected and samples were prepared for fluorescence and scanning electron microscopy observations. PTH-treated animals showed significantly reduced eruption rates in all different functional conditions. Analysis evidenced that PTH-treated rats present an increase in bone formation and area density of the Sharpey fibers. We concluded that the PTH (1-34) intermittent administration reduced the eruptive process rates, through bone formation enhancement and increase in the area density of Sharpey fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Kajitani, Takashi; Tamamori-Adachi, Mimi [Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Okinaga, Hiroko [Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Chikamori, Minoru; Iizuka, Masayoshi [Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Okazaki, Tomoki, E-mail: okbgeni@med.teikyo-u.ac.jp [Department of Biochemistry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan)

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  10. The secretory response of parathyroid hormone to acute hypocalcemia in vivo is independent of parathyroid glandular sodium/potassium-ATPase activity

    DEFF Research Database (Denmark)

    Martuseviciene, Giedre; Hofman-Bang, Jacob; Clausen, Torben

    2011-01-01

    -treated parathyroid glands, indicating inhibition of the ATPase. As ouabain induced systemic hyperkalemia, the effect of high potassium on hormone secretion was also examined but was found to have no effect. Thus, inhibition of the parathyroid gland sodium/potassium-ATPase activity in vivo had no effect...

  11. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism.

    Science.gov (United States)

    Castro, Marián; Nikolaev, Viacheslav O; Palm, Dieter; Lohse, Martin J; Vilardaga, Jean-Pierre

    2005-11-01

    Parathyroid hormone (PTH) and its related receptor (PTHR) are essential regulators of calcium homeostasis and bone physiology. PTH activates PTHR by interacting with a ligand-binding site localized within the N-terminal extracellular domain (the N-domain) and the domain comprising the seven transmembrane helices and the connecting extracellular loops (the J-domain). PTH binding triggers a conformational switch in the receptor, leading to receptor activation and subsequent cellular responses. The process of receptor activation occurs rapidly, within approximately 1 s, but the binding event preceding receptor activation is not understood. By recording FRET between tetramethyl-rhodamine in PTH(1-34) and GFP in the N-domain of the receptor, we measured the binding event in real time in living cells. We show that the association time course between PTH(1-34) and PTHR involves a two-step binding process where the agonist initially binds the receptor with a fast time constant (tau approximately 140 ms) and then with slower kinetics (tau approximately 1 s). The fast and slow phases were assigned to hormone association to the receptor N- and J domains, respectively. Our data indicate that the slow binding step to the J-domain coincides with a conformational switch in the receptor, also monitored by FRET between the enhanced cyan fluorescent protein and the enhanced yellow fluorescent protein in the PTHR sensor, PTHR enhanced cyan fluorescent protein/enhanced yellow fluorescent protein (PTHR(CFP/YFP)). These data suggest that the conformational change that switches the receptor into its active state proceeds in a sequential manner, with the first rapid binding step event preceding receptor activation by PTH(1-34).

  12. Modeling of the parathyroid hormone response after calcium intake in healthy subjects.

    Science.gov (United States)

    Ahn, Jae Eun; Jeon, Sangil; Lee, Jongtae; Han, Seunghoon; Yim, Dong-Seok

    2014-06-01

    Plasma ionized calcium (Ca(2+)) concentrations are tightly regulated in the body and maintained within a narrow range; thus it is challenging to quantify calcium absorption under normal physiologic conditions. This study aimed to develop a mechanistic model for the parathyroid hormone (PTH) response after calcium intake and indirectly compare the difference in oral calcium absorption from PTH responses. PTH and Ca(2+) concentrations were collected from 24 subjects from a clinical trial performed to evaluate the safety and calcium absorption of Geumjin Thermal Water in comparison with calcium carbonate tablets in healthy subjects. Indirect response models (NONMEM Ver. 7.2.0) were fitted to observed Ca(2+) and PTH data, respectively, in a manner that absorbed but unobserved Ca(2+) inhibits the secretion of PTH. Without notable changes in Ca(2+) levels, PTH responses were modeled and used as a marker for the extent of calcium absorption.

  13. Relationship of serum 25-hydroxyvitamin D and parathyroid hormone levels with blood pressure in 1403 community adults

    Institute of Scientific and Technical Information of China (English)

    王睿

    2014-01-01

    Objective To investigate the association of serum25-hydroxyvitamin D(25OHD),parathyroid hormone(PTH),blood glucose,blood lipid,uric acid,obesity,insulin etc with blood pressure.Methods A total of 1403 residents aged(45.3±14.4)years were enrolled from Guiyang residents during a healthy survey in 2009.The standard questionnaire survey and physical examination were performed in all subjects.The fasting plasma glucose,postprandial 2 h plasma glucose(2h PG),triglyceride,high density lipoprotein-cholesterol,serum

  14. Parathyroid hormone-related protein promotes epithelial-mesenchymal transition.

    Science.gov (United States)

    Ardura, Juan Antonio; Rayego-Mateos, Sandra; Rámila, David; Ruiz-Ortega, Marta; Esbrit, Pedro

    2010-02-01

    Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF to modulate EMT is unknown. Here, PTHrP(1-36) increased TGF-beta1 in cultured tubuloepithelial cells and TGF-beta blockade inhibited PTHrP-induced EMT-related changes, including upregulation of alpha-smooth muscle actin and integrin-linked kinase, nuclear translocation of Snail, and downregulation of E-cadherin and zonula occludens-1. PTHrP(1-36) also induced EGF receptor (EGFR) activation; inhibition of protein kinase C and metalloproteases abrogated this activation. Inhibition of EGFR activation abolished these EMT-related changes, the activation of ERK1/2, and upregulation of TGF-beta1 and VEGF by PTHrP(1-36). Moreover, inhibition of ERK1/2 blocked EMT induced by either PTHrP(1-36), TGF-beta1, EGF, or VEGF. In vivo, obstruction of mouse kidneys led to changes consistent with EMT and upregulation of TGF-beta1 mRNA, p-EGFR protein, and PTHrP. Taken together, these data suggest that PTHrP, TGF-beta, EGF, and VEGF might cooperate through activation of ERK1/2 to induce EMT in renal tubuloepithelial cells.

  15. Osteopontin but not parathyroid hormone-related protein predicts prognosis in human renal cell carcinoma.

    Science.gov (United States)

    Papworth, Karin; Bergh, Anders; Grankvist, Kjell; Ljungberg, Börje; Sandlund, Johanna; Rasmuson, Torgny

    2013-01-01

    To evaluate the relationship between osteopontin (OPN) in serum and plasma and parathyroid hormone-related protein (PTHrP) in serum, plasma and tumour tissue, and to assess the prognostic impact of OPN and PTHrP in human renal cell carcinoma (RCC). The study included 269 patients with RCC. In 189 patients, immunohistochemical (IHC) PTHrP tumour tissue expression was evaluated, and OPN and PTHrP in serum were assessed. In 80 patients, plasma OPN and PTHrP were analysed. Tumour type, TNM stage, nuclear grade and RCC-specific survival were also registered. In a sub-group, IHC expression of CD 31 was assessed. The prognostic information of the factors was analysed using uni- and multivariate analyses. The median OPN level was 2.3 times higher in plasma than in serum. Serum OPN was significantly higher in patients with papillary RCC compared to clear cell RCC and chromophobe RCC. Both serum and plasma OPN levels were positively correlated to TNM stage and nuclear grade. Multivariate analysis showed that serum and plasma OPN levels were independent prognostic factors for RCC-specific survival, along with TNM stage. Immunohistochemical expression of PTHrP associated to TNM stage but not to nuclear grade or serum OPN. Furthermore, IHC expression of PTHrP was positively correlated to serum PTHrP but inversely to tumour CD31 expression. Plasma PTHrP was increased in 20% of the patients and related to TNM stage but not to nuclear grade. Plasma OPN was significantly higher in patients with increased PTHrP levels, compared to those with normal levels. Plasma OPN levels differed between RCC types, and in clear cell RCC, both serum and plasma OPN levels were independent predictors of survival. We found no evidence for prognostic value related to circulating levels or the IHC expression of PTHrP.

  16. Vitamin D3 differentially regulates parathyroid hormone/parathyroid hormone-related peptide receptor expression in bone and cartilage.

    Science.gov (United States)

    Amizuka, N; Kwan, M Y; Goltzman, D; Ozawa, H; White, J H

    1999-02-01

    Transcription of the mouse parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR) gene is controlled by promoters P1 and P2. We performed transcript-specific in situ hybridization and found that P2 is the predominant promoter controlling PTHR gene expression in bone and cartilage. Treatment with 1alpha, 25-dihydroxyvitamin D3 (D3) in vivo specifically downregulated P2-specific transcripts in osteoblasts, but not in chondrocytes, under conditions where it enhanced bone resorption. Treatment of the osteoblastic cell line MC3T3-E1 with D3 in vitro reduced expression of both P2-specific transcripts and PTHR protein. This effect was not blocked by cycloheximide, indicating that D3 inhibits PTHR expression by downregulating transcription of the P2 promoter. A similar inhibitory effect of D3 was not observed in the chondrocytic cell line CFK2. Gene-transfer experiments showed that P2, but not P1, is active in both MC3T3-E1 and CFK2 cells, and that D3 specifically inhibited P2 promoter activity in MC3T3-E1, but not in CFK2 cells. Inhibition of P2 activity by D3 required promoter sequences lying more that 1.6 kb upstream of the P2 transcription start site. Thus, the P2 promoter controls PTHR gene expression in both osteoblasts and chondrocytes. D3 downregulates PTHR gene transcription in a cell-specific manner by inhibiting P2 promoter activity in osteoblasts, but not in chondrocytes.

  17. Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells.

    Science.gov (United States)

    Al Menhali, Asma; Keeley, Theresa M; Demitrack, Elise S; Samuelson, Linda C

    2017-06-01

    Parietal cells play a fundamental role in stomach maintenance, not only by creating a pathogen-free environment through the production of gastric acid, but also by secreting growth factors important for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation. Our previous gene expression profiling studies of mouse stomach identified parathyroid hormone-like hormone (PTHLH) as a potential gastrin-regulated gastric growth factor. Although PTHLH is commonly overexpressed in gastric tumors, its normal expression, function, and regulation in the stomach are poorly understood. In this study we used pharmacologic and genetic mouse models as well as human gastric cancer cell lines to determine the cellular localization and regulation of this growth factor by the hormone gastrin. Analysis of Pthlh(LacZ/+) knock-in reporter mice localized Pthlh expression to parietal cells in the gastric corpus. Regulation by gastrin was demonstrated by increased Pthlh mRNA abundance after acute gastrin treatment in wild-type mice and reduced expression in gastrin-deficient mice. PTHLH transcripts were also observed in normal human stomach as well as in human gastric cancer cell lines. Gastrin treatment of AGS-E gastric cancer cells induced a rapid and robust increase in numerous PTHLH mRNA isoforms. This induction was largely due to increased transcriptional initiation, although analysis of mRNA half-life showed that gastrin treatment also extended the half-life of PTHLH mRNA, suggesting that gastrin regulates expression by both transcriptional and posttranscriptional mechanisms.NEW & NOTEWORTHY We show that the growth factor parathyroid hormone-like hormone (PTHLH) is expressed in acid-secreting parietal cells of the mouse stomach. We define the specific PTHLH mRNA isoforms expressed in human stomach and in human gastric cancer cell lines and

  18. Let-7 and MicroRNA-148 Regulate Parathyroid Hormone Levels in Secondary Hyperparathyroidism.

    Science.gov (United States)

    Shilo, Vitali; Mor-Yosef Levi, Irit; Abel, Roy; Mihailović, Aleksandra; Wasserman, Gilad; Naveh-Many, Tally; Ben-Dov, Iddo Z

    2017-03-15

    Secondary hyperparathyroidism commonly complicates CKD and associates with morbidity and mortality. We profiled microRNA (miRNA) in parathyroid glands from experimental hyperparathyroidism models and patients receiving dialysis and studied the function of specific miRNAs. miRNA deep-sequencing showed that human and rodent parathyroids share similar profiles. Parathyroids from uremic and normal rats segregated on the basis of their miRNA expression profiles, and a similar finding was observed in humans. We identified parathyroid miRNAs that were dysregulated in experimental hyperparathyroidism, including miR-29, miR-21, miR-148, miR-30, and miR-141 (upregulated); and miR-10, miR-125, and miR-25 (downregulated). Inhibition of the abundant let-7 family increased parathyroid hormone (PTH) secretion in normal and uremic rats, as well as in mouse parathyroid organ cultures. Conversely, inhibition of the upregulated miR-148 family prevented the increase in serum PTH level in uremic rats and decreased levels of secreted PTH in parathyroid cultures. The evolutionary conservation of abundant miRNAs in normal parathyroid glands and the regulation of these miRNAs in secondary hyperparathyroidism indicates their importance for parathyroid function and the development of hyperparathyroidism. Specifically, let-7 and miR-148 antagonism modified PTH secretion in vivo and in vitro, implying roles for these specific miRNAs. These findings may be utilized for therapeutic interventions aimed at altering PTH expression in diseases such as osteoporosis and secondary hyperparathyroidism.

  19. Characterization of parathyroid hormone/parathyroid hormone-related protein receptor and signaling in hypercalcemic Walker 256 tumor cells.

    Science.gov (United States)

    Esbrit, P; Benítez-Verguizas, J; de Miguel, F; Valín, A; García-Ocaña, A

    2000-07-01

    Parathyroid hormone (PTH)-related protein (PTHrP) is the main factor responsible for humoral hypercalcemia of malignancy. Both PTH and PTHrP bind to the common type I PTH/PTHrP receptor (PTHR), thereby activating phospholipase C and adenylate cyclase through various G proteins, in bone and renal cells. However, various normal and transformed cell types, including hypercalcemic Walker 256 (W256) tumor cells, do not produce cAMP after PTHrP stimulation. We characterized the PTHrP receptor and the signaling mechanism upon its activation in the latter cells. Scatchard analysis of PTHrP-binding data in W256 tumor cells revealed the presence of high affinity binding sites with an apparent K(d) of 17 nM, and a density of 90 000 sites/cell. In addition, W256 tumor cells immunostained with an anti-PTHR antibody, recognizing its extracellular domain. Furthermore, reverse transcription followed by PCR, using primers amplifying two different regions in the PTHR cDNA corresponding to the N- and C-terminal domains, yielded products from W256 tumor cell RNA which were identical to the corresponding products obtained from rat kidney RNA. Consistent with our previous findings on cAMP production, 1 microM PTHrP(1-34), in contrast to 10 microg/ml cholera toxin or 1 microM isoproterenol, failed to affect protein kinase A activity in W256 tumor cells. However, in these cells we found a functional PTHR coupling to G(alpha)(q/11), whose presence was demonstrated in these tumor cell membranes by Western blot analysis. Our findings indicate that W256 tumor cells express the PTHR, which seems to be coupled to G(alpha)(q/11). Taken together with previous data, these results support the hypothesis that a switch from the cAMP pathway to the phospholipase C-intracellular calcium pathway, associated with PTHR activation, occurs in malignant cells.

  20. Critical Role of Activating Transcription Factor 4 in the Anabolic Actions of Parathyroid Hormone in Bone

    NARCIS (Netherlands)

    Yu, Shibing; Franceschi, Renny T.; Luo, Min; Fan, Jie; Jiang, Di; Cao, Huiling; Kwon, Tae-Geon; Lai, Yumei; Zhang, Jian; Patrene, Kenneth; Hankenson, Kurt; Roodman, G. David; Xiao, Guozhi

    2009-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice

  1. Parathyroid hormone-related protein regulates tumor-relevant genes in breast cancer cells.

    NARCIS (Netherlands)

    Dittmer, A.; Vetter, M.; Schunke, D.; Span, P.N.; Sweep, C.G.J.; Thomssen, C.; Dittmer, J.

    2006-01-01

    The effect of endogenous parathyroid hormone-related protein (PTHrP) on gene expression in breast cancer cells was studied. We suppressed PTHrP expression in MDA-MB-231 cells by RNA interference and analyzed changes in gene expression by microarray analysis. More than 200 genes showed altered

  2. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans

    DEFF Research Database (Denmark)

    Aslan, Derya; Dahl Andersen, Mille; Gede, Lene Bjerring;

    2012-01-01

    Intermittent low-dose treatment with parathyroid hormone (PTH) analogues has become widely used in the treatment of severe osteoporosis. During normal physiological conditions, PTH stimulates both bone formation and resorption, and in patients with primary hyperparathyroidism, bone loss is frequent...

  3. Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone.

    NARCIS (Netherlands)

    Abel, M. van; Hoenderop, J.G.J.; Kemp, J.W.C.M. van der; Friedlaender, M.M.; Leeuwen, J.P.P.M. van; Bindels, R.J.M.

    2005-01-01

    BACKGROUND: The kidney is one of the affected organs involved in the clinical symptoms of parathyroid hormone (PTH)-related disorders, like primary hyperparathyroidism and familial hypocalciuric hypercalcemia. The molecular mechanism(s) underlying alterations in renal Ca(2+) handling in these disord

  4. Greater seasonal cycling of 25-hydroxyvitamin D is associated with increased parathyroid hormone and bone resorption

    NARCIS (Netherlands)

    Darling, A L; Hart, K H; Gibbs, M A; Gossiel, F; Kantermann, T; Horton, K; Johnsen, S; Berry, J L; Skene, D J; Eastell, R; Vieth, R; Lanham-New, S A

    2014-01-01

    SUMMARY: This analysis assessed whether seasonal change in 25-hydroxyvitamin D concentration was associated with bone resorption, as evidenced by serum parathyroid hormone and C-terminal telopeptide concentrations. The main finding was that increased seasonal fluctuation in 25-hydroxyvitamin D was a

  5. A threshold for low-protein-diet-induced elevations in parathyroid hormone

    DEFF Research Database (Denmark)

    Kerstetter, J E; Svastisalee, C M; Caseria, D M;

    2000-01-01

    We reported previously that lowering dietary protein intake in young healthy women to 0.7 g/kg depressed intestinal calcium absorption and was accompanied by elevations in parathyroid hormone (PTH). Moderate amounts of dietary protein (1.0 g/kg) did not appear to perturb calcium homeostasis....

  6. Cinacalcet for hypercalcemia caused by pulmonary squamous cell carcinoma producing parathyroid hormone-related Peptide

    NARCIS (Netherlands)

    Bech, A.; Smolders, K.; Telting, D.; Boer, H. de

    2012-01-01

    BACKGROUND: Current treatments for hypercalcemia caused by lung cell carcinomas producing parathyroid hormone-related peptide (PTH-rp) have limited efficacy, probably because of their lack of effect on PTH-rp secretion. In this case study we explored the efficacy of the calcimimetic cinacalcet as su

  7. The control of calcium metabolism by parathyroid hormone, calcitonin and vitamin D

    Science.gov (United States)

    Potts, J. T., Jr.

    1976-01-01

    Advances in analysis of chemistry and physiology of parathyroid hormone, calcitonin, and Vitamin D are described along with development of techniques in radioassay methods. Emphasis is placed on assessment of normal and abnormal patterns of secretion of these hormones in specific relation to the physiological adaptations of weightlessness and space flight. Related diseases that involve perturbations in normal skeletal and calcium homeostasis are also considered.

  8. Cinacalcet Effectively Reduces Parathyroid Hormone Secretion and Gland Volume Regardless of Pretreatment Gland Size in Patients with Secondary Hyperparathyroidism

    Science.gov (United States)

    Komaba, Hirotaka; Nakanishi, Shohei; Fujimori, Akira; Tanaka, Motoko; Shin, Jeongsoo; Shibuya, Koji; Nishioka, Masato; Hasegawa, Hirohito; Kurosawa, Takeshi

    2010-01-01

    Background and objectives: Cinacalcet is effective in reducing serum parathyroid hormone (PTH) in patients with secondary hyperparathyroidism. However, it has not been proven whether parathyroid gland size predicts response to therapy and whether cinacalcet is capable of inducing a reduction in parathyroid volume. Design, setting, participants, & measurements: This 52-week, multicenter, open-label study enrolled hemodialysis patients with moderate to severe secondary hyperparathyroidism (intact PTH >300 pg/ml). Doses of cinacalcet were adjusted between 25 and 100 mg to achieve intact PTH 30% reduction from baseline (88 versus 78%), but this was not statistically significant. Cinacalcet therapy also resulted in a significant reduction in parathyroid gland volume regardless of pretreatment size, which was in sharp contrast to historical controls (n = 87) where parathyroid gland volume progressively increased with traditional therapy alone. Conclusions: Cinacalcet effectively decreases serum PTH levels and concomitantly reduces parathyroid gland volume, even in patients with marked parathyroid hyperplasia. PMID:20798251

  9. Sampling and storage conditions influencing the measurement of parathyroid hormone in blood samples: a systematic review.

    Science.gov (United States)

    Hanon, Elodie A; Sturgeon, Catharine M; Lamb, Edmund J

    2013-10-01

    Parathyroid hormone (PTH) is relatively unstable: optimisation of pre-analytical conditions, including specimen type, sampling time and storage conditions, is essential. We have undertaken a systematic review of these pre-analytical conditions. An electronic search of the PubMed, Embase, Cochrane, Centre for Research and Dissemination and Bandolier databases was undertaken. Of 5511 papers identified, 96 underwent full text review, of which 83 were finally included. At room temperature PTH was stable in ethylenediaminetetraacetic acid (EDTA) preserved whole blood for at least 24 h and in EDTA plasma for at least 48 h after venepuncture. Losses were observed in clotted blood samples after 3 h and in serum after 2 h. At 4°C PTH was more stable in EDTA plasma (at least 72 h) than serum (at least 24 h). Central venous PTH concentrations were higher than peripheral venous concentrations. In the northern hemisphere, PTH concentrations were higher in winter than summer. PTH has a circadian rhythm characterised by a nocturnal acrophase and mid-morning nadir. Data related to frozen storage of PTH (-20°C and -80°C) were limited and contradictory. We recommend that blood samples for PTH measurement should be taken into tubes containing EDTA, ideally between 10:00 and 16:00, and plasma separated within 24 h of venepuncture. Plasma samples should be stored at 4°C and analysed within 72 h of venepuncture. Particular regard must be paid to the venepuncture site when interpreting PTH concentration. Further research is required to clarify the suitability of freezing samples prior to PTH measurement.

  10. A mathematical/physiological model of parathyroid hormone secretion in response to blood-ionized calcium lowering in vivo

    DEFF Research Database (Denmark)

    Momsen, G; Schwarz, P

    1997-01-01

    patients with abnormal and normal parathyroid tissue. The fitted parameters showed no significant differences between patients with insulin-dependent diabetes mellitus and controls. In primary hyperparathyroidism, the parathyroid hormone production and steady-state transport across the cell membrane were...

  11. Correlation between blood pressure and vitamin D, parathyroid hormone, calcium, and phosphorus in sedentary postmenopausal women

    Directory of Open Access Journals (Sweden)

    Bakhtyar Tartibian

    2016-11-01

    Full Text Available Background: Hypertension is one of the major risk factors for cardiovascular disease. The studies show that factors such as vitamin D, parathyroid hormone, calcium and phosphorus are involved in the regulation of blood pressure. The purpose of this study was to investigate the relationship between blood pressure with vitamin D, parathyroid hormone, calcium, and phosphorus in sedentary postmenopausal women. Methods: This investigation is in the form of a descriptive correlational study that was performed in September 2015. The statistical population was all healthy and sedentary postmenopausal women 50-70 years old in Urmia city, Iran. Fifty-four sedentary postmenopausal women were selected as subjects and voluntarily and bona fide participated in this study. General and anthropometric characteristics of height, weight, and body mass index (BMI in subjects were measured by wall-meter with an accuracy of one millimeter, digital scale with precision of 100 g (Beurer, Germany, and dual emission X-ray absorptiometry (DXA (Hologic, USA machines, respectively. Diastolic and systolic blood pressure was measured by indicator machine. Serum levels of vitamin D, parathyroid hormone, calcium, and phosphorus were measured by ELISA and Auto-analyzer (BT 1500, Biotecnica, Italy machines, respectively. Results: The mean general, anthropometric, and physiological/laboratory variables of subjects were: age 54 yr, height 156 cm; weight 72 kg; BMI 29 kg/m2; systolic and diastolic blood pressure 76.20 and 110.70, respectively; vitamin D 25.22 ng/ml, parathyroid hormone 33.29 ng/ml, calcium 9.44 ng/ml, and phosphorus 3.26 ng/ml. Moreover, results showed that there was no significant relationship between systolic and diastolic blood pressure and vitamin D (P>0.581 and P>0.619, respectively. There was no significant relationship between systolic and diastolic blood pressure and parathyroid hormone (P>0.623 and P>0.341, respectively. There was no significant

  12. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  13. Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health

    DEFF Research Database (Denmark)

    L.S., Bislev; T., Sikjaer; L., Rolighed

    2015-01-01

    Emerging evidence suggests a stimulating effect of parathyroid hormone (PTH) on the reninnullangiotensinnullaldosterone system (RAAS). In primary hyperparathyroidism, chronic-elevated PTH levels seem to stimulate the RAAS which may explain the increased risk of cardiovascular disease (CVD). In ad...

  14. Serum phosphorus reduction in dialysis patients treated with cinacalcet for secondary hyperparathyroidism results mainly from parathyroid hormone reduction

    DEFF Research Database (Denmark)

    Zitt, Emanuel; Fouque, Denis; Jacobson, Stefan H

    2013-01-01

    The calcimimetic cinacalcet lowers parathyroid hormone (PTH), calcium (Ca) and phosphorus (P) in dialysis patients with secondary hyperparathyroidism (SHPT). We explored serum P changes in dialysis patients treated with cinacalcet, while controlling for vitamin D sterol and phosphate binder (PB...

  15. Using the failure mode and effects analysis model to improve parathyroid hormone and adrenocorticotropic hormone testing

    Directory of Open Access Journals (Sweden)

    Magnezi R

    2016-12-01

    Full Text Available Racheli Magnezi,1 Asaf Hemi,1 Rina Hemi2 1Department of Management, Public Health and Health Systems Management Program, Bar Ilan University, Ramat Gan, 2Endocrine Service Unit, Sheba Medical Center, Tel Aviv, Israel Background: Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources.Methods: A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures.Results: A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN. For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1.Conclusion: This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. Keywords: failure mode

  16. Parathyroid hormone levels in pubertal uremic adolescents treated with growth hormone.

    Science.gov (United States)

    Picca, Stefano; Cappa, Marco; Martinez, Chiara; Moges, Seyoum Ido; Osborn, John; Perfumo, Francesco; Ardissino, Gianluigi; Bonaudo, Roberto; Montini, Giovanni; Rizzoni, Gianfranco

    2004-01-01

    We have previously described severe hyperparathyroidism during the pubertal growth spurt in three uremic adolescents treated with recombinant human growth hormone (rhGH). Here we investigate the possible role of puberty in the genesis of hyperparathyroidism during rhGH treatment of a large cohort of patients. Data from 67 uremic patients treated with rhGH from five Italian pediatric nephrology centers were retrospectively recorded every 3 months starting 1 year before rhGH administration. The mean (+/-SD) rhGH treatment observation period was 19.9+/-5.9 months. The mean age at the start of rhGH treatment was 8.3+/-3.6 years. Of the 67 patients, 15 reached pubertal stage 2 during the 1st year of rhGH treatment and 12 of these 15 progressed to pubertal stage 3. The relative increase in parathyroid hormone (PTH) levels after rhGH initiation was greater in pubertal [1.95, 95% confidence interval (CI) 1.43-2.66] than in prepubertal patients (1.19, 95% CI 1.01-1.40). Increases in PTH levels were significantly different between the two groups (Delta=1.64, 95% CI 1.16-3.19, P=0.007). Multiple regression analysis showed an inverse correlation between PTH and calcium levels and a positive correlation between PTH and pubertal stage 3. There was no correlation with phosphate levels and calcitriol dosage. In conclusion, these results suggest that in uremic adolescents treated with rhGH puberty may influence PTH levels.

  17. Uremic Restless Legs Syndrome (RLS and Sleep Quality in Patients With End-Stage Renal Disease on Hemodialysis: Potential Role of Homocysteine and Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Katrin Gade

    2013-10-01

    Full Text Available Background: The aetiology of uremic restless legs syndrome (RLS remains unclear. Our research investigated whether an elevated plasma concentration of the excitatory amino acid homocysteine might be associated with RLS occurrence in patients with chronic renal insufficiency on hemodialysis. Methods: Total plasma homocysteine as well as creatinine, urea, folate, parathyroid hormone, hemoglobin, iron, ferritin, phosphate, calcium, magnesium, and albumin levels were compared between 26 RLS-affected (RLSpos and 26 non-affected (RLSneg patients on chronic hemodialysis. We further compared subjective sleep quality between RLSpos and RLSneg patients using the Pittsburgh-Sleep-Quality-Index and investigated possible relationships between laboratory parameters and sleep quality. Results: Taking individual albumin concentrations into account, a significant positive correlation between total plasma homocysteine and RLS occurrence was observed (r= 0.246; p=0.045. Sleep quality was significantly more reduced in RLSpos compared to RLSneg patients and RLS severity correlated positively with impairment of sleep quality. Bad sleep quality in all patients was associated with higher concentrations of parathyroid hormone. Conclusion: Our results suggest a possible aetiological role of homocysteine in uremic RLS. They confirm that uremic RLS is an important factor causing sleep impairment in patients on hemodialysis. Higher parathyroid hormone levels might also be associated with bad sleep quality in these patients.

  18. Adult onset pseudohypoparathyroidism type-1b with normal phosphaturic response to exogenous parathyroid hormone

    Directory of Open Access Journals (Sweden)

    Sandeep Kharb

    2011-01-01

    Full Text Available Pseudohypoparathyroidism type-1b is a hereditary disorder of clinical hypoparathyroidism without AHO phenotype, characterized by blunted nephrogenous cyclic-AMP (cAMP response to exogenous parathyroid hormone (PTH. Here we report a young adult presenting with hypocalcemic tetany with raised PTH levels. His urinary cAMP response to exogenous PTH (recombinant 1-34 was blunted; however, phosphaturic response was normal.

  19. A Naturally Occurring Isoform Inhibits Parathyroid Hormone Receptor Trafficking and Signaling

    OpenAIRE

    Alonso, Ver?nica; Ardura, Juan A; WANG Bin; Sneddon, W Bruce; Peter A Friedman

    2010-01-01

    Parathyroid hormone (PTH) regulates calcium homeostasis and bone remodeling through its cognitive receptor (PTHR). We describe here a PTHR isoform harboring an in-frame 42-bp deletion of exon 14 (?e14-PTHR) that encodes transmembrane domain 7. ?e14-PTHR was detected in human kidney and buccal epithelial cells. We characterized its topology, cellular localization, and signaling, as well as its interactions with PTHR. The C-terminus of the ?e14-PTHR is extracellular, and cell surface expression...

  20. Parathyroid hormone-related protein and regulation of cell survival in the kidney.

    Science.gov (United States)

    Kramann, Rafael; Schneider, Rebekka K

    2013-05-01

    Parathyroid hormone-related protein (PTHrP) is a pleiotropic factor with multiple physiological functions in morphogenesis, cell proliferation, differentiation, apoptosis, and calcium homeostasis. In the kidney, PTHrP is known to be expressed abundantly and to be upregulated in various experimental nephropathies, showing growth-modulatory and proinflammatory properties. Ardura et al. demonstrate a possible link between PTHrP-induced Runx2 expression and an antiapoptotic effect in tubular epithelial cells.

  1. Development of a C-terminal-region-specific radioimmunoassay of parathyroid hormone-related protein

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Hiroyuki; Tsuchiya, Masumi; Adachi, Ryoji; Horikawa, Shuji; Tanaka, Shuichi; Tachibana, Seiji (Daiichi Radioisotope Labs. Ltd., Tokyo (Japan))

    1992-04-01

    Few data are published regarding the molecular forms or concentrations of circulating and urinary parathyroid hormone-related protein (PTHrP) in normal subjects and patients with humoral hypercalcemia of malignancy (HHM). We have developed a C-terminal-region-specific radioimmunoassay for human PTHrP 109-141 (C-PTHrP radioimmunoassay) using a sheep antiserum immunized with a novel synthetic human PTHrP 109-141 for immunogen and a novel synthetic [Tyr[sup 108

  2. Developmental cues for bone formation from parathyroid hormone and parathyroid hormone-related protein in an ex vivo organotypic culture system of embryonic chick femora.

    Science.gov (United States)

    Smith, Emma L; Kanczler, Janos M; Roberts, Carol A; Oreffo, Richard O C

    2012-12-01

    Enhancement and application of our understanding of skeletal developmental biology is critical to developing tissue engineering approaches to bone repair. We propose that use of the developing embryonic femur as a model to further understand skeletogenesis, and the effects of key differentiation agents, will aid our understanding of the developing bone niche and inform bone reparation. We have used a three-dimensional organotypic culture system of embryonic chick femora to investigate the effects of two key skeletal differentiation agents, parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP), on bone and cartilage development, using a combination of microcomputed tomography and histological analysis to assess tissue formation and structure, and cellular behavior. Stimulation of embryonic day 11 (E11) organotypic femur cultures with PTH and PTHrP initiated osteogenesis. Bone formation was enhanced, with increased collagen I and STRO-1 expression, and cartilage was reduced, with decreased chondrocyte proliferation, collagen II expression, and glycosaminoglycan levels. This study demonstrates the successful use of organotypic chick femur cultures as a model for bone development, evidenced by the ability of exogenous bioactive molecules to differentially modulate bone and cartilage formation. The organotypic model outlined provides a tool for analyzing key temporal stages of bone and cartilage development, providing a paradigm for translation of bone development to improve scaffolds and skeletal stem cell treatments for skeletal regenerative medicine.

  3. Oral phosphorus supplementation secondarily increases circulating fibroblast growth factor 23 levels at least partially via stimulation of parathyroid hormone secretion.

    Science.gov (United States)

    Takasugi, Satoshi; Akutsu, Miho; Nagata, Masashi

    2014-01-01

    Oral phosphorus supplementation stimulates fibroblast growth factor 23 (FGF23) secretion; however, the underlying mechanism remains unclear. The aim of this study was to investigate the involvement of parathyroid hormone (PTH) in increased plasma FGF23 levels after oral phosphorus supplementation in rats. Rats received single dose of phosphate with concomitant subcutaneous injection of saline or human PTH (1-34) after treatment with cinacalcet or its vehicle. Cinacalcet is a drug that acts as an allosteric activator of the calcium-sensing receptor and reduces PTH secretion. Plasma phosphorus and PTH levels significantly increased 1 h after oral phosphorus administration and returned to basal levels within 3 h, while plasma FGF23 levels did not change up to 2 h post-treatment, but rather significantly increased at 3 h after administration and maintained higher levels for at least 6 h compared with the 0 time point. Plasma PTH and FGF23 levels were significantly lower in the cinacalcet-treated rats than in the vehicle-treated rats. Plasma phosphorus levels were significantly higher in the cinacalcet-treated rats than in the vehicle-treated rats at 2, 3, 4, and 6 h after oral phosphorus administration. Furthermore, rats treated with cinacalcet+human PTH (1-34) showed transiently but significantly higher plasma FGF23 levels at 3 h after oral phosphorus administration compared with cinacalcet-treated rats. These results suggest that oral phosphorus supplementation secondarily increases circulating FGF23 levels at least partially by stimulation of PTH secretion.

  4. Parathyroid hyperplasia

    Science.gov (United States)

    Enlarged parathyroid glands; Osteoporosis - parathyroid hyperplasia; Bone thinning - parathyroid hyperplasia; Osteopenia - parathyroid hyperplasia; High calcium level - parathyroid hyperplasia; Chronic ...

  5. Parathyroid glands (image)

    Science.gov (United States)

    The 4 parathyroid glands are located near or attached to the back side of the thyroid gland and produce pararthyroid hormone (PTH). Parathyroid hormone regulates calcium, phosphorus, and magnesium balance within ...

  6. Nonlinear dynamics in pulsatile secretion of parathyroid hormone in normal human subjects

    Science.gov (United States)

    Prank, Klaus; Harms, Heio; Brabant, Georg; Hesch, Rolf-Dieter; Dämmig, Matthias; Mitschke, Fedor

    1995-03-01

    In many biological systems, information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. In contrast to the dogma of endocrine homeostasis, it could be shown that the biological information in hormonal networks is not only present as a constant hormone concentration in the circulation pool. Recently, it has become apparent that hormone pulses contribute to this hormonal pool, which modulates the responsiveness of receptors within the cell membrane by regulation of the receptor synthesis, movement within the membrane layer, coupling to signal transduction proteins and internalization. Phase space analysis of dynamic parathyroid hormone (PTH) secretion allowed the definition of a (in comparison to normal subjects) relatively quiet ``low dynamic'' secretory pattern in osteoporosis, and a ``high dynamic'' state in hyperparathyroidism. We now investigate whether this pulsatile secretion of PTH in healthy men exhibits characteristics of nonlinear determinism. Our findings suggest that this is conceivable, although on the basis of presently available data and techniques, no proof can be established. Nevertheless, pulsatile secretion of PTH might be a first example of nonlinear deterministic dynamics in an apparently irregular hormonal rhythm in human physiology.

  7. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    Science.gov (United States)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  8. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    Science.gov (United States)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  9. The serum level of 25-hydroxyvitamin D for maximal suppression of parathyroid hormone in children: the relationship between 25-hydroxyvitamin D and parathyroid hormone

    Science.gov (United States)

    Kang, Jung In; Lee, Yoon Suk; Han, Ye Jin; Kong, Kyoung Ae

    2017-01-01

    Purpose Serum level of 25-hydroxyvitamin D (25-OHD) is considered as the most appropriate marker of vitamin D status. However, only a few studies have investigated the relationship between 25-OHD and parathyroid hormone (PTH) in children. To this end, this study was aimed at evaluating the lowest 25-OHD level that suppresses the production of parathyroid hormone in children. Methods A retrospective record review was performed for children aged 0.2 to 18 years (n=193; 106 boys and 87 girls) who underwent simultaneous measurements of serum 25-OHD and PTH levels between January 2010 and June 2014. Results The inflection point of serum 25-OHD level for maximal suppression of PTH was at 18.0 ng/mL (95% confidence interval, 14.3–21.7 ng/mL). The median PTH level of the children with 25-OHD levels of <18.0 ng/mL was higher than that of children with 25-OHD levels ≥ 18.0 ng/mL (P<0.0001). The median calcium level of children with 25-OHD levels<18.0 ng/mL was lower than that of children with 25-OHD levels≥18.0 ng/mL (P=0.0001). The frequency of hyperparathyroidism was higher in the children with 25-OHD levels<18.0 ng/mL than in the children with 25-OHD levels≥18.0 ng/mL (P<0.0001). Hypocalcemia was more prevalent in the children with 25-OHD levels<18.0 ng/mL than in the children with 25-OHD levels≥18.0 ng/mL (P<0.0001). Conclusion These data suggest that a vitamin D level of 18.0 ng/mL could be the criterion for 25-OHD deficiency in children at the inflection point of the maximal suppression of PTH. PMID:28289433

  10. Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health

    DEFF Research Database (Denmark)

    L.S., Bislev; T., Sikjaer; L., Rolighed

    2015-01-01

    Emerging evidence suggests a stimulating effect of parathyroid hormone (PTH) on the reninnullangiotensinnullaldosterone system (RAAS). In primary hyperparathyroidism, chronic-elevated PTH levels seem to stimulate the RAAS which may explain the increased risk of cardiovascular disease (CVD...... hyperparathyroidism due to increased renal calcium excretion. Moreover, the angiotensin II receptor is expressed by human parathyroid tissue, and angiotensin may therefore directly stimulates PTH secretion. An increased bone loss is found in patients with hyperaldosteronism. The angiotensin II receptor seems main...

  11. Hair-cycle-dependent expression of parathyroid hormone-related protein and its type I receptor: evidence for regulation at the anagen to catagen transition.

    Science.gov (United States)

    Cho, Yong Mee; Woodard, Grant L; Dunbar, Maureen; Gocken, Todd; Jimènez, Juan A; Foley, John

    2003-05-01

    The humoral hypercalcemia factor parathyroid hormone-related protein is a paracrine-signaling molecule that regulates the development of several organ systems, including the skin. In pathologic circumstances such as hypercalcemia and in development, parathyroid hormone-related protein signaling appears to be mediated by the type I parathyroid hormone/parathyroid hormone-related protein receptor. In order to clarify the role of the ligand and receptor pair in cutaneous biology, gene expression was monitored in a series of murine skin samples ranging from embryonic day 14 to 2 y with in situ hybridization and RNase protection. In all samples, high levels of parathyroid hormone-related protein transcripts were exclusively expressed in the developing and adult hair follicle but were not observed in the interfollicular epidermis. In the adult, parathyroid hormone-related protein mRNA expression was dynamically regulated as a function of the murine hair cycle in a way similar to other signaling molecules that regulate the anagen to catagen transition. PTH receptor transcripts were abundantly expressed in the developing dermis. In the adult skin, PTH receptor mRNA was markedly reduced, but again demonstrated hair-cycle-dependent expression. The dorsal skin of the keratin 14-parathyroid hormone-related protein mouse was used to evaluate the impact of overexpression of the peptide on the murine hair cycle. All types of hair were 30-40% shorter in adult keratin 14-parathyroid hormone-related protein mice as compared with wild-type littermates. This appeared to result from a premature entry into the catagen phase of the hair cycle. Finally, the relationship between parathyroid hormone-related protein signaling and other growth factors that regulate the hair cycle was examined by cross-breeding experiments employing keratin 14-parathyroid hormone-related protein mice and fibroblast growth factor-5-knockout mice. It appears that parathyroid hormone-related protein and

  12. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric (Van Andel); (Mayo)

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  13. Elevated parathyroid hormone-related protein and hypercalcemia in two dogs with schistosomiasis.

    Science.gov (United States)

    Fradkin, J M; Braniecki, A M; Craig, T M; Ramiro-Ibanez, F; Rogers, K S; Zoran, D L

    2001-01-01

    Two adult dogs were evaluated for hypercalcemia. Diagnostic evaluation identified elevated parathyroid hormone-related protein (PTHrP) and presumptive humoral hypercalcemia of malignancy. At necropsy, schistosomiasis was diagnosed. North American schistosomiasis is caused by Heterobilharzia americana. Clinical findings may include dermatitis, coughing, diarrhea, and anorexia. Clinicopathological findings may include hypercalcemia, hyperglobulinemia, hypoalbuminemia, anemia, and eosinophilia. Diagnosis by fecal examination is difficult. Praziquantel or fenbendazole treatment may be curative or palliative. These are the first reported cases of hypercalcemia with elevated PTHrP in animals without diagnosed malignancy. Elevation of PTHrP has not been previously reported in hypercalcemic humans or in animals with granulomatous inflammation.

  14. Parathyroid hormone-related protein-induced hypercalcemia due to osteosarcoma in a cat.

    Science.gov (United States)

    Yuki, Masashi; Nitta, Makiko; Omachi, Tetsuo

    2015-03-01

    A 15-year-old castrated male mixed-breed cat was presented with a history of sarcoma of the distal right hind limb. Biochemical analysis revealed increased concentrations of blood urea, creatinine, total calcium, ionized calcium, and parathyroid hormone-related protein (PTHrP). The mass was removed surgically by amputation of the hind limb. Osteosarcoma was diagnosed based on histopathologic examination. All abnormal serum analyte concentrations improved immediately after surgery, including azotemia, total calcium, ionized calcium, and PTHrP. The biochemical results were attributed to osteosarcoma causing PTHrP-induced hypercalcemia. © 2015 American Society for Veterinary Clinical Pathology.

  15. Parathyroid hormone related protein in oral squamous cell carcinomas invading the mandible.

    OpenAIRE

    Dunne, F P; Bowden, S.J; Brown, J. S.; Ratcliffe, W. A.; Browne, R M

    1995-01-01

    AIM--To assess parathyroid hormone related protein (PTHrP) as a candidate biochemical marker of invasion of the mandible by oral squamous cell carcinoma. METHODS--Tumour PTHrP concentrations were quantitated by immunoassay, and PTHrP was detected by immunohistochemistry, in a cohort of 24 primary squamous cell carcinomas of the mandible. RESULTS--PTHrP was identified in all tumours examined, but no correlation was found between scores of the intensity and/or consistency of staining or tumour ...

  16. Induction of thermal and mechanical hypersensitivity by parathyroid hormone-related peptide through upregulation of TRPV1 function and trafficking.

    Science.gov (United States)

    Mickle, Aaron D; Shepherd, Andrew J; Loo, Lipin; Mohapatra, Durga P

    2015-09-01

    The neurobiological mechanisms underlying chronic pain associated with cancers are not well understood. It has been hypothesized that factors specifically elevated in the tumor microenvironment sensitize adjacent nociceptive afferents. We show that parathyroid hormone-related peptide (PTHrP), which is found at elevated levels in the tumor microenvironment of advanced breast and prostate cancers, is a critical modulator of sensory neurons. Intraplantar injection of PTHrP led to the development of thermal and mechanical hypersensitivity in both male and female mice, which were absent in mice lacking functional transient receptor potential vanilloid-1 (TRPV1). The PTHrP treatment of cultured mouse sensory neurons enhanced action potential firing, and increased TRPV1 activation, which was dependent on protein kinase C (PKC) activity. Parathyroid hormone-related peptide induced robust potentiation of TRPV1 activation and enhancement of neuronal firing at mild acidic pH that is relevant to acidic tumor microenvironment. We also observed an increase in plasma membrane TRPV1 protein levels after exposure to PTHrP, leading to upregulation in the proportion of TRPV1-responsive neurons, which was dependent on the activity of PKC and Src kinases. Furthermore, co-injection of PKC or Src inhibitors attenuated PTHrP-induced thermal but not mechanical hypersensitivity. Altogether, our results suggest that PTHrP and mild acidic conditions could induce constitutive pathological activation of sensory neurons through upregulation of TRPV1 function and trafficking, which could serve as a mechanism for peripheral sensitization of nociceptive afferents in the tumor microenvironment.

  17. Localization of parathyroid hormone-related protein in the preimplantation mouse embryo is associated with events of blastocyst hatching.

    Science.gov (United States)

    Erbach, Gregory T; Biggers, John D; Manning, Peter C; Nowak, Romana A

    2013-08-01

    To determine the pattern of expression of parathyroid hormone-related protein (PTHrP) and its receptor, parathyroid hormone receptor 1 (PTHR1), in mouse embryos in different stages of preimplantation development. Embryos were cultured from the pronuclear zygote stage and harvested as 2-cell, 4-cell and 8-cell embryos, morulae and blastocysts. RT-PCR was carried out on mRNAs of these and of trophoblast outgrowths for detection of PTHrP and PTHR1. Whole mounted embryos intact or stripped of zonae pellucidae were immunofluorescently stained for PTHrP and PTH receptor and observed with confocal microscopy. PTHrP mRNA was present in the pronuclear zygote, not present in 2-cell, 4-cell and uncompacted 8-cell embryos, present in the 8-cell compacting embryo, and not detected in 16-cell morulae or blastocysts. The mRNA was present in trophoblasts growing on fibronectin beds. mRNA for PTHR1 was detected in the pronuclear zygote, then undetected until the compacted 8-cell stage and thereafter. PTH receptor protein was observed in 2-cell embryos, morulae and in the inner cell mass and trophectoderm of blastocysts. PTHrP was observed dispersed in the cytoplasm of 2-cell, 4-cell and uncompacted 8-cell embryos, and in distinct foci near the nuclei of morulae. In blastocysts, PTHrP appeared on the apical surface of only trophoblast cells which had extruded from the zona pellucida. Fully hatched blastocysts expressed the protein on the apical side of all trophoblasts. When morulae were prematurely stripped of their zonae, PTHrP was observed on the embryos' outer surface. PTHrP protein is expressed throughout early embryo development, and its receptor PTHR1 is expressed from the morula stage. Embryo hatching is associated with translocation of PTHrP to the apical plasma membrane of trophoblasts. PTHrP may thus have autocrine effects on the developing blastocyst.

  18. Changes in serum parathyroid hormone-related protein in breastfed preterm infants.

    Science.gov (United States)

    Tov, Amir Ben; Mandel, Dror; Weissman, Yossef; Dollberg, Shaul; Taxir, Tali; Lubetzky, Ronit

    2012-02-01

    Parathyroid hormone-related protein (PTHrP) has the ability to activate parathyroid hormone receptors and cause hypercalcemia. In a previous study we have demonstrated high concentrations of PTHrP in both term and preterm human milk (HM). PTHrP intestinal absorption and its influence upon calcium homeostasis of the preterm infant have not been studied yet. This study assessed the correlation between PTHrP concentrations in preterm HM and PTHrP in maternal and neonatal serum. We collected samples of expressed HM obtained from 16 mothers of preterm infants (25-34 weeks of gestation) and drew blood samples from both mothers and infants on postpartum days 2 and 10. PTHrP concentrations were measured by two-site immunoradiometric assay. Blood calcium (Ca), phosphorus (P), and alkaline phosphatase (ALP) concentrations were also measured. Neither maternal nor neonatal PTHrP serum concentrations varied significantly after 10 days of breastfeeding. There was a correlation between PTHrP concentrations in maternal serum and HM concentrations (R² = 0.24, p = 0.04), but not between HM and neonatal serum concentrations or between PTHrP concentrations in HM and preterm serum concentrations of Ca, P, and ALP. Despite high concentrations of PTHrP in preterm HM, serum concentrations of PTHrP of breastfed preterm infants did not increase over time. There was no correlation between PTHrP concentrations in HM and neonatal serum Ca concentration.

  19. Parathyroid hormone-related protein: an unusual mechanism for hypercalcemia in sarcoidosis.

    Science.gov (United States)

    Krikorian, Armand; Shah, Sapna; Wasman, Jay

    2011-01-01

    To describe parathyroid hormone-related protein (PTHrP) as a mediator of hypercalcemia in sarcoidosis. We present a detailed case report including history, physical, laboratory testing, pathology findings, and follow-up data over 2 years. We also propose a possible mechanism for PTHrP-mediated hypercalcemia in sarcoidosis. A 56-year-old man presented with abdominal pain, fatigue, and excess thirst. Routine laboratory testing demonstrated severe hypercalcemia. The patient was admitted for treatment and work-up. Inpatient work-up was significant for suppressed parathyroid hormone, low 25-hydroxyvitamin D, normal 1,25-dihydroxyvitamin D, and elevated PTHrP. The patient was treated for hypercalcemia and discharged for follow-up. Malignancy screening included computed tomography of the chest, which revealed parenchymal nodules and diffuse lymphadenopathy. Biopsy revealed nonnecrotizing granulomatous inflammation with positive PTHrP staining by immunohistochemistry. After treatment with intravenous hydration and glucocorticoids, the hypercalcemia resolved and on subsequent follow-up, PTHrP levels had normalized to 0.5 pmol/L. PTHrP may be a possible mediator of hypercalcemia in sarcoidosis. The differential diagnosis of PTHrP-induced hypercalcemia should include sarcoidosis, and further research is needed to establish the incidence and source of PTHrP in sarcoidosis.

  20. Endogenous parathyroid hormone-related protein compensates for the absence of parathyroid hormone in promoting bone accrual in vivo in a model of bone marrow ablation.

    Science.gov (United States)

    Zhu, Qi; Zhou, Xichao; Zhu, Min; Wang, Qian; Goltzman, David; Karaplis, Andrew; Miao, Dengshun

    2013-09-01

    To assess the effect of hypoparathyroidism on osteogenesis and bone turnover in vivo, bone marrow ablation (BMXs) were performed in tibias of 8-week-old wild-type and parathyroid hormone-null (PTH(-/-)) mice and newly formed bone tissue was analyzed from 5 days to 3 weeks after BMX. At 1 week after BMX, trabecular bone volume, osteoblast numbers, alkaline phosphatase-positive areas, type I collagen-positive areas, PTH receptor-positive areas, calcium sensing receptor-positive areas, and expression of bone formation-related genes were all decreased significantly in the diaphyseal regions of bones of PTH(-/-) mice compared to wild-type mice. In contrast, by 2 weeks after BMX, all parameters related to osteoblastic bone accrual were increased significantly in PTH(-/-) mice. At 5 days after BMX, active tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts had appeared in wild-type mice but were undetectable in PTH(-/-) mice, Both the ratio of mRNA levels of receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) and TRAP-positive osteoclast surface were still reduced in PTH(-/-) mice at 1 week but were increased by 2 weeks after BMX. The expression levels of parathyroid hormone-related protein (PTHrP) at both mRNA and protein levels were upregulated significantly at 1 week and more dramatically at 2 weeks after BMX in PTH(-/-) mice. To determine whether the increased newly formed bones in PTH(-/-) mice at 2 weeks after BMX resulted from the compensatory action of PTHrP, PTH(-/-) PTHrP(+/-) mice were generated and newly formed bone tissue was compared in these mice with PTH(-/-) and wild-type mice at 2 weeks after BMX. All parameters related to osteoblastic bone formation and osteoclastic bone resorption were reduced significantly in PTH(-/-) PTHrP(+/-) mice compared to PTH(-/-) mice. These results demonstrate that PTH deficiency itself impairs osteogenesis, osteoclastogenesis, and osteoclastic bone resorption, whereas subsequent upregulation of PTHr

  1. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment.

  2. Knockdown of parathyroid hormone related protein in smooth muscle cells alters renal hemodynamics but not blood pressure.

    Science.gov (United States)

    Raison, Denis; Coquard, Catherine; Hochane, Mazène; Steger, Jacques; Massfelder, Thierry; Moulin, Bruno; Karaplis, Andrew C; Metzger, Daniel; Chambon, Pierre; Helwig, Jean-Jacques; Barthelmebs, Mariette

    2013-08-01

    Parathyroid hormone-related protein (PTHrP) belongs to vasoactive factors that regulate blood pressure and renal hemodynamics both by reducing vascular tone and raising renin release. PTHrP is expressed in systemic and renal vasculature. Here, we wanted to assess the contribution of vascular smooth muscle cell endogenous PTHrP to the regulation of cardiovascular and renal functions. We generated a mouse strain (SMA-CreERT2/PTHrPL2/L2 or premutant PTHrPSM-/-), which allows temporally controlled, smooth muscle-targeted PTHrP knockdown in adult mice. Tamoxifen treatment induced efficient recombination of PTHrP-floxed alleles and decreased PTHrP expression in vascular and visceral smooth muscle cells of PTHrPSM-/- mice. Blood pressure remained unchanged in PTHrPSM-/- mice, but plasma renin concentration and creatinine clearance were reduced. Renal hemodynamics were further analyzed during clearance measurements in anesthetized mice. Conditional knockdown of PTHrP decreased renal plasma flow and glomerular filtration rate with concomitant reduction in filtration fraction. Similar measurements were repeated during acute saline volume expansion. Saline volume expansion induced a rise in renal plasma flow and reduced filtration fraction; both were blunted in PTHrPSM-/- mice leading to impaired diuresis. These findings show that endogenous vascular smooth muscle PTHrP controls renal hemodynamics under basal conditions, and it is an essential factor in renal vasodilation elicited by saline volume expansion.

  3. ALX 111: ALX1-11, parathyroid hormone (1-84) - NPS Allelix, PREOS, PTH, recombinant human parathyroid hormone, rhPTH (1-84).

    Science.gov (United States)

    2003-01-01

    ALX 111 [parathyroid hormone (1-84) - NPS Allelix, recombinant human parathyroid hormone, rhPTH (1-84), PREOS] is a full-length, recombinant human parathyroid hormone. It has potential as an anti-osteoporotic agent, due to its properties as a bone formation stimulant. This profile has been selected from R&D Insight, a pharmaceutical intelligence database produced by Adis International Ltd. It has been recommended that ALX 111 should be given for 1 to 2 years and may be given in combination with an antiresorptive agent, such as estrogen or a bisphosphonate. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. NPS harmaceuticals has signed an agreement with Bio-Imaging Technologies, which will provide all image handling and analysis for this trial. Until 1994, Allelix Biopharmaceuticals and Glaxo in Canada were involved in a joint venture to investigate the efficacy of ALX 111 in osteoporosis. Allelix was subsequently, until September 1998, collaborating with Astra of Sweden in developing ALX 111. Astra had acquired exclusive worldwide rights to ALX 111 and was responsible for development of the agent. However, Astra returned all rights to ALX 111 to Allelix as a result of its merger with Zeneca to form AstraZeneca. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. The phase III trial of ALX 111 for the treatment of osteoporosis has completed patient enrolment, and phase II trials have been completed in Canada and the Netherlands. The 18-month, phase III, multicentre, placebo-controlled trial (Treatment of Osteoporosis with

  4. Restoration of parathyroid function after change of phosphate binder from calcium carbonate to lanthanum carbonate in hemodialysis patients with suppressed serum parathyroid hormone.

    Science.gov (United States)

    Inaba, Masaaki; Okuno, Senji; Nagayama, Harumi; Yamada, Shinsuke; Ishimura, Eiji; Imanishi, Yasuo; Shoji, Shigeichi

    2015-03-01

    Control of phosphate is the most critical in the treatment of chronic kidney disease with mineral and bone disorder (CKD-MBD). Because calcium-containing phosphate binder to CKD patients is known to induce adynamic bone disease with ectopic calcification by increasing calcium load, we examined the effect of lanthanum carbonate (LaC), a non-calcium containing phosphate binder, to restore bone turnover in 27 hemodialysis patients with suppressed parathyroid function (serum intact parathyroid hormone [iPTH] ≦ 150 pg/mL). At the initiation of LaC administration, the dose of calcium-containing phosphate binder calcium carbonate (CaC) was withdrawn or reduced based on serum phosphate. After initiation of LaC administration, serum calcium and phosphate decreased significantly by 4 weeks, whereas whole PTH and iPTH increased. A significant and positive correlation between decreases of serum calcium, but not phosphate, with increases of whole PTH and iPTH, suggested that the decline in serum calcium with reduction of calcium load by LaC might increase parathyroid function. Serum bone resorption markers, such as serum tartrate-resistant acid phosphatase 5b, and N-telopeptide of type I collagen increased significantly by 4 weeks after LaC administration, which was followed by increases of serum bone formation markers including serum bone alkaline phosphatase, intact procollagen N-propeptide, and osteocalcin. Therefore, it was suggested that LaC attenuated CaC-induced suppression of parathyroid function and bone turnover by decreasing calcium load. In conclusion, replacement of CaC with LaC, either partially or totally, could increase parathyroid function and resultant bone turnover in hemodialysis patients with serum iPTH ≦ 150 pg/mL.

  5. Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life.

    Science.gov (United States)

    Hirai, Takao; Chagin, Andrei S; Kobayashi, Tatsuya; Mackem, Susan; Kronenberg, Henry M

    2011-01-04

    Parathyroid hormone (PTH)-related protein (PTHrP), regulated by Indian hedgehog and acting through the PTH/PTHrP receptor (PPR), is crucial for normal cartilage development. These observations suggest a possible role of PPR signaling in the postnatal growth plate; however, the role of PPR signaling in postnatal chondrocytes is unknown. In this study, we have generated tamoxifen-inducible and cartilage-specific PPR KO mice to evaluate the physiological role of PPR signaling in postnatal chondrocytes. We found that inactivation of the PPR in chondrocytes postnatally leads to accelerated differentiation of chondrocytes, followed by disappearance of the growth plate. We also observed an increase of TUNEL-positive cells and activities of caspase-3 and caspase-9 in the growth plate, along with a decrease in phosphorylation of Bad at Ser155 in postnatal PPR KO mice. Administration of a low-phosphate diet, which prevents apoptosis of chondrocytes, prevented the disappearance of the growth plate. Taken together, these observations suggest that the major consequences of PPR activation are similar in both the fetal and postnatal growth plates. Moreover, chondrocyte apoptosis through the activation of a mitochondrial pathway may be involved in the process of premature disappearance of the growth plate by postnatal inactivation of the PPR in chondrocytes.

  6. Enhanced Bone Morphogenetic Protein-2-Induced Ectopic and Orthotopic Bone Formation by Intermittent Parathyroid Hormone (1-34) Administration

    NARCIS (Netherlands)

    Kempen, Diederik H. R.; Lu, Lichun; Hefferan, Theresa E.; Creemers, Laura B.; Heijink, Andras; Maran, Avudaiappan; Dhert, Wouter J. A.; Yaszemski, Michael J.

    2010-01-01

    Bone morphogenetic proteins (BMPs) play a central role in local bone regeneration strategies, whereas the anabolic features of parathyroid hormone (PTH) are particularly appealing for the systemic treatment of generalized bone loss. The aim of the current study was to investigate whether local BMP-2

  7. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R.

    Science.gov (United States)

    Liu, Shuangxin; Zhu, Weiping; Li, Sijia; Ma, Jianchao; Zhang, Huitao; Li, Zhonghe; Zhang, Li; Zhang, Bin; Li, Zhuo; Liang, Xinling; Shi, Wei

    2016-02-01

    The vacuolar-type H+ adenosine triphosphatase (V-ATPase) plays an important role in cellular acidification and bone resorption by osteoclasts. However, the direct effect of bovine parathyroid hormone (bPTH) on V-ATPase has not yet been elucidated. The aim of the present study was to assess the effects of bPTH on V-ATPase and osteoclasts. Osteoclasts from bone marrow (BM)-derived monocytes of C57BL/6 mice were cultured with or without bPTH. The mRNA and protein expression levels of the V-ATPase a3-subunit and d2-subunit (by RT-qPCR and western blot analysis), V-ATPase activity (using the V type ATPase Activity Assay kit) and the bone resorption function of osteoclasts (by bone resorption assay) were examined following treatment with various concentrations of bPTH (0.1, 1.0, 10 and 100 ng/ml) alone or with bPTH and its inhibitor, bafilomycin A1. Furthermore, the expression of parathyroid hormone (PTH) receptors in osteoclasts was also detected. The results revealed that the mRNA and protein expression levels of V-ATPase a3-subunit and d2-subunit increased in a dose‑dependent manner, paralleling the level of bPTH present. In addition, an increase in the concentration of bPTH was accompanied by the increased resorption capability of osteoclasts, whereas bone resorption was inhibited in the presence of bafilomycin A1. In addition, we confirmed the existence of parathyroid hormone 1 receptor (PTH1R) in osteoclasts using three different methods (RT-qPCR, western blot analysis and immunofluorescence staining). We found that bPTH enhanced the bone resorption capability of osteoclasts by modulating the expression of V-ATPase subunits, intracellular acidification and V-ATPase activity. Thus, we propose that PTH has a direct effect on osteoblasts and osteoclasts, and that this effect is mediated through PTH1R, thus contributing to bone remodeling.

  8. Hysteresis and calcium set-point for the calcium parathyroid hormone relationship in healthy horses.

    Science.gov (United States)

    Toribio, Ramiro E; Kohn, Catherine W; Sams, Richard A; Capen, Charles C; Rosol, Thomas J

    2003-02-15

    Abnormalities in calcium (Ca(2+)) homeostasis are reported in horses with several pathological conditions; however, there is little information on Ca(2+) regulation in horses. The objectives of the present study were to determine the Ca(2+) set-point in healthy horses, to determine whether the Ca(2+)/parathyroid hormone (PTH) response curves were characterized by hysteresis, and to determine if the order of experimentally induced hypocalcemia or hypercalcemia had an effect on PTH secretion. The Ca(2+) set-point and hysteresis were determined in 12 healthy horses by infusing Na(2)EDTA and calcium gluconate. The Ca(2+) set-point was 1.37 +/- 0.05 mmol/L, which is higher than values reported for humans and dogs (1.0-1.2 mmol/L). Hysteresis was present during hypocalcemia and hypercalcemia. Horses in which hypocalcemia was followed by hypercalcemia secreted more PTH (7440 +/- 740 pmol min/L) than horses in which hypercalcemia was followed by hypocalcemia (5990 +/- 570 pmol min/L). This study has demonstrated that the Ca(2+) set-point in the horse is higher than in other domestic animals and man. We have shown that the Ca(2+)/PTH relationship in horses is sigmoidal and displays hysteresis during both hypocalcemia and hypercalcemia, and that extracellular Ca(2+) concentrations may affect the response of the parathyroid gland to hypocalcemia.

  9. Rapid intraoperative parathyroid hormone assay--more than just a comfort measure.

    LENUS (Irish Health Repository)

    Hanif, F

    2012-02-03

    BACKGROUND: Minimally invasive radio-guided parathyroidectomy (MIRP) has been embraced as an acceptable therapeutic approach to primary hyperparathyroidism. Preoperative sestamibi scanning has facilitated this technique. Here we evaluate the addition of a rapid intraoperative parathyroid hormone (iPTH) assay for patients undergoing MIRP. METHODS: A series of 51 patients underwent sestamibi localization of parathyroid glands followed by MIRP for primary hyperparathyroidism. Using peripheral venous samples, iPTH levels were measured prior to gland excision, as well as post-excision at 5, 10, and 15 minutes, taking a 50% reduction in iPTH level as indicative of complete excision. Next, changes in serum iPTH were compared with preoperative and postoperative changes in serum calcium, as well as levels of intraoperative ex-vivo radiation counts taken by hand-held gamma probe. RESULTS: In this series, a drop of greater than 50% in iPTH levels was observed in 94% of patients (n=48). Moreover, a significant drop in iPTH occurred within 10 minutes of excision in the majority (n=42) of cases (P<0.004). Changes in iPTH were comparable with the therapeutic reduction in calcium levels, as well as with the change in intraoperative ex-vivo gamma counts. CONCLUSIONS: This study demonstrates that the addition of an iPTH assay to MIRP provides a quick and reliable intraoperative diagnostic modality in confirming correct adenoma removal. Moreover, it precludes the requirement of frozen section.

  10. Pharmacodynamic model of parathyroid hormone modulation by a negative allosteric modulator of the calcium-sensing receptor.

    Science.gov (United States)

    Abraham, Anson K; Maurer, Tristan S; Kalgutkar, Amit S; Gao, Xiang; Li, Mei; Healy, David R; Petersen, Donna N; Griffith, David A; Mager, Donald E

    2011-06-01

    In this study, a pharmacodynamic model is developed, based on calcium-parathyroid hormone (PTH) homeostasis, which describes the concentration-effect relationship of a negative allosteric modulator of the calcium-sensing receptor (CaR) in rats. Plasma concentrations of drug and PTH were determined from plasma samples obtained via serial jugular vein sampling following single subcutaneous doses of 1, 5, 45, and 150 mg/kg to male Sprague-Dawley rats (n = 5/dose). Drug pharmacokinetics was described by a one-compartment model with first-order absorption and linear elimination. Concentration-time profiles of PTH were characterized using a model in which the compound allosterically modulates Ca(+2) binding to the CaR that, in turn, modulates PTH through a precursor-pool indirect response model. Additionally, negative feedback was incorporated to account for tolerance observed at higher dose levels. Model fitting and parameter estimation were conducted using the maximum likelihood algorithm. The proposed model well characterized the data and provided compound specific estimates of the K(i) and cooperativity constant (α) of 1.47 ng/mL and 0.406, respectively. In addition, the estimated model parameters for PTH turnover were comparable to that previously reported. The final generalized model is capable of characterizing both PTH-Ca(+2) homeostasis and the pharmacokinetics and pharmacodynamics associated with the negative allosteric CaR modulator. As such, the model provides a simple platform for analysis of drugs targeting the PTH-Ca(+2) system.

  11. Richter's Syndrome with Hypercalcemia Induced by Tumor-Associated Production of Parathyroid Hormone-Related Peptide

    Science.gov (United States)

    Watanabe, Naoki; Yasuda, Hajime; Morishita, Soji; Aota, Yasuo; Tomomatsu, Junichi; Tanaka, Masaru; Ohsaka, Akimichi; Komatsu, Norio

    2017-01-01

    Humoral hypercalcemia due to parathyroid hormone-related peptide (PTHrP) elevation is a well-known complication of various malignancies, but the situation is rare concerning hematological malignancies except for adult T-cell leukemia/lymphoma. We report a case of Richter's syndrome with humoral hypercalcemia, and demonstrate by reverse transcription polymerase chain reaction (RT-PCR) that peripheral blood PTHrP levels were 2,500-fold higher compared to healthy controls. PTHrP production by tumor cells in chronic lymphocytic leukemia (CLL) and Richter's syndrome has been previously demonstrated by nonquantitative methods such as immunohistochemistry and northern blot analysis, but this is the first report using the RT-PCR method. The presented case did not have hypercalcemia when initially diagnosed as small lymphocytic lymphoma (SLL), and as reported earlier, the development of hypercalcemia may be an indication of the transformation to Richter's syndrome in patients with CLL/SLL. PMID:28203174

  12. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation.

    Science.gov (United States)

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M

    2016-04-12

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP-PPR system during root morphogenesis and tooth eruption.

  13. ASSOCIATION OF PARATHYROID HORMONE GENE POLYMORPHISM WITH BONE MINERAL DENSITY IN CHINESE WOMEN

    Institute of Scientific and Technical Information of China (English)

    李梅; 孟迅吾; 周学瀛; 邢小平; 余卫

    2003-01-01

    Objective. To investigate the distribution frequency of parathyroid hormone(PTH) gene polymorphism in healthy adults from Bejing area and to explore the association of PTH genotypes with bone mineral density (BMD). Methods. PTH gene polymorphism was detected in 270 subjects by polymerase chain reaction (PCR) and PCR/restriction fragment length polymorphism (PCR/RFLP). The digestion products of restriction enzyme Bst B1 were separated on 1% agarose gels. PTH genotypes were confirmed by DNA sequences analysis. BMD was measured by dual-energy X-ray absorptiometry (DEXA, DPX- L, Lunar). Results. Genotype frequencies of BB, Bb, bb were 73.7% , 25.9% and 0.4% respectively in Beijing adults( P0.05). Conclusion. PTH gene polymorphism is not associated with BMD in Chinese women. The further research to explore the genetic risk factors of osteoporosis should be committed.

  14. Mass Spectrometric Immunoassay for Parathyroid Hormone Related Protein (PTHrP)

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, K.; Rivera, J.D.; Vogel, J.S.; Buchholz, B.A.; Burton, D.W.; Deftos, L.J.; Herold, D.A.; Fitzgerald, R.L.

    2000-06-16

    Many cancers, including prostate, breast and lung express parathyroid hormone related protein (PTHrP). Despite the common tumor overexpression of PTHrP, serum levels of PTHrP are not commonly elevated in affected patients. They postulate that the reasons for the discrepancy between tissue and serum measurements of PTHrP are the inadequate sensitivity and specificity of current PTHrP serum assays. To improve the clinical value of PTHrP serum assays for the cancer patient, they are developing a new generation of novel and ultrasensitive PTHrP serum immunoassays based on immunoaffinity purification, nanospray liquid chromatography tandem mass spectrometry (LC/MS/MS) and accelerator mass spectrometry (AMS).

  15. Evolution of parathyroid hormone receptor family and their ligands in vertebrate

    Directory of Open Access Journals (Sweden)

    Jason S.W. eOn

    2015-03-01

    Full Text Available The presence of the parathyroid hormones in vertebrates, including PTH, PTH-related peptide (PTHrP and tuberoinfundibular peptide of 39 residues (TIP39, has been proposed to be the result of two rounds of whole genome duplication in the beginning of vertebrate diversification. Bioinformatics analyses, in particular chromosomal synteny study and the characterization of the PTH ligands and their receptors from various vertebrate species, provide evidence that strongly supports this hypothesis. In this mini-review, we summarize recent advances in studies regarding the molecular evolution and physiology of the PTH ligands and their receptors, with particular focus on non-mammalian vertebrates. In summary, the PTH family of peptides probably predates early vertebrate evolution, indicating a more ancient existence as well as a function of these peptides in invertebrates.

  16. Cinacalcet for Hypercalcemia Caused by Pulmonary Squamous Cell Carcinoma Producing Parathyroid Hormone-Related Peptide

    Directory of Open Access Journals (Sweden)

    Anneke Bech

    2012-01-01

    Full Text Available Background: Current treatments for hypercalcemia caused by lung cell carcinomas producing parathyroid hormone-related peptide (PTH-rp have limited efficacy, probably because of their lack of effect on PTH-rp secretion. In this case study we explored the efficacy of the calcimimetic cinacalcet as suppressor of PTH-rp production. Patient: A 57-year-old male with severe and recurrent hypercalcemia induced by a PTH-rp-producing squamous cell lung carcinoma, stage cT4N3M1b, poorly responding to standard treatments. Results: Serum PTH-rp levels were not affected by saline, calcitonin or zoledronate. PTH-rp decreased during chemotherapy and cinacalcet monotherapy. The combination of chemotherapy plus cinacalcet was most effective in rapidly reducing serum calcium and PTH-rp. Conclusion: This case study is the first to suggest that cinacalcet may be of value in some cases of PTH-rp-dependent hypercalcemia. Corroborative evidence is needed.

  17. Cinacalcet for Hypercalcemia Caused by Pulmonary Squamous Cell Carcinoma Producing Parathyroid Hormone-Related Peptide

    Science.gov (United States)

    Bech, Anneke; Smolders, Koen; Telting, Darryl; de Boer, Hans

    2012-01-01

    Background Current treatments for hypercalcemia caused by lung cell carcinomas producing parathyroid hormone-related peptide (PTH-rp) have limited efficacy, probably because of their lack of effect on PTH-rp secretion. In this case study we explored the efficacy of the calcimimetic cinacalcet as suppressor of PTH-rp production. Patient A 57-year-old male with severe and recurrent hypercalcemia induced by a PTH-rp-producing squamous cell lung carcinoma, stage cT4N3M1b, poorly responding to standard treatments. Results Serum PTH-rp levels were not affected by saline, calcitonin or zoledronate. PTH-rp decreased during chemotherapy and cinacalcet monotherapy. The combination of chemotherapy plus cinacalcet was most effective in rapidly reducing serum calcium and PTH-rp. Conclusion This case study is the first to suggest that cinacalcet may be of value in some cases of PTH-rp-dependent hypercalcemia. Corroborative evidence is needed. PMID:22379470

  18. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling.

    Science.gov (United States)

    McGarvey, Jennifer C; Xiao, Kunhong; Bowman, Shanna L; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W Bruce; Ardura, Juan A; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A; Friedman, Peter A

    2016-05-20

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.

  19. Correlation of serum parathyroid hormone with mineral bone disease in chronic kidney disease patients

    Directory of Open Access Journals (Sweden)

    Rajeshwari S Vhora

    2015-01-01

    Full Text Available Background: Mineral bone disease (MBD is a systemic disorder of mineral and bone metabolism due to chronic kidney disease (CKD. Bone disease in CKD is due to secondary hyperparathyroidism. Serum intact parathyroid hormone (iPTH level estimation is a potential noninvasive method for the diagnosis of MBD at early stage. Aim: Treating renal bone disease should be one of the primary aims of therapy for CKD. Evaluation of the biochemical parameters of CKD-MBD (primarily phosphorus, calcium, parathyroid hormone, and Vitamin D levels as early as CKD stage 3, and an assessment of bone status (by the best means available, should be used to guide treatment decisions. The adverse effects of high phosphorus intake relative to renal clearance (including stimulation of hyperparathyroidism precede hyperphosphatemia, which presents late in CKD. Early reduction of phosphorus load may ameliorate these adverse effects. Evidence that calcium load may influence progression of vascular calcification with effects on mortality, should also be considered when choosing the type and dose of phosphate binder to be used. MBD in CKD has high morbidity and mortality and hence it is important to detect it at an early stage. iPTH levels can be highly sensitive and it is one of the useful noninvasive biochemical parameters to detect MBD in CKD. Materials and Methods: This was an observational study carried out in a tertiary care teaching hospital. The study involved 60 patients of CKD. Detailed history, physical examination, and biochemical parameters were assessed in all of them. Results: There was a significant association between hypertension, diabetes with nephropathy, and highly significant association between serum iPTH and raised blood urea levels in MBD group, however there was no significant association between duration of CKD, hemoglobin, creatinine, uric acid, phosphorous, calcium, and alkaline phosphatase with MBD. Conclusions: MBD in CKD can be detected at early

  20. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    Science.gov (United States)

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  1. Hypercalcemia secondary to gastrointestinal stromal tumors: parathyroid hormone-related protein independent mechanism?

    Science.gov (United States)

    Jasti, Prathima; Lakhani, Vipul Tulsi; Woodworth, Alison; Dahir, Kathryn McCrystal

    2013-01-01

    Hypercalcemia is a common paraneoplastic manifestation of many malignancies like breast, ovarian, and squamous-cell cancers of head and neck; however, there have been only a few case reports of hypercalcemia associated with gastrointestinal stromal tumors (GISTs). We report a case of GIST presenting with hypercalcemia without any osseous metastasis and provide a literature review regarding the mechanisms of hypercalcemia and therapeutic strategies. We present a report of case and a review of the relevant literature. A 52-year-old woman with history of localized breast cancer in remission and a pelvic 13 × 12 cm GIST with peritoneal, liver, and lung metastases presented with hypercalcemia of 14.3 mg/dL (8.5-10.5 mg/dL). Parathyroid hormone-related protein (PTHrP) was undetectable, intact parathyroid hormone (PTH) was appropriately low at 1 pg/mL (10-65 pg/mL), and 1,25 dihydroxy vitamin D (1,25 OH2 vit D) was elevated at 131 pg/mL (18-78 pg/mL) with normal renal function. Calcium responded transiently to tyrosine kinase inhibitor therapy and bisphosphonates but within a year, she expired due to tumor progression. GIST is a rare cause of hypercalcemia. In addition to PTHrP expression, direct tumor production of 1,25(OH)2 vit D or 1-α hydroxylase enzyme resulting in activation of 25-hydroxy vitamin D may be an alternative mechanism in GIST-related hypercalcemia. Therapy with tyrosine kinase inhibitors and bisphosphonates is recommended, though prognosis is poor. Further investigations are needed to characterize the etiology and management of hypercalcemia in these patients.

  2. CORRELATION OF PARATHYROID HORMONE-1 RECEPTOR EXPRESSION TO BONE METASTASIS OF BREAST CARCINOMA PATIENTS

    Directory of Open Access Journals (Sweden)

    P. A. Tusta-Adiputra

    2014-01-01

    Full Text Available Background: Bone metastasis is a common complication of metastasis of breast cancer and it is a unique pathobiology process. The Parathyroid Hormone-related Peptide (PTHrP is a protein which has an important role in breast cancer cells to invade and infiltrate bones or bone marrow and accelerate angiogenetic process. The objective of this study is to reveal the relationship of PTHrP receptor named Parathyroid Hormone-1 Receptor (PTH1R expression to bone metastasis in breast cancer patients. Methods: This was an analytical cross-sectional study, applying a non probability consecutive sampling. Samples were divided into two groups, i.e. one group of breast cancer metastasis to bone (+others and another group with non-bone metastasis. Patients were collected from an existed data base (from medical record, cancer register, histopathology, since 2007. The specimen paraffin blocks were re-examined using IHC technique for PTHrP receptor. The data were analyzed and tested with Chi-Square (X2, otherwise it would be tested using Fisher Exact Test. Each group would be allocated minimal of 17 patients/samples. Results: The Chi-Square test failed to show the association between PTH1R expression in breast cancer patients with bone metastasis (p=0.295. The relative prevalence result for positive PTH1R expression was 1.48. There was no proof that positive PTH1R expression was an associated factor for bone metastasis (95% confidence interval. Conclusion: PTH1R expression is not a factor associated with bone metastasis in breast cancer patients. 

  3. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples.

  4. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm.

    Science.gov (United States)

    Vilardaga, Jean-Pierre; Romero, Guillermo; Friedman, Peter A; Gardella, Thomas J

    2011-01-01

    The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems-PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine-to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as G(S) that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.

  5. Structural Basis for Parathyroid Hormone-related Protein Binding to the Parathyroid Hormone Receptor and Design of Conformation-selective Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Parker, Naomi R.; Gardella, Thomas J.; Xu, H. Eric; (Van Andel); (Mass. Gen. Hosp.)

    2009-12-01

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic {alpha}-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally 'unwound.' The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.

  6. Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides.

    Science.gov (United States)

    Pioszak, Augen A; Parker, Naomi R; Gardella, Thomas J; Xu, H Eric

    2009-10-09

    Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are two related peptides that control calcium/phosphate homeostasis and bone development, respectively, through activation of the PTH/PTHrP receptor (PTH1R), a class B G protein-coupled receptor. Both peptides hold clinical interest for their capacities to stimulate bone formation. PTH and PTHrP display different selectivity for two distinct PTH1R conformations, but how their binding to the receptor differs is unclear. The high resolution crystal structure of PTHrP bound to the extracellular domain (ECD) of PTH1R reveals that PTHrP binds as an amphipathic alpha-helix to the same hydrophobic groove in the ECD as occupied by PTH, but in contrast to a straight, continuous PTH helix, the PTHrP helix is gently curved and C-terminally "unwound." The receptor accommodates the altered binding modes by shifting the side chain conformations of two residues within the binding groove: Leu-41 and Ile-115, the former acting as a rotamer toggle switch to accommodate PTH/PTHrP sequence divergence, and the latter adapting to the PTHrP curvature. Binding studies performed with PTH/PTHrP hybrid ligands having reciprocal exchanges of residues involved in different contacts confirmed functional consequences for the altered interactions and enabled the design of altered PTH and PTHrP peptides that adopt the ECD-binding mode of the opposite peptide. Hybrid peptides that bound the ECD poorly were selective for the G protein-coupled PTH1R conformation. These results establish a molecular model for better understanding of how two biologically distinct ligands can act through a single receptor and provide a template for designing better PTH/PTHrP therapeutics.

  7. Humoral hypercalcemia associated with gastric carcinoma secreting parathyroid hormone: a case report and review of the literature.

    Science.gov (United States)

    Nakajima, Koji; Tamai, Masataka; Okaniwa, Shinji; Nakamura, Yoshiyuki; Kobayashi, Mutsuhiro; Niwa, Tomohiro; Horigome, Naoto; Ito, Nobuo; Suzuki, Satoru; Nishio, Shinichi; Komatsu, Mitsuhisa

    2013-01-01

    Hypercalcemia with concomitant elevation of serum parathyroid hormone (PTH) and PTH-related protein (PTHrP) levels was found in a patient with advanced gastric carcinoma and multiple liver metastases. The most common features are hypercalcemia associated with hypersecretion of PTHrP and physiological suppression of PTH secretion in the syndrome of humoral hypercalcemia of malignancy (HHM). Although we initially made a diagnosis of primary hyperparathyroidism concomitant with HHM due to gastric cancer, diagnostic imaging studies, such as echography, CT, sestamibi scintigraphy, and autopsy findings, did not reveal evidence of any parathyroid tumors or ectopic parathyroid glands in the mediastinum. Both primary and metastatic tumor cells showed positive staining with PTH-specific antibody as well as PTHrP-specific antibody on immunohistochemical examination. PTH concentration in the cytosolic fraction of the metastatic tumor was elevated compared to that from a control patient with no calcium metabolic disorders in vitro. These findings indicated that PTH secreted ectopically by gastric cancer cells, not by parathyroid glands, caused hypercalcemia in this patient. To our knowledge, this is the first case report of PTH-secreting gastric carcinoma cells. We report the case and a review of the previous reported PTH-secreting non-parathyroid tumors along with the mechanisms of secretion.

  8. Dual roles of parathyroid hormone-related protein in TGF-β1 signaling and fibronectin upregulation in mesangial cells.

    Science.gov (United States)

    Wu, Su-Zhen; Yang, Si-Jun; Chen, Hong-Min; Peng, Fang-Fang; Yu, Hong; Kreprinsky, Joan C; Zhang, Bai-Fang

    2017-09-27

    Little is known about the crosstalk between parathyroid hormone-related protein (PTHrP) and TGF-β1 in mesangial cells (MCs). Our results showed that PTHrP treatment (≤3 h) induced internalization of PTH1R-TβRII complex and suppressed TGF-β1-mediated Smad2/3 activation and fibronectin (FN) upregulation. However, prolonged PTHrP treatment (12~48 h) failed to induce PTH1R-TβRII association and internalization. Total protein levels of PTH1R and TβRII were unaffected by PTHrP treatment. These results suggest that internalization of PTH1R and TβRII after short PTHrP treatment might not lead to their proteolytic destruction, allowing the receptors to be recycled back to the plasma membrane during prolonged PTHrP exposure. Receptor reexpression at the cell surface allows PTHrP to switch from its initial inhibitory effect to promote induction of FN. Our study thus demonstrates the dual roles of PTHrP on TGF-β1 signaling and FN upregulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for diabetic kidney disease. ©2017 The Author(s).

  9. Parathyroid hormone-related protein (PTHrP) signal cascade modulates myocardial dysfunction in the pressure overloaded heart.

    Science.gov (United States)

    Meyer, Rainer; Schreckenberg, Rolf; Kretschmer, Frank; Bittig, Anne; Conzelmann, Charlotte; Grohé, Christian; Schlüter, Klaus-Dieter

    2007-12-01

    Pressure overload induces the cardiac expression of parathyroid hormone-related protein (PTHrP). Plasma levels are elevated in patients with heart disease. It is unknown whether this represents an epiphenomenon or suggests involvement in hypertrophy. To identify a potential role of PTHrP in pressure induced hypertrophy and heart failure. Pressure load was produced via thoracic aortic constriction (TAC) and application of a PTHrP antagonist (PTHrP(7-34)) via osmotic minipumps in mice. Main findings were confirmed in vitro by exposing isolated adult ventricular mice cardiomyocytes to PTHrP(1-34) (100 nmol/l). TAC treated animals developed myocardial hypertrophy within 2 weeks. The heart weight to body weight ratio increased from 5.02+/-0.14 mg/g (sham/vehicle) and 5.16+/-0.19 mg/g (sham/antagonist) to 6.59+/-0.85 mg/g (TAC/vehicle) and 7.07+/-0.80 mg/g (TAC/antagonist) (each n=6-8; pPTHrP(1-34) developed reduced cell shortening. This reduction in cell function was abolished in the co-presence of the antagonist. PTHrP contributes to the progression of cardiac dysfunction in the pressure overloaded heart.

  10. Parathyroid hormone-related protein has an anorexigenic activity via activation of hypothalamic urocortins 2 and 3.

    Science.gov (United States)

    Asakawa, Akihiro; Fujimiya, Mineko; Niijima, Akira; Fujino, Kazunori; Kodama, Noriko; Sato, Yuki; Kato, Ikuo; Nanba, Hiroaki; Laviano, Alessandro; Meguid, Michael M; Inui, Akio

    2010-09-01

    Cancer cachexia is reported to be a major cause of cancer-related death. Since the pathogenesis is not entirely understood, only few effective therapies have been established. Since myriad tumors produce parathyroid hormone-related protein (PTHrP), plasma concentrations of PTHrP are increased in cancer cachexia. We measured the food intake, gastric emptying, conditioned taste aversion (CTA), and gene expression of hypothalamic neuropeptides in mice after administering PTHrP intraperitoneally. We administered PTHrP intravenously in rats and examined the gastroduodenal motility and vagal nerve activities. We also examined whether chronic administration of PTHrP influenced the food intake and body weight. Peripherally administered PTHrP induced negative energy balance by decreasing the food intake and gastric emptying; however, it did not induce CTA. The mechanism involved the activation of hypothalamic urocortins 2 and 3 through vagal afferent pathways and the suppression of gastroduodenal motor activity. The continuous infusion of PTHrP reduced the food intake and body weight gain with a concomitant decrease in the fat and skeletal muscle. Our findings suggest that PTHrP influences the food intake and body weight; therefore, PTHrP can be considered as a therapeutic target for cancer cachexia. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Parathyroid hormone-related protein serves as a prognostic indicator in oral squamous cell carcinoma.

    Science.gov (United States)

    Lv, Zhongjing; Wu, Xiangbing; Cao, Wei; Shen, ZongZe; Wang, Lizhen; Xie, FuRong; Zhang, JianJun; Ji, Tong; Yan, Ming; Chen, WanTao

    2014-12-18

    In our previous study, parathyroid hormone-like hormone (PTHLH) which encodes parathyroid hormone-related protein (PTHrP) was revealed to be up-regulated in oral squamous cell carcinoma (OSCC) compared with paired apparently normal surgical margins using microarray method. However, the function and prognostic indicators of PTHLH/PTHrP in OSCC remain obscure. The mRNA levels of PTHLH and its protein levels were investigated in 9 OSCC cell lines and in 36 paired OSCC specimens by real-time PCR and western blotting. The biological function of PTHLH/PTHrP was investigated using small interfering RNA (siRNA) in 3 OSCC cell lines, and immunohistochemistry was used to estimate the prognostic value of PTHrP in 101 patients with head and neck squamous cell carcinoma (HNSCC), including OSCC and oropharyngeal squamous cell carcinoma. Cell cycle was tested by flow cytometry and cell cycle related genes were investigated by western blotting and immunocytochemistry assay. This study showed that the mRNA and protein levels of PTHLH in 9 OSCC cell lines were much higher than that in normal epithelial cells (P PTHrP by siRNAs could reduce cell proliferation and inhibit plate and soft agar colony formation as well as affect the cell cycle of OSCC cells. The key proteins related to the cell cycle were changed by anti-PTHLH siRNA. The results showed that cyclin D1 and CDK4 expressions were significantly reduced in the cells transfected with anti-PTHLH siRNA. On the other hand, the expression of p21 was increased. The results also showed that high PTHrP level was associated with poor pathologic differentiation (P = 0.0001) and poor prognosis (P = 0.0003) in patients with HNSCC. This study suggests that PTHLH/PTHrP is up-regulated in OSCCs. Therefore, PTHLH/PTHrP could play a role in the pathogenesis of OSCC by affecting cell proliferation and cell cycle, and the protein levels of PTHrP might serve as a prognostic indicator for evaluating patients with HNSCCs.

  12. Hypoxia-inducible factor-1a restricts the anabolic actions of parathyroid hormone

    Institute of Scientific and Technical Information of China (English)

    Julie L Frey; David P Stonko; Marie-Claude Faugere; Ryan C Riddle

    2014-01-01

    The hypoxia inducible factors (Hifs) are evolutionarily conserved transcriptional factors that control homeostatic responses to low oxygen. In developing bone, Hif-1 generated signals induce angiogenesis necessary for osteoblast specification, but in mature bone, loss of Hif-1 in osteoblasts resulted in a more rapid accumulation of bone. These findings suggested that Hif-1 exerts distinct developmental functions and acts as a negative regulator of bone formation. To investigate the function of Hif-1a in osteoanabolic signaling, we assessed the effect of Hif-1a loss-of-function on bone formation in response to intermittent parathyroid hormone (PTH). Mice lacking Hif-1a in osteoblasts and osteocytes form more bone in response to PTH, likely through a larger increase in osteoblast activity and increased sensitivity to the hormone. Consistent with this effect, exposure of primary mouse osteoblasts to PTH resulted in the rapid induction of Hif-1a protein levels via a post-transcriptional mechanism. The enhanced anabolic response appears to result from the removal of Hif-1a-mediated suppression of b-catenin transcriptional activity. Together, these data indicate that Hif-1a functions in the mature skeleton to restrict osteoanabolic signaling. The availability of pharmacological agents that reduce Hif-1a function suggests the value in further exploration of this pathway to optimize the therapeutic benefits of PTH.

  13. Usefulness of a rapid immunometric assay for intraoperative parathyroid hormone measurements

    Directory of Open Access Journals (Sweden)

    M.N. Ohe

    2003-06-01

    Full Text Available Intraoperative parathyroid hormone (IO-PTH measurements have been proposed to improve operative success rates in primary, secondary and tertiary hyperparathyroidism (PHP, SHP and THP. Thirty-one patients requiring parathyroidectomy were evaluated retrospectively from June 2000 to January 2002. Sixteen had PHP, 7 SHP and 8 THP. Serum samples were taken at times 0 (before resection, 10, 20 and 30 min after resection of each abnormal parathyroid gland. Samples from 28 patients were frozen at -70ºC for subsequent tests, whereas samples from three patients were tested while surgery was being performed. IO-PTH was measured using the Elecsys immunochemiluminometric assay (Roche, Mannheim, Germany. The time necessary to perform the assay was 9 min. All samples had a second measurement taken by a conventional immunofluorimetric method. We considered as cured patients who presented normocalcemia in PHP and THP, and normal levels of PTH in SHP one month after surgery and who remained in this condition throughout the follow-up of 1 to 20 months. When rapid PTH assay was compared with a routine immunofluorimetric assay, excellent correlation was observed (r = 0.959, P < 0.0001. IO-PTH measurement showed a rapid average decline of 78.8% in PTH 10 min after adenoma resection in PHP and all patients were cured. SHP patients had an average IO-PTH decrease of 89% 30 min after total parathyroidectomy and cure was observed in 85.7%. THP showed an average IO-PTH decrease of 91.9%, and cure was obtained in 87.5% of patients. IO-PTH can be a useful tool that might improve the rate of successful treatment of PHP, SHP and THP.

  14. Humoral hypercalcemia due to gastric carcinoma secreting parathyroid hormone-related protein during chemotherapy: a case report.

    Science.gov (United States)

    Iino, Chikara; Shimoyama, Tadashi; Akemoto, Yui; Igarashi, Takasato; Aihara, Tomoyuki; Ishii, Kentaro; Sakamoto, Juichi; Tono, Hiroshi; Fukuda, Shinsaku

    2016-04-01

    Humoral hypercalcemia due to a gastric carcinoma-secreting parathyroid hormone-related protein (PTHrP) is a rare disease associated with poor prognosis. A 61-year-old male with gastric cancer who had been receiving chemotherapy showed serum hypercalcemia and an elevated level of serum PTHrP with a suppressed intact parathyroid hormone level. Computed tomography revealed stable disease 4 weeks prior, and the laboratory examination revealed no adverse effects 2 weeks prior. The biopsy at the time of diagnosis was immunohistochemically positive for PTHrP later. Despite intensive care, the patient died of multiorgan failure on the 14th day after admission. In case of undifferentiated gastric cancer, the possibility of humoral hypercalcemia of malignancy caused by gastric cancer should be considered even when the patient is receiving chemotherapy.

  15. Vitamin D status and 5-year changes in urine albumin creatinine ratio and parathyroid hormone in a general population

    DEFF Research Database (Denmark)

    Skaaby, Tea; Husemoen, Lise Lotte Nystrup; Pisinger, Charlotta;

    2013-01-01

    Vitamin D is associated with cardiovascular disease and renal function but the mechanisms are as yet unexplained. Microalbuminuria is associated with a higher risk of kidney function loss, cardiovascular disease, and mortality. Parathyroid hormone is a predictor of cardiovascular mortality...... and negatively correlated with glomerular filtration rate. We investigated the association between vitamin D status and 5-year changes in urine albumin creatinine ratio (UACR) and parathyroid hormone (PTH). A random sample of 6,784 individuals aged 30-60 years from a general population participated in the Inter......99 study in 1999-2001. Vitamin D (serum-25-hydroxyvitamin D) was measured at baseline by high-performance liquid chromatography. UACR and PTH were measured at baseline and follow-up. Increased UACR was defined as UACR >4.0 mg/g reflecting the upper quartile at baseline. We included 4,330 individuals...

  16. Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Tomaschitz Andreas

    2012-09-01

    Full Text Available Abstract Background Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess. Methods/design Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease. The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1 parathyroid hormone(1–84 as the primary endpoint and (2 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints. Discussion In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism. Trial registration ISRCTN33941607

  17. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Li, Zubing, E-mail: lizubing0827@163.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular

  18. Mitochondrial membrane potential changes in osteoblasts treated with parathyroid hormone and estradiol.

    Science.gov (United States)

    Troyan, M B; Gilman, V R; Gay, C V

    1997-06-15

    This study assessed mitochondrial membrane potential changes in cultured osteoblasts treated with hormones known to regulate osteoblasts. A fluorescent carbocyanine dye, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine++ + iodide, also called JC-1, was used as a probe. JC-1 emits photons at 585 nm (orange-red) when the membrane potential in mitochondria is highly negative, but when the potential becomes reduced emission occurs at 527 nm (green). Osteoblasts were rinsed in serum-free medium for 5 min, then loaded with 1 x 10(-6) M JC-1 for 10 min. The distribution and intensity of JC-1 fluorescence were evaluated with a laser-scanning confocal microscope system. Hormone treatments included parathyroid hormone (PTH; 10(-8) M), 17beta-estradiol (10(-8) M), and thyroxine (T4; 10(-8) M). The potassium ionophore valinomycin (10(-6) M) was used as a control since it is known to disrupt the electrochemical gradient of mitochondria without interfering with the pH gradient. Valinomycin caused a profound, rapid increase (22.5% above untreated values) in the green/red ratio, which indicated a lowering of the mitochondrial membrane potential in all samples evaluated. PTH caused a less pronounced, but significant (7-14%), reduction in membrane potential in all cells examined. PTH is known to affect osteoblasts in a number of ways and is inhibitory to mitochondrial respiration; the results confirm this effect. For estradiol, half of the cells responded at a significant level, with a membrane potential reduction of 6 to 13% being recorded; the other half did not respond. Thyroxine did not alter mitochondrial membrane potential. Responses were detectable within 20 s for valinomycin, but occurred at a slower rate, over 200 to 300 s, following PTH and estradiol treatment. Responses to PTH and estradiol could be due to mitochondrial uptake of cytosolic Ca2+.

  19. Parathyroid hormone and calcitonin interactions in bone: Irradiation-induced inhibition of escape in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, N.S.; Tashjian, A.H. Jr.; Feldman, R.S.

    1982-01-01

    Calcitonin (CT) inhibits hormonally stimulated bone resorption only transiently in vitro. This phenomenon has been termed ''escape,'' but the mechanism for the effect is not understood. One possible explanation is that bone cell differentiation and recruitment of specific precursor cells, in response to stimulators of resorption, lead to the appearance of osteoclasts that are unresponsive to CT. To test this hypothesis, cell proliferation in neonatal mouse calvaria in organ culture was inhibited by irradiation from a cobalt-60 source. At a dose of 6000 R, (/sup 3/H)thymidine incorporation into intact calvaria was inhibited approximately 90%. Irradiation had no effect on the resorptive response to 0.1 U/ml parathyroid hormone (PTH). However, irradiation induced a dose-dependent inhibition of the escape response which was maximal at 6000 R. A dose of 6000 R did not affect the binding of /sup 125/I-salmon CT to calvaria and decreased PTH stimulation of cyclic AMP release from bone without affecting the cyclic AMP response to CT. Although irradiation caused a dose-dependent inhibition of DNA synthesis, the dose-response curves for that effect and inhibition of escape were not superimposable. A morphologic study of hormonally treated calvaria demonstrated that irradiation prevented the early increase in number of osteoclasts in PTH-treated calvaria that had been observed previously in unirradiated bones. Autoradiography showed that irradiation also prevented the PTH-stimulated recruitment of newly divided mononuclear cell precursors into osteoclasts. This may be correlated with the effect of irradiation to prevent the loss of responsiveness to CT in the presence of PTH.

  20. “An Immunohistochemical Study” of Parathyroid Hormone - Related Protein: A Comparative Analysis In Ameloblastoma and Dentigerous Cyst

    OpenAIRE

    K. Shyamala; S Hemavathy

    2010-01-01

    It has been pointed out that Parathyroid Hormone related Protein (PTHrP) secreted by the developingenamel epithelium targets receptors in overlying bone, thereby activating bone resorption and allowing tootheruption. Accordingly, it is conceivable that ameloblastoma, which to a degree recapitulates certaincharacteristics of enamel epithelium, would also express PTHrP. This study is done to assess the PTH rPexpression in ameloblastoma, to investigate its role in local bone resorption and provi...

  1. Quantitative analysis of agonist-dependent parathyroid hormone receptor trafficking in whole cells using a functional green fluorescent protein conjugate.

    Science.gov (United States)

    Conway, B R; Minor, L K; Xu, J Z; D'Andrea, M R; Ghosh, R N; Demarest, K T

    2001-12-01

    Many G-protein coupled receptors (GPCRs) undergo ligand-dependent internalization upon activation. The parathyroid hormone (PTH) receptor undergoes endocytosis following prolonged exposure to ligand although the ultimate fate of the receptor following internalization is largely unknown. To investigate compartmentalization of the PTH receptor, we have established a stable cell line expressing a PTH receptor-green fluorescent protein (PTHR-GFP) conjugate and an algorithm to quantify PTH receptor internalization. HEK 293 cells expressing the PTHR-GFP were compared with cells expressing the wild-type PTH receptor in whole-cell binding and functional assays. 125I-PTH binding studies revealed similar Bmax and kD values in cells expressing either the PTHR-GFP or the wild-type PTH receptor. PTH-induced cAMP accumulation was similar in both cell lines suggesting that addition of the GFP to the cytoplasmic tail of the PTH receptor does not alter the ligand binding or G-protein coupling properties of the receptor. Using confocal fluorescence microscopy, we demonstrated that PTH treatment of cells expressing the PTHR-GFP conjugate produced a time-dependent redistribution of the receptor to the endosomal compartment which was blocked by pretreatment with PTH antagonist peptides. Treatment with hypertonic sucrose prevented PTH-induced receptor internalization, suggesting that the PTH receptor internalizes via a clathrin-dependent mechanism. Moreover, co-localization with internalized transferrin showed that PTHR-GFP trafficking utilized the endocytic recycling compartment. Experiments using cycloheximide to inhibit protein synthesis demonstrated that recycling of the PTHR-GFP back to the plasma membrane was complete within 1-2 h of ligand removal and was partially blocked by pretreatment with cytochalasin D, but not nocodazole. We also demonstrated that the PTH receptor, upon recycling to the plasma membrane, is capable of undergoing a second round of internalization, a finding

  2. Critical Role of Activating Transcription Factor 4 in the Anabolic Actions of Parathyroid Hormone in Bone

    Science.gov (United States)

    Yu, Shibing; Franceschi, Renny T.; Luo, Min; Fan, Jie; Jiang, Di; Cao, Huiling; Kwon, Tae-Geon; Lai, Yumei; Zhang, Jian; Patrene, Kenneth; Hankenson, Kurt; Roodman, G. David; Xiao, Guozhi

    2009-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4). Our study demonstrates that ATF4 deficiency suppresses PTH-stimulated osteoblast proliferation and survival and abolishes PTH-induced osteoblast differentiation, which, together, compromise the anabolic response. We further demonstrate that the PTH-dependent increase in osteoblast differentiation is correlated with ATF4-dependent up-regulation of Osterix. This regulation involves interactions of ATF4 with a specific enhancer sequence in the Osterix promoter. Furthermore, actions of PTH on Osterix require this same element and are associated with increased binding of ATF4 to chromatin. Taken together these experiments establish a fundamental role for ATF4 in the anabolic actions of PTH on the skeleton. PMID:19851510

  3. Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone.

    Directory of Open Access Journals (Sweden)

    Shibing Yu

    Full Text Available Parathyroid hormone (PTH is a potent anabolic agent for the treatment of osteoporosis. However, its mechanism of action in osteoblast and bone is not well understood. In this study, we show that the anabolic actions of PTH in bone are severely impaired in both growing and adult ovariectomized mice lacking bone-related activating transcription factor 4 (ATF4. Our study demonstrates that ATF4 deficiency suppresses PTH-stimulated osteoblast proliferation and survival and abolishes PTH-induced osteoblast differentiation, which, together, compromise the anabolic response. We further demonstrate that the PTH-dependent increase in osteoblast differentiation is correlated with ATF4-dependent up-regulation of Osterix. This regulation involves interactions of ATF4 with a specific enhancer sequence in the Osterix promoter. Furthermore, actions of PTH on Osterix require this same element and are associated with increased binding of ATF4 to chromatin. Taken together these experiments establish a fundamental role for ATF4 in the anabolic actions of PTH on the skeleton.

  4. Serum intact parathyroid hormone levels in cats with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Luciano H. Giovaninni

    2013-02-01

    Full Text Available Chronic kidney disease (CKD is frequently observed in cats and it is characterized as a multisystemic illness, caused by several underlying metabolic changes, and secondary renal hyperparathyroidism (SRHPT is relatively common; usually it is associated with the progression of renal disease and poor prognosis. This study aimed at determining the frequency of SRHPT, and discussing possible mechanisms that could contribute to the development of SRHPT in cats at different stages of CKD through the evaluation of calcium and phosphorus metabolism, as well as acid-base status. Forty owned cats with CKD were included and divided into three groups, according to the stages of the disease, classified according to the International Renal Interest Society (IRIS as Stage II (n=12, Stage III (n=22 and Stage IV (n=6. Control group was composed of 21 clinically healthy cats. Increased serum intact parathyroid hormone (iPTH concentrations were observed in most CKD cats in all stages, and mainly in Stage IV, which hyperphosphatemia and ionized hypocalcemia were detected and associated to the cause for the development of SRHPT. In Stages II and III, however, ionized hypercalcemia was noticed suggesting that the development of SRHPT might be associated with other factors, and metabolic acidosis could be involved to the increase of serum ionized calcium. Therefore, causes for the development of SRHPT seem to be multifactorial and they must be further investigated, mainly in the early stages of CKD in cats, as hyperphosphatemia and ionized hypocalcemia could not be the only factors involved.

  5. Intraoperative parathyroid hormone assay in patients with Graves' disease for prediction of postoperative tetany.

    Science.gov (United States)

    Moriyama, Taiki; Yamashita, Hiroyuki; Noguchi, Shiro; Takamatsu, Yuji; Ogawa, Takahiro; Watanabe, Shin; Uchino, Shinya; Ohshima, Akira; Kuroki, Syoji; Tanaka, Masao

    2005-10-01

    We measured intraoperative parathyroid hormone (IOPTH) levels before and after thyroidectomy in a large group of patients to test whether changes in IOPTH can predict postoperative tetany. Subjects were 111 consecutive patients (94 females and 17 males) with Graves' disease undergoing subtotal thyroidectomy. Blood samples for IOPTH assay were obtained after anesthesia (basal) and following skin closure (postoperative). Data were compared between patients who developed tetany (n = 9) and those who did not (n = 102). There was no significant difference in sex, age, period of antithyroid drug administration, or the weight of the thyroid between the two groups. The preoperative serum calcium level was significantly lower (p tetany group than in the non-tetany group. The IOPTH level was significantly lower (p tetany group than in the non-tetany group. A decrease in IOPTH of more than 70% was shown to be 78% sensitive, 94% specific, and 93% accurate, and it has 78% positive predictive value and 94% negative predictive value for the development of tetany. Our study shows that a postoperative decrease of IOPTH level is the most predictive of postoperative tetany of the clinical risk factors investigated. We recommend IOPTH measurement as an adjunct to postoperative management of patients with Graves' disease to assist in preventing hypocalcemia and determining the earliest time for safe discharge.

  6. Expression of parathyroid hormone-related protein confers malignant potential to mucoepidermoid carcinoma

    Science.gov (United States)

    NAGAMINE, KYOSUKE; KITAMURA, TETSUYA; YANAGAWA-MATSUDA, AYA; OHIRO, YOICHI; TEI, KANCHU; HIDA, KYOKO; HIGASHINO, FUMIHIRO; TOTSUKA, YASUNORI; SHINDOH, MASANOBU

    2013-01-01

    Parathyroid hormone-related protein (PTHrP) is known to induce bone resorption by activating RANKL as well as PTH. PTHrP plays a central role in humoral hypercalcemia, and its expression has been reported to be closely associated with bone metastasis of breast carcinoma. PTHrP expression in oral squamous carcinoma cell lines was investigated, and PTHrP was expressed in oral squamous cell carcinoma cell lines similar to that in a prostate carcinoma cell line. Mucoepidermoid carcinoma is the most common malignant salivary gland tumor composed of different types of cells including a squamous component. Its clinical behavior is highly variable and ranges from slow-growing and indolent to locally aggressive and highly metastatic. We examined the PTHrP expression in mucoepidermoid carcinoma and assessed the significance of its correlation with clinicopathological features. Immunohistochemical detection of PTHrP was carried out in 21 cases of mucoepidermoid carcinoma in the head and neck region. PTHrP was highly detectable in intermediate and epidermoid cells, and abundant expression of PTHrP in intermediate cells had a significant association with cancer malignancy, including lymph node metastasis and/or tumor recurrence. These results suggest that PTHrP expression can be used as a prognostic factor for mucoepidermoid carcinoma. PMID:23588777

  7. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration

    Institute of Scientific and Technical Information of China (English)

    Bruno; C; Huber; Ulrich; Grabmaier; Stefan; Brunner

    2014-01-01

    Parathyroid hormone(PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.

  8. Minimally invasive video-assisted parathyroidectomy without intraoperative parathyroid hormone monitoring.

    Science.gov (United States)

    Rodrigo, Juan Pablo; Coca Pelaz, Andrés; Martínez, Patricia; González Marquez, Rocío; Suárez, Carlos

    2014-01-01

    surgical treatment of primary hyperparathyroidism has evolved from the classical bilateral neck exploration to minimally invasive techniques due to recent advances in preoperative localisation methods. The additional value of intraoperative parathyroid hormone (PTH) monitoring is questioned. The aim of this study was to analyse the results of minimally invasive video-assisted parathyroidectomy (MIVAP) without intraoperative PTH monitoring. the patients who underwent MIVAP without PTH monitoring for primary hyperparathyroidism between 2007 and 2013 were evaluated. In all cases the suspected enlarged gland was identified preoperatively by 99Tc-sestamibi scintigraphy, ultrasound or computed tomography. 71 patients were studied (56 females and 15 males), with a mean age of 60 years. In 3 cases (4%) the technique was converted to open parathyroidectomy. Calcium and PTH levels were normalised after first surgery in 69 cases (97%), and after a second surgery in the remaining 2 cases (a second contralateral and a second intrathyroid adenoma). One patient developed a postoperative wound infection, 1 postoperative hypocalcaemia, and 4 transient vocal fold paralysis. No permanent vocal fold paralysis or other complications were observed. MIVAP is a safe, effective surgical technique to cure primary hyperparathyroidism. Intraoperative PTH monitoring may not be routinely necessary in patients treated with this technique. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  9. [Relation between parathyroid hormone and cardiovascular risk in patients with vitamin D deficiency].

    Science.gov (United States)

    Casado Cerrada, Jesús; Parra Caballero, Pedro; Vega Piris, Lorena; Suárez Fernández, Carmen

    2013-10-05

    Vitamin D deficiency and parathyroid hormone (PTH) are associated with an increased cardiovascular risk and arterial stiffness. The aim of our study is to compare the cardiovascular risk in subjects with low vitamin D, attending to the PTH concentration, as well as evaluating the response after administration of vitamin D. Prospective study of patients with a concentration of 25(OH)-vitamin D below 30nmol/l. We evaluated vascular risk parameters as blood pressure, arterial stiffness, lipid profile and glucose metabolism. Patients received vitamin D supplements for 3 months, after which the previous parameters were reassessed. A total of 32 patients were included. Those with PTH over 65pg/ml were older, had worse renal function, higher systolic blood pressure, pulse pressure and arterial stiffness. Treatment with vitamin D showed a statistically significant trend to lower blood pressure and pulse wave velocity. The increase in PTH in patients with low vitamin D involves poor control of blood pressure and increased vascular stiffness. Vitamin D replacement shows a tendency to reduce these parameters. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  10. Full length parathyroid hormone (1–84 in the treatment of osteoporosis in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Esteban Jódar-Gimeno

    2007-04-01

    Full Text Available Esteban Jódar-GimenoEndocrinology and Metabolism Service, University Hospital “12 de Octubre”, Madrid, Spain. Associate Professor of Medicine Universidad Complutense, Madrid, SpainObjective: To review the pharmacological properties and the available clinical data of full length parathyroid hormone (PTH in post-menopausal osteoporosis.Sources: A MEDLINE search was completed, together with a review of information obtained from the manufacturer and from the medicine regulatory agencies.Study and data selection: Studies were selected according to relevance and availability. Relevant information (design, objectives, patients’ characteristics, outcomes, adverse events, dosing, etc was analyzed.Results: Different studies have shown that, when administered intermittently as a subcutaneous injection in the abdomen, PTH increases bone mineral density (BMD and prevents vertebral fractures. On completion of PTH therapy (up to 24 months, there is evidence that sequential treatment with alendronate is associated with a therapeutic benefit in terms of increase in BMD. Further trials are necessary to determine long-term safety and the role of PTH in combination with other treatments for osteoporosis and the effect of repeated cycles of PTH followed by an anti-catabolic agent. There are currently no completed comparative trials with other osteoporosis treatments.Conclusions: Full length PTH, given intermittently as an abdominal subcutaneous injection, appears to be a safe and efficacious treatment option for high risk osteoporosis. More data are needed to determine its specific role in osteoporosis treatment.Keywords: postmenopausal osteoporosis, anabolic therapy, PTH (1–84

  11. Parathyroid hormone-related peptide improves contractile function of stunned myocardium in rats and pigs.

    Science.gov (United States)

    Jansen, Johanna; Gres, Petra; Umschlag, Christian; Heinzel, Frank R; Degenhardt, Heike; Schluter, Klaus-Dieter; Heusch, Gerd; Schulz, Rainer

    2003-01-01

    The effect of synthetic parathyroid hormone (PTH)-related peptide [PTHrP(1-34)] on regional myocardial function was studied in 11 anesthetized pigs. Intracoronary infusion of PTHrP (cumulative dose: 14 +/- 1 microg) decreased coronary resistance to 33 +/- 2% of baseline (P < 0.05) and regional myocardial function to 90 +/- 3% of baseline (not significant). Ischemia-reperfusion alters the activity of several kinases and therefore possibly the myocardial effects of PTHrP. In stunned myocardium, induced by 20-min ischemia and 30-min reperfusion, the dose of PTHrP reducing coronary resistance to a minimum of 29 +/- 2% was decreased to 8 +/- 2 microg (P < 0.05). Regional myocardial function was no longer decreased but increased to 132 +/- 9% (P < 0.05). The increase in regional myocardial function during PTHrP was inversely related to baseline function at 30-min reperfusion in vivo (r = 0.9) as well as in myocytes isolated from stunned pig hearts (r = 0.7). In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, blockade of endogenous PTHrP by d-Trp(12)-Tyr(34)-PTH(7-34) attenuated the recovery of left ventricular developed pressure by 30 +/- 14% (P < 0.05). Thus endogenous and exogenous PTHrP impact on the function of stunned myocardium.

  12. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  13. Formation of a Ternary Complex among NHERF1, β-Arrestin, and Parathyroid Hormone Receptor*

    Science.gov (United States)

    Klenk, Christoph; Vetter, Thorsten; Zürn, Alexander; Vilardaga, Jean-Pierre; Friedman, Peter A.; Wang, Bin; Lohse, Martin J.

    2010-01-01

    β-Arrestins are crucial regulators of G-protein coupled receptor (GPCR) signaling, desensitization, and internalization. Despite the long-standing paradigm that agonist-promoted receptor phosphorylation is required for β-arrestin2 recruitment, emerging evidence suggests that phosphorylation-independent mechanisms play a role in β-arrestin2 recruitment by GPCRs. Several PDZ proteins are known to interact with GPCRs and serve as cytosolic adaptors to modulate receptor signaling and trafficking. Na+/H+ exchange regulatory factors (NHERFs) exert a major role in GPCR signaling. By combining imaging and biochemical and biophysical methods we investigated the interplay among NHERF1, β-arrestin2, and the parathyroid hormone receptor type 1 (PTHR). We show that NHERF1 and β-arrestin2 can independently bind to the PTHR and form a ternary complex in cultured human embryonic kidney cells and Chinese hamster ovary cells. Although NHERF1 interacts constitutively with the PTHR, β-arrestin2 binding is promoted by receptor activation. NHERF1 interacts directly with β-arrestin2 without using the PTHR as an interface. Fluorescence resonance energy transfer studies revealed that the kinetics of PTHR and β-arrestin2 interactions were modulated by NHERF1. These findings suggest a model in which NHERF1 may serve as an adaptor, bringing β-arrestin2 into close proximity to the PTHR, thereby facilitating β-arrestin2 recruitment after receptor activation. PMID:20656684

  14. [Establishment of HEK293 cell lines stably expressing human parathyroid hormone receptors].

    Science.gov (United States)

    Meng, Yue; Xie, Miaomiao; Lin, Zhen; Yuan, Liang; Li, Wei; Hao, Song; Yang, Dehong

    2013-07-01

    To establish HEK293 cell lines with stable expression of human parathyroid hormone (PTH) receptors. The purified gene fragments of PTH-related peptide receptor (PTHR) and its mutant form (DSEL) were cloned separately into pcDNA3.1(+) vector after digestion with EcoR I and Not I, and the resulted pcDNA3.1(+)-PTHR and pcDNA3.1(+)-DSEL plasmids were verified by restriction enzyme digestion and DNA sequencing. HEK293 cells were transfected with these plasmids and the expression of PTHR and DSEL in the cells were examined by RT-PCR and ELSIA. Sequencing and restriction enzyme digestion analysis showed that PTHR and DSEL cDNAs were correctly cloned into pcDNA3.1(+)vector. After a 48-h transfection of HEK293 cells with the recombinant plasmids and G418 selection, the positive cell clones stably expressing the constructs were obtained, which showed expressions of PTHR and DSEL mRNAs detected by RT-PCR. These positive cells showed high levels of PLC and aAMP production in response to PTH stimulation. The HEK293 cell lines with stable expression of PTH1R or DSEL gene established in this study provide useful cell models for studying the physiological functions of PTH peptides.

  15. Formation of a ternary complex among NHERF1, beta-arrestin, and parathyroid hormone receptor.

    Science.gov (United States)

    Klenk, Christoph; Vetter, Thorsten; Zürn, Alexander; Vilardaga, Jean-Pierre; Friedman, Peter A; Wang, Bin; Lohse, Martin J

    2010-09-24

    β-Arrestins are crucial regulators of G-protein coupled receptor (GPCR) signaling, desensitization, and internalization. Despite the long-standing paradigm that agonist-promoted receptor phosphorylation is required for β-arrestin2 recruitment, emerging evidence suggests that phosphorylation-independent mechanisms play a role in β-arrestin2 recruitment by GPCRs. Several PDZ proteins are known to interact with GPCRs and serve as cytosolic adaptors to modulate receptor signaling and trafficking. Na(+)/H(+) exchange regulatory factors (NHERFs) exert a major role in GPCR signaling. By combining imaging and biochemical and biophysical methods we investigated the interplay among NHERF1, β-arrestin2, and the parathyroid hormone receptor type 1 (PTHR). We show that NHERF1 and β-arrestin2 can independently bind to the PTHR and form a ternary complex in cultured human embryonic kidney cells and Chinese hamster ovary cells. Although NHERF1 interacts constitutively with the PTHR, β-arrestin2 binding is promoted by receptor activation. NHERF1 interacts directly with β-arrestin2 without using the PTHR as an interface. Fluorescence resonance energy transfer studies revealed that the kinetics of PTHR and β-arrestin2 interactions were modulated by NHERF1. These findings suggest a model in which NHERF1 may serve as an adaptor, bringing β-arrestin2 into close proximity to the PTHR, thereby facilitating β-arrestin2 recruitment after receptor activation.

  16. Agonist-regulated Cleavage of the Extracellular Domain of Parathyroid Hormone Receptor Type 1*

    Science.gov (United States)

    Klenk, Christoph; Schulz, Stefan; Calebiro, Davide; Lohse, Martin J.

    2010-01-01

    The receptor for parathyroid hormone (PTHR) is a main regulator of calcium homeostasis and bone maintenance. As a member of class B of G protein-coupled receptors, it harbors a large extracellular domain, which is required for ligand binding. Here, we demonstrate that the PTHR extracellular domain is cleaved by a protease belonging to the family of extracellular metalloproteinases. We show that the cleavage takes place in a region of the extracellular domain that belongs to an unstructured loop connecting the ligand-binding parts and that the N-terminal 10-kDa fragment is connected to the receptor core by a disulfide bond. Cleaved receptor revealed reduced protein stability compared with noncleaved receptor, suggesting degradation of the whole receptor. In the presence of the agonistic peptides PTH(1–34), PTH(1–14), or PTH(1–31), the processing of the PTHR extracellular domain was inhibited, and receptor protein levels were stabilized. A processed form of the PTHR was also detected in human kidney. These findings suggest a new model of PTHR processing and regulation of its stability. PMID:20080964

  17. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells.

    Science.gov (United States)

    Nii-Kono, T; Iwasaki, Y; Uchida, M; Fujieda, A; Hosokawa, A; Motojima, M; Yamato, H; Kurokawa, K; Fukagawa, M

    2007-04-01

    Skeletal resistance to parathyroid hormone (PTH) is well known to the phenomenon in chronic renal failure patient, but the detailed mechanism has not been elucidated. In the process of analyzing an animal model of renal failure with low bone turnover, we demonstrated decreased expression of PTH receptor (PTHR) accompanying renal dysfunction in this model. In the present study, we focused on the accumulation of uremic toxins (UTx) in blood, and examined whether indoxyl sulfate (IS), a UTx, is associated with PTH resistance. We established primary osteoblast cultures from mouse calvariae and cultured the cells in the presence of IS. The intracellular cyclic adenosine 3',5' monophosphate (cAMP) production, PTHR expression, and free radical production in the primary osteoblast culture were studied. We found that the addition of IS suppressed PTH-stimulated intracellular cAMP production and decreased PTHR expression in this culture system. Free radical production in osteoblasts increased depending on the concentration of IS added. Furthermore, expression of organic anion transporter-3 (OAT-3) that is known to mediate cellular uptake of IS was identified in the primary osteoblast culture. These results suggest that IS taken up by osteoblasts via OAT-3 present in these cells augments oxidative stress to impair osteoblast function and downregulate PTHR expression. These finding strongly suggest that IS accumulated in blood due to renal dysfunction is at least one of the factors that induce skeletal resistance to PTH.

  18. Agonist-regulated cleavage of the extracellular domain of parathyroid hormone receptor type 1.

    Science.gov (United States)

    Klenk, Christoph; Schulz, Stefan; Calebiro, Davide; Lohse, Martin J

    2010-03-19

    The receptor for parathyroid hormone (PTHR) is a main regulator of calcium homeostasis and bone maintenance. As a member of class B of G protein-coupled receptors, it harbors a large extracellular domain, which is required for ligand binding. Here, we demonstrate that the PTHR extracellular domain is cleaved by a protease belonging to the family of extracellular metalloproteinases. We show that the cleavage takes place in a region of the extracellular domain that belongs to an unstructured loop connecting the ligand-binding parts and that the N-terminal 10-kDa fragment is connected to the receptor core by a disulfide bond. Cleaved receptor revealed reduced protein stability compared with noncleaved receptor, suggesting degradation of the whole receptor. In the presence of the agonistic peptides PTH(1-34), PTH(1-14), or PTH(1-31), the processing of the PTHR extracellular domain was inhibited, and receptor protein levels were stabilized. A processed form of the PTHR was also detected in human kidney. These findings suggest a new model of PTHR processing and regulation of its stability.

  19. Parathyroid hormone-related protein specifies the mammary mesenchyme and regulates embryonic mammary development.

    Science.gov (United States)

    Hiremath, Minoti; Wysolmerski, John

    2013-06-01

    Parathyroid Hormone related Protein (PTHrP) is a critical regulator of mammary gland morphogenesis in the mouse embryo. Loss of PTHrP, or its receptor, PTHR1, results in arrested mammary buds at day 15 of embryonic development (E15). In contrast, overexpression of PTHrP converts the ventral epidermis into hairless nipple skin. PTHrP signaling appears to be critical for mammary mesenchyme specification, which in turn maintains mammary epithelial identity, directs bud outgrowth, disrupts the male mammary rudiment and specifies the formation of the nipple. In the embryonic mammary bud, PTHrP exerts its effects on morphogenesis, in part, through epithelial-stromal crosstalk mediated by Wnt and BMP signaling. Recently, PTHLH has been identified as a strong candidate for a novel breast cancer susceptibility locus, although PTHrP's role in breast cancer has not been clearly defined. The effects of PTHrP on the growth of the embryonic mammary rudiment and its invasion into the dermis may, in turn, have connections to the role of PTHrP in breast cancer.

  20. 6-Thioguanine inhibition of parathyroid hormone-related protein expression is mediated by GLI2.

    Science.gov (United States)

    Johnson, Rachelle W; Merkel, Alyssa R; Danilin, Sabrina; Nguyen, Mai P; Mundy, Gregory R; Sterling, Julie A

    2011-09-01

    Breast cancer cells frequently metastasize to bone, where they up-regulate their expression of the transcription factor GLI2 and the downstream osteolytic factor parathyroid hormone-related protein (PTHrP). The guanosine nucleotide 6-thioguanine (6-TG) inhibits PTHrP expression and blocks osteolytic bone destruction in mice inoculated with bone metastatic cells; however, the mechanism by which 6-TG inhibits PTHrP remains unclear. We hypothesized that 6-TG inhibition of PTHrP is mediated through GLI2 signaling. Human MDA-MB-231 breast cancer cells and RWGT2 squamous-cell lung carcinoma cells were treated with 100 μM 6-TG and examined for GLI2 mRNA expression and stability by Q-PCR, promoter activity by luciferase assay, and protein expression by Western blot. 6-TG significantly blocked GLI2 mRNA and protein expression, but did not affect stability. Additionally, 6-TG directly inhibited GLI2 promoter activity, and when cells were transfected with constitutively expressed GLI2, the inhibitory effect of 6-TG on PTHrP expression was abolished. Taken together, these data indicate that 6-TG regulates PTHrP in part through GLI2 transcription, and therefore the clinical use of 6-TG or other guanosine nucleotides may be a viable therapeutic option in tumor types expressing elevated levels of GLI proteins.

  1. Mammary gland serotonin regulates parathyroid hormone-related protein and other bone-related signals.

    Science.gov (United States)

    Hernandez, Laura L; Gregerson, Karen A; Horseman, Nelson D

    2012-04-15

    Breast cells drive bone demineralization during lactation and metastatic cancers. A shared mechanism among these physiological and pathological states is endocrine secretion of parathyroid hormone-related protein (PTHrP), which acts through osteoblasts to stimulate osteoclastic bone demineralization. The regulation of PTHrP has not been accounted for fully by any conventional mammotropic stimuli or tumor growth factors. Serotonin (5-HT) synthesis within breast epithelial cells is induced during lactation and in advancing breast cancer. Here we report that serotonin deficiency (knockout of tryptophan hydroxylase-1) results in a reduction of mammary PTHrP expression during lactation, which is rescued by restoring 5-HT synthesis. 5-HT induced PTHrP expression in lactogen-primed mammary epithelial cells from either mouse or cow. In human breast cancer cells 5-HT induced both PTHrP and the metastasis-associated transcription factor Runx2/Cbfa1. Based on receptor expression and pharmacological evidence, the 5-HT2 receptor type was implicated as being critical for induction of PTHrP and Runx2. These results connect 5-HT synthesis to the induction of bone-regulating factors in the normal mammary gland and in breast cancer cells.

  2. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Miriam Falzon

    2015-06-01

    Full Text Available Chronic pancreatitis (CP, a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation.

  3. Expression of parathyroid hormone-related protein confers malignant potential to mucoepidermoid carcinoma.

    Science.gov (United States)

    Nagamine, Kyosuke; Kitamura, Tetsuya; Yanagawa-Matsuda, Aya; Ohiro, Yoichi; Tei, Kanchu; Hida, Kyoko; Higashino, Fumihiro; Totsuka, Yasunori; Shindoh, Masanobu

    2013-06-01

    Parathyroid hormone-related protein (PTHrP) is known to induce bone resorption by activating RANKL as well as PTH. PTHrP plays a central role in humoral hypercalcemia, and its expression has been reported to be closely associated with bone metastasis of breast carcinoma. PTHrP expression in oral squamous carcinoma cell lines was investigated, and PTHrP was expressed in oral squamous cell carcinoma cell lines similar to that in a prostate carcinoma cell line. Mucoepidermoid carcinoma is the most common malignant salivary gland tumor composed of different types of cells including a squamous component. Its clinical behavior is highly variable and ranges from slow-growing and indolent to locally aggressive and highly metastatic. We examined the PTHrP expression in mucoepidermoid carcinoma and assessed the significance of its correlation with clinicopathological features. Immunohistochemical detection of PTHrP was carried out in 21 cases of mucoepidermoid carcinoma in the head and neck region. PTHrP was highly detectable in intermediate and epidermoid cells, and abundant expression of PTHrP in intermediate cells had a significant association with cancer malignancy, including lymph node metastasis and/or tumor recurrence. These results suggest that PTHrP expression can be used as a prognostic factor for mucoepidermoid carcinoma.

  4. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis

    Science.gov (United States)

    Falzon, Miriam; Bhatia, Vandanajay

    2015-01-01

    Chronic pancreatitis (CP), a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP) signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis) in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation. PMID:26095761

  5. Analysis of serum Calcium, Magnesium, and Parathyroid Hormone in neonates delivered following preeclampsia treatment.

    Science.gov (United States)

    Vahabi, S; Zaman, M; Farzan, B

    2016-12-30

    Due to the approximate clinical and biochemical manifestations of calcium and magnesium disturbances, with regard to the regulatory effects of parathyroid hormone (PTH), this present study is designed to analyze serum calcium (Ca), magnesium (Mg), and (PTH) at the time of birth, 24 hours afterwards in newborns after the mother has been treated with Mg-sulfate. We registered 86 term and preterm neonates (43 in each group) using simple census method delivered through vagina to preeclampsia pregnant women treated with Mg-sulfate immediately before birth in Khoramabad Asali Hospital, Iran. The first specimen was obtained from umbilical cord blood at birth, followed by the second sample of 2cc peripherally obtained from blood 24 hours after birth. The mean serum Mg level was higher than normal for both specimens in both term and preterm groups with no significant difference. The mean serum Ca level was higher in term group at both occasions, which turned out to be statistically significant (Pmagnesium level showed a significant decline at 24 hours (P = 0.005) while PTH increased significantly (p<0.000) and (p=0.005) for term and preterm groups respectively. In contrast, Ca changes were not significantly different between the two specimens. Treatment with Mg-sulfate immediately before vaginal delivery increases Mg in both term and preterm neonates with no effect on Ca and PTH levels.

  6. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Falzon, Miriam, E-mail: mfalzon@utmb.edu; Bhatia, Vandanajay [Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2015-06-18

    Chronic pancreatitis (CP), a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP) signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis) in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation.

  7. Effect of high-flux versus low-flux dialysis membranes on parathyroid hormone.

    Science.gov (United States)

    Makar, Samuel H; Sawires, Happy K; Farid, Tarek M; Ali, Waleed M; Schaalan, M

    2010-10-01

    INTRODUCTION. Hyperparathyroidism is a common finding in patients with renal insufficiency and parathyroid hormone (PTH) is considered a uremic toxin responsible for many of the abnormalities of the uremic state and bone disease. The aim of this study was to investigate the influence of permeability of low-flux versus high-flux dialysis membranes on intact PTH during hemodialysis in children. MATERIALS AND METHODS. Forty-four children aged between 4 and 13 years old on regular hemodialysis were enrolled in a prospective study. Low-flux polysulfone membranes were used for at least 6 months and then the patients were switched to use high-flux polysulfone membranes for 3 months. Serum electrolytes and intact PTH before and after dialysis were compared before and after changes in dialysis membrane. RESULTS. At the end of the 3-month use of high-flux filters, predialysis intact PTH level (49.40 ± 19.64 ng/dL) showed a highly significant decline (P dialysis membranes are more efficient in removal of intact PTH, one of the middle-sized uremic toxins, than low-flux membranes.

  8. Bone healing induced by local delivery of an engineered parathyroid hormone prodrug.

    Science.gov (United States)

    Arrighi, Isabelle; Mark, Silke; Alvisi, Monica; von Rechenberg, Brigitte; Hubbell, Jeffrey A; Schense, Jason C

    2009-03-01

    Regenerative medicine requires innovative therapeutic designs to accommodate high morphogen concentrations in local depots, provide their sustained presence, and enhance cellular invasion and directed differentiation. Here we present an example for inducing local bone regeneration with a matrix-bound engineered active fragment of human parathyroid hormone (PTH(1-34)), linked to a transglutaminase substrate for binding to fibrin as a delivery and cell-invasion matrix with an intervening plasmin-sensitive link (TGplPTH(1-34)). The precursor form displays very little activity and signaling to osteoblasts, whereas the plasmin cleavage product, as it would be induced under the enzymatic influence of cells remodeling the matrix, was highly active. In vivo animal bone-defect experiments showed dose-dependent bone formation using the PTH-fibrin matrix, with evidence of both osteoconductive and osteoinductive bone-healing mechanisms. Results showed that this PTH-derivatized matrix may have potential utility in humans as a replacement for bone grafts or to repair bone defects.

  9. Cost-benefit analysis of the intraoperative parathyroid hormone assay in primary hyperparathyroidism.

    Science.gov (United States)

    Badii, Benedetta; Staderini, Fabio; Foppa, Caterina; Tofani, Lorenzo; Skalamera, Ileana; Fiorenza, Giulia; Qirici, Eva; Cianchi, Fabio; Perigli, Giuliano

    2017-02-01

    The purpose of this study was to evaluate the usefulness of the routine intraoperative intact parathyroid hormone (IOPTH) assay, the role of unilateral and bilateral cervical exploration and of preoperative imaging, and to do a cost-benefit analysis in parathyroidectomy for primary hyperparathyroidism. Two hundred sixty-four patients who underwent operations between January 2000 and March 2015 were retrospectively divided into 2 groups. Group A (IOPTH) was composed of 64 patients. Ultrasonography and technetium-99m-sestamibi (MIBI) identified the adenoma in 38 cases. Bilateral exploration was performed in 43 patients; of which 2 failures occurred. The IOPTH false-negative rate was 18.4%. The average cost was €1297.30. Group B (without IOPTH) was composed of 200 patients. Ultrasonography and MIBI identified the adenoma in 113 cases. Bilateral exploration was performed in 129 patients; of which 2 failures occurred. The average cost was €618.75. The IOPTH assay should be used only in few selected cases because of its high cost. The experience of the team is essential to obtain a high cure rate. © 2016 Wiley Periodicals, Inc. Head Neck 39: 241-246, 2017. © 2016 Wiley Periodicals, Inc.

  10. Vitamin D and parathyroid hormone status in a representative population living in Macau, China.

    Science.gov (United States)

    Ke, L; Mason, R S; Mpofu, E; Dibley, M; Li, Y; Brock, K E

    2015-04-01

    Associations between documented sun-exposure, exercise patterns and fish and supplement intake and 25-hydroxyvitamin D (25OHD) and parathyroid hormone (PTH) were investigated in a random household survey of Macau residents (aged 18-93). Blood samples (566) taken in summer were analyzed for 25OHD and PTH. In this Chinese population, 55% were deficient (25OHD Body Mass Index (β=0.07) and Ca supplement intake (β=-0.06). In this Macau population less documented sun exposure, fish and Ca supplement intake and exercise were associated with lower 25OHD levels, especially in the younger population, along with the interesting finding that more sitting was associated with both lower 25OHD and high PTH blood levels. In conclusion, unlike findings from Caucasian populations, younger participants were significantly more vitamin D deficient, in particular highly educated single females. This may indicate the desire of young females to be pale and avoid the sun. There are also big differences in lifestyle between the older generation and the younger, in particular with respect to sun exposure and PA. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  11. Determining the Levels of Vitamin D and Parathyroid Hormone in Patients on Hemodialysis

    Directory of Open Access Journals (Sweden)

    Mihaylov R.

    2016-03-01

    Full Text Available Vitamin D deficiency is fequently observed in chronic kidney disease. We conducted this study to determine the concentration of the above-mentioned parameters and the correlation between them in order to optimize therapy with vitamin D in patients with end-stage renal disease (ESRD on hemodialysis. In 53 patients on hemodialysis due to ESRD, vitamin D [Calcidiol (25(OHD], parathyroid hormone (PTH, calcium, phosphorus, albuminuria, albumin:creatinine ratio (ACR and other parameters have been followed up. Analysis of the levels of vitamin D has been carried out by High Performance Liquid Chromatography (HPLC, the PTH is determined by the system Centaur XP, Siemens Diagnostic, Electro-chemiluminescence immunoassay (ECLIA, and for albumin in urine we used immunological method [Miltigent microalbumin assay (Abbott Laboratories Diagnostics. We found out deficiency and insufficiency of vitamin D in 56.6% and 37.7%, as well as average 4.5 times increase in the PTH, hyperphosphatemia, hypocalcemia, albuminuria (A2 or A3, over 10 times increase in the ACR, secondary hyperparathyroidism. We registered a negative correlation between vitamin D and PTH. We confirmed the increase in creatinine and cystatin C in the patients on hemodialysis. There are few literature data for patients on hemodialysis, however, regarding the extent of the vitamin deficiency and its relationship with PTH, albuminuria, calcium, phosphorus, etc. Our data have indicated that patients on hemodialysis due to ESRD are associated with high incidence of vitamin D insufficiency or deficiency.

  12. Increase in cell-surface localization of parathyroid hormone receptor by cytoskeletal protein 4.1G.

    Science.gov (United States)

    Saito, Masaki; Sugai, Maki; Katsushima, Yuriko; Yanagisawa, Teruyuki; Sukegawa, Jun; Nakahata, Norimichi

    2005-11-15

    The cell-surface localization of GPCRs (G-protein-coupled receptors) has emerged as one of critical factors of the GPCR-mediated signal transduction. It has been reported that the C-termini of GPCRs contain the sequences for sorting the receptors to cell surface. In the present study, we have searched for proteins that interact with the C-terminus of PTH (parathyroid hormone)/PTH-related protein receptor (PTHR) by using the yeast two-hybrid system, and identified a cytoskeletal protein 4.1G (generaltype 4.1 protein) as an interactant with the C-terminus. Immunohistochemical study revealed that both PTHR and 4.1G were co-localized on plasma membranes, when they were transiently expressed in COS-7 cells. When 4.1G or the C-terminal domain of 4.1G (4.1G-CTD), a dominant-negative form of 4.1G, was co-expressed with PTHR in COS-7 cells, 4.1G, but not 4.1G-CTD, facilitated the cell-surface localization of PTHR, determined by cell-surface biotinylation assay. PTH-(1-34) caused phosphorylation of ERK (extracellular-signal-regulated kinase) 1/2 in PTHR-expressed cells mainly mediated through EGF (epidermal growth factor) receptor. The phosphorylation was enhanced by the expression of 4.1G, but not 4.1G-CTD. PTH-(1-34) elevated [Ca2+]i (intracellular Ca2+ concentration) independent of EGF receptor activation, and the elevation was enhanced by the expression of 4.1G, but not 4.1G-CTD. These data indicate that 4.1G facilitates the cell-surface localization of PTHR through its interaction with the C-terminus of the receptor, resulting in the potentiation of PTHR-mediated signal transduction.

  13. Modification of the analysis of parathyroid hormone-related protein in milk and concentrations of this protein in commercial milk and milk products in Japan.

    Science.gov (United States)

    Onda, K; Yamaguchi, M; Ohashi, M; Sato, R; Ochiai, H; Iriki, T; Wada, Y

    2010-05-01

    Parathyroid hormone-related protein (PTHrP), which causes hypercalcemia associated with malignant tumors, is known to be present in milk. Gene expression of PTHrP in the mammary gland increases markedly during parturition and with the onset of lactation. Even when circulating PTHrP levels are extremely low or below the detection limit, milk PTHrP levels are remarkably high. Parathyroid hormone-related protein derived from the mammary gland is assumed to play a role in maintaining the maternal calcium homeostasis and calcium transport from blood to milk. In previous studies that determined the PTHrP concentrations in milk, the pretreatments and diluent composition were not standardized. Here, we investigated the effect of various pretreatment procedures and diluent constitutions and the consequent PTHrP concentrations in commercial milk and milk products in Japan. Significant differences were found in PTHrP concentrations in raw milk samples subjected to different combinations of pretreatments (mixing, centrifugation, acidification, and heating) and diluents (0pM standard solution of PTHrP, plasma treated with protease inhibitors, and original diluent). We measured the PTHrP concentrations in normal liquid milk, processed milk, milk drinks, formulated milk powders, and skim milk powder by using the appropriate combination of pretreatment (acidification) and diluent (plasma treated with protease inhibitors). The PTHrP concentration in normal liquid milk, processed milk, and skim milk powder was as high as that in raw milk (>5nM), whereas that in milk drinks differed considerably. The PTHrP concentration in infant formulas (PTHrP is ingested when milk and milk products are consumed. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Weg M Ongkeko

    Full Text Available Parathyroid hormone-related protein (PTHrP possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT, a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.

  15. Parathyroid hormone-related protein (pthrp) is a gravisensor for lung and bone.

    Science.gov (United States)

    Torday, J.

    Parathyroid Hormone-related Protein (PTHrP) and its receptor represent a stretch- sensitive paracrine signaling mechanism (Torday, 1999) that may sense gravity. PTHrP has been shown to be essential for the development and homeostatic regulation of lung (Rubin et al, 2000) and bone (Kronenberg et al, 1994). Since both lung and bone structure and function are affected by microgravity, we hypothesized that microgravity down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the microgravity environment of a rotating wall vessel apparatus, which simulates microgravity, for up to 72 hours. During the first 6-8 hours, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64-66 hours, PTHrP expression remained at this newly established level. PTHrP production decreased from 5 pmol/ml/3hours to undetectable levels in culture medium from microgravity-exposed cells. The cells were then put back in culture at unit gravity for 24hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (mission SLS-2, provided courtesy of the Biospecimen Facility, Ames Research Center, NASA, as a result of a peer-reviewed proposal). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from ground-based rats. Interestingly, there were no differences in PTHrP exp ression by parietal bones, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway.

  16. Temporal relationship between vitamin D status and parathyroid hormone in the United States.

    Directory of Open Access Journals (Sweden)

    Martin H Kroll

    Full Text Available Interpretation of parathyroid hormone (iPTH requires knowledge of vitamin D status that is influenced by season.Characterize the temporal relationship between 25-hydroxyvitamin D3 levels [25(OHD3] and intact iPTH for several seasons, by gender and latitude in the U.S. and relate 25-hydrovitamin D2 [25(OHD2] levels with PTH levels and total 25(OHD levels.We retrospectively determined population weekly-mean concentrations of unpaired [25(OHD2 and 25(OHD3] and iPTH using 3.8 million laboratory results of adults. The 25(OHD3 and iPTH distributions were normalized and the means fit with a sinusoidal function for both gender and latitudes: North >40, Central 32-40 and South 65 pg/mL. The percentage of patients deficient in 25(OHD3 seasonally varied from 21% to 48% and the percentage with elevated iPTH reciprocally varied from 28% to 38%. Patients with detectable 25(OHD2 had higher PTH levels and 57% of the samples with a total 25(OHD > 50 ng/mL had detectable 25(OHD2.25(OHD3 and iPTH levels vary in a sinusoidal pattern throughout the year, even in vitamin D2 treated patients; 25(OHD3, being higher in the summer and lower in the winter months, with iPTH showing the reverse pattern. A large percentage of the tested population showed vitamin D deficiency and secondary hyperparathyroidism. These observations held across three latitudinal regions, both genders, multiple-years, and in the presence or absence of detectable 25(OHD2, and thus are applicable for patient care.

  17. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts.

    Science.gov (United States)

    Kim, Sang Wan; Pajevic, Paola Divieti; Selig, Martin; Barry, Kevin J; Yang, Jae-Yeon; Shin, Chan Soo; Baek, Wook-Young; Kim, Jung-Eun; Kronenberg, Henry M

    2012-10-01

    Intermittent administration of parathyroid hormone (PTH) increases bone mass, at least in part, by increasing the number of osteoblasts. One possible source of osteoblasts might be conversion of inactive lining cells to osteoblasts, and indirect evidence is consistent with this hypothesis. To better understand the possible effect of PTH on lining cell activation, a lineage tracing study was conducted using an inducible gene system. Dmp1-CreERt2 mice were crossed with ROSA26R reporter mice to render targeted mature osteoblasts and their descendents, lining cells and osteocytes, detectable by 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) staining. Dmp1-CreERt2(+):ROSA26R mice were injected with 0.25 mg 4-OH-tamoxifen (4-OHTam) on postnatal days 3, 5, 7, 14, and 21. The animals were euthanized on postnatal day 23, 33, or 43 (2, 12, or 22 days after the last 4-OHTam injection). On day 43, mice were challenged with a subcutaneous injection of human PTH (1-34, 80 µg/kg) or vehicle once daily for 3 days. By 22 days after the last 4-OHTam injection, most X-gal (+) cells on the periosteal surfaces of the calvaria and the tibia were flat. Moreover, bone formation rate and collagen I(α1) mRNA expression were decreased at day 43 compared to day 23. After 3 days of PTH injections, the thickness of X-gal (+) cells increased, as did their expression of osteocalcin and collagen I(α1) mRNA. Electron microscopy revealed X-gal-associated chromogen particles in thin cells prior to PTH administration and in cuboidal cells following PTH administration. These data support the hypothesis that intermittent PTH treatment can increase osteoblast number by converting lining cells to mature osteoblasts in vivo.

  18. The Association between Depression and Vitamin D and Parathyroid Hormone Levels in Adolescents

    Directory of Open Access Journals (Sweden)

    Müsemma Karabel

    2016-02-01

    Full Text Available Background Depression, a challenging disorder, affects 1–6% of adolescents and early onset often predicts more serious manifestations in later life. Elevated Parathyroid hormone (PTH, parathormone levels have reported among adults with depression. In this study, the roles of 25(OH D (vitamin D and parathormone during adolescence, in which the frequency of depression is high, were studied. Materials and Methods Patients who were followed-up jointly at both clinics and whose 25(OH D and PTH levels were evaluated and questioned "Depression Scale for Children" for depression at the same time, were included in the study. Cases’ socio-demographic data, 25(OH D and PTH levels and Depression Scale’ scores were recorded. Results Depression was diagnosed in 35 (25.3% of the 138 patients. No differences were found between vitamin D and parathormone in terms of age and gender in groups either with or without depression. Negative correlation was found between the vitamin D levels and depression score in the group with depression   (r=-0.368; P=0.03. A significant and positive correlation was found between the PTH levels and depression score (r=0.399; P=0.018. A significant and negative correlation was found between 25(OH D and PTH levels. Conclusion Even if clinical depression is absent, the frequency of depressive symptoms is increased with decreased vitamin D levels and increased PTH levels, independent of other factors.  The prevention of depression, specifically in adolescents, is important to decrease possible suicidal and homicidal thoughts that might arise during adulthood, and substance abuse. Maintaining vitamin D support during adolescence, as with the first year of life, is necessary for both the prevention and treatment of depression.

  19. Systemic but no local effects of combined zoledronate and parathyroid hormone treatment in experimental autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Kresten Krarup Keller

    Full Text Available INTRODUCTION: Local bone erosions and osteoporosis in rheumatoid arthritis (RA are the result of a more pronounced bone resorption than bone formation. Present treatment strategies for RA inhibit inflammation, but do not directly target bone erosions. The aim of the study was in experimental arthritis to investigate the juxtaarticular and systemic effects of simultaneous osteoclast inhibition with zoledronate (ZLN and osteoblast stimulation with parathyroid hormone (PTH. METHODS: Arthritis was induced in 36 SKG mice. The mice were randomized to three treatment groups and an untreated group: ZLN, PTH, PTH+ZLN, and untreated. Arthritis score and ankle width measurements were performed. Histological sections were cut from the right hind paw, and design-based stereological estimators were used to quantify histological variables of bone volume and bone formation and resorption. The femora were DXA- and μCT-scanned, and the bone strength was determined at the femoral neck and mid-diaphysis. RESULTS: Locally, we found no differences in arthritis score or ankle width throughout the study. Similarly, none of the treatments inhibited bone erosions or stimulated bone formation in the paw. Systemically, all treatments improved bone mineral density, strength of the femoral neck and mid-diaphysis, and μCT parameters of both cortical and trabecular bone. In addition, there was an additive effect of combination treatment compared with single treatments for most trabecular parameters including bone mineral density and bone volume fraction. CONCLUSIONS: No local effect on bone was found by the combined action of inhibiting bone resorption and stimulating bone formation. However, a clear systemic effect of the combination treatment was demonstrated.

  20. Vitamin D and parathyroid hormone in relation to bone mineral density in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Vučeljić Marina

    2012-01-01

    Full Text Available Background/Aim. Despite vitamin D insufficiency being widely reported, in Serbia the epidemiological data lack information regarding vitamin D status in the sera of postmenopausal women. The aim of this study was to establish the prevalence of inadequate serum 25-hydroxyvitamin D [25(OHD] concentrations in postmenopausal Serbian women with seasonal variations of 25(OHD, in relation to parathyroid hormone (PTH and bone mineral density (BMD. Methods. A total of 95 postmenopausal women, mean age 65.1 ± 9.08 years, were examined. Measurements of 25(OHD and PTH were performed both in the winter and the summer period, using electrochemiluminiscence immunoassays. BMD (g/cm2 was measured by the dualenergy x-Ray absortimetry (DXA method on the spine and hip areas. Results. A decreased value of vitamin D (< 75 nmol/L in 88.4% of postmenopausal women and an elevated level of PTH (> 65 pg/mL in 25.3% of the cases were found. Elevated PTH varied individually, but was mostly increased if 25(OHD was equal or lower than 37.6 nmol/L. 25(OHD insufficiency was found in winter in 94.5% and in summer in 80% of the cases (p < 0.01. The mean of the PTH was higher (p < 0.05 in winter than in summer. A significant negative correlation between 25(OHD and PTH (p < 0.001 was proved. Correlation between 25(OHD and PTH with BMD at lumbar spine was established in the whole group, but at the femoral neck in women aged over 65 years (p < 0.05. Conclusion. Our results showed a high prevalence of vitamin D insufficiency (88.4% among postmenopausal women. The levels of 25(OHD and PTH changed significantly according to the season.

  1. Activated effects of parathyroid hormone-related protein on human hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Fen-Fen Liang

    Full Text Available BACKGROUND & AIMS: After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1, which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC and LX-2 cell lines. METHODS: TGF-β1, alpha-smooth muscle actin (α-SMA, matrix metalloproteinase 2 (MMP-2, and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR after HSCs or LX-2 cells were treated with PTHrP(1-36 or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA of HSC cell culture media. RESULTS: In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. CONCLUSIONS: PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.

  2. A naturally occurring isoform inhibits parathyroid hormone receptor trafficking and signaling.

    Science.gov (United States)

    Alonso, Verónica; Ardura, Juan A; Wang, Bin; Sneddon, W Bruce; Friedman, Peter A

    2011-01-01

    Parathyroid hormone (PTH) regulates calcium homeostasis and bone remodeling through its cognitive receptor (PTHR). We describe here a PTHR isoform harboring an in-frame 42-bp deletion of exon 14 (Δe14-PTHR) that encodes transmembrane domain 7. Δe14-PTHR was detected in human kidney and buccal epithelial cells. We characterized its topology, cellular localization, and signaling, as well as its interactions with PTHR. The C-terminus of the Δe14-PTHR is extracellular, and cell surface expression is strikingly reduced compared with the PTHR. Δe14-PTHR displayed impaired trafficking and accumulated in endoplasmic reticulum. Signaling and activation of cAMP and ERK by Δe14-PTHR was decreased significantly compared with PTHR. Δe14-PTHR acts as a functional dominant-negative by suppressing the action of PTHR. Cells cotransfected with both receptors exhibit markedly reduced PTHR cell membrane expression, colocalization with Δe14-PTHR in endoplasmic reticulum, and diminished cAMP activation and ERK phosphorylation in response to challenge with PTH. Δe14-PTHR forms heterodimers with PTHR, which may account for cytoplasmic retention of PTHR in the presence of Δe14-PTHR. Analysis of the PTHR heteronuclear RNA suggests that base-pair complementarity in introns surrounding exon 14 causes exon skipping and accounts for generation of the Δe14-PTHR isoform. Thus Δe14-PTHR is a poorly functional receptor that acts as a dominant-negative of PTHR trafficking and signaling and may contribute to PTH resistance. © 2011 American Society for Bone and Mineral Research.

  3. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation.

    Science.gov (United States)

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L; Potts, John T; Gardella, Thomas J

    2008-10-28

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1-34), but not PTH-related protein, PTHrP(1-36), or M-PTH(1-14) (M = Ala/Aib(1),Aib(3),Gln(10),Har(11),Ala(12),Trp(14),Arg(19)), binds to the PTHR in a largely GTPgammaS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R(0)), distinct from the GTPgammaS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1-34), M-PTH(1-28) and M-PTH(1-34) bound to R(0) with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1-34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1-34). Thus, the putative R(0) PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R(0), versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands.

  4. Parathyroid hormone-related protein (PTHrP) inhibits mitochondrial-dependent apoptosis through CK2.

    Science.gov (United States)

    Okoumassoun, Liliane Eustache; Russo, Caterina; Denizeau, Francine; Averill-Bates, Diana; Henderson, Janet E

    2007-09-01

    Over the past decade, parathyroid hormone-related protein (PTHrP) has been identified as a key survival factor for cells subjected to apoptotic stimuli. Its anti-apoptotic activity has been attributed to nuclear accumulation of the intact protein, or a synthetic peptide corresponding to its nuclear targeting sequence (NTS), which promotes rapid exit of nutrient deprived cells from the cell cycle. Intracellular PTHrP also inhibited apoptosis by blocking tumor necrosis factor alpha (TNFalpha)-induced apoptosis by blocking signaling from the "death receptor" and preventing damage to the mitochondrial membrane. In both cases, the anti-apoptotic activity was significantly reduced in the presence of a nuclear deficient form of PTHrP with a (88)K/E K/E.K/I(91) mutation in the NTS. The current work was undertaken to determine the mechanism by which nuclear PTHrP blocked mitochondrial-mediated apoptosis. Using sub-cellular fractionation and functional assays we showed that pre-treatment of HEK293 cells with exogenous NTS peptide before inducing apoptosis with TNFalpha was as effective as expression of the full-length protein in inhibiting apoptosis. Inhibition of apoptosis was associated with increased expression of protein kinase casein kinase 2 (CK2) and in sustained CK2 accumulation and activity in the nuclear fraction. In primary chondrogenic cells harvested from the limb buds of PTHrP(+/-) and PTHrP(-/-) embryonic mice, there was a dose-dependent decrease in CK2 expression and activity that correlated with increased susceptibility to apoptosis. Taken together the results indicate that nuclear accumulation of PTHrP effectively inhibits mitochondrial-mediated apoptosis through regulation of the expression, activity, and sub-cellular trafficking of CK2.

  5. Cell cycle actions of parathyroid hormone-related protein in non-small cell lung carcinoma

    Science.gov (United States)

    Montgrain, Philippe R.; Quintana, Rick; Rascon, Yvette; Deftos, Leonard J.; Healy, Erin

    2009-01-01

    Parathyroid hormone-related protein (PTHrP), a paraneoplastic protein expressed by two-thirds of human non-small cell lung cancers, has been reported to slow progression of lung carcinomas in mouse models and to lengthen survival of patients with lung cancer. This study investigated the effects of ectopic expression of PTHrP on proliferation and cell cycle progression of two human lung adenocarcinoma cell lines that are normally PTHrP negative. Stable transfection with PTHrP decreased H1944 cell DNA synthesis, measured by thymidine incorporation, bromodeoxyuridine uptake, and MTT proliferation assay. A substantial fraction of PTHrP-positive cells was arrested in or slowly progressing through G1. Cyclin D2 and cyclin A2 protein levels were 60–70% lower in PTHrP-expressing cells compared with control cells (P PTHrP. Expression of other cyclins, including cyclins D1 and D3, and cyclin-dependent kinases was unaffected by PTHrP. PTHrP did not alter the phosphorylation state of Rb, but decreased cyclin-dependent kinase (CDK) 2-cyclin A2 complex formation. Ectopic expression of PTHrP stimulated ERK phosphorylation. In MV522 cells, PTHrP had similar effects on DNA synthesis, cyclin A2 expression, pRb levels, CDK2-cyclin A2 association, and ERK activation. In summary, PTHrP appears to slow progression of lung cancer cells into S phase, possibly by decreasing activation of CDK2. Slower cancer cell proliferation could contribute to slower tumor progression and increased survival of patients with PTHrP-positive lung cancer. PMID:19633068

  6. Lung carcinoma progression and survival versus amino- and carboxyl-parathyroid hormone-related protein expression.

    Science.gov (United States)

    Hastings, Randolph H; Montgrain, Philippe R; Quintana, Rick A; Chobrutskiy, Boris; Davani, Ashkhan; Miyanohara, Atsushi; Mahooti, Sepi

    2017-08-01

    Expression of the carboxyl PTHrP region of parathyroid hormone-related protein (PTHrP) is a positive prognostic indicator in women with lung cancer, but amino PTHrP is a negative indicator in other lung cancer patients. This project investigated whether PTHrP could be expressed as predominantly amino PTHrP or carboxyl PTHrP in individual lung carcinomas. It also assessed domain-specific effects on cancer progression and patient survival. PTHrP immunoreactivities were analyzed versus survival in a human lung cancer tissue microarray (TMA). Growth was compared in athymic mice for isogenic lung carcinoma xenografts differing in expression of amino and carboxyl PTHrP domains. In the TMA, 33 of 99 patient tumors expressed only one PTHrP domain, while 54 expressed both. By Cox regression, the hazard ratio for cancer-specific mortality (95% confidence interval) was 2.6 (1.28-5.44) for amino PTHrP (P = 0.008) and 0.6 (0-2.58) for carboxyl PTHrP (P = 0.092). Xenografts of H358 lung adenocarcinoma cells that overexpressed amino PTHrP grew twice as fast as isogenic low PTHrP tumors in athymic mice, but growth of tumors expressing amino plus carboxyl PTHrP was not significantly different than growth of the control tumors. In summary, the presence of amino PTHrP signifies worse prognosis in lung cancer patients. In mouse xenografts, this effect was abrogated if carboxyl PTHrP was also present. Amino PTHrP and carboxyl PTHrP can vary independently in different lung carcinomas. Carboxyl PTHrP may temper the stimulatory effect of amino PTHrP on cancer progression.

  7. Activated effects of parathyroid hormone-related protein on human hepatic stellate cells.

    Science.gov (United States)

    Liang, Fen-Fen; Liu, Cui-Ping; Li, Li-Xuan; Xue, Min-Min; Xie, Fang; Guo, Yu; Bai, Lan

    2013-01-01

    After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP) has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1), which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC) and LX-2 cell lines. TGF-β1, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR) after HSCs or LX-2 cells were treated with PTHrP(1-36) or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA) of HSC cell culture media. In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.

  8. Involvement of parathyroid hormone-related protein in vascular calcification of chronic haemodialysis patients.

    Science.gov (United States)

    Liu, Fang; Fu, Ping; Fan, Wenxing; Gou, Rong; Huang, Youqun; Qiu, Hongyu; Zhong, Hui; Huang, Songmin

    2012-08-01

    To investigate the role of parathyroid hormone-related protein (PTHrP) in vascular calcification of patients with chronic hemodialysis. The inferior epigastric arteries were obtained from 23 patients on chronic haemodialysis and 16 patients with renal carcinoma as control. Haematoxylin-eosin staining, elastic fibre staining, Alizarin Red calcium staining and immunohistochemical staining of PTHrP, bone morphogenetic protein-2 (BMP-2), Cbfa1/Runx2 were performed. Real-time polymerase chain reaction (PCR) was used to examine mRNA expressions of PTHrP, BMP-2 and Cbfa1/Runx2. Western blot and real-time PCR were used to detect the effects of PTHrP-siRNA and rh-PTHrP-1-34 on the expressions of PTHrP, BMP-2 and Cbfa1/Runx2 in human aortic smooth muscle cells (HASMC). Alkaline phosphatase (ALP) activities and intracellular calcium content in HASMCs were assessed after treatment with 10 mmol/L β-glycerol phosphoric acid for 48 h. Vascular calcification was confirmed in 78.2% of patients on chronic haemodialysis, and the expressions of PTHrP, BMP-2 and Cbfa1 in the arteries were significantly upregulated. PTHrP-siRNA could downregulate the expression of PTHrP by 60%, BMP-2 by 25% and Cbfa1 by 25% at 24 h (P PTHrP-1-34 could upregulate the expressions of BMP-2 and Cbfa1 by 1.37-fold and 1.46-fold, respectively, at 24 h in a time-independent manner (P PTHrP-siRNA. Moreover, it could promote intracellular calcium deposition and increase ALP activities, which were partially blocked by PTHrP-siRNA (P PTHrP might contribute by activating BMP-2/ Cbfa1 signalling pathway. © 2012 The Authors. Nephrology © 2012 Asian Pacific Society of Nephrology.

  9. Parathyroid hormone-related protein activates Wnt signaling to specify the embryonic mammary mesenchyme.

    Science.gov (United States)

    Hiremath, Minoti; Dann, Pamela; Fischer, Jennifer; Butterworth, Daniela; Boras-Granic, Kata; Hens, Julie; Van Houten, Joshua; Shi, Wei; Wysolmerski, John

    2012-11-01

    Parathyroid hormone-related protein (PTHrP) regulates cell fate and specifies the mammary mesenchyme during embryonic development. Loss of PTHrP or its receptor (Pthr1) abolishes the expression of mammary mesenchyme markers and allows mammary bud cells to revert to an epidermal fate. By contrast, overexpression of PTHrP in basal keratinocytes induces inappropriate differentiation of the ventral epidermis into nipple-like skin and is accompanied by ectopic expression of Lef1, β-catenin and other markers of the mammary mesenchyme. In this study, we document that PTHrP modulates Wnt/β-catenin signaling in the mammary mesenchyme using a Wnt signaling reporter, TOPGAL-C. Reporter expression is completely abolished by loss of PTHrP signaling and ectopic reporter activity is induced by overexpression of PTHrP. We also demonstrate that loss of Lef1, a key component of the Wnt pathway, attenuates the PTHrP-induced abnormal differentiation of the ventral skin. To characterize further the contribution of canonical Wnt signaling to embryonic mammary development, we deleted β-catenin specifically in the mammary mesenchyme. Loss of mesenchymal β-catenin abolished expression of the TOPGAL-C reporter and resulted in mammary buds with reduced expression of mammary mesenchyme markers and impaired sexual dimorphism. It also prevented the ectopic, ventral expression of mammary mesenchyme markers caused by overexpression of PTHrP in basal keratinocytes. Therefore, we conclude that a mesenchymal, canonical Wnt pathway mediates the PTHrP-dependent specification of the mammary mesenchyme.

  10. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer.

    Science.gov (United States)

    Ongkeko, Weg M; Burton, Doug; Kiang, Alan; Abhold, Eric; Kuo, Selena Z; Rahimy, Elham; Yang, Meng; Hoffman, Robert M; Wang-Rodriguez, Jessica; Deftos, Leonard J

    2014-01-01

    Parathyroid hormone-related protein (PTHrP) possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT), a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.

  11. Structure-function relationship of the nuclear localization signal sequence of parathyroid hormone-related protein.

    Science.gov (United States)

    Ohshima, Keiichic; Takeda, Sachiyo; Hirose, Mariko; Akiyama, Yasuto; Iguchi, Kazuaki; Hoshino, Minoru; Yamaguchi, Ken; Mochizuki, Tohru

    2012-06-01

    Parathyroid hormone-related protein (PTHrP) contains a nuclear localization signal (NLS) sequence within 87-107. NLS sequences are generally capable of penetrating cellular membranes due to a richness of basic amino acid residues, and thus have been used as cell-penetrating peptides (CPPs) to translocate biologically active peptides/proteins into cells. The NLS sequence of PTHrP is not exception to this finding; however, PTHrP(87-107) contains 2 acidic glutamate residues at 99 and 101 within the basic amino acid stretch, which is not commonly observed in other CPPs such as HIV-1 Tat(48-60). In this study, we indicated structure-function relationship of the PTHrP NLS to understand the effect of acidic glutamate residues on cell permeability and intracellular localization. We chemically synthesized PTHrP(87-107) and its N-terminally truncated analogues. Their intracellular localization pattern was analyzed by microscopy, radioimmunoassay, and fluorescence-activated cell sorting. Although all analogues were translocated into cells, internalization by the cytoplasm and/or nucleus was length-dependent; specifically, PTHrP(97-107), PTHrP(95-107), and PTHrP(93-107) were more frequently localized in the cytoplasm. We assume that reduction in the net positive charge within PTHrP NLS analogues resulted in increased cytoplasm- translocation activity. We propose that PTHrP(97-107) is a useful carrier peptide for delivery and expression of cargo molecules in the cytoplasm.

  12. Parathyroid hormone-related protein (PTHrP) expression in ameloblastoma.

    Science.gov (United States)

    Abdelsayed, Rafik A; Vartanian, Robert K; Smith, Kimberly K; Ibrahim, Nabil A

    2004-02-01

    Parathyroid hormone-related protein (PTHrP) production has been demonstrated in a variety of tumor subtypes. Local production of PTHrP by metastatic tumor cells in bone has been linked to bone destruction and tumor growth. Ameloblastoma (AB) is a relatively common odontogenic epithelial neoplasm that manifests local infiltrative intraosseous growth. AB recapitulates the developing enamel epithelium, in which PTHrP recently has been demonstrated. Yet PTHrP expression in a series of ABs has not been studied to date. The purpose of this investigation is to assess the expression of PTHrP in ameloblastoma. Formalin-fixed, paraffin-embedded tissue sections of ameloblastoma (n = 30; 24 conventional, 4 unicystic, and 2 arising in dentigerous cyst) were immunostained with anti-PTHrP antibody using a multistep streptavidin-peroxidase technique. Semiquantitative scoring of immunoreactivity was assessed as mild, moderate, and intense. All cases (100%) demonstrated positive immunoreactivity, with mild reaction in 3 conventional ABs, 1 unicystic and 1 AB arising in dentigerous cyst, and with moderate reaction in 12 conventional ABs, 3 unicystic and 1 AB arising in dentigerous cyst. Intense immunoreactivity was seen in 9 cases of conventional AB. This difference in immunostaining was not statistically significant (Sigma2 = 4.41, df = 4, P = .358). The results of this investigation suggest that PTHrP may play a significant role in local bone resorption, offering at least partial explanation for the tumor's infiltrative growth and destructive behavior. The uniformity of PTHrP expression by AB, as detailed in this study, may harbor significant therapeutic implications, particularly through PTHrP-blocking treatment modalities.

  13. Correlation between serum parathyroid hormone levels and coronary artery calcification in patients without renal failure.

    Science.gov (United States)

    Wu, Gang-Yong; Xu, Bai-Da; Wu, Ting; Wang, Xiao-Ying; Wang, Tian-Xiao; Zhang, Xiao; Wang, Xiao; Xia, Yang; Zong, Gang-Jun

    2016-11-01

    The aim of the present study was to investigate the correlation between serum parathyroid hormone (PTH) levels and coronary artery calcification (CAC) in patients without renal failure, as well as to determine independent risk factors of CAC score (CACS). A total of 157 patients who underwent coronary computed tomography angiographic examination at the 101th Hospital of the People's Liberation Army between December 2013 and February 2015 were retrospectively evaluated. The correlation between PTH levels and CACS was determined using a Pearson correlation analysis. A receiver operating characteristic (ROC) curve was drawn to determine the best cutoff PTH level for prediction of CAC. The independent association between serum PTH levels and CAC was analyzed by using a logistic regression analysis model with the response variable Be binary class. The results revealed that PTH levels in patients in the CAC group were significantly higher than those of patients in the non-calcification group. PTH levels were positively correlated with CACS (r=0.288, PCAC, with a sensitivity of 80.88%, specificity of 60.67% and an area under the curve of 0.761. After including predictive factors for CAC (gender, age, smoking status, diabetes, hypertension, hyperlipidemia, body mass index, glomerular filtration rate and calcium, phosphorus, calcium-phosphorus product, magnesium, PTH, total cholesterol, low-density lipoprotein cholesterol, triglyceride, high-density lipoprotein cholesterol and C-reactive protein levels), the odds ratio of the serum PTH levels regarding the prediction of CAC was 1.050 (95% confidence interval, 1.027-1.074; PCAC in patients without renal failure and may thus be used as a reliable predictor of CAC.

  14. Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein.

    Science.gov (United States)

    Yan, Zhang; Jin, Su; Wei, Zhang; Huilian, Hou; Zhanhai, Yin; Yue, Teng; Juan, Li; Jing, Li; Libo, Yao; Xu, Li

    2014-09-01

    Prostate cancer frequently metastasizes to the skeleton but the underlying mechanism remains largely undefined. Discoidin domain receptor 2 (DDR2) is a member of receptor tyrosine kinase (RTK) family and is activated by collagen binding. This study aimed to investigate the function and detailed mechanism of DDR2 in prostate cancer bone dissemination. Herein we found that DDR2 was strongly expressed in bone-metastatic prostate cancer cells and tissues compared to that in normal controls. Enhanced expression of constitutively activated DDR2 led to elevation in motility and invasiveness of prostate cancer cells, whereas knockdown of DDR2 through specific shRNA caused a dramatic repression. Knockdown of DDR2 in prostate cancer cells resulted in significant decrease in the proliferation, differentiation and function of osteoblast. Over-expression of DDR2 in prostate cancer cells resulted in notable acceleration of osteoclast differentiation and bone resorption, whereas knockdown of DDR2 exhibited the opposite effects. An intrabone injection bone metastasis animal model demonstrated that DDR2 promoted osteolytic metastasis in vivo. Molecular evidence demonstrated that DDR2 regulated the expression, secretion, and promoter activity of parathyroid hormone-related protein (PTHrP), via modulating Runx2 phosphorylation and transactivity. DDR2 was responsive to TGF-β and involved in TGF-β-mediated osteoclast activation and bone resorption. In addition, DDR2 facilitated prostate cancer cells adhere to type I collagen. This study reveals for the first time that DDR2 plays an essential role in prostate cancer bone metastasis. The mechanism disclosure may provide therapeutic targets for the treatment of prostate cancer.

  15. CYP2D6, GST-M1 and GST-T1 enzymes: expression in parathyroid gland and association with the parathyroid hormone concentration during early renal replacement therapy

    Science.gov (United States)

    Yan, Feng-Xiang; Langub, M Chris; Ihnen, Mark A; Hornung, Carlton; Juronen, Erkki; Rayens, Mary K; Cai, Wei-Min; Wedlund, Peter J; Fanti, Paolo

    2003-01-01

    Aims The purpose of this research was to characterize CYP2D6, GST-M1 and GST-T1 enzyme expression in human parathyroid tissue, and to determine whether or not there is any association between deficiencies in these enzymes and serum parathyroid hormone concentrations in patients with end-stage renal disease. Methods Surgical human parathyroid tissue was obtained and evaluated by immunohistochemistry for cellular localization of CYP2D6, GST-M1 and GST-T1 and colocalization of CYP2D6 with parathyroid hormone. Blood samples were collected from 328 Caucasian patients with end-stage renal disease for genetic testing of CYP2D6*3, *4, *5, *6, *7 and GST-M1*0 and GST-T1*0 alleles. Clinical chemistry data and serum intact parathyroid hormone (iPTH) concentrations were obtained from patient medical records. In 277 of the patients, the same laboratory performed all clinical tests. Results CYP2D6, GST-M1 and GST-T1 were present in human parathyroid tissue. CYP2D6 was colocalized with parathyroid hormone in parathyroid chief cells. Within the end-stage renal disease population, a nonfunctional CYP2D6 genotype was present in 18.2%[95% confidence interval (CI) 8.0, 28.4] of patients in the 1st iPTH concentration quintile (iPTH 347 pg mL−1) (P = 0.001). Out of 12 CYP2D6-deficient females, seven were in the 1st iPTH concentration quintile and the remaining five were in the 5th quintile. Patients deficient in the GST-M1 and GST-T1 enzymes displayed a far more uniform frequency distribution relative to serum iPTH concentrations. Conclusions The presence of CYP2D6, GST-M1 and GST-T1 in parathyroid cells was observed. An association is reported between a lack of CYP2D6 and iPTH concentrations in newly diagnosed end-stage renal disease patients. Gender and concomitant deficiency in GST-M1 and/or GST-T1 appear to define this association further. It remains to be established whether these associations reflect a cause-effect relationship between deficient expression of metabolizing

  16. Two Years of Cinacalcet Hydrochloride Treatment Decreased Parathyroid Gland Volume and Serum Parathyroid Hormone Level in Hemodialysis Patients With Advanced Secondary Hyperparathyroidism.

    Science.gov (United States)

    Yamada, Shunsuke; Tokumoto, Masanori; Taniguchi, Masatomo; Toyonaga, Jiro; Suehiro, Takaichi; Eriguchi, Rieko; Fujimi, Satoru; Ooboshi, Hiroaki; Kitazono, Takanari; Tsuruya, Kazuhiko

    2015-08-01

    The long-term effect of cinacalcet hydrochloride treatment on parathyroid gland (PTG) volume has been scarcely investigated in patients with moderate to advanced secondary hyperparathyroidism (SHPT). The present study was a prospective observational study to determine the effect of cinacalcet treatment on PTG volume and serum biochemical parameters in 60 patients with renal SHPT, already treated with intravenous vitamin D receptor activator (VDRA). Measurement of biochemical parameters and PTG volumes were performed periodically, which were analyzed by stratification into tertiles across the baseline parathyroid hormone (PTH) level or PTG volume. We also determined the factors that can estimate the changes in PTG volume and the achievement of the target PTH range by multivariable analyses. Two years of cinacalcet treatment significantly decreased the serum levels of PTH, calcium, and phosphate, followed by the improvement of achieving the target ranges for these parameters recommended by the Japanese Society for Dialysis Therapy. Cinacalcet decreased the maximal and total PTG volume by about 30%, and also decreased the serum PTH level independent of the baseline serum PTH level and PTG volume. Ten out of 60 patients showed 30% increase in maximal PTG after 2 years. Multivariable analysis showed that patients with nodular PTG at baseline and patients with higher serum calcium and PTH levels at 1 year were likely to exceed the target range of PTH at two years. In conclusion, cinacalcet treatment with intravenous VDRA therapy decreased both PTG volume and serum intact PTH level, irrespective of the pretreatment PTG status and past treatment history. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  17. Differentially expressed miR-3680-5p is associated with parathyroid hormone regulation in peritoneal dialysis patients

    Science.gov (United States)

    Jeong, Sohyun; Oh, Jung Mi

    2017-01-01

    Mineral and bone disorder (MBD) is observed universally in patients with chronic kidney disease (CKD). Detrimental MBD-related skeletal changes include increased prevalence of fracture, cardiovascular disease, and mortality. MicroRNAs (miRNAs) have been identified as useful biomarkers in various diseases, and the aim of this study was to identify miRNAs associated with parathyroid hormone level in peritoneal dialysis (PD) patients. Fifty-two PD patients were enrolled and grouped by their intact parathyroid hormone (iPTH) level; 11 patients had low iPTH (2-fold change) miRNAs previously associated with human disease were selected for real-time quantitative PCR (qPCR) analysis. Interaction analyses between miRNAs and genes were performed by using TargetScan and the KEGG pathway database. Microarray results revealed 165 miRNAs were differentially expressed between patients with high iPTH levels and low iPTH levels. Of those miRNAs, 81 were upregulated and 84 were downregulated in patients with high iPTH levels. Expression levels of miR-1299, miR-3680-5p, and miR-548b-5p (previously associated with human disease) in 52 patients were analyzed by using qPCR. MiR-3680-5p was differentially expressed in low and high iPTH patients (P < 0.05). The predicted target genes of miR-3680-5p were USP6, USP32, USP46, and DLT, which are involved in the ubiquitin proteolysis pathway. This pathway has roles in PTH and parathyroid hormone related protein degradation and proteolysis. The mechanisms involved in the associations among low PTH, adynamic bone disease, miR-3680-5p, and the target genes should be explored further in order to elucidate their roles in CKD-MBD development. PMID:28152049

  18. Signaling by N- and C-terminal sequences of parathyroid hormone-related protein in hippocampal neurons.

    OpenAIRE

    Fukayama, S; Tashjian, A H; Davis, J N; Chisholm, J C

    1995-01-01

    Parathyroid hormone-related protein (PTHrP) is synthesized in the brain, and a single type of cloned receptor for the N-terminal portion of PTHrP and PTH is present in the central nervous system. Nothing is known about the physiological actions or signaling pathways used by PTHrP in the brain. Using cultured rat hippocampal neurons, we demonstrate that N-terminal PTHrP[1-34] and PTH[1-34] signal via cAMP and cytosolic calcium transients. The cAMP response showed strong acute (< or = 6 h) homo...

  19. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens;

    2015-01-01

    hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative......Delivery of therapeutic peptides and proteins by the use of cell-penetrating peptides (CPPs) as carriers has been suggested as a feasible strategy. The aim of the present study was to investigate the effect of conjugating a series of well-known CPPs to the biologically active part of parathyroid...

  20. Synergistic effects of high dietary calcium and exogenous parathyroid hormone in promoting osteoblastic bone formation in mice

    OpenAIRE

    Feng, Yuxu; Zhou, Min; Zhang, Qunhu; Liu, Huan; Xu, Yong; Shu, Lei; Zhang, Jue; Miao, Dengshun; Ren, Yongxin

    2015-01-01

    In the present study, we investigated whether high dietary Ca and exogenous parathyroid hormone 1–34 fragments (PTH 1–34) have synergistic effects on bone formation in adult mice, and explored the related mechanisms. Adult male mice were fed a normal diet, a high-Ca diet, a PTH-treated diet, or a high-Ca diet combined with subcutaneously injected PTH 1–34 (80 μg/kg per d) for 4 weeks. Bone mineral density, trabecular bone volume, osteoblast number, alkaline phosphatase (ALP)- and type I colla...

  1. Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: Chromosomal assignment of the gene in the human, mouse, and rat genomes

    Energy Technology Data Exchange (ETDEWEB)

    Pausova, Z.; Bourdon, J.; Clayton, D.; Janicic, N.; Goltzman, D.; Hendy, G.N. (McGill Univ. and Royal Victoria Hospital, Montreal Quebec (Canada)); Mattei, M.G. (INSERM, Marseille (France)); Seldin, M.F. (Duke Univ. Medical Center, Durham, NC (United States)); Riviere, M.; Szpirer, J. (Universite Libre de Bruxelles, Rhode-St-Genese (Belgium)) (and others)

    1994-03-01

    Complementary DNAs spanning the entire coding region of the rat parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) were isolated from a rat osteosarcoma (UMR 106) cell-line cDNA library. The longest of these clones (rPTHrec4) was used to chromosomally assign the PTHR gene in the human, rat, and mouse genomes. By somatic cell hybrid analysis, the gene was localized to human chromosome 3 and rat chromosome 8; by in situ hybridization, the gene was mapped to human chromosome 3p21.1-p22 and to mouse chromosome 9 band F; and by interspecific backcross analysis, the Pthr gene segregated with the transferrin (Trf) gene in chromosome 9 band F. Mouse chromosome 9 and rat chromosome 8 are known to be highly homologous and to also show synteny conservation with human chromosome 3. These three chromosomes share the transferrin gene (TF), the myosin light polypeptide 3 gene (MYL3), and the acelpeptide hydrolase gene (APEH). These results add a fourth gene, the PTHR gene, to the synteny group conserved in these chromosomes. 34 refs., 7 figs. 1 tab.

  2. Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: chromosomal assignment of the gene in the human, mouse, and rat genomes.

    Science.gov (United States)

    Pausova, Z; Bourdon, J; Clayton, D; Mattei, M G; Seldin, M F; Janicic, N; Rivière, M; Szpirer, J; Levan, G; Szpirer, C

    1994-03-01

    Complementary DNAs spanning the entire coding region of the rat parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) were isolated from a rat osteosarcoma (UMR 106) cell-line cDNA library. The longest of these clones (rPTHrec4) was used to chromosomally assign the PTHR gene in the human, rat, and mouse genomes. By somatic cell hybrid analysis, the gene was localized to human chromosome 3 and rat chromosome 8; by in situ hybridization, the gene was mapped to human chromosome 3p21.1-p22 and to mouse chromosome 9 band F; and by interspecific backcross analysis, the Pthr gene segregated with the transferrin (Trf) gene in chromosome 9 band F. Mouse chromosome 9 and rat chromosome 8 are known to be highly homologous and to also show synteny conservation with human chromosome 3. These three chromosomes share the transferrin gene (TF), the myosin light polypeptide 3 gene (MYL3), and the acylpeptide hydrolase gene (APEH). Our results add a fourth gene, the PTHR gene, to the synteny group conserved in these chromosomes.

  3. Induction of Thermal and Mechanical Hypersensitivity by Parathyroid Hormone-related Peptide (PTHrP) Through Upregulation of TRPV1 Function and Trafficking

    Science.gov (United States)

    Mickle, Aaron D.; Shepherd, Andrew J.; Loo, Lipin; Mohapatra, Durga P.

    2016-01-01

    The neurobiological mechanisms underlying chronic pain associated with cancers are not well understood. It has been hypothesized that factors specifically elevated in the tumor microenvironment sensitize adjacent nociceptive afferents. We show that parathyroid hormone-related peptide (PTHrP), which is found at elevated levels in the tumor microenvironment of advanced breast and prostate cancers, is a critical modulator of sensory neurons. Intraplantar injection of PTHrP led to the development of thermal and mechanical hypersensitivity in both male and female mice, which were absent in mice lacking functional transient receptor potential vanilloid-1 (TRPV1). The PTHrP treatment of cultured mouse sensory neurons enhanced action potential firing, and increased TRPV1 activation, which was dependent on protein kinase C (PKC) activity. Parathyroid hormone-related peptide induced robust potentiation of TRPV1 activation and enhancement of neuronal firing at mild acidic pH that is relevant to acidic tumor microenvironment. We also observed an increase in plasma membrane TRPV1 protein levels after exposure to PTHrP, leading to upregulation in the proportion of TRPV1-responsive neurons, which was dependent on the activity of PKC and Src kinases. Furthermore, co-injection of PKC or Src inhibitors attenuated PTHrP-induced thermal but not mechanical hypersensitivity. Altogether, our results suggest that PTHrP and mild acidic conditions could induce constitutive pathological activation of sensory neurons through upregulation of TRPV1 function and trafficking, which could serve as a mechanism for peripheral sensitization of nociceptive afferents in the tumor microenvironment. PMID:25970319

  4. Switching of G-protein Usage by the Calcium-sensing Receptor Reverses Its Effect on Parathyroid Hormone-related Protein Secretion in Normal Versus Malignant Breast Cells*

    OpenAIRE

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Zawalich, Walter; Wysolmerski, John

    2008-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to s...

  5. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinxiu [Department of Physiology, University of California, Los Angeles (United States); Cheng, Henry [Department of Medicine, University of California, Los Angeles (United States); Atti, Elisa [Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (United States); Shih, Diana M. [Department of Medicine, University of California, Los Angeles (United States); Demer, Linda L. [Department of Physiology, University of California, Los Angeles (United States); Department of Medicine, University of California, Los Angeles (United States); Department of Bioengineering, University of California, Los Angeles (United States); Tintut, Yin, E-mail: ytintut@mednet.ucla.edu [Department of Medicine, University of California, Los Angeles (United States)

    2013-02-01

    Highlights: ► Anabolic effects of PTH were tested in hyperlipidemic mice overexpressing PON1. ► Expression of antioxidant regulatory genes was induced in PON1 overexpression. ► Bone resorptive activity was reduced in PON1 overexpressing hyperlipidemic mice. ► PON1 restored responsiveness to intermittent PTH in bones of hyperlipidemic mice. -- Abstract: Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr{sup −/−}PON1{sup tg}) were generated, and daily PTH injections were administered to Ldlr{sup −/−}PON1{sup tg} and to littermate Ldlr{sup −/−} mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr{sup −/−}PON1{sup tg} mice. In contrast, in control mice (Ldlr{sup −/−}) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr{sup −/−}PON1{sup tg} mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTHR1 than untreated Ldlr{sup −/−} mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, Fox

  6. Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures.

    Science.gov (United States)

    Cohn Yakubovich, Doron; Sheyn, Dmitriy; Bez, Maxim; Schary, Yeshai; Yalon, Eran; Sirhan, Afeef; Amira, May; Yaya, Alin; De Mel, Sandra; Da, Xiaoyu; Ben-David, Shiran; Tawackoli, Wafa; Ley, Eric J; Gazit, Dan; Gazit, Zulma; Pelled, Gadi

    2017-03-09

    A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals' fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 μg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 10(6) hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (μCT), followed by histological analysis. Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. μCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4(th) week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the μCT scans, biomechanical analysis using the micro-finite element method demonstrated that

  7. Direct suppressive effect of acute metabolic and respiratory alkalosis on parathyroid hormone secretion in the dog.

    Science.gov (United States)

    Lopez, Ignacio; Rodriguez, Mariano; Felsenfeld, Arnold J; Estepa, Jose Carlos; Aguilera-Tejero, Escolastico

    2003-08-01

    Acute alkalosis may directly affect PTH secretion. The effect of acute metabolic and respiratory alkalosis was studied in 20 dogs. PTH values were lower in the metabolic (5.6 +/- 0.8 pg/ml) and respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml). Acute alkalosis is an independent factor that decreases PTH values during normocalcemia and delays the PTH response to hypocalcemia. We recently showed that acute metabolic and respiratory acidosis stimulated PTH secretion. This study was designed to evaluate whether acute metabolic and respiratory alkalosis suppressed parathyroid hormone (PTH) secretion. Three groups of 10 dogs were studied: control, acute metabolic alkalosis, and acute respiratory alkalosis. Metabolic alkalosis was induced with an infusion of sodium bicarbonate and respiratory alkalosis by hyperventilation. Calcium chloride was infused to prevent alkalosis-induced hypocalcemia during the first 60 minutes. During the next 30 minutes, disodium EDTA was infused to induce hypocalcemia and to evaluate the PTH response to hypocalcemia. Because the infusion of sodium bicarbonate resulted in hypernatremia, the effect of hypernatremia was studied in an additional group that received hypertonic saline. After 60 minutes of a normocalcemic clamp, PTH values were less (p respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml); the respective blood pH values were 7.61 +/- 0.01, 7.59 +/- 0.02, and 7.39 +/- 0.02. The maximal PTH response to hypocalcemia was similar among the three groups. However, the maximal PTH response was observed after a decrease in ionized calcium of 0.20 mM in the control group but not until a decrease of 0.40 mM in the metabolic and respiratory alkalosis groups. In contrast to the metabolic alkalosis group, hypernatremia (157 +/- 2 mEq/liter) in the hypertonic saline group was associated with an increased PTH value (46 +/- 4 pg/ml). Finally, the half-life of intact PTH

  8. Is serum phosphorus control related to parathyroid hormone control in dialysis patients with secondary hyperparathyroidism?

    Directory of Open Access Journals (Sweden)

    Frazão João M

    2012-08-01

    Full Text Available Abstract Background Elevated serum phosphorus (P levels have been linked to increased morbidity and mortality in dialysis patients with secondary hyperparathyroidism (SHPT but may be difficult to control if parathyroid hormone (PTH is persistently elevated. We conducted a post hoc analysis of data from an earlier interventional study (OPTIMA to explore the relationship between PTH control and serum P. Methods The OPTIMA study randomized dialysis patients with intact PTH (iPTH 300–799 pg/mL to receive conventional care alone (vitamin D and/or phosphate binders [PB]; n = 184 or a cinacalcet-based regimen (n = 368. For patients randomized to conventional care, investigators were allowed flexibility in using a non-cinacalcet regimen (with no specific criteria for vitamin D analogue dosage to attain KDOQI™ targets for iPTH, P, Ca and Ca x P. For those assigned to the cinacalcet-based regimen, dosages of cinacalcet, vitamin D sterols, and PB were optimized over the first 16 weeks of the study, using a predefined treatment algorithm. The present analysis examined achievement of serum P targets (≤4.5 and ≤5.5 mg/dL in relation to achievement of iPTH ≤300 pg/mL during the efficacy assessment phase (EAP; weeks 17–23. Results Patients who achieved iPTH ≤ 300 pg/mL (or a reduction of ≥30% from baseline were more likely to achieve serum P targets than those who did not, regardless of treatment group. Of those who did achieve iPTH ≤ 300 pg/mL, 43% achieved P ≤4.5 mg/dL and 70% achieved P ≤5.5 mg/dL, versus 21% and 46% of those who did not achieve iPTH ≤ 300 pg/mL. Doses of PB tended to be higher in patients not achieving serum P targets. Patients receiving cinacalcet were more likely to achieve iPTH ≤300 pg/mL than those receiving conventional care (73% vs 23% of patients. Logistic regression analysis identified lower baseline P, no PB use at baseline and cinacalcet treatment to be predictors

  9. The guanine nucleotide exchange factor Vav2 is a negative regulator of parathyroid hormone receptor/Gq signaling.

    Science.gov (United States)

    Emami-Nemini, Alexander; Gohla, Antje; Urlaub, Henning; Lohse, Martin J; Klenk, Christoph

    2012-08-01

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor (GPCR) that mediates the endocrine and paracrine effects of parathyroid hormone and related peptides through the activation of phospholipase Cβ-, adenylyl cyclase-, mitogen-activated protein kinase-, and β-arrestin-initiated signaling pathways. It is currently not clear how specificity among these downstream signaling pathways is achieved. A possible mechanism involves adaptor proteins that affect receptor/effector coupling. In a proteomic screen with the PTHR C terminus, we identified vav2, a guanine nucleotide exchange factor (GEF) for Rho GTPases, as a PTHR-interacting protein. The core domains of vav2 bound to the intracellular domains of the PTHR independent of receptor activation. In addition, vav2 specifically interacted with activated Gα(q) but not with Gα(s) subunits, and it competed with PTHR for coupling to Gα(q). Consistent with its specific interaction with Gα(q), vav2 impaired G(q)-mediated inositol phosphate generation but not G(s)-mediated cAMP generation. This inhibition of G(q) signaling was specific for PTHR signaling, compared with other G(q)-coupled GPCRs. Moreover, the benefit for PTHR-mediated inositol phosphate generation in the absence of vav2 required the ezrin binding domain of Na(+)/H(+)-exchanger regulatory factor 1. Our results show that a RhoA GEF can specifically interact with a GPCR and modulate its G protein signaling specificity.

  10. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases.

    Science.gov (United States)

    Martin, T John

    2016-07-01

    Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects. Copyright © 2016 the American Physiological Society.

  11. Parathyroid adenoma

    Science.gov (United States)

    Hyperparathyroidism - parathryoid adenoma; Overactive parathyroid gland - parathyroid adenoma ... The parathyroid glands in the neck help control calcium use and removal by the body. They do this by ...

  12. Nmp4/CIZ suppresses the response of bone to anabolic parathyroid hormone by regulating both osteoblasts and osteoclasts.

    Science.gov (United States)

    Childress, Paul; Philip, Binu K; Robling, Alexander G; Bruzzaniti, Angela; Kacena, Melissa A; Bivi, Nicoletta; Plotkin, Lilian I; Heller, Aaron; Bidwell, Joseph P

    2011-07-01

    How parathyroid hormone (PTH) increases bone mass is unclear, but understanding this phenomenon is significant to the improvement of osteoporosis therapy. Nmp4/CIZ is a nucleocytoplasmic shuttling transcriptional repressor that suppresses PTH-induced osteoblast gene expression and hormone-stimulated gains in murine femoral trabecular bone. To further characterize Nmp4/CIZ suppression of hormone-mediated bone growth, we treated 10-week-old Nmp4-knockout (KO) and wild-type (WT) mice with intermittent human PTH(1-34) at 30 μg/kg daily or vehicle, 7 days/week, for 2, 3, or 7 weeks. Null mice treated with hormone (7 weeks) gained more vertebral and tibial cancellous bone than WT animals, paralleling the exaggerated response in the femur. Interestingly, Nmp4/CIZ suppression of this hormone-stimulated bone formation was not apparent during the first 2 weeks of treatment. Consistent with the null mice enhanced PTH-stimulated addition of trabecular bone, these animals exhibited an augmented hormone-induced increase in serum osteocalcin 3 weeks into treatment. Unexpectedly, the Nmp4-KO mice displayed an osteoclast phenotype. Serum C-terminal telopeptide, a marker for bone resorption, was elevated in the null mice, irrespective of treatment. Nmp4-KO bone marrow cultures produced more osteoclasts, which exhibited elevated resorbing activity, compared to WT cultures. The expression of several genes critical to the development of both osteoblasts and osteoclasts was elevated in Nmp4-KO mice at 2 weeks, but not 3 weeks, of hormone exposure. We propose that Nmp4/CIZ dampens PTH-induced improvement of trabecular bone throughout the skeleton by transiently suppressing hormone-stimulated increases in the expression of proteins key to the required enhanced activity and number of both osteoblasts and osteoclasts.

  13. Sarcoidosis-related hypercalcaemia due to production of parathyroid hormone-related peptide

    NARCIS (Netherlands)

    van Raalte, Daniel H; Goorden, Susan M; Kemper, Evelien A; Brosens, Lodewijk A A; ten Kate, Reinier W

    2015-01-01

    Hypercalcaemia is frequently observed in patients with sarcoidosis. This is classically attributed to ectopic production of 1,25 dihydroxy vitamin D by sarcoid granulomas. We present a case of sarcoidosis-related hypercalcaemia with normal vitamin D levels. In this patient, production of parathyroid

  14. The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor.

    Science.gov (United States)

    DaSilva, John; Gioeli, Daniel; Weber, Michael J; Parsons, Sarah J

    2009-09-15

    During progression to an androgen-independent state following androgen ablation therapy, prostate cancer cells continue to express the androgen receptor (AR) and androgen-regulated genes, indicating that AR is critical for the proliferation of hormone-refractory prostate cancer cells. Multiple mechanisms have been proposed for the development of AR-dependent hormone-refractory disease, including changes in expression of AR coregulatory proteins, AR mutation, growth factor-mediated activation of AR, and AR protein up-regulation. The most prominent of these progressive changes is the up-regulation of AR that occurs in >90% of prostate cancers. A common feature of the most aggressive hormone-refractory prostate cancers is the accumulation of cells with neuroendocrine characteristics that produce paracrine factors and may provide a novel mechanism for the regulation of AR during advanced stages of the disease. In this study, we show that neuroendocrine-derived parathyroid hormone-related protein (PTHrP)-mediated signaling through the epidermal growth factor receptor (EGFR) and Src pathways contributes to the phenotype of advanced prostate cancer by reducing AR protein turnover. PTHrP-induced accumulation of AR depended on the activity of Src and EGFR and consequent phosphorylation of the AR on Tyr(534). PTHrP-induced tyrosine phosphorylation of AR resulted in reduced AR ubiquitination and interaction with the ubiquitin ligase COOH terminus of Hsp70-interacting protein. These events result in increased accumulation of AR and thus enhanced growth of prostate cancer cells at low levels of androgen.

  15. Three-Phase Model Harmonizes Estimates of the Maximal Suppression of Parathyroid Hormone by 25-Hydroxyvitamin D in Persons 65 Years of Age and Older 1–3

    Science.gov (United States)

    The concentration or threshold of 25-hydroxyvitamin D [25(OH)D] needed to maximally suppress intact serum parathyroid hormone (iPTH) has been suggested as a measure of optimal vitamin D status. Depending upon the definition of maximal suppression of iPTH and the 2-phase regression approach used, 2 d...

  16. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content

    Science.gov (United States)

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...

  17. Vitamin D3 Decreases Parathyroid Hormone in HIV-Infected Youth Being Treated With Tenofovir: A Randomized, Placebo-Controlled Trial

    OpenAIRE

    Havens, Peter L.; Stephensen, Charles B.; Hazra, Rohan; Flynn, Patricia M.; Wilson, Craig M.; Rutledge, Brandy; Bethel, James; Pan, Cynthia G; Woodhouse, Leslie R.; Van Loan, Marta D; Liu, Nancy; Lujan-Zilbermann, Jorge; Baker, Alyne; Kapogiannis, Bill G.; Mulligan, Kathleen

    2012-01-01

    In this randomized, double-blind, placebo-controlled trial of human immunodeficiency virus–infected youths aged 18–25, vitamin D3, 50000 IU once monthly for 3 months decreased parathyroid hormone in participants treated with tenofovir-containing antiretroviral regimens but not in those participants whose regimens did not contain tenofovir.

  18. The expression of parathyroid hormone-related protein mRNA and immunoreactive protein in human amnion and choriodecidua is increased at term compared with preterm gestation

    NARCIS (Netherlands)

    Curtis, NE; Ho, PWM; King, RG; Farrugia, W; Moses, EK; Gillespie, MT; Moseley, JM; Rice, GE; Wlodek, ME

    Parathyroid hormone-related protein (PTHrP) gene expression and/or immunoreactive protein have previously been identified in the uterus and intrauterine gestational tissues. The putative roles of PTHrP during pregnancy include vasodilatation, regulation of placental calcium transfer, uterine smooth

  19. Vitamin D3 decreases parathyroid hormone in HIV-infected youth being treated with tenofovir: a randomized, placebo-controlled trial

    Science.gov (United States)

    Objective: To determine the effect of vitamin D (VITD) supplementation on tubular reabsorption of phosphate (TRP), serum parathyroid hormone (PTH), bone alkaline phosphatase (BAP), and C telopeptide (CTX) in HIV-infected youth receiving and not receiving tenofovir-containing cART (TDF). Design: Ra...

  20. Differences of serum parathyroid hormone levels and its gene polymorphism in different ethnic groups in drinking brick-tea-borne endemic fluorosis areas

    Institute of Scientific and Technical Information of China (English)

    孙静

    2014-01-01

    Objective In this study,the differences of serum parathyroid hormone(PTH)and its gene polymorphism in different ethnic groups in drinking brick-tea-borne endemic fluorosis areas were investigated.Methods Inhabitants over the age of 16 years old in Inner Mongolia,Qinghai and Xinjiang were investigated.The questionnaire survey included basic information,dietary survey

  1. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density

    Directory of Open Access Journals (Sweden)

    Sunil Kota

    2013-01-01

    Full Text Available Background: Bone mineral densiy (BMD is known to be affected by serum 25-hydroxyvitamin D (25(OH D levels, intact parathyroid hormone (iPTH levels. Indian data pertinent to above observation is scant. Our study aimed to investigate the relationships between serum 25-hydroxyvitamin D (25(OH D levels, intact parathyroid hormone (iPTH levels and bone mineral density (BMD in a cohort of Indian patients. Materials and Methods: Adults with or without fragility fractures with low BMD at the hip or lumbar spine were evaluated clinically along with laboratory investigations. T-scores of the hip and spine were derived from BMD-DEXA (dual-energy X-ray absorptiometry. Multivariate regression models were used to investigate the relationships between serum 25(OH D, iPTH and BMD. Results: Total of 102 patients (male:female = 38:64 with a mean age of 62.5 ± 6.4 years were included in the study. Forty-four patients had osteopenia. Osteoporosis was present in 58 patients. The mean values for serum 25(OH D and iPTH levels were 21.3 ± 0.5 ng/ml and 53.1 ± 22.3 pg/ml, respectively. In 84.3% of patients, serum 25(OH D levels were below 30 ng/ml (Normal = 30-74 ng/ml, confirming vitamin D deficiency. There was no association between 25(OH D levels and BMD at the hip or lumbar spine (P = 0.473 and 0.353, respectively. Both at the hip and lumbar spine; iPTH levels, male gender, body mass index (BMI and age were found to be significant predictors of BMD. Patients with higher BMI had significantly lower BMD and T-score. At levels <30 ng/ml, 25(OH D was negatively associated with iPTH (P = 0.041. Conclusion: Among our cohort of patients with low BMD, no direct relationship between serum 25(OH D levels and BMD was observed. However, a negative correlation between iPTH and 25(OH D at serum 25(OH D concentrations <30 ng/ml. Serum iPTH levels showed a significant negative association with BMD at the hip and lumbar spine. Our findings underscore the critical role of

  2. Parathyroid gland adenoma: Case report

    OpenAIRE

    Bojković Gradimir; Čaparević Zorica; Stojanović Dragoš Lj.; Lalošević Đorđe J.; Stojanović Mirjana

    2003-01-01

    Introduction Primary hyperparathyroidism is a generalized disorder resulting from excessive secretion of parathyroid hormone involving one or more parathyroid glands. Both familial and sporadic forms exist. Histologic examination reveals parathyroid adenoma in about 90% of patients, although it is sometimes difficult to distinguish an adenoma from a normal gland. Primary hyperparathyroidism is commonly characterized by hypercalcaemia, hypophosphatemia and excessive bone resorption. Case repor...

  3. Dynein light chain binding to a 3′-untranslated sequence mediates parathyroid hormone mRNA association with microtubules

    Science.gov (United States)

    Epstein, Eyal; Sela-Brown, Alin; Ringel, Israel; Kilav, Rachel; King, Stephen M.; Benashski, Sharon E.; Yisraeli, Joel K.; Silver, Justin; Naveh-Many, Tally

    2000-01-01

    The 3′-untranslated region (UTR) of mRNAs binds proteins that determine mRNA stability and localization. The 3′-UTR of parathyroid hormone (PTH) mRNA specifically binds cytoplasmic proteins. We screened an expression library for proteins that bind the PTH mRNA 3′-UTR, and the sequence of 1 clone was identical to that of the dynein light chain LC8, a component of the dynein complexes that translocate cytoplasmic components along microtubules. Recombinant LC8 binds PTH mRNA 3′-UTR, as shown by RNA electrophoretic mobility shift assay. We showed that PTH mRNA colocalizes with microtubules in the parathyroid gland, as well as with a purified microtubule preparation from calf brain, and that this association was mediated by LC8. To our knowledge, this is the first report of a dynein complex protein binding an mRNA. The dynein complex may be the motor that is responsible for transporting mRNAs to specific locations in the cytoplasm and for the consequent is asymmetric distribution of translated proteins in the cell. PMID:10683380

  4. Intra-articular injection of parathyroid hormone in the temporomandibular joint as a novel therapy for mandibular asymmetry.

    Science.gov (United States)

    Wan, Qilong; Li, Zu-Bing

    2010-04-01

    Mandibular asymmetry (MA) is one of the most common craniofacial malformations. However, there is no optimal technique for this malformation nowadays. A novel technique for both children and adults with less disadvantages is a must. Parathyroid hormone (PTH) is a straight-chain polypeptide secreted by the parathyroid gland that regulates calcium metabolism. PTH has both anabolic and catabolic effects on bone formation, depending on its mode of administration. Furthermore, the mandible is characterized by the most delayed growth and the most postnatal growth of all the facial bones. The condyle, the major growth site of mandible, grows by proliferation of cartilage in the condylar head and endochondral bone formation. Condylar cartilage is present throughout postnatal life, taking part in endochondral ossification and having a special multidirectional capacity for growth potential and remodeling throughout life. Based on the double effects of PTH on bone formation and characters of mandibular development and growth, it is hypothesized that intermittent or/and continuous intra-articular injection of PTH in the temporomandibular joint be a novel therapy for mandibular asymmetry for both children and adults. It can achieve early treatment of MA to avoid many secondary deformities and keep away from many complications resulting from current techniques or systematic administration of PTH.

  5. Effects of maintenance lithium treatment on serum parathyroid hormone and calcium levels: a retrospective longitudinal naturalistic study

    Science.gov (United States)

    Albert, Umberto; De Cori, David; Aguglia, Andrea; Barbaro, Francesca; Lanfranco, Fabio; Bogetto, Filippo; Maina, Giuseppe

    2015-01-01

    Objective The aim of this retrospective longitudinal naturalistic study was to evaluate the effects of maintenance lithium treatment on parathyroid hormone (PTH) and calcium levels. Methods A retrospective longitudinal naturalistic study design was used. Data were collected from the database of a tertiary psychiatric center covering the years 2010–2014. Included were bipolar patients who had never been exposed to lithium and had lithium started, and who had PTH, and total and ionized calcium levels available before and during lithium treatment. Paired t-tests were used to analyze changes in PTH and calcium levels. Linear regressions were performed, with mean lithium level and duration of lithium exposure as independent variables and change in PTH levels as dependent variable. Results A total 31 patients were included. The mean duration of lithium treatment was 18.6±11.4 months. PTH levels significantly increased during lithium treatment (+13.55±14.20 pg/mL); the rate of hyperparathyroidism was 12.9%. Neither total nor ionized calcium increased from baseline to follow-up; none of our patients developed hypercalcemia. Linear regressions analyses did not show an effect of duration of lithium exposure or mean lithium level on PTH levels. Conclusion Lithium-associated stimulation of parathyroid function is more common than assumed to date. Among parameters to be evaluated prior to lithium implementation, calcium and PTH should be added. PMID:26229473

  6. Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Zhang, Shufang; Ouyang, Hong Wei

    2012-08-31

    Cartilage repair tissue is usually accompanied by chondrocyte hypertrophy and osseous overgrowths, and a role for parathyroid hormone-related protein (PTHrP) in inhibiting chondrocytes from hypertrophic differentiation during the process of endochondral ossification has been demonstrated. However, application of PTHrP in cartilage repair has not been extensively considered. This review systemically summarizes for the first time the inhibitory function of PTHrP on chondrocyte hypertrophy in articular cartilage and during the process of endochondral ossification, as well as the process of mesenchymal stem cell chondrogenic differentiation. Based on the literature review, the strategy of using PTHrP for articular cartilage repair is suggested, which is instructive for clinical treatment of cartilage injuries as well as osteoarthritis.

  7. Bone-targeting parathyroid hormone conjugates outperform unmodified PTH in the anabolic treatment of osteoporosis in rats.

    Science.gov (United States)

    Yang, Yang; Aghazadeh-Habashi, Ali; Panahifar, Arash; Wu, Yuchin; Bhandari, Krishna H; Doschak, Michael R

    2017-08-01

    Synthetic parathyroid hormone (PTH) is clinically indicated for the treatment of osteoporosis, through its anabolic effects on parathyroid hormone receptors (PTHRs), located on osteoblast cells. However, the bioavailability of PTH for bone cells is restricted by the short half-life of PTH and the widespread distribution of PTHRs in non-skeletal tissues. To impart affinity for mineralized bone surfaces, bisphosphonate (BP)-mediated PTH analogues were synthesized, characterized, and evaluated in vitro and in vivo. The successful synthesis of PTH-PEG-BP was identified on MALDI-ToF mass spectra; bone-targeting potential was evaluated by hydroxyapatite binding test; and receptor bioactivity was assessed in UMR-106 (rat osteosarcoma) cells that constitutively express PTHRs. Therapeutic efficacy was evaluated using ovariectomized rats that remained untreated for 8 weeks to allow development of osteopenia. Those rats then received daily subcutaneous injections of PTH-PEG-BP, thiol-BP vehicle, or unmodified PTH, and compared to sham-operated healthy rats at 0, 4, 8, 12, and 16 weeks. In vivo micro-CT was conducted on the proximal tibial metaphysis to measure microstructural bone parameters, and new bone formation was detected using dynamic labeling. Bone strength was assessed using three-point bending mechanical testing. Our study determined that PTH-PEG-BP conjugates significantly enhanced PTH targeting to the bone matrix while retaining full PTH bioactivity. Moreover, PTH-PEG-BP conjugates significantly increased trabecular bone quality, anabolic bone formation, and improved bone strength over systemically administered PTH alone. We highlight the promise of a novel class of bone-targeting anabolic compound for the treatment of osteoporosis and related bone disorders.

  8. Parathyroid hormone-related protein and glucocorticoid receptor beta are regulated by cortisol in the kidney of male mice.

    Science.gov (United States)

    Yoo, Yeong-Min; Baek, Myung-Gi; Jung, Eui-Man; Yang, Hyun; Choi, Kyung-Chul; Yu, Frank H; Jeung, Eui-Bae

    2011-10-24

    Parathyroid hormone-related protein (PTHrP) is a peptide growth factor produced in a wide range of tissues from brain and parathyroid, to kidney and uterus. The purpose of this study was to determine whether the adrenal cortical hormones, hydrocortisone (cortisol), modulate PTHrP expression and glucocorticoid receptor (GR)β in mice kidney. Changes in PTHrP gene expression were determined by real-time PCR and its protein level was examined by Western blot analysis. In addition, expression of renal PTHrP protein was localized by immunohistochemistry. Effects of RU486 on the expression levels of GRα/β or PTHrP gene in the kidneys were analyzed by Western blot analysis. We found that renal expression levels of PTHrP mRNA were higher in males than in females up to 9weeks of age. Using immunohistochemistry, we observed higher levels of PTHrP expression within the cortex than in the medulla in both male and female mice, and this expression was localized in the epithelial cells of the renal proximal tubules. Treatment of 4-week-old mice with aldosterone and cortisol for three days showed larger increases in both PTHrP mRNA and protein levels in males compared with females. The expression of GRβ in male, but not female, kidneys was significantly upregulated after treatment with cortisol, but not after treatment with aldosterone. Inhibition of glucocorticoid signaling by pre-treatment with a GR antagonist prior to cortisol administration largely abolished this cortisol-dependent increase in PTHrP and GRβ expressions. These results suggest that PTHrP expression and GRβ in the kidneys of male mice may be regulated by cortisol. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. [A case of hypercalcemia associated with parathyroid hormone-related protein produced by the recurrence of B-cell lymphoma of the pancreas].

    Science.gov (United States)

    Iida, Tomoya; Satoh, Shuji; Kaneto, Hiroyuki; Sasaki, Hajime; Naganawa, Yumiko; Ishigami, Keisuke; Nakagaki, Suguru; Shimizu, Haruo; Konishi, Yasuhiro; Kon, Shinichiro

    2014-11-01

    An 87-year-old woman was diagnosed with primary diffuse large B-cell lymphoma of the pancreas by endoscopic ultrasonography-guided fine needle aspiration. Complete remission was achieved after treatment with six courses of R-CHOP chemotherapy. However, two and a half years later, she was readmitted because of weakness during walking. At this time, laboratory tests revealed hypercalcemia associated with high plasma levels of parathyroid hormone-related protein (PTHrP), but bone lesions were not detected. Although computed tomography only revealed splenomegaly, we suspected a recurrence of her malignant lymphoma because she also had marked elevation of soluble interleukin-2 receptor and lactate dehydrogenase levels. Bone marrow examination revealed the involvement of Burkitt's lymphoma cells with malignant transformation. Immunohistochemical analysis confirmed that hypercalcemia was caused by a paraneoplastic syndrome related to PTHrP-producing B-cell lymphoma cells. Unfortunately, the patient's general condition rapidly deteriorated, and she died soon after admission. Our case is unusual because of the presentation of bone marrow relapse of malignant lymphoma.

  10. [Hypercalcemia associated with parathyroid hormone-related protein(PTHrP)in a patient with diffuse large- type B-cell lymphoma(DLBCL)].

    Science.gov (United States)

    Hong, Hyunsoo; Hayashi, Tamehito; Hagiwara, Kiyoyuki; Sugiyama, Hiroyuki; Ando, Kenji; Kim, Sooryang; Hino, Masayuki

    2011-11-01

    We report a patient with diffuse large-type B-cell lymphoma showing hypercalcemia and a raised PTHrP serum level. He was a 72-year-old man with a history of multiple bone fractures due to a traffic accident 3 month ago, and was transferred to our hospital for further evaluation of a hepatic mass and for his rapidly deteriorating general condition. He had been in good health until about 2 weeks ago, but he developed dehydration, azotemia, lethargy, and altered mentality on admission. Laboratory tests revealed hypercalcemia of1 5. 3mg/dL. The hypercalcemia was associated with a high plasma concentration of PTHrP, whereas the parathyroid hormone(PTH-C)was undetectable. After forced hydration and administration of furocemide and calcitonin, hypercalcemia was improved. CT and MRI imaging showed para-aortic lymphadenopathy and a huge mass involving most of the light hepatic lobe and spleen. The pathological diagnosis at liver biopsy was DLBCL. He received six courses of chemotherapy with R-CHOP and is now stable. There was no recurrence of hypercalcemia or an elevation of PTHrP serum level during chemotherapy. The existence of PTHrP produced by tumor cells was suspected, and may have been related to the hypercalcemia in our case.

  11. Response to an oral calcium load in nephrolithiasis patients with fluctuating parathyroid hormone and ionized calcium levels

    Directory of Open Access Journals (Sweden)

    Gomes S.A.

    2004-01-01

    Full Text Available the response to an oral calcium load test was assessed in 17 hypercalciuric nephrolithiasis patients who presented elevated parathyroid hormone (PTH irrespective of the ionized calcium (sCa2+ levels. Blood samples were collected at baseline (0 min and at 60 and 180 min after 1 g calcium load for serum PTH, total calcium, sCa2+, and 1.25(OH2D3 determinations. According to the sCa2+ level at baseline, patients were classified as normocalcemic (N = 9 or hypercalcemic (N = 8. Six healthy subjects were also evaluated as controls. Bone mineral density was reduced in 14/17 patients. In the normocalcemic group, mean PTH levels at 0, 60 and 180 min (95 ± 76, 56 ± 40, 57 ± 45 pg/ml, respectively did not differ from the hypercalcemic group (130 ± 75, 68 ± 35, 80 ± 33 pg/ml but were significantly higher compared to healthy subjects despite a similar elevation in sCa2+ after 60 and 180 min vs baseline in all 3 groups. Mean total calcium and 1.25(OH2D3 were similar in the 3 groups. Additionally, we observed that 5 of 9 normocalcemic patients presented a significantly higher concentration-time curve for serum PTH (AUC0',60',180' than the other 4 patients and the healthy subjects, suggesting a primary parathyroid dysfunction. These data suggest that the individual response to an oral calcium load test may be a valuable dynamic tool to disclose a subtle primary hyperparathyroidism in patients with high PTH and fluctuating sCa2+ levels, avoiding repeated measurements of both parameters.

  12. Response to an oral calcium load in nephrolithiasis patients with fluctuating parathyroid hormone and ionized calcium levels

    Directory of Open Access Journals (Sweden)

    S.A. Gomes

    2004-09-01

    Full Text Available the response to an oral calcium load test was assessed in 17 hypercalciuric nephrolithiasis patients who presented elevated parathyroid hormone (PTH irrespective of the ionized calcium (sCa2+ levels. Blood samples were collected at baseline (0 min and at 60 and 180 min after 1 g calcium load for serum PTH, total calcium, sCa2+, and 1.25(OH2D3 determinations. According to the sCa2+ level at baseline, patients were classified as normocalcemic (N = 9 or hypercalcemic (N = 8. Six healthy subjects were also evaluated as controls. Bone mineral density was reduced in 14/17 patients. In the normocalcemic group, mean PTH levels at 0, 60 and 180 min (95 ± 76, 56 ± 40, 57 ± 45 pg/ml, respectively did not differ from the hypercalcemic group (130 ± 75, 68 ± 35, 80 ± 33 pg/ml but were significantly higher compared to healthy subjects despite a similar elevation in sCa2+ after 60 and 180 min vs baseline in all 3 groups. Mean total calcium and 1.25(OH2D3 were similar in the 3 groups. Additionally, we observed that 5 of 9 normocalcemic patients presented a significantly higher concentration-time curve for serum PTH (AUC0',60',180' than the other 4 patients and the healthy subjects, suggesting a primary parathyroid dysfunction. These data suggest that the individual response to an oral calcium load test may be a valuable dynamic tool to disclose a subtle primary hyperparathyroidism in patients with high PTH and fluctuating sCa2+ levels, avoiding repeated measurements of both parameters.

  13. Effects of maintenance lithium treatment on serum parathyroid hormone and calcium levels: a retrospective longitudinal naturalistic study

    Directory of Open Access Journals (Sweden)

    Albert U

    2015-07-01

    Full Text Available Umberto Albert,1 David De Cori,1 Andrea Aguglia,1 Francesca Barbaro,1 Fabio Lanfranco,2 Filippo Bogetto,1 Giuseppe Maina3 1Anxiety and Mood Disorders Unit, Rita Levi Montalcini Department of Neuroscience, University of Turin, Torino, Italy; 2Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Torino, Italy; 3Department of Mental Health, San Luigi-Gonzaga Hospital, University of Turin, Orbassano, Italy Objective: The aim of this retrospective longitudinal naturalistic study was to evaluate the effects of maintenance lithium treatment on parathyroid hormone (PTH and calcium levels. Methods: A retrospective longitudinal naturalistic study design was used. Data were collected from the database of a tertiary psychiatric center covering the years 2010–2014. Included were bipolar patients who had never been exposed to lithium and had lithium started, and who had PTH, and total and ionized calcium levels available before and during lithium treatment. Paired t-tests were used to analyze changes in PTH and calcium levels. Linear regressions were performed, with mean lithium level and duration of lithium exposure as independent variables and change in PTH levels as dependent variable. Results: A total 31 patients were included. The mean duration of lithium treatment was 18.6±11.4 months. PTH levels significantly increased during lithium treatment (+13.55±14.20 pg/mL; the rate of hyperparathyroidism was 12.9%. Neither total nor ionized calcium increased from baseline to follow-up; none of our patients developed hypercalcemia. Linear regressions analyses did not show an effect of duration of lithium exposure or mean lithium level on PTH levels. Conclusion: Lithium-associated stimulation of parathyroid function is more common than assumed to date. Among parameters to be evaluated prior to lithium implementation, calcium and PTH should be added. Keywords: bipolar disorder, follow-up study, lithium

  14. Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor.

    Science.gov (United States)

    Yang, Yanmei; Lei, Hong; Qiang, Ya-Wei; Wang, Bin

    2017-07-01

    The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin-mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element-luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases. © 2017 Yang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. A comparison of parathyroid hormone-related protein (1-36) and parathyroid hormone (1-34) on markers of bone turnover and bone density in postmenopausal women: the PrOP study.

    Science.gov (United States)

    Horwitz, Mara J; Augustine, Marilyn; Khan, Leila; Kahn, Leila; Martin, Emily; Oakley, Christine C; Carneiro, Raquel M; Tedesco, Mary Beth; Laslavic, Angela; Sereika, Susan M; Bisello, Alessandro; Garcia-Ocaña, Adolfo; Gundberg, Caren M; Cauley, Jane A; Stewart, Andrew F

    2013-11-01

    Parathyroid hormone-related protein (PTHrP)(1-36) increases lumbar spine (LS) bone mineral density (BMD), acting as an anabolic agent when injected intermittently, but it has not been directly compared with parathyroid hormone (PTH)(1-34). We performed a 3-month randomized, prospective study in 105 postmenopausal women with low bone density or osteoporosis, comparing daily subcutaneous injections of PTHrP(1-36) to PTH(1-34). Thirty-five women were randomized to each of three groups: PTHrP(1-36) 400 µg/day; PTHrP(1-36) 600 µg/day; and PTH(1-34) 20 µg/day. The primary outcome measures were changes in amino-terminal telopeptides of procollagen 1 (PINP) and carboxy-terminal telopeptides of collagen 1 (CTX). Secondary measures included safety parameters, 1,25(OH)2 vitamin D, and BMD. The increase in bone resorption (CTX) by PTH(1-34) (92%) (p PTHrP(1-36) (30%) (p PTHrP(1-36) (46% and 87%). The increase in PINP was earlier (day 15) and greater than the increase in CTX for all three groups. LS BMD increased equivalently in each group (p PTHrP(1-36) (p PTHrP(1-36) 400 (p PTHrP(1-36) 400 induced mild, transient (day 15) hypercalcemia. PTHrP(1-36) 600 required a dose reduction for hypercalcemia in three subjects. PTH(1-34) was not associated with hypercalcemia. Each peptide induced a marked biphasic increase in 1,25(OH)2 D. Adverse events (AE) were similar among the three groups. This study demonstrates that PTHrP(1-36) and PTH(1-34) cause similar increases in LS BMD. PTHrP(1-36) also increased hip BMD. PTH(1-34) induced greater changes in bone turnover than PTHrP(1-36). PTHrP(1-36) was associated with mild transient hypercalcemia. Longer-term studies using lower doses of PTHrP(1-36) are needed to define both the optimal dose and full clinical benefits of PTHrP. © 2013 American Society for Bone and Mineral Research. © 2013 American Society for Bone and Mineral Research.

  16. A Comparison of Parathyroid Hormone-related Protein (1–36) and Parathyroid Hormone (1–34) on Markers of Bone Turnover and Bone Density in Postmenopausal Women: The PrOP Study

    Science.gov (United States)

    Horwitz, Mara J; Augustine, Marilyn; Kahn, Leila; Martin, Emily; Oakley, Christine C; Carneiro, Raquel M; Tedesco, Mary Beth; Laslavic, Angela; Sereika, Susan M; Bisello, Alessandro; Garcia-Ocaña, Adolfo; Gundberg, Caren M; Cauley, Jane A; Stewart, Andrew F

    2013-01-01

    Parathyroid hormone-related protein (PTHrP)(1–36) increases lumbar spine (LS) bone mineral density (BMD), acting as an anabolic agent when injected intermittently, but has not been directly compared to parathyroid hormone (PTH)(1–34). We performed a three month, randomized, prospective study in 105 postmenopausal women with low bone density or osteoporosis comparing daily subcutaneous injections of PTHrP(1–36) to PTH(1–34). Thirty-five women were randomized to each of three groups: PTHrP(1–36) 400 μg/d; PTHrP(1–36) 600 μg/d; and PTH(1–34) 20 μg/d. The primary outcomes measures were changes in amino-terminal telopeptides of procollagen 1 (PINP) and carboxy-terminal telopeptides of collagen 1 (CTX). Secondary measures included safety parameters, 1,25(OH)2vitamin D and BMD. The increase in bone resorption (CTX) by PTH(1–34) (92%) (pPTHrP(1–36) (30%) (pPTHrP(1–36) (46 & 87%). The increase in PINP was earlier (day 15) and greater than the increase in CTX for all three groups. LS BMD increased equivalently in each group (pPTHrP(1–36) (pPTHrP(1–36) 400 (pPTHrP(1–36) 400 induced mild, transient (day 15) hypercalcemia. PTHrP(1–36) 600 required a dose reduction for hypercalcemia in three subjects. PTH(1–34) was not associated with hypercalcemia. Each peptide induced a marked biphasic increase in 1,25(OH)2D. Adverse events (AE) were similar among the three groups. This study demonstrates that PTHrP(1–36) and PTH(1–34) cause similar increases in LS BMD. PTHrP(1–36) also increased hip BMD. PTH(1–34) induced greater changes in bone turnover than PTHrP(1–36). PTHrP(1–36) was associated with mild transient hypercalcemia. Longer term studies using lower doses of PTHrP(1–36) are needed to define both the optimal dose and full clinical benefits of PTHrP. PMID:23661240

  17. Effects of parathyroid hormone alone or in combination with antiresorptive therapy on bone mineral density and fracture risk--a meta-analysis

    DEFF Research Database (Denmark)

    Vestergaard, P; Jørgensen, Niklas R; Mosekilde, L

    2007-01-01

    AIM: The effects of parathyroid hormone (PTH) alone or in combination with antiresorptive therapy on changes in bone mineral density (BMD) and fracture risk were studied. MATERIALS AND METHODS: Randomised placebo controlled trials were retrieved from the PubMed, Web of Science or Embase databases....... RESULTS: PTH alone or in combination with antiresorptive drugs reduced vertebral [relative risk (RR)=0.36, 95% confidence interval (CI): 0.28-0.47, 2p

  18. Coherent Expression Chromosome Cluster Analysis Reveals Differential Regulatory Functions of Amino-Terminal and Distal Parathyroid Hormone-Related Protein Domains in Prostate Carcinoma

    OpenAIRE

    Tsigelny, I.; Burton, D W; Sharikov, Y.; Hastings, R. H.; Deftos, L J

    2005-01-01

    Parathyroid hormone-related protein (PTHrP) has a number of cancer-related actions. While best known for causing hypercalcemia of malignancy, it also has effects on cancer cell growth, apoptosis, and angiogenesis. Studying the actions of PTHrP in human cancer is complicated because there are three isoforms and many derived peptides. Several peptides are biologically active at known or presumed cell surface receptors; in addition, the PTHrP-derived molecules can exert effe...

  19. The Origin of the Parathyroid Gland

    National Research Council Canada - National Science Library

    Masataka Okabe; Anthony Graham; John C. Gerhart

    2004-01-01

    It has long been held that the parathyroid glands and parathyroid hormone evolved with the emergence of the tetrapods, reflecting a need for new controls on calcium homeostasis in terrestrial, rather...

  20. Preparation and in vivo evaluation of an orally available enteric-microencapsulated parathyroid hormone (1-34-deoxycholic acid nanocomplex

    Directory of Open Access Journals (Sweden)

    Hwang SR

    2016-08-01

    Full Text Available Seung Rim Hwang,1 Dong-Hyun Seo,2 Youngro Byun,3 Jin Woo Park4 1Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 2Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon, 3Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, 4Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea Abstract: The N-terminal 34-amino-acid peptide fragment of human parathyroid hormone PTH (1-34, is used clinically to treat osteoporosis; however, it is currently administered by a once-daily subcutaneous injection, resulting in poor patient compliance. We have developed enteric microcapsules containing an ionic nanocomplex between PTH (1-34 and lysine-linked deoxycholic acid (LysDOCA for the oral delivery of PTH (1-34. We measured the particle size of the PTH/LysDOCA complex and assessed its biological activity by determining the cAMP content in MC3T3-E1 cells. We also assessed its permeability across a Caco-2 cell monolayer and the bioavailability of the intrajejunally administered PTH/LysDOCA complex compared with PTH (1-34 in rats. In addition, the antiosteoporotic activity of the PTH/LysDOCA complex, encapsulated in an enteric carrier by coaxial ultrasonic atomization, was evaluated after it was orally administered to ovariectomized (OVX rats. The formation of an ionic complex between PTH (1-34 and LysDOCA produced nanoparticles of diameter 33.0±3.36 nm, and the bioactivity of the complex was comparable with that of PTH (1-34. The Caco-2 cell permeability and AUClast value of the PTH/LysDOCA (1:10 nanocomplex increased by 2.87- and 16.3-fold, respectively, compared with PTH (1-34 alone. Furthermore, the OVX rats treated with oral PTH/LysDOCA-loaded enteric microcapsules showed an

  1. 重组人甲状旁腺激素基因工程研究进展%Research Advances in Genetic Engineering of Recombinant Human Parathyroid Hormone

    Institute of Scientific and Technical Information of China (English)

    宋佳欢; 李敏; 高金湖; 邬敏辰

    2011-01-01

    Parathyroid hormone (PTH) is an alkaline polypeptide hormone which is secreted by the parathyroid gland cell. It mainly regulates metabolism of calcium and phosphorus in vertebrates. Currently, PTH and its analogues have been exploited into first-choice drugs for the treatment of osteoporosis. With the elucidation of PTH gene sequence, it has become a research hotspot to obtain recombinant PTH of high-efficiency, iow-toxicity and stability by means of genetic engineering. Here we present an overview of structure function, genetic engineering research and clinical application of PTH.%甲状旁腺激素(parathyroid hormone,PTH)是由甲状旁腺主细胞分泌的碱性单链多肽类激素.它主要调节脊椎动物体内钙和磷的代谢.目前,PTH及其类似物已成为治疗骨质疏松症的首选药物.随着PTH基因序列的阐明,通过基因工程手段获得高效、低毒、稳定的重组PTH,已成为研究热点.本文对PTH的结构功能、基因工程研究及临床应用问题进行综述.

  2. Serum parathyroid hormone (PTH) in pregnant women determined by an immunoradiometric assay for intact PTH

    Energy Technology Data Exchange (ETDEWEB)

    Davis, O.K.; Hawkins, D.S.; Rubin, L.P.; Posillico, J.T.; Brown, E.M.; Schiff, I.

    1988-10-01

    Most studies of circulating PTH levels using traditional RIAs have supported the concept of physiological hyperparathyroidism of pregnancy, with pregnant women having serum immunoreactive PTH levels significantly higher than those in nonpregnant subjects. However, such RIAs are insensitive and often detect inactive PTH fragments, so that the correlation between PTH immunoreactivity and bioactivity is poor. Employing a new intact PTH immunoradiometric assay (Allegro-Nichols), we reassessed the effects of pregnancy on parathyroid function. The mean serum PTH level in 81 pregnant women was 14.4 +/- 6.3 (+/- SD) compared to 24.8 +/- 9.0 ng/L in 11 normally cycling nonpregnant women (P less than 0.001). The mean serum total and ionized calcium levels in the 2 groups were similar. In 5 of the pregnant women, serum bioactive PTH, determined by cytochemical bioassay, was slightly lower (7.7 +/- 3.4 ng/L) than in normal individuals (11.1 +/- 1.9 ng/L). Our findings suggest, in contrast with the results of most previous studies, that serum intact PTH may decline during pregnancy.

  3. Parathyroid hormone levels 1 hour after thyroidectomy: an early predictor of postoperative hypocalcemia.

    Science.gov (United States)

    AlQahtani, Awad; Parsyan, Armen; Payne, Richard; Tabah, Roger

    2014-08-01

    Parathyroid dysfunction leading to symptomatic hypocalcemia is not uncommon following a total or completion thyroidectomy and is often associated with significant patient morbidity and a prolonged hospital stay. A simple, reliable indicator to identify patients at risk would permit earlier pharmacologic prophylaxis to avoid these adverse outcomes. We examined the role of intact parathormone (PTH) levels 1 hour after surgery as a predictor of post-thyroidectomy hypocalcemia. We prospectively reviewed the cases of consecutive patients undergoing total or completion thyroidectomy. Ionized calcium (Ca(2+)) and intact PTH levels were measured preoperatively and at 1-, 6- and 24-hour intervals postoperatively. The specificity, sensitivity, negative and positive predictive values of the 1-hour PTH serum levels (PTH-1) in predicting 24-hour post-thyroidectomy hypocalcemia and eucalcemia were determined. We reviewed the cases of 149 patients. Biochemical hypocalcaemia (Ca(2+) sensitivity, specificity, positive and negative predictive values of a low PTH-1 were 89%, 100%, 97% and 100%, respectively. We found that PTH-1 levels were predictive of symptomatic hypocalcemia 24 hours after thyroidectomy. Routine use of this assay should be considered, as it could prompt the early administration of calcitriol in patients at risk of hypocalcemia and allow for the safe and timely discharge of patients expected to remain eucalcemic.

  4. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    Science.gov (United States)

    Kim, Hyeong-U.; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-10-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using L-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1–50 pg mL‑1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis.

  5. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    Science.gov (United States)

    Kim, Hyeong-U; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-01-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using l-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1–50 pg mL−1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis. PMID:27694822

  6. Dynamic Na+-H+ Exchanger Regulatory Factor-1 Association and Dissociation Regulate Parathyroid Hormone Receptor Trafficking at Membrane Microdomains*

    Science.gov (United States)

    Ardura, Juan A.; Wang, Bin; Watkins, Simon C.; Vilardaga, Jean-Pierre; Friedman, Peter A.

    2011-01-01

    Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner. PMID:21832055

  7. Dynamic Na+-H+ exchanger regulatory factor-1 association and dissociation regulate parathyroid hormone receptor trafficking at membrane microdomains.

    Science.gov (United States)

    Ardura, Juan A; Wang, Bin; Watkins, Simon C; Vilardaga, Jean-Pierre; Friedman, Peter A

    2011-10-07

    Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.

  8. Mouse adipose tissue-derived adult stem cells expressed osteogenic specific transcripts of osteocalcin and parathyroid hormone receptor during osteogenesis.

    Science.gov (United States)

    Teotia, P K; Hussein, K E-D; Park, K-M; Hong, S-H; Park, S-M; Park, I-C; Yang, S-R; Woo, H-M

    2013-10-01

    Adult mesenchymal stem cells (MSCs) have potential to differentiate into various lineages, replacing cells during normal turnover and tissue regeneration to replace damaged or lost adult tissues during osteoporosis and arthritis, or traumatic injuries. We investigated the osteogenic signature in mouse adipose tissue (AD)- and bone marrow (BM)-derived MSCs. MSCs from adipose tissue and bone marrow were compared for osteogenic endogenous mRNA markers by reverse-transcription polymerase chain reaction (RT-PCR). Cellular proliferation and immunophenotype analyzed by flow cytometry revealed that mouse AD-MSCs and BM-MSCs shared similar characteristics. Isolated AD-MSC and BM-MSC showed high proliferation rates and fibroblast morphology. Flow cytometry revealed positive markers for mesenchyme, but negative for primitive hematopoietic and endothelial cells. At day 21, Alizarin red S and Von-kossa staining of differentiated cells showed high calcium deposits compared with undifferentiated cells. After 21 days of osteogenic differentiation, AD-MSCs expressed osteocalcin and parathyroid hormone (PTH) compared with undifferentiated cells. Osteogenic-specific transcript of osteocalcin (OC), bone gamma carboxyglutamate protein, and PTH receptor (PTHr) were detected only in differentiated not undifferentiated cells. Undifferentiated BM-MSCs, expressed all markers at low intensity, which amplified during differentiation. Our findings suggest that the OC and PTHr can be used as differentiation markers for osteogenesis of mouse AD-MSC. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Na/H Exchanger Regulatory Factors Control Parathyroid Hormone Receptor Signaling by Facilitating Differential Activation of Gα Protein Subunits*

    Science.gov (United States)

    Wang, Bin; Ardura, Juan A.; Romero, Guillermo; Yang, Yanmei; Hall, Randy A.; Friedman, Peter A.

    2010-01-01

    The Na/H exchanger regulatory factors, NHERF1 and NHERF2, are adapter proteins involved in targeting and assembly of protein complexes. The parathyroid hormone receptor (PTHR) interacts with both NHERF1 and NHERF2. The NHERF proteins toggle PTHR signaling from predominantly activation of adenylyl cyclase in the absence of NHERF to principally stimulation of phospholipase C when the NHERF proteins are expressed. We hypothesized that this signaling switch occurs at the level of the G protein. We measured G protein activation by [35S]GTPγS binding and Gα subtype-specific immunoprecipitation using three different cellular models of PTHR signaling. These studies revealed that PTHR interactions with NHERF1 enhance receptor-mediated stimulation of Gαq but have no effect on stimulation of Gαi or Gαs. In contrast, PTHR associations with NHERF2 enhance receptor-mediated stimulation of both Gαq and Gαi but decrease stimulation of Gαs. Consistent with these functional data, NHERF2 formed cellular complexes with both Gαq and Gαi, whereas NHERF1 was found to interact only with Gαq. These findings demonstrate that NHERF interactions regulate PTHR signaling at the level of G proteins and that NHERF1 and NHERF2 exhibit isotype-specific effects on G protein activation. PMID:20562104

  10. A transgenic mouse model for studying the role of the parathyroid hormone-related protein system in renal injury.

    Science.gov (United States)

    Bosch, Ricardo J; Ortega, Arantxa; Izquierdo, Adriana; Arribas, Ignacio; Bover, Jordi; Esbrit, Pedro

    2011-01-01

    Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy (DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.

  11. Parathyroid hormone-related protein regulates integrin α6 and β4 levels via transcriptional and post-translational pathways.

    Science.gov (United States)

    Bhatia, Vandanajay; Mula, Ramanjaneya V R; Falzon, Miriam

    2013-06-10

    Parathyroid hormone-related protein (PTHrP) enhances prostate cancer (CaP) growth and metastasis in vivo. PTHrP also increases cell survival and migration, and upregulates pro-invasive integrin α6β4 expression. We used the human CaP cell lines C4-2 and PC-3 as model systems to study the mechanisms via which PTHrP regulates α6β4 levels. We report that PTHrP regulates α6 and β4 levels via a transcriptional pathway; β4 regulation involves the NF-κB pathway. PTHrP also regulates β4 levels at the post-translational level. PTHrP inhibits caspase-3 and -7 activities. Post-translational regulation of β4 by PTHrP is mediated via attenuation of its proteolytic cleavage by these caspases. Since α6 dimerizes with β4, increased β4 levels result in elevated α6 levels. Suppressing β4 using siRNA attenuates the effect of caspase inhibition on apoptosis and cell migration. These results provide evidence of a link between PTHrP, integrin α6β4 levels as a function of caspase activity, and cell survival and migration. Targeting PTHrP in CaP cancer, thereby reversing the effect on caspase activity and α6β4 levels, may thus prove therapeutically beneficial. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Parathyroid hormone-related protein protects renal tubuloepithelial cells from apoptosis by activating transcription factor Runx2.

    Science.gov (United States)

    Ardura, Juan A; Sanz, Ana B; Ortiz, Alberto; Esbrit, Pedro

    2013-05-01

    Runx2 is a key transcription factor in bone development regulating several processes, including osteoblast apoptosis. The antiapoptotic effects of parathyroid hormone (PTH) in osteoblasts depend on Runx2-mediated transcription of prosurvival genes. In the kidney, PTH-related protein (PTHrP) promotes tubulointerstitial cell survival by activating the PTH/PTHrP type 1 receptor. We found that Runx2 is expressed in renal tubuloepithelial MCT and HK2 cell lines in vitro and in the mouse kidney tubuloepithelium in vivo. The 1-36 amino-acid fragment of PTHrP was found to increase the expression and nuclear translocation of Runx2 in both cell lines in a dose- and time-dependent manner. PTHrP(1-36) protected renal tubuloepithelial cells from folic acid toxicity and serum deprivation, an effect inhibited by a dominant-negative Runx2 construct or a Runx2 siRNA. Furthermore, PTHrP(1-36) upregulated the antiapoptotic proteins Bcl-2 and osteopontin, and these effects were abolished by Runx2 siRNA. Runx2, osteopontin, and Bcl-2 were increased in tubuloepithelial cells from transgenic mice with PTHrP overexpression and in wild-type mice with acute or chronic renal failure. Thus, PTHrP regulates renal tubuloepithelial cell survival via Runx2 in the mammalian kidney.

  13. Organization of the Indian hedgehog--parathyroid hormone-related protein system in the postnatal growth plate.

    Science.gov (United States)

    Chau, Michael; Forcinito, Patricia; Andrade, Anenisia C; Hegde, Anita; Ahn, Sohyun; Lui, Julian C; Baron, Jeffrey; Nilsson, Ola

    2011-08-01

    In embryonic growth cartilage, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) participate in a negative feedback loop that regulates chondrocyte differentiation. Postnatally, this region undergoes major structural and functional changes. To explore the organization of the Ihh–PTHrP system in postnatal growth plate, we microdissected growth plates of 7-day-old rats into their constituent zones and assessed expression of genes participating in the h–PTHrP feedback loop. Ihh, Patched 1, Smoothened, Gli1, Gli2, Gli3, and Pthr1 were expressed in regions analogous to the expression domains in embryonic growth cartilage. However, PTHrP was expressed in resting zone cartilage, a site that differs from the embryonic source, the periarticular cells. We then used mice in which lacZ has replaced coding sequences of Gli1 and thus serves as a marker for active hedgehog signaling. At 1, 4, 8, and 12 weeks of age, lacZ expression was detected in a pattern analogous to that of embryonic cartilage. The findings support the hypothesis that the embryonic Ihh–PTHrP feedback loop is maintained in the postnatal growth plate except that the source of PTHrP has shifted to a more proximal location in the resting zone.

  14. Richter’s Syndrome with Hypercalcemia Induced by Tumor-Associated Production of Parathyroid Hormone-Related Peptide

    Directory of Open Access Journals (Sweden)

    Naoki Watanabe

    2017-01-01

    Full Text Available Humoral hypercalcemia due to parathyroid hormone-related peptide (PTHrP elevation is a well-known complication of various malignancies, but the situation is rare concerning hematological malignancies except for adult T-cell leukemia/lymphoma. We report a case of Richter’s syndrome with humoral hypercalcemia, and demonstrate by reverse transcription polymerase chain reaction (RT-PCR that peripheral blood PTHrP levels were 2,500-fold higher compared to healthy controls. PTHrP production by tumor cells in chronic lymphocytic leukemia (CLL and Richter’s syndrome has been previously demonstrated by nonquantitative methods such as immunohistochemistry and northern blot analysis, but this is the first report using the RT-PCR method. The presented case did not have hypercalcemia when initially diagnosed as small lymphocytic lymphoma (SLL, and as reported earlier, the development of hypercalcemia may be an indication of the transformation to Richter’s syndrome in patients with CLL/SLL.

  15. Humoral Hypercalcemia of Malignancy with a Parathyroid Hormone-Related Peptide-Secreting Intrahepatic Cholangiocarcinoma Accompanied by a Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Katsushi Takeda

    2017-01-01

    Full Text Available Humoral hypercalcemia of malignancy (HHM is caused by the oversecretion of parathyroid hormone-related peptide (PTHrP from malignant tumors. Although any tumor may cause HHM, that induced by intrahepatic cholangiocarcinoma (ICC or gastric cancer (GC is rare. We report here a 74-year-old male who displayed HHM with both ICC and GC and showed an elevated serum PTHrP level. Treatment of the hypercalcemia with saline, furosemide, elcatonin, and zoledronic acid corrected his serum calcium level and improved symptoms. Because treatment of ICC should precede that of GC, we chose chemotherapy with cisplatin (CDDP and gemcitabine (GEM. Chemotherapy reduced the size of the ICC and decreased the serum PTHrP level. One year after diagnosis, the patient was alive in the face of a poor prognosis for an ICC that produced PTHrP. Immunohistochemical staining for PTHrP was positive for the ICC and negative for the GC, leading us to believe that the cause of the HHM was a PTHrP-secreting ICC. In conclusion, immunohistochemical staining for PTHrP may be useful in discovering the cause of HHM in the case of two cancers accompanied by an elevated serum PHTrP level. Chemotherapy with CDDP and GEM may be the most appropriate treatment for a PTHrP-secreting ICC.

  16. Parathyroid hormone-related peptide (PTHrP): prokaryotic expression, purification, and preparation of a polyclonal antibody.

    Science.gov (United States)

    Zheng, H L; Li, H; Sun, Y S; Yang, Z Y; Yu, Q

    2014-08-25

    Parathyroid hormone-related peptide (PTHrP) plays important roles in promoting cancer occurrence and in the development of bone metastases. To increase our knowledge of the biological functions of PTHrP, the prokaryotic expression vector pET-PTHrP was successfully constructed and the His-PTHrP fusion protein was expressed in Escherichia coli. Anti-PTHrP polyclonal antibody was then prepared from rabbits. Finally, the goat tissue expression profile of PTHrP was analyzed by Western blot with the anti-PTHrP polyclonal antibody. The results showed that the expression of PTHrP in goat mammary glands was significantly higher than that in other organs. This indicates that PTHrP may play important roles in the goat mammary gland. The antibody prepared will be a useful tool for detecting PTHrP and will be valuable in future studies investigating the role of PTHrP in calcium metabolism in the goat model.

  17. The role of parathyroid hormone-related protein (PTHrP) in the pathophysiology of diabetes mellitus.

    Science.gov (United States)

    Legakis, Ioannis

    2009-06-01

    Type 2 diabetes is characterized by hyperglycemia resulting from insulin resistance in the setting of inadequate beta-cell compensation. Impaired beta-cell function and possibly beta-cell mass appear to be reversible, particularly at early stages of the disease. Pancreatic beta-cells possess the potential to greatly expand their function and mass in both physiologic and pathologic states by several mechanisms, including hypertrophy and proliferation of existing beta-cells, increased insulin production and secretion, and formation of new beta-cells from progenitor cells. Recently a large number of factors controlling the differentiation of beta-cells has been identified and among them the parathyroid hormone-related protein (PTHrP) emerged as a strong candidate in beta-cell survival. In this review, we will highlight our current knowledge in PTHrP physiology implicating its role into the mechanisms of beta-cell mass regulation and consequently in diabetes. Further research into mechanisms will reveal the key modulators of beta-cell failure and thus identify possible novel therapeutic targets.

  18. Structural requirements for the action of parathyroid hormone-related protein (PTHrP) on bone resorption by isolated osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Evely, R.S.; Bonomo, A.; Schneider, H.G.; Moseley, J.M.; Gallagher, J.; Martin, T.J. (St. Vincent' s Institute of Medical Research, Melbourne (Australia))

    1991-01-01

    Parathyroid hormone-related protein (PTHrP) plays a major role in the syndrome of humoral hypercalcemia of malignancy (HHM) by its actions on bone and kidney. In this study an isolated osteoclast bone resorption assay was used to investigate the actions of this peptide and the structure-activity relationships for its resorption effect. As with PTH, neither synthetic nor recombinant PTHrP preparations stimulated resorption within highly purified osteoclast populations. Resorption was stimulated only in the presence of contaminating osteoblasts or in cocultures with the osteoblast-like cell line UMR-106. In the presence of osteoblasts PTHrP-(1-34) and PTHrP-(1-84) stimulated bone resorption in a dose-dependent manner with a potency comparable to that of PTH-(1-34) on a molar basis. The biologic activity of the PTHrP was shown to reside in the first 34 amino acids, and within that region the structural requirements for promotion of osteoclastic resorption resembled closely those for promotion of cyclic AMP formation in osteoblast-like cells. Using emulsion autoradiography with iodinated PTHrP-(1-34) and PTHrP-(1-84) on mixed bone cell preparations from neonatal rats, specific binding was demonstrated only to osteoblasts, not to osteoclasts. These results clearly demonstrate that PTHrP is a potent stimulator of bone resorption and that these effects are, like those of PTH, mediated by initial actions upon cells of the osteoblast lineage.

  19. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein.

    Science.gov (United States)

    Hsu, Ya-Ling; Tsai, Eing-Mei; Hou, Ming-Feng; Wang, Tsu-Nai; Hung, Jen-Yu; Kuo, Po-Lin

    2014-12-10

    This study is the first to demonstrate that parathyroid hormone-related protein (PTHrP), produced by human breast cancer cells after exposure to phthalate esters, contributes to bone metastasis by increasing osteoclastogenesis. This is also the first to reveal that obtusifolin reverses phthalate esters-mediated bone resorption. Human breast cancer cells were treated with dibutyl phthalate (DBP), harvested in conditioned medium, and cultured to osteoblasts or osteoclasts. Cultures of osteoblasts with DBP-MDA-MB-231-CM increased the osteoclastogenesis activator RANKL (receptor activator of nuclear factor κ-B ligand) and M-CSF (macrophage colony-stimulating factor). PTHrP was secreted in MDA-MB-231 cells. DBP-MDA-MB-231-CM reduced osteoblasts to produce osteoprotegerin, an osteoclastogenesis inhibitor, while DBP mediated PTHrP up-regulation, increasing IL-8 secretion in MDA-MB-231 and contributing to breast cancer-mediated osteoclast differentiation and bone resorption. Obtusifolin, a major bioactive compound present in Cassia tora L., suppressed phthalate esters-mediated bone resorption. Therefore, obtusifolin may be a novel anti-breast-cancer bone metastasis agent.

  20. A Transgenic Mouse Model for Studying the Role of the Parathyroid Hormone-Related Protein System in Renal Injury

    Directory of Open Access Journals (Sweden)

    Ricardo J. Bosch

    2011-01-01

    Full Text Available Parathyroid hormone- (PTH- related protein (PTHrP and its receptor, the PTH1 receptor (PTH1R, are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF, obstructive nephropathy (ON as well as diabetic nephropathy (DN. In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II, a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.

  1. Effects of parathyroid hormone-related protein on osteogenic and adipogenic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Zhang, K; Zhang, F-J; Zhao, W-J; Xing, G-S; Bai, X; Wang, Y

    2014-06-01

    This work aims to investigate the effects of parathyroid hormone-related peptide (PTHrP) (1-86) on osteogenic and adipogenic differentiation of human mesenchymal stem cells (hMSCs) and the related mechanisms. hMSCs were isolated and cultured in vitro. They were divided into control group, osteogenesis group, adipogenesis group, osteogenesis+PTHrP group and adipogenesis+PTHrP group. The cell proliferation and differentiation, and expression levels of osteopontin (OPN) and lipoprotein lipase (LPL) mRNA were observed. The proliferation rates of hMSCs in osteogenesis+PTHrP and adipogenesis+PTHrP group were significantly higher than that in control group, respectively (p PTHrP group, and Sudan IV-positive adipocytes firstly appeared in adipogenesis group. The expression level of OPN mRNA in osteogenesis+PTHrP group was significantly higher than that in osteogenesis group (p PTHrP group was also higher than adipogenesis group (p PTHrP group was significantly lower than that in osteogenesis group, and that in adipogenesis+PTHrP group was also lower than adipogenesis group (p PTHrP (1-86) can promote the osteogenic differentiation and inhibits the adipogenic differentiation for hMSCs.

  2. Parathyroid Hormone (1-34 Might Not Improve Early Bone Healing after Sinus Augmentation in Healthy Rabbits

    Directory of Open Access Journals (Sweden)

    Jisun Huh

    2017-01-01

    Full Text Available Purpose. This study evaluated the effect of administering intermittent parathyroid hormone [PTH (1-34, henceforth PTH] on the early-stage bone healing of maxillary sinus augmentation in healthy rabbits. Materials and Methods. Bovine bone mineral was grafted on the sinuses of 20 female New Zealand white rabbits. The animals were randomly divided into two groups, PTH (n=10 or saline (n=10, in which either PTH or saline was injected subcutaneously 5 days a week for 2 weeks. Half of the animals in each group were killed at 2 weeks postoperatively and the other half were killed at 4 weeks postoperatively. The dosage of PTH was 10 μg/kg/day. Radiographic and histomorphometric analyses were performed. Result. The new bone area (NBA did not differ significantly between the PTH and saline groups. The NBA in the PTH group in the total augmented area and in the demarcated window, center, and Schneiderian membrane regions increased significantly from 2 to 4 weeks. The number of osteoclasts decreased significantly from 2 to 4 weeks in both groups, with no difference between the two groups. Conclusion. Intermittent PTH might not stimulate new bone formation in healthy rabbits during the first 4 weeks of healing.

  3. Parathyroid Hormone as a Novel Biomarker for Chronic Obstructive Pulmonary Disease: Korean National Health and Nutrition Examination Survey.

    Directory of Open Access Journals (Sweden)

    Joo-Hyun Park

    Full Text Available To understand and predict chronic obstructive pulmonary disease (COPD, a biomarker that reflects disease severity is needed.Data from 10269 adults aged over 40 years of age were retrieved from the Korea National Health and Nutrition Examination Survey (KNHANES, and 1302 patients met the criteria for COPD. The association between values of vitamin D and parathyroid hormone (PTH, and COPD severity including lung function and quality of life, were analyzed.In COPD patients, lung function was inversely related to PTH values (P = 0.02 for FVC [% predicted]; P < 0.001 for FEV1 [% predicted]; however, the association of lung function with vitamin D levels was not statistically significant in a multivariable analysis. Value of PTH was independently associated with EQ5D-index (P = 0.04, but vitamin D level showed no significant relationship with EQ5D-index (P = 0.59 or EQ5D-VAS (P = 0.81.Elevation of PTH, unlike vitamin D, is independently associated with COPD severity, and may be a better biomarker for COPD.

  4. Parathyroid Hormone as a Novel Biomarker for Chronic Obstructive Pulmonary Disease: Korean National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Park, Joo-Hyun; Park, Hye Kyeong; Jung, Hoon; Lee, Sung-Soon; Koo, Hyeon-Kyoung

    2015-01-01

    To understand and predict chronic obstructive pulmonary disease (COPD), a biomarker that reflects disease severity is needed. Data from 10269 adults aged over 40 years of age were retrieved from the Korea National Health and Nutrition Examination Survey (KNHANES), and 1302 patients met the criteria for COPD. The association between values of vitamin D and parathyroid hormone (PTH), and COPD severity including lung function and quality of life, were analyzed. In COPD patients, lung function was inversely related to PTH values (P = 0.02 for FVC [% predicted]; P < 0.001 for FEV1 [% predicted]); however, the association of lung function with vitamin D levels was not statistically significant in a multivariable analysis. Value of PTH was independently associated with EQ5D-index (P = 0.04), but vitamin D level showed no significant relationship with EQ5D-index (P = 0.59) or EQ5D-VAS (P = 0.81). Elevation of PTH, unlike vitamin D, is independently associated with COPD severity, and may be a better biomarker for COPD.

  5. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes.

    Science.gov (United States)

    Correa, Diego; Hesse, Eric; Seriwatanachai, Dutmanee; Kiviranta, Riku; Saito, Hiroaki; Yamana, Kei; Neff, Lynn; Atfi, Azeddine; Coillard, Lucie; Sitara, Despina; Maeda, Yukiko; Warming, Soren; Jenkins, Nancy A; Copeland, Neal G; Horne, William C; Lanske, Beate; Baron, Roland

    2010-10-19

    In the growth plate, the interplay between parathyroid hormone-related peptide (PTHrP) and Indian hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional coregulator, in prehypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zfp521 resembled PTHrP(-/-) and chondrocyte-specific PTHR1(-/-) mice, with decreased chondrocyte proliferation, early hypertrophic transition, and reduced growth plate thickness. Deleting Zfp521 increased expression of Runx2 and Runx2 target genes, and decreased Cyclin D1 and Bcl-2 expression while increasing Caspase-3 activation and apoptosis. Zfp521 associated with Runx2 in chondrocytes, antagonizing its activity via an HDAC4-dependent mechanism. PTHrP failed to upregulate Cyclin D1 and to antagonize Runx2, Ihh, and collagen X expression when Zfp521 was absent. Thus, Zfp521 is an important PTHrP target gene that regulates growth plate chondrocyte proliferation and differentiation.

  6. Effect of type II diabetes mellitus on intact parathyroid hormone level in end stage renal disease patients on maintenance hemodialysis

    Directory of Open Access Journals (Sweden)

    Subhasish Dan

    2013-10-01

    Full Text Available Introduction: Osteodystrophy is more common among hemodialysis patients than normal population. Earlier the higher incidence of osteodystrophy among maintenance hemodialysis (MHD patients was attributed to high Intact Parathyroid Hormone (iPTH level (150-300 pg/ml. Osteodystrophy due to high iPTH level is called High Turnover Bone Disease (HTBD. It was later found that another type of osteodystrophy, which can be attributed to low iPTH level and called Low Turnover Bone Disease (LTBD, also afflicts a subset of hemodialysis population, the diabetic End Stage Renal Disease (ESRD patients. In our study, we propose to ascertain if diabetic ESRD patients on MHD have lower iPTH level than their non-diabetic counterparts. Methods: Total 193 patients were enrolled into the study. Of them, 98 had diabetic nephropathy as primary cause of ESRD, 69 had Chronic Glomerulonephritis, 13 had Hypertensive Nephropathy, 8 had Polycystic Kidney Disease, 3 had Urolithiasis and 2 had Drug Induced Nephrotoxicity as primary cause of ESRD. All of them had been on MHD for more than 6 months. We measured the iPTH level of all the patients enrolled in the study. Result. Serum iPTH level was significantly lower in diabetic group than in non-diabetic group (P < 0.001. Conclusion: Type 2 Diabetes Mellitus contributes towards relatively low iPTH level in diabetic ESRD patients on MHD.

  7. Convergent Signaling Pathways Regulate Parathyroid Hormone and Fibroblast Growth Factor-23 Action on NPT2A-mediated Phosphate Transport.

    Science.gov (United States)

    Sneddon, W Bruce; Ruiz, Giovanni W; Gallo, Luciana I; Xiao, Kunhong; Zhang, Qiangmin; Rbaibi, Youssef; Weisz, Ora A; Apodaca, Gerard L; Friedman, Peter A

    2016-09-02

    Parathyroid hormone (PTH) and FGF23 are the primary hormones regulating acute phosphate homeostasis. Human renal proximal tubule cells (RPTECs) were used to characterize the mechanism and signaling pathways of PTH and FGF23 on phosphate transport and the role of the PDZ protein NHERF1 in mediating PTH and FGF23 effects. RPTECs express the NPT2A phosphate transporter, αKlotho, FGFR1, FGFR3, FGFR4, and the PTH receptor. FGFR1 isoforms are formed from alternate splicing of exon 3 and of exon 8 or 9 in Ir-like loop 3. Exon 3 was absent, but mRNA containing both exons 8 and 9 is present in cytoplasm. Using an FGFR1c-specific antibody together with mass spectrometry analysis, we show that RPTECs express FGFR-β1C. The data are consistent with regulated FGFR1 splicing involving a novel cytoplasmic mechanism. PTH and FGF23 inhibited phosphate transport in a concentration-dependent manner. At maximally effective concentrations, PTH and FGF23 equivalently decreased phosphate uptake and were not additive, suggesting a shared mechanism of action. Protein kinase A or C blockade prevented PTH but not FGF23 actions. Conversely, inhibiting SGK1, blocking FGFR dimerization, or knocking down Klotho expression disrupted FGF23 actions but did not interfere with PTH effects. C-terminal FGF23(180-251) competitively and selectively blocked FGF23 action without disrupting PTH effects. However, both PTH and FGF23-sensitive phosphate transport were abolished by NHERF1 shRNA knockdown. Extended treatment with PTH or FGF23 down-regulated NPT2A without affecting NHERF1. We conclude that FGFR1c and PTHR signaling pathways converge on NHERF1 to inhibit PTH- and FGF23-sensitive phosphate transport and down-regulate NPT2A.

  8. Mechanisms of Normalisation of Bone Metabolism during Recovery from Hyperthyroidism: Potential Role for Sclerostin and Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Elżbieta Skowrońska-Jóźwiak

    2015-01-01

    Full Text Available Sclerostin, a protein expressed by osteocytes, is a negative regulator of bone formation. The aim of the study was to investigate the relationship between parathyroid hormone (PTH and markers of bone metabolism and changes of sclerostin concentrations before and after treatment of hyperthyroidism. Patients and Methods. The study involved 33 patients (26 women, age (mean ± SD 48 ± 15 years, with hyperthyroidism. Serum sclerostin, PTH, calcium, and bone markers [osteocalcin (OC and collagen type I cross-linked C-telopeptide I (CTX] were measured at diagnosis of hyperthyroidism and after treatment with thiamazole. Results. After treatment of hyperthyroidism a significant decrease in free T3 (FT3 and free T4 (FT4 concentrations was accompanied by marked decrease of serum sclerostin (from 43.7 ± 29.3 to 28.1 ± 18.4 pmol/L; p<0.001, OC (from 35.6 ± 22.0 to 27.0 ± 14.3 ng/mL; p<0.001, and CTX (from 0.49 ± 0.35 to 0.35 ± 0.23 ng/dL; p<0.005, accompanied by an increase of PTH (from 29.3 ± 14.9 to 39.8 ± 19.8; p<0.001. During hyperthyroidism there was a positive correlation between sclerostin and CTX (rs=0.41, p<0.05 and between OC and thyroid hormones (with FT3  rs=0.42, with FT4  rs=0.45, p<0.05. Conclusions. Successful treatment of hyperthyroidism results in a significant decrease in serum sclerostin and bone markers concentrations, accompanied by an increase of PTH.

  9. Secretion of human parathyroid hormone from rat pituitary cells infected with a recombinant retrovirus encoding preproparathyroid hormone.

    OpenAIRE

    Hellerman, J G; Cone, R C; Potts, J. T.; Rich, A; Mulligan, R C; Kronenberg, H M

    1984-01-01

    In order to study the functions of precursors to secreted proteins, we expressed cloned DNA encoding human preproparathyroid hormone (preproPTH) in rat pituitary cells. We first constructed a recombinant plasmid containing human preproPTH cDNA and retroviral control signals. This recombinant plasmid was transfected into psi-2 cells, a packaging cell line that produces Moloney murine leukemia viral particles containing no retroviral RNA. The transfected psi-2 cells generated helper-free recomb...

  10. Parathyroid Hormone and the Use of Diuretics and Calcium-Channel Blockers: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Zaheer, Sarah; de Boer, Ian; Allison, Matthew; Brown, Jenifer M; Psaty, Bruce M; Robinson-Cohen, Cassianne; Ix, Joachim H; Kestenbaum, Bryan; Siscovick, David; Vaidya, Anand

    2016-06-01

    Thiazide diuretic (TZ) use is associated with higher bone mineral density, whereas loop diuretic (LD) use is associated with lower bone density and incident fracture. Dihydropyridine-sensitive calcium channels are expressed on parathyroid cells and may play a role in parathyroid hormone (PTH) regulation. The potential for diuretics and calcium-channel blockers (CCBs) to modulate PTH and calcium homeostasis may represent a mechanism by which they influence skeletal outcomes. We hypothesized that the use of LD and dihydropyridine CCBs is associated with higher PTH, and TZ use is associated with lower PTH. We conducted cross-sectional analyses of participants treated for hypertension in the Multi-Ethnic Study of Atherosclerosis who did not have primary hyperparathyroidism or chronic kidney disease (n = 1888). We used adjusted regression models to evaluate the independent association between TZ, LD, and CCB medication classes and PTH. TZ use was associated with lower PTH when compared with non-TZ use (44.4 versus 46.9 pg/mL, p = 0.02), whereas the use of LD and CCBs was associated with higher PTH when compared with non-users of each medication class (LD: 60.7 versus 45.5 pg/mL, p < 0.0001; CCB: 49.5 versus. 44.4 pg/mL, p < 0.0001). Adjusted regression models confirmed independent associations between TZ use and lower PTH (β = -3.2 pg/mL, p = 0.0007), and LD or CCB use and higher PTH (LD: β = +12.0 pg/mL, p < 0.0001; CCB: +3.7 pg/mL, p < 0.0001). Among CCB users, the use of dihydropyridines was independently associated with higher PTH (β = +5.0 pg/mL, p < 0.0001), whereas non-dihydropyridine use was not (β = +0.58 pg/mL, p = 0.68). We conclude that in a large community-based cohort with normal kidney function, TZ use is associated with lower PTH, whereas LD and dihydropyridine CCB use is associated with higher PTH. These associations may provide a mechanistic explanation linking use of these

  11. Research advances of parathyroid hormone-related protein%甲状旁腺激素相关蛋白研究进展

    Institute of Scientific and Technical Information of China (English)

    吴素珍; 李加林

    2015-01-01

    Parathyroid Hormone-related Protein( PTHrP) is a polyhormone secretory protein secreted by a variety of tissues and cells that plays fundamental roles in the growth and development of various organs, promotes migration and invasion in breast cancer, prostate cancer and non-small cell lung cancer and also plays a key role in osteolysis.With the development of scientific research, many unknown functions of the parathyroid hormone-related protein will be uncovered.%甲状旁腺激素相关蛋白( parathyroid hormone-related protein,PTHrP)是由多种组织细胞分泌的一种活性分子,具有广泛的生物学功效,参与多种器官的生长发育,能促进乳腺癌、前列腺癌、非小细胞肺癌的浸润和转移,亦是骨溶解最重要的调节因子之一。随着科学研究的进步,不断有PTHrP新功能被发现,本文综述近年来有关PTHrP的生物学功能的研究。

  12. Paraneoplastic hormones: parathyroid hormone-related protein (PTHrP) and erythropoietin (EPO) are related to vascular endothelial growth factor (VEGF) expression in clear cell renal cell carcinoma.

    Science.gov (United States)

    Feng, Chen-chen; Ding, Guan-xiong; Song, Ning-hong; Li, Xuan; Wu, Zhong; Jiang, Hao-wen; Ding, Qiang

    2013-12-01

    To investigate the correlation between parathyroid hormone-related protein (PTHrP), erythropoietin (EPO), and vascular endothelial growth factor (VEGF) expression in clear cell renal cell carcinoma (ccRCC). Immunohistochemical studies on PTHrP, EPO and VEGF were performed in 249 patients with ccRCC. Serum calcium level and haematocrit were analyzed. The expression of the factors and clinicopathological parameters were studied statistically for possible correlations. The incidence for hypercalcaemia and polycythaemia were 15.3% and 2.0% respectively. Expression of PTHrP, EPO, and VEGF were respectively related to advanced stage (P PTHrP was not related to tumour grade. Expressions of EPO and VEGF were correlated to tumour grade significantly. All factors were expressed higher in hypercalcaemic patients. PTHrP, EPO, and VEGF were positively correlated with each other in non-hypercalcaemic patients yet not in hypercalcaemic ones. PTHrP and EPO are related to VEGF expression and to the progression of ccRCC. This finding offers us new insight on the behaviour of ccRCC and offers possible targets in RCC treatment.

  13. Hormones and endocrine disruptors in human seminal plasma.

    Science.gov (United States)

    Hampl, R; Kubatova, J; Heracek, J; Sobotka, V; Starka, L

    2013-07-01

    Seminal plasma represents a unique environment for maturation, nutrition, and protection of male germ cells from damaging agents. It contains an array of organic as well as inorganic chemicals, encompassing a number of biologically and immunologically active compounds, including hormones. Seminal plasma contains also various pollutants transferred from outer environment known as endocrine disruptors. They interfere with hormones at the receptor level, act as inhibitors of their biosynthesis, and affect hormone regulation.In this minireview, the main groups of hormones detected in seminal plasma are summarized. Seminal gonadal steroids were investigated mostly with aim to use them as biomarkers of impaired spermatogenesis (sperm count, motility, morphology). Concentrations of hormones in the seminal plasma often differ considerably from the blood plasma levels in dependence on their origin. In some instances (dihydrotestosterone, estradiol), their informative value is higher than determination in blood.Out of peptide hormones detected in seminal plasma, peptides of transforming growth factor beta family, especially antimullerian hormone, and oligopeptides related to thyrotropin releasing hormone have the high informative value, while assessment of seminal gonadotropins and prolactin does not bring advantage over determination in blood.Though there is a large body of information about the endocrine disruptors' impact on male reproduction, especially with their potential role in decline of male reproductive functions within the last decades, there are only scarce reports on their presence in seminal plasma. Herein, the main groups of endocrine disruptors found in seminal plasma are reviewed, and the use of their determination for investigation of fertility disorders is discussed.

  14. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    Full Text Available Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p. was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1 positive endothelial progenitor cells (EPCs in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.

  15. Association between Parathyroid Hormone, 25 (OH) Vitamin D, and Chronic Kidney Disease: A Population-Based Study

    Science.gov (United States)

    Wang, Wei-Hao; Chen, Li-Wei; Sun, Chiao-Yin; Hsu, Heng-Rong; Chien, Rong-Nang

    2017-01-01

    Identification of the accurate risk factor for CKD remains mandatory to combat the high prevalence of diseases. Growing evidence suggests the association of serum vitamin D with diverse health conditions. However, the relationship between vitamin D, intact parathyroid hormone (PTH), and calcium-phosphate metabolism and development of CKD remains controversial. We conduct this cross-sectional observational study to investigate the association between serum 25 (OH) vitamin D, intact PTH, and calcium and phosphate levels with eGFR and albuminuria, as a surrogate marker of CKD, in a community population. A total of 4080 participants were recruited. The mean age was 58.4 ± 13.3 years and 1480 (36.3%) were men. The mean eGFR was 94.1 ± 26.3 mL/min/1.73 m2. The prevalence of CKD was 19.8%. Serum 25 (OH) vitamin D and log intact PTH levels were inversely correlated with eGFR but positively correlated with log albuminuria. Logistic regression analysis identified the log intact PTH as an independent factor associated with eGFR ≤ 60 mL/min/1.73 m2 and proteinuria. This association was consistent when serum intact PTH was analyzed as continuous as well as categorical variables (as hyperparathyroidism). The relationship remains significant using resampling subset analysis with comparable baseline characteristics and adjustment for 25 (OH) vitamin D, calcium, and phosphate levels. This finding warranted further research to clarify the causal relationship of PTH/25 (OH) vitamin D with the risk of CKD in the general population.

  16. Parathyroid hormone inhibits TGF-β/Smad signaling and extracellular matrix proteins upregulation in rat mesangial cells.

    Science.gov (United States)

    Peng, Fang-Fang; Xiao, Ze-Ling; Chen, Hong-Min; Chen, Yan; Zhou, Jian; Yu, Hong; Zhang, Bai-Fang

    2016-09-23

    Accumulation of glomerular matrix is a hallmark of diabetic nephropathy. TGF-β1 is a major cytokine mediating the production of various extracellular matrix (ECM) proteins. The aim of this study is to elucidate the effect of parathyroid hormone (PTH) on TGF-β1 and high glucose-induced upregulation of ECM proteins in primary mesangial cells from Sprague-Dawley rat. The results showed that PTH pretreatment prevented TGF-β1 and high glucose-induced Smad2/3 phosphorylation and consequent upregulation of fibronectin and type IV collagen within 4 h. The inhibitory effect of PTH is due to PTH1R activation, because knocking down PTH 1 receptor (PTH1R) by RNA interference reversed the inhibitory effect of PTH on TGF-β1 and high glucose-induced Smad2/3 phosphorylation and ECM upregulation. Furthermore, it is found that PTH1R associated with TGF-β type II receptor (TβR II) and both receptors internalized into the cytoplasm when mesangial cells were stimulated with PTH alone. The internalization of TβR II might reduce the amount of membrane TβR II, attenuate the sensitivity of mesangial cells to TGF-β1, and therefore inhibit Smad activation and ECM upregulation induced by TGF-β1 and high glucose. Further studies are needed to know whether the endocytic receptors are to be degraded or recycled, and evaluate the role of PTH in TGF-β1 signaling more comprehensively.

  17. Parathyroid hormone-related protein (PTHrP) modulates adhesion, migration and invasion in bone tumor cells.

    Science.gov (United States)

    Mak, Isabella W Y; Turcotte, Robert E; Ghert, Michelle

    2013-07-01

    Parathyroid-hormone-related protein (PTHrP) has been shown to be an important factor in osteolysis in the setting of metastatic carcinoma to the bone. However, PTHrP may also be central in the setting of primary bone tumors. Giant cell tumor of bone (GCT) is an aggressive osteolytic bone tumor characterized by osteoclast-like giant cells that are recruited by osteoblast-like stromal cells. The stromal cells of GCT are well established as the only neoplastic element of the tumor, and we have previously shown that PTHrP is highly expressed by these cells both in vitro and in vivo. We have also found that the stromal cells exposed to a monoclonal antibody to PTHrP exhibited rapid plate detachment and quickly died in vitro. Therefore, PTHrP may serve in an autocrine manner to increase cell proliferation and promote invasive properties in GCT. The purpose of this study was to use transcriptomic microarrays and functional assays to examine the effects of PTHrP neutralization on cell adhesion, migration and invasion. Microarray and proteomics data identified genes that were differentially expressed in GCT stromal cells under various PTHrP treatment conditions. Treatment of GCT stromal cells with anti-PTHrP antibodies showed a change in the expression of 13 genes from the integrin family relative to the IgG control. Neutralization of PTHrP reduced cell migration and invasion as evidenced by functional assays. Adhesion and anoikis assays demonstrated that although PTHrP neutralization inhibits cell adhesion properties, cell detachment related to PTHrP neutralization did not result in associated cell death, as expected in mesenchymal stromal cells. Based on the data presented herein, we conclude that PTHrP excreted by GCT stromal cells increases bone tumor cell local invasiveness and migration.

  18. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    Science.gov (United States)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  19. Recombinant human parathyroid hormone related protein 1-34 and 1-84 and their roles in osteoporosis treatment.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Osteoporosis is a common disorder characterized by compromised bone strength that predisposes patients to increased fracture risk. Parathyroid hormone related protein (PTHrP is one of the candidates for clinical osteoporosis treatment. In this study, GST Gene Fusion System was used to express recombinant human PTHrP (hPTHrP 1-34 and 1-84. To determine whether the recombinant hPTHrP1-34 and 1-84 can enhance renal calcium reabsorption and promote bone formation, we examined effects of recombinant hPTHrP1-34 and 1-84 on osteogenic lineage commitment in a primary bone marrow cell culture system and on osteoporosis treatment. Results revealed that both of recombinant hPTHrP1-34 and 1-84 increased colony formation and osteogenic cell differentiation and mineralization in vitro; however, the effect of recombinant hPTHrP1-84 is a little stronger than that of hPTHrP1-34. Next, ovariectomy was used to construct osteoporosis animal model (OVX to test activities of these two recombinants in vivo. HPTHrP1-84 administration elevated serum calcium by up-regulating the expression of renal calcium transporters, which resulted in stimulation of osteoblastic bone formation. These factors contributed to augmented bone mass in hPTHrP1-84 treated OVX mice but did not affect bone resorption. There was no obvious bone mass alteration in hPTHrP1-34 treated OVX mice, which may be, at least partly, associated with shorter half-life of hPTHrP1-34 compared to hPTHrP1-84 in vivo. This study implies that recombinant hPTHrP1-84 is more effective than hPTHrP1-34 to enhance renal calcium reabsorption and to stimulate bone formation in vivo.

  20. Intermittent Administration of Parathyroid Hormone [1-34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Fanggang Bi

    Full Text Available We examined whether intermittent administration of parathyroid hormone [1-34] (PTH[1-34]; 60 μg/kg/day can prevent the negative effects of titanium (Ti particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1-34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM, and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1-34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone-implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1-34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1-34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis.

  1. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    Science.gov (United States)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  2. Evaluation of recombinant human parathyroid hormone by CZE method and its correlation with in vitro bioassay and LC methods.

    Science.gov (United States)

    Maldaner, Fernanda Pavani Stamm; Perobelli, Rafaela Ferreira; Xavier, Bruna; Remuzzi, Gabriel Lunardi; Walter, Maurício Elesbão; Dalmora, Sérgio Luiz

    2017-01-01

    A stability-indicating capillary zone electrophoresis (CZE) method was validated to assess the content/potency of the recombinant human parathyroid hormone (rhPTH 1-34), using ranitidine as internal standard (IS). A fused-silica capillary, (i.d. of 50µm; effective length of 40cm) was used at 25°C; the applied voltage was 20kV. The background electrolyte solution consisted of 50mmolL(-1) sodium dihydrogen phosphate solution at pH 3.0. Injections were performed using a pressure mode at 50 mbar for 45s, with detection by photodiode array (PDA) detector set at 200nm. Separation was obtained with a migration time of 5.3min, and was linear over the concentration range of 0.25-250µgmL(-1) (r(2) =0.9992). Specificity and stability-indicating capability were established in degradation studies, which also showed that there was no interference of the excipients. The accuracy was 100.28% with bias lower than 0.85%. Analyses of the same batches showed mean differences of the estimated content/potencies of 0.61%, 1.31% higher and 0.86% lower as compared to the validated reversed-phase and size exclusion liquid chromatography methods, and to the UMR-106 cell culture bioassay, respectively, with non-significant differences (p>0.05). Degraded forms were also subjected to the in vitro cytotoxicity test. The results obtained showed the capabilities of each one of the methods, and constitute an alternative strategy to monitor stability, improve the quality control and ensure the batch-to-batch consistency of bulk and finished biotechnology-derived medicine.

  3. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia.

    Science.gov (United States)

    Oest, Megan E; Gong, Bo; Esmonde-White, Karen; Mann, Kenneth A; Zimmerman, Nicholas D; Damron, Timothy A; Morris, Michael D

    2016-05-01

    As part of our ongoing efforts to understand underlying mechanisms contributing to radiation-associated bone fragility and to identify possible treatments, we evaluated the longitudinal effects of parathyroid hormone (PTH) treatment on bone quality in a murine model of limited field irradiation. We hypothesized PTH would mitigate radiation-induced changes in the chemical composition and structure of bone, as measured by microscope-based Raman spectroscopy. We further hypothesized that collagen crosslinking would be especially responsive to PTH treatment. Raman spectroscopy was performed on retrieved tibiae (6-7/group/time point) to quantify metrics associated with bone quality, including: mineral-to-matrix ratio, carbonate-to-phosphate ratio, mineral crystallinity, collagen crosslink (trivalent:divalent) ratio, and the mineral and matrix depolarization ratios. Irradiation disrupted the molecular structure and orientation of bone collagen, as evidenced by a higher collagen crosslink ratio and lower matrix depolarization ratio (vs. non-irradiated control bones), persisting until 12weeks post-irradiation. Radiation transiently affected the mineral phase, as evidenced by increased mineral crystallinity and mineral-to-matrix ratio at 4weeks compared to controls. Radiation decreased bone mineral depolarization ratios through 12weeks, indicating increased mineral alignment. PTH treatment partially attenuated radiation-induced increases in collagen crosslink ratio, but did not restore collagen or mineral alignment. These post-radiation matrix changes are consistent with our previous studies of radiation damage to bone, and suggest that the initial radiation damage to bone matrix has extensive effects on the quality of tissue deposited thereafter. In addition to maintaining bone quality, preventing initial radiation damage to the bone matrix (i.e. crosslink ratio, matrix orientation) may be critical to preventing late-onset fragility fractures.

  4. Origins of PDZ Binding Specificity. A Computational and Experimental Study Using NHERF1 and the Parathyroid Hormone Receptor.

    Science.gov (United States)

    Mamonova, Tatyana; Zhang, Qiangmin; Chandra, Mintu; Collins, Brett M; Sarfo, Edward; Bu, Zimei; Xiao, Kunhong; Bisello, Alessandro; Friedman, Peter A

    2017-05-23

    Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) is a scaffolding protein containing two PSD95/discs large protein/ZO1 (PDZ) domains that modifies the signaling, trafficking, and function of the parathyroid hormone receptor (PTHR), a family B G-protein-coupled receptor. PTHR and NHERF1 bind through a PDZ-ligand-recognition mechanism. We show that PTH elicits phosphorylation of Thr591 in the canonical -ETVM binding motif of PTHR. Conservative substitution of Thr591 with Cys does not affect PTH(1-34)-induced cAMP production or binding of PTHR to NHERF1. The findings suggested the presence of additional sites upstream of the PDZ-ligand motif through which the two proteins interact. Structural determinants outside the canonical NHERF1 PDZ-PTHR interface that influence binding have not been characterized. We used molecular dynamics (MD) simulation to predict residues involved in these interactions. Simulation data demonstrate that the negatively charged Glu side chains at positions -3, -5, and -6 upstream of the PDZ binding motif are involved in PDZ-PTHR recognition. Engineered mutant peptides representing the PTHR C-terminal region were used to measure the binding affinity with NHERF1 PDZ domains. Comparable micromolar affinities for peptides of different length were confirmed by fluorescence polarization, isothermal titration calorimetry, and surface plasmon resonance. Binding affinities measured for Ala variants validate MD simulations. The linear relation between the change in enthalpy and entropy following Ala substitutions at upstream positions -3, -5, and -6 of the PTHR peptide provides a clear example of the thermodynamic compensation rule. Overall, our data highlight sequences in PTHR that contribute to NHERF1 interaction and can be altered to prevent phosphorylation-mediated inhibition.

  5. Bone-Invasive Oral Squamous Cell Carcinoma in Cats: Pathology and Expression of Parathyroid Hormone-Related Protein

    Science.gov (United States)

    Martin, C. K.; Tannehill-Gregg, S. H.; Wolfe, T. D.; Rosol, T. J.

    2014-01-01

    Feline oral squamous cell carcinoma (OSCC) is the most common oral tumor in cats. There is no effective treatment, and the average duration of survival after diagnosis is only 2 months. Feline OSCC is frequently associated with osteolysis; however, the mechanisms responsible are unknown. The objective of this study was to characterize the epidemiology and pathology of bone-invasive OSCC in cats and to determine the expression of select bone resorption agonists. In sum, 451 cases of feline OSCC were evaluated. There was no sex or breed predisposition, although there were more intact cats in the OSCC group compared to the control group. Gingiva was the most common site, followed by the sublingual region and tongue. Cats with lingual OSCC were younger (mean, 11.9 years) compared to cats with gingival OSCC (mean, 13.6 years). In addition to osteolysis, there was periosteal new bone formation, osseous metaplasia of tumor stroma, and direct apposition of OSCC to fragments of bone, suggestive of bone-binding behavior. Eighty-two cases were selected for immunohistochemical detection of parathyroid hormone-related protein (PTHrP). Specimens with osteolysis had increased PTHrP expression and nuclear localization, compared to OSCC without osteolysis. Thirty-eight biopsies of OSCC with osteolysis were evaluated for tumor necrosis factor α expression, and only 4 biopsies had such expression in a small proportion of tumor cells. Increased tumor expression of PTHrP and increased localization of PTHrP to the nucleus were associated with osteolysis and may play an important role in bone resorption and tumor invasion in cats with OSCC. PMID:20940448

  6. [Preparation and identification of recombinant adenoviruses carrying short hairpin RNA targeting parathyroid hormone related protein of goat].

    Science.gov (United States)

    Xing, Ruifang; Zheng, Huiling; Liu, Xuemei; Yan, Linhui; An, Junhui; Yang, Zhenyu; Zhu, Zhenzhen

    2011-11-01

    Parathyroid hormone related protein (PTHrP) has important biological functions in calcium metabolism. The aim of this study was to silence the expression of PTHrP by RNA interference and recombinant adenovirus, and to provide a material to investigate the relative functions of PTHrP in goat mammary gland epithelial cell. The Block-iT shRNA interference system was used in this experiment. We designed and synthesized two pairs of complementary single-strand DNA oligonucleotides (shRNA-322/357) targeting two different sites of PTHrP mRNA. Then the oligonucleotides were inserted into shuttle vector pENTR/CMV-GFP/U6. After detection of the interference efficiency by Western blotting, we chose pENTR/CMV-GFP/U6-322 and adenovirus backbone vector pAD/PL-DEST to produce recombinant vector pAD/PL-DEST/CMV-GFP/U6-322. The first generation recombinant adenovirus particles (AD-PTHrP-322) were produced and further amplified by transfecting HEK-293 cells. The titer of the recombinant adenovirus reached 2.0 x 1(9) PFU/mL determined by TCID50 assays. The result of real-time quantitative PCR indicated that mRNA expression levels of gene were reduced 29.2%, 68.1% and 82.6% (P PTHrP-322 after 24, 48 and 72 h, in which PTHrP. Western blotting also showed that the expression of PTHrP was reduced by infecting the cells with AD-PTHrP-322. AD-PTHrP-322 has been proved with significant interference effect on expression of PTHrP.

  7. Prenatal treatment with retinoic acid activates parathyroid hormone-related protein signaling in the nitrofen-induced hypoplastic lung.

    Science.gov (United States)

    Doi, Takashi; Sugimoto, Kaoru; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2011-01-01

    Prenatal treatment with retinoic acid (RA) has been reported to stimulate alveologenesis in hypoplastic lungs (HL) in the nitrofen model of congenital diaphragmatic hernia (CDH). Parathyroid hormone-related protein (PTHrP) promotes alveolar maturation by stimulating surfactant production, regulated by PTHrP receptor (PTHrP-R). PTHrP knockout and PTHrP-R null mice both exhibit pulmonary hypoplasia. We have recently reported that nitrofen inhibits PTHrP signaling in the nitrofen-induced HL. Because both PTHrP and PTHrP-R genes have RA-inducible element, we hypothesized that prenatal administration of RA upregulates pulmonary gene expression of PTHrP and PTHrP-R in the nitrofen-induced HL. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). RA was given on days D18, D19 and D20. Fetal lungs were obtained on D21 and divided into four groups: control, control + RA, nitrofen, nitrofen + RA. RT-PCR and Immunohistochemistry were performed to investigate the pulmonary PTHrP and PTHrP-R gene and protein expression in each group, respectively. The pulmonary gene expression levels of PTHrP and PTHrP-R were significantly increased in nitrofen + RA group compared to nitrofen group (p PTHrP and PTHrP-R was also remarkably increased in nitrofen + RA group compared to nitrofen group. Upregulation of PTHrP and PTHrP-R genes after prenatal treatment with RA in the nitrofen-induced HL suggests that RA may have a therapeutic potential in reverting lung hypoplasia in CDH, by stimulating surfactant production and alveolar maturation.

  8. Parathyroid hormone-related protein (PTHrP) expression and bone invasion by oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimochi, Makoto; Kameta, Ayako; Harada, Mikiko; Okada, Yasuo; Katagiri, Masataka [The Nippon Dental Univ. (Japan). School of Dentistry at Niigata

    1999-01-01

    Parathyroid hormone-related protein (PTHrP) indirectly stimulates osteoclastic bone resorption through osteoblasts in humoral hypercalcemia of malignancy. We reported that the serum concentration of PTHrP elevated in terminal stage patients with oral squamous cell carcinoma (SCC) in 1996. Therefore, PTHrP is a candidate for direct bone resorption factor released from the tumor tissue. The purpose of this study was to elucidate the correlation between the direct bone invasion by oral SCC and PTHrP expression. The serum C-PTHrP concentration was measured in 53 patients with oral SCC. The immunohistochemical study using PTHrP (labeled streptoavidin-biotin method, 38-64 monoclonal and 1-34 polyclonal antibody) was performed in 53 biopsy specimens. The bone invasion was assessed by using panoramic radiographs and bone scintigrams ({sup 99m}Tc-MDP). The mean serum C-PTHrP concentration in the bone invasion identified group was 43.1{+-}17.2 pmol/1. In the non-bone invasion group it was 42.0{+-}18.0 pmol/1. No significant correlation was found between serum C-PTHrP levels and bone invasion or between PTHrP (1-34) and (38-64) expression in tumors and bone invasion. These results showed that there is no relationship between PTHrP expression in the biopsy specimen and direct bone invasion. Since the expression of PTHrP in the tumor tissue attached to the bone or surgical specimens has not been investigated, it is still unclear if PTHrP plays a role in direct bone resorption by oral SCC. (author)

  9. Recombinant human parathyroid hormone related protein 1-34 and 1-84 and their roles in osteoporosis treatment.

    Science.gov (United States)

    Wang, Hua; Liu, Jingning; Yin, Ying; Wu, Jun; Wang, Zilu; Miao, Dengshun; Sun, Wen

    2014-01-01

    Osteoporosis is a common disorder characterized by compromised bone strength that predisposes patients to increased fracture risk. Parathyroid hormone related protein (PTHrP) is one of the candidates for clinical osteoporosis treatment. In this study, GST Gene Fusion System was used to express recombinant human PTHrP (hPTHrP) 1-34 and 1-84. To determine whether the recombinant hPTHrP1-34 and 1-84 can enhance renal calcium reabsorption and promote bone formation, we examined effects of recombinant hPTHrP1-34 and 1-84 on osteogenic lineage commitment in a primary bone marrow cell culture system and on osteoporosis treatment. Results revealed that both of recombinant hPTHrP1-34 and 1-84 increased colony formation and osteogenic cell differentiation and mineralization in vitro; however, the effect of recombinant hPTHrP1-84 is a little stronger than that of hPTHrP1-34. Next, ovariectomy was used to construct osteoporosis animal model (OVX) to test activities of these two recombinants in vivo. HPTHrP1-84 administration elevated serum calcium by up-regulating the expression of renal calcium transporters, which resulted in stimulation of osteoblastic bone formation. These factors contributed to augmented bone mass in hPTHrP1-84 treated OVX mice but did not affect bone resorption. There was no obvious bone mass alteration in hPTHrP1-34 treated OVX mice, which may be, at least partly, associated with shorter half-life of hPTHrP1-34 compared to hPTHrP1-84 in vivo. This study implies that recombinant hPTHrP1-84 is more effective than hPTHrP1-34 to enhance renal calcium reabsorption and to stimulate bone formation in vivo.

  10. Parathyroid Hormone-Related Protein Protects Osteoblastic Cells From Oxidative Stress by Activation of MKP1 Phosphatase.

    Science.gov (United States)

    Ardura, Juan A; Portal-Núñez, Sergio; Castelbón-Calvo, Irantzu; Martínez de Toda, Irene; De la Fuente, Mónica; Esbrit, Pedro

    2017-04-01

    Oxidative damage is an important contributor to the morphological and functional changes in osteoporotic bone. Aging increases the levels of reactive oxygen species (ROS) that cause oxidative stress and induce osteoblast apoptosis. ROS modify several signaling responses, including mitogen-activated protein kinase (MAPK) activation, related to cell survival. Both parathyroid hormone (PTH) and its bone counterpart, PTH-related protein (PTHrP), can regulate MAPK activation by modulating MAPK phosphatase-1 (MKP1). Thus, we hypothesized that PTHrP might protect osteoblasts from ROS-induced apoptosis by targeting MKP1. In osteoblastic MC3T3-E1 and MG-63 cells, H2 O2 triggered p38, JNK, ERK and p66(Shc) phosphorylation, and cell apoptosis. Meanwhile, PTHrP (1-37) rapidly but transiently increased ERK and Akt phosphorylation without affecting p38, JNK, or p66(Shc) activation. H2 O2 -induced p38 and ERK phosphorylation and apoptosis were both decreased by pre-treatment with specific kinase inhibitors or PTHrP (1-37) in both osteoblastic cell types. These dephosphorylating and prosurvival actions of PTHrP (1-37) were prevented by a phosphatase inhibitor cocktail, the phosphatase MKP1 inhibitor sanguinarine or a MKP1 siRNA. PTHrP (1-37) promptly enhanced MKP1 protein and gene expression and MKP1-dependent catalase activity in osteoblastic cells. Furthermore, exposure to PTHrP (1-37) adsorbed in an implanted hydroxyapatite-based ceramic into a tibial defect in aging rats increased MKP1 and catalase gene expression in the healing bone area. Our findings demonstrate that PTHrP counteracts the pro-apoptotic actions of ROS by a mechanism dependent on MKP1-induced dephosphorylation of MAPKs in osteoblasts. J. Cell. Physiol. 232: 785-796, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Combinatorial library discovery of small molecule inhibitors of lung cancer proliferation and parathyroid hormone-related protein expression.

    Science.gov (United States)

    Hastings, Randolph H; Burton, Douglas W; Nefzi, Adel; Montgrain, Philippe R; Quintana, Rick; Deftos, Leonard J

    2010-11-15

    PTHrP (parathyroid hormone-related protein) is abnormally expressed in a substantial majority of lung cancers, especially non-small cell lung cancers, and plays a key role in tumor progression. Thus, this oncoprotein could be a target for treating patients with lung cancer. This study screened combinatorial libraries of heterocyclic amines for inhibitory effects on PTHrP expression and cell proliferation. Two libraries of over 780,000 bis-cyclic thiourea and guanidine compounds each were tested in BEN lung carcinoma cells. The number of PTHrP inhibitors and the magnitude of the reduction in PTHrP were greater for thioureas. Selected lead thiourea compounds decreased cell PTHrP protein content in dose-dependent fashion, reduced relative abundance of PTHrP mRNA, decreased transcripts derived from the PTHrP P3 promoter and reduced activity of a full length PTHrP promoter luciferase construct. Similar effects on PTHrP mRNA were observed in A549 and H441 lung adenocarcinoma cells and in H727 lung carcinoid cells. However, the compounds only inhibited PTHrP protein levels in BEN cells and H727 cells. The compounds reduced the rate of cell proliferation in BEN cells and H727 cells, but not in lines that showed no inhibition of PTHrP protein. These results suggest that cyclic thiourea compounds inhibit PTHrP expression mediated by the P3 promoter, which is widely used in the majority of PTHrP-expressing cells, and that they may inhibit growth of lung cancer cells through the same mechanism. Further work will be necessary to investigate their mechanism for effects on growth of PTHrP-positive tumors in vivo.

  12. Parathyroid hormone related protein (PTHrP) inhibits TNFalpha-induced apoptosis by blocking the extrinsic and intrinsic pathways.

    Science.gov (United States)

    Okoumassoun, Liliane; Averill-Bates, Diana; Denizeau, Francine; Henderson, Janet E

    2007-02-01

    Parathyroid hormone related protein (PTHrP) is expressed at low levels in many fetal and adult tissues where it plays a central role in regulating cell proliferation, cell death, and tissue homeostasis. In vivo and in vitro, PTHrP has been shown to promote the survival of a variety of cells by regulating expression of the anti-apoptotic protein Bcl2. Additional work has shown that intra-nuclear accumulation of PTHrP in CFK2 (PTH1R positive) and 27m21 (PTH1R negative) condrogenic cells promotes their survival by closing down ribosome biogenesis and promoting quiescence. The current studies were undertaken to examine the role of wild-type PTHrP and a mutant form that cannot translocate to the nucleus in protecting cells from TNFalpha-induced apoptosis. Both forms of the protein were equally effective in blocking the extrinsic pathway by inhibiting expression of the TNF receptor death domain, activating Bid, and promoting cleavage of caspase 8. These observations suggest a direct mechanism of PTHrP action on components of the extrinsic pathway, involving a region of the protein outside of the NTS. PTHrP and M1PTHrP also inhibited the intrinsic pathway by preventing the exchange of anti-apoptotic for pro-apoptotic proteins at the mitochondrial membrane, thus maintaining its integrity and preventing the release of caspase-activating factors into the cytosol. In general, this mitochondrial-related activity was somewhat delayed and was mediated more effectively by PTHrP than by M1PTHrP, suggesting an indirect mechanism of action that might require the presence of an intact NTS.

  13. Parathyroid hormone-related protein is a hypertrophy factor for human mesangial cells: Implications for diabetic nephropathy.

    Science.gov (United States)

    Ortega, Arantxa; Romero, Montserrat; Izquierdo, Adriana; Troyano, Nuria; Arce, Yolanda; Ardura, Juan Antonio; Arenas, María Isabel; Bover, Jordi; Esbrit, Pedro; Bosch, Ricardo J

    2012-05-01

    Hypertrophy of human mesangial cells (HMC) is among the earliest characteristics in patients with diabetic nephropathy (DN). Recently, we observed the upregulation of parathyroid hormone (PTH)-related protein (PTHrP) in experimental DN, associated with renal hypertrophy. Herein, we first examined whether PTHrP was overexpressed in human DN, and next assessed the putative role of this protein on high glucose (HG)-induced HMC hypertrophy. As previously found in mice, kidneys from diabetic patients showed an increased tubular and glomerular immunostaining for PTHrP. In HMC, HG medium increased PTHrP protein expression associated with the development of hypertrophy as assessed by cell protein content. This effect was also induced by PTHrP(1-36). HG and PTHrP(1-36)-induced hypertrophy were associated with an increase in cyclin D1 and p27Kip1 protein expression, a decreased cyclin E expression, and the prevention of cyclin E/cdk2 complex activation. Both PTHrP neutralizing antiserum (α-PTHrP) and the PTH/PTHrP receptor antagonist (JB4250) were able to abolish HG induction of hypertrophy, the aforementioned changes in cell cycle proteins, and also TGF-β1 up-regulation. Moreover, the capability of both HG and PTHrP(1-36) to induce HMC hypertrophy was abolished by α-TGFβ1. These data show for the first time that PTHrP is upregulated in the kidney of patients with DN. Our findings also demonstrate that PTHrP acts as an important mediator of HG-induced HMC hypertrophy by modulating cell cycle regulatory proteins and TGF-β1. Copyright © 2011 Wiley Periodicals, Inc.

  14. Parathyroid hormone-related protein is induced by hypoxia and promotes expression of the differentiated phenotype of human articular chondrocytes.

    Science.gov (United States)

    Pelosi, Michele; Lazzarano, Stefano; Thoms, Brendan L; Murphy, Chris L

    2013-11-01

    PTHrP (parathyroid hormone-related protein) is crucial for normal cartilage development and long bone growth and acts to delay chondrocyte hypertrophy and terminal differentiation in the growth plate. After growth plate closure adult HACs (human articular chondrocytes) still produce PTHrP, suggesting a possible role for this factor in the permanent articular cartilage. However, the expression regulation and function of PTHrP in the permanent articular cartilage is unknown. Human articular cartilage is an avascular tissue and functions in a hypoxic environment. The resident chondrocytes have adapted to hypoxia and use it to drive their tissue-specific functions. In the present study, we explored directly in normal articular chondrocytes isolated from a range of human donors the effect of hypoxia on PTHrP expression and whether PTHrP can regulate the expression of the permanent articular chondrocyte phenotype. We show that in HACs PTHrP is up-regulated by hypoxia in a HIF (hypoxia-inducible factor)-1α and HIF-2α-dependent manner. Using recombinant PTHrP, siRNA-mediated depletion of endogenous PTHrP and by blocking signalling through its receptor [PTHR1 (PTHrP receptor 1)], we show that hypoxia-induced PTHrP is a positive regulator of the key cartilage transcription factor SOX9 [SRY (sex determining region on the Y chromosome)-box 9], leading to increased COL2A1 (collagen type II, α1) expression. Our findings thus identify PTHrP as a potential factor for cartilage repair therapies through its ability to promote the differentiated HAC phenotype.

  15. Calcium-Sensing Receptor Promotes Breast Cancer by Stimulating Intracrine Actions of Parathyroid Hormone-Related Protein.

    Science.gov (United States)

    Kim, Wonnam; Takyar, Farzin M; Swan, Karena; Jeong, Jaekwang; VanHouten, Joshua; Sullivan, Catherine; Dann, Pamela; Yu, Herbert; Fiaschi-Taesch, Nathalie; Chang, Wenhan; Wysolmerski, John

    2016-09-15

    Parathyroid hormone-related protein (PTHrP) contributes to the development and metastatic progression of breast cancer by promoting hypercalcemia, tumor growth, and osteolytic bone metastases, but it is not known how PTHrP is upregulated in breast tumors. Here we report a central role in this process for the calcium-sensing receptor, CaSR, which enables cellular responses to changes in extracellular calcium, through studies of CaSR-PTHrP interactions in the MMTV-PymT transgenic mouse model of breast cancer and in human breast cancer cells. CaSR activation stimulated PTHrP production by breast cancer cells in vitro and in vivo Tissue-specific disruption of the casr gene in mammary epithelial cells in MMTV-PymT mice reduced tumor PTHrP expression and inhibited tumor cell proliferation and tumor outgrowth. CaSR signaling promoted the proliferation of human breast cancer cell lines and tumor cells cultured from MMTV-PyMT mice. Further, CaSR activation inhibited cell death triggered by high extracellular concentrations of calcium. The actions of the CaSR appeared to be mediated by nuclear actions of PTHrP that decreased p27(kip1) levels and prevented nuclear accumulation of the proapoptotic factor apoptosis inducing factor. Taken together, our findings suggest that CaSR-PTHrP interactions might be a promising target for the development of therapeutic agents to limit tumor cell growth in bone metastases and in other microenvironments in which elevated calcium and/or PTHrP levels contribute to breast cancer progression. Cancer Res; 76(18); 5348-60. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. MicroRNA-33a functions as a bone metastasis suppressor in lung cancer by targeting parathyroid hormone related protein.

    Science.gov (United States)

    Kuo, Po-Lin; Liao, Szi-Hui; Hung, Jen-Yu; Huang, Ming-Shyan; Hsu, Ya-Ling

    2013-06-01

    Bone is a common site of metastasis for lung cancer, and is associated with significant morbidity and a dismal prognosis. MicroRNAs (miRNAs) are increasingly implicated in regulating the progression of malignancies. The efficacy of miR-33a or anti-miR-33a plasmid was assessed by Real-time PCR. Luciferase assays were using One-Glo Luciferase Assay System. Measurement of secreted factors was determined by ELISA kit. We have found that miR-33a, which is downregulated in lung cancer cells, directly targets PTHrP (parathyroid hormone-related protein), a potent stimulator of osteoclastic bone resorption, leading to decreased osteolytic bone metastasis. We also found that miR-33a levels are inversely correlated with PTHrP expression between human normal bronchial cell line and lung cancer cell lines. The reintroduction of miR-33a reduces the stimulatory effect of A549 on the production of osteoclastogenesis activator RANKL (receptor activator of nuclear factor kappa-B ligand) and M-CSF (macrophage colony-stimulating factor) on osteoblasts, while the expression of PTHrP is decreased in A549 cells. miR-33a overexpression also reduces the inhibitory activity of A549 on the production of OPG (osteoprotegerin), an osteoclastogenesis inhibitor. In addition, miR-33a-mediated PTHrP downregulation results in decreased IL-8 secretion in A549, which contributes to decreased lung cancer-mediated osteoclast differentiation and bone resorption. These findings have led us to conclude that miR-33a may be a potent tumor suppressor, which inhibits direct and indirect osteoclastogenesis through repression of PTHrP. miR-33a may even predict a poor prognosis for lung cancer patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Mueller, Michael B; Fischer, Maria; Zellner, Johannes; Berner, Arne; Dienstknecht, Thomas; Kujat, Richard; Prantl, Lukas; Nerlich, Michael; Tuan, Rocky S; Angele, Peter

    2013-05-01

    Mesenchymal stem cells (MSCs) express markers of hypertrophic chondrocytes during chondrogenic differentiation. We tested the suitability of parathyroid hormone-related protein (PTHrP), a regulator of chondrocyte hypertrophy in embryonic cartilage development, for the suppression of hypertrophy in an in vitro hypertrophy model of chondrifying MSCs. Chondrogenesis was induced in human MSCs in pellet culture for two weeks and for an additional two weeks cultures were either maintained in standard chondrogenic medium or transferred to a hypertrophy-enhancing medium. PTHrP(1-40) was added to the medium throughout the culture period at concentrations from 1 to 1,000 pM. Pellets were harvested on days one, 14 and 28 for biochemical and histological analysis. Hypertrophic medium clearly enhanced the hypertrophic phenotype, with increased cell size, and strong alkaline phosphatase (ALP) and type X collagen staining. In chondrogenic medium, 1-100 pM PTHrP(1-40) did not inhibit chondrogenic differentiation, whereas 1,000 pM PTHrP(1-40) significantly reduced chondrogenesis. ALP activity was dose-dependently reduced by PTHrP(1-40) at 10-1,000 pM in chondrogenic conditions. Under hypertrophy-enhancing conditions, PTHrP(1-40) did not inhibit the induction of the hypertrophy. At the highest concentration (1,000 pM) in the hypertrophic group, aggregates were partially dedifferentiated and differentiated areas of these aggregates maintained their hypertrophic appearance. PTHrP(1-40) treatment dose-dependently reduced ALP expression in MSC pellets cultured under standard chondrogenic conditions and is thus beneficial for the maintenance of the chondrogenic phenotype in this medium condition. When cultured under hypertrophy-enhancing conditions, PTHrP(1-40) could not diminish the induced enhancement of hypertrophy in the MSC pellets.

  18. Serum uric acid is associated with left ventricular hypertrophy independent of serum parathyroid hormone in male cardiac patients.

    Directory of Open Access Journals (Sweden)

    Shu-ichi Fujita

    Full Text Available BACKGROUND: Several studies have shown that serum uric acid (UA is associated with left ventricular (LV hypertrophy. Serum levels of parathyroid hormone (PTH, which has bbe shown to be correlated with UA, is also known to be associated with cardiac hypertrophy; however, whether the association between UA and cardiac hypertrophy is independent of PTH remains unknown. PURPOSE: We investigated whether the relationship between serum uric acid (UA and LV hypertrophy is independent of intact PTH and other calcium-phosphate metabolism-related factors in cardiac patients. METHODS AND RESULTS: In a retrospective study, the association between UA and left ventricular mass index was assessed among 116 male cardiac patients (mean age 65 ± 12 years who were not taking UA lowering drugs. The median UA value was 5.9 mg/dL. Neither age nor body mass index differed significantly among the UA quartile groups. Patients with higher UA levels were more likely to be taking loop diuretics. UA showed a significant correlation with intact PTH (R = 0.34, P<0.001 but not with other calcium-phosphate metabolism-related factors. Linear regression analysis showed that log-transformed UA showed a significant association with left ventricular mass index, and this relationship was found to be significant exclusively in patients who were not taking loop and/or thiazide diuretics. Multivariate logistic regression analysis showed that log-transformed UA was independently associated with LV hypertrophy with an odds ratio of 2.79 (95% confidence interval 1.48-5.28, P = 0.002 per one standard deviation increase. CONCLUSIONS: Among cardiac patients, serum UA was associated with LV hypertrophy, and this relationship was, at least in part, independent of intact PTH levels, which showed a significant correlation with UA in the same population.

  19. Parathyroid hormone administration improves bone marrow microenvironment and partially rescues haematopoietic defects in Bmi1-null mice.

    Directory of Open Access Journals (Sweden)

    Ruinan Lu

    Full Text Available The epigenetic regulator Bmi1 is key in haematopoietic stem cells, and its inactivation leads to defects in haematopoiesis. Parathyroid hormone (PTH, an important modulator of bone homeostasis, also regulates haematopoiesis, so we asked whether PTH administration improves bone marrow microenvironment and rescues the haematopoietic defects in Bmi1-null mice. The mice were treated with PTH1-34 (containing the first 34 residues of mature PTH, an anabolic drug currently used for treating osteoporosis, and compared with the vehicle-treated Bmi1-/- and wild-type littermates in terms of skeletal and haematopoietic phenotypes. We found that the administration significantly increased all parameters related to osteoblastic bone formation and significantly reduced the adipocyte number and PPARγ expression. The bone marrow cellularity, numbers of haematopoietic progenitors and stem cells in the femur, and numbers of lymphocytes and other white blood cells in the peripheral blood all increased significantly when compared to vehicle-treated Bmi1-/- mice. Moreover, the number of Jagged1-positive cells and percentage of Notch intracellular domain-positive bone marrow cells and protein expression levels of Jagged1 and NICD in bone tissue were also increased in Bmi1-/- mice upon PTH1-34 administration,whereas the up-regulation of PTH on both Notch1 and Jagged1 gene expression was blocked by the Notch inhibitor DAPT administration. These results thus indicate that PTH administration activates the notch pathway and partially rescues haematopoietic defects in Bmi1-null mice, further suggesting that haematopoietic defects in the animals are not only a result of reduced self-renewal of haematopoietic stem cells but also due to impaired bone marrow microenvironment.

  20. Association of 25-hydroxyvitamin D and parathyroid hormone with the metabolic syndrome in black South African women.

    Science.gov (United States)

    Sotunde, Olusola Funmilayo; Kruger, Herculina Salome; Wright, Hattie H; Havemann-Nel, Lize; Mels, Carina M C; Ravyse, Chrisna; Pieters, Marlien

    2017-04-01

    The relationship between 25 hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH) and metabolic traits appear to differ among ethnicities and may be influenced by obesity. The aim of the study was to examine the association of serum 25(OH)D or PTH with metabolic syndrome (MetS) while controlling for adiposity in black women. Using a cross-sectional study design, 209 urban black women aged ≥ 43 years from the North West Province, South Africa, were included. Multiple regression models were used to explore the relationship between 25(OH)D or PTH and body composition. To explore the association between 25(OH)D or PTH and MetS, a separate variable was created including at least 3 of the MetS criteria, but excluding elevated waist circumference as a diagnostic criterion in a logistic regression model. The majority of the women (69.9%) were overweight or obese and 65.5% of the women had excessive adiposity using the age-specific cut-off points for body fat percentage. All body composition variables were positively associated with PTH, whereas body mass index and waist circumference, but not body fat percentage, had negative associations with 25(OH)D also after adjusting for confounders. Before and after adjusting for age, body fat, habitual physical activity, tobacco use, season of data collection, and estimated glomerular filtration rate, neither 25(OH)D nor PTH showed significant associations with MetS. Although PTH was positively associated and 25(OH)D was negatively associated with adiposity in black women, there was no association between either 25(OH)D or PTH and MetS in this study population, nor did adiposity influence these relationships.

  1. Serum phosphorus adds to value of serum parathyroid hormone for assessment of bone turnover in renal osteodystrophy.

    Science.gov (United States)

    Gentry, Jimmy; Webb, Jonathan; Davenport, Daniel; Malluche, Hartmut H

    2016-07-01

    It is well-established that parathyroid hormone (PTH) correlates with the level of bone turnover in patients with chronic kidney disease stage 5D (CKD-5D). Hyperphosphatemia is a well-established complication of end-stage renal disease and is usually attributed to dietary intake. This study evaluates the relationship between serum phosphorus levels and bone turnover in patients with CKD-5D. 93 patients with CKD-5D from the Kentucky Bone Registry who had sequentially undergone anterior iliac bone biopsies were reviewed. Undecalcified bone sections were qualitatively assessed for turnover and placed into a group with low turnover and a group with non-low (normal/high) turnover. Results of PTH and phosphorus concentrations in blood drawn at the time of biopsies were compared between the groups. PTH and phosphorus levels were significantly higher in the non-low turnover group compared to the low turnover group. Cutoff levels for PTH and phosphorus were tested for predictive power of bone turnover. Both PTH and phosphorus correlated with turnover. Adding serum phosphorus to serum PTH enhanced predictive power of PTH for low turnover. The vast majority of patients with serum phosphorus levels ≥ 6.0 mg/dL had non-low turnover, while the majority of those with low turnover had phosphorus values 6.2 mg/dL) in patients with PTH 4.55 mg/dL ruled out low turnover bone disease. This suggests that not only dietary intake but also bone affects serum phosphorus levels.

  2. Comparison of parathyroid hormone and strontium ranelate in combination with whole-body vibration in a rat model of osteoporosis.

    Science.gov (United States)

    Hoffmann, D B; Sehmisch, S; Hofmann, A M; Eimer, C; Komrakova, M; Saul, D; Wassmann, M; Stürmer, K M; Tezval, M

    2017-01-01

    We investigated the combinatorial effects of whole-body vertical vibration (WBVV) with the primarily osteoanabolic parathyroid hormone (PTH) and the mainly antiresorptive strontium ranelate (SR) in a rat model of osteoporosis. Ovariectomies were performed on 76 three-month-old Sprague-Dawley rats (OVX, n = 76; NON-OVX, n = 12). After 8 weeks, the ovariectomized rats were divided into 6 groups. One group (OVX + PTH) received daily injections of PTH (40 µg/kg body weight/day) for 6 weeks. Another group (OVX + SR) was fed SR-supplemented chow (600 mg/kg body weight/day). Three groups (OVX + VIB, OVX + PTH + VIB, and OVX + SR + VIB) were treated with WBVV twice a day at 70 Hz for 15 min. Two groups (OVX + PTH + VIB, OVX + SR + VIB) were treated additionally with PTH and SR, respectively. The rats were killed at 14 weeks post-ovariectomy. The lumbar vertebrae and femora were removed for biomechanical and morphological assessment. PTH produced statistically significant improvements in biomechanical and structural properties, including bone mineral density (BMD) and trabecular bone quality. In contrast, SR treatment exerted mild effects, with significant effects in cortical thickness only. SR produced no significant improvement in biomechanical properties. WBVV as a single or an adjunctive therapy produced no significant improvements. In conclusion, vibration therapy administered as a single or dual treatment had no significant impact on bones affected by osteoporosis. PTH considerably improved bone quality in osteoporosis cases and is superior to treatment with SR.

  3. Preparation and in vivo evaluation of an orally available enteric-microencapsulated parathyroid hormone (1-34)-deoxycholic acid nanocomplex.

    Science.gov (United States)

    Hwang, Seung Rim; Seo, Dong-Hyun; Byun, Youngro; Park, Jin Woo

    The N-terminal 34-amino-acid peptide fragment of human parathyroid hormone PTH (1-34), is used clinically to treat osteoporosis; however, it is currently administered by a once-daily subcutaneous injection, resulting in poor patient compliance. We have developed enteric microcapsules containing an ionic nanocomplex between PTH (1-34) and lysine-linked deoxycholic acid (LysDOCA) for the oral delivery of PTH (1-34). We measured the particle size of the PTH/LysDOCA complex and assessed its biological activity by determining the cAMP content in MC3T3-E1 cells. We also assessed its permeability across a Caco-2 cell monolayer and the bioavailability of the intrajejunally administered PTH/LysDOCA complex compared with PTH (1-34) in rats. In addition, the antiosteoporotic activity of the PTH/LysDOCA complex, encapsulated in an enteric carrier by coaxial ultrasonic atomization, was evaluated after it was orally administered to ovariectomized (OVX) rats. The formation of an ionic complex between PTH (1-34) and LysDOCA produced nanoparticles of diameter 33.0±3.36 nm, and the bioactivity of the complex was comparable with that of PTH (1-34). The Caco-2 cell permeability and AUClast value of the PTH/LysDOCA (1:10) nanocomplex increased by 2.87- and 16.3-fold, respectively, compared with PTH (1-34) alone. Furthermore, the OVX rats treated with oral PTH/LysDOCA-loaded enteric microcapsules showed an increase in bone mineral density (159%), bone volume fraction (175%), and trabecular number (174%) compared with those in the OVX control group. Therefore, the PTH/LysDOCA nanocomplex oral delivery system is a promising treatment modality for osteoporosis because it improves osteogenesis and trabecular connectivity.

  4. Serum phosphorus reduction in dialysis patients treated with cinacalcet for secondary hyperparathyroidism results mainly from parathyroid hormone reduction

    Science.gov (United States)

    Zitt, Emanuel; Fouque, Denis; Jacobson, Stefan H.; Malberti, Fabio; Ryba, Miroslav; Ureña, Pablo; Rix, Marianne; Dehmel, Bastian; Manamley, Nick; Vervloet, Marc

    2013-01-01

    Background The calcimimetic cinacalcet lowers parathyroid hormone (PTH), calcium (Ca) and phosphorus (P) in dialysis patients with secondary hyperparathyroidism (SHPT). We explored serum P changes in dialysis patients treated with cinacalcet, while controlling for vitamin D sterol and phosphate binder (PB) changes, based on data from the pan-European observational study ECHO. Methods Patients were categorized by serum P change (decreased/unchanged/increased) at 12 months after starting cinacalcet and subcategorized by vitamin D sterol and PB dose changes (decreased/unchanged/increased). The impact of PTH, Ca and P, and vitamin D sterol, PB and cinacalcet doses (absolute values and/or change) was evaluated. Predictors of P change were explored using univariate and multivariate general linear models (GLM) and logistic regression analysis. Results At Month 12, 661 (41%) of 1607 patients had decreased, 61 (4%) unchanged and 400 (25%) increased serum P, while 485 patients had missing data. In 45% of the patients with serum P reduction, vitamin D was either increased or unchanged and P binders decreased or unchanged. PTH was a key predictor of serum P reduction, with an estimated 3% decrease in P per 10% reduction in PTH. Changes in vitamin D sterol and PB doses were not generally significant factors in GLM and regression analyses. Conclusions The serum P reduction observed in a significant proportion of dialysis patients after adding cinacalcet to an existing therapeutic regimen for SHPT appears to result mainly from PTH reduction, rather than from changes in vitamin D sterol or PB doses. Financial support for the ECHO study was provided by Amgen. PMID:23717787

  5. Rapid Decrease of Intact Parathyroid Hormone Could Be a Predictor of Better Response to Cinacalcet in Hemodialysis Patients

    Science.gov (United States)

    Kim, Jwa-Kyung; Kwon, Young Joo; Kim, Soo Wan; Kim, Yeong-Hoon; Park, Cheol Whee; Choi, Kyu Bok; Hwang, Seung Duk

    2013-01-01

    Purpose Cinacalcet is effective for treating refractory secondary hyperparathyroidism (SHPT), but little is known about the response rates and clinical factors influencing the response. Materials and Methods A prospective, single-arm, multi-center study was performed for 24 weeks. Cinacalcet was administered to patients with intact parathyroid hormone (iPTH) level greater than 300 pg/mL. Cinacalcet was started at a dose of 25 mg daily and titrated until 100 mg to achieve a serum iPTH level <300 pg/mL (primary end point). Early response to cinacalcet was defined as a decrease of iPTH more than 50% within one month. Results Fifty-seven patients were examined. Based on the magnitude of iPTH decrease, patients were divided into responder (n=47, 82.5%) and non-responder (n=10, 17.5%) groups. Among the responders, 38 achieved the primary end point, whereas 9 patients showed a reduction in serum iPTH of 30% or more, but did not reach the primary end point. Compared to non-responders, responders were significantly older (p=0.026), female (p=0.041), and diabetics (p<0.001). Additionally, early response was observed more frequently in the responders (30/47, 63.8%), of whom the majority (27/30, 90.0%) achieved the primary end point. Multivariate analysis showed that lower baseline iPTH levels [odds ratio (OR) 0.96, 95% confidence interval (CI) 0.93-0.99], the presence of diabetes (OR 46.45, CI 1.92-1125.6) and early response (OR 21.54, CI 2.94-157.7) were significant clinical factors affecting achievement of iPTH target. Conclusion Cinacalcet was effective in most hemodialysis patients with refractory SHPT. The presence of an early response was closely associated with the achievement of target levels of iPTH. PMID:23364981

  6. Serum vitamin D, intact parathyroid hormone, and Fetuin A concentrations were associated with geriatric sarcopenia and cardiac hypertrophy

    Science.gov (United States)

    Chang, Wei-Ting; Wu, Chih-Hsing; Hsu, Ling-Wei; Chen, Po-Wei; Yu, Jia-Rong; Chang, Chin-Sung; Tsai, Wei-Chuan; Liu, Ping-Yen

    2017-01-01

    With aging, intact parathyroid hormone (iPTH) increases. It plays a crucial role in left ventricular hypertrophy (LVH). Also, 25-hydroxy vitamin D (Vit-D) and iPTH have been observed to be determinants of muscle wasting known as sarcopenia. Fetuin A (FetA), a systemic calcification inhibitor, involves in the development of diastolic heart failure. Hence, we hypothesized that the interplay among FetA, Vit-D and iPTH may contribute to sarcopenic LVH among the elders. We analyzed a database from the Tianliao Old People study with 541 elders (≥65 years) in a Taiwan’s suburban community. After excluding patients with renal function impairment, 120/449 (26.7%) patients were diagnosed with sarcopenia. Sarcopenic patients had lower serum Vit-D levels but higher FetA as well as iPTH. Notably, sarcopenic patients with LVH had significantly lower FetA and higher iPTH levels. In multivariate logistic regression analysis, only the increase in iPTH was independently associated with sarcopenic LVH (Odds ratio: 1.05; confidence interval: 1.03–1.08, p = 0.005). Using iPTH >52.3 ng/l as a cutoff point, the sensitivity and specificity was 66% and 84%, respectively. In conclusion, FetA, Vit-D, and iPTH levels were all associated with sarcopenia in this geriatric population. Among them, iPTH specifically indicates patients with sarcopenic LVH. PMID:28112206

  7. Association of Serum 25-Hydroxyvitamin D and Parathyroid Hormone With Hypertension in Middle-Aged and Older Korean Adults.

    Science.gov (United States)

    Kim, Dasom; Kim, Jihye

    2016-01-01

    Previous studies have suggested that serum 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone (PTH) levels are associated with hypertension. However, the associations have yet to be studied in Koreans. This study explored the relationship among serum 25(OH)D, PTH concentrations, and the presence of hypertension in middle-aged and older Korean adults using the most recent nationally representative survey data. A population-based, cross-sectional study was conducted with data collected from 5,260 Korean adults (aged ≥50 years) who participated in the 2010 and 2011 Korean National Health and Nutrition Examination Surveys. Hypertension was defined as a systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg, or current use of antihypertensive medication. The prevalence of hypertension significantly increased according to the quartiles of serum PTH levels (P hypertension were significantly higher among participants in the highest quartile than among those in the lowest quartile of serum PTH level, after adjusting for potential confounders (OR = 1.26, 95% confidence interval: 1.02-1.56, P = 0.03). The adjusted ORs for hypertension tended to decrease across the quartiles of serum 25(OH)D level, but the associations were not significant. Serum 25(OH)D was not associated with the presence of hypertension, whereas serum PTH was positively associated, suggesting that serum PTH may be an independent risk factor for hypertension in middle-aged and older Korean adults. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Vitamin D Status and Its Association with Parathyroid Hormone Concentration in Brazilians

    Science.gov (United States)

    Martins, Juliana Sálvio; Palhares, Magda de Oliveira; Teixeira, Octávio Cury Mayrink

    2017-01-01

    Vitamins are organic compounds that play a vital role in the control of metabolic processes. The D complex is considered a nutrient with a hormonal action and has an important participation in the constant maintenance of serum and extracellular calcium levels. The present study aims to analyze the results of 105.588 vitamin D (25(OH)D) measurements obtained from a database from a clinical analysis laboratory in Brazil, between the years of 2011 and 2013. The values of 25(OH)D were correlated with age, gender, and values of PTH. The results show a high prevalence of values of 25(OH)D considered inadequate, characterizing 76% of the studied population. It was observed that 26,5% of the individuals had deficiency and 49,5% had insufficiency of vitamin D. It was also shown that there was a negative correlation between 25(OH)D and PTH levels. In conclusion, this study is in accordance with others that show a high prevalence of vitamin D deficiency in different populations and alerts us for the importance of these measurements and analysis in clinical practice and as a base for diagnosis and treatment of hypovitaminosis.

  9. Parathyroid hormone receptor recycling: role of receptor dephosphorylation and beta-arrestin.

    Science.gov (United States)

    Chauvin, Stephanie; Bencsik, Margaret; Bambino, Tom; Nissenson, Robert A

    2002-12-01

    The recovery of PTH receptor (PTHR) function after acute homologous receptor desensitization and down-regulation in bone and kidney cells has been attributed to receptor recycling. To determine the role of receptor dephosphorylation in PTHR recycling, we performed morphological and functional assays on human embryonic kidney 293 cells stably expressing wild-type (wt) or mutant PTHRs. Confocal microscopy and ligand binding assays revealed that the wt PTHR is rapidly recycled back to the plasma membrane after removal of the agonist. Receptors that were engineered to either lack the sites of phosphorylation or to resemble constitutively phosphorylated receptors were able to recycle back to the plasma membrane with the same kinetics as the wt PTHR. The PTHR was found to be dephosphorylated by an enzyme apparently distinct from protein phosphatases 1 or 2A. The PTHR and beta-arrestin-2-green fluorescent protein (GFP) were found to stably colocalize during PTHR internalization, whereas after agonist removal and during receptor recycling, the colocalization slowly disappeared. Experiments using phosphorylation-deficient PTHRs and a dominant-negative form of beta-arrestin showed that beta-arrestin does not regulate the efficiency of PTHR recycling. These studies indicate that, unlike many G protein-coupled receptors, PTHR recycling does not require receptor dephosphorylation or its dissociation from beta-arrestin.

  10. Research progress on parathyroid hormone and related diseases%甲状旁腺激素与相关疾病的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘玲; 陈庆龙; 段姚尧; 陈莉; 毛立群

    2013-01-01

    甲状旁腺激素(parathyroid hormone,PTH)是由甲状旁腺主细胞合成、分泌的.由84个氨基酸组成的单链多肽,是调节钙、磷代谢、维持机体钙平衡的主要激素,发挥着升高血钙,降低血磷和酸化血液等生物学效应,对维持细胞外液的内环境恒定起着极为重要的作用.目前PTH在生物学及医学方面的作用越来越受到人们的关注.本文就PTH的基本结构及其与骨质疏松、肾脏疾病、心血管疾病等关系的研究作一综述.%Parathyroid hormone (PTH) is secreted by the chief cells of the parathyroid glands as a polypeptide containing 84 amino acids,which is the important hormone to regulate the metabolism of calcium and phosphorus and maintain the balance of calcium in body.PTH acts to increase the concentration of calcium and decrease the concentration of phosphorus,acidificate the blood.In addition,it also plays an important role in maintaining the inner environment of extracellular fluid.PTH have been received more and more attention in the fields of biology and medicine.This paper reviewed the structure of PTH and the relationships of PHT between osteoporosis,renal disease,cardiovascular disease and so on.

  11. A novel, mild, specific and indirect maleimido-based radioiodolabeling method; Radiolabeling of analogs derived from parathyroid hormone (PTH) and PTH-related protein (PTHrP)

    Energy Technology Data Exchange (ETDEWEB)

    Chorev, M.; Caulfield, M.P.; Roubini, E.; McKee, R.L.; Gibbons, S.W.; Chih-Tai Leu; Levy, J.J.; Rosenblatt, M.

    1992-01-01

    In an effort to design a mild, non-oxidative and site-specific means of radiolabeling bioactive molecules we have employed maleimido-sulfhydryl chemistry to produce bioactive hormone radioligands. We have prepared two novel radioiodolabeled reagents, 3'-maleimidopropanoyl-3-[sup 125]I-tyramide and its retro analog, N-maleoyl-N'-3-(4-hydroxy-3-[sup 125]I-phenyl)propanoyl ethylenediamide, by either oxidative radioiodination of the precursors or radiolabeling of the phenolic component prior to its incorporation into the radiolabeling reagents. These reagents were then used to radiolabel analogs of parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) in an efficient way, yielding reaction mixtures which were easily purified. The radioligands obtained are stable upon storage and bind in an reversible manner to a single population of binding sites displaying affinity in the low nanomolar range. The potencies of these analogs are comparable to the non-modified PTH and PTH rP analogs. This study demonstrates the utility of the novel maleimido-based indirect radioiodination approach and highlights some of its advantages over either direct oxidative procedures or acylation using the Bolton-Hunter reagent. (au).

  12. Is intraoperative parathyroid hormone monitoring necessary with ipsilateral parathyroid gland visualization during anticipated unilateral exploration for primary hyperparathyroidism: a two-institution analysis of more than 2,000 patients.

    Science.gov (United States)

    Rajaei, Mohammad H; Oltmann, Sarah C; Adkisson, Cameron D; Elfenbein, Dawn M; Chen, Herbert; Carty, Sally E; McCoy, Kelly L

    2014-10-01

    Intraoperative parathyroid hormone (ioPTH) monitoring during focused parathyroidectomy for primary hyperparathyroidism (PHPT) is used commonly, but some argue that ioPTH adds little if a normal ipsilateral parathyroid gland (IPG) is visualized. This hypothesis was tested for validity. The prospective databases of consecutive patients with PHPT undergoing initial parathyroidectomy with ioPTH at two academic institutions were queried. Patients with ectopic adenoma, familial PHPT, previous parathyroidectomy, planned bilateral exploration, or <6 months follow-up were excluded. Persistence was defined as hypercalcemia at <6 months. From 1998 to 2013, 2,162 patients met inclusion criteria, and the rate of persistent disease was 1.5%. Most (n = 1,353; 63.5%) underwent single-gland resection with ioPTH and no IPG visualization, with 1% persistence. Among patients with a single adenoma resected and a normal IPG visualized, 15.2% had contralateral disease. Resection based on IPG appearance alone would have resulted in 13% persistent disease. In PHPT, the cure rate for initial unilateral exploration guided by ioPTH is 98.5% versus a predicted rate of 87% when decision making is based on IPG appearance alone. Routine visualization of IPG is not necessary during exploration for suspected single adenoma guided by ioPTH. ioPTH remains useful in optimizing outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Serum and seminal plasma hormonal profiles of infertile Nigerian male.

    Science.gov (United States)

    Akinloye, O; Arowojolu, A O; Shittu, O B; Abbiyesuku, F M; Adejuwon, C A; Osotimehin, B

    2006-12-01

    Male infertility constitutes a worldwide problem, especially in Nigeria where most men do not readily accept that they may contribute to the couple's infertility. In order to assess hormonal disturbances in the male infertility we compared male reproductive hormonal levels in human serum and seminal plasma and evaluated the hypothalamic-pituitary-testicular-axis in infertile Nigerian males. The biophysical semen parameters were assessed by W.H.O. standard manual method. Serum and seminal plasma male reproductive hormones (Leutinizing hormones, Follicular stimulating hormone, Prolactin and Testosterone) were measured by Enzyme Immunoassay (EIA) technique of W.H.O. in sixty (60) infertile adult male Nigerians (Oligospermic; n = 40 and azoopermic; n = 20) and forty controls of proven fertility (Normospermic subjects; n = 40). The results show that the serum concentrations of gonadotropins (LH and FSH) were significantly higher (Pinfertile subjects than controls. Patterns of serum prolactin levels were similar. The values of gonadotropins in serum were significantly higher (Pseminal plasma. Seminal plasma testosterone in infertile subjects was significantly higher (Phormonal level and seminal plasma hormonal level in all the groups (Pinfertility in Nigerians is characterized by hyperprolactinaemia, raised serum gonadotropins (LH, FSH), and raised seminal plasma testosterone. Hormonal profiles in serum and seminal plasma were not significantly correlated, and hence cannot be used as exclusive alternative in male infertility investigations. The observed spermogram in spite of significant elevation of seminal plasma testosterone in infertile males investigated suggests Sertoli cells malfunction.

  14. The N- and C-terminal domains of parathyroid hormone-related protein affect differently the osteogenic and adipogenic potential of human mesenchymal stem cells

    OpenAIRE

    Casado-Díaz, Antonio; Santiago-Mora, Raquel; Quesada, José Manuel

    2009-01-01

    Parathyroid hormone-related protein (PTHrP) is synthesized by diverse tissues, and its processing produces several fragments, each with apparently distinct autocrine and paracrine bioactivities. In bone, PTHrP appears to modulate bone formation in part through promoting osteoblast differentiation. The putative effect of PTH-like and PTH-unrelated fragments of PTHrP on human mesenchymal stem cell (MSCs) is not well known. Human MSCs were treated with PTHrP (1-36) or PTHrP (107-139) or both (ea...

  15. Denosumab is Effective for Controlling Serum Calcium Levels in Patients with Humoral Hypercalcemia of Malignancy Syndrome: A Case Report on Parathyroid Hormone-related Protein-producing Cholangiocarcinoma.

    Science.gov (United States)

    Ashihara, Norihiro; Nakajima, Koji; Nakamura, Yoshiyuki; Kobayashi, Mutsuhiro; Shirahata, Kumiko; Maeda, Chika; Uehara, Takeshi; Gomi, Daisuke; Ito, Nobuo

    Hypercalcemia resulting in the elevation of serum parathyroid hormone-related protein (PTHrP) and suppression of serum PTH was observed in a patient with advanced cholangiocarcinoma (CCC) and multiple lymph node metastases. We confirmed humoral hypercalcemia of malignancy based on PTHrP-producing CCC. Chemotherapy with gemcitabine and cisplatin could not control the patient's serum PTHrP levels and the patient was affected with bisphosphonate-refractory hypercalcemia. We administered a single dose of denosumab, an anti-receptor activator of nuclear factor-kappaB ligand monoclonal antibody, and the patient's serum calcium levels remained close to the normal range for approximately 3 weeks without additional treatment.

  16. Studies on the nature of plasma growth hormone

    Science.gov (United States)

    Ellis, S.; Grindeland, R. E.; Reilly, T. J.; Yang, S. H.

    1976-01-01

    The paper presents further evidence for the existence of two discrete forms of growth hormone in human plasma, one which is detectable by both radioimmunoassay and bioassay and is immunoreactive, and the other, termed 'bioactive', which is detected by tibial bioassay but shows little reactivity with currently available antisera to pituitary growth hormone. The same division of immunoactive and bioactive growth hormone occurs in rats, though with less disparity. Tests on rats indicated that the bioactive hormone is preferentially released into jugular vein plasma and that plasma concentrations of the bioactive hormone can be enhanced by insulin administration. The bioactive hormone was detectable by tibial assays in Cohn fractions IV, IV-1, and IV-4, and could be concentrated about 40-fold by fractionation with (NaPO3)6 and (NH4)2SO4.

  17. β-catenin regulates parathyroid hormone/parathyroid hormone-related protein receptor signals and chondrocyte hypertrophy through binding to the intracellular C-terminal region of the receptor.

    Science.gov (United States)

    Yano, Fumiko; Saito, Taku; Ogata, Naoshi; Yamazawa, Toshiko; Iino, Masamitsu; Chung, Ung-il; Kawaguchi, Hiroshi

    2013-02-01

    To investigate the underlying mechanisms of action and functional relevance of β-catenin in chondrocytes, by examining the role of β-catenin as a novel protein that interacts with the intracellular C-terminal portion of the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor type 1 (PTHR-1). The β-catenin-PTHR-1 binding region was determined with deletion and mutagenesis analyses of the PTHR1 C-terminus, using a mammalian two-hybrid assay. Physical interactions between these 2 molecules were examined with an in situ proximity ligation assay and immunostaining. To assess the effects of gain- and loss-of-function of β-catenin, transfection experiments were performed to induce overexpression of the constitutively active form of β-catenin (ca-β-catenin) and to block β-catenin activity with small interfering RNA, in cells cotransfected with either wild-type PTHR1 or mutant forms (lacking binding to β-catenin). Activation of the G protein α subunits G(αs) and G(αq) in the cells was determined by measurement of the intracellular cAMP accumulation and intracellular Ca(2+) concentration, while activation of canonical Wnt pathways was assessed using a TOPflash reporter assay. In differentiated chondrocytes, β-catenin physically interacted and colocalized with the cell membrane-specific region of PTHR-1 (584-589). Binding of β-catenin to PTHR-1 caused suppression of the G(αs)/cAMP pathway and enhancement of the G(αq)/Ca(2+) pathway, without affecting the canonical Wnt pathway. Inhibition of Col10a1 messenger RNA (mRNA) expression by PTH was restored by overexpression of ca-β-catenin, even after blockade of the canonical Wnt pathway, and Col10a1 mRNA expression was further decreased by knockout of β-catenin (via the Cre recombinase) in chondrocytes from β-catenin-floxed mice. Mutagenesis analyses to block the binding of β-catenin to PTHR1 caused an inhibition of chondrocyte hypertrophy markers. β-catenin binds to the PTHR-1 C-tail and switches

  18. Nuclear localization of the type 1 parathyroid hormone/parathyroid hormone-related peptide receptor in MC3T3-E1 cells: association with serum-induced cell proliferation.

    Science.gov (United States)

    Watson, P H; Fraher, L J; Natale, B V; Kisiel, M; Hendy, G N; Hodsman, A B

    2000-03-01

    We have recently demonstrated that the receptor for parathyroid hormone (PTH) and PTH-related peptide (PTHrP), PTHR, can be localized to the nucleus of cells within the liver, kidney, uterus, gut, and ovary of the rat. We set out to determine the localization of the PTHR in cultured osteoblast-like cells. MC3T3-E1, ROS 17/2.8, UMR106, and SaOS-2 cells were cultured in alpha-modified eagle medium containing 15% fetal calf serum under standard conditions. Untreated cells were grown on glass coverslips to 75-95% confluence and fixed in 1% paraformaldehyde. For experiments designed to examine cells synchronized by serum starvation, cells were grown on glass coverslips, starved of serum for 46 h, and then fixed at 2-h intervals for a total of 26 h after the addition of serum to the medium. Parallel sets of cells were pulsed with [3H]thymidine to track the DNA duplication interval. The PTHR was localized by immunocytochemistry using a primary antibody raised against a portion of the N-terminal extracellular domain of the PTHR. The results presented herein indicate that the PTHR attains a nuclear localization in each cell line examined. In UMR106 cells, PTHR immunoreactivity was restricted to the nucleolus. After cell synchronization, MC3T3-E1 cells double approximately 24 h after the addition of serum. Immunocytochemistry for the PTHR in these cells showed that the receptor staining is initially diffuse for the first 6 h, then becomes more perinuclear in distribution by 12-16 h. Nuclear localization of the receptor is achieved approximately 16-20 h after the addition of serum and remains there throughout the mitotic phase. Intense staining of mitotic and postmitotic cells was observed. No change in cell proliferation kinetics was observed in MC3T3-E1 cells cultured in the presence of 25 nM PTH(1-34). These data suggest an important role for the PTHR in the nucleus of MC3T3-E1 cells at the time of DNA synthesis and mitosis.

  19. Summer/winter differences in the serum 25-hydroxyvitamin D3 and parathyroid hormone levels of Japanese women

    Science.gov (United States)

    Nakamura, K.; Nashimoto, Mitsue; Yamamoto, Masaharu

    Serum 25-hydroxyvitamin D3 [25(OH)D3] is produced in the skin in response to exposure to ultraviolet radiation, and is a good indicator of vitamin D nutritional status. The aim of this study was to determine summer/winter differences in serum 25(OH)D3 and parathyroid hormone (PTH) in Japanese women and how the summer and winter values are related. The subjects were 122 healthy Japanese women aged 45-81 years (average age: 65.7 years). They were medically examined twice, in September 1997 and February 1999. Serum 25(OH)D3 and intact PTH were determined by high-performance liquid chromatography and a two-site immunoradiometric assay respectively. Lifestyle information was obtained through an interview. The seasonal differences (winter minus summer) in 25(OH)D3 [Δ25(OH)D3] and intact PTH concentrations were -18.8 nmol/l (SD 19.2, P<0.0001) and 0.98pmol/l (SD 1.02, P<0.0001) respectively. The correlation coefficient between summer (x) and winter (y) 25(OH)D3 levels was 0.462 (P<0.0001), with a linearly fitted line of y=0.42x+26.4. This relationship was interpreted as subjects with higher summer 25(OH)D3 values having greater reductions in winter 25(OH)D3 concentrations. There were inter-individual differences in Δ25(OH)D3, although the summer and winter 25(OH)D3 concentrations were well-correlated. Since Δ25(OH)D3 was not associated with any of the lifestyle factors, seasonal differences in the 25(OH)D3 concentrations of an individual appeared to reflect her ability to produce 25(OH)D3 photochemically in the skin. Sun bathing would be a less effective means of attaining adequate vitamin D nutritional status in a person with a small seasonal difference in 25(OH)D3, i.e., one with a low 25(OH)D3 level.

  20. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    Science.gov (United States)

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action

  1. Dexamethasone downregulates the expression of parathyroid hormone-related protein (PTHrP) in mesenchymal stem cells.

    Science.gov (United States)

    Ahlström, Mikael; Pekkinen, Minna; Lamberg-Allardt, Christel

    2009-02-01

    Parathyroid hormone-related protein (PTHrP) has been shown to have anabolic effects in women with postmenopausal osteoporosis. PTHrP promotes the recruitment of osteogenic cells and prevents apoptotic death of osteoblasts and osteocytes. The receptor responsible for the effects of PTHrP is the common PTH/PTHrP receptor (PTH1R). Glucocorticoids (GC) are commonly used as drugs to treat inflammatory diseases. Long-term GC treatments are often associated with bone loss which can lead to GC-induced osteoporosis. The aim of this work was to study the effects of the glucocorticoid dexamethasone (Dex) on the expression of PTHrP and PTH1R in adult human mesenchymal stem cells, the progenitor cells of osteoblasts. Adult human mesenchymal stem cells (hMSC) were cultured and differentiated by standard methods. The expression of PTHrP and PTH1R mRNA was assayed by real-time qPCR. The PTHrP release into the culture media was measured by an immunoradiometric assay. Treatment with Dex (10 nM) resulted in an 80% drop in the PTHrP release within 6 h. A 24 h Dex treatment also reduced the expression of PTHrP mRNA by up to 90%. The expression of PTH1R receptor mRNA was simultaneously increased up to 20-fold by 10 nM Dex. The effects of Dex on PTHrP and PTH1R were dose-dependent and experiments with the GC-receptor antagonist mifepristone showed an involvement of GC-receptors in these effects. In addition to the Dex-induced effects on PTHrP and PTH1R, Dex also increased mineralization and the expression of the osteoblast markers Runx2 and alkaline phosphatase. In our studies, we show that dexamethasone decreases the expression of PTHrP and increases the expression of the PTH1R receptor. This could have an impact on PTHrP-mediated anabolic actions on bone and could also affect the responsiveness of circulating PTH. The results indicate that glucocorticoids affect the signalling pathway of PTHrP by regulating both PTHrP and PTH1R expression and these mechanisms could be involved in

  2. AN OPEN-LABEL EXTENSION STUDY OF PARATHYROID HORMONE RHPTH(1-84) IN ADULTS WITH HYPOPARATHYROIDISM.

    Science.gov (United States)

    Lakatos, Peter; Bajnok, Laszlo; Lagast, Hjalmar; Valkusz, Zsuzsanna

    2016-05-01

    Hypoparathyroidism is characterized by inadequate parathyroid hormone (PTH), resulting in hypocalcemia, hyperphosphatemia, and bone abnormalities. Adults with hypoparathyroidism treated with recombinant human PTH, rhPTH(1-84), in the 24-week, phase III REPLACE study maintained serum calcium despite reductions in oral calcium and active vitamin D. This study assessed the long-term efficacy and safety of rhPTH(1-84) for hypoparathyroidism. This was a 24-week, open-label, flexible-dose extension study of REPLACE (REPEAT) conducted in 3 outpatient centers in Hungary. Patients who previously completed or enrolled in REPLACE received 50 μg/day rhPTH(1-84), escalated to 75 and then to 100 μg/day, if needed, to reduce active vitamin D and oral calcium. The primary endpoint was ≥50% reduction in oral calcium (or ≤500 mg/day) and active vitamin D (or calcitriol ≤0.25 μg/day or alfacalcidol ≤0.50 μg/day) with normocalcemia. Twenty-four patients (n = 16 previously treated with rhPTH[1-84]; n = 8 rhPTH[1-84]-naïve) were enrolled and completed the study. At Week 24, 75% of patients (95% confidence interval [CI], 53.3-90.2%) achieved the study endpoint; 58% eliminated oral calcium and active vitamin D. Urinary calcium, serum phosphate, and calcium × phosphate (Ca × P) product decreased by Week 24. Mean serum bone turnover markers increased with rhPTH(1-84). Treatment-emergent adverse events (TEAEs) were reported by 92% of patients. No serious adverse events (AEs) occurred. This study used a simplified treatment algorithm intended to better mimic typical clinical practice and demonstrated the extended efficacy and safety of rhPTH(1-84) in patients with hypoparathyroidism and confirmed the REPLACE findings. Sustained rhPTH(1-84) efficacy up to 48 weeks was observed despite treatment interruption between studies.

  3. Parathyroid hormone versus bisphosphonate treatment on bone mineral density in osteoporosis therapy: a meta-analysis of randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Longxiang Shen

    Full Text Available BACKGROUND: Bisphosphonates and parathyroid hormone (PTH represent the antiresorptive and anabolic classes of drugs for osteoporosis treatment. Bone mineral density (BMD is an essential parameter for the evaluation of anti-osteoporotic drugs. The aim of this study was to evaluate the effects of PTH versus bisphosphonates on BMD for the treatment of osteoporosis. METHODS/PRINCIPAL FINDINGS: We performed a literature search to identify studies that investigated the effects of PTH versus bisphosphonates treatment on BMD. A total of 7 articles were included in this study, representing data on 944 subjects. The pooled data showed that the percent change of increased BMD in the spine is higher with PTH compared to bisphosphonates (WMD = 5.90, 95% CI: 3.69-8.10, p<0.01,. In the hip, high dose (40 µg PTH (1-34 showed significantly higher increments of BMD compared to alendronate (femoral neck: WMD = 5.67, 95% CI: 3.47-7.87, p<0.01; total hip: WMD = 2.40, 95%CI: 0.49-4.31, p<0.05. PTH treatment has yielded significantly higher increments than bisphosphonates with a duration of over 12 months (femoral neck: WMD = 5.67, 95% CI: 3.47-7.86, p<0.01; total hip: WMD = 2.40, 95% CI: 0.49-4.31, P<0.05 and significantly lower increments at 12 months (femoral neck: WMD = -1.05, 95% CI: -2.26-0.16, p<0.01; total hip: WMD: -1.69, 95% CI: -3.05-0.34, p<0.05. In the distal radius, a reduction in BMD was significant between PTH and alendronate treatment. (WMD = -3.68, 95% CI: -5.57-1.79, p<0.01. DISCUSSION: Our results demonstrated that PTH significantly increased lumbar spine BMD as compared to treatment with bisphosphonates and PTH treatment induced duration- and dose-dependent increases in hip BMD as compared to bisphosphonates treatment. This study has also disclosed that for the distal radius, BMD was significantly lower from PTH treatment than alendronate treatment.

  4. Parathyroid hormone inhibition of Na{sup +}/H{sup +} exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves, E-mail: camilab@icb.usp.br; Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na{sup +}/H{sup +} exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the −61 to −42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. - Highlights: • PTH regulation of Nhe3 promoter depends on EGR1 binding. • EGR1, PKA and JAK/STAT are involved in PTH inhibition of the Nhe3 promoter. • PTH alters expression of EGR1 and Sp3. • PTH inhibits the Nhe3 promoter by regulating PKA and JAK/STAT signaling.

  5. Update on the efficacy, safety, and adherence to treatment of full length parathyroid hormone, PTH (1-84, in the treatment of postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Luca Pietrogrande

    2009-11-01

    Full Text Available Luca PietrograndeDipartimento di Medicina Chirurgia e Odontoiatria Polo San Paolo, Università degli Studi di Milano, Milan, ItalyAbstract: Full length (1-84 parathyroid hormone (PTH was introduced in Europe as a treatment for postmenopausal osteoporosis in 2006. The efficacy of PTH (1-84 in the prevention of vertebral fractures is very high, and is similar to that of teriparatide. Its action in the prevention of femoral fractures has yet to be fully demonstrated, but the incidence of such fractures in trials was very low, and a decrease in nonvertebral fractures was seen in high-risk patients. The effect on bone mineral density (BMD was clearly demonstrated in the spine and also in the hip. The effects on BMD were evident and increased progressively with treatment until 36 months. After its discontinuation there was a clear decrease in BMD if no antiresorptive treatment was initiated. Increases in bone volumetric density and bone volume in trabecular sites were also reported. Moreover, a bone volume increase was detected in cortical sites. Hypercalcemia and hypercalciuria are frequent consequences of PTH treatment, but rarely have clinical effects and are usually well controlled by reducing calcium and vitamin D supplementation.Keywords: PTH (1-84, full-length parathyroid hormone, osteoporosis treatment

  6. Expression of parathyroid-specific genes in vascular endothelial progenitors of normal and tumoral parathyroid glands.

    Science.gov (United States)

    Corbetta, Sabrina; Belicchi, Marzia; Pisati, Federica; Meregalli, Mirella; Eller-Vainicher, Cristina; Vicentini, Leonardo; Beck-Peccoz, Paolo; Spada, Anna; Torrente, Yvan

    2009-09-01

    Parathyroid tissue is able to spontaneously induce angiogenesis, proliferate, and secrete parathyroid hormone when autotransplanted in patients undergoing total parathyroidectomy. Angiogenesis is also involved in parathyroid tumorigenesis. Here we investigated the anatomical and molecular relationship between endothelial and parathyroid cells within human parathyroid glands. Immunohistochemistry for CD34 antigen identified two subpopulations in normal and tumoral parathyroid glands: one constituted by cells lining small vessels that displayed endothelial antigens (factor VIII, isolectin, laminin, CD146) and the other constituted of single cells scattered throughout the parenchyma that did not express endothelial markers. These parathyroid-derived CD34(+) cells were negative for the hematopoietic and mesenchymal markers CD45, Thy-1/CD90, CD105, and CD117/c-kit; however, a subset of CD34(+) cells co-expressed the parathyroid specific genes glial cell missing B, parathyroid hormone, and calcium sensing receptor. When cultured, these cells released significant amount of parathyroid hormone. Parathyroid-derived CD34(+) cells, but not CD34(-) cells, proliferated slowly and differentiated into mature endothelial cells. CD34(+) cells from parathyroid tumors differed from those derived from normal parathyroid glands as: 1) they were more abundant and mainly scattered throughout the parenchyma; 2) they rarely co-expressed CD146; and 3) a fraction co-expressed nestin. In conclusion, we identified cells expressing endothelial and parathyroid markers in human adult parathyroid glands. These parathyroid/endothelial cells were more abundant and less committed in parathyroid tumors compared with normal glands, showing features of endothelial progenitors, which suggests that they might be involved in parathyroid tumorigenesis.

  7. Parathyroid Hormone-Related Peptide (1-36 Enhances Beta Cell Regeneration and Increases Beta Cell Mass in a Mouse Model of Partial Pancreatectomy.

    Directory of Open Access Journals (Sweden)

    Anaïs Mozar

    Full Text Available Finding ways to stimulate the regeneration of endogenous pancreatic beta cells is an important goal in the treatment of diabetes. Parathyroid hormone-related protein (PTHrP, the full-length (1-139 and amino-terminal (1-36 peptides, enhance beta cell function, proliferation, and survival. Therefore, we hypothesize that PTHrP(1-36 has the potential to regenerate endogenous beta cells.The partial pancreatectomy (PPx mouse model of beta cell injury was used to test this hypothesis. Male Balb/c mice underwent either sham-operation or PPx, and were subsequently injected with PTHrP(1-36 (160μg/kg or vehicle (veh, for 7, 30, or 90 days. The four groups of mice, sham-veh, sham-PTHrP, PPx-veh, and PPx-PTHrP were assessed for PTHrP and receptor expression, and glucose and beta cell homeostasis.PTHrP-receptor, but not the ligand, was significantly up-regulated in islets from mice that underwent PPx compared to sham-operated mice. This suggests that exogenous PTHrP could further enhance beta cell regeneration after PPx. PTHrP did not significantly affect body weight, blood glucose, plasma insulin, or insulin sensitivity, in either sham or PPx mice. Glucose tolerance improved in the PPx-PTHrP versus PPx-veh mice only in the early stages of treatment. As hypothesized, there was a significant increase in beta cell proliferation in PPx-PTHrP mice at days 7 and 30; however, this was normalized by day 90, compared to PPx-veh mice. Enhanced beta cell proliferation translated to a marked increase in beta cell mass at day 90, in PPx-PTHrP versus PPx-veh mice.PTHrP(1-36 significantly enhances beta cell regeneration through increased beta cell proliferation and beta cell mass after PPx. Future studies will determine the potential of PTHrP to enhance functional beta cell mass in the setting of diabetes.

  8. The role of menin in parathyroid tumorigenesis.

    LENUS (Irish Health Repository)

    Davenport, Colin

    2009-01-01

    Primary hyperparathyroidism is a common disorder that involves the pathological enlargement of one or more parathyroid glands resulting in excessive production of parathyroid hormone (PTH). The exact pathogenesis of this disease remains to be fully understood. In recent years interest has focussed on the interaction between menin protein and the transforming growth factor (TGF)-beta\\/Smad signalling pathway. In vitro experimentation has demonstrated that the presence of menin is required for TGF-beta to effectively inhibit parathyroid cell proliferation and PTH production. This observation correlates with the almost universal occurrence of parathyroid tumors accompanying the inactivation of menin in multiple endocrine neoplasia Type 1 (MEN1) syndrome and the high rate of somatic menin gene mutations seen in sporadic parathyroid adenomas. This chapter aims to review the role of menin in primary hyperparathyroidism and parathyroid hormone-regulation, including the influences of MEN1 gene mutations on parathyroid cell proliferation, differentiation and tumorigenesis.

  9. Novel parathyroid hormone (PTH) antagonists that bind to the juxtamembrane portion of the PTH/PTH-related protein receptor.

    Science.gov (United States)

    Shimizu, Naoto; Dean, Thomas; Tsang, Janet C; Khatri, Ashok; Potts, John T; Gardella, Thomas J

    2005-01-21

    Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J

  10. Stability of plasma metabolites and hormones in parturient dairy cows.

    Science.gov (United States)

    Athanasiou, V N; Phillips, R W

    1978-06-01

    Metabolic changes that accompany the transition from parturition to lactation in dairy cows were studied. To measure these changes, plasma samples were obtained from 20 mature Holstein-Friesian dairy cows 10 days before through 10 days after parturition. They were analyzed for glucose, free fatty acids (FFA), lactic acid, ketone bodies, glucocorticoids, insulin, and growth hormone concentration. Lactic acid and glucocorticoids remained constant during the experiment, except for the day of parturition itself. In the prepartum period, changes were not detected in concentrations of hormones (glucocorticoids, insulin, and growth hormone), whereas, plasma metabolites began changing prior to parturition. Most evident were prepartum increased in FFA, ketones, and glucose. Postpartum plasma glucose concentration rapidly returned to prepartum concentrations. Plasma concentration of FFA and ketone bodies remained elevated for longer periods.

  11. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, Thomas J.; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 {angstrom}, and diffracted to 2.0 {angstrom} resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  12. JTT-305, an orally active calcium-sensing receptor antagonist, stimulates transient parathyroid hormone release and bone formation in ovariectomized rats.

    Science.gov (United States)

    Kimura, Shuichi; Nakagawa, Takashi; Matsuo, Yushi; Ishida, Yuji; Okamoto, Yoshihisa; Hayashi, Mikio

    2011-10-01

    Intermittent administration of parathyroid hormone (PTH) has a potent anabolic effect on bone in humans and animals. Calcium-sensing receptor (CaSR) antagonists stimulate endogenous PTH secretion through CaSR on the surface of parathyroid cells and thereby may be anabolic agents for osteoporosis. JTT-305 is a potent oral short-acting CaSR antagonist and transiently stimulates endogenous PTH secretion. The objective of the present study was to investigate the effects of JTT-305 on PTH secretion and bone in ovariectomized rats. Female rats, immediately after ovariectomy (OVX), were orally administered vehicle or JTT-305 (0.3, 1, or 3 mg/kg) for 12 weeks. The serum PTH concentrations were transiently elevated with increasing doses of JTT-305. In the proximal tibia, JTT-305 prevented OVX-induced decreases in both the cancellous and total bone mineral density (BMD) except for the 0.3mg/kg dose. At the 3mg/kg dose, JTT-305 increased the mineralizing surface and bone formation rate in histomorphometry. The efficacy of JTT-305 at the 3mg/kg dose on the BMD corresponded to that of exogenous rat PTH1-84 injection at doses between 3 and 10 μg/kg. In conclusion, JTT-305 stimulated endogenous transient PTH secretion and bone formation, and consequently prevented bone loss in OVX rats. These results suggest that JTT-305 is orally active and has the potential to be an anabolic agent for the treatment of osteoporosis.

  13. Crystallization of the receptor-binding domain of parathyroid hormone-related protein in complex with a neutralizing monoclonal antibody Fab fragment.

    Science.gov (United States)

    McKinstry, William J; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T; Martin, Thomas J; Parker, Michael W

    2009-04-01

    Parathyroid hormone-related protein (PTHrP) plays an important role in regulating embryonic skeletal development and is abnormally regulated in the pathogenesis of skeletal complications observed with many cancers and osteoporosis. It exerts its action through binding to a G-protein-coupled seven-transmembrane cell-surface receptor (GPCR). Structurally, GPCRs are very difficult to study by X-ray crystallography. In this study, a monoclonal antibody Fab fragment which recognizes the same region of PTHrP as its receptor, PTH1R, was used to aid in the crystallization of PTHrP. The resultant protein complex was crystallized using the hanging-drop vapour-diffusion method with polyethylene glycol as a precipitant. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 72.6, b = 96.3, c = 88.5 A, and diffracted to 2.0 A resolution using synchrotron radiation. The crystal structure will shed light on the nature of the key residues of PTHrP that interact with the antibody and will provide insights into how the antibody is able to discriminate between PTHrP and the related molecule parathyroid homone.

  14. Parathyroid Imaging

    NARCIS (Netherlands)

    Kluijfhout, WP

    2017-01-01

    A colloquial saying described the best localization before parathyroid surgery was finding a good surgeon. While it is still important to have a high volume parathyroid surgeon, the trend away from bilateral neck exploration towards that of minimal invasive parathyroidectomy (MIP) has changed the

  15. Serum levels of parathyroid hormone and markers of bone metabolism in patients with rheumatoid arthritis. Relationship to disease activity and glucocorticoid treatment

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran; Hansen, M; Madsen, J C;

    2001-01-01

    OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before...... and after treatment with GC. METHODS: A range of biochemical markers of bone metabolism and calcium homeostasis were measured in 95 patients with definite RA stratified into groups according to disease activity and GC treatment. In a subgroup of 12 patients with active disease, initiating slow...... groups. The levels of urine pyridinoline (Pyr) and s-albumin-corrected calcium (s-AlbCorrCa2+) were elevated in patients with active disease and patients treated with GC. S-PTH and s-phosphate were within normal ranges. S-TAP, s-ICTP, Pyr and s-AlbCorrCa2+ correlated positively with indices of disease...

  16. Establishment of two human small cell lung cancer cell lines: the evidence of accelerated production of parathyroid hormone-related protein with tumor progression.

    Science.gov (United States)

    Hidaka, N; Nishimura, M; Nagao, K

    1998-03-13

    Two small cell lung cancer (SCLC) cell lines have been established from malignant effusions obtained from an SCLC patient with hypercalcemia during a 3-month follow-up period. The two cell lines established were shown to transcribe the parathyroid hormone-related protein (PTHrP) gene and to constantly secrete fairly large amounts of PTHrP into the culture medium. The efficiency of PTHrP gene transcription and secretion was greater in the cell line established in the late stage (KOT-2) as compared with that obtained in the early stage (KOT-1). Immunohistochemical studies showed that these cells also coexpress neuroendocrine (NE) products such as chromogranin A and neuron-specific enolase (NSE).

  17. Influence of a low calcium and phosphorus diet on the anabolic effect of human parathyroid hormone (1-38) in female rats

    DEFF Research Database (Denmark)

    Steiner, P.D.; Forrer, R.; Kneissel, Michaela;

    2001-01-01

    Parathyroid hormone (PTH) or synthetic N-terminal PTH fragments administered intermittently have been established as anabolic agents in animal and human bones. In the present study, the influence of a low calcium diet on the anabolic effect of human PTH(1-38) [hPTH(1-38)] was investigated. Forty....../-RCa) for an additional 14 days. Total bone mineral density (BMD) values of several bones were determined using quantitative computed tomography and from ratios of ash weight to volume. Biomechanical competence of the fourth lumbar vertebrae and of the right femora was assessed. An anabolic effect could be detected...... in both PTH-treated groups. However, the bones of the +LCa group showed significantly lower BMD and also a diminished increase in maximal breaking force compared with those of the +RCa group. The study demonstrates that the anabolic effect of hPTH(1-38) is blunted by the LCa diet. This suggests that...

  18. Parathyroid hormone-related protein enhances human ß-cell proliferation and function with associated induction of cyclin-dependent kinase 2 and cyclin E expression.

    Science.gov (United States)

    Guthalu Kondegowda, Nagesha; Joshi-Gokhale, Sheela; Harb, George; Williams, Katoura; Zhang, Xiao Ying; Takane, Karen K; Zhang, Pili; Scott, Donald K; Stewart, Andrew F; Garcia-Ocaña, Adolfo; Vasavada, Rupangi C

    2010-12-01

    Inducing human β-cell growth while enhancing function is a major goal in the treatment of diabetes. Parathyroid hormone-related protein (PTHrP) enhances rodent β-cell growth and function through the parathyroid hormone-1 receptor (PTH1R). Based on this, we hypothesized that PTH1R is expressed in human β-cells and that PTHrP has the potential to enhance human β-cell proliferation and/or function. PTH1R expression, β-cell proliferation, glucose-stimulated insulin secretion (GSIS), and expression of differentiation and cell-cycle genes were analyzed in human islets transduced with adenoviral PTHrP constructs or treated with PTHrP peptides. The effect of overexpression of late G1/S cell cycle molecules was also assessed on human β-cell proliferation. We found that human β-cells express PTH1R. More importantly, overexpression of PTHrP causes a significant approximately threefold increase in human β-cell proliferation. Furthermore, the amino terminus PTHrP(1-36) peptide is sufficient to increase replication as well as expression of the late G1/S cell-cycle proteins cyclin E and cyclin-dependent kinase 2 (cdk2) in human islets. Notably, PTHrP(1-36) also enhances GSIS. Finally, overexpression of cyclin E alone, but not cdk2, augments human β-cell proliferation, and when both molecules are expressed simultaneously there is a further marked synergistic increase in replication. PTHrP(1-36) peptide enhances human β-cell proliferation as well as function, with associated upregulation of two specific cell-cycle activators that together can induce human β-cell proliferation several fold. The future therapeutic potential of PTHrP(1-36) for the treatment of diabetes is especially relevant given the complementary therapeutic efficacy of PTHrP(1-36) in postmenopausal osteoporosis.

  19. Hypocalcemia increases and hypercalcemia decreases the steady-state level of parathyroid hormone messenger RNA in the rat.

    OpenAIRE

    Yamamoto, M.; Igarashi, T; Muramatsu, M; Fukagawa, M.; Motokura, T.; Ogata, E

    1989-01-01

    To examine the effects of serum calcium concentrations on PTH biosynthesis, rats were made hyper- (serum total calcium, approximately 3.5 mM) or hypocalcemic (approximately 1.25 mM) and steady-state levels of PTH mRNA in parathyroid cells were measured by the primer extension method using a 32P-labeled synthetic oligomer. PTH mRNA levels increased about twofold in the rats made slightly hypocalcemic by infusion of calcium-free solution and decreased slightly in those made hypercalcemic by CaC...

  20. Primary hyperparathyroidism with a low-normal, atypical serum parathyroid hormone as shown by discordant immunoassay curves.

    Science.gov (United States)

    Lafferty, Fred W; Hamlin, Clive R; Corrado, Kristin R; Arnold, Andrew; Shuck, Jerry M

    2006-10-01

    In patients with primary hyperparathyroidism (PHP), one expects to find a serum PTH in the high or high-normal range. The presence of a low-normal PTH in PHP can be difficult to explain. Our objective was to investigate the cause of a low-normal serum PTH in a patient with PHP. A 57-yr-old asymptomatic white female from the private practice of F.W.L. presented with an 8-yr history of a rising serum calcium from 10.5-11.6 mg/dl (2.63-2.88 mmol/liter) and a low-normal serum intact PTH of 29.2 pg/ml. After localization of a parathyroid adenoma by [(18)F]fluorodesoxyglucose positron emission tomography scanning, a 120-mg parathyroid adenoma was removed with the achievement of normocalcemia for the subsequent 2 yr. Routine pre- and postoperative serum intact PTH assays were preformed at both the Quest Diagnostics regional laboratory in Pittsburgh, Pennsylvania, and at the Quest Diagnostics Nichols Institute in California. In addition, intact, biointact, and C-terminal assays were measured in undiluted, 1:2 diluted, and 1:4 diluted sera at the Nichols Institute. PTH gene sequence analysis was performed from DNA extracted both from the parathyroid adenoma and the patient's peripheral blood leukocytes. Dilution, with correction for the dilution factor, of the preoperative serum produced a progressive rise in the intact, biointact, and the C-terminal assays, whereas no dilution effect was seen in postoperative serum. No intragenic mutations in the pre-pro-PTH coding region were found in either the parathyroid adenoma or matched blood DNA samples. The discordant preoperative immunoassay curves with dilution could not be explained by the adenoma producing a mutated PTH. Furthermore, an autoantibody against the PTH produced by the adenoma is ruled out by the prompt loss of the dilution effect in the three PTH assays within 1 wk of the adenoma's excision. A posttranslational effect on the PTH molecule within the adenoma remains a possible explanation for the discordant

  1. Ixazomib enhances parathyroid hormone–induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor

    Science.gov (United States)

    Yang, Yanmei; Lei, Hong; Qiang, Ya-wei; Wang, Bin

    2017-01-01

    The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin–mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element–luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases. PMID:28495797

  2. The origin of the parathyroid gland

    OpenAIRE

    Okabe, Masataka; Graham, Anthony

    2004-01-01

    It has long been held that the parathyroid glands and parathyroid hormone evolved with the emergence of the tetrapods, reflecting a need for new controls on calcium homeostasis in terrestrial, rather than aquatic, environments. Developmentally, the parathyroid gland is derived from the pharyngeal pouch endoderm, and studies in mice have shown that its formation is under the control of a key regulatory gene, Gcm-2. We have used a phylogenetic analysis of Gcm-2 to probe the evolutionary origins...

  3. 原发性醛固酮增多症中甲状旁腺素的变化及作用%Changes of parathyroid hormone in primary aldosteronism and its effects

    Institute of Scientific and Technical Information of China (English)

    张翠; 王卫庆

    2014-01-01

    Primary aldosteronism (PA) is a common form of secondary endocrine hypertension,which is characterized by hypertension,hypokelamia,myathenia,elevated serum aldosterone concentration and suppressed plasma renin activity.Besides,accumulating research evidences showed that parathyroid hormone (PTH) level was elevated in patients with primary aldosteronism,accompanied by secondary hyperparathyroidism.This review systemically introduces the interaction between aldosterone and PTH in PA patients.%原发性醛固酮增多症(原醛症)是最常见的内分泌性高血压,主要表现为高血压、低血钾、肌无力、血醛固酮水平升高及血浆肾素活性受抑制等.除以上生化特点,目前越来越多文章关注原醛症患者血甲状旁腺素水平升高,并伴继发性甲状旁腺功能亢进.本文就原醛症患者中醛固酮与甲状旁腺素相互作用及意义进行综述.

  4. Tongue squamous cell carcinoma producing both parathyroid hormone-related protein and granulocyte colony-stimulating factor: a case report and literature review.

    Science.gov (United States)

    Kaneko, Naoki; Kawano, Shintaro; Matsubara, Ryota; Goto, Yuichi; Jinno, Teppei; Maruse, Yasuyuki; Sakamoto, Taiki; Hashiguchi, Yuma; Iida, Masakazu; Nakamura, Seiji

    2016-06-17

    Paraneoplastic syndrome generally results from tumor-derived hormones or peptides that cause metabolic derangements. Common metabolic conditions include hyponatremia, hypercalcemia, hypoglycemia, and Cushing's syndrome. Herein, we report a very rare case of tongue carcinoma presenting with leukocytosis and hypercalcemia. A 57-year-old man was admitted to our hospital with tongue squamous cell carcinoma (cT4aN0M0, stage IV). He underwent radical resection following preoperative chemoradiotherapy, but locoregional recurrence was detected 2 months after surgery. He presented with marked leukocytosis and hypercalcemia with elevated serum levels of granulocyte colony-stimulating factor (G-CSF) and parathyroid hormone-related protein (PTHrP). He was therefore managed with intravenous fluids, furosemide, prednisolone, elcatonin, and pamidronate. However, the patient died 1 month later of carcinomatous pleuritis following distant metastasis to the lung. Immunohistochemical analyses of the resected specimens revealed positive staining for PTHrP and G-CSF in the cancer cells. In this case, it was considered that tumor-derived G-CSF and PTHrP caused leukocytosis and hypercalcemia.

  5. Parathyroid hormone in the treatment of metabolic bone diseases%甲状旁腺激素制剂治疗代谢性骨病

    Institute of Scientific and Technical Information of China (English)

    吕芳; 李梅

    2014-01-01

    甲状旁腺激素(PTH)是调节钙平衡及骨转换的重要内分泌激素.目前已有PTH氨基端1-34片段和PTH 1-84全段两种重组甲状旁腺激素,用于治疗严重原发性及糖皮质激素诱发性骨质疏松.最近研究发现,PTH制剂对甲状旁腺功能减退症、成骨不全症、低磷酸酶症等代谢性骨病也有良好疗效.%Parathyroid hormone (PTH) is an important hormone in maintaining calcium balance and modulating bone remodeling.Now there are two forms of recombinant PTH (PTH 1-34 and PTH 1-84) in the treatment of severe primary osteoporosis and glucocorticoid induced osteoporosis.Recently,PTH has been found to be effective in other metabolic bone diseases,such as hypoparathyroidism,osteogenesis imperfecta and hypophosphatasia.

  6. Identification, molecular characterization, and tissue expression of parathyroid hormone-related protein gene (PTHrP) from water buffalo (Bubalus bubalis).

    Science.gov (United States)

    Liu, J; Qian, L D; Huo, J L; Bi, B L; Li, D L; Wang, S F; Chen, T; Li, L J; Mao, H M; Miao, Y W

    2015-03-27

    Parathyroid hormone-related protein (PTHrP) is involved in the deposition of milk calcium in mammal lactation, but its role in buffalo is unclear. In this study, the full-length coding sequence of the water buffalo PTHrP gene was first isolated using reverse transcription-polymerase chain reaction. The protein was then subjected to molecular characterization using bioinformatic methods, and the tissue expression pattern was further assayed by semi-quantitative reverse-transcription polymerase chain reaction. The water buffalo PTHrP gene contains an open reading frame of 534 base pairs encoding a polypeptide of 177 amino acid residues, a theoretical molecular weight of 20.32 kDa, and an isoelectric point of 10.00. In addition, water buffalo PTHrP was predicted to contain a signal peptide, a typical hydrophobic region with no hydrophobic transmembrane regions, and to exert its function in the cell nucleus. A conserved domain of parathyroid superfamily from amino acids 34-114 was observed in the polypeptide. Sequence comparison and the phylogenetic analysis showed that the sequence of the water buffalo PTHrP protein shared high homology with that of other mammals, particularly cattle and goat. Among the 16 tissues examined, the PTHrP gene was only expressed in adipose tissue, placenta, uterine wall, hypophysis, and mammary gland tissue, but gene expression levels were higher in the uterus wall and adipose tissue. The results of this study suggest that the PTHrP gene plays an important role in the deposition of milk calcium of water buffalo.

  7. Cholecalciferol Additively Reduces Serum Parathyroid Hormone and Increases Vitamin D and Cathelicidin Levels in Paricalcitol-Treated Secondary Hyperparathyroid Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Jing-Quan Zheng

    2016-11-01

    Full Text Available Background: Active Vitamin D analogues are used clinically for prevention and treatment of secondary hyperparathyroidism (SHPT in hemodialysis (HD patients. Nutritional vitamin D supplementation is used for additional local parathyroid (PTH suppression, with lower incidence of hypercalcemia and hyperphosphatemia. This study evaluates the possible beneficial effects of combined vitamin D treatment (paricalcitol and cholecalciferol. Methods: Sixty HD patients with serum parathyroid hormone (iPTH >300 pg/mL were enrolled. All patients administered 2 mcg/day of paricalcitol and were randomly allocated into control group (placebo or study group (cholecalciferol for 16 weeks. Serum 25(OHD3, iPTH and human cathelicidin (hCAP-18 were measured at baseline and during follow-up. Results: iPTH levels decreased in the study group appropriately and were more significantly decreased at 16 weeks. Study group had significantly increased 25(OHD3 levels. In addition, the study group had significantly increased serum hCAP-18 levels compared with control group. Correlation analysis showed a significant correlation between the percentage increase in serum hCAP-18 and 25(OHD3 levels. Conclusions: Cholecalciferol, in combination with paricalcitol, additively lowers the iPTH levels in a significant number of patients after 16 weeks of supplementation. A dose of 5000 IU/week of cholecalciferol could maintain serum 25(OHD3 levels above 30 ng/dL as early as 8 weeks after beginning supplementation. Doubling of serum cathelicidin levels were noted after 16 weeks of cholecalciferol supplementation in 40% of study patients.

  8. Cholecalciferol Additively Reduces Serum Parathyroid Hormone and Increases Vitamin D and Cathelicidin Levels in Paricalcitol-Treated Secondary Hyperparathyroid Hemodialysis Patients

    Science.gov (United States)

    Zheng, Jing-Quan; Hou, Yi-Chou; Zheng, Cai-Mei; Lu, Chien-Lin; Liu, Wen-Chih; Wu, Chia-Chao; Huang, Ming-Te; Lin, Yuh-Feng; Lu, Kuo-Cheng

    2016-01-01

    Background: Active Vitamin D analogues are used clinically for prevention and treatment of secondary hyperparathyroidism (SHPT) in hemodialysis (HD) patients. Nutritional vitamin D supplementation is used for additional local parathyroid (PTH) suppression, with lower incidence of hypercalcemia and hyperphosphatemia. This study evaluates the possible beneficial effects of combined vitamin D treatment (paricalcitol and cholecalciferol). Methods: Sixty HD patients with serum parathyroid hormone (iPTH) >300 pg/mL were enrolled. All patients administered 2 mcg/day of paricalcitol and were randomly allocated into control group (placebo) or study group (cholecalciferol) for 16 weeks. Serum 25(OH)D3, iPTH and human cathelicidin (hCAP-18) were measured at baseline and during follow-up. Results: iPTH levels decreased in the study group appropriately and were more significantly decreased at 16 weeks. Study group had significantly increased 25(OH)D3 levels. In addition, the study group had significantly increased serum hCAP-18 levels compared with control group. Correlation analysis showed a significant correlation between the percentage increase in serum hCAP-18 and 25(OH)D3 levels. Conclusions: Cholecalciferol, in combination with paricalcitol, additively lowers the iPTH levels in a significant number of patients after 16 weeks of supplementation. A dose of 5000 IU/week of cholecalciferol could maintain serum 25(OH)D3 levels above 30 ng/dL as early as 8 weeks after beginning supplementation. Doubling of serum cathelicidin levels were noted after 16 weeks of cholecalciferol supplementation in 40% of study patients. PMID:27827962

  9. Expression of osteoclastogenic factor transcripts in osteoblast-like UMR-106 cells after exposure to FGF-23 or FGF-23 combined with parathyroid hormone.

    Science.gov (United States)

    Teerapornpuntakit, Jarinthorn; Wongdee, Kannikar; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2016-03-01

    As a bone-derived hormone, fibroblast growth factor-23 (FGF-23) negatively regulates phosphate and calcium metabolism, while retaining growth-promoting action for mesenchymal cell differentiation. Elevated FGF-23 levels, together with hyperparathyroidism, are often observed in chronic kidney disease, which is associated with impaired bone mineralization and enhanced bone resorption. Although overexpression of osteoblast-derived osteoclastogenic cytokines might contribute to this metabolic bone disease, whether FGF-23 alone and FGF-23 plus parathyroid hormone (PTH) directly modulated the expression of osteoblast-derived osteoclastogenic genes remained elusive. Herein, we demonstrated the direct effects of FGF-23 on proliferation and mRNA expression of osteoblast-specific differentiation and osteoclastogenic markers in rat osteoblast-like UMR-106 cells in the presence or absence of PTH. FGF-23 was found to suppress UMR-106 cell proliferation, while increasing FGF-23 expression, the latter of which suggested the presence of positive feedback regulation of FGF-23 expression in osteoblasts. FGF-23 also upregulated the mRNA expression of osteoblast differentiation markers (e.g., Runx2, osterix, AJ18, Dlx5, alkaline phosphatase, and osteopontin), osteoclastogenic factors (e.g., MCSF, MCP-1, IL-6, and TNF-α), and bone resorption regulators (RANKL and osteoprotegerin). However, combined PTH and FGF-23 exposure did not alter the levels of FGF-23-induced transcripts, suggesting that both hormones had no additive effect. In conclusion, FGF-23 directly suppressed osteoblast proliferation, while inducing osteoclastogenic gene expression in UMR-106 cells, and the FGF-23-induced transcripts were not altered by long-standing PTH exposure.

  10. The Parathyroid Gland and Heart Disease.

    Science.gov (United States)

    Brown, Spandana J; Ruppe, Mary D; Tabatabai, Laila S

    2017-01-01

    The parathyroid glands are critical to maintaining calcium homeostasis through actions of parathyroid hormone (PTH). Recent clinical and molecular research has shown that direct and indirect actions of PTH also affect the heart and vasculature through downstream actions of G protein-coupled receptors in the myocardium and endothelial cells. Patients with disorders of the parathyroid gland have higher incidences of hypertension, arrhythmias, left ventricular hypertrophy, heart failure, and calcific disease which translate into increased cardiac morbidity and mortality. Importantly, clinical research also suggests that early treatment of parathyroid disorders through medical or surgical management may reverse cardiovascular remodeling and mitigate cardiac risk factors.

  11. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  12. Short-term bisphosphonate treatment reduces serum 25(OH vitamin D3 and alters values of parathyroid hormone, pentosidine, and bone metabolic markers

    Directory of Open Access Journals (Sweden)

    Kamimura M

    2017-02-01

    Full Text Available Mikio Kamimura,1 Shigeharu Uchiyama,2 Yukio Nakamura,2,3 Shota Ikegami,2 Keijiro Mukaiyama,2 Hiroyuki Kato2 1Center for Osteoporosis and Spinal Disorders, Kamimura Orthopaedic Clinic, Matsumoto, Japan; 2Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan; 3Department of Orthopedic Surgery, Showa-Inan General Hospital, Komagane, Japan Abstract: This study aimed to clarify the effects of short-term bisphosphonate (BP administration in Japanese osteoporotic patients retrospectively. Daily minodronate (MIN at 1 mg/day (MIN group or weekly risedronate (RIS at 17.5 mg/week (RIS group was primarily prescribed for each patient. We analyzed the laboratory data of 35 cases (18 of MIN and 17 of RIS before the start of treatment and at 4 months afterward. The changes in 25(OHD3, whole parathyroid hormone (PTH, serum pentosidine, and the bone turnover markers urinary cross-linked N-telopeptide of type I collagen (NTX, serum tartrate-resistant acid phosphatase (TRACP-5b, bone-specific alkaline phosphatase (BAP, and undercarboxylated osteocalcin were evaluated. Overall, serum 25(OHD3 was significantly decreased from 21.8 to 18.4 ng/mL at 4 months, with a percent change of –14.7%. Whole PTH increased significantly from 23.4 to 30.0 pg/mL, with a percent change of 32.1%. Serum pentosidine rose from 0.0306 to 0.0337 µg/mL, with a percent change of 15.2%. In group comparisons, 25(OHD3 and pentosidine showed comparable changes in both groups after 4 months of treatment, whereas whole PTH became significantly more increased in the MIN group. All bone turnover markers were significantly decreased at 4 months in both groups. Compared with the RIS group, the MIN group exhibited significantly larger value changes for urinary NTX, serum TRACP-5b, and BAP at the study end point. This study demonstrated that serum 25(OHD3 became significantly decreased after only 4 months of BP treatment in Japanese osteoporotic patients and

  13. Stability of plasma metabolites and hormones in lactating dairy cows.

    Science.gov (United States)

    Phillips, R W; Athanasiou, V N

    1978-06-01

    Plasma concentration stability of glucose, free fatty acids, ketone bodies, growth hormone, insulin were determined in lactating dairy cows. Concentrations of these metabolites and hormones were measured during a 36- to 48-hour period in 3 normal, mature dairy cows in the 2nd month of lactation. Samples were taken at 30-minute intervals; also, intensive sampling (every 10 minutes) was done at varying times in relation to feeding and milking. Of the 5 components measured, glucose concentration was the most stable, easiest to assay, and most reliable for use as a diagnostic aid in assessing metabolic carbohydrate disturbances in dairy cattle.

  14. Annual cycle of plasma luteinizing hormone and sex hormones in male and female mallards (Anas platyrhynchos)

    Science.gov (United States)

    Donham, R.S.

    1979-01-01

    Comparisons between 'wild'and 'game farm' mallards (Anas platyrhynchos) were made to assess the differences in the temporal changes of plasma hormones. Seasonal variation in the levels of immunoreactive luteinizing hormone (LH), testosterone, 5 -dihydrotestosterone (DHT), estrone, estradiol-17i?? and progesterone were measured in male and female mallards. In all birds there was a vernal increase in the concentrations of LH and testosterone in plasma which were correlated with the development of the testes and ovaries prior to and during the nesting season. The concentrations of estrogens in the plasma of the females were, in general, slightly higher during the nesting season but were much lower than the levels of testosterone. The highest levels of LH and testosterone in the females coincided precisely with the period of egg laying which occurred approximately one month earlier in game farm females than in wild females. The concentrations of LH and testosterone in the plasma of females decreased rapidly during incubation. In wild males, the decline in levels of these hormones temporally coincided with that of females. In contrast, plasma levels of LH and testosterone of males of the game farm stock remained elevated after the beginning of incubation in females to which they were paired. On the basis of these results and an examination of the literature, it appears that domestication results in: 1) increased reproductive potential through earlier initiation of nesting and by delay of the termination of reproduction until later in the summer; and 2) a decrease in the synchronization of the hormonal events supporting reproduction between the male and female of a pair. Testicular weights and plasma levels of testosterone become higher in game farm and domestic males than in the wild stock but levels of LH are similar.

  15. The calcium-sensing receptor and the parathyroid: past, present, future

    Directory of Open Access Journals (Sweden)

    Arthur David Conigrave

    2016-12-01

    Full Text Available Parathyroid hormone (PTH defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR.

  16. Hormonal regulation of total antioxidant capacity in seminal plasma.

    Science.gov (United States)

    Mancini, Antonio; Festa, Roberto; Silvestrini, Andrea; Nicolotti, Nicola; Di Donna, Vincenzo; La Torre, Giuseppe; Pontecorvi, Alfredo; Meucci, Elisabetta

    2009-01-01

    Infertility is associated with oxidative stress, normally counterbalanced by different antioxidant systems. In order to explore the hormonal control of seminal plasma total antioxidant capacity (TAC) we evaluated TAC and hormone patterns in a group of unselected infertile patients and control subjects. One hundred and ten infertile patients (divided into 3 groups: inflammation, varicocele, and other etiologies) and 31 fertile men were examined, evaluating blood serum gonadotropins, testosterone, estradiol, free tri-iodothyronine, free tetraiodothyronine (FT4), thyrotropin, prolactin (PRL), seminal parameters, and TAC. TAC was measured using the H(2)O(2)-metmyoglobin system, which generates the spectroscopically detectable radical cation of the chromogenous compound 2,2(I)-azinobis (3-ethylbenzothiazoline-6-sulfonate). The "lag time" of its appearance is proportional to the antioxidant activity. Lag phase was significantly higher in varicocele vs controls, whereas it was lower in patients with inflammation vs varicocele or other kinds of infertility. The correlation analysis between hormones and seminal parameters showed an inverse correlation between PRL and sperm motility, and a direct correlation of TAC with PRL and FT4, but not with gonadotropins or gonadal steroids. Our data suggest that systemic hormones may play a role in regulating seminal antioxidant capacity. This is interesting also because some hormones, such as thyroid and pituitary hormones, are not usually tested in the first-level evaluation of male patients with fertility problems.

  17. The N-terminal extracellular domain 23-60 of the calcitonin receptor-like receptor in chimeras with the parathyroid hormone receptor mediates association with receptor activity-modifying protein 1.

    Science.gov (United States)

    Ittner, Lars M; Koller, Daniela; Muff, Roman; Fischer, Jan A; Born, Walter

    2005-04-19

    The calcitonin receptor-like receptor (CLR) requires the associated receptor activity-modifying protein (RAMP)1 to reveal a calcitonin gene-related peptide (CGRP) receptor. Here, the subdomain of the CLR that associates with RAMP1 has been identified in chimeras between the CLR and the parathyroid hormone (PTH) receptor 1 (PTHR). The PTHR alone does not interact with RAMP1. RAMP1 requires the CLR for its transport to the cell surface. Thus, receptor-dependent RAMP1 delivery to the plasma membrane and coimmunoprecipitation from the cell surface were used as measures for receptor/RAMP1 interaction. Several chimeric CLR-PTHR included the N-terminal amino acids 23-60 of the CLR transported RAMP1 to the surface of COS-7 cells much like the intact CLR. Moreover, RAMP1 coimmunoprecipitated with these receptors from the cell surface. A CLR deletion mutant, consisting of the N-terminal extracellular domain, the first transmembrane domain, and the C-terminal intracellular region, revealed the same results. Cyclic AMP was stimulated by CGRP in CLR/RAMP1 expressing cells (58 +/- 19-fold, EC(50) = 0.12 +/- 0.03 nM) and by PTH-related protein in cells expressing the PTHR (50 +/- 10-fold, EC(50) = 0.25 +/- 0.03 nM) or a PTHR with the N-terminal amino acids 23-60 of the CLR (23 +/- 5-fold, EC(50) > 1000 nM). Other chimeric CLR-PTHR were inactive. In conclusion, structural elements in the extreme N-terminus of the CLR between amino acids 23-60 are required and sufficient for CLR/RAMP1 cotransport to the plasma membrane and heterodimerization.

  18. Hypocalcemia increases and hypercalcemia decreases the steady-state level of parathyroid hormone messenger RNA in the rat.

    Science.gov (United States)

    Yamamoto, M; Igarashi, T; Muramatsu, M; Fukagawa, M; Motokura, T; Ogata, E

    1989-01-01

    To examine the effects of serum calcium concentrations on PTH biosynthesis, rats were made hyper- (serum total calcium, approximately 3.5 mM) or hypocalcemic (approximately 1.25 mM) and steady-state levels of PTH mRNA in parathyroid cells were measured by the primer extension method using a 32P-labeled synthetic oligomer. PTH mRNA levels increased about twofold in the rats made slightly hypocalcemic by infusion of calcium-free solution and decreased slightly in those made hypercalcemic by CaCl2 infusion (120-150 mumol/h) compared with the levels present in nonfasting control rats. Infusion of calcitonin (0.5 U/h) or EGTA (90 mumol/h) with calcium-free solution increased PTH mRNA levels further (two- to sevenfold) above the levels present in animals infused with calcium-free solution alone. These changes in PTH mRNA levels were observed after 48- but not 24-h infusion, and there was an inverse correlation between PTH mRNA levels and serum calcium concentrations. The results suggest that changes in serum calcium concentrations in the near physiological range regulate the biosynthesis of PTH by affecting steady-state levels of PTH mRNA when hypercalcemia or hypocalcemia continues for a relatively long period. Images PMID:2493484

  19. Parathyroid adenoma. Case presentation

    Directory of Open Access Journals (Sweden)

    Daniel Olivera Fajardo

    2016-10-01

    Full Text Available Parathyroid Adenoma is a non-malignant tumor of the thyroid glands, which increases the levels of parathormone. This hormone regulates blood and bone levels of calcium, phosphorus and Vitamin D. Its classic triad is characterized by the increase of the levels of parathormone, hyperkalimia and Hipophosphatemia. This entity affects between 500-1000 inhabitants and is the main cause of primary Hyperparathyroidism in about 80-85% of the patients. It is presented a case of a 69 year old female patient, admitted due to pathologic fractures of hip, clavicle, and fingers, caused by primary hyperparathyroidism originated by parathyroid adenoma. For the low incidence of this entity, its publication is considered of interest for the scientific staff.

  20. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 3; Plasma Analysis Hormone Measurements

    Science.gov (United States)

    Grindeland, R. E.; Popova, I. A.; Grossman, E.; Rudolph, I.

    1994-01-01

    Plasma from space flight and tail suspended rats was analyzed for a number of constituents in order to evaluate their metabolic status and endocrine function. The data presented here cover plasma hormone measurements. Corticosterone, thyroxine, and testosterone were measured by radioimmunoassay. Prolactin and growth hormone were measured by double antibody immunoassays using hormones and antisera prepared in house. Data were evaluated by analysis of variance.

  1. Effects of Intermittent Administration of Parathyroid Hormone (1-34 on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Wang

    2016-01-01

    Full Text Available Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1 has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+ and STRO-1(− hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+ hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+ hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R than STRO-1(− hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+ hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+ hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+ hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis.

  2. Parathyroid Hormone-Related Protein (PTHrP): A Key Regulator of Life/Death Decisions by Tumor Cells with Potential Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Luparello, Claudio [Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2011-01-20

    Parathyroid hormone-related protein (PTHrP), classically regarded as the mediator of the humoral hypercalcemia of malignancy syndrome, is a polyhormone that undergoes proteolytic processing into smaller bioactive forms. These bioactive forms comprise an N-terminal-as well as midregion-and C-terminal peptides, which have been shown to regulate various biological events, such as survival, proliferation and differentiation, in diverse cell model systems, both normal and pathological. A number of experimental data have demonstrated that PTHrP is also able to modulate tumor-relevant phenotypic expressions, thereby playing a role in early and advanced tumorigenesis, and in the response to treatment. In particular, interest has mainly been focused on the effects of PTHrP on cell proliferation/apoptosis, migration and invasion, which are the main roles involved in cancer development in vivo. The objective of this review is to discuss collectively the literature data on the molecular and biochemical basis of the mechanisms underlying the different, and sometimes opposite, effects exerted by PTHrP on various neoplastic cytotypes, with some final comments on both present and potential utilization of PTHrP as a target for anti-cancer therapy.

  3. Associations of Sun Exposure with 25-Hydroxyvitamin D and Parathyroid Hormone Levels in a Cohort of Hypertensive Patients: The Graz Endocrine Causes of Hypertension (GECOH Study

    Directory of Open Access Journals (Sweden)

    Stefan Pilz

    2012-01-01

    Full Text Available Sunlight-induced vitamin D, synthesis in the skin is the major source of vitamin D, but data on the relationship of sun-related behaviour with vitamin D and parathyroid hormone (PTH levels are relatively sparse. We evaluated whether habitual sun exposure is associated with 25-hydroxyvitamin D (25[OH]D and PTH levels and whether there exist seasonal variations. We examined 111 hypertensive patients in Austria (latitude 47° N. Frequent sunbathing at home and outdoor sports were associated with higher 25(OHD levels (P<0.05 for both. Red or blond scalp hair as a child, memory of sunburns, preferring sunbathing, frequent stays on the beach or in open-air pools, and solarium use were associated with lower PTH levels (P<0.05 for all. Multiple linear regression analyses including age, sex, and body mass index showed that sun exposure score was significantly associated with 25(OHD (beta coefficient=0.27; P=0.004 and by trend with PTH (beta coefficient=−0.16; P=0.09. These associations were more prominent in summer in which 25(OHD levels were significantly higher compared to winter. Translation of these findings into recommendations for the prevention and treatment of vitamin D deficiency remains a challenge for the future.

  4. Na/H exchanger regulatory factors control parathyroid hormone receptor signaling by facilitating differential activation of G(alpha) protein subunits.

    Science.gov (United States)

    Wang, Bin; Ardura, Juan A; Romero, Guillermo; Yang, Yanmei; Hall, Randy A; Friedman, Peter A

    2010-08-27

    The Na/H exchanger regulatory factors, NHERF1 and NHERF2, are adapter proteins involved in targeting and assembly of protein complexes. The parathyroid hormone receptor (PTHR) interacts with both NHERF1 and NHERF2. The NHERF proteins toggle PTHR signaling from predominantly activation of adenylyl cyclase in the absence of NHERF to principally stimulation of phospholipase C when the NHERF proteins are expressed. We hypothesized that this signaling switch occurs at the level of the G protein. We measured G protein activation by [(35)S]GTPgammaS binding and G(alpha) subtype-specific immunoprecipitation using three different cellular models of PTHR signaling. These studies revealed that PTHR interactions with NHERF1 enhance receptor-mediated stimulation of G(alpha)(q) but have no effect on stimulation of G(alpha)(i) or G(alpha)(s). In contrast, PTHR associations with NHERF2 enhance receptor-mediated stimulation of both G(alpha)(q) and G(alpha)(i) but decrease stimulation of G(alpha)(s). Consistent with these functional data, NHERF2 formed cellular complexes with both G(alpha)(q) and G(alpha)(i), whereas NHERF1 was found to interact only with G(alpha)(q). These findings demonstrate that NHERF interactions regulate PTHR signaling at the level of G proteins and that NHERF1 and NHERF2 exhibit isotype-specific effects on G protein activation.

  5. Parathyroid hormone-related protein (PTHrP)-dependent regulation of bcl-2 and tissue inhibitor of metalloproteinase (TIMP)-1 in coronary endothelial cells.

    Science.gov (United States)

    Conzelmann, Charlotte; Krasteva, Gabriela; Weber, Kerstin; Kummer, Wolfgang; Schluter, Klaus-Dieter

    2009-01-01

    An increased susceptibility of micro-vascular endothelial cells to apoptosis is considered to be an initial event leading to atherosclerosis. Parathyroid hormone-related peptide (PTHrP) is known to protect endothelial cells against apoptosis by the regulation of the anti-apoptotic gene bcl-2. As tissue inhibitor of metalloproteinase (TIMP-1) expression is regulated by bcl-2, we hypothesized that endothelial expression of PTHrP also regulates the expression of TIMP-1. The steady state mRNA expressions of bcl-2, bax, TIMP-1, and TIMP-2 were analyzed by real-time RT-PCR and their protein expression by immunoblotting. The tissue distribution of PTHrP was investigated in cryosections of hearts from normotensive and hypertensive rats. Phenylephrine, an alpha(1)-adrenoceptor agonist, increased the expression of PTHrP, bcl-2, and TIMP-1. Transfection of endothelial cells with oligonucleotides directed against PTHrP attenuated this effect. Antisense transfection and TGF-beta(1) (10 ng/ml) decreased the expression of PTHrP, bcl-2, TIMP-1, and TIMP-2, but not that of bax. Endothelial cells were identified as the main source of PTHrP in the heart. Endothelial cells in hearts from spontaneously hypertensive rats showed reduced staining with a PTHrP antibody compared to control normotensive hearts. These data suggests that the down-regulation of PTHrP favours atherosclerosis in chronic pressure overload. 2009 S. Karger AG, Basel.

  6. Evolutionary well-conserved region in the signal peptide of parathyroid hormone-related protein is critical for its dual localization through the regulation of ER translocation.

    Science.gov (United States)

    Amaya, Yoshihiro; Nakai, Toshiki; Miura, Satoshi

    2016-04-01

    Parathyroid hormone-related protein (PTHrP) has two different targeting signals: an N-terminal signal peptide for the endoplasmic reticulum (ER) targeting and an internal nuclear localization signal. The protein not only functions as a secretory protein, but is also found in the nucleus and/or nucleolus under certain conditions. PTHrP signal peptide is less hydrophobic than most signal peptides mainly due to its evolutionarily well-conserved region (QQWS). The substitution of four tandem leucine residues for this conserved region resulted in a significant inhibition of the signal peptide cleavage. At the same time, proportion of nuclear and/or nucleolar localization decreased, probably due to tethering of the protein to the ER membrane by the uncleaved mutant signal peptide. Almost complete cleavage of the signal peptide accompanied by a lack of nuclear/nucleolar localization was achieved by combining the hydrophobic h-region and an optimized sequence of the cleavage site. In addition, mutational modifications of the distribution of charged residues in and around the signal peptide affect its cleavage and/or nuclear/nucleolar localization of the protein. These results indicate that the well-conserved region in the signal peptide plays an essential role in the dual localization of PTHrP through ER targeting and/or the membrane translocation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  7. Parathyroid Hormone-Related Protein (PTHrP: A Key Regulator of Life/Death Decisions by Tumor Cells with Potential Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Luparello

    2011-01-01

    Full Text Available Parathyroid hormone-related protein (PTHrP, classically regarded as the mediator of the humoral hypercalcemia of malignancy syndrome, is a polyhormone that undergoes proteolytic processing into smaller bioactive forms. These bioactive forms comprise an N-terminal- as well as midregion- and C-terminal peptides, which have been shown to regulate various biological events, such as survival, proliferation and differentiation, in diverse cell model systems, both normal and pathological. A number of experimental data have demonstrated that PTHrP is also able to modulate tumor-relevant phenotypic expressions, thereby playing a role in early and advanced tumorigenesis, and in the response to treatment. In particular, interest has mainly been focused on the effects of PTHrP on cell proliferation/apoptosis, migration and invasion, which are the main roles involved in cancer development in vivo. The objective of this review is to discuss collectively the literature data on the molecular and biochemical basis of the mechanisms underlying the different, and sometimes opposite, effects exerted by PTHrP on various neoplastic cytotypes, with some final comments on both present and potential utilization of PTHrP as a target for anti-cancer therapy.

  8. Role of the N- and C-terminal fragments of parathyroid-hormone-related protein as putative therapies to improve bone regeneration under high glucocorticoid treatment.

    Science.gov (United States)

    de Castro, Luís Fernándes; Lozano, Daniel; Dapía, Sonia; Portal-Núñez, Sergio; Caeiro, José R; Gómez-Barrena, Enrique; Esbrit, Pedro

    2010-04-01

    The parathyroid-hormone-related protein (PTHrP) is an important modulator of bone formation and bone remodeling. High and/or prolonged glucocorticoid (GC) treatments inhibit PTHrP expression in osteoblastic cells and bone formation and repair. We assessed the ability of the N- and C-terminal PTHrP fragments to restore the GC-altered bone regeneration after bone marrow ablation in mice. Animals were administered 3-methylprednisolone or vehicle and PTHrP (1-36) or PTHrP (107-139) every other day, beginning 4 days before marrow ablation in the tibia, and euthanized 12 days later. GC-treated mice showed in the ablated tibia a decrease in bone formation and in osteoblast and sclerostin-positive osteocyte numbers, reduced expression of osteoblastic factors, decreased osteogenesis of bone-marrow-derived cells, an increase in the numbers of multinucleated osteoclasts and adipocytes, and decreased cortical vascularization, as well as altered bone structure (measured by microcomputerized tomography) in the intact femur. These effects were reversed at least in part by either PTHrP peptide. The present novel findings support the use of both PTHrP peptides tested as putative bone regenerative therapies in GC-related bone diseases.

  9. Parathyroid hormone-related protein (107-111) improves the bone regeneration potential of gelatin-glutaraldehyde biopolymer-coated hydroxyapatite.

    Science.gov (United States)

    Lozano, Daniel; Sánchez-Salcedo, Sandra; Portal-Núñez, Sergio; Vila, Mercedes; López-Herradón, Ana; Ardura, Juan Antonio; Mulero, Francisca; Gómez-Barrena, Enrique; Vallet-Regí, María; Esbrit, Pedro

    2014-07-01

    Biopolymer-coated nanocrystalline hydroxyapatite (HA) made as macroporous foams which are degradable and flexible are promising candidates as orthopaedic implants. The C-terminal (107-111) epitope of parathyroid hormone-related protein (PTHrP) exhibits osteogenic properties. The main aim of this study was to evaluate whether PTHrP (107-111) loading into gelatin-glutaraldehyde biopolymer-coated HA (HAGlu) scaffolds would produce an optimal biomaterial for tissue engineering applications. HAGlu scaffolds with and without PTHrP (107-111) were implanted into a cavitary defect performed in both distal tibial metaphysis of adult rats. Animals were sacrificed after 4 weeks for histological, microcomputerized tomography and gene expression analysis of the callus. At this time, bone healing occurred only in the presence of PTHrP (107-111)-containing HAGlu implant, related to an increase in bone volume/tissue volume and trabecular thickness, cortical thickness and gene expression of osteocalcin and vascular cell adhesion molecule 1, but a decreased gene expression of Wnt inhibitors, SOST and dickkopf homolog 1. The autonomous osteogenic effect of the PTHrP (107-111)-loaded HAGlu scaffolds was confirmed in mouse and human osteoblastic cell cultures. Our findings demonstrate the advantage of loading PTHrP (107-111) into degradable HAGlu scaffolds for achieving an optimal biomaterial that is promising for low load bearing clinical applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. AU-RICH ELEMENTS IN THE 3′-UTR REGULATE THE STABILITY OF THE 141 AMINO ACID ISOFORM OF PARATHYROID HORMONE-RELATED PROTEIN mRNA

    Science.gov (United States)

    Luchin, Alexander I.; Nadella, Murali V.P.; Thudi, Nanda K.; Dirksen, Wessel P.; Gulati, Parul; Fernandez, Soledad A.; Rosol, Thomas J.

    2012-01-01

    We demonstrated previously that parathyroid hormone-related protein (PTHrP) 1-141 mRNA is the least stable of three isoforms and is the only isoform that is stabilized by TGF-β. In order to understand how PTHrP mRNA is stabilized by TGF-β, we first sought to elucidate the mechanism(s) that are responsible for the instability of PTHrP isoform 1-141 mRNA. The 3′-UTR of isoform 1-141 contains four AU-rich elements (AREs), which are known to mediate mRNA degradation. We utilized a luciferase reporter system to test whether these four AREs are responsible for the short half-life of PTHrP 1-141 mRNA. Our results demonstrated that ARE elements in the 3′-UTR of PTHrP 1-141 mRNA play a significant role in regulation of the stability of the mRNA. It is known that AREs mediate their effects on mRNA stability through a number of ARE-binding proteins that recruit the exosome, a complex of exonucleases that degrades the mRNA. We identified tristetraproline (TTP) as an RNA-binding protein that may be involved in ARE-mediated degradation of PTHrP 1-141 mRNA. PMID:22960231

  11. AU-rich elements in the 3'-UTR regulate the stability of the 141 amino acid isoform of parathyroid hormone-related protein mRNA.

    Science.gov (United States)

    Luchin, Alexander I; Nadella, Murali V P; Thudi, Nanda K; Dirksen, Wessel P; Gulati, Parul; Fernandez, Soledad A; Rosol, Thomas J

    2012-11-25

    We demonstrated previously that parathyroid hormone-related protein (PTHrP) 1-141 mRNA is the least stable of three isoforms and is the only isoform that is stabilized by TGF-β. In order to understand how PTHrP mRNA is stabilized by TGF-β, we first sought to elucidate the mechanism(s) that are responsible for the instability of PTHrP isoform 1-141 mRNA. The 3'-UTR of isoform 1-141 contains four AU-rich elements (AREs), which are known to mediate mRNA degradation. We utilized a luciferase reporter system to test whether these four AREs are responsible for the short half-life of PTHrP 1-141 mRNA. Our results demonstrated that ARE elements in the 3'-UTR of PTHrP 1-141 mRNA play a significant role in regulation of the stability of the mRNA. It is known that AREs mediate their effects on mRNA stability through a number of ARE-binding proteins that recruit the exosome, a complex of exonucleases that degrades the mRNA. We identified tristetraproline (TTP) as an RNA-binding protein that may be involved in ARE-mediated degradation of PTHrP 1-141 mRNA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Novel Role of Parathyroid Hormone-Related Protein in the Pathophysiology of the Diabetic Kidney: Evidence from Experimental and Human Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Montserrat Romero

    2013-01-01

    Full Text Available Parathyroid hormone-related protein (PTHrP and its receptor type 1 (PTH1R are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN. In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF-β1. Furthermore, angiotensin II (Ang II, a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.

  13. Parathyroid Hormone-Related Protein (PTHrP): A Key Regulator of Life/Death Decisions by Tumor Cells with Potential Clinical Applications

    Science.gov (United States)

    Luparello, Claudio

    2011-01-01

    Parathyroid hormone-related protein (PTHrP), classically regarded as the mediator of the humoral hypercalcemia of malignancy syndrome, is a polyhormone that undergoes proteolytic processing into smaller bioactive forms. These bioactive forms comprise an N-terminal-as well as midregion-and C-terminal peptides, which have been shown to regulate various biological events, such as survival, proliferation and differentiation, in diverse cell model systems, both normal and pathological. A number of experimental data have demonstrated that PTHrP is also able to modulate tumor-relevant phenotypic expressions, thereby playing a role in early and advanced tumorigenesis, and in the response to treatment. In particular, interest has mainly been focused on the effects of PTHrP on cell proliferation/apoptosis, migration and invasion, which are the main roles involved in cancer development in vivo. The objective of this review is to discuss collectively the literature data on the molecular and biochemical basis of the mechanisms underlying the different, and sometimes opposite, effects exerted by PTHrP on various neoplastic cytotypes, with some final comments on both present and potential utilization of PTHrP as a target for anti-cancer therapy. PMID:24212621

  14. Novel role of parathyroid hormone-related protein in the pathophysiology of the diabetic kidney: evidence from experimental and human diabetic nephropathy.

    Science.gov (United States)

    Romero, Montserrat; Ortega, Arantxa; Olea, Nuria; Arenas, María Isabel; Izquierdo, Adriana; Bover, Jordi; Esbrit, Pedro; Bosch, Ricardo J

    2013-01-01

    Parathyroid hormone-related protein (PTHrP) and its receptor type 1 (PTH1R) are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN). In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF- β 1. Furthermore, angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.

  15. Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats

    DEFF Research Database (Denmark)

    Wronski, T.J.; Ratkus, A.M.; Thomsen, Jesper Skovhus

    2001-01-01

    This study was designed to determine whether sequential treatment with basic fibroblast growth factor (bFGF) and parathyroid hormone (PTH) can restore lost cancellous bone mass and strength at a severely osteopenic skeletal site in aged ovariectomized (OVX) rats. Female Sprague-Dawley rats were...... intravenously (iv) daily with bFGF for 14 days at a dose of 200 microg/kg body weight. At the end of bFGF treatment, one group was killed whereas the other group was subjected to 8 weeks of treatment with synthetic human PTH 1-34 [hPTH(1-34)] consisting of subcutaneous (sc) injections 5 days/week at a dose......-treated control rats, respectively. Treatment of OVX rats for 2 weeks with bFGF alone did not significantly increase tibial cancellous bone volume but induced marked increases in osteoid volume, osteoblast surface, and osteoid surface. Sequential treatment of aged OVX rats with bFGF and PTH increased tibial...

  16. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content.

    Science.gov (United States)

    Dror, Daphna K; King, Janet C; Fung, Ellen B; Van Loan, Marta D; Gertz, Erik R; Allen, Lindsay H

    2012-02-01

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status (25(OH)D), parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose of the present study was to investigate the relationships between maternal and cord 25(OH)D, PTH, BALP, and WBBMC in newborns in a multiethnic population in Oakland, California and to evaluate the predictive value of the biochemical indices as indicators of WBBMC. Maternal and cord blood were collected from 80 mother-infant pairs and infant WBBMC was measured by dual energy X-ray absorptiometry 8-21 days post-birth. Cord PTH and BALP were each inversely correlated with infant WBBMC (r = -0.28, p = 0.01 and r = -0.26, p = 0.02) and with cord 25(OH)D (r = -0.24, p = 0.03 and r = -0.34, p = 0.002), while cord 25(OH)D and unadjusted or weight-adjusted WBBMC were not significantly correlated with one other. In multivariate regression modeling, infant WBBMC was most strongly predicted by infant weight (p feto-maternal 25(OH)D, cord PTH and BALP, and early infant WBBMC, though neither feto-maternal 25(OH)D nor the measured biochemical indices were suitable indicators of WBBMC.

  17. N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a novel delivery system for parathyroid hormone-related protein 1-34.

    Science.gov (United States)

    Zhao, Sheng-hao; Wu, Xiao-ting; Guo, Wei-chun; Du, Yu-min; Yu, Ling; Tang, Jin

    2010-06-30

    Chitosan (CS) and epoxy propyl trimethyl ammonium chloride (EPTAC) were used to prepare the water-soluble N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC). HTCC and sodium tripolyphosphate (TPP) were mixed to form HTCC nanoparticles based on ionic gelation. Parathyroid hormone-related protein 1-34 (PTHrP1-34) was incorporated into the HTCC nanoparticles. The particle size and morphology of nanoparticles were determined by transmission electron microscopy (TEM). HTCC/PTHrP1-34 nanoparticles were 100-180 nm in size and their encapsulation efficiency and loading capacity were related to HTCC concentration, TPP concentration and initial concentration of PTHrP1-34. Relatively optimum encapsulation efficiency (78.4%) and loading capacity (13.7%) of PTHrP1-34 is achieved, and the in vitro release profile of PTHrP1-34 from nanoparticles has an initial burst, which is followed up by a slow release phase. These studies showed that HTCC/PTHrP1-34 nanoparticles are suitable for the treatment of osteoporosis, because of their slow-continuous-release properties, and the relevant in vivo experiments and clinical trials should be further studied.

  18. A case report: Giant cystic parathyroid adenoma presenting with parathyroid crisis after Vitamin D replacement

    Directory of Open Access Journals (Sweden)

    Asghar Ali

    2012-07-01

    Full Text Available Abstract Background Parathyroid adenoma with cystic degeneration is a rare cause of primary hyperparathyroidism. The clinical and biochemical presentation may mimic parathyroid carcinoma. Case presentation We report the case of a 55 year old lady, who had longstanding history of depression and acid peptic disease. Serum calcium eight months prior to presentation was slightly high, but she was never worked up. She was found to be Vitamin D deficient while being investigated for generalized body aches. A month after she was replaced with Vitamin D, she presented to us with parathyroid crisis. Her corrected serum calcium was 23.0 mg/dL. She had severe gastrointestinal symptoms and acute kidney injury. She had unexplained consistent hypokalemia until surgery. Neck ultrasound and CT scan revealed giant parathyroid cyst extending into the mediastinum. After initial medical management for parathyroid crisis, parathyroid cystic adenoma was surgically excised. Her serum calcium, intact parathyroid hormone, creatinine and potassium levels normalized after surgery. Conclusion This case of parathyroid crisis, with very high serum calcium and parathyroid hormone levels, is a rare presentation of parathyroid adenoma with cystic degeneration. This case also highlights that Vitamin D replacement may unmask subclinical hyperparathyroidism. Consistent hypokalemia until surgery merits research into its association with hypercalcemia.

  19. 甲状旁腺激素与雌激素对去势雌性大鼠牙槽骨代谢的影响%Influence of parathyroid hormone and estrogen on alveolar bone metabolism of castrated female rats

    Institute of Scientific and Technical Information of China (English)

    孙哲; 林志勇; 白广亮; 狄婧; 姜丽霞

    2014-01-01

    Objective To investigate the influence of parathyroid hormone and estrogen on alveolar bone metabolism of castrated female rats. Methods Sixty-six female Wistar rats which were healthy and 4 months old were divided into two groups, with group SHAM (n=18) and group ovariectomy (OVX) (n=48). After 8 weeks of ovariectomy, the osteoporosis model was confirmed by examing 8 ovariectomized and sham-operated rats. The rest 10 rats in group SHAM were the control group (group A). The rest 40 rats in group OVX were divided into ovariectomized group (group B), ovariectomized and treated with estrogen (group C), ovariectomized and treated with parathyroid hormone (group D), ovariectomized and treated with estrogen and parathyroid hormone (group E) at random with 10 in each group. Group A and B injected physiological saline (1 mL·kg-1), group C injected estradiol benzoate (10 μg·kg-1), group D injected parathyroid hormone (20 μg·kg-1), group E injected parathyroid hormone (20 μg·kg-1) and estradiol benzoate (10 μg·kg-1). The intraperitoneal injection were maken every other day to rats in each group, which continued for 8 weeks. The bone mineral density (BMD), bone histomorphology and serum Ca, P, alkaline phosphatase (ALP) were measured after therapy. Results After 8 weeks of ovariectomy, the lumbar BMD of ovariectomized rats were significantly declined compared with those of the sham-operated rats (P0.05). ALP values in group B was significantly higher than that in group A (P0.05),B组ALP值较A组明显升高(P<0.05)。结论间歇性、小剂量注射甲状旁腺激素能增加去势大鼠牙槽骨的骨密度和改善骨结构,与雌激素联合使用对骨质疏松的治疗有协同作用。

  20. Parathyroid carcinoma

    DEFF Research Database (Denmark)

    Qvist, N; Krøll, L; Ladefoged, C;

    1986-01-01

    Parathyroid carcinoma is a slow growing tumor, and the patients most often die from complications to the hypercalcemia. Therefore, any attempt should be made to remove local recurrence and metastasis surgically, as medical treatment is disappointing. A case treated with extensive vascular surgery...

  1. Associations between dietary acrylamide intake and plasma sex hormone levels

    Science.gov (United States)

    Hogervorst, Janneke G.; Fortner, Renee T.; Mucci, Lorelei A.; Tworoger, Shelley S.; Eliassen, A. Heather; Hankinson, Susan E.; Wilson, Kathryn M.

    2013-01-01

    Background The rodent carcinogen acrylamide was discovered in 2002 in commonly consumed foods. Epidemiological studies have observed positive associations between acrylamide intake and endometrial, ovarian and breast cancer risks, which suggests that acrylamide may have sex-hormonal effects. Methods We cross-sectionally investigated the relationship between acrylamide intake and plasma levels of sex hormones and SHBG among 687 postmenopausal and 1300 premenopausal controls from nested case-control studies within the Nurses’ Health Studies. Results There were no associations between acrylamide and sex hormones or SHBG among premenopausal women overall or among never-smokers. Among normal-weight premenopausal women, acrylamide intake was statistically significantly positively associated with luteal total and free estradiol levels. Among postmenopausal women overall and among never-smokers, acrylamide was borderline statistically significantly associated with lower estrone sulfate levels but not with other estrogens, androgens, prolactin or SHBG. Among normal weight women, (borderline) statistically significant inverse associations were noted for estrone, free estradiol, estrone sulfate, DHEA, and prolactin, while statistically significant positive associations for testosterone and androstenedione were observed among overweight women. Conclusions Overall, this study did not show conclusive associations between acrylamide intake and sex hormones that would lend unequivocal biological plausibility to the observed increased risks of endometrial, ovarian and breast cancer. The association between acrylamide and sex hormones may differ by menopausal and overweight status. We recommend other studies investigate the relationship between acrylamide and sex hormones in women, specifically using acrylamide biomarkers. Impact The present study showed some interesting associations between acrylamide intake and sex hormones that urgently need confirmation. PMID:23983241

  2. Parathyroid Hormone-Related Protein Interacts With the Transforming Growth Factor-β/Bone Morphogenetic Protein-2/Gremlin Signaling Pathway to Regulate Proinflammatory and Profibrotic Mediators in Pancreatic Acinar and Stellate Cells.

    Science.gov (United States)

    Bhatia, Vandanajay; Cao, Yanna; Ko, Tien C; Falzon, Miriam

    2016-01-01

    Transforming growth factor β (TGF-β) regulates immune and fibrotic responses of chronic pancreatitis. The bone morphogenetic protein 2 (BMP-2) antagonist gremlin is regulated by TGF-β. Parathyroid hormone-related protein (PTHrP) levels are elevated in chronic pancreatitis. Here, we investigated the cross-talk between TGF-β/BMP-2/gremlin and PTHrP signaling. Reverse transcription/real-time polymerase chain reaction, chromatin immunoprecipitation, Western blotting, and transient transfection were used to investigate PTHrP regulation by TGF-β and BMP-2 and gremlin regulation by PTHrP. The PTHrP antagonist PTHrP (7-34) and acinar cells with conditional Pthrp gene deletion (PTHrP) were used to assess PTHrP's role in the proinflammatory and profibrotic effects of TGF-β and gremlin. Transforming growth factor β increased PTHrP levels in acinar cells and pancreatic stellate cells (PSCs) through a Smad3-dependent pathway. Transforming growth factor β's effects on levels of IL-6 and intercellular adhesion molecule 1 (ICAM-1) (acinar cells) and procollagen I and fibronectin (PSCs) were inhibited by PTHrP (7-34). PTHrP suppressed TGF-β's effects on IL-6 and ICAM-1. Parathyroid hormone-related hormone increased gremlin in acinar cells, and inhibiting gremlin action suppressed TGF-β's and PTHrP's effects on IL-6 and ICAM-1. Transforming growth factor β-mediated gremlin up-regulation was suppressed in PTHrP cells. Bone morphogenetic protein 2 suppressed PTHrP levels in PSCs. Parathyroid hormone-related hormone functions as a novel mediator of the proinflammatory and profibrotic effects of TGF-β. Transforming growth factor β and BMP-2 regulate PTHrP expression, and PTHrP regulates gremlin levels.

  3. 甲状旁腺激素相关肽与糖尿病性骨质疏松性骨折:你知道哪些?%Parathyroid hormone related peptides affect diabetic osteoporotic fracture

    Institute of Scientific and Technical Information of China (English)

    刘岸龙; 邱勇; 王银河

    2014-01-01

    背景:甲状旁腺激素相关肽是在伴有高钙血症的癌症患者中被发现的一种多肽类物质,作为一种潜在的促进骨折愈合的药物,具有重要的临床应用价值。  目的:探讨甲状旁腺激素相关肽在糖尿病性骨质疏松骨折中的调控作用。  方法:计算机检索医脉通中文文献数据库以及PubMed 1990至2013年期间有关甲状旁腺激素相关肽的文章。检索词分别为“甲状旁腺激素相关肽,糖尿病,骨质疏松性骨折”和“Parathyroid hormone related peptides, diabetes,osteoporotic fracture”。初检得到1279篇文献,最终纳入文章43篇进入结果分析。  结果与结论:动物实验和临床研究表明:甲状旁腺激素相关肽对于骨折愈合有明显的促进作用,同时对于糖尿病相关的胰岛细胞功能缺陷有良好的修复作用;其类似物甲状旁腺激素已作为治疗骨折的临床用药。但是甲状旁腺激素相关肽的临床用药剂量,骨折愈合不同分期的具体使用方法包括联合用药还有待进一步研究。%BACKGROUND:Parathyroid hormone related peptides are accompanied by the syndrome of humoral hypercalcemia of malignancy. As a potential therapeutic drug of promoting the healing of bone fracture, parathyroid hormone related peptides have significant clinical application value. OBJECTIVE:To explore the regulating effects of parathyroid hormone related peptides in diabetic osteoporotic fracture METHODS:A computer-based online research of CNKI and PubMed databases was performed to col ect articles published between 1990 and 2013, with the key words“parathyroid hormone related peptides, diabetes, osteoporotic fracture”in Chinese and English. There were 1 279 articles after the initial survey. A total of 43 articles were included according inclusion and exclusion criteria. RESULTS AND CONCLUSION:Animal and clinical experiments demonstrated that parathyroid hormone related

  4. Novel effects of hormonal contraceptive use on the plasma proteome.

    Directory of Open Access Journals (Sweden)

    Andrea R Josse

    Full Text Available BACKGROUND: Hormonal contraceptive (HC use may increase cardiometabolic risk; however, the effect of HC on emerging cardiometabolic and other disease risk factors is not clear. OBJECTIVES: To determine the association between HC use and plasma proteins involved in established and emerging disease risk pathways. METHOD: Concentrations of 54 high-abundance plasma proteins were measured simultaneously by LC-MRM/MS in 783 women from the Toronto Nutrigenomics and Health Study. C-reactive protein (CRP was measured separately. ANCOVA was used to test differences in protein concentrations between users and non-users, and among HC users depending on total hormone dose. Linear regression was used to test the association between duration (years of HC use and plasma protein concentrations. Principal components analysis (PCA was used to identify plasma proteomic profiles in users and non-users. RESULTS: After Bonferroni correction, 19 proteins involved in inflammation, innate immunity, coagulation and blood pressure regulation were significantly different between users and non-users (P<0.0009. These differences were replicated across three distinct ethnocultural groups. Traditional markers of glucose and lipid metabolism were also significantly higher among HC users. Neither hormone dose nor duration of use affected protein concentrations. PCA identified 4 distinct proteomic profiles in users and 3 in non-users. CONCLUSION: HC use was associated with different concentrations of plasma proteins along various disease-related pathways, and these differences were present across different ethnicities. Aside from the known effect of HC on traditional biomarkers of cardiometabolic risk, HC use also affects numerous proteins that may be biomarkers of dysregulation in inflammation, coagulation and blood pressure.

  5. Substernal oxyphil parathyroid adenoma producing PTHrP with hypercalcemia and normal PTH level

    Directory of Open Access Journals (Sweden)

    Rubini Domenico

    2008-02-01

    Full Text Available Abstract Background Parathyroid adenoma is the most common cause of primary hyperparathyroidism. Preoperative serum calcium and intact-parathyroid hormone levels are the most useful diagnostic parameters that allow differentiating primary hyperparathyroidism from non-parathyroid-dependent hypercalcemia. Parathyroidectomy is the definitive treatment for primary hyperparathyroidism. Approximately 5% of patients who underwent parathyroidectomy present with persistent or recurrent hyperparathyroidism due to ectopic localization of the adenoma. Functioning oxyphil parathyroid adenoma is an uncommon histological form, seldom causing primary hyperparathyroidism. Parathyroid adenoma with hypercalcemia exhibiting normal parathyroid hormone level is rare. An incidence of 5% to 33% has been documented in the literature; no etiologic explanation has been given. In 1987, parathyroid-hormone-related peptide was isolated as a causative factor of humeral hypercalcemia of malignancy. The presence of parathyroid-hormone-related peptide in parathyroid tissue under normal and pathological conditions has been described in the literature; however, its role in causing hyperparathyroidism has not yet been defined. Case presentation We present a case of persistent hypercalcemia with a normal level of intact-parathyroid hormone due to a substernal parathyroid adenoma, treated with radioguided parathyroidectomy. The final histological diagnosis was oxyphil adenoma, positive for parathyroid-hormone-related peptide antigens. Conclusion In clinical practice, this atypical biochemical presentation of primary hyperparathyroidism should be considered in the differential diagnosis of hypercalcemia. The parathyroid-hormone-related peptide should be considered not only in the presence of malignancy.

  6. Effect of high fat diet on pulmonary expression of parathyroid hormone-related protein and its downstream targets

    Directory of Open Access Journals (Sweden)

    Learta Oruqaj

    2016-10-01

    Significance: This study established that physiological regulation of leptin plasma levels by high fat diet affects the pulmonary PTHrP expression and of PTHrP downstream targets. Modification of pulmonary expression of PTH-1 receptors by high fat diet after myocardial infarction suggests that the identified interaction may participate in the obesity paradox.

  7. Parathyroid diseases and animal models.

    Science.gov (United States)

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  8. [Changes of plasma endocrine hormone in pilots under Coriolis acceleration].

    Science.gov (United States)

    Dai, Y; Ji, G; Huang, Y; Sun, X; Dai, F

    1998-04-01

    Plasma endocrine hormones were studied in both 24 motion sickness (orthostatic intolerance) and healthy pilots. Coriolis acceleration of 3.75, 5.00 and 6.25 pi 2 cm/s2 were given with intervals of 3-4 min AT-II, insulin, cortisol, Aldosterone and gastrin were determined by radioimmunoassay. It was found that aldosterone, AT-II, gastrin increased with increase of coriolis acceleration in all pilots. (P < 0.05), but cortisol and insulin only increased in healthy pilots (P < 0.05). It suggests excitation of the autonomic nervous system might be insufficient in orthostatic intolerant pilots and that determination of endocrine hormones may be useful in the evaluation of autonomic nervous activities.

  9. Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels

    Science.gov (United States)

    Ryder, K. D.; Duncan, R. L.

    2001-01-01

    Osteoblasts respond to both fluid shear and parathyroid hormone (PTH) with a rapid increase in intracellular calcium concentration ([Ca2+]i). Because both stimuli modulate the kinetics of the mechanosensitive cation channel (MSCC), we postulated PTH would enhance the [Ca2+]i response to fluid shear by increasing the sensitivity of MSCCs. After a 3-minute preflow at 1 dyne/cm2, MC3T3-E1 cells were subjected to various levels of shear and changes in [Ca2+]i were assessed using Fura-2. Pretreatment with 50 nM bovine PTH(1-34) [bPTH(1-34)] significantly enhanced the shear magnitude-dependent increase in [Ca2+]i. Gadolinium (Gd3+), an MSCC blocker, significantly inhibited the mean peak [Ca2+]i response to shear and shear + bPTH(1-34). Nifedipine (Nif), an L-type voltage-sensitive Ca2+ channel (VSCC) blocker, also significantly reduced the [Ca2+]i response to shear + bPTH(1-34), but not to shear alone, suggesting VSCC activation plays an interactive role in the action of these stimuli together. Activation of either the protein kinase C (PKC) or protein kinase A (PKA) pathways with specific agonists indicated that PKC activation did not alter the Ca2+ response to shear, whereas PKA activation significantly increased the [Ca2+]i response to lower magnitudes of shear. bPTH(1-34), which activates both pathways, induced the greatest [Ca2+]i response at each level of shear, suggesting an interaction of these pathways in this response. These data indicate that PTH significantly enhances the [Ca2+]i response to shear primarily via PKA modulation of the MSCC and VSCC.

  10. Vitamin D3 Decreases Parathyroid Hormone in HIV-Infected Youth Being Treated With Tenofovir: A Randomized, Placebo-Controlled Trial

    Science.gov (United States)

    Stephensen, Charles B.; Hazra, Rohan; Flynn, Patricia M.; Wilson, Craig M.; Rutledge, Brandy; Bethel, James; Pan, Cynthia G.; Woodhouse, Leslie R.; Van Loan, Marta D.; Liu, Nancy; Lujan-Zilbermann, Jorge; Baker, Alyne; Kapogiannis, Bill G.; Mulligan, Kathleen

    2012-01-01

    Background. The study goal was to determine the effect of vitamin D (VITD) supplementation on tubular reabsorption of phosphate (TRP), parathyroid hormone (PTH), bone alkaline phosphatase (BAP), and C-telopeptide (CTX) in youth infected with human immunodeficiency virus (HIV) receiving and not receiving combination antiretroviral therapy (cART) containing tenofovir disoproxil fumarate (TDF). Methods. This randomized, double-blind, placebo-controlled multicenter trial enrolled HIV-infected youth 18–25 years based on stable treatment with cART containing TDF (n = 118) or no TDF (noTDF; n = 85), and randomized within those groups to vitamin D3, 50 000 IU (n = 102) or placebo (n = 101), administered at 0, 4, and 8 weeks. Outcomes included change in TRP, PTH, BAP, and CTX from baseline to week 12 by TDF/noTDF; and VITD/placebo. Results. At baseline, VITD and placebo groups were similar except those on TDF had lower TRP and higher PTH and CTX. At week 12, 95% in the VITD group had sufficient serum 25-hydroxy vitamin D (25-OHD; ≥20 ng/mL), increased from 48% at baseline, without change in placebo (P < .001). PTH decreased in the TDF group receiving VITD (P = .031) but not in the noTDF group receiving VITD, or either placebo group. The decrease in PTH with VITD in those on TDF occurred with insufficient and sufficient baseline 25-OHD (mean PTH change, −7.9 and −6.2 pg/mL; P = .031 and .053, respectively). Conclusions. In youth on TDF, vitamin D3 supplementation decreased PTH, regardless of baseline 25-OHD concentration. Clinical Trials Registration. NCT00490412. PMID:22267714

  11. Serum 25-Hydroxyvitamin D and Parathyroid Hormone Levels in Non-Lactating Women with Post-Partum Thyroiditis: The Effect of L-Thyroxine Treatment.

    Science.gov (United States)

    Krysiak, Robert; Kowalska, Beata; Okopien, Bogusław

    2015-06-01

    Vitamin D deficiency seems to be implicated in the onset and progression of some autoimmune disorders. No previous study has investigated vitamin D homeostasis in post-partum thyroiditis. We compared 25-hydroxyvitamin D and parathyroid hormone (PTH) levels between four groups of non-lactating women who gave birth within 12 months before the beginning of the study: hypothyroid women with post-partum thyroiditis (group A; n = 14), euthyroid females with post-partum thyroiditis (group B; n = 14), women with non-autoimmune hypothyroidism (group C; n = 16) and healthy euthyroid females without thyroid autoimmunity (group D; n = 15). In the second part of the study, groups A and C were treated for 6 months with L-thyroxine. Serum levels of 25-hydroxyvitamin D were lower, while PTH higher in patients with post-partum thyroiditis than in patients without thyroid autoimmunity. They were also lower (25-hydroxyvitamin D) or higher (PTH) in group A than in group B, as well as in group C in comparison with group D. L-thyroxine treatment increased 25-hydroxyvitamin D and reduced PTH levels only in hypothyroid women with post-partum thyroiditis. Baseline levels of 25-hydroxyvitamin D correlated with thyroid antibody titres, thyroid function and circulating PTH levels, while the effect of L-thyroxine on serum levels of this vitamin correlated with the changes in thyroid antibody titres and PTH levels. The results of our study suggest the association of vitamin D status with post-partum thyroiditis and L-thyroxine treatment of this disorder.

  12. Parathyroid hormone-mitogen-activated protein kinase axis exerts fibrogenic effect of connective tissue growth factor on human renal proximal tubular cells

    Institute of Scientific and Technical Information of China (English)

    GUO Yun-shan; YUAN Wei-jie; ZHANG Ai-ping; DING Yao-hai; WANG Yan-xia

    2010-01-01

    Background Enhanced and prolonged expression of connective tissue growth factor (CTGF) is associated with kidney fibrosis. Parathyroid hormone (PTH) is involved in the genesis of disturbed calcium/phosphate metabolism and ostitis fibrosa in renal failure. PTH activated mitogen-activated protein kinase (MAPK) signaling pathway is present in renal tubular cells. The aim of this study was to identify the mechanism how the signal is transduced to result in extracellular signal-regulated protein kinase (ERK) activation, leading to upregulation of CTGF.Methods The levels of CTGF mRNA and protein in human kidney proximal tubular cells (HK-2) treated with PTH in the presence or absence of the MAPK inhibitor PD98059 were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) and immunoblotting assay. The activation of the CTGF promoter in HK-2 cells was determined by the dual-luciferase assay. The effects of the protein kinase A (PKA) activator 8-Br-cAMP and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) on MAPK phosphorylation, and the effects of the PKA inhibitor H89 and PKC inhibitor calphostin C on MAPK phosphorylation and CTGF expression were detected by immunoblotting assay.Results PD98059 inhibited the PTH stimulated expression of CTGF, which strongly suggested that the MAPK signaling pathway plays an important role in the PTH-induced CTGF upregulation in renal tubular cells. A PKA activator as well as PKC activators induced MAPK phosphorylation, and both PKA and PKC inhibitors antagonized PTH-induced MAPK phosphorylation and CTGF expression.Conclusion CTGF expression is upregulated by PTH through a PKC/PKA-ERK-dependent pathway.

  13. Serum Parathyroid Hormone Responses to Vitamin D Supplementation in Overweight/Obese Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials.

    Science.gov (United States)

    Lotito, Ashley; Teramoto, Masaru; Cheung, May; Becker, Kendra; Sukumar, Deeptha

    2017-03-06

    Obesity is often associated with vitamin D deficiency and secondary hyperparathyroidism. Vitamin D supplementation typically leads to the reductions in serum parathyroid hormone (PTH) levels, as shown in normal weight individuals. Meanwhile, the dose of vitamin D supplementation for the suppression of PTH may differ in overweight and obese adults. We conducted a systematic review and meta-analysis of randomized controlled trials to determine the dose of vitamin D supplementation required to suppress PTH levels in overweight/obese individuals. We identified 18 studies that examined overweight or obese healthy adults who were supplemented with varying doses of vitamin D3. The primary outcomes examined were changes in PTH and serum 25-hydroxyvitamin D (25OHD) levels from baseline to post-treatment. The results of the meta-analysis showed that there was a significant treatment effect of vitamin D supplementation on PTH, total standardized mean difference (SMD) (random effects) = -0.38 (95% CI = -0.56 to -0.20), t = -4.08, p D supplementation was also found on 25OHD, total SMD (random effects) = 2.27 (95% CI = 1.48 to 3.06) t = 5.62, p D3 ranging from 400 IU to 5714 IU, showed that 1000 IU of vitamin D supplementation best suppressed serum PTH levels, total SMD = -0.58, while vitamin D supplementation with 4000 IU showed the greatest increase in serum 25OH levels. Vitamin D and calcium supplementation of 700 IU and 500 mg, respectively, also showed a significant treatment effect on the suppression of PTH with a total SMD = -5.30 (95% CI = -9.72 to -0.88). In conclusion, the meta analysis of available clinical trials indicates that 1000 IU vitamin D supplementation can suppress serum PTH levels, while 4000 IU of vitamin D was associated with the largest increase in serum 25OHD levels in the overweight and obese population.

  14. Comparison of parathyroid hormone (1-34) and elcatonin in postmenopausal women with osteoporosis: an 18-month randomized, multicenter controlled trial in China.

    Science.gov (United States)

    Li, Ying; Xuan, Miao; Wang, Bo; Yang, Jun; Zhang, Hong; Zhang, Xiu-zhen; Guo, Xiao-hui; Lü, Xiao-feng; Xue, Qing-yun; Yang, Gang-yi; Ji, Qiu-he; Liu, Zhi-min; Li, Cheng-jiang; Wu, Tian-feng; Sheng, Zheng-yan; Li, Peng-qiu; Tong, Jiu-cui

    2013-02-01

    Recombinant human parathyroid hormone (1-34) (rhPTH (1-34)) is the first agent in a unique class of anabolic therapies acting on the skeleton. The efficacy and safety of long-term administration of rhPTH (1-34) in Chinese postmenopausal women had not been evaluated. This study compared the clinical efficacy and safety of rhPTH (1-34) with elcatonin for treating postmenopausal women with osteoporosis in 11 urban areas of China. A total of 453 postmenopausal women with osteoporosis were enrolled in an 18-month, multi-center, randomized, controlled study. They were randomized to receive either rhPTH (1-34) 20 µg (200 U) daily for 18 months, or elcatonin 20 U weekly for 12 months. Lumbar spine (L1-4) and femoral neck bone mineral density (BMD), fracture rate, back pain as well as biochemical markers of bone turnover were measured. Adverse events were recorded. rhPTH (1-34) increased lumbar BMD significantly more than did elcatonin after 6, 12, and 18 months of treatment (4.3% vs. 1.9%, 6.8% vs. 2.7%, 9.5% vs. 2.9%, P transient and caused no clinical symptoms. Pruritus (8.2% vs. 2.7%, P = 0.044) and redness of injection site (4.4% vs. 0, P = 0.024) were more frequent in rhPTH (1-34). Nausea/vomiting (16.1% vs. 6.2%, P = 0.001) and hot flushes (7.1% vs. 0.6%, P osteoporosis.

  15. The expression of insulin-like growth factor-Ⅰ mRNA and polypeptide in rat osteoblasts with exposure to parathyroid hormone

    Institute of Scientific and Technical Information of China (English)

    张克勤; 陈家伟; 王美莲; 汪承亚; 李光富; 郑肇熙; 赵人铮

    2003-01-01

    Objective To investigate the insulin-like growth factor-Ⅰ (IGF-Ⅰ) gene and polypeptide expression in cultured rat osteoblast (ROB) and the role of IGF-Ⅰ in mediating the cell-to-cell communication by mimicking the pharmacokinetics of parathyroid hormone (PTH).Methods The ROB was cultured with three kinds of treatment: (1) Control (Ctr), the cells were cultured without PTH during the first 6 hours and the subsequent 42 hours in a 48-hour cycle; (2) Intermittent exposure to PTH (Itm), the cells were cultured with PTH during the first 6 hours, but without PTH in the subsequent 42 hours; and (3) Continuous exposure to PTH (Ctu), the cells were cultured with PTH during the first 6 hours and the subsequent 42 hours.Results The bone-forming activities of ROB were increased in Itm and inhibited in Ctu. The IGF-Ⅰ mRNA content in Itm cells was elevated only during the first 6 hours and that in Ctu cells was elevated at any time during an incubation cycle. The free IGF-Ⅰ concentration in the medium of Itm cells was generally higher and that of the Ctu cells was generally lower compared with those of the Ctr cells. The IGF-Ⅰ antibody significantly reduced the alkaline phosphatase activity within the cells of Ctr and Itm.Conclusions PTH rapidly and constantly stimulates the IGF-Ⅰ gene transcription of osteoblast. There was an obvious discrepancy between the IGF-Ⅰ mRNA content within the osteoblast and the free IGF-Ⅰ level around the osteoblast in either mode of PTH action. The IGF-Ⅰ might be important for osteoblast-osteoblast communication and bone-forming activity, not only in intermittent PTH administration, but also in the physiological functioning of osteoblasts.

  16. Distribution of genes for parathyroid hormone (PTH)-related peptide, Indian hedgehog, PTH receptor and patched in the process of experimental spondylosis in mice.

    Science.gov (United States)

    Nakase, Takanobu; Ariga, Kenta; Meng, Wenxiang; Iwasaki, Motoki; Tomita, Tetsuya; Myoui, Akira; Yonenobu, Kazuo; Yoshikawa, Hideki

    2002-07-01

    Little is known about the molecular mechanisms underlying the process of spondylosis. The authors determined the extent of genetic localization of major regulators of chondrogenesis such as Indian hedgehog (Ihh) and parathyroid hormone (PTH)-related peptide (PTHrP) and their receptors during the development of spondylosis in their previously established experimental mouse model. Experimental spondylosis was induced in 5-week-old ICR mice. The cervical spines were chronologically harvested, and histological sections were prepared. Messenger (m) RNA for PTHrP, Ihh, PTH receptor (PTHR; a receptor for PTHrP), patched (Ptc; a receptor for Ihh), bone morphogenetic protein (BMP)-6, and collagen type X (COL10; a marker for mature chondrocyte) was localized in the tissue sections by performing in situ hybridization. In the early stage, mRNA for COL10, Ihh, and BMP-6 was absent; however, mRNA for PTHrP, PTHR, and Ptc was detected in the anterior margin of the cervical discs. In the late stage, evidence of COL10 mRNA began to be detected, and transcripts for Ihh, PTHrP, and BMP-6 were localized in hypertrophic chondrocytes adjacent to the bone-forming area in osteophyte. Messenger RNA for Ptc and PTHR continued to localize at this stage. In control mice, expression of these genes was absent. The localization of PTHrP, Ihh, BMP-6, and the receptors PTHR and Ptc demonstrated in the present experimental model indicates the possible involvement of molecular signaling by PTHrP (through the PTHR), Ihh (through the Ptc), and BMP-6 in the regulation of chondrocyte maturation leading to endochondral ossification in spondylosis.

  17. Developmental upregulation of human parathyroid hormone (PTH)/PTH-related peptide receptor gene expression from conserved and human-specific promoters.

    Science.gov (United States)

    Bettoun, J D; Minagawa, M; Hendy, G N; Alpert, L C; Goodyer, C G; Goltzman, D; White, J H

    1998-09-01

    The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR) functions in skeletal development and mediates an array of other physiological responses modulated by PTH and PTHrP. PTHR gene transcription in mouse is controlled by two promoters: P1, which is highly and selectively active in kidney; and P2, which functions in a variety of tissues. P1 and P2 are conserved in human tissue; however, P1 activity in kidney is weak. We have now identified a third human promoter, P3, which is widely expressed and accounts for approximately 80% of renal PTHR transcripts in the adult. No P3 activity was detected in mouse kidney, indicating that renal PTHR gene expression is controlled by different signals in human and mouse. During development, only P2 is active at midgestation in many human tissues, including calvaria and long bone. This strongly suggests that factors regulating well conserved P2 control PTHR gene expression during skeletal development. Our results indicate that human PTHR gene transcription is upregulated late in development with the induction of both P1 and P3 promoter activities. In addition, P2-specific transcripts are differentially spliced in a number of human cell lines and adult tissues, but not in fetal tissues, giving rise to a shorter and less structured 5' UTR. Thus, our studies show that both human PTHR gene transcription and mRNA splicing are developmentally regulated. Moreover, our data indicate that renal and nonrenal PTHR gene expression are tightly coordinated in humans.

  18. Role of amino acid side chains in region 17-31 of parathyroid hormone (PTH) in binding to the PTH receptor.

    Science.gov (United States)

    Dean, Thomas; Khatri, Ashok; Potetinova, Zhanna; Willick, Gordon E; Gardella, Thomas J

    2006-10-27

    The principal receptor-binding domain (Ser(17)-Val(31)) of parathyroid hormone (PTH) is predicted to form an amphiphilic alpha-helix and to interact primarily with the N-terminal extracellular domain (N domain) of the PTH receptor (PTHR). We explored these hypotheses by introducing a variety of substitutions in region 17-31 of PTH-(1-31) and assessing, via competition assays, their effects on binding to the wild-type PTHR and to PTHR-delNt, which lacks most of the N domain. Substitutions at Arg(20) reduced affinity for the intact PTHR by 200-fold or more, but altered affinity for PTHR-delNt by 4-fold or less. Similar effects were observed for Glu substitutions at Trp(23), Leu(24), and Leu(28), which together form the hydrophobic face of the predicted amphiphilic alpha-helix. Glu substitutions at Arg(25), Lys(26), and Lys(27) (which forms the hydrophilic face of the helix) caused 4-10-fold reductions in affinity for both receptors. Thus, the side chains of Arg(20), together with those composing the hydrophobic face of the ligand's putative amphiphilic alpha-helix, contribute strongly to PTHR-binding affinity by interacting specifically with the N domain of the receptor. The side chains projecting from the opposite helical face contribute weakly to binding affinity by different mechanisms, possibly involving interactions with the extracellular loop/transmembrane domain region of the receptor. The data help define the roles that side chains in the binding domain of PTH play in the PTH-PTHR interaction process and provide new clues for understanding the overall topology of the bimolecular complex.

  19. Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells.

    Science.gov (United States)

    López-Herradón, Ana; Portal-Núñez, Sergio; García-Martín, Adela; Lozano, Daniel; Pérez-Martínez, Francisco C; Ceña, Valentín; Esbrit, Pedro

    2013-08-01

    Recent in vivo findings suggest that the bone sparing effect of parathyroid hormone-related protein (PTHrP) in diabetic mice might occur at least in part through targeting a suppressed Wnt/β-catenin pathway in osteoblasts. We here aimed to examine the inhibitory action of a high glucose environment on specific components of the canonical Wnt pathway, and the putative compensatory effects of PTHrP, in osteoblastic cell cultures. Mouse osteoblastic MC3T3-E1 cells and primary cultures of fetal mouse calvaria were exposed to normal (5.5 mM) or high (25 mM) D-glucose (HG), with or without PTHrP (1-36) or PTHrP (107-139) for different times. In some experiments, MC3T3-E1 cells were incubated with the Wnt pathway activators Wnt3a and LiCl, or were transfected with plasmids encoding either a mutated β-catenin that cannot be targeted for degradation or a human PTHrP (-36/+139) cDNA, or the corresponding empty plasmid, in the presence or absence of HG. The gene expression of Wnt3a and low density receptor-like proteins (LRP)-5 and 6, as well as β-catenin protein stabilization and β-catenin-dependent transcription activity were evaluated. Oxidative stress status under HG condition was also assessed. The present data demonstrate that HG can target different components of the canonical Wnt pathway, while β-catenin degradation appears to be a key event leading to inhibition of Wnt/β-catenin signaling in mouse osteoblastic cells. Both PTHrP peptides tested were able to counteract this deleterious action of HG. These in vitro findings also provide new clues to understand the underlying mechanisms whereby PTHrP can increase bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  20. Methylation of specific CpG sites in the P2 promoter of parathyroid hormone-related protein determines the invasive potential of breast cancer cell lines.

    Science.gov (United States)

    Tost, Jörg; Hamzaoui, Hinda; Busato, Florence; Neyret, Aymeric; Mourah, Samia; Dupont, Jean-Michel; Bouizar, Zhor

    2011-08-01

    Parathyroid hormone-related protein (PTHrP) is upregulated in primary breast cancers and a major candidate for osteoclastic bone resorption present at sites of breast cancer to bone metastases. Using a human model of mammary epithelial cell lines differing in tumorigenicity and PTHrP expression, we investigated the role of epigenetic modifications for PTHrP expression. Quantitative analysis of the DNA methylation patterns at a total of 104 CpGs in the promoter region of PTHrP by pyrosequencing showed the absence of methylation in all analyzed cell lines in the large CpG island upstream of exon 1C. In the second intron of promoter 2 (P2) a region was identified containing 4 CpG nucleotides for which differential methylation correlated with the PTHrP expression level. The functional importance of this control mechanism was confirmed by the ability of the demethylating agent 5'-azacytidine to induce PTHrP mRNA and iPTHrP protein expression in previously non-expressing cell lines and increase their production by metastatic NS2T2A1 cells. In particular, transcription from P2 was activated non-tumoral S1T3 cells upon treatment with 5'-azacytidine. Our findings support the hypothesis that the methylation status of specific CpG dinucleotides is the dominant mechanism involved in silencing of PTHrP expression rather than the overall methylation of the CpG island. Methylation of the PTHrP P2 is a potential marker of breast cancer progression and might be used to evaluate the metastatic potential of breast tumors.

  1. Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer.

    Science.gov (United States)

    Zhang, H; Yu, C; Dai, J; Keller, J M; Hua, A; Sottnik, J L; Shelley, G; Hall, C L; Park, S I; Yao, Z; Zhang, J; McCauley, L K; Keller, E T

    2014-05-08

    Prostate cancer (PCa)bone metastases are unique in that majority of them induce excessive mineralized bone matrix, through undefined mechanisms, as opposed to most other cancers that induce bone resorption. Parathyroid hormone-related protein (PTHrP) is produced by PCa cells and intermittent PTHrP exposure has bone anabolic effects, suggesting that PTHrP could contribute to the excess bone mineralization. Wnts are bone-productive factors produced by PCa cells, and the Wnt inhibitor Dickkopfs-1 (DKK1) has been shown to promote PCa progression. These findings, in conjunction with the observation that PTHrP expression increases and DKK1 expression decreases as PCa progresses, led to the hypothesis that PTHrP could be a negative regulator of DKK1 expression in PCa cells and, hence, allow the osteoblastic activity of Wnts to be realized. To test this, we first demonstrated that PTHrP downregulated DKK1 mRNA and protein expression. We then found through multiple mutated DKK1 promoter assays that PTHrP, through c-Jun activation, downregulated the DKK1 promoter through a transcription factor (TCF) response element site. Furthermore, chromatin immunoprecipitation (ChIP) and re-ChIP assays revealed that PTHrP mediated this effect through inducing c-Jun to bind to a transcriptional activator complex consisting of β-catenin, which binds the most proximal DKK1 promoter, the TCF response element. Together, these results demonstrate a novel signaling linkage between PTHrP and Wnt signaling pathways that results in downregulation of a Wnt inhibitor allowing for Wnt activity that could contribute the osteoblastic nature of PCa.

  2. Genetic evidence of the regulatory role of parathyroid hormone-related protein in articular chondrocyte maintenance in an experimental mouse model.

    Science.gov (United States)

    Macica, Carolyn; Liang, Guoying; Nasiri, Ali; Broadus, Arthur E

    2011-11-01

    Parathyroid hormone-related protein (PTHrP) regulates the rate of differentiation of growth chondrocytes and is also expressed in articular chondrocytes. This study tested the hypothesis that PTHrP might have a regulatory role in articular chondrocyte maintenance. Control sequences of growth differentiation factor 5 were used to delete PTHrP from articular chondrocytes in the mid-region of mouse articular cartilage. Mice with conditional deletion of PTHrP (knockout [KO]) and littermate control mice were evaluated for degenerative changes using both a time-course design and destabilization of the medial meniscus (DMM) technique. A total histologic score of degenerative changes was determined for the femoral and tibial articular surfaces (total maximum score of 60). The time-course study revealed degenerative changes in only a minority of the KO mice. In the DMM model, male KO mice were highly susceptible to DMM-induced degenerative changes (mean ± SEM total histologic score 45 ± 2.7 in KO mice versus 23 ± 1.4 in controls; P PTHrP normally functions in a feedback loop with Indian hedgehog (IHH), in which a reduction in one signaling partner induces a compensatory increase in the other. A number of phenotypic and functional markers were documented in KO mice to suggest that the IHH-PTHrP axis is capable of compensating in response to a partial Cre-driven PTHrP deletion, a finding that underscores the need to subject the mouse articular cartilage to a destabilizing challenge in order to elicit frankly degenerative findings. PTHrP may regulate articular chondrocyte maintenance in mice. Copyright © 2011 by the American College of Rheumatology.

  3. The C-terminal fragment of parathyroid hormone-related peptide promotes bone formation in diabetic mice with low-turnover osteopaenia

    Science.gov (United States)

    Lozano, D; Fernández-de-Castro, L; Portal-Núñez, S; López-Herradón, A; Dapía, S; Gómez-Barrena, E; Esbrit, P

    2011-01-01

    BACKGROUND AND PURPOSE Current data suggest that parathyroid hormone (PTH)-related peptide (PTHrP) domains other than the N-terminal PTH-like domain contribute to its role as an endogenous bone anabolic factor. PTHrP-107-139 inhibits bone resorption, a fact which has precluded an unequivocal demonstration of its possible anabolic action in vivo. We thus sought to characterize the osteogenic effects of this peptide using a mouse model of diabetic low-turnover osteopaenia. EXPERIMENTAL APPROACH PTHrP-107-139 was administered to streptozotocin-induced diabetic mice, with or without bone marrow ablation, for 13 days. Osteopaenia was confirmed by dual-energy X-ray absorptiometry and microcomputed tomography analysis. Histological analysis was performed on paraffin-embedded bone tissue sections by haematoxylin/eosin and Masson's staining, and tartrate-resistent acid phosphatase immunohistochemistry. Mouse bone marrow stromal cells and osteoblastic MC3T3-E1 cells were cultured in normal and/or high glucose (HG) medium. Osteogenic and adipogenic markers were assessed by real-time PCR, and PTHrP and the PTH1 receptor protein expression by Western blot analysis. KEY RESULTS PTHrP-107-139 reversed the alterations in bone structure and osteoblast function, and also promoted bone healing after marrow ablation without affecting the number of osteoclast-like cells in diabetic mice. This peptide also reversed the high-glucose-induced changes in osteogenic differentiation in both bone marrow stromal cells and the more differentiated MC3T3-E1 cells. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that PTHrP-107-139 promotes bone formation in diabetic mice. This mouse model and in vitro cell cultures allowed us to identify various anabolic effects of this peptide in this scenario. PMID:21175568

  4. Effects of different dosages of parathyroid hormone-related protein 1-34 on the bone metabolism of the ovariectomized rat model of osteoporosis.

    Science.gov (United States)

    Xu, Jin; Rong, Haiqin; Ji, Hong; Wang, Dong; Wang, Jie; Zhang, Wenwen; Zhang, Yanling

    2013-09-01

    Intermittent and low-dose parathyroid hormone (PTH) injection to stimulate bone formation has been used in the treatment of osteoporosis. The N-terminal fragment 1-34 of PTH is quite similar in structure and function to N-terminal PTH-related protein (PTHrP). PTH(1-34) and PTHrP also share a coreceptor, the PTH/PTHrP receptor. Therefore, some studies have suggested that PTHrP could effectively stimulate bone formation, similar to PTH. We used an ovariectomized (OVX) rat model of osteoporosis to study the effects of PTHrP(1-34) on bone metabolism by measuring bone mineral density (BMD), bone histomorphometrics, and biomechanical parameters. We found that subcutaneous injection of PTHrP(1-34) (40 or 80 μg/kg body weight every day) in OVX rats increased lumbar and femoral BMD, improved bone biomechanical properties, enhanced bone strength, and promoted bone formation. We selected 40 μg/kg as the preferred therapeutic dose of PTHrP(1-34) and investigated the effects of frequency of treatment (per 1, 2, 3, or 7 days) on bone metabolism in OVX rats. We found that injection of PTHrP(1-34) once per day or every other day significantly improved the BMD and strength of OVX rats. Serum calcium and phosphate levels in all treated rats did not vary significantly from control rats. Based on our results, intermittent low-dose PTHrP(1-34) injection promoted bone formation in OVX rats, suggesting a high potential for therapeutic use in osteoporosis patients.

  5. Parathyroid hormone-related protein overexpression protects goat mammary gland epithelial cells from calcium-sensing receptor activation-induced apoptosis.

    Science.gov (United States)

    Li, Hui; Sun, Yongsen; Zheng, Huiling; Li, Lihui; Yu, Qian; Yao, Xiaotong

    2015-01-01

    Normal mammary gland epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), which is the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates parathyroid hormone-related protein (PTHrP) levels in milk and in the circulation, and increases calcium transport into milk. However, very little information is available on the role of CaSR in goat mammary gland epithelial cells (GMECs) apoptosis. In this investigation, the full-length cDNA of CaSR from Xinong Saanen dairy goats was cloned, which contains an open-reading frame of 3,258 bp encoding 1,085 amino acids with a predicted molecular weight of 121.0 kDa and an isoelectric point of 5.65. The amino acid sequence is highly homologous with sheep, and the goat CaSR gene is mapped to chromosome 1. Quantitative real-time PCR suggested that CaSR was predominantly expressed in the heart, kidney and mammary gland. Then, we found the stimulation of CaSR with its activator gadolinium chloride (GdCl3) contributed to increase CaSR mRNA levels in GMECs and simultaneously promoted cell apoptosis, and these effects were abrogated partially by NPS2390 which is an inhibitor of CaSR. We also demonstrated that Ca(2+) increased CaSR mRNA levels and induced GMECs apoptosis and restrained cell proliferation. In contrast, PTHrP overexpression protected GMECs from calcium-induced apoptosis, and promoted cell proliferation. In conclusion, these results suggest that PTHrP overexpression protects GMECs from CaSR activation-induced apoptosis.

  6. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Tao, Jiadong; Hu, Changchang; Chen, Longkun; Zhao, Hongshi; Xu, Guowei; Heng, Boon C; Ouyang, Hong Wei

    2013-08-01

    The repair of osteochondral defects can be enhanced with scaffolds but is often accompanied with undesirable terminal differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Parathyroid hormone-related protein (PTHrP) has been shown to inhibit aberrant differentiation, but administration at inappropriate time points would have adverse effects on chondrogenesis. This study aims to develop an effective tissue engineering strategy by combining PTHrP and collagen-silk scaffold for osteochondral defect repair. The underlying mechanisms of the synergistic effect of combining PTHrP administration with collagen-silk scaffold implantation for rabbit knee joint osteochondral defect repair were investigated. In vitro studies showed that PTHrP treatment significantly reduced Alizarin Red staining and expression of terminal differentiation-related markers. This is achieved in part through blocking activation of the canonical Wnt/β-catenin signaling pathway. For the in vivo repair study, intra-articular injection of PTHrP was carried out at three different time windows (4-6, 7-9 and 10-12 weeks) together with implantation of a bi-layer collagen-silk scaffold. Defects treated with PTHrP at the 4-6 weeks time window exhibited better regeneration (reconstitution of cartilage and subchondral bone) with minimal terminal differentiation (hypertrophy, ossification and matrix degradation), as well as enhanced chondrogenesis (cell shape, Col2 and GAG accumulation) compared with treatment at other time windows. Furthermore, the timing of PTHrP administration also influenced PTHrP receptor expression, thus affecting the treatment outcome. Our results demonstrated that intra-articular injection of PTHrP at 4-6 weeks post-injury together with collagen-silk scaffold implantation is an effective strategy for inhibiting terminal differentiation and enhancing chondrogenesis, thus improving cartilage repair and regeneration in a rabbit model. Copyright © 2013 Elsevier Ltd. All

  7. The Role of Parathyroid Hormone-Related Protein (PTHrP) in Osteoblast Response to Microgravity: Mechanistic Implications for Osteoporosis Development.

    Science.gov (United States)

    Camirand, Anne; Goltzman, David; Gupta, Ajay; Kaouass, Mohammadi; Panda, Dibyendu; Karaplis, Andrew

    2016-01-01

    Prolonged skeletal unloading through bedrest results in bone loss similar to that observed in elderly osteoporotic patients, but with an accelerated timeframe. This rapid effect on weight-bearing bones is also observed in astronauts who can lose up to 2% of their bone mass per month spent in Space. Despite the important implications for Spaceflight travelers and bedridden patients, the exact mechanisms involved in disuse osteoporosis have not been elucidated. Parathyroid hormone-related protein (PTHrP) regulates many physiological processes including skeletal development, and has been proposed as a mechanosensor. To investigate the role of PTHrP in microgravity-induced bone loss, trabecular and calvarial osteoblasts (TOs and COs) from Pthrp +/+ and -/- mice were subjected to actual Spaceflight for 6 days (Foton M3 satellite). Pthrp +/+, +/- and -/- osteoblasts were also exposed to simulated microgravity for periods varying from 6 days to 6 weeks. While COs displayed little change in viability in 0g, viability of all TOs rapidly decreased in inverse proportion to PTHrP expression levels. Furthermore, Pthrp+/+ TOs displayed a sharp viability decline after 2 weeks at 0g. Microarray analysis of Pthrp+/+ TOs after 6 days in simulated 0g revealed expression changes in genes encoding prolactins, apoptosis/survival molecules, bone metabolism and extra-cellular matrix composition proteins, chemokines, insulin-like growth factor family members and Wnt-related signalling molecules. 88% of 0g-induced expression changes in Pthrp+/+ cells overlapped those caused by Pthrp ablation in normal gravity, and pulsatile treatment with PTHrP1-36 not only reversed a large proportion of 0g-induced effects in Pthrp+/+ TOs but maintained viability over 6-week exposure to microgravity. Our results confirm PTHrP efficacy as an anabolic agent to prevent microgravity-induced cell death in TOs.

  8. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth.

    Science.gov (United States)

    Park, Serk In; Lee, Changki; Sadler, W David; Koh, Amy J; Jones, Jacqueline; Seo, Jung Won; Soki, Fabiana N; Cho, Sun Wook; Daignault, Stephanie D; McCauley, Laurie K

    2013-11-15

    In the tumor microenvironment, CD11b(+)Gr1(+) bone marrow-derived cells are a predominant source of protumorigenic factors such as matrix metalloproteinases (MMP), but how distal tumors regulate these cells in the bone marrow is unclear. Here we addressed the hypothesis that the parathyroid hormone-related protein (PTHrP) potentiates CD11b(+)Gr1(+) cells in the bone marrow of prostate tumor hosts. In two xenograft models of prostate cancer, levels of tumor-derived PTHrP correlated with CD11b(+)Gr1(+) cell recruitment and microvessel density in the tumor tissue, with evidence for mediation of CD11b(+)Gr1(+) cell-derived MMP-9 but not tumor-derived VEGF-A. CD11b(+)Gr1(+) cells isolated from mice with PTHrP-overexpressing tumors exhibited relatively increased proangiogenic potential, suggesting that prostate tumor-derived PTHrP potentiates this activity of CD11b(+)Gr1(+) cells. Administration of neutralizing PTHrP monoclonal antibody reduced CD11b(+)Gr1(+) cells and MMP-9 in the tumors. Mechanistic investigations in vivo revealed that PTHrP elevated Y418 phosphorylation levels in Src family kinases in CD11b(+)Gr1(+) cells via osteoblast-derived interleukin-6 and VEGF-A, thereby upregulating MMP-9. Taken together, our results showed that prostate cancer-derived PTHrP acts in the bone marrow to potentiate CD11b(+)Gr1(+) cells, which are recruited to tumor tissue where they contribute to tumor angiogenesis and growth. ©2013 AACR

  9. P38 mitogen-activated protein kinase inhibitor, FR167653, inhibits parathyroid hormone related protein-induced osteoclastogenesis and bone resorption.

    Directory of Open Access Journals (Sweden)

    Huiren Tao

    Full Text Available p38 mitogen-activated protein kinase (MAPK acts downstream in the signaling pathway that includes receptor activator of NF-κB (RANK, a powerful inducer of osteoclast formation and activation. We investigated the role of p38 MAPK in parathyroid hormone related protein (PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo. The ability of FR167653 to inhibit osteoclast formation was evaluated by counting the number of tartrate-resistant acid phosphatase positive multinucleated cells (TRAP-positive MNCs in in vitro osteoclastgenesis assays. Its mechanisms were evaluated by detecting the expression level of c-Fos and nuclear factor of activated T cells c1 (NFATc1 in bone marrow macrophages (BMMs stimulated with sRANKL and M-CSF, and by detecting the expression level of osteoprotegerin (OPG and RANKL in bone marrow stromal cells stimulated with PTHrP in the presence of FR167653. The function of FR167653 on bone resorption was assessed by measuring the bone resorption area radiographically and by counting osteoclast number per unit bone tissue area in calvaria in a mouse model of bone resorption by injecting PTHrP subcutaneously onto calvaria. Whole blood ionized calcium levels were also recorded. FR167653 inhibited PTHrP-induced osteoclast formation and PTHrP-induced c-Fos and NFATc1 expression in bone marrow macrophages, but not the expression levels of RANKL and OPG in primary bone marrow stromal cells treated by PTHrP. Furthermore, bone resorption area and osteoclast number in vivo were significantly decreased by the treatment of FR167653. Systemic hypercalcemia was also partially inhibited. Inhibition of p38 MAPK by FR167653 blocks PTHrP-induced osteoclastogenesis in vitro and PTHrP-induced bone resorption in vivo, suggesting that the p38 MAPK signaling pathway plays a fundamental role in PTHrP-induced osteoclastic bone resorption.

  10. Role of parathyroid hormone-related protein in the pro-inflammatory and pro-fibrogenic response associated with acute pancreatitis.

    Science.gov (United States)

    Bhatia, Vandanajay; Kim, Sung O K; Aronson, Judith F; Chao, Celia; Hellmich, Mark R; Falzon, Miriam

    2012-04-10

    Pancreatitis is a common and potentially lethal necro-inflammatory disease with both acute and chronic manifestations. Current evidence suggests that the accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic disease, which is associated with an increased risk of pancreatic cancer. While parathyroid hormone-related protein (PTHrP) exerts multiple effects in normal physiology and disease states, its function in pancreatitis has not been previously addressed. Here we show that PTHrP levels are transiently elevated in a mouse model of cerulein-induced AP. Treatment with alcohol, a risk factor for both AP and chronic pancreatitis (CP), also increases PTHrP levels. These effects of cerulein and ethanol are evident in isolated primary acinar and stellate cells, as well as in the immortalized acinar and stellate cell lines AR42J and irPSCc3, respectively. Ethanol sensitizes acinar and stellate cells to the PTHrP-modulating effects of cerulein. Treatment of acinar cells with PTHrP (1-36) increases expression of the inflammatory mediators interleukin-6 (IL-6) and intracellular adhesion protein (ICAM-1), suggesting a potential autocrine loop. PTHrP also increases apoptosis in AR42J cells. Stellate cells mediate the fibrogenic response associated with pancreatitis; PTHrP (1-36) increases procollagen I and fibronectin mRNA levels in both primary and immortalized stellate cells. The effects of cerulein and ethanol on levels of IL-6 and procollagen I are suppressed by the PTH1R antagonist, PTHrP (7-34). Together these studies identify PTHrP as a potential mediator of the inflammatory and fibrogenic responses associated with alcoholic pancreatitis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Parathyroid hormone-related protein is a mitogenic and a survival factor of mesangial cells from male mice: role of intracrine and paracrine pathways.

    Science.gov (United States)

    Hochane, Mazène; Raison, Denis; Coquard, Catherine; Imhoff, Olivier; Massfelder, Thierry; Moulin, Bruno; Helwig, Jean-Jacques; Barthelmebs, Mariette

    2013-02-01

    Glomerulonephritis is characterized by the proliferation and apoptosis of mesangial cells (MC). The parathyroid-hormone related protein (PTHrP) is a locally active cytokine that affects these phenomena in many cell types, through either paracrine or intracrine pathways. The aim of this study was to evaluate the effect of both PTHrP pathways on MC proliferation and apoptosis. In vitro studies were based on MC from male transgenic mice allowing PTHrP-gene excision by a CreLoxP system. MC were also transfected with different PTHrP constructs: wild type PTHrP, PTHrP devoid of its signal peptide, or of its nuclear localization sequence. The results showed that PTHrP deletion in MC reduced their proliferation even in the presence of serum and increased their apoptosis when serum-deprived. PTH1R activation by PTHrP(1-36) or PTH(1-34) had no effect on proliferation but improved MC survival. Transfection of MC with PTHrP devoid of its signal peptide significantly increased their proliferation and minimally reduced their apoptosis. Overexpression of PTHrP devoid of its nuclear localization sequence protected cells from apoptosis without changing their proliferation. Wild type PTHrP transfection conferred both mitogenic and survival effects, which seem independent of midregion and C-terminal PTHrP fragments. PTHrP-induced MC proliferation was associated with p27(Kip1) down-regulation and c-Myc/E2F1 up-regulation. PTHrP increased MC survival through the activation of cAMP/protein kinase A and PI3-K/Akt pathways. These results reveal that PTHrP is a cytokine of multiple roles in MC, acting as a mitogenic factor only through an intracrine pathway, and reducing apoptosis mainly through the paracrine pathway. Thus, PTHrP appears as a probable actor in MC injuries.

  12. Signal transducer and activator of transcription 5a inhibited by pimozide may regulate survival of goat mammary gland epithelial cells by regulating parathyroid hormone-related protein.

    Science.gov (United States)

    Li, Hui; Zheng, Huiling; Sun, Yongsen; Yu, Qian; Li, Lihui

    2014-11-10

    The signal transducer and activator of transcription 5a (Stat5a) modulates genes involved in proliferation and survival and plays pivotal roles in regulating the function of the mammary gland during pregnancy, lactation, and involution. However, there is little information about the effects of Stat5a on apoptosis of goat mammary gland epithelial cells (GMECs). In addition, parathyroid hormone-related protein (PTHrP) is a key regulator in cellular calcium transport, mammary gland development and breast tumor biology. This study aimed to explore the interaction of Stat5a and PTHrP in GMEC apoptosis. Quantitative real time PCR (qRT-PCR) suggested that Stat5a was predominantly expressed in the mammary gland, lung, liver and spleen of goats. Treating the GMECs with pimozide, an inhibitor of Stat5a that decreases Stat5a tyrosine phosphorylation, increased PTHrP levels in GMECs in a dose-dependent manner and simultaneously promoted apoptosis of the GMECs. We also demonstrated that PTHrP inhibition induced GMEC apoptosis and restrained cell proliferation. In contrast, PTHrP overexpression protected GMECs from pimozide- and calcium-induced apoptosis, and promoted cell proliferation. Furthermore, pimozide and CaCl2 downregulated the antiapoptotic protein Bcl-2 mRNA expression, respectively, and these effects were protected by PTHrP overexpression. Interestingly, we also found that Stat5a suppressed the expression of matrix metalloproteinase 9 (MMP-9) which can induce goat mammary epithelial cell migration, but PTHrP increased MMP-9 mRNA level. Thus, Stat5a may regulate GMEC survival by regulating the expression of PTHrP. Copyright © 2014. Published by Elsevier B.V.

  13. Differences between hospitals in attainment of parathyroid hormone treatment targets in chronic kidney disease do not reflect differences in quality of care

    Directory of Open Access Journals (Sweden)

    Peeters Mieke J

    2012-08-01

    Full Text Available Abstract Background Transparency in quality of care (QoC is stimulated and hospitals are compared and judged on the basis of indicators of performance on specific treatment targets. In patients with chronic kidney disease, QoC differed significantly between hospitals. In this analysis we explored additional parameters to explain differences between centers in attainment of parathyroid hormone (PTH treatment targets. Methods Using MASTERPLAN baseline data, we selected one of the worst (center A and one of the best (center B performing hospitals. Differences between the two centers were analyzed from the year prior to start of the MASTERPLAN study until the baseline evaluation. Determinants of PTH were assessed. Results 101 patients from center A (median PTH 9.9 pmol/l, in 67 patients exceeding recommended levels and 100 patients from center B (median PTH 6.5 pmol/l, in 34 patients exceeding recommended levels, were included. Analysis of clinical practice did not reveal differences in PTH management between the centers. Notably, hyperparathyroidism resulted in a change in therapy in less than 25% of patients. In multivariate analysis kidney transplant status, MDRD-4, and treatment center were independent predictors of PTH. However, when MDRD-6 (which accounts for serum urea and albumin was used instead of MDRD-4, the center effect was reduced. Moreover, after calibration of the serum creatinine assays treatment center no longer influenced PTH. Conclusions We show that differences in PTH control between centers are not explained by differences in treatment, but depend on incomparable patient populations and laboratory techniques. Therefore, results of hospital performance comparisons should be interpreted with great caution.

  14. Short-term bisphosphonate treatment reduces serum 25(OH) vitamin D3 and alters values of parathyroid hormone, pentosidine, and bone metabolic markers

    Science.gov (United States)

    Kamimura, Mikio; Uchiyama, Shigeharu; Nakamura, Yukio; Ikegami, Shota; Mukaiyama, Keijiro; Kato, Hiroyuki

    2017-01-01

    This study aimed to clarify the effects of short-term bisphosphonate (BP) administration in Japanese osteoporotic patients retrospectively. Daily minodronate (MIN) at 1 mg/day (MIN group) or weekly risedronate (RIS) at 17.5 mg/week (RIS group) was primarily prescribed for each patient. We analyzed the laboratory data of 35 cases (18 of MIN and 17 of RIS) before the start of treatment and at 4 months afterward. The changes in 25(OH)D3, whole parathyroid hormone (PTH), serum pentosidine, and the bone turnover markers urinary cross-linked N-telopeptide of type I collagen (NTX), serum tartrate-resistant acid phosphatase (TRACP)-5b, bone-specific alkaline phosphatase (BAP), and undercarboxylated osteocalcin were evaluated. Overall, serum 25(OH)D3 was significantly decreased from 21.8 to 18.4 ng/mL at 4 months, with a percent change of −14.7%. Whole PTH increased significantly from 23.4 to 30.0 pg/mL, with a percent change of 32.1%. Serum pentosidine rose from 0.0306 to 0.0337 μg/mL, with a percent change of 15.2%. In group comparisons, 25(OH)D3 and pentosidine showed comparable changes in both groups after 4 months of treatment, whereas whole PTH became significantly more increased in the MIN group. All bone turnover markers were significantly decreased at 4 months in both groups. Compared with the RIS group, the MIN group exhibited significantly larger value changes for urinary NTX, serum TRACP-5b, and BAP at the study end point. This study demonstrated that serum 25(OH)D3 became significantly decreased after only 4 months of BP treatment in Japanese osteoporotic patients and confirmed that MIN more strongly inhibited bone turnover as compared with RIS.

  15. The Role of Parathyroid Hormone-Related Protein (PTHrP in Osteoblast Response to Microgravity: Mechanistic Implications for Osteoporosis Development.

    Directory of Open Access Journals (Sweden)

    Anne Camirand

    Full Text Available Prolonged skeletal unloading through bedrest results in bone loss similar to that observed in elderly osteoporotic patients, but with an accelerated timeframe. This rapid effect on weight-bearing bones is also observed in astronauts who can lose up to 2% of their bone mass per month spent in Space. Despite the important implications for Spaceflight travelers and bedridden patients, the exact mechanisms involved in disuse osteoporosis have not been elucidated. Parathyroid hormone-related protein (PTHrP regulates many physiological processes including skeletal development, and has been proposed as a mechanosensor. To investigate the role of PTHrP in microgravity-induced bone loss, trabecular and calvarial osteoblasts (TOs and COs from Pthrp +/+ and -/- mice were subjected to actual Spaceflight for 6 days (Foton M3 satellite. Pthrp +/+, +/- and -/- osteoblasts were also exposed to simulated microgravity for periods varying from 6 days to 6 weeks. While COs displayed little change in viability in 0g, viability of all TOs rapidly decreased in inverse proportion to PTHrP expression levels. Furthermore, Pthrp+/+ TOs displayed a sharp viability decline after 2 weeks at 0g. Microarray analysis of Pthrp+/+ TOs after 6 days in simulated 0g revealed expression changes in genes encoding prolactins, apoptosis/survival molecules, bone metabolism and extra-cellular matrix composition proteins, chemokines, insulin-like growth factor family members and Wnt-related signalling molecules. 88% of 0g-induced expression changes in Pthrp+/+ cells overlapped those caused by Pthrp ablation in normal gravity, and pulsatile treatment with PTHrP1-36 not only reversed a large proportion of 0g-induced effects in Pthrp+/+ TOs but maintained viability over 6-week exposure to microgravity. Our results confirm PTHrP efficacy as an anabolic agent to prevent microgravity-induced cell death in TOs.

  16. Mechanistic analysis for time-dependent effects of cinacalcet on serum calcium, phosphorus, and parathyroid hormone levels in 5/6 nephrectomized rats

    Science.gov (United States)

    Wu-Wong, J Ruth; Nakane, Masaki; Chen, Yung-wu; Mizobuchi, Masahide

    2013-01-01

    This study investigates the time-dependent effects of cinacalcet on serum calcium, phosphorus, and parathyroid hormone (PTH) levels in 5/6 nephrectomized (NX) rats with experimental chronic renal insufficiency. In this study, 5/6 NX male, Sprague–Dawley rats were treated with vehicle or cinacalcet (10 mg/kg, oral, 1× daily). On Day 0 (before treatment), Day 12 and 13 after treatment (to approximate the clinical practice), and also at 0, 1, 4, 8, 16, and 24 hours after the last dosing, blood was collected for analysis. After 12 or 13 days of cinacalcet treatment, modest changes were observed in serum Ca and phosphorus (Pi), while PTH decreased by >45% to Sham levels (152 ± 15 pg/mL). Detailed mapping found that cinacalcet caused a significant time-dependent decrease in serum Ca following dosing, reaching a lowest point at 8 hours (decrease by 20% to 8.43 ± 0.37 mg/dL), and then returning to normal at 24 hours. Cinacalcet also caused a significant increase in serum Pi levels (by 18%). To investigate the potential mechanism of action, a broad approach was taken by testing cinacalcet in a panel of 77 protein-binding assays. Cinacalcet interacted with several channels, transporters, and neurotransmitter receptors, some of which are involved in brain and heart, and may impact Ca homeostasis. Cinacalcet dose-dependently increased brain natriuretic peptide (BNP) mRNA expression by 48% in cardiomyocytes, but had no significant effects on left ventricular hypertrophy and cardiac function. The results suggest that cinacalcet's hypocalcemic effect may be due to its nonspecific interaction with other receptors in brain and heart. PMID:24303131

  17. A salt bridge between Arg-20 on parathyroid hormone (PTH) and Asp-137 on the PTH1 receptor is essential for full affinity.

    Science.gov (United States)

    Weaver, Richard E; Wigglesworth, Mark J; Donnelly, Dan

    2014-11-01

    Parathyroid hormone (PTH) acts via the receptor PTH1 and plays an important role in calcium homeostasis. PTH's interaction with the N-terminal domain of PTH1 is mediated in part by Arg-20 on the peptide which forms a number of interactions with the receptor: a charge-charge interaction with Asp-137; hydrogen bonds with the backbone of Asp-29 and Met-32; and hydrophobic interactions with Met-32 and Gln-37. The aim of this work was to establish the importance of the charge-charge interaction through the combined use of modified peptide ligands, site-directed mutations of the receptor, and pharmacological assays. The substitution of Arg-20 with norleucine resulted in a 50-fold reduction in potency at PTH1 and Asp-137-Glu while, in contrast, both Asp-137-Asn and Asp-137-Ala receptors were largely insensitive to this ligand modification. The effect of this removal of the positive charge as position 20 could be partially rescued at PTH1 and Asp-137-Glu, but not Asp-137-Asn and Asp-137-Ala, through a substitution of peptide position 20 with ornithine. The latter two receptors, which have no negative charge at position 137, displayed potency for PTH that was reduced by 40- and 117-fold, respectively. These data demonstrate that a negative charge at residue-137 is important for interacting with ligands containing a positive charge at residue-20, and that the Arg-20 interaction with Asp-137, observed in the crystal structure of the isolated N-terminal domain of PTH1, is likely to be present in the full length receptor where it provides an important affinity- and potency-generating interaction through a salt bridge. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Parathyroid gland removal

    Science.gov (United States)

    Removal of parathyroid gland; Parathyroidectomy; Hyperparathyroidism - parathyroidectomy; PTH - parathyroidectomy ... and pain-free) for this surgery. Usually the parathyroid glands are removed using a 2- to 4-inch ( ...

  19. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    Science.gov (United States)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  20. Parathyroid hormone 1-84 targets bone vascular structure and perfusion in mice: impacts of its administration regimen and of ovariectomy.

    Science.gov (United States)

    Roche, Bernard; Vanden-Bossche, Arnaud; Malaval, Luc; Normand, Myriam; Jannot, Martin; Chaux, Robin; Vico, Laurence; Lafage-Proust, Marie-Hélène

    2014-07-01

    Bone vessel functions during bone remodeling are poorly understood. They depend on both vessel network structure and vasomotor regulation. Parathyroid hormone (PTH) is a systemic vasodilator that may modulate microvascularization. Moreover, although intermittent PTH is anti-osteoporotic, continuous PTH administration can be catabolic for bone. Finally, ovariectomy (OVX) reduces bone perfusion and vessel density in mice. We reasoned that the effects of PTH on bone vascularization might depend on its administration regimen and be impacted by ovariectomy. A 100-µg/kg PTH 1-84 daily dose was administered for 15 days to 4-month-old female C57BL/6 mice, either as daily sc injection (iPTH) or continuously (cPTH; ALZET minipump). Blood pressure (BP) and tibia bone perfusion were measured in vivo with a laser Doppler device. Histomorphometry of bone and barium-contrasted vascular network were performed on the same tibia. Compared with untreated controls, both iPTH and cPTH increased bone formation but had opposite effects on resorption. Both iPTH and cPTH were slightly angiogenic. Intermittent PTH increased microvessel size (+48%, p < 0.001), whereas cPTH decreased it (-29%, p = 0.009). iPTH increased bone perfusion (27%, p < 0.001) with no change in BP, whereas cPTH did not. The vascular effects of a 15-day iPTH treatment were analyzed in OVX mice and compared with sham-operated and OVX untreated controls. Two other anti-osteoporotic drugs, zoledronate (one injection, 70 µg/kg) and propranolol, (5 mg/kg/d) were tested in OVX mice. Although no change in bone mass was observed, iPTH stimulated bone formation and prevented the OVX-induced reduction in bone perfusion and vessel density. Both zoledronate and propranolol strongly lowered bone turnover, but surprisingly, zoledronate prevented OVX-induced reduction in bone perfusion but propranolol did not. Our integrative approach thus demonstrates that the effects of PTH on bone vessel structure and function depend on its

  1. Intrathyroidal Parathyroid Cyst: An Unusual Neck Mass

    Directory of Open Access Journals (Sweden)

    Maswood M Ahmad

    2017-03-01

    Full Text Available Parathyroid cyst (PC is a very rare condition. A case of intrathyroidal PC is being reported here in a 53-year-old woman who presented to the endocrine clinic with slowly progressive painless left anterior neck swelling for 1 year with no symptoms of thyroid or parathyroid dysfunction and no compressive symptoms. Ultrasound of the thyroid showed a well-defined cystic lesion measuring 4.7 × 3.6 cm in maximum diameter with internal echoes within the cyst located in the left lobe of the thyroid gland. Fine needle aspiration revealed colorless clear fluid with a high concentration of parathyroid hormone. The patient underwent left hemithyroidectomy at her request. Histopathology revealed parathyroid tissue with unilocular cyst and thyroid tissue with goitrous changes. She was in remission, and there was no evidence of thyroid or parathyroid dysfunction after surgery.

  2. Epigenetic Alterations in Parathyroid Cancers

    Directory of Open Access Journals (Sweden)

    Chiara Verdelli

    2017-02-01

    Full Text Available Parathyroid cancers (PCas are rare malignancies representing approximately 0.005% of all cancers. PCas are a rare cause of primary hyperparathyroidism, which is the third most common endocrine disease, mainly related to parathyroid benign tumors. About 90% of PCas are hormonally active hypersecreting parathormone (PTH; consequently patients present with complications of severe hypercalcemia. Pre-operative diagnosis is often difficult due to clinical features shared with benign parathyroid lesions. Surgery provides the current best chance of cure, though persistent or recurrent disease occurs in about 50% of patients with PCas. Somatic inactivating mutations of CDC73/HRPT2 gene, encoding parafibromin, are the most frequent genetic anomalies occurring in PCas. Recently, the aberrant DNA methylation signature and microRNA expression profile have been identified in PCas, providing evidence that parathyroid malignancies are distinct entities from parathyroid benign lesions, showing an epigenetic signature resembling some embryonic aspects. The present paper reviews data about epigenetic alterations in PCas, up to now limited to DNA methylation, chromatin regulators and microRNA profile.

  3. Epigenetic Alterations in Parathyroid Cancers

    Science.gov (United States)

    Verdelli, Chiara; Corbetta, Sabrina

    2017-01-01

    Parathyroid cancers (PCas) are rare malignancies representing approximately 0.005% of all cancers. PCas are a rare cause of primary hyperparathyroidism, which is the third most common endocrine disease, mainly related to parathyroid benign tumors. About 90% of PCas are hormonally active hypersecreting parathormone (PTH); consequently patients present with complications of severe hypercalcemia. Pre-operative diagnosis is often difficult due to clinical features shared with benign parathyroid lesions. Surgery provides the current best chance of cure, though persistent or recurrent disease occurs in about 50% of patients with PCas. Somatic inactivating mutations of CDC73/HRPT2 gene, encoding parafibromin, are the most frequent genetic anomalies occurring in PCas. Recently, the aberrant DNA methylation signature and microRNA expression profile have been identified in PCas, providing evidence that parathyroid malignancies are distinct entities from parathyroid benign lesions, showing an epigenetic signature resembling some embryonic aspects. The present paper reviews data about epigenetic alterations in PCas, up to now limited to DNA methylation, chromatin regulators and microRNA profile. PMID:28157158

  4. Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration.

    Science.gov (United States)

    Ogita, Mami; Rached, Marie Therese; Dworakowski, Elzbieta; Bilezikian, John P; Kousteni, Stavroula

    2008-11-01

    The periosteum is now widely recognized as a homeostatic and therapeutic target for actions of sex steroids and intermittent PTH administration. The mechanisms by which estrogens suppress but PTH promotes periosteal expansion are not known. In this report, we show that intermittent PTH(1-34) promotes differentiation of periosteal osteoblast precursors as evidenced by the stimulation of the expression or activity of alkaline phosphatase as well as of targets of the bone morphogenetic protein 2 (BMP-2) and Wnt pathways. In contrast, 17beta-estradiol (E2) had no effect by itself. However, it attenuated PTH- or BMP-2-induced differentiation of primary periosteal osteoblast progenitors. Administration of intermittent PTH to ovariectomized mice induced rapid phosphorylation of the BMP-2 target Smad1/5/8 in the periosteum. A replacement dose of E2 had no effect by itself but suppressed PTH-induced phosphorylation of Smad1/5/8. In contrast to its effects to stimulate periosteal osteoblast differentiation, PTH promoted and subsequently suppressed proliferation of periosteal osteoblast progenitors in vitro and in vivo. E2 promoted proliferation and attenuated the antiproliferative effect of PTH. Both hormones protected periosteal osteoblasts from apoptosis induced by various proapoptotic agents. These observations suggest that the different effects of PTH and estrogens on the periosteum result from opposing actions on the recruitment of early periosteal osteoblast progenitors. Intermittent PTH promotes osteoblast differentiation from periosteum-derived mesenchymal progenitors through ERK-, BMP-, and Wnt-dependent signaling pathways. Estrogens promote proliferation of early osteoblast progenitors but inhibit their differentiation by osteogenic agents such as PTH or BMP-2.

  5. Diagnosis of Parathyroid Adenoma Detected during Thyroid Ultrasound: The Role of Parathormone Measurement in Fine-Needle Aspiration Washout

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Soo; Kim, Eun Kyung; Kwak, Jin Young; Kim, Min Jung [Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2009-03-15

    With the widespread use of thyroid ultrasound, the detection rate of parathyroid incidentalomas as well as thyroid nodules has been on the increase. The differentiation between thyroid nodules and parathyroid nodules is occasionally difficult due to considerable overlap in terms of the sonographic findings. A case of parathyroid adenoma diagnosed with a measured parathyroid hormone level after fine needle aspiration washout is presented

  6. Fine-needle aspiration with measurement of parathyroid hormone levels in thyroidectomy%甲状腺术中应用抽吸组织测定甲状旁腺激素的临床意义

    Institute of Scientific and Technical Information of China (English)

    黄海燕; 李浩; 林少建; 邓维叶; 李秋梨; 陈艳峰; 杨安奎; 张诠; 郭朱明

    2013-01-01

    Objective Hypoparathyroidism is one of the most serious complications of thyroidectomy.It is important to identify the parathyroid glands during thyroidectomy.In order to find an economic,simple and less traumatic way to identify the parathyroid glands and testify its feasibility,fineneedle aspiration of suspected parathyroid tissue was used to measure the parathyroid hormone (PTH) levels during the surgical procedure.Methods From Nov.2011 to Apr.2012,50 patients were recruited for thyroid surgery in the Sun Yat-sen University Cancer Centre.During surgery,fine-needle aspiration of suspected tissues,including parathyroid gland,thyroid gland,muscle,fat tissue,and lymph node,was performed,the PTH levels were measured.In addition,the tissues above-mentioned were taken to pathological examination.Statistical processing was adopted to determine the sensitivity and specificity of intraoperative fine-needle aspiration with measurement of PTH level in finding the pathology of the parathyroid gland.Results There were 237 tissues from 50 patients in total,and 45 of them were certified as the parathyroid glands by pathology.Intra-operative PTH (ioPTH) of the tissues in forty-four cases were higher than 600 ng/L,ioPTH of the tissues in one case was lower than 600 ng/L,and it was 160 ng/L.The highest ioPTH in other cases was 537.7 ng/L.The sensitivity was 97.8%.The specificity was 100%.The difference between the sensitivity and the specificity of two groups was not statistically significant,and P > 0.05.The level of PTH of parathyroid gland were much higher than other tissues,and P < 0.001.Conclusions The level of ioPTH of parathyroid gland were far higher than thyroid,muscle,fat,lymph node.It is an economic,fast and less traumatic way to identify the parathyroid gland by using the fine-needle aspiration of the parathyroid tissue with measurement of PTH levels.The sensitivity and the specificity are high.It can be used in the thyroidectomy to identify the parathyroid

  7. Time course of 25(OHD3 vitamin D3 as well as PTH (parathyroid hormone during fracture healing of patients with normal and low bone mineral density (BMD

    Directory of Open Access Journals (Sweden)

    Wöfl Christoph

    2013-01-01

    Full Text Available Abstract Background Until now the exact biochemical processes during healing of metaphyseal fractures of healthy and osteoporotic bone remain unclear. Especially the physiological time courses of 25(OHD3 (Vitamin D as well as PTH (Parathyroid Hormone the most important modulators of calcium and bone homeostasis are not yet examined sufficiently. The purpose of this study was to focus on the time course of these parameters during fracture healing. Methods In the presented study, we analyse the time course of 25(OHD3 and PTH during fracture healing of low BMD level fractures versus normal BMD level fractures in a matched pair analysis. Between March 2007 and February 2009 30 patients older than 50 years of age who had suffered a metaphyseal fracture of the proximal humerus, the distal radius or the proximal femur were included in our study. Osteoporosis was verified by DEXA measuring. The time courses of 25(OHD3 and PTH were examined over an eight week period. Friedmann test, the Wilcoxon signed rank test and the Mann-Withney U test were used as post-hoc tests. A p-value ≤ 0.05 was considered significant. Results Serum levels of 25(OHD3 showed no differences in both groups. In the first phase of fracture healing PTH levels in the low BMD level group remained below those of the normal BMD group in absolute figures. Over all no significant differences between low BMD level bone and normal BMD level bone could be detected in our study. Conclusions The time course of 25(OHD3 and PTH during fracture healing of patients with normal and low bone mineral density were examined for the first time in humans in this setting and allowing molecular biological insights into fracture healing in metaphyseal bones on a molecural level. There were no significant differences between patients with normal and low BMD levels. Hence further studies will be necessary to obtain more detailed insight into fracture healing in order to provide reliable decision criteria for

  8. Association of 25-hydroxyvitamin D with areal and volumetric measures of bone mineral density and parathyroid hormone: impact of vitamin D-binding protein and its assays

    Science.gov (United States)

    Jemielita, T. O.; Leonard, M. B.; Baker, J.; Sayed, S.; Zemel, B. S.; Shults, J.; Herskovitz, R.

    2016-01-01

    Summary A comparison of the association of different forms of 25-hydroxyvitamin D [25(OH)D] with parathyroid hormone (PTH) and with areal and volumetric bone mineral density (BMD) demonstrated that bioavailable and free 25(OH)D do not provide a better index of vitamin D status in terms of bone health compared to total 25(OH)D. Introduction This study aims to compare measures of vitamin D-binding protein (DBP) using a monoclonal versus polyclonal ELISA and assess correlations of total versus estimated free and bioavailable 25(OH)D with BMD and PTH concentrations. Methods DXA and peripheral quantitative CT (pQCT) scans were obtained in 304 adults (158 black, 146 white), ages 21–80 years. Free and bioavailable 25(OH)D were calculated from total 25(OH)D, DBP, and albumin concentrations. Multivariable linear regression with standardized beta coefficients was used to evaluate associations of bone measures and PTH with total, free, and bioavailable 25(OH)D. Results Measures of DBP obtained using a monoclonal versus polyclonal ELISA were not correlated (rs=0.02, p=0.76). Free and bioavailable 25(OH)D based on the polyclonal assay were lower in black versus white participants (p<0.0001); this race difference was not evident using the monoclonal assay. Adjusted for age, sex, calcium intake, and race, all forms of 25(OH)D were negatively associated with PTH, but the absolute coefficient was greatest for total 25(OH)D (−0.34, p<0.001) versus free/bioavailable 25(OH)D (−0.18/−0.24 depending on DBP assay, p≤0.003). In analyses stratified on race, none of the measures of 25(OH)D were associated with BMD across DXA and pQCT sites. Conclusions The monoclonal versus polyclonal ELISA yielded highly discrepant measures of DBP, particularly among black individuals, likely related to established race differences in DBP polymorphisms. Contrary to prior studies, our findings indicate that using DBP to estimate bioavailable and free 25(OH)D does not provide a better index of

  9. Expression of parathyroid hormone-related protein during immortalization of human peripheral blood mononuclear cells by HTLV-1: Implications for transformation

    Directory of Open Access Journals (Sweden)

    Nadella Kiran S

    2008-06-01

    Full Text Available Abstract Background Adult T-cell leukemia/lymphoma (ATLL is initiated by infection with human T-lymphotropic virus type-1 (HTLV-1; however, additional host factors are also required for T-cell transformation and development of ATLL. The HTLV-1 Tax protein plays an important role in the transformation of T-cells although the exact mechanisms remain unclear. Parathyroid hormone-related protein (PTHrP plays an important role in the pathogenesis of humoral hypercalcemia of malignancy (HHM that occurs in the majority of ATLL patients. However, PTHrP is also up-regulated in HTLV-1-carriers and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP patients without hypercalcemia, indicating that PTHrP is expressed before transformation of T-cells. The expression of PTHrP and the PTH/PTHrP receptor during immortalization or transformation of lymphocytes by HTLV-1 has not been investigated. Results We report that PTHrP was up-regulated during immortalization of lymphocytes from peripheral blood mononuclear cells by HTLV-1 infection in long-term co-culture assays. There was preferential utilization of the PTHrP-P2 promoter in the immortalized cells compared to the HTLV-1-transformed MT-2 cells. PTHrP expression did not correlate temporally with expression of HTLV-1 tax. HTLV-1 infection up-regulated the PTHrP receptor (PTH1R in lymphocytes indicating a potential autocrine role for PTHrP. Furthermore, co-transfection of HTLV-1 expression plasmids and PTHrP P2/P3-promoter luciferase reporter plasmids demonstrated that HTLV-1 up-regulated PTHrP expression only mildly, indicating that other cellular factors and/or events are required for the very high PTHrP expression observed in ATLL cells. We also report that macrophage inflammatory protein-1α (MIP-1α, a cellular gene known to play an important role in the pathogenesis of HHM in ATLL patients, was highly expressed during early HTLV-1 infection indicating that, unlike PTHrP, its expression was

  10. c-myc and skp2 coordinate p27 degradation, vascular smooth muscle proliferation, and neointima formation induced by the parathyroid hormone-related protein.

    Science.gov (United States)

    Sicari, Brian M; Troxell, Ronnie; Salim, Fatimah; Tanwir, Mansoor; Takane, Karen K; Fiaschi-Taesch, Nathalie

    2012-02-01

    Parathyroid hormone-related protein (PTHrP) contains a classical bipartite nuclear localization signal. Nuclear PTHrP induces proliferation of arterial vascular smooth muscle cells (VSMC). In the arterial wall, PTHrP is markedly up-regulated in response to angioplasty and promotes arterial restenosis. PTHrP overexpression exacerbates arterial restenosis, and knockout of the PTHrP gene results in decreased VSMC proliferation in vivo. In arterial VSMC, expression of the cell cycle inhibitor, p27, rapidly decreases after angioplasty, and replacement of p27 markedly reduces neointima development. We have shown that PTHrP overexpression in VSMC leads to p27 down-regulation, mostly through increased proteosomal degradation. Here, we determined the molecular mechanisms through which PTHrP targets p27 for degradation. S-phase kinase-associated protein 2 (skp2) and c-myc, two critical regulators of p27 expression and stability, and neointima formation were up-regulated in PTHrP overexpression in VSMC. Normalization of skp2 or c-myc using small interfering RNA restores normal cell cycle and p27 expression in PTHrP overexpression in VSMC. These data indicate that skp2 and c-myc mediate p27 loss and proliferation induced by PTHrP. c-myc promoter activity was increased, and c-myc target genes involved in p27 stability were up-regulated in PTHrP overexpression in VSMC. In primary VSMC, PTHrP overexpression led to increased c-myc and decreased p27. Conversely, knockdown of PTHrP in primary VSMC from PTHrP(flox/flox) mice led to cell cycle arrest, p27 up-regulation, with c-myc and skp2 down-regulation. Collectively, these data describe for the first time the role of PTHrP in the regulation of skp2 and c-myc in VSMC. This novel PTHrP-c-myc-skp2 pathway is a potential target for therapeutic manipulation of the arterial response to injury.

  11. Treatment with N- and C-terminal peptides of parathyroid hormone-related protein partly compensate the skeletal abnormalities in IGF-I deficient mice.

    Directory of Open Access Journals (Sweden)

    Lourdes Rodríguez-de la Rosa

    Full Text Available Insulin-like growth factor-I (IGF-I deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH. PTH-related protein (PTHrP is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1-36 and PTHrP (107-111 (osteostatin to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype or saline vehicle (3 males and 3 females for each genotype. We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1-36 and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1-36 and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.

  12. Transcriptomic and proteomic analyses in bone tumor cells: Deciphering parathyroid hormone-related protein regulation of the cell cycle and apoptosis.

    Science.gov (United States)

    Mak, Isabella W Y; Turcotte, Robert E; Ghert, Michelle

    2012-09-01

    Giant cell tumor of bone (GCT) is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates, and metastatic potential. Previous works in our laboratory, including functional assays, have shown that neutralization of parathyroid hormone-related protein (PTHrP) in the cell environment inhibits cell proliferation and induces cell death in GCT stromal cells, indicating a role for PTHrP in cell propagation and survival. The objective of this study was to investigate the global gene and protein expression patterns of GCT cells in order to identify the underlying pathways and mechanisms of neoplastic proliferation provided by PTHrP in the bone microenvironment. Primary stromal cell cultures from 10 patients with GCT were used in this study. Cells were exposed to optimized concentrations of either PTHrP peptide or anti-PTHrP neutralizing antiserum and were analyzed with both cDNA microarray and proteomic microarray assays in triplicate. Hierarchical clustering and principal component analyses confirmed that counteraction of PTHrP in GCT stromal cells results in a clear-cut gene expression pattern distinct from all other treatment groups and the control cell line human fetal osteoblast (hFOB). Multiple bioinformatics tools were used to analyze changes in gene/protein expression and identify important gene ontologies and pathways common to this anti-PTHrP-induced regulatory gene network. PTHrP neutralization interferes with multiple cell survival and apoptosis signaling pathways by triggering both death receptors and cell cycle-mediated apoptosis, particularly via the caspase pathway, TRAIL pathway, JAK-STAT signaling pathway, and cyclin E/CDK2-associated G1/S cell cycle progression. These findings indicate that PTHrP neutralization exhibits anticancer potential by regulating cell-cycle progression and apoptosis in bone tumor cells, with the corollary being that PTHrP is a pro-neoplastic factor that can be targeted in the treatment of bone

  13. Treatment with N- and C-terminal peptides of parathyroid hormone-related protein partly compensate the skeletal abnormalities in IGF-I deficient mice.

    Science.gov (United States)

    Rodríguez-de la Rosa, Lourdes; López-Herradón, Ana; Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Varela-Nieto, Isabel; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1-36) and PTHrP (107-111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1-36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1-36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.

  14. Parathyroid hormone-related protein induces hypertrophy in podocytes via TGF-beta(1) and p27(Kip1): implications for diabetic nephropathy.

    Science.gov (United States)

    Romero, Montserrat; Ortega, Arantxa; Izquierdo, Adriana; López-Luna, Pilar; Bosch, Ricardo J

    2010-08-01

    Hypertrophy of podocytes is characteristic in diabetic nephropathy (DN). Previously, we observed the upregulation of parathyroid hormone-related protein (PTHrP) and its receptor PTH1R, in experimental DN, associated with renal hypertrophy. Herein, we test the hypothesis that PTHrP participates in the mechanism of high glucose (HG)-induced podocyte hypertrophy. On mouse podocytes, hypertrophy was assessed by protein content/cell and [H(3)]leucine incorporation. Podocytes were stimulated with HG (25 mM), PTHrP(1-36) (100 nM), angiotensin II (AngII) (100 nM) or TGF-beta(1) (5 ng/mL) in the presence or absence of PTHrP-neutralizing antibodies (alpha-PTHrP), the PTH1R antagonist JB4250 (10 microM), PTHrP silencer RNA (siRNA) or TGF-beta(1) siRNA. Protein expression was analysed by western blot and immunohistochemistry. HG-induced hypertrophy was abolished in the presence of either alpha-PTHrP or PTHrP siRNA. This effect was associated with an inhibition of the upregulation of TGF-beta(1) and p27(Kip1). JB4250 also inhibited HG-induced p27(Kip1) upregulation. Interestingly, whilst HG and AngII were unable to stimulate the expression of p27(Kip1) on PTHrP siRNA-transfected podocytes, TGF-beta(1) was still able to upregulate p27(Kip1) in these cells. Moreover, HG and PTHrP-induced hypertrophy as well as p27(Kip1) upregulation were abolished on TGF-beta(1) siRNA-transfected podocytes. Furthermore, the glomeruli of transgenic PTHrP-overexpressing mice showed a constitutive overexpression of TGF-beta(1) and p27(Kip1) to a degree similar to that of diabetic animals. PTHrP seems to participate in the hypertrophic signalling triggered by HG. In this condition, AngII induces the upregulation of PTHrP, which might induce the expression of TGF-beta(1) and p27(Kip1). These findings provide new insights into the protective effects of AngII antagonists in DN, opening new paths for intervention.

  15. Serum Parathyroid Hormone Responses to Vitamin D Supplementation in Overweight/Obese Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

    Directory of Open Access Journals (Sweden)

    Ashley Lotito

    2017-03-01

    Full Text Available Obesity is often associated with vitamin D deficiency and secondary hyperparathyroidism. Vitamin D supplementation typically leads to the reductions in serum parathyroid hormone (PTH levels, as shown in normal weight individuals. Meanwhile, the dose of vitamin D supplementation for the suppression of PTH may differ in overweight and obese adults. We conducted a systematic review and meta-analysis of randomized controlled trials to determine the dose of vitamin D supplementation required to suppress PTH levels in overweight/obese individuals. We identified 18 studies that examined overweight or obese healthy adults who were supplemented with varying doses of vitamin D3. The primary outcomes examined were changes in PTH and serum 25-hydroxyvitamin D (25OHD levels from baseline to post-treatment. The results of the meta-analysis showed that there was a significant treatment effect of vitamin D supplementation on PTH, total standardized mean difference (SMD (random effects = −0.38 (95% CI = −0.56 to −0.20, t = −4.08, p < 0.001. A significant treatment effect of vitamin D supplementation was also found on 25OHD, total SMD (random effects = 2.27 (95% CI = 1.48 to 3.06 t = 5.62, p < 0.001. Data from available clinical trials that supplemented adults with D3 ranging from 400 IU to 5714 IU, showed that 1000 IU of vitamin D supplementation best suppressed serum PTH levels, total SMD = −0.58, while vitamin D supplementation with 4000 IU showed the greatest increase in serum 25OH levels. Vitamin D and calcium supplementation of 700 IU and 500 mg, respectively, also showed a significant treatment effect on the suppression of PTH with a total SMD = −5.30 (95% CI = −9.72 to −0.88. In conclusion, the meta analysis of available clinical trials indicates that 1000 IU vitamin D supplementation can suppress serum PTH levels, while 4000 IU of vitamin D was associated with the largest increase in serum 25OHD levels in the overweight and obese

  16. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Matthew Prideaux

    Full Text Available Parathyroid Hormone (PTH can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R, which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1 promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA, exchange proteins activated by cAMP (Epac, protein kinase C (PKC or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these

  17. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    Science.gov (United States)

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a, cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  18. Digestive manifestations of parathyroid disorders

    Institute of Scientific and Technical Information of China (English)

    Bassam Abboud; Ronald Daher; Joe Boujaoude

    2011-01-01

    The parathyroid glands are the main regulator of plasma calcium and have a direct influence on the digestive tract. Parathyroid disturbances often result in unknown long-standing symptoms. The main manifestation of hypoparathyroidism is steatorrhea due to a deficit in exocrine pancreas secretion. The association with celiac sprue may contribute to malabsorption. Hyperparathyroidism causes smooth-muscle atony, with upper and lower gastrointestinal symptoms such as nausea, heartburn and constipation. Hyperparathyroidism and peptic ulcer were strongly linked before the advent of proton pump inhibitors. Nowadays, this association remains likely only in the particular context of multiple endocrine neoplasia type 1/Zollinger-Ellison syndrome. In contrast to chronic pancreatitis, acute pancreatitis due to primary hyperparathyroidism is one of the most studied topics. The causative effect of high calcium level is confirmed and the distinction from secondary hyperparathyroidism is mandatory. The digestive manifestations of parathyroid malfunction are often overlooked and serum calcium level must be included in the routine workup for abdominal symptoms.

  19. A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes.

    Science.gov (United States)

    Provot, Sylvain; Nachtrab, Gregory; Paruch, Jennifer; Chen, Adele Pin; Silva, Alcino; Kronenberg, Henry M

    2008-01-01

    Parathyroid hormone-related peptide (PTHrP) and the parathyroid hormone-PTHrP receptor increase chondrocyte proliferation and delay chondrocyte maturation in endochondral bone development at least partly through cyclic AMP (cAMP)-dependent signaling pathways. Because data suggest that the ability of cAMP to stimulate cell proliferation involves the mitogen-activated protein kinase kinase kinase B-Raf, we hypothesized that B-Raf might mediate the proliferative action of PTHrP in chondrocytes. Though B-Raf is expressed in proliferative chondrocytes, its conditional removal from cartilage did not affect chondrocyte proliferation and maturation or PTHrP-induced chondrocyte proliferation and PTHrP-delayed maturation.