WorldWideScience

Sample records for plasma parameter distribution

  1. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  2. Typical Profiles and Distributions of Plasma and Magnetic Field Parameters in Magnetic Clouds at 1 AU

    Science.gov (United States)

    Rodriguez, L.; Masías-Meza, J. J.; Dasso, S.; Démoulin, P.; Zhukov, A. N.; Gulisano, A. M.; Mierla, M.; Kilpua, E.; West, M.; Lacatus, D.; Paraschiv, A.; Janvier, M.

    2016-08-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). They are important because of their simple internal magnetic field configuration, which resembles a magnetic flux rope, and because they represent one of the most geoeffective types of solar transients. In this study, we analyze their internal structure using a superposed epoch method on 63 events observed at L1 by the Advance Composition Explorer (ACE), between 1998 and 2006. In this way, we obtain an average profile for each plasma and magnetic field parameter at each point of the cloud. Furthermore, we take a fixed time-window upstream and downstream from the MC to also sample the regions preceding the cloud and the wake trailing it. We then perform a detailed analysis of the internal characteristics of the clouds and their surrounding solar wind environments. We find that the parameters studied are compatible with log-normal distribution functions. The plasma β and the level of fluctuations in the magnetic field vector are the best parameters to define the boundaries of MCs. We find that one third of the events shows a peak in plasma density close to the trailing edge of the flux ropes. We provide several possible explanations for this result and investigate if the density peak is of a solar origin ( e.g. erupting prominence material) or formed during the magnetic cloud travel from the Sun to 1 AU. The most plausible explanation is the compression due to a fast overtaking flow, coming from a coronal hole located to the east of the solar source region of the magnetic cloud.

  3. Distributed Parameter Modelling Applications

    DEFF Research Database (Denmark)

    2011-01-01

    Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers and the d......Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers...... sands processing. The fertilizer granulation model considers the dynamics of MAP-DAP (mono and diammonium phosphates) production within an industrial granulator, that involves complex crystallisation, chemical reaction and particle growth, captured through population balances. A final example considers...

  4. Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge

    Science.gov (United States)

    Pashchina, A. S.; Efimov, A. V.; Chinnov, V. F.; Ageev, A. G.

    2017-07-01

    Results are presented from spectroscopic studies of the initial segment of a supersonic plasma jet generated by a pulsed capillary discharge with an ablative carbon-containing polymer wall. Specific features of the spatial distributions of the electron density and intensities of spectral components caused, in particular, by the high electron temperature in the central zone, much exceeding the normal temperature, as well as by the high nonisobaricity of the initial segment of the supersonic jet, are revealed. Measurements of the radiative properties of the hot jet core (the intensity and profile of the Hα and Hβ Balmer lines and the relative intensities of C II lines) with high temporal (1-50 μs) and spatial (30-50 μm) resolutions made it possible to determine general features of the pressure and temperature distributions near the central shock. The presence of molecular components exhibiting their emission properties at the periphery of the plasma jet allowed the authors to estimate the parameters of the plasma in the jet region where "detached" shock waves form.

  5. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  6. varying elastic parameters distributions

    KAUST Repository

    Moussawi, Ali

    2014-12-01

    The experimental identication of mechanical properties is crucial in mechanics for understanding material behavior and for the development of numerical models. Classical identi cation procedures employ standard shaped specimens, assume that the mechanical elds in the object are homogeneous, and recover global properties. Thus, multiple tests are required for full characterization of a heterogeneous object, leading to a time consuming and costly process. The development of non-contact, full- eld measurement techniques from which complex kinematic elds can be recorded has opened the door to a new way of thinking. From the identi cation point of view, suitable methods can be used to process these complex kinematic elds in order to recover multiple spatially varying parameters through one test or a few tests. The requirement is the development of identi cation techniques that can process these complex experimental data. This thesis introduces a novel identi cation technique called the constitutive compatibility method. The key idea is to de ne stresses as compatible with the observed kinematic eld through the chosen class of constitutive equation, making possible the uncoupling of the identi cation of stress from the identi cation of the material parameters. This uncoupling leads to parametrized solutions in cases where 5 the solution is non-unique (due to unknown traction boundary conditions) as demonstrated on 2D numerical examples. First the theory is outlined and the method is demonstrated in 2D applications. Second, the method is implemented within a domain decomposition framework in order to reduce the cost for processing very large problems. Finally, it is extended to 3D numerical examples. Promising results are shown for 2D and 3D problems.

  7. Sensor for monitoring plasma parameters

    CERN Document Server

    Bolshakov, A A; Sharma, S P; Bol'shakov, Alexander A.; Cruden, Brett A.; Sharma, Surendra P.

    2004-01-01

    A spectrally tunable VCSEL (vertical cavity surface-emitting laser) was used as part of sensing hardware for measurements of the radial-integrated gas temperature inside an inductively coupled plasma reactor. The data were obtained by profiling the Doppler-broadened absorption of metastable Ar atoms at 763.51 nm in argon and argon/nitrogen plasmas (3, 45, and 90% N2 in Ar) at pressure 0.5-70 Pa and inductive power of 100 and 300 W. The results were compared to rotational temperature derived from the N2 emission at the (0,0) transition of the C - B system. The differences in integrated rotational and Doppler temperatures were attributed to non-uniform spatial distributions of both temperature and thermometric species (Ar* and N2*) that varied depending on conditions. A two-dimensional, two-temperature fluid plasma simulation was employed to explain these differences. This work should facilitate further development of a miniature sensor for non-intrusive acquisition of data (temperature and densities of multipl...

  8. Spatial distribution of the electron component parameters in the nitrogen plasma of a low-pressure electrode microwave Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V., E-mail: krashevskaya-gv@mail.ru; Gogoleva, M. A., E-mail: masha-g@list.ru [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)

    2016-01-15

    Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.

  9. Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions

    CERN Document Server

    Nicolaou, Georgios

    2016-01-01

    This paper presents the misestimation of temperature when observations from a kappa distributed plasma are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the observed distributions using known analytical forms. More often, the distribution function is included in a forward model of the instrument's response, which is used to reproduce the observed energy spectrograms for a given set of plasma parameters. In both cases, the modeled plasma distribution fits the measurements to estimate the plasma parameters. The distribution function is often considered to be Maxwellian even though in many cases the plasma is better described by a kappa distribution. In this work we show that if the plasma is described by a kappa distribution, the derived temperature assuming Maxwell distribution can be significantly off. More specifically, we derive the plasma temperature by fitting a Maxwell distribution to pseudo-data produced by a kappa distribution, and then examine the d...

  10. PARAMETER ESTIMATION OF EXPONENTIAL DISTRIBUTION

    Institute of Scientific and Technical Information of China (English)

    XU Haiyan; FEI Heliang

    2005-01-01

    Because of the importance of grouped data, many scholars have been devoted to the study of this kind of data. But, few documents have been concerned with the threshold parameter. In this paper, we assume that the threshold parameter is smaller than the first observing point. Then, on the basis of the two-parameter exponential distribution, the maximum likelihood estimations of both parameters are given, the sufficient and necessary conditions for their existence and uniqueness are argued, and the asymptotic properties of the estimations are also presented, according to which approximate confidence intervals of the parameters are derived. At the same time, the estimation of the parameters is generalized, and some methods are introduced to get explicit expressions of these generalized estimations. Also, a special case where the first failure time of the units is observed is considered.

  11. Plasma spraying system with distributed controlling

    Institute of Scientific and Technical Information of China (English)

    李春旭; 陈克选; 张成

    2003-01-01

    A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.

  12. Optimization of audio - ultrasonic plasma system parameters

    Science.gov (United States)

    Haleem, N. A.; Abdelrahman, M. M.; Ragheb, M. S.

    2016-10-01

    The present plasma is a special glow plasma type generated by an audio ultrasonic discharge voltage. A definite discharge frequency using a gas at a narrow band pressure creates and stabilizes this plasma type. The plasma cell is a self-extracted ion beam; it is featured with its high output intensity and its small size. The influence of the plasma column length on the output beam due to the variation of both the audio discharge frequency and the power applied to the plasma electrodes is investigated. In consequence, the aim of the present work is to put in evidence the parameters that influence the self-extracted collected ion beam and to optimize the conditions that enhance the collected ion beam. The experimental parameters studied are the nitrogen gas, the applied frequency from 10 to 100 kHz, the plasma length that varies from 8 to 14 cm, at a gas pressure of ≈ 0.25 Torr and finally the discharge power from 50 to 500 Watt. A sheet of polyethylene of 5 micrometer covers the collector electrode in order to confirm how much ions from the beam can go through the polymer and reach the collector. To diagnose the occurring events of the beam on the collector, the polymer used is analyzed by means of the FTIR and the XRF techniques. Optimization of the plasma cell parameters succeeded to enhance and to identify the parameters that influence the output ion beam and proved that its particles attaining the collector are multi-energetic.

  13. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs.

  14. Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions

    Science.gov (United States)

    Nicolaou, Georgios; Livadiotis, George

    2016-11-01

    This paper presents the misestimation of temperature when observations from a kappa distributed plasma are analyzed as a Maxwellian. One common method to calculate the space plasma parameters is by fitting the observed distributions using known analytical forms. More often, the distribution function is included in a forward model of the instrument's response, which is used to reproduce the observed energy spectrograms for a given set of plasma parameters. In both cases, the modeled plasma distribution fits the measurements to estimate the plasma parameters. The distribution function is often considered to be Maxwellian even though in many cases the plasma is better described by a kappa distribution. In this work we show that if the plasma is described by a kappa distribution, the derived temperature assuming Maxwell distribution can be significantly off. More specifically, we derive the plasma temperature by fitting a Maxwell distribution to pseudo-data produced by a kappa distribution, and then examine the difference of the derived temperature as a function of the kappa index. We further consider the concept of using a forward model of a typical plasma instrument to fit its observations. We find that the relative error of the derived temperature is highly depended on the kappa index and occasionally on the instrument's field of view and response.

  15. Vasyliunas-Cairns distribution function for space plasma species

    Science.gov (United States)

    Abid, A. A.; Ali, S.; Du, J.; Mamun, A. A.

    2015-08-01

    A more generalized form of non-Maxwellian distribution function (that can be named as Vasyliunas-Cairns distribution function) is introduced. Its basic properties are numerically analyzed by the variation of two important parameters, namely, α (which shows the amount of energetic particles present in the plasma system) and κ (which shows the superthermality of the plasma species). It has been observed that (i) for α → 0 ( κ → ∞ ), the Vasyliunas-Cairns distribution function reduces to the Vasyliunas or κ (Cairns or nonthermal) distribution function; (ii) for α → 0 and κ → ∞ , it reduces to the Maxwellian distribution function; and (iii) the effect of the parameter α (κ) significantly modifies the basic properties of the Vasyliunas (Cairns) distribution function. The applications of this generalized non-Maxwellian distribution function (Vasyliunas-Cairns distribution function) in different space plasma situations are briefly discussed.

  16. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  17. Parton Distributions in Impact Parameter Space

    CERN Document Server

    Dahiya, H; Ray, S

    2007-01-01

    Fourier transform of the generalized parton distributions (GPDs) at zero skewness with respect to the transverse momentum transfer gives the distribution of partons in the impact parameter space. We investigate the GPDs as well as the impact parameter dependent parton distributions (ipdpdfs) by expressing them in terms of overlaps of light front wave functions (LFWFs) and present a comparative study using three different model LFWFs.

  18. Parameter Estimation in Multivariate Gamma Distribution

    OpenAIRE

    V S Vaidyanathan; R Vani Lakshmi

    2015-01-01

    Multivariate gamma distribution finds abundant applications in stochastic modelling, hydrology and reliability. Parameter estimation in this distribution is a challenging one as it involves many parameters to be estimated simultaneously. In this paper, the form of multivariate gamma distribution proposed by Mathai and Moschopoulos [10] is considered. This form has nice properties in terms of marginal and conditional densities. A new method of estimation based on optimal search is proposed for...

  19. Parameter Estimation in Multivariate Gamma Distribution

    Directory of Open Access Journals (Sweden)

    V S Vaidyanathan

    2015-05-01

    Full Text Available Multivariate gamma distribution finds abundant applications in stochastic modelling, hydrology and reliability. Parameter estimation in this distribution is a challenging one as it involves many parameters to be estimated simultaneously. In this paper, the form of multivariate gamma distribution proposed by Mathai and Moschopoulos [10] is considered. This form has nice properties in terms of marginal and conditional densities. A new method of estimation based on optimal search is proposed for estimating the parameters using the marginal distributions and the concepts of maximum likelihood, spacings and least squares. The proposed methodology is easy to implement and is free from calculus. It optimizes the objective function by searching over a wide range of values and determines the estimate of the parameters. The consistency of the estimates is demonstrated in terms of mean, standard deviation and mean square error through simulation studies for different choices of parameters

  20. Inference for ordered parameters in multinomial distributions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper discusses inference for ordered parameters of multinomial distributions. We first show that the asymptotic distributions of their maximum likelihood estimators (MLEs) are not always normal and the bootstrap distribution estimators of the MLEs can be inconsistent. Then a class of weighted sum estimators (WSEs) of the ordered parameters is proposed. Properties of the WSEs are studied, including their asymptotic normality. Based on those results, large sample inferences for smooth functions of the ordered parameters can be made. Especially, the confidence intervals of the maximum cell probabilities are constructed. Simulation results indicate that this interval estimation performs much better than the bootstrap approaches in the literature. Finally, the above results for ordered parameters of multinomial distributions are extended to more general distribution models.

  1. Effect of Substrate Potential on Plasma Parameters of Magnetic Multicusp Plasma Source

    Science.gov (United States)

    Ueda, Yoshio; Goto, Masahiro

    1998-06-01

    The effect of substrate potential on plasmas produced in a magnetic multicusp plasma source has been studied experimentally. Plasma parameters such as electron temperature and plasma potential are estimated from electron energy distribution function numerically calculated from probe current-voltage characteristics. For a substrate potential of -150 V with respect to the source chamber, which is much lower than substrate floating potentials, the plasma parameters are not affected by the application of the potential. However, for the case where the substrate is shorted with the source chamber, the high energy component of electrons significantly decreases in comparison with the floating case leading to the reduction of electron temperature. In this case, plasma potential is positive with respect to the substrate to suppress electron loss but its absolute value is only of the order of electron temperature in eV, which is much lower than the potential between the plasma and the substrate in the floating case. This discharge mode could be advantageous in significantly reducing the ion impact energy to the substrate plate.

  2. Anomalous skin effects in anisotropic kappa distributed plasmas

    Science.gov (United States)

    Khokhar, Tajammal H.; Bashir, M. F.; Murtaza, G.

    2017-07-01

    Anomalous skin effects (ASEs) are studied for the transverse electromagnetic waves in an unmagnetized collisionless plasma using anisotropic kappa distribution. The effects of the kappa spectral index (κ), temperature anisotropy ( A =T⊥/T||) , and the wave frequency (ω) on the ASEs are highlighted to be applicable for a wide range of plasma parameters. It is shown that the skin depth is reduced in a kappa distributed plasma as compared to the Maxwellian one. The anisotropy may enhance/reduce the skin depth depending upon the wave frequency to plasma frequency ratio ( ω/ωp ) and the regime of the anisotropy (i.e., A > 1 or A < 1). The results for the Maxwellian distribution ( κ→∞ ) are also retrieved. The possible applications to space and laboratory plasmas are also discussed.

  3. Variation of plasma parameters in a modified mode of plasma production in a double plasma device

    Indian Academy of Sciences (India)

    A Phukan; M K Mishra; B K Saikia; M Chakraborty

    2010-03-01

    A modified mode of plasma production in a double plasma device is presented and plasma parameters are controlled in this configuration. Here plasma is produced by applying a discharge voltage between the hot filaments in the source (cathode) and the target magnetic cage (anode) of the device. In this configuration, the hot electron emitting filaments are present only in the source and the magnetic cage of this is kept at a negative bias such that due to the repulsion of the cage bias, the primary electrons can go to the grounded target and produce plasma there. The plasma parameters can be controlled by varying the voltages applied to the source magnetic cage and the separation grid of the device.

  4. Plasma Dispersion Function for the Kappa Distribution

    Science.gov (United States)

    Podesta, John J.

    2004-01-01

    The plasma dispersion function is computed for a homogeneous isotropic plasma in which the particle velocities are distributed according to a Kappa distribution. An ordinary differential equation is derived for the plasma dispersion function and it is shown that the solution can be written in terms of Gauss' hypergeometric function. Using the extensive theory of the hypergeometric function, various mathematical properties of the plasma dispersion function are derived including symmetry relations, series expansions, integral representations, and closed form expressions for integer and half-integer values of K.

  5. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  6. ESTIMATION ACCURACY OF EXPONENTIAL DISTRIBUTION PARAMETERS

    Directory of Open Access Journals (Sweden)

    muhammad zahid rashid

    2011-04-01

    Full Text Available The exponential distribution is commonly used to model the behavior of units that have a constant failure rate. The two-parameter exponential distribution provides a simple but nevertheless useful model for the analysis of lifetimes, especially when investigating reliability of technical equipment.This paper is concerned with estimation of parameters of the two parameter (location and scale exponential distribution. We used the least squares method (LSM, relative least squares method (RELS, ridge regression method (RR,  moment estimators (ME, modified moment estimators (MME, maximum likelihood estimators (MLE and modified maximum likelihood estimators (MMLE. We used the mean square error MSE, and total deviation TD, as measurement for the comparison between these methods. We determined the best method for estimation using different values for the parameters and different sample sizes

  7. Nongyrotropic particle distributions in space plasmas

    Directory of Open Access Journals (Sweden)

    U. Motschmann

    Full Text Available In nonstationary, strong inhomogeneous or open plasmas particle orbits are rather complicated. If the nonstationary time scale is smaller than the gyration period, if the inhomogeneity scale is smaller than the gyration radius, i.e. at magnetic plasma boundaries, or if the plasma has sources and sinks in phase space, then nongyrotropic distribution functions occur. The stability of such plasma configurations is studied in the framework of linear dispersion theory. In an open plasma nongyrotropy drives unstable waves parallel and perpendicular to the background magnetic field, whereas in the gyrotropic limit the plasma is stable. In nonstationary plasmas nongyrotropy drives perpendicular unstable waves only. Temporal modulation couples a seed mode with its side lobes and thus it renders unstable wave growth more difficult. As an example of an inhomogeneous plasma a magnetic halfspace is discussed. In a layer with thickness of the thermal proton gyroradius a nongyrotropic distribution is formed which may excite unstable parallel and perpendicular propagating waves.

    Key words. Interplanetary physics (plasma waves and turbulence · Ionosphere (plasma waves and instabilities · Magnetospheric physics (plasma waves and instabilities

  8. Multivariate distributions of soil hydraulic parameters

    Science.gov (United States)

    Qu, Wei; Pachepsky, Yakov; Huisman, Johan Alexander; Martinez, Gonzalo; Bogena, Heye; Vereecken, Harry

    2014-05-01

    Statistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic properties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation. Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parameters for textural classes are most often used in the parameter field generation. Presence of strong correlations can substantially influence the parameter generation results. The objective of this work was to review and evaluate available data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different approaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generate VGM parameters for a large number of soil compositions within a textural class, and then computes parameter correlations for each of the textural classes. The second approach computes the VGM parameter correlations directly from parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivity data for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedotransfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to develop correlations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US Southern Plains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the second approach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences were encountered between parameter correlations obtained with different approaches and different databases for the same textural classes. The first of the two approaches resulted in generally higher values of correlation coefficients between VGM parameters. However, results of the first approach application depend

  9. Density Matrix for Mesoscopic Distributed Parameter Circuits

    Institute of Scientific and Technical Information of China (English)

    JI Ying-Hua; WANG Qi; LUO Hai-Mei; LEI Min-Sheng

    2005-01-01

    Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for nondissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix p(q, q',β). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.

  10. Evolution of plasma parameters in a He - N2/Ar magnetic pole enhanced inductive plasma source

    Science.gov (United States)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Zakaullah, M.; Abrar, M.

    2016-02-01

    A magnetic pole enhanced inductively coupled H e - N2/A r plasma is studied at low pressure, to monitor the effects of helium mixing on plasma parameters like electron number density (ne) , electron temperature (Te) , plasma potential (Vp ) , and electron energy probability functions (EEPFs). An RF compensated Langmuir probe is employed to measure these plasma parameters. It is noted that electron number density increases with increasing RF power and helium concentration in the mixture, while it decreases with increase in filling gas pressure. On the other hand, electron temperature shows an increasing trend with helium concentration in the mixture. At low RF powers and low helium concentration in the mixture, EEPFs show a "bi-Maxwellian" distribution with pressure. While at RF powers greater than 50 W and higher helium concentration in the mixture, EEPFs evolve into "Maxwellian" distribution. The variation of skin depth with RF power and helium concentration in the mixture, and its relation with EEPF are also studied. The effect of helium concentrations on the temperatures of two electron groups ( Tb u l k and Tt a i l ) in the "bi-Maxwellian" EEPFs is also observed. The temperature of low energy electron group ( Tb u l k) shows significant increase with helium addition, while the temperature of tail electrons ( Tt a i l) increases smoothly as compared to ( Tb u l k).

  11. Compositional modelling of distributed-parameter systems

    NARCIS (Netherlands)

    Maschke, Bernhard; Schaft, van der Arjan; Lamnabhi-Lagarrigue, F.; Loría, A.; Panteley, E.

    2005-01-01

    The Hamiltonian formulation of distributed-parameter systems has been a challenging reserach area for quite some time. (A nice introduction, especially with respect to systems stemming from fluid dynamics, can be found in [26], where also a historical account is provided.) The identification of the

  12. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  13. Multi-parameter gradient procedure for polarimetry data inversion in tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University, Szczecin Wały Chrobrego 1/2 (Poland); Kravtsov, Yu. A. [Maritime University, Szczecin Wały Chrobrego 1/2 (Poland); Mazon, D. [Association Euratom/CEA, CEA Cadarache DSM/IRFM, 13108 St. Paul lez Durance Cedex (France); JET, Culham (United Kingdom)

    2013-10-15

    Highlights: ► We use gradient procedure to fit plasma parameters to polarimetric data. ► Calculations are performed in developed by authors angular variables technique. ► Numerical results are compared with experimentally measured angular parameters. ► We observe satisfied accuracy of inversion procedure after several iterations. -- Abstract: Multi-parameter gradient procedure is suggested which allows fitting tokamak plasma model to polarimetric data. One of the simplest version of gradient procedure deals with four parameters model: maximum values of electron density, maximum value of electric current density in plasma, common radius of electron density, electric current distributions and increment of the safety factor inside plasma. Using recently developed by authors angular variables technique (AVT) in plasma polarimetry we may compute angular parameters of polarization ellipse for a given set of four plasma parameters and compare them with experimentally measured angular parameters. With angular parameters, measured in two channels polarimetric system (two azimuthal and two ellipticity angles, totally four experimental values). Applying then gradient procedure for squared difference between computed and measured parameters, we find four parameters of plasma model and thereby perform inversion of polarimetric data. Numerical simulations have approved that gradient procedure provides acceptable accuracy of inversion already after several iterations.

  14. Integral electrical characteristics and local plasma parameters of a RF ion thruster

    Energy Technology Data Exchange (ETDEWEB)

    Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com [Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University), Moscow (Russian Federation); Godyak, V. A. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109, USA and RF Plasma Consulting, Brookline, Massachusetts 02446 (United States)

    2016-02-15

    Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuir probes.

  15. A study on plasma parameters in Ar/SF6 inductively coupled plasma

    Science.gov (United States)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2017-01-01

    Sulfur hexafluoride (SF6) gas or Ar/SF6 mixing gas is widely used in plasma processes. However, there are a little experimental studies with various external parameters such as gas pressure and mixing ratio. In this work, a study of the plasma parameters by changing the gas mixing ratio was done in an Ar/SF6 inductively coupled plasma from the measurement of the electron energy distribution function. At a low gas pressure, as the mixing ratio of SF6 gas increased at a fixed inductively coupled plasma (ICP) power, the electron density decreased and the electron temperature increased, while they were not changed drastically. At a high gas pressure, a remarkable increase in the electron temperature was observed with the decrease in the electron density. These variations are due to the electron loss reactions such as the electron attachment. It was also found that at a fixed ICP power, the negative ion creation with the diluted SF6 gas can change the discharge mode transition from an inductive mode to a capacitive mode at the high gas pressure. The electron attachment reactions remove the low energy electrons and change the mean electron energy towards higher energies with diluting SF6 gas at high pressure. The measured results were compared with the simplified global model, and the global model is in relatively good agreement with the measured plasma parameters except for the result in the case of the large portion of SF6 gas at the high pressure and the capacitive mode, which causes strong negative ion formation by the electron attachment reactions.

  16. Parameters of atmospheric plasmas produced by electrosurgical devices

    Science.gov (United States)

    Keidar, Michael; Shashurin, Alexey; Canady, Jerome

    2013-10-01

    Electrosurgical systems are extensively utilized in general surgery, surgical oncology, plastic and reconstructive surgery etc. In this work we study plasma parameters created by electrosurgical system SS-200E/Argon 2 of US Medical Innovations. The maximal length of the discharge plasma column at which the discharge can be sustained was determined as function of discharge power and argon flow rate. Electrical parameters including discharge current and voltage were measured. Recently proposed Rayleigh microwave scattering method for temporally resolved density measurements of small-size atmospheric plasmas was utilized. Simultaneously, evolution of plasma column was observed using intensified charge-coupled device (ICCD) camera.

  17. Distribution Development for STORM Ingestion Input Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr to a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e-4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e-4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)

  18. Distributed parameter statics of magnetic catheters.

    Science.gov (United States)

    Tunay, Ilker

    2011-01-01

    We discuss how to use special Cosserat rod theory for deriving distributed-parameter static equilibrium equations of magnetic catheters. These medical devices are used for minimally-invasive diagnostic and therapeutic procedures and can be operated remotely or controlled by automated algorithms. The magnetic material can be lumped in rigid segments or distributed in flexible segments. The position vector of the cross-section centroid and quaternion representation of an orthonormal triad are selected as DOF. The strain energy for transversely isotropic, hyperelastic rods is augmented with the mechanical potential energy of the magnetic field and a penalty term to enforce the quaternion unity constraint. Numerical solution is found by 1D finite elements. Material properties of polymer tubes in extension, bending and twist are determined by mechanical and magnetic experiments. Software experiments with commercial FEM software indicate that the computational effort with the proposed method is at least one order of magnitude less than standard 3D FEM.

  19. Numerical Simulation of Basic Parameters in Plasma Spray

    Institute of Scientific and Technical Information of China (English)

    范群波; 王鲁; 王富耻

    2004-01-01

    On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, which can be directly calculated just by inputting the general spraying parameters, such as current, voltage, flow rates of gases, etc. Based on this method, the effects of plasma current and the flow rate of Ar on the basic parameters at the torch exit are discussed. The results show that the temperature, velocity and ionization degrees of gas species will increase with increasing the plasma current; while increasing Ar flow rate can increase the velocity at the exit but decrease the temperature and ionization degrees of plasma species. The method would be helpful to predict the temperature and velocity fields in a plasma jet in future, and direct the practical plasma spray operations.

  20. Plasma parameters controlled by remote electron shower in a double plasma device

    Science.gov (United States)

    Mishra, M. K.; Phukan, A.

    2012-07-01

    The principal feature of this experiment is the electron showers consisting of three tungsten wires embedded by the plasma, which are heated up consequently emitting electrons inside the diffused plasma to control the plasma parameters in the discharge section of a double plasma device. These cold electrons emitted by the heated filament are free from maintenance of discharge which is sustained in the source section. The target plasma, where electrons are injected is produced as a result of diffusion from the source section. It is found that, plasma density and plasma potential can be effectively controlled in this way.

  1. Radio Emissions from Plasma with Electron Kappa-Distributions

    Science.gov (United States)

    Fleishman, G. D.; Kuznetsov, A. A.

    2015-12-01

    Gregory Fleishman (New Jersey Institute of Technology, Newark, USA)Alexey Kuznetsov (Institute of Solar-Terrestrial Physics, Irkutsk, Russia), Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasisteady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these kappa distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa-distribution, and discuss their properties, which are in fact remarkably different from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. In this report, we present analytical formulae and computer codes to calculate the emission parameters. We simulate the gyroresonance emission under the conditions typical of the solar active regions and compare the results for different electron distributions. We discuss the implications of our findings for interpretation of radio observations. This work was supported in part by NSF grants AGS-1250374 and AGS-1262772, NASA grant NNX14AC87G to New Jersey Institute of Technology

  2. Study of parameters of a facility generating compressive plasma flows

    Science.gov (United States)

    Leyvi, A. Ya

    2017-05-01

    The prosperity of plasma technologies stimulates making of a facility generating compressive plasma flows at the South Ural State University. The facility is a compact-geometry magnetoplasma compressor with the following parameters: stored energy up to 15 kJ, voltage of a bank from 3 to 5 kV; nitrogen, air, and other gases can serve as its operating gas. The investigation of parameters of the facility showed the following parameters of compressive plasma flows: impulse duration of up to 120 μs, discharge current of 50-120 kA, speed of plasma flow of 15-30 km/s. By contrast to the available facilities, the parameters of the developed facility can be adjusted in a wide range of voltage from 2 kV to 10 kV, its design permits generating CPF in horizontal and vertical positions.

  3. Langmuir probe Diagnostic for local parameter measurement in Magnetized Plasma using LabVIEW

    Directory of Open Access Journals (Sweden)

    Bijal Vara

    2014-03-01

    Full Text Available In recent years, plasma technology is used by Semiconductor, thin film industries for deposit layers, etching process and surface modification. So it is necessary to understanding internal plasma parameter. Langmuir probe is one of the simplest techniques which is used to measure wide range of plasma parameter like plasma potential, floating potential, electron temperature, electron energy distribution function (EEDF etc. Langmuir current voltage characteristic is obtained by varying bias voltage of the probe. LabVIEW is most powerful Microsoft window compatible software which is used to immediate data acquisition and analysis. In this paper describes analysis of Langmuir data using LabVIEW software which automatically measure I-V Plasma probe Characteristics and obtain EEDF of plasma.

  4. Parameters influencing plasma column potential in a reflex discharge

    Science.gov (United States)

    Liziakin, G. D.; Gavrikov, A. V.; Murzaev, Y. A.; Usmanov, R. A.; Smirnov, V. P.

    2016-12-01

    Distribution of electrostatic potential in direct current reflex discharge plasma has been studied experimentally. Measurements have been conducted by the single floating probe method. The influence of 0-0.2 T magnetic field, 1-200 mTorr pressure, 0-2 kV discharge voltage, and electrodes geometry on plasma column electrostatic potential was investigated. The possibility for the formation of a preset potential profile required for the realization of plasma separation of spent nuclear fuel was demonstrated.

  5. Collisionless expansion of pulsed radio frequency plasmas. II. Parameter study

    Science.gov (United States)

    Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.

    2016-01-01

    The plasma parameter dependencies of the dynamics during the expansion of plasma are studied with the use of a versatile particle-in-cell simulation tailored to a plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47, 055207 (2014); Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The plasma expansion into a low-density ambient plasma features a propagating ion front that is preceding a density plateau. It has been shown that the front formation is entangled with a wave-breaking mechanism, i.e., an ion collapse [Sack and Schamel, Plasma Phys. Controlled Fusion 27, 717 (1985); Sack and Schamel, Phys. Lett. A 110, 206 (1985)], and the launch of an ion burst [Schröder et al., Phys. Plasmas 23, 013511 (2016)]. The systematic parameter study presented in this paper focuses on the influence on this mechanism its effect on the maximum velocity of the ion front and burst. It is shown that, apart from the well known dependency of the front propagation on the ion sound velocity, it also depends sensitively on the density ratio between main and ambient plasma density. The maximum ion velocity depends further on the initial potential gradient, being mostly influenced by the plasma density ratio in the source and expansion regions. The results of the study are compared with independent numerical studies.

  6. Origins and properties of kappa distributions in space plasmas

    Science.gov (United States)

    Livadiotis, George

    2016-07-01

    Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as the space and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions. Empirical kappa distributions have become increasingly widespread across space and plasma physics. However, a breakthrough in the field came with the connection of kappa distributions to the solid statistical framework of Tsallis non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, some of which will be presented in this talk: (i) The physical meaning of thermal parameters, e.g., temperature and kappa index; (ii) the multi-particle description of kappa distributions; (iii) the phase-space kappa distribution of a Hamiltonian with non-zero potential; (iv) the Sackur-Tetrode entropy for kappa distributions, and (v) the new quantization constant, h _{*}˜10 ^{-22} Js.

  7. Determination and distribution of human plasma selenoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Plecko, T.; Nordmann, S.; Ruekgauer, M.; Kruse-Jarres, J.D. [Institute for Clinical Chemistry and Laboratory Medicine, Stuttgart (Germany)

    1999-03-01

    Major portions of plasma-selenium are incorporated in the proteins glutathione peroxidase (GSH-Px), selenoprotein P (Sel P) and albumin. A chromatographic method, adapted from a procedure by Harrison et al. [6], uses heparin- and blue-sepharose to separate the three protein fractions. The determination of selenium was carried out by electrothermal atomic absorption spectroscopy (ETAAS) using the Zeeman effect. The selenium distribution of 17 healthy subjects was 68 {+-} 7% of the total plasma selenium associated to Sel P, 25 {+-} 4% associated to p-GSH-Px and 7{+-}4% associated to albumin. The recovery of selenium was 99 {+-} 4%. For precision measurements a plasma pool has been separated seven times. The selectivity of this method was monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and GSH-Px activity measurements. A fast method, adapted for clinical applications, is described which allows to determine the human plasma selenium distribution in about an hour. (orig.) With 2 tabs., 8 refs.

  8. Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device

    Science.gov (United States)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-06-01

    The effect of the electrostatic confinement potential on the charging of dust grains and its relationship with the plasma parameters has been studied in an electrostatically plugged multicusp dusty plasma device. Electrostatic plugging is implemented by biasing the electrically isolated magnetic multicusp channel walls. The experimental results show that voltage applied to the channel walls can be a controlling parameter for dust charging.

  9. Maximum Likelihood Estimates of Parameters in Various Types of Distribution Fitted to Important Data Cases.

    OpenAIRE

    Hirose, Hideo

    1998-01-01

    TYPES OF THE DISTRIBUTION:13;Normal distribution (2-parameter)13;Uniform distribution (2-parameter)13;Exponential distribution ( 2-parameter)13;Weibull distribution (2-parameter)13;Gumbel Distribution (2-parameter)13;Weibull/Frechet Distribution (3-parameter)13;Generalized extreme-value distribution (3-parameter)13;Gamma distribution (3-parameter)13;Extended Gamma distribution (3-parameter)13;Log-normal distribution (3-parameter)13;Extended Log-normal distribution (3-parameter)13;Generalized ...

  10. Maximum Likelihood Estimates of Parameters in Various Types of Distribution Fitted to Important Data Cases.

    OpenAIRE

    Hirose, Hideo

    1998-01-01

    TYPES OF THE DISTRIBUTION:13;Normal distribution (2-parameter)13;Uniform distribution (2-parameter)13;Exponential distribution ( 2-parameter)13;Weibull distribution (2-parameter)13;Gumbel Distribution (2-parameter)13;Weibull/Frechet Distribution (3-parameter)13;Generalized extreme-value distribution (3-parameter)13;Gamma distribution (3-parameter)13;Extended Gamma distribution (3-parameter)13;Log-normal distribution (3-parameter)13;Extended Log-normal distribution (3-parameter)13;Generalized ...

  11. Apolipoprotein (A) Isoform Distribution and Plasma Lipoprotein (a ...

    African Journals Online (AJOL)

    Apolipoprotein (A) Isoform Distribution and Plasma Lipoprotein (a) Levels In Nigerian Subjects With and Without Coronary Heart Disease. ... Plasma lipoprotein (a) Concentrations and apo(a) isoforms were determined in 101 ... Article Metrics.

  12. Effect of gasification parameter on coal gasification in thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S.; Pang, X.; Bao, W.; Lo, Y.; Zhu, S. [Taiyuan University of Technology, Taiyuan (China)

    2004-12-01

    The influence of several parameters such as the power input of plasma jet, vapor and air input etc on gas composition and carbon conversion from coal gasification in an air-steam plasma jet was studied. The main gaseous products are H{sub 2}, CO, CO{sub 2}, CH{sub 2}4 and tar was discovered. Results show that the concentration of H{sub 2}, CO and carbon conversion increases, and the concentration of CO{sub 2} significantly decreases, when the power input of plasma jet is raised. The concentration of H{sub 2} increases when the vapor flux is increased, but excessive steam can decrease carbon conversion. The carbon conversion is enhanced by decreasing feed rate. The air flux should be reduced to improve the quality of coal gas in a certain range. The carbon conversion of Datong coal can exceed 95% at appropriate condition. 18 refs., 4 figs., 2 tabs.

  13. On the Confidence Interval for the parameter of Poisson Distribution

    CERN Document Server

    Bityukov, S I; Taperechkina, V A

    2000-01-01

    In present paper the possibility of construction of continuous analogue of Poisson distribution with the search of bounds of confidence intervals for parameter of Poisson distribution is discussed and the results of numerical construction of confidence intervals are presented.

  14. Influence of Processing Parameters on Granularity Distribution of Superalloy Powders during PREP

    Institute of Scientific and Technical Information of China (English)

    Huanming CHEN; Benfu HU; Yiwen ZHANG; Huiying LI; Quanmao YU

    2003-01-01

    In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.

  15. Programmable physical parameter optimization for particle plasma simulations

    Science.gov (United States)

    Ragan-Kelley, Benjamin; Verboncoeur, John; Lin, Ming-Chieh

    2012-10-01

    We have developed a scheme for interactive and programmable optimization of physical parameters for plasma simulations. The simulation code Object-Oriented Plasma Device 1-D (OOPD1) has been adapted to a Python interface, allowing sophisticated user or program interaction with simulations, and detailed numerical analysis via numpy. Because the analysis/diagnostic interface is the same as the input mechanism (the Python programming language), it is straightforward to optimize simulation parameters based on analysis of previous runs and automate the optimization process using a user-determined scheme and criteria. An example use case of the Child-Langmuir space charge limit in bipolar flow is demonstrated, where the beam current is iterated upon by measuring the relationship of the measured current and the injected current.

  16. Investigation of plasma parameters in an active screen cage-pulsed dc plasma used for plasma nitriding

    Science.gov (United States)

    Naeem, M.; Khattak, Z. I.; Zaka-ul-Islam, M.; Shabir, S.; Khan, A. W.; Zakaullah, M.

    2014-11-01

    Active screen cage-pulsed dc plasmas are widely used in the material processing applications such as plasma nitriding, carburizing and nitrocarburizing. Specifically for plasma nitriding applications, a H2-N2 mixture is used. In this article, a study of the electron number density (ne), atomic nitrogen density ([N]), electron temperature ? and the excitation temperature ? is reported in the presence of an active screen cage-pulsed dc plasma. The ne and ? are determined here by a triple Langmuir probe, while [N] and ? are estimated by optical emission spectroscopy (OES). The two temperatures and their ratio ? are compared for different input parameters (such as applied power, gas pressure and H2 percentage). This study is useful in active screen cage plasma nitriding applications where only few plasma diagnostic measurements have been reported.

  17. Study on Performance Parameters of the Plasma Source for a Short-Conduction-Time Plasma Opening Switch

    Institute of Scientific and Technical Information of China (English)

    LUO Weixi; ZENG Zhengzhong; WANG Liangping; LEI Tianshi; HU Yixiang; HUANG Tao; SUN Tieping

    2012-01-01

    Plasma source performance parameters, including plasma ejection density and velocity, greatly affect the operation of a short-conduction-time plasma opening switch (POS). In this paper, the plasma source used in the POS of Qiangguang I generator is chosen as the study object. At first the POS working process is analyzed. The result shows that the opening performance of the POS can be improved by increasing the plasma ejection velocity and decreasing the plasma density. The influence of the cable plasma gun structure and number on the plasma ejection parameters is experimentally investigated with two charge collectors. Finally a semi-empirical model is proposed to describe the experimental phenomenon.

  18. Downstream plasma parameters in laminar shocks from ion kinetics

    Science.gov (United States)

    Gedalin, M.

    2016-10-01

    Ion dynamics in oblique shocks is governed by the macroscopic electric and magnetic fields of the shock front. In laminar shocks, these fields are time-independent and depend only on the coordinate along the shock normal. The shock ramp is narrow and the ion motion across the shock is manifestly non-adiabatic. The ion distribution just behind the ramp is significantly non-gyrotropic. Gyrotropy is achieved well behind the ramp mainly due to the gyrophase mixing. The asymptotic values of the ion density and temperature are determined by the eventual collisionless relaxation of the gyrating ion distribution. Given a distribution at the downstream edge of the ramp, the moments of the distribution after gyrophase mixing are derived using proper spatial averaging. The obtained expressions can be used for independent determination of the downstream plasma state and implementation in Rankine-Hugoniot relations.

  19. Landau damping of longitudinal oscillation in ultrarelativistic plasmas with nonextensive distribution

    Institute of Scientific and Technical Information of China (English)

    Liu San-Qiu; Chen Xiao-Chang

    2011-01-01

    The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression for the Landau damping is obtained in an ultra-relativistic regime, which is related to q-parameter. In the limit q → 1, the result based on the relativistic Maxwellian distribution is recovered. It is shown that the interactions between the wave and particles are stronger and the waves are more strongly damped for lower values of q-parameter. The results are explained by the increased number of superthermal particles or low velocity particles contained in the plasma with the nonextensive distribution.

  20. Optimal control of nonsmooth distributed parameter systems

    CERN Document Server

    Tiba, Dan

    1990-01-01

    The book is devoted to the study of distributed control problems governed by various nonsmooth state systems. The main questions investigated include: existence of optimal pairs, first order optimality conditions, state-constrained systems, approximation and discretization, bang-bang and regularity properties for optimal control. In order to give the reader a better overview of the domain, several sections deal with topics that do not enter directly into the announced subject: boundary control, delay differential equations. In a subject still actively developing, the methods can be more important than the results and these include: adapted penalization techniques, the singular control systems approach, the variational inequality method, the Ekeland variational principle. Some prerequisites relating to convex analysis, nonlinear operators and partial differential equations are collected in the first chapter or are supplied appropriately in the text. The monograph is intended for graduate students and for resea...

  1. Estimation of Parameters of the Beta-Extreme Value Distribution

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    2008-09-01

    Full Text Available In this research paper The Beta Extreme Value Type (III distribution which is developed by Zafar and Aleem (2007 is considered and parameters are estimated by using moments of the Beta-Extreme Value (Type III Distribution when the parameters ‘m’ & ‘n’ are real and moments of the Beta-Extreme Value (Type III Distribution when the parameters ‘m��� & ‘n’ are integers and then a Comparison between rth moments about origin when parameters are ‘m’ & ‘n’ are real and when parameters are ‘m’ & ‘n’ are integers. At the end second method, method of Maximum Likelihood is used to estimate the unknown parameters of the Beta Extreme Value Type (III distribution.

  2. A Comparative Study of Distribution System Parameter Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  3. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    Directory of Open Access Journals (Sweden)

    Laura Paparelli

    2016-09-01

    Full Text Available Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH. We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.

  4. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    Science.gov (United States)

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Wakefield, Devin L; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-09-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.

  5. Parameter estimation of stable distribution based on zero - order statistics

    Science.gov (United States)

    Chen, Jian; Chen, Hong; Cai, Xiaoxia; Weng, Pengfei; Nie, Hao

    2017-08-01

    With the increasing complexity of the channel, there are many impulse noise signals in the real channel. The statistical properties of such processes are significantly deviated from the Gaussian distribution, and the Alpha stable distribution provides a very useful theoretical tool for this process. This paper focuses on the parameter estimation method of the Alpha stable distribution. First, the basic theory of Alpha stable distribution is introduced. Then, the concept of logarithmic moment and geometric power are proposed. Finally, the parameter estimation of Alpha stable distribution is realized based on zero order statistic (ZOS). This method has better toughness and precision.

  6. The diffusion of charged particles in the weakly ionized plasma with power-law kappa-distributions

    Science.gov (United States)

    Wang, Lan; Du, Jiulin

    2017-10-01

    We study the diffusion of charged particles in the weakly ionized plasma with the power-law κ-distributions and without the magnetic field. The electrons and ions have different κ-parameters. We obtain the expressions of both diffusion and mobility coefficients of electrons and ions respectively in the plasma. We find that these new transport coefficient formulae depend strongly on the κ-parameters in the power-law distributed plasma. When we take κ→∞, these formulae reduce to the classical forms in the weakly ionized plasma with a Maxwellian distribution.

  7. Distributed Weighted Parameter Averaging for SVM Training on Big Data

    OpenAIRE

    Das, Ayan; Bhattacharya, Sourangshu

    2015-01-01

    Two popular approaches for distributed training of SVMs on big data are parameter averaging and ADMM. Parameter averaging is efficient but suffers from loss of accuracy with increase in number of partitions, while ADMM in the feature space is accurate but suffers from slow convergence. In this paper, we report a hybrid approach called weighted parameter averaging (WPA), which optimizes the regularized hinge loss with respect to weights on parameters. The problem is shown to be same as solving...

  8. Measurement Of Plasma Parameters In Micro-Discharge By Wall Probe

    Science.gov (United States)

    Saifutdinov, Almaz; Kudryavtsev, Anatoly; Sysoev, Sergey

    2016-09-01

    The increasing scientific and practical interest for glow discharge at high pressure is largely determined by the fact that their use does not require expensive and huge vacuum equipment. The analysis shows that, in contrast to the well-studied positive column (PC), the basic parameters of the plasma negative glow (NG) and Faraday dark space (FDS) of micro-discharges are studied insufficiently. The difficulties of the experimental diagnostics are associated with the fact that for the fixed values of pL with the increasing gas pressure the length of the micro-discharge decreases. And a small size is extremely difficult to diagnose spatial parameters distribution of micro discharges. Since at a small size introducing traditional Langmuir probe into the plasma capacity is not possible technically, it was proposed to use an additional measuring electrode (wall probe) disposed between the cathode and the anode for measurement of the fast EEDF. With its use we have registered EEDF fast electrons produced in the reaction of Penning ionization out of earlier reach range of high-pressure gas (from 20 to 200 Torr). In this paper by using wall probe we measured the basic parameters of NG plasma in micro-discharge in helium in a wide range of pressures. It is shown that the electrons temperature in the NG plasma is low and amounts to few fraction of 1 eV, which differs from the electron temperature in PC plasma. This allows the use of NG plasma for analysis by gas plasma electron spectroscopy. Authors thanks RNF (Grant 14-19-00311) for the support.

  9. Plasma Processes : Sheath and plasma parameters in a magnetized plasma system

    Indian Academy of Sciences (India)

    Bornali Singha; A Sharma; J Chutia

    2000-11-01

    The variation of electron temperature and plasma density in a magnetized 2 plasma is studied experimentally in presence of a grid placed at the middle of the system. Plasma leaks through the negatively biased grid from the source region into the diffused region. It is observed that the electron temperature increases with the magnetic field in the diffused region whereas it decreases in the source region of the system for a constant grid biasing voltage. Also, investigation is done to see the change of electron temperature with grid biasing voltage for a constant magnetic field. This is accompanied by the study of the variation of sheath structure across the grid for different magnetic field and grid biasing voltage as well. It reveals that with increasing magnetic field and negative grid biasing voltage, the sheath thickness expands.

  10. Kappa distributions: theory and applications in space plasmas

    CERN Document Server

    Pierrard, V

    2010-01-01

    Particle velocity distribution functions (VDF) in space plasmas often show non Maxwellian suprathermal tails decreasing as a power law of the velocity. Such distributions are well fitted by the so-called Kappa distribution. The presence of such distributions in different space plasmas suggests a universal mechanism for the creation of such suprathermal tails. Different theories have been proposed and are recalled in this review paper. The suprathermal particles have important consequences concerning the acceleration and the temperature that are well evidenced by the kinetic approach where no closure requires the distributions to be nearly Maxwellians. Moreover, the presence of the suprathermal particles take an important role in the wave-particle interactions.

  11. Modeling a short cold cathode DC discharge device with controllable plasma parameters

    Science.gov (United States)

    Kudryavtsev, Anatoly; Adams, Steven; Demidov, Vladimir; Bogdanov, Yevgeny

    2009-11-01

    A short (without positive column) DC gas-discharge device with a cold cathode has been modeled. The device consists of the plane disk-shaped cathode and anode while the inter-electrode gap is bounded by a cylindrical wall. The cathode and anode are each 2.5 cm in diameter, and the inter-electrode gap is 12 mm. The wall is made of conducting parts divided by an insulator. The modeling has been performed for argon plasma at 1 Torr pressure. It is demonstrated in the model that spatial distributions of electron density and temperature and argon metastable atom density depend on the DC voltage applied to different conducting parts of the wall. Applied voltage can trap within the device volume energetic electrons arising from atomic and molecular processes in the plasma. This leads to a modification in the heating of slow electrons by energetic electrons and as a result modifies the controlling plasma parameters.

  12. Versatile particle collection concept for correlation of particle growth and discharge parameters in dusty plasmas

    Science.gov (United States)

    Hinz, A. M.; von Wahl, E.; Faupel, F.; Strunskus, T.; Kersten, H.

    2015-02-01

    The feasibility of collecting nanoparticles from a dusty plasma by means of the neutral drag force is investigated. The nanoparticles are formed in a capacitively coupled asymmetric discharge running in an Ar/C2H2—mixture at a frequency of 13.56 MHz and an RF-power of 9 W. By opening a gate valve between the plasma reactor and a vacuum chamber at a lower pressure at any desired point of the growth cycle of the dust particles a neutral gas flux is induced that drags the particles out of the plasma onto a substrate. By changing the parameters of the collection process, e.g. the substrate positioning or the substrate temperature, the efficiency of the collection process can be adjusted. Information about the particle size distributions is obtained by performing ex situ SEM measurements. As the collection process creates a time stamp in the in situ recorded control parameters, e.g. the self-bias voltage or the process gas pressure, a direct and precise correlation between the control parameters and the particle size distribution is obtained.

  13. Interval Estimations of the Two-Parameter Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Lai Jiang

    2012-01-01

    Full Text Available In applied work, the two-parameter exponential distribution gives useful representations of many physical situations. Confidence interval for the scale parameter and predictive interval for a future independent observation have been studied by many, including Petropoulos (2011 and Lawless (1977, respectively. However, interval estimates for the threshold parameter have not been widely examined in statistical literature. The aim of this paper is to, first, obtain the exact significance function of the scale parameter by renormalizing the p∗-formula. Then the approximate Studentization method is applied to obtain the significance function of the threshold parameter. Finally, a predictive density function of the two-parameter exponential distribution is derived. A real-life data set is used to show the implementation of the method. Simulation studies are then carried out to illustrate the accuracy of the proposed methods.

  14. On Estimating the Parameters of Truncated Trivariate Normal Distributions

    Directory of Open Access Journals (Sweden)

    M. N. Bhattacharyya

    1969-07-01

    Full Text Available Maximum likehood estimates of the parameters of a trivariate normal distribution, with single truncation on two-variates, have been derived in this paper. The information matrix has also been given from which the asymptotic variances and covariances might be obtained for the estimates of the parameters of the restricted variables. Numerical examples have been worked out.

  15. Distribution Line Parameter Estimation Under Consideration of Measurement Tolerances

    DEFF Research Database (Denmark)

    Prostejovsky, Alexander; Gehrke, Oliver; Kosek, Anna Magdalena

    2016-01-01

    State estimation and control approaches in electric distribution grids rely on precise electric models that may be inaccurate. This work presents a novel method of estimating distribution line parameters using only root mean square voltage and power measurements under consideration of measurement...

  16. Evolution of plasma parameters in an Ar-N2/He inductive plasma source with magnetic pole enhancement

    Science.gov (United States)

    Maria, Younus; N, U. Rehman; M, Shafiq; M, Naeem; M, Zaka-Ul-Islam; M, Zakaullah

    2017-02-01

    Magnetic pole enhanced inductively coupled plasmas (MaPE-ICPs) are a promising source for plasma-based etching and have a wide range of material processing applications. In the present study Langmuir probe and optical emission spectroscopy were used to monitor the evolution of plasma parameters in a MaPE-ICP Ar-N2/He mixture plasma. Electron density ({n}{{e}}) and temperature ({T}{{e}}), excitation temperature ({T}{{exc}}), plasma potential ({V}{{p}}), skin depth (δ ) and the evolution of the electron energy probability function (EEPF) are reported as a function of radiofrequency (RF) power, pressure and argon concentration in the mixture. It is observed that {n}{{e}} increases while {T}{{e}} decreases with increase in RF power and argon concentration in the mixture. The emission intensity of the argon line at 750.4 nm is also used to monitor the variation of the ‘high-energy tail’ of the EEPF with RF power and gas pressure. The EEPF has a ‘bi-Maxwellian’ distribution at low RF powers and higher pressure in a pure {{{N}}}2 discharge. However, it evolves into a ‘Maxwellian’ distribution at RF powers greater than 70 W for pure {{{N}}}2, and at 50 W for higher argon concentrations in the mixture. The effect of argon concentration on the temperatures of two electron groups in the ‘bi-Maxwellian’ EEPF is examined. The temperature of the low-energy electron group {T}{{L}} shows a decreasing trend with argon addition until the ‘thermalization’ of the two temperatures occurs, while the temperature of high-energy electrons {T}{{H}} decreases continuously.

  17. Impact Parameter Dependent Parton Distributions for a Composite Relativistic System

    CERN Document Server

    Chakraborty, D

    2004-01-01

    We investigate the impact parameter dependent parton distributions for a relativistic composite system in light-front framework. We take an effective two-body spin-1/2 state, namely an electron dressed with a photon in QED. We express the impact parameter dependent parton distributions in terms of overlaps of light-cone wave functions. We obtain the scale dependence of both fermion and gauge boson distributions and show the distortion of the pdfs in the transverse space for transverse polarization of the state at one loop level.

  18. Life Prediction of Atmospheric Plasma-Sprayed Thermal Barrier Coatings Using Temperature-Dependent Model Parameters

    Science.gov (United States)

    Zhang, B.; Chen, Kuiying; Baddour, N.; Patnaik, P. C.

    2017-06-01

    The failure analysis and life prediction of atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) were carried out for a thermal cyclic process. A residual stress model for the top coat of APS-TBC was proposed and then applied to life prediction. This residual stress model shows an inversion characteristic versus thickness of thermally grown oxide. The capability of the life model was demonstrated using temperature-dependent model parameters. Using existing life data, a comparison of fitting approaches of life model parameters was performed. A larger discrepancy was found for the life predicted using linearized fitting parameters versus temperature compared to those using non-linear fitting parameters. A method for integrating the residual stress was proposed by using the critical time of stress inversion. The role of the residual stresses distributed at each individual coating layer was explored and their interplay on the coating's delamination was analyzed.

  19. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    Science.gov (United States)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  20. The effect of plasma operating parameters on analyte signals in inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Horlick, G.; Tan, S. H.; Vaughan, M. A.; Rose, C. A.

    Utilizing the SCIEX ICP-MS an extensive study of the effects that plasma operating parameters have on analyte ion signals in ICP-MS has been carried out. Parameters studied included aerosol flow rate (nebulizer pressure), auxiliary flow rate, power and sampling depth (sampling position from the load coil). The two key parameters are aerosol flow rate (nebulizer pressure) and power. Elements can be grouped into characteristic behaviour patterns based on the overall dependence of their ion count signal on these two parameters. The nebulizer pressure-power behavior patterns allow a sensible selection of compromise operating conditions and significantly clarify single parameter observations which often indicate confusing trends in behavior. In addition to characterizing analyte ion signals the parameter behavior plots have also been used to study oxide species and plus two ions in ICP-MS. While aerosol flow rate and power appear to be the key ICP parameters in ICP-MS, ion signals are dependent on sampling depth and auxiliary flow rate and some data are also presented illustrating the signal dependence on these two parameters.

  1. Effect of Energetic Ion on Spatial Distribution of Recombining Plasma

    Science.gov (United States)

    Okamoto, A.; Daibo, A.; Kitajima, S.; Kumagai, T.; Takahashi, H.; Takahashi, T.; Tsubota, S.

    Spatial distribution of electron density is considered. By using a one-dimensional recombining plasma model, effects of transient energetic ion flux are investigated. The time response of the system against the transient flux is dominated by the recombination frequency. The magnitude of modification of the spatial distribution is determined by the ratio between the ionization due to the energetic ion and the recombination of the bulk plasma.

  2. Use of a probing pulsed magnetic field for determining plasma parameters

    Science.gov (United States)

    Rousskikh, A. G.; Oreshkin, V. I.; Zhigalin, A. S.; Yushkov, G. Yu.

    2016-11-01

    A novel, simple, and readily usable method is proposed for measuring the electrical conductivity and temperature of a plasma. The method is based on the interaction of the test plasma with a pulsed magnetic field. The electric signals induced by the magnetic field in the circuits of two probes (miniature solenoids), one immersed in the test plasma and the other placed outside the plasma, provide data for estimating the plasma parameters. The method was verified experimentally by determining the parameters of the plasma flows generated in the cathode spots high-current pulsed vacuum arcs that were used to form cylindrical shells of bismuth Z-pinch plasma.

  3. Prediction of the plasma distribution using an artificial neural network

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Chen JunFang; Wang Teng

    2009-01-01

    In this work, an artificial neural network (ANN) model is established using a back-propagation training algorithm in order to predict the plasma spatial distribution in an electron cyclotron resonance (ECR) - plasma-enhanced chemical vapor deposition (PECVD) plasma system. In our model, there are three layers: the input layer, the hidden layer and the output layer. The input layer is composed of five neurons: the radial position, the axial position, the gas pressure,the microwave power and the magnet coil current. The output layer is our target output neuron: the plasma density.The accuracy of our prediction is tested with the experimental data obtained by a Langmuir probe, and ANN results show a good agreement with the experimental data. It is concluded that ANN is a useful tool in dealing with some nonlinear problems of the plasma spatial distribution.

  4. A generalized AZ-non-Maxwellian velocity distribution function for space plasmas

    Science.gov (United States)

    Abid, A. A.; Khan, M. Z.; Lu, Quanming; Yap, S. L.

    2017-03-01

    A more generalized form of the non-Maxwellian distribution function, i.e., the AZ-distribution function is presented. Its fundamental properties are numerically observed by the variation of three parameters: α (rate of energetic particles on the shoulder), r (energetic particles on a broad shoulder), and q (superthermality on the tail of the velocity distribution curve of the plasma species). It has been observed that (i) the A Z - distribution function reduces to the ( r , q ) - distribution for α → 0 ; (ii) the A Z - distribution function reduces to the q - distribution for α → 0 , and r → 0 ; (iii) the A Z -distribution reduces to Cairns-distribution function for r → 0 , and q → ∞ ; (iv) the AZ-distribution reduces to Vasyliunas Cairns distribution for r → 0 , and q = κ + 1 ; (v) the AZ-distribution reduces to kappa distribution for α → 0 , r → 0 , and q = κ + 1 ; and (vi) finally, the AZ-distribution reduces to Maxwellian distribution for α → 0 , r → 0 , and q → ∞ . The uses of this more generalized A Z - distribution function in various space plasmas are briefly discussed.

  5. Stabilization of stochastic Hopfield neural network with distributed parameters

    Institute of Scientific and Technical Information of China (English)

    LUO Qi; DENG Feiqi; BAO Jundong; ZHAO Birong; FU Yuli

    2004-01-01

    In this paper, the stability of stochastic Hopfield neural network with distributed parameters is studied. To discuss the stability of systems, the main idea is to integrate the solution to systems in the space variable. Then, the integration is considered as the solution process of corresponding neural networks described by stochastic ordinary differential equations. A Lyapunov function is constructed and It(o) formula is employed to compute the derivative of the mean Lyapunov function along the systems, with respect to the space variable. It is difficult to treat stochastic systems with distributed parameters since there is no corresponding It(o) formula for this kind of system. Our method can overcome this difficulty. Till now, the research of stability and stabilization of stochastic neural networks with distributed parameters has not been considered.

  6. Controlling plasma distributions as driving forces for ion migration during fs laser writing

    CERN Document Server

    Fernandez, Toney Teddy; Hoyo, Jesus; Sotillo, Belen; Fernandez, Paloma; Solis, Javier

    2014-01-01

    The properties of structures written inside dielectrics with high repetition rate femtosecond lasers are known to depend strongly on the complex interplay of a large number of writing parameters. Recently, ion migration within the laser-excited volume has been identified as a powerful mechanism for changing the local element distribution and producing efficient optical waveguides. In this work it is shown that the transient plasma distribution induced during laser irradiation is a reliable monitor for predicting the final refractive index distribution of the waveguide caused by ion migration. By performing in-situ plasma emission microscopy during the writing process inside a La-phosphate glass it is found that the long axis of the plasma distribution determines the axis of ion migration, being responsible for the local refractive index increase. This observation is also valid when strong positive or negative spherical aberration is induced, greatly deforming the focal volume and inverting the index profile. ...

  7. Revisiting linear plasma waves for finite value of the plasma parameter

    Science.gov (United States)

    Grismayer, Thomas; Fahlen, Jay; Decyk, Viktor; Mori, Warren

    2010-11-01

    We investigate through theory and PIC simulations the Landau-damping of plasma waves with finite plasma parameter. We concentrate on the linear regime, γφB, where the waves are typically small and below the thermal noise. We simulate these condition using 1,2,3D electrostatic PIC codes (BEPS), noting that modern computers now allow us to simulate cases where (nλD^3 = [1e2;1e6]). We study these waves by using a subtraction technique in which two simulations are carried out. In the first, a small wave is initialized or driven, in the second no wave is excited. The results are subtracted to provide a clean signal that can be studied. As nλD^3 is decreased, the number of resonant electrons can be small for linear waves. We show how the damping changes as a result of having few resonant particles. We also find that for small nλD^3 fluctuations can cause the electrons to undergo collisions that eventually destroy the initial wave. A quantity of interest is the the life time of a particular mode which depends on the plasma parameter and the wave number. The life time is estimated and then compared with the numerical results. A surprising result is that even for large values of nλD^3 some non-Vlasov discreteness effects appear to be important.

  8. Self-bias Dependence on Process Parameters in Asymmetric Cylindrical Coaxial Capacitively Coupled Plasma

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vušković, L

    2015-01-01

    An rf coaxial capacitively coupled Ar/Cl2 plasma is applied to processing the inner wall of superconducting radio frequency cavities. A dc self-bias potential is established across the inner electrode sheath due to the surface area difference between inner and outer electrodes of the coaxial plasma. The self-bias potential measurement is used as an indication of the plasma sheath voltage asymmetry. The understanding of the asymmetry in sheath voltage distribution in coaxial plasma is important for the modification of the inner surfaces of three dimensional objects. The plasma sheath voltages were tailored to process the outer wall by providing an additional dc current to the inner electrode with the help of an external dc power supply. The dc self-bias potential is measured for different diameter electrodes and its variation on process parameters such as gas pressure, rf power and percentage of chlorine in the Ar/Cl2 gas mixture is studied. The dc current needed to overcome the self-bias potential to make it ...

  9. Identification for a class of distributed parameter systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper discusses the identification for the distributed parameter system of gas reservoirs with het erogeneous carbonate matrices. Based on the relationship between the ad hoc function and the geological feature, we set up a general model with double porous structure, clarify its effect and significance, and present a series of results of sys tem identifications, including the basic content and methods, stabilizing functional and parameter identifiability etc. Us ing the perturbation of spectra of self-adjoint operators, the identifiability of the porosities and the ad hoc coefficient is demonstrated for the general structure model. This project indicates that the identification of a distributed parameter sys tem involves parameters, boundary position and structure.

  10. Angular distribution of isothermal expansions of non-quasi-neutral plasmas into a vacuum

    Science.gov (United States)

    Yongsheng, Huang; Xiaojiao, Duan; Yijin, Shi; Xiaofei, Lan; Zhixin, Tan; Naiyan, Wang; Xiuzhang, Tang; Yexi, He

    2008-04-01

    A two dimensional planar model is developed for self-similar isothermal expansions of non-quasi-neutral plasmas into a vacuum of solid targets heated by ultraintense laser pulses. The angular ion distribution and the dependence of the maximum ion velocity on laser parameters and target thicknesses are predicted. Considering the self-generated magnetic field of plasma beams as a perturbation, the ion energy on edge at the ion opening angle has an increase of 2% relative to that on the front center. Therefore, the self-generated magnetic field of plasma beams is not large enough to interpret for the ring structures.

  11. Study on Vibrational Distribution of D2 Molecules in Edge Plasmas

    Institute of Scientific and Technical Information of China (English)

    He Manli; Xiao Bingjia

    2005-01-01

    The molecules's behavior in edge plasma is very important in understanding thephenomena near plasma-facing materials. In this paper, various processes of deuterium moleculesare discussed and most recent data are applied in the evaluation of molecules' vibrational excita-tion. For the excitation of the molecules to triplet states, complete sets of vibrationally-resolvedcross sections are not available from the literatures. Semi-classical Gryzinski method is used to cal-culate these cross sections and rate coefficients. Finally, The vibrational distribution of deuteriummolecules is calculated by applying a quasi-steady state model for the balance of the vibrationalpopulations. The dependence on the plasma parameters is discussed.

  12. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  13. Plasma parameters in the vicinity of the quartz window of a low pressure surface wave discharge produced in O2

    DEFF Research Database (Denmark)

    Nakao, S.; Stamate, Eugen; Sugai, H.

    2007-01-01

    Plasma parameters in the vicinity of the dielectric window of a low density, microwave discharge produced in 0, at 915 N/FHz are investigated by a spherical probe and optical emission spectroscopy while the microwave field distribution is measured by a spectrum analyzer. The electron energy...

  14. Envelope excitations in electronegative plasmas with electrons featuring the Tsallis distribution

    CERN Document Server

    Bains, A S; Tribeche, Mouloud

    2013-01-01

    We examine the modulational instability (MI) of ion-acoustic waves (IAWs) in an electronegative plasma containing positive and negative ions as well as electrons that follow the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method (RPM), the nonlinear Schr\\"{o}dinger equation (NLSE) that governs the modulational instability of the IAWs is obtained. Inspired by the experimental work of Ichiki \\emph{et al.} [Phys. Plasmas 8, 4275 (2001)], three types of electronegative plasmas are investigated. The effects of various parameters on the propagation of IAWs are discussed in detail numerically. We find that the plasma supports both bright and dark solutions. The presence of the non-extensively distributed electrons is found to play a crucial role in the formation of envelope excitations. The region in the parameter space where the MI exists depends sensitively on the positive to negative ion mass ratio (M) and negative to positive ion density ratio ($\\...

  15. Plasma parameter characterization of a dc multicusp plasma chamber operating in He, Ar and Xe gas

    Energy Technology Data Exchange (ETDEWEB)

    Suanpoot, Pradoong; Vilaithong, Thiraphat; Boonyawan, Dheerawan [Fast Neutron Research Facility, Dept. of Physics, Faculty of Science, Chiang Mai Univ. (Thailand); Rhodes, M.W.

    1998-12-31

    A large dc multicusp plasma chamber has been constructed and installed at Chiang Mai University. The first prototype has a 31.2 cm diameter and a 42.5 cm length and is surrounded by 632 ceramic permanent magnet buttons with a maximum magnetic field of about 2.2 kG for each. The magnetic field at the stainless steel wall with a thickness of 2 mm is about 670 G. A tungsten (W) filament was used as a source of primary electrons. The estimated discharge voltage for helium gas (He), argon gas (Ar), and xenon gas (Xe) was 40 V and the discharge operating current varies from 500 mA to 1 A. Plasmas can be confined within a 20 cm diameter region which are uniformly distributed along the axial path. The plasma density was measured by a single cylindrical Langmuir probe to be between 4.8 x 10{sup 8} - 4.9 x 10{sup 9} cm{sup -3} with 650 watts of power applied to the tungsten filament and the gas pressure inside the chamber of 3.8 x 10{sup -4} Torr. Results of the ion density measurements are described. The proportionality constants in the relation between the ion current density arriving at the plasma electrode and the maximum plasma density and the ion sound speed for helium, argon and xenon are found to be 0.42 {+-} 0.07, 0.59 {+-} 0.08, and 0.46 {+-} 0.06, respectively. (author)

  16. Charge-state distribution and Doppler effect in an expanding photoionized plasma.

    Science.gov (United States)

    Foord, M E; Heeter, R F; van Hoof, P A M; Thoe, R S; Bailey, J E; Cuneo, M E; Chung, H-K; Liedahl, D A; Fournier, K B; Chandler, G A; Jonauskas, V; Kisielius, R; Mix, L P; Ramsbottom, C; Springer, P T; Keenan, F P; Rose, S J; Goldstein, W H

    2004-07-30

    The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi=20-25 erg cm s(-1) under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

  17. Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas

    CERN Document Server

    Castro, J; McQuillen, P; Pohl, T; Killian, T C

    2011-01-01

    We present techniques to perturb, measure and model the ion velocity distribution in an ultracold neutral plasma produced by photoionization of strontium atoms. By optical pumping with circularly polarized light we promote ions with certain velocities to a different spin ground state, and probe the resulting perturbed velocity distribution through laser-induced fluorescence spectroscopy. We discuss various approaches to extract the velocity distribution from our measured spectra, and assess their quality through comparisons with molecular dynamic simulations

  18. Momentum Distribution of Ions in Plasma Beam.

    Science.gov (United States)

    1980-06-30

    detector calibration constant and f(s) is the velocity distribution function of the ions. The function f(s) is uncoupled from this doubly convoluted...of-flight signal," J. Appl. Phys. 46, 3888 (Sept. 1975). 5. "Theory and construction of time resolved x-ray specto - meter," O.K. Mawardi, C. Speck, R

  19. Chandrasekhar equations and computational algorithms for distributed parameter systems

    Science.gov (United States)

    Burns, J. A.; Ito, K.; Powers, R. K.

    1984-01-01

    The Chandrasekhar equations arising in optimal control problems for linear distributed parameter systems are considered. The equations are derived via approximation theory. This approach is used to obtain existence, uniqueness, and strong differentiability of the solutions and provides the basis for a convergent computation scheme for approximating feedback gain operators. A numerical example is presented to illustrate these ideas.

  20. Distributed parameter modelling of flexible spacecraft: Where's the beef?

    Science.gov (United States)

    Hyland, D. C.

    1994-01-01

    This presentation discusses various misgivings concerning the directions and productivity of Distributed Parameter System (DPS) theory as applied to spacecraft vibration control. We try to show the need for greater cross-fertilization between DPS theorists and spacecraft control designers. We recommend a shift in research directions toward exploration of asymptotic frequency response characteristics of critical importance to control designers.

  1. Port controlled Hamiltonian representation of distributed parameter systems

    NARCIS (Netherlands)

    Maschke, B.M.; van der Schaft, Arjan

    2000-01-01

    A port controlled Hamiltonian formulation of the dynamics of distributed parameter systems is presented, which incorporates the energy flow through the boundary of the domain of the system, and which allows to represent the system as a boundary control Hamiltonian system. This port controlled

  2. The effect of thermophoresis on the discharge parameters in complex plasma experiments

    CERN Document Server

    Land, Victor; Creel, James; Schmoke, Jimmy; Cook, Mike; Matthews, Lorin; Hyde, Truell

    2010-01-01

    Thermophoresis is a tool often applied in complex plasma experiments. One of the usual stated benefits over other experimental tools is that changes induced by thermophoresis neither directly depend on, nor directly influence, the plasma parameters. From electronic data, plasma emission profiles in the sheath, and Langmuir probe data in the plasma bulk, we conclude that this assumption does not hold. An important effect on the levitation of dust particles in argon plasma is observed as well. The reason behind the changes in plasma parameters seems to be the change in neutral atom density accompanying the increased gas temperature while running at constant pressure.

  3. The effect of electrode heating on the discharge parameters in complex plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Land, Victor; Carmona-Reyes, Jorge; Creel, James; Schmoke, Jimmy; Cook, Mike; Matthews, Lorin; Hyde, Truell, E-mail: victor_land@baylor.edu [Center for Astrophysics, Space Physics, and Engineering Research, Baylor University, Waco, TX, 76798-7316 (United States)

    2011-02-15

    Thermophoresis is a tool often applied in complex plasma experiments. One of the usual stated benefits over other experimental tools is that electrode temperature changes required to induce thermophoresis do not directly influence the plasma parameters. From electronic data, plasma emission profiles in the sheath, and Langmuir probe data in the plasma bulk, we conclude that this assumption does not hold. An important effect on the levitation of dust particles in argon plasma is observed as well. The reason behind the changes in plasma parameters seems to be the change in neutral atom density accompanying the increased gas temperature while running at constant pressure.

  4. Driven phase space vortices in plasmas with nonextensive velocity distribution

    Science.gov (United States)

    Trivedi, Pallavi; Ganesh, Rajaraman

    2017-03-01

    The evolution of chirp-driven electrostatic waves in unmagnetized plasmas is numerically investigated by using a one-dimensional (1D) Vlasov-poisson solver with periodic boundary conditions. The initial velocity distribution of the 1D plasma is assumed to be governed by nonextensive q distribution [C. Tsallis, J. Stat. Phys. 52, 479 (1988)]. For an infinitesimal amplitude of an external drive, we investigate the effects of chirp driven dynamics that leads to the formation of giant phase space vortices (PSV) for both Maxwellian (q = 1) and non-Maxwellian ( q ≠ 1 ) plasmas. For non-Maxwellian plasmas, the formation of giant PSV with multiple extrema and phase velocities is shown to be dependent on the strength of "q". Novel features such as "shark"-like and transient "honeycomb"-like structures in phase space are discussed. Wherever relevant, we compare our results with previous work.

  5. Control synthesis of linear distributed parameter switched systems

    Institute of Scientific and Technical Information of China (English)

    Leping Bao; Shumin Fei; Lin Chai

    2015-01-01

    The control synthesis for switched systems is extended to distributed parameter switched systems in Hilbert space. Based on semigroup and operator theory, by means of multiple Lyapunov method incorporated average dwel time approach, sufficient con-ditions are derived in terms of linear operator inequalities frame-work for distributed parameter switched systems. Being applied to one dimensional heat propagation switched systems, these lin-ear operator inequalities are reduced to linear matrix inequalities subsequently. In particular, the state feedback gain matrices and the switching law are designed, and the state decay estimate is explicitly given whose decay coefficient completely depends on the system’s parameter and the boundary condition. Final y, two numerical examples are given to il ustrate the proposed method.

  6. Nonlinear Optical Parameters of Magnetoactive Semiconductor-Plasmas

    Science.gov (United States)

    Singh, M.; Joseph, D.; Duhan, S.

    The nonlinear optical parameters (absorption coefficient and refractive index) of semiconductor-plasmas subjected to a transverse magnetic field have been investigated analytically. By employing the coupled-mode scheme, an expression of third-order optical susceptibility and resultant nonlinear absorption and refractive index of the medium are obtained. The analysis has been applied to both cases, viz., centrosymmetric (β = 0) and noncentrosymmetric (β ≠ 0) in the presence of magnetic field. The numerical estimates are made for InSb crystal at liquid nitrogen temperature duly irradiated by a 10-nanosecond pulsed 10.6 μm CO2 laser. The influence of doping concentration and magnetic field on both the nonlinear absorption and refractive index has been explored, and the results are found to be well in agreement with theory and experiment. Analysis further establishes that absorption coefficient and refractive index can be controlled with precision in semiconductors by the proper selection of doping concentration and an external magnetic field, and hence these media may be used for fabrication of fast cubic nonlinear optical devices under off-resonant transition regime.

  7. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  8. Spectroscopic studies of the parameters of plasma jets during their propagation in the background plasma on the PF-3 facility

    Science.gov (United States)

    Dan’ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.; Krauz, V. I.; Myalton, V. V.

    2017-04-01

    This paper presents measurement results of neon and helium plasma parameters in axial jets generated in plasma focus discharge. They were obtained in the course of experiments on laboratory modeling of astrophysical jets performed at the PF-3 facility. The plasma concentration was determined according to Stark broadening of spectral lines; the ionization temperature was determined by the average ion charge. The values of the concentration and temperature of jet plasma and background plasma at two distances from the pinch are also presented. In addition, an estimation was made of the heat content losses of the neon and helium jets during their movement through the surrounding medium.

  9. Iterative methods for distributed parameter estimation in parabolic PDE

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.R. [Montana State Univ., Bozeman, MT (United States); Wade, J.G. [Bowling Green State Univ., OH (United States)

    1994-12-31

    The goal of the work presented is the development of effective iterative techniques for large-scale inverse or parameter estimation problems. In this extended abstract, a detailed description of the mathematical framework in which the authors view these problem is presented, followed by an outline of the ideas and algorithms developed. Distributed parameter estimation problems often arise in mathematical modeling with partial differential equations. They can be viewed as inverse problems; the `forward problem` is that of using the fully specified model to predict the behavior of the system. The inverse or parameter estimation problem is: given the form of the model and some observed data from the system being modeled, determine the unknown parameters of the model. These problems are of great practical and mathematical interest, and the development of efficient computational algorithms is an active area of study.

  10. Strong Langmuir turbulence in Kappa distributed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu Sanqiu [Department of Physics and School of Materials Science and Engineering, Nanchang University, Nanchang, 330047 (China); Chen Hui [School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China)

    2012-01-15

    Superthermal electrons are often observed in space and astrophysics and can be appropriate modeled by the family of Kappa distribution functions. Taking the nonlinear wave-wave, wave-particle interactions and the effect of superthermal electrons into account, the strong Langmuir turbulence is investigated in kinetic regime. The modified Zakharov equations are obtained for the case of no damping or driving terms. On the basis of these equations, dynamics of collapse have been studied by the means of the general virial theorem, and the collapse thresholds which are strong modified by superthermal index {kappa}{sub e} are given.

  11. Reconstruction of the ion plasma parameters from the current measurements: mathematical tool

    Directory of Open Access Journals (Sweden)

    E. Séran

    Full Text Available Instrument d’Analyse du Plasma (IAP is one of the instruments of the newly prepared ionospheric mission Demeter. This analyser was developed to measure flows of thermal ions at the altitude of ~ 750 km and consists of two parts: (i retarding potential analyser (APR, which is utilised to measure the energy distribution of the ion plasma along the sensor look direction, and (ii velocity direction analyser (ADV, which is used to measure the arrival angle of the ion flow with respect to the analyser axis. The necessity to obtain quick and precise estimates of the ion plasma parameters has prompted us to revise the existing mathematical tool and to investigate different instrumental limitations, such as (i finite angular aperture, (ii grid transparency, (iii potential depression in the space between the grid wires, (iv losses of ions during their passage between the entrance diaphragm and the collector. Simple analytical expressions are found to fit the currents, which are measured by the APR and ADV collectors, and show a very good agreement with the numerical solutions. It was proven that the fitting of the current with the model functions gives a possibility to properly resolve even minor ion concentrations and to find the arrival angles of the ion flow in the multi-species plasma. The discussion is illustrated by an analysis of the instrument response in the ionospheric conditions which are predicted by the International Reference Ionosphere (IRI model.

    Key words. Ionosphere (plasma convection; instruments and techniques – Space plasma physics (experimental and mathematical techniques

  12. Control of Groundwater Remediation Process as Distributed Parameter System

    Directory of Open Access Journals (Sweden)

    Mendel M.

    2014-12-01

    Full Text Available Pollution of groundwater requires the implementation of appropriate solutions which can be deployed for several years. The case of local groundwater contamination and its subsequent spread may result in contamination of drinking water sources or other disasters. This publication aims to design and demonstrate control of pumping wells for a model task of groundwater remediation. The task consists of appropriately spaced soil with input parameters, pumping wells and control system. Model of controlled system is made in the program MODFLOW using the finitedifference method as distributed parameter system. Control problem is solved by DPS Blockset for MATLAB & Simulink.

  13. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  14. Assigning probability distributions to input parameters of performance assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta [INTERA Inc., Austin, TX (United States)

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.

  15. Thermal Diffusivity Identification of Distributed Parameter Systems to Sea Ice

    Directory of Open Access Journals (Sweden)

    Liqiong Shi

    2013-01-01

    Full Text Available A method of optimal control is presented as a numerical tool for solving the sea ice heat transfer problem governed by a parabolic partial differential equation. Taken the deviation between the calculated ice temperature and the measurements as the performance criterion, an optimal control model of distributed parameter systems with specific constraints of thermal properties of sea ice was proposed to determine the thermal diffusivity of sea ice. Based on sea ice physical processes, the parameterization of the thermal diffusivity was derived through field data. The simulation results illustrated that the identified parameterization of the thermal diffusivity is reasonably effective in sea ice thermodynamics. The direct relation between the thermal diffusivity of sea ice and ice porosity is physically significant and can considerably reduce the computational errors. The successful application of this method also explained that the optimal control model of distributed parameter systems in conjunction with the engineering background has great potential in dealing with practical problems.

  16. Impact Parameter Dependent Parton Distributions for a Relativistic Composite System

    CERN Document Server

    Chakraborty, D

    2004-01-01

    We investigate the impact parameter dependent parton distributions for a relativistic composite system in light-front framework. We express them in terms of overlaps of light-cone wave functions for a self consistent two-body spin-1/2 state, namely an electron dressed with a photon in QED. The pdfs are distorted in the transverse space for transverse polarization of the state at one loop level.

  17. Rapid Formation of Distributed Plasma Discharges using X-Band Microwaves

    Science.gov (United States)

    Xiang, Xun

    Observations of rapidly formed (plasma discharges using high power X-band microwaves are presented. A cylindrical stainless steel chamber (15.2 cm long, 14.6 cm diameter) enclosed with polycarbonate windows (0.953 cm) was used to observe microwave breakdown in argon and neon gas mixtures from 50 to 250 torr. The chamber was illuminated by the output of a 16.2 kW, 800 ns pulse-width, 9.382 GHz magnetron with a 43 repetitive rate through an X-band waveguide pressed against the first polycarbonate window. Fast (50 ns) time-scale optical images of the plasma revealed the plasma formation and decay processes, as well as the plasma patterns for different plasma formation conditions. CST simulations were conducted to compare the electric field distribution inside the discharge chamber with the plasma patterns in the images. VUV (Vacuum Ultra-Violet) radiation was supported as the mechanism to enhance the plasma expansion and assist the formation of the plasma side lobes. Reflection Measurements showed 63% reflected power once plasma was formed, and a small amount of argon in neon shortened the breakdown time, verifying that the Penning effect lowers the breakdown threshold. Mixer measurements were taken, combined with a 1-D 6-region microwave plasma model to estimate the maximum effective plasma density as 2.2x1012 cm-3 with a corresponding maximum effective electron temperature of 2.5 eV in pure neon plasma at 100 torr under a Maxwellian distribution assumption. Optical emission spectroscopy (OES) assisted by the SPECAIR model determined the gas temperature in the microwave plasma as 350 +/- 50 K. OES line ratio measurements provided plasma parameters including time-evolved metastable and resonance densities, effective electron temperatures, electron densities for plasmas formed at 100 torr in pure neon and Ne/Ar (99:1) mixture gases. The comparison of time-evolved neon metastable and resonance densities in pure neon and Ne/Ar (99:1) mixture plasmas verified the Penning

  18. Synthesis of Single Wall Carbon Nanotubes by Plasma Arc: Role of Plasma Parameters

    Science.gov (United States)

    Farhart, Samir; Scott, Carl D.

    2000-01-01

    Single wall carbon nanotubes (SWNT) are porous objects on the molecular scale and have a low density, which gives them potential applications as adsorbent for molecular hydrogen. Their H2 absorption capacity published in the literature varies from 4 to 10% by mass according to the purity of the materials and storage conditions. Optimization of production methods of SWNTs should permit improving these new materials for storage of hydrogen. In this article, we show the potential of using SWNTs in hydrogen storage. In particular, we pose problems associated with synthesis, purification, and opening up of the nanotubes. We present an electric arc process currently used at laboratory scale to produce single wall carbon nanotubes. We discuss, in particular, operating conditions that permit growth of nanotubes and some plasma parameters that assure control of the material. Analysis of the process is carried out with the aid of local measurements of temperature and scanning and transmission electron microscopy of the materials.

  19. Flaw strength distributions and statistical parameters for ceramic fibers: The normal distribution

    Science.gov (United States)

    R'Mili, M.; Godin, N.; Lamon, J.

    2012-05-01

    The present paper investigates large sets of ceramic fibre failure strengths (500 to 1000 data) produced using tensile tests on tows that contained either 500 or 1000 filaments. The probability density function was determined through acoustic emission monitoring which allowed detection and counting of filament fractures. The statistical distribution of filament strengths was described using the normal distribution. The Weibull equation was then fitted to this normal distribution for estimation of statistical parameters. A perfect agreement between both distributions was obtained, and a quite negligible scatter in statistical parameters was observed, as opposed to the wide variability that is reported in the literature. Thus it was concluded that flaw strengths are distributed normally and that the statistical parameters that were derived are the true ones. In a second step, the conventional method of estimation of Weibull parameters was applied to these sets of data and, then, to subsets selected randomly. The influence of other factors involved in the conventional method of determination of statistical parameters is discussed. It is demonstrated that selection of specimens, sample size, and method of construction of so-called Weibull plots are responsible for statistical parameters variability.

  20. Electron-ion collisional effect on Weibel instability in a Kappa distributed unmagnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Kuri, Deep, E-mail: deepkuri303@gmail.com; Das, Nilakshi, E-mail: ndas@tezu.ernet.in [Department of Physics, Tezpur University, Tezpur, Assam 784 028 (India)

    2014-04-15

    Weibel instability has been investigated in the presence of electron-ion collisions by using standard Vlasov-Maxwell equations. The presence of suprathermal electrons has been included here by using Kappa distribution for the particles. The growth rate γ of Weibel instability has been calculated for different values of spectral index κ, collision frequency ν{sub ei}, and temperature anisotropy parameter β. A comparative study between plasma obeying Kappa distribution and that obeying Maxwellian distribution shows that the growth of instability is higher for the Maxwellian particles. However, in the presence of collisions, the suprathermal particles result in lower damping of Weibel mode.

  1. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    CERN Document Server

    Izacard, Olivier

    2016-01-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account specially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very CPU-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic cor...

  2. Effect of plasma parameters on characteristics of silicon nitride film deposited by single and dual frequency plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Sahu, B. B.; Yin, Yongyi; Han, Jeon G.

    2016-03-01

    This work investigates the deposition of hydrogenated amorphous silicon nitride films using various low-temperature plasmas. Utilizing radio-frequency (RF, 13.56 MHz) and ultra-high frequency (UHF, 320 MHz) powers, different plasma enhanced chemical vapor deposition processes are conducted in the mixture of reactive N2/NH3/SiH4 gases. The processes are extensively characterized using different plasma diagnostic tools to study their plasma and radical generation capabilities. A typical transition of the electron energy distribution function from single- to bi-Maxwellian type is achieved by combining RF and ultra-high powers. Data analysis revealed that the RF/UHF dual frequency power enhances the plasma surface heating and produces hot electron population with relatively low electron temperature and high plasma density. Using various film analysis methods, we have investigated the role of plasma parameters on the compositional, structural, and optical properties of the deposited films to optimize the process conditions. The presented results show that the dual frequency power is effective for enhancing dissociation and ionization of neutrals, which in turn helps in enabling high deposition rate and improving film properties.

  3. PARAMETER ESTIMATION OF THE HYBRID CENSORED LOMAX DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Samir Kamel Ashour

    2010-12-01

    Full Text Available Survival analysis is used in various fields for analyzing data involving the duration between two events. It is also known as event history analysis, lifetime data analysis, reliability analysis or time to event analysis. One of the difficulties which arise in this area is the presence of censored data. The lifetime of an individual is censored when it cannot be exactly measured but partial information is available. Different circumstances can produce different types of censoring. The two most common censoring schemes used in life testing experiments are Type-I and Type-II censoring schemes. Hybrid censoring scheme is mixture of Type-I and Type-II censoring scheme. In this paper we consider the estimation of parameters of Lomax distribution based on hybrid censored data. The parameters are estimated by the maximum likelihood and Bayesian methods. The Fisher information matrix has been obtained and it can be used for constructing asymptotic confidence intervals.

  4. Control of complex dynamics and chaos in distributed parameter systems

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarti, S.; Marek, M.; Ray, W.H. [Univ. of Wisconsin, Madison, WI (United States)

    1995-12-31

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.

  5. Plasma expansion into vacuum assuming a steplike electron energy distribution.

    Science.gov (United States)

    Kiefer, Thomas; Schlegel, Theodor; Kaluza, Malte C

    2013-04-01

    The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the total energy of the system. The estimated ion energies may differ by an order of magnitude from the values obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good agreement with data from experiments using laser pulses of ultrashort durations τ(L)Maxwellian electron distribution is assumed.

  6. Unstable density distribution associated with equatorial plasma bubble

    Science.gov (United States)

    Kherani, E. A.; Bharuthram, R.; Singh, S.; Lakhina, G. S.; de Meneses, F. Carlos

    2016-04-01

    In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion grows to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.

  7. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  8. A practical guide to geometric regulation for distributed parameter systems

    CERN Document Server

    Aulisa, Eugenio

    2015-01-01

    A Practical Guide to Geometric Regulation for Distributed Parameter Systems provides an introduction to geometric control design methodologies for asymptotic tracking and disturbance rejection of infinite-dimensional systems. The book also introduces several new control algorithms inspired by geometric invariance and asymptotic attraction for a wide range of dynamical control systems. The first part of the book is devoted to regulation of linear systems, beginning with the mathematical setup, general theory, and solution strategy for regulation problems with bounded input and output operators.

  9. Transfer function modeling of damping mechanisms in distributed parameter models

    Science.gov (United States)

    Slater, J. C.; Inman, D. J.

    1994-01-01

    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.

  10. Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution

    Directory of Open Access Journals (Sweden)

    Azam Zaka

    2014-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Nakagami distribution is a flexible life time distribution that may offer a good fit to some failure data sets. It has applications in attenuation of wireless signals traversing multiple paths, deriving unit hydrographs in hydrology, medical imaging studies etc. In this research, we obtain Bayesian estimators of the scale parameter of Nakagami distribution. For the posterior distribution of this parameter, we consider Uniform, Inverse Exponential and Levy priors. The three loss functions taken up are Squared Error Loss function, Quadratic Loss Function and Precautionary Loss function. The performance of an estimator is assessed on the basis of its relative posterior risk. Monte Carlo Simulations are used to compare the performance of the estimators. It is discovered that the PLF produces the least posterior risk when uniform priors is used. SELF is the best when inverse exponential and Levy Priors are used. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  11. Self-Consistent Fokker-Planck Treatment Of Particle Distributions in Astrophysical Plasmas

    CERN Document Server

    Nayakshin, S; Nayakshin, Sergei; Melia, Fulvio

    1997-01-01

    High-energy, multi-component plasmas in which pair creation and annihilation, lepton-lepton scattering, lepton-proton scattering, and Comptonization all contribute to establishing the particle and photon distributions, are present in a broad range of compact astrophysical objects. Earlier work has included much of the microphysics needed to account for electron-photon and electron-proton interactions, but little has been done to handle the redistribution of the particles as a result of their Coulomb interaction with themselves in an arbitrary case. Our goal here is to use a Fokker-Planck approach in order to develop a fully self-consistent theory for the interaction of arbitrarily distributed particles and radiation to arrive at an accurate representation of the high-energy plasma in these sources. We conduct several tests representative of two dominant segments of parameter space and discuss physical implications of the non-Maxwellian distribution function. Approximate analytical forms for the electron distr...

  12. Plasma Arc Cutting Dimensional Accuracy Optimization employing the Parameter Design approach

    Directory of Open Access Journals (Sweden)

    Kechagias John

    2017-01-01

    Full Text Available Plasma Arc Cutting (PAC is a thermal manufacturing process used for metal plates cutting. This work experimentally investigates the influence of process parameters onto the dimensional accuracy performance of the plasma arc cutting process. The cutting parameters studied were cutting speed (mm/min, torch standoff distance (mm, and arc voltage (volts. Linear dimensions of a rectangular workpiece were measured after PAC cutting following the full factorial design experimental approach. For each one of the three process parameters, three parameter levels were used. Analysis of means (ANOM and analysis of variances (ANOVA were performed in order for the effect of each parameter on the leaner dimensional accuracy to be assessed.

  13. Measurements of Plasma Potential Distribution in Segmented Electrode Hall Thruster

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; N.J. Fisch

    2001-10-16

    Use of a segmented electrode placed at the Hall thruster exit can substantially reduce the voltage potential drop in the fringing magnetic field outside the thruster channel. In this paper, we investigate the dependence of this effect on thruster operating conditions and segmented electrode configuration. A fast movable emissive probe is used to measure plasma potential in a 1 kW laboratory Hall thruster with semented electrodes made of a graphite material. Relatively small probe-induced perturbations of the thruster discharge in the vicinity of the thruster exit allow a reasonable comparison of the measured results for different thruster configurations. It is shown that the plasma potential distribution is almost not sensitive to changes of the electrode potential, but depends on the magnetic field distribution and the electrode placement.

  14. Radiated power distributions in impurity-seeded plasmas in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Morisaki, T., E-mail: morisaki@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Nagoya 464-8602 (Japan); Oyama, K. [Nagoya University, Nagoya 464-8602 (Japan); Tamura, N.; Masuzaki, S.; Akiyama, T.; Motojima, G.; Miyazawa, J.; Peterson, B.J. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ohno, N. [Nagoya University, Nagoya 464-8602 (Japan); Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2015-08-15

    In LHD, impurity seeding has been performed to enhance the radiative cooling in the edge region. Neon, nitrogen and argon were seeded by gas puffing, and the behaviour of those impurities in the plasma was investigated with the innovative diagnostic method. Two bolometer arrays were used to measure the two-dimensional radiated power distribution. Using the tomographic technique, radiated power distributions on a poloidal plane can be obtained with the high time resolution. During the discharge with neon puff, considerable radiation from the core region was observed, in addition to the strong edge radiation. In spite of the highly radiated power, plasma did not result in the radiation collapse. On the other hand, in the nitrogen-seeded discharge, the strong radiation only from the peripheral region was observed. Different time evolutions of the total radiated power between neon and nitrogen seeded discharges were observed after stopping each impurity puff.

  15. Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

    Science.gov (United States)

    Gunár, S.; Mackay, D. H.

    2016-07-01

    Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.

  16. Optimal vibration control of curved beams using distributed parameter models

    Science.gov (United States)

    Liu, Fushou; Jin, Dongping; Wen, Hao

    2016-12-01

    The design of linear quadratic optimal controller using spectral factorization method is studied for vibration suppression of curved beam structures modeled as distributed parameter models. The equations of motion for active control of the in-plane vibration of a curved beam are developed firstly considering its shear deformation and rotary inertia, and then the state space model of the curved beam is established directly using the partial differential equations of motion. The functional gains for the distributed parameter model of curved beam are calculated by extending the spectral factorization method. Moreover, the response of the closed-loop control system is derived explicitly in frequency domain. Finally, the suppression of the vibration at the free end of a cantilevered curved beam by point control moment is studied through numerical case studies, in which the benefit of the presented method is shown by comparison with a constant gain velocity feedback control law, and the performance of the presented method on avoidance of control spillover is demonstrated.

  17. Dependence of the source performance on plasma parameters at the BATMAN test facility

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, C.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-04-08

    The investigation of the dependence of the source performance (high j{sub H{sup −}}, low j{sub e}) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H{sup −}, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H{sup −} density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa)

  18. Dependence of the source performance on plasma parameters at the BATMAN test facility

    Science.gov (United States)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  19. Role of magnetic field fluctuations in the Evolution of the kappa Distribution Functions in the Plasma Sheet

    Science.gov (United States)

    Espinoza, Cristobal; Antonova, Elizaveta; Stepanova, Marina; Valdivia, Juan Alejandro

    2016-07-01

    The evolution with the distance to Earth of ion and electron distribution functions in the plasma sheet, approximated by kappa distributions, was studied by Stepanova and Antonova (2015, JGRA 120). Using THEMIS data for 5 events of satellite alignments along the tail, covering between 5 and 30 Earth radii, they found that the kappa parameter increases tailwards, for both ions and electrons. In this work we analyse the magnetic fluctuations present in THEMIS data for the same 5 events. The aim is to explore the hypothesis proposed by Navarro et al. (2014, PRL 112), for solar wind plasmas, that the observed magnetic fluctuations could be closely related to spontaneous fluctuations in the plasma, if this can be described by stable distributions. Here we present our first results on the correlation between the spectral properties of the magnetic fluctuations and the observed parameters of the kappa distributions for different distances from Earth.

  20. Increasing plasma parameters using sheared flow stabilization of a Z-pinch

    Science.gov (United States)

    Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Hughes, M. C.; Oberto, R. J.; Ross, M. P.; Weber, T. R.

    2017-05-01

    The ZaP and ZaP-HD Flow Z-pinch experiments at the University of Washington have successfully demonstrated that sheared plasma flows can be used as a stabilization mechanism over a range of parameters that has not previously been accessible to long-lived Z-pinch configurations. The stabilization is effective even when the plasma column is compressed to small radii, producing predicted increases in magnetic field and electron temperature. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression has increased the accessible plasma parameters and has generated stable plasmas with radii of 0.3 cm, as measured with a high resolution digital holographic interferometer. Compressing the plasma with higher pinch currents has produced high magnetic fields (8.5 T) and electron temperatures (1 keV) with an electron density of 2 ×1017 cm-3, while maintaining plasma stability for many Alfvén times (approximately 50 μs). The results suggest that sheared flow stabilization can be applied to extend Z-pinch plasma parameters to high energy densities.

  1. Monoclinic zirconia distributions in plasma-sprayed thermal barrier coatings

    Science.gov (United States)

    Lance, M. J.; Haynes, J. A.; Ferber, M. K.; Cannon, W. R.

    2000-03-01

    Phase composition in an air plasma-sprayed Y2O3-stabilized ZrO2 (YSZ) top coating of a thermal barrier coating (TBC) system was characterized. Both the bulk phase content and localized pockets of monoclinic zirconia were measured with Raman spectroscopy. The starting powder consisted of ˜15 vol.% monoclinic zirconia, which decreased to ˜2 vol.% in the as-sprayed coating. Monoclinic zirconia was concentrated in porous pockets that were evenly distributed throughout the TBC. The pockets resulted from the presence of unmelted granules in the starting powder. The potential effect of the distributed monoclinic pockets on TBC performance is discussed.

  2. Revisiting transbilayer distribution of lipids in the plasma membrane.

    Science.gov (United States)

    Murate, Motohide; Kobayashi, Toshihide

    2016-01-01

    Whereas asymmetric transbilayer lipid distribution in the plasma membrane is well recognized, methods to examine the precise localization of lipids are limited. In this review, we critically evaluate the methods that are applied to study transbilayer asymmetry of lipids, summarizing the factors that influence the measurement. Although none of the present methods is perfect, the current application of immunoelectron microscopy-based technique provides a new picture of lipid asymmetry. Next, we summarize the transbilayer distribution of individual lipid in both erythrocytes and nucleated cells. Finally we discuss the concept of the interbilayer communication of lipids.

  3. Expanded Ion Energy Distribution Measurements on MST RFP Plasmas

    Science.gov (United States)

    Clark, Jerry; Titus, J. B.; Mezonlin, E. D.; Anderson, J. K.; Almagri, A. F.

    2016-10-01

    The Compact Neutral Particle Analyzer (CNPA) is a low energy (0.34 - 5.2 keV), high energy resolution (25 channels) neutral particle analyzer for ion energy distribution and temperature measurements on the Madison Symmetric Torus (MST). In MST plasmas during neutral beam injection, deuterium ions are known to have energies out to 40 keV. A retarding potential was built, installed, and calibrated to allow CNPA measurements to explore this region with high energy resolution, expanding ion energy distribution measurements, allowing us to better understand the dynamics of the bulk and fast ion populations during global magnetic reconnection events. Work supported by US DOE and NSF.

  4. C -parameter distribution at N3LL' including power corrections

    Science.gov (United States)

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-01

    We compute the e+e- C -parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O (αs3), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O (ΛQCD) renormalon ambiguity in the soft function, we switch from the MS ¯ to a short distance "Rgap" scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C -parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≃ 2.5 % at Q =mZ.

  5. The Importance of the Ubiquitous 'Kappa' Distributions in Space Plasmas (Invited)

    Science.gov (United States)

    Scudder, J. D.; Karimabadi, H.

    2013-12-01

    The kappa model for f(v) was originally derived by Olbert (1966) to provide frugal but informative fits to observed particle fluxes from which moments of the underlying plasma could be extracted. Olbert's new fit parameter (kappa) allowed for the ambient plasma to possess reduced kurtosis, which a Gaussian does not. The universality of kappa can easily be overstated, since it cannot fit distributions with a heat flux which is generally important in astrophysical plasmas. Geophysically the frequent use of such a parametrization for the zeroth order energy distribution in the comoving frame acknowledges that the observed plasmas of nature are generally non-thermal, hence kurtotic, which for this author is their principal significance. A key question remains whether the analytically convenient kappa function's kurtotic form is required by the laws of physics, or rather a deft representative of all possible distributions with non-negligible kurtosis and other higher moments. This paper develops why the non-thermal kurtotic f(v) should generally be expected in astrophysical plasmas structured by gravity, driven by their tendency to achieve quasi-neutrality. It will demonstrate the essential role of runaway phenomena in the origin of this kurtosis while showing consistency with observables. This approach provides a rationale why such kurtotic distributions should occur without arguing what its precise shape should be, beyond possessing non-zero skewness and kurtosis. Initial results will be shown that the kappa model for such kurtotic distributions, while better than an Gaussian, may be too rigid to describe the non-thermal distributions of nature at all radial distances from the sun.

  6. Inversion of generalized relaxation time distributions with optimized damping parameter

    Science.gov (United States)

    Florsch, Nicolas; Revil, André; Camerlynck, Christian

    2014-10-01

    Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.

  7. Nonlinear plasma processes and the formation of electron kappa distribution

    Science.gov (United States)

    Yoon, Peter

    2016-07-01

    The goal of nonequilibrium statistical mechanics is to establish fundamental relationship between the time irreversible macroscopic dynamics and the underlying time reversible behavior of microscopic system. The paradigm of achieving this seemingly paradoxical goal is through the concept of probability. For classical systems Boltzmann accomplished this through his H theorem and his kinetic equation for dilute gas. Boltzmann's H function is the same as classical extensive entropy aside from the minus sign, and his kinetic equation is applicable for short-range molecular interaction. For plasmas, the long-range electromagnetic force dictates the inter-particular interaction, and the underlying entropy is expected to exhibit non-extensive, or non-additive behavior. Among potential models for the non-additive entropy, the celebrated Tsallis entropy is the most well known. One of the most useful fundamental kinetic equations that governs the long-range plasma interaction is that of weak turbulence kinetic theory. At present, however, there is no clear-cut connection between the Tsallis entropy and the kinetic equations that govern plasma behavior. This can be contrasted to Boltzmann's H theorem, which is built upon his kinetic equation. The best one can do is to show that the consequences of Tsallis entropy and plasma kinetic equation are the same, that is, they both imply kappa distribution. This presentation will overview the physics of electron acceleration by beam-generated Langmuir turbulence, and discuss the asymptotic solution that rigorously can be shown to correspond to the kappa distribution. Such a finding is a strong evidence, if not water-tight proof, that there must be profound inter-relatioship between the Tsallis thermostatistical theory and the plasma kinetic theory.

  8. Determination of Some Biochemical Parameters in the Seminal Plasma of German Shepherd Dogs

    OpenAIRE

    GÜNAY, Ülgen

    2003-01-01

    In this study, we aimed to determine the levels of some biochemical parameters in the seminal plasma of German Shepherd dogs. Seven German Shepherd dogs were used as materials. A total of 35 ejaculates, five from each dog, were collected. The seminal plasma of each ejaculate was separated by centrifugation at 5000 rpm for 10 min. Biochemical analyses of the seminal plasma were performed. In conclusion, the average concentrations of total protein, calcium, phosphorus, magnesium, sodium and pot...

  9. On a six-parameter generalized Burr XII distribution

    OpenAIRE

    A. K. Olapade

    2008-01-01

    In this paper, we derive a probability density function that generalizes the Burr XII distribution. The cumulative distribution function and the $n^{th}$ moment of the generalized distribution are obtained while the distribution of some order statistics of the distribution are established. A theorem that relate the new distribution to another statistical distribution is established.

  10. The distribution and depth of ion doses implanted into wedges by plasma immersion ion implantation in drifting and stationary plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tarrant, R N; Devasahayam, S; McKenzie, D R; Bilek, M M M [School of Physics (A28), University of Sydney, NSW 2006 (Australia)

    2006-08-15

    The distribution of ion dose arising from plasma immersion ion implantation (PIII) of a complex shape in the form of a wedge is measured. Two types of plasma are considered: a drifting titanium plasma derived from a pulsed cathodic arc and a stationary plasma generated by PIII pulses in oxygen or nitrogen gas. The distributions of the implanted material over the surface of the aluminium wedge were studied using secondary ion mass spectroscopy and Rutherford backscattering. The effects of varying the apex angles of the wedge and the plasma density are investigated. We conclude that ion-focusing effects at the apex of the wedge were more important for the drifting plasma than for the stationary plasmas. In a drifting plasma, the ion drift velocity directed towards the apex of the wedge compresses the sheath close to the apex and enhances the concentration of the dose. For the stationary plasma, the dose is more uniform.

  11. Numerical studies of identification in nonlinear distributed parameter systems

    Science.gov (United States)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  12. PIC simulations of a three component plasma described by Kappa distribution functions as observed in Saturn's magnetosphere

    Science.gov (United States)

    Barbosa, Marcos; Alves, Maria Virginia; Simões Junior, Fernando

    2016-04-01

    In plasmas out of thermodynamic equilibrium the particle velocity distribution can be described by the so called Kappa distribution. These velocity distribution functions are a generalization of the Maxwellian distribution. Since 1960, Kappa velocity distributions were observed in several regions of interplanetary space and astrophysical plasmas. Using KEMPO1 particle simulation code, modified to introduce Kappa distribution functions as initial conditions for particle velocities, the normal modes of propagation were analyzed in a plasma containing two species of electrons with different temperatures and densities and ions as a third specie.This type of plasma is usually found in magnetospheres such as in Saturn. Numerical solutions for the dispersion relation for such a plasma predict the presence of an electron-acoustic mode, besides the Langmuir and ion-acoustic modes. In the presence of an ambient magnetic field, the perpendicular propagation (Bernstein mode) also changes, as compared to a Maxwellian plasma, due to the Kappa distribution function. Here results for simulations with and without external magnetic field are presented. The parameters for the initial conditions in the simulations were obtained from the Cassini spacecraft data. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  13. EFFECT OF PLASMA CUTTING PARAMETERS UPON SHAPES OF BEARING CURVE OF C45 STEEL SURFACE

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2015-08-01

    Full Text Available The article presents the results of studies on the effect of plasma cutting technological parameters upon the shape of bearing curves and the parameters of the curve. The topography of surface formed by plasma cutting were analyzed. For measuring surface roughness and determining the bearing curve the appliance T8000 RC120 – 400 by Hommel-Etamic was used together with software.

  14. Alteration of Lysophosphatidylcholine-Related Metabolic Parameters in the Plasma of Mice with Experimental Sepsis.

    Science.gov (United States)

    Ahn, Won-Gyun; Jung, Jun-Sub; Kwon, Hyeok Yil; Song, Dong-Keun

    2017-04-01

    Plasma concentration of lysophosphatidylcholine (LPC) was reported to decrease in patients with sepsis. However, the mechanisms of sepsis-induced decrease in plasma LPC levels are not currently well known. In mice subjected to cecal ligation and puncture (CLP), a model of polymicrobial peritoneal sepsis, we examined alterations in LPC-related metabolic parameters in plasma, i.e., the plasma concentration of LPC-related substances (i.e., phosphatidylcholine (PC) and lysophosphatidic acid (LPA)), and activities or levels in the plasma of some enzymes that can be involved in the regulation of plasma LPC concentration (i.e., secretory phospholipase A2 (sPLA2), lecithin:cholesterol acyltransferase (LCAT), acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), and autotaxin (ATX)), as well as plasma albumin concentration. We found that levels of LPC and albumin and enzyme activities of LCAT, ATX, and sPLA2 were decreased, whereas levels of PC, LPA, and LPCAT1-3 were increased in the plasma of mice subjected to CLP. Bacterial peritonitis led to alterations in all the measured LPC-related metabolic parameters in the plasma, which could potentially contribute to sepsis-induced decrease in plasma LPC levels. These findings could lead to the novel biomarkers of sepsis.

  15. Analyses of plasma parameter profiles in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi; Shimizu, Katsuhiro; Hayashi, Nobuhiko [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Itakura, Hirofumi; Takase, Keizou [CSK Co. Ltd., Tokyo (Japan)

    2001-01-01

    The methods how diagnostics data are treated as the surface quantity of magnetic surface and processed to the profile data in the JT-60U plasmas are summarized. The MHD equilibrium obtained by solving Grad-Shafranov equation on the MHD equilibrium calculation and registration software FBEQU are saved shot by shot as a database. Various experimental plasma data measured at various geometrical positions on JT-60 are mapped onto the MHD equilibrium and treated as functions of the volume averaged minor radius {rho} on the experimental data time slice monitoring software SLICE. Experimental data are integrated and edited on SLICE. The experimental data measured as the line integral values are transformed by Able inversion. The mapped data are fitted to a functional form and saved to the profile database MAP-DB. SLICE can also read data from MAP-DB and redisplay and transform them. In addition, SLICE can generate the profile data TOKRD as run data for orbit following Monte-Carlo (OFMC) code, analyzer for current drive consistent with MHD equilibrium (ACCOME) code and tokamak predictive and interpretive code system (TOPICS). (author)

  16. Influence of Geant4 parameters on proton dose distribution

    Directory of Open Access Journals (Sweden)

    Asad Merouani

    2015-09-01

    Full Text Available Purpose: The proton therapy presents a great precision during the radiation dose delivery. It is useful when the tumor is located in a sensitive area like brain or eyes. The Monte Carlo (MC simulations are usually used in treatment planning system (TPS to estimate the radiation dose. In this paper we are interested in estimating the proton dose statistical uncertainty generated by the MC simulations. Methods: Geant4 was used in the simulation of the eye’s treatment room for 62 MeV protons therapy, installed in the Istituto Nazionale Fisica Nucleare Laboratori Nazionali del Sud (LNS-INFN facility in Catania. This code is a Monte Carlo based on software dedicated to simulate the passage of particles through the matter. In this work, we are interested in optimizing the Geant4 parameters on energy deposit distribution by proton to achieve the spatial resolution of dose distribution required for cancer therapy. We propose various simulations and compare the corresponding dose distribution inside water to evaluate the statistical uncertainties. Results: The simulated Bragg peak, based on facility model is in agreement with the experimental data, The calculations show that the mean statistical uncertainty is less than 1% for a simulation set with 5 × 104 events, 10-3 mm production threshold and a 10-2 mm step limit. Conclusion: The set of Geant4 cut and step limit values can be chosen in combination with the number of events to reach precision recommended from International Commission on Radiation Units and measurements (ICRU in Monte Carlo codes for proton therapy treatment.

  17. Modulational instability of ion-acoustic waves in plasma with a q-nonextensive nonthermal electron velocity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bouzit, Omar, E-mail: omar.bouzit@yahoo.fr; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria); Bains, A. S., E-mail: bainsphysics@yahoo.co.in [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2 (Canada)

    2015-08-15

    Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist.

  18. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department, University of Birjand, Birjand 97179-63384 (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of)

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  19. Spectral Interpretation of Radio Sounder-Stimulated Magnetospheric Plasma Resonances in Terms of Kappa Distributions

    Science.gov (United States)

    Benson, Robert F.; Vinas, Adolfo, F.; Fainberg, Joseph; Osherovich, Vladimir A.; Purser, Carola M.; Galkin, Ivan A.; Reinisch, Bodo W.

    2011-01-01

    Magnetosphere sounders stimulate plasma resonances between the harmonics of the electron cyclotron frequency and above the upper-hybrid frequency. More than three decades ago they were recognized as equivalent to ionospheric topside-sounder-stimulated resonances, designated as Qn resonances a decade earlier, with one important difference: the magnetospheric Qn frequencies often indicated that the background electron-velocity distribution was non-Maxwellian. Interpretations based on bi-Maxwellian and kappa distributions have been proposed. Here we expand on the latter, which requires fewer free parameters, by comparing kappa-derived Qn frequencies with observations from the Radio Plasma Imager on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite.

  20. Influence of direct current plasma magnetron sputtering parameters on the material characteristics of polycrystalline copper films

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.-Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)], E-mail: k.y.chan@fz-juelich.de; Luo, P.-Q.; Zhou, Z.-B. [Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai (China); Tou, T.-Y.; Teo, B.-S. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia)

    2009-03-01

    Physical vapor processes using glow plasma discharge are widely employed in microelectronic industry. In particular magnetron sputtering is a major technique employed for the coating of thin films. This paper addresses the influence of direct current (DC) plasma magnetron sputtering parameters on the material characteristics of polycrystalline copper (Cu) thin films coated on silicon substrates. The influence of the sputtering parameters including DC plasma power and argon working gas pressure on the electrical and structural properties of the thin Cu films was investigated by means of surface profilometer, four-point probe and atomic force microscopy.

  1. Seminal plasma zinc level may be associated with the effect of cigarette smoking on sperm parameters.

    Science.gov (United States)

    Liu, R-Z; Gao, J-C; Zhang, H-G; Wang, R-X; Zhang, Z-H; Liu, X-Y

    2010-01-01

    The aim of this study was to investigate the effect of cigarette smoking on seminal plasma zinc levels and sperm parameters, and to examine the role of seminal plasma zinc. Semen samples from 79 non-smokers and 68 smokers were obtained. There was a significant decrease in seminal plasma zinc in smokers and a clear correlation between seminal plasma zinc levels and the extent of smoking. Sperm parameters (concentration, motility and morphology) among smokers were significantly lower in comparison to non-smokers. These parameters were also significantly decreased among smokers with abnormal zinc levels, while there was no significant difference between non-smokers with normal zinc and non-smokers with abnormal zinc levels. As previous studies have shown that seminal plasma zinc is associated with a decrease of anti-oxidant defences, seminal plasma zinc could be a contributor to the effects of cigarette smoking on sperm parameters. In conclusion, cigarette smoking can affect sperm parameters and this study may help towards providing a mechanistic explanation.

  2. Semigroup approximation and robust stabilization of distributed parameter systems

    Science.gov (United States)

    Kurdila, A. J.; Fabiano, R.; Strganac, T.; Hsu, S.

    1994-01-01

    Theoretical results that enable rigorous statements of convergence and exponential stability of Galerkin approximations of LQR controls for infinite dimensional, or distributed parameter, systems have proliferated over the past ten years. In addition, extensive progress has been made over the same time period in the derivation of robust control design strategies for finite dimensional systems. However, the study of the convergence of robust finite dimensional controllers to robust controllers for infinite dimensional systems remains an active area of research. We consider a class of soft-constrained differential games evolving in a Hilbert space. Under certain conditions, a saddle point control can be given in feedback form in terms of a solution to a Riccati equation. By considering a related LQR problem, we can show a convergence result for finite dimensional approximations of this differential game. This yields a computational algorithm for the feedback gain that can be derived from similar strategies employed in infinite dimensional LQR control design problems. The approach described in this paper also inherits the additional properties of stability robustness common to game theoretic methods in finite dimensional analysis. These theoretical convergence and stability results are verified in several numerical experiments.

  3. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    Science.gov (United States)

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  4. Effects of cigarette smoking on hemorheologic parameters, plasma osmolality and lung function.

    Science.gov (United States)

    Ergun, Dilek Duzgun; Karis, Denizhan; Alkan, Fatma Ates; Cakmak, Gulfidan; Yenigun, Mustafa; Ercan, Meltem

    2016-10-05

    Cigarette smoking deteriorates human health via vascular disorders, cancer and especially respiratory diseases. The aim of this study is to investigate effects of cigarette smoking on hemorheologic parameters, plasma osmolality and lung function in individuals without diagnosis of chronic obstructive pulmonary disease (COPD). Patients diagnosed without COPD utilizing respiratory function test were enrolled in the study with three groups, ex-smokers (n = 21), current-smokers (n = 35) and never-smokers (n = 43). Hemorheologic parameters and plasma osmolality were measured in hemorheology laboratory. SPSS 17.0 was used for statistical analysis. Blood and plasma viscosity, fibrinogen and hematocrit levels, mean corpuscular volume and mean corpuscular hemoglobin concentration were significantly elevated in ex-smokers and current-smokers compared to never-smokers. The standardized red blood cell deformability and oxygen delivery index and lung function were statistically lower in current-smokers than never-smokers. Pulmonary blood flow rate was statistically lower in current-smokers and ex-smokers than never-smokers. Plasma osmolality was statistically significantly higher in ex-smokers and current-smokers than never-smokers. Our findings clearly show that cigarette smoking has severe effects on hemorheologic parameters, plasma osmolality and lung function even in individuals without COPD. Blood and plasma viscosity with plasma osmolality might be useful markers to detect early hemorheologic-hemodynamic alterations in cigarette smokers.

  5. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  6. Multivariate phase type distributions - Applications and parameter estimation

    DEFF Research Database (Denmark)

    Meisch, David

    and reducing model uncertainties. Research has shown that the errors on cost estimates for infrastructure projects clearly do not follow a normal distribution but is skewed towards cost overruns. This skewness can be described using phase type distributions. Cost benefit analysis assesses potential future...... to the class of phase type distributions. Phase type distributions have several advantages. They are versatile in the sense that they can be used to approximate any given probability distribution on the positive reals. There exist general probabilistic results for the entire class of phase type distributions......, allowing for different estimation methods for the whole class or subclasses of phase type distributions. These attributes make this class of distributions an interesting alternative to the normal distribution. When facing multivariate problems, the only general distribution that allows for estimation...

  7. Hydromagnetic Waves and Instabilities in Kappa Distribution Plasma

    Science.gov (United States)

    2009-01-01

    perpendicular effective particle temperatures, respec- tively. Two other parameters related to pM and pnl which naturally occur in the study of...role in determin- ing the excitation conditions of the field swelling and mirror instabilities [see Eqs. (60) and (65)]. Calculating pnl /pni from Eq...more convenient form of the perturbed distribution function /„ that may be used in- stead of Eq. (12) to obtain nn, pM, and pnl given by Eqs. (72

  8. Automatic measurements of plasma parameters in the PUPR mirror and cusp plasma machine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, S; Colmenares, F; Gonzalez-Lizardo, A; Leal-Quiros, E [Plasma Engineering Laboratory, Polytechnic University of Puerto Rico, San Juan, PR 00918 (Puerto Rico)

    2008-10-15

    This paper presents an ongoing effort to develop an automatic measurement system for plasma diagnostics at the Plasma Engineering Laboratory of the Polytechnic University of Puerto Rico (PUPR), along with an example of its operation. The system is intended to be used with electrostatic probes such as single and double Langmuir probes, emissive probes, ion and electron energy analyzers, etc. The automatic measurement system includes automatic positioning of the probes inside the plasma chamber, automatic voltage sweep of the probes for each position, and automatic analysis of the probe I-V characteristic. The results of measurements obtained by using this automatic measurement system during a particular experiment are shown and compared with a traditional method with satisfactory results.

  9. Comparative study between cold plasma and hot plasma with ion beam and loss-cone distribution function by particle aspect approach

    Science.gov (United States)

    Patel, Soniya; Varma, P.; Tiwari, M. S.

    2011-03-01

    The electromagnetic ion-cyclotron (EMIC) instabilities with isotropic ion beam and general loss-cone distribution of cold and hot core plasmas are discussed. The growth rate, parallel and perpendicular resonance energies of the electromagnetic ion-cyclotron waves in a low β (ratio of plasma pressure to magnetic pressure), homogeneous plasma have been obtained using the dispersion relation for cold and hot plasmas. The wave is assumed to propagate parallel to the static magnetic field. The whole plasma is considered to consist of resonant and non-resonant particles permeated by isotropic ion beam. It is assumed that resonant particles and ion beam participate in energy exchange with the wave whereas non-resonant particles support the oscillatory motion of the wave. We determined the variation in energies and growth rate in cold and hot plasmas by the energy conservation method with a general loss-cone distribution function. The thermal anisotropy of the core plasma acts as a source of free energy for EMIC wave and enhances the growth rate. It is noted that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of up flowing ion beam and steep loss-cone distribution in the anisotropic magnetosphere. The effect of the steep loss-cone distribution is to enhance the growth rate of the EMIC wave. The heating of ions perpendicular and parallel to the magnetic field is discussed along with EMIC wave emission in the auroral acceleration region. The results are interpreted for the space plasma parameters appropriate to the auroral acceleration region of the earth's magnetoplasma.

  10. Effect of magnetic barrier on the plasma parameters in a Trimix-M galatea

    Science.gov (United States)

    Morozov, A. I.; Bugrova, A. I.; Bishaev, A. M.; Lipatov, A. S.; Kozintseva, M. V.

    2006-11-01

    The parameters of plasma trapped in a Trimix-M galatea with increased values of the magnetic barrier and the energy of a hydrogen plasma bunch injected in the trap have been determined. For a barrier magnetic field of B b ˜ 0.1 T, the plasma confinement time in the trap is τp ≈ 300 μs (which agrees with estimates obtained using formulas describing the classical transfer), the maximum electron density is n e ˜ 5 × 1013 cm-3, and the electron and ion temperatures are T e ≈ 20 eV and T i ˜ 2T e, respectively. The energy of trapped plasma is ˜110 J, and the ratio of the gaskinetic to magnetic pressure in the plasma is β0 ˜ 0.2.

  11. Influence of plasma parameters on the growth and properties of magnetron sputtered CNx thin films

    Science.gov (United States)

    Hellgren, Niklas; Macák, Karol; Broitman, Esteban; Johansson, Mats P.; Hultman, Lars; Sundgren, Jan-Eric

    2000-07-01

    Carbon nitride CNx thin films were grown by unbalanced dc magnetron sputtering from a graphite target in a pure N2 discharge, and with the substrate temperature Ts kept between 100 and 550 °C. A solenoid coil positioned in the vicinity of the substrate was used to support the magnetic field of the magnetron, so that the plasma could be increased near the substrate. By varying the coil current and gas pressure, the energy distribution and fluxes of N2+ ions and C neutrals could be varied independently of each other over a wide range. An array of Langmuir probes in the substrate position was used to monitor the radial ion flux distribution over the 75-mm-diam substrate, while the flux and energy distribution of neutrals was estimated through Monte Carlo simulations. The structure, surface roughness, and mechanical response of the films are found to be strongly dependent on the substrate temperature, and the fluxes and energies of the deposited particles. By controlling the process parameters, the film structure can thus be selected to be amorphous, graphite-like or fullerene-like. When depositing at 3 mTorr N2 pressure, with Ts>200 °C, a transition from a disordered graphite-like to a hard and elastic fullerene-like structure occurred when the ion flux was increased above ˜0.5-1.0 mA/cm2. The nitrogen-to-carbon concentration ratio in the films ranged from ˜0.1 to 0.65, depending on substrate temperature and gas pressure. The nitrogen film concentration did, however, not change when varying the nitrogen ion-to-carbon atom flux ratios from ˜1 to 20.

  12. Impact of plasma parameter on self-organization of electron temperature gradient driven turbulence

    Science.gov (United States)

    Kawai, C.; Idomura, Y.; Maeyama, S.; Ogawa, Y.

    2017-04-01

    Self-organization in the slab electron temperature gradient driven (ETG) turbulence is investigated based on gyrokinetic simulations and the Hasegawa-Mima (HM) equation. The scale and the anisotropy of self-organized turbulent structures vary depending on the Rhines scale and the characteristic scale given by the adiabatic response term in the HM equation. The former is determined by competition between the linear wave dispersion and the nonlinear turbulent cascade, while the latter is given as the scale, at which the turbulent cascade is impeded. These scales are controlled by plasma parameters such as the density and temperature gradient, and the temperature ratio of ion to electron. It is found that depending on the plasma parameters, the ETG turbulence shows either isotropic turbulence or zonal flows, which give significantly different transport levels. Although the modulational instability excites zonal modes regardless of the plasma parameters, the final turbulent structure is determined by the self-organization process.

  13. Variation of plasma parameters of vacuum arc column with gap distance

    Science.gov (United States)

    Han, Wen; Yuan, Zhao; He, Junjia

    2016-07-01

    On the basis of a two-dimensional (2D) magneto-hydrodynamic model, we studied long-gap-distance vacuum arcs in a uniform axial magnetic field and determined the effect of gap distance varying in a large range on plasma parameters. Simulation results showed that with increasing gap distance, the parameters of the plasma near the cathode are almost invariant, except for ion number density, but the parameters of the plasma in front of the anode clearly vary; meanwhile, joule heat gradually becomes the main source of energy for the arc column. In a short gap, a clear current constriction can be found in the entire arc column. Whereas when the gap distance exceeds a certain value, a sharp contraction of the current only arises in front of the anode.

  14. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.;

    2005-01-01

    plasma parameters by the optical and Langmuir probes are presented. It is shown that the spatial profiles of the electron density, the effective electron temperature and plasma potential feature a great deal of the radial and axial uniformity compared with conventional sources of inductively coupled......A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  15. Parameter specification for the degree distribution of simulated Barabási-Albert graphs

    Science.gov (United States)

    Mohd-Zaid, Fairul; Kabban, Christine M. Schubert; Deckro, Richard F.; White, Edward D.

    2017-01-01

    The degree distribution of a simulated Barabási-Albert graph under linear preferential attachment is investigated. Specifically, the parameters of the power law distribution are estimated and compared against the theoretical values derived using mean field theory. Least squares method and MLE-nonparametric method were utilized to estimate the distribution parameters on 1000 simulated Barabási-Albert graphs for edge parameter m ∈ { 2 , 4 , 6 } and size n ∈ {2k : k = 5 , 6 , … , 14 , 15 } . Goodness of fit metrics were computed on a second set of simulated graphs for the median of the estimated parameters and other hypothetical values for the distribution parameters. The results suggest that the distribution of the parameters from simulated graphs are significantly different from the theoretical distribution and is also dependent on m. Further results confirm the finding that the parameter of the power law distribution, β, increases as m increases.

  16. Modelling diameter distribution of Tetraclinis articulata in Tunisia using normal and Weibull distributions with parameters depending on stand variables

    Directory of Open Access Journals (Sweden)

    Sghaier T

    2016-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of both Normal and two-parameter Weibull distributions in describing diameter distribution of Tetraclinis articulata stands in north-east Tunisia. The parameters of the Weibull function were estimated using the moments method and maximum likelihood approaches. The data used in this study came from temporary plots. The three diameter distribution models were compared firstly by estimating the parameters of the distribution directly from individual tree measurements taken in each plot (parameter estimation method, and secondly by predicting the same parameters from stand variables (parameter prediction method. The comparison was based on bias, mean absolute error, mean square error and the Reynolds’ index error (as a percentage. On the basis of the parameter estimation method, the Normal distribution gave slightly better results, whereas the Weibull distribution with the maximum likelihood approach gave the best results for the parameter prediction method. Hence, in the latter case, the Weibull distribution with the maximum likelihood approach appears to be the most suitable to estimate the parameters for reducing the different comparison criteria for the distribution of trees by diameter class in Tetraclinis articulata forests in Tunisia.

  17. Experimental measurements of the hollow cathode DC glow discharge parameters in Ar and He plasmas

    Science.gov (United States)

    Omrani, M.; Amrollahi, R.; Iraji, D.

    2016-12-01

    In this article, we focus on some of the fundamental parameters of SS316L hollow cathode glow discharge. Four SS316L samples are placed at different locations on the cathode surface and the current passed through them is measured in Ar and He glow discharge plasmas. The wall current densities of Ar and He are in the range of 8-25 µA cm-2 and 8-35 µA cm-2, respectively. Results also show that with decreasing working pressure, the ion flux and current density distribution on the wall surface becomes more uniform. The ion flux of the Ar and He is in the range of 1013 to 1014 ~\\text{ion} \\text{c}{{\\text{m}}-2} . Total energy losses of Ar and He are measured at the pressure range of 1.4-5.5  ×  10-2 torr and 3.2-7.1  ×  10-1, respectively. In both Ar and He, total energy losses decreased with increasing pressure. The secondary electron emission coefficients of Ar and He, which are evaluated for the hallow cathode configuration, are about 0.42 and 0.26, respectively, and are higher in comparison with the plate cathode configuration.

  18. Characteristics and plasma parameters of a short-wavelength low-pressure discharge lamp

    Science.gov (United States)

    Shuaibov, A. K.; Shevera, I. V.; Malinina, A. A.

    2008-10-01

    We have studied the working optical characteristics and electron kinetic coefficients of a short-wavelength, electric discharge exciplex-halogen UV-VUV lamp employing a mixture of argon and chlorine with a total pressure of P = 0.5 10 kPa. The lamp operates on a system of broadened electron-vibrational bands of ArCl (175 nm) and chlorine (200, 258 nm) molecules, which overlap to form a continuum in the spectral range of 160 260 nm. It is established that the optimum mixtures are those with p(Ar) - p(Cl2) = (2 4)-(0.15 0.30) kPa. The average output power of the short-wavelength radiation is 1 2 W at an efficiency of ˜5%. The electron energy distribution functions (EDFs) and the discharge plasma parameters have been calculated by solving the Boltzmann equation for a gas mixture with the experimentally determined optimum composition in the range of E/ P values from 1 to 200 V/(cm Torr), where E is the electric field strength and P is the total gas pressure. Using the obtained EDFs, the electron transport characteristics, specific discharge power losses for the main elementary processes, and rate constants of electron processes are determined.

  19. Estimating the Parameters of the Beta-Binomial Distribution.

    Science.gov (United States)

    Wilcox, Rand R.

    1979-01-01

    For some situations the beta-binomial distribution might be used to describe the marginal distribution of test scores for a particular population of examinees. Several different methods of approximating the maximum likelihood estimate were investigated, and it was found that the Newton-Raphson method should be used when it yields admissable…

  20. The equilibrium probability distribution of a conductive sphere's floating charge in a collisionless, drifting Maxwellian plasma

    CERN Document Server

    Thomas, Drew M

    2013-01-01

    A dust grain in a plasma has a fluctuating electric charge, and past work concludes that spherical grains in a stationary, collisionless plasma have an essentially Gaussian charge probability distribution. This paper extends that work to flowing plasmas and arbitrarily large spheres, deriving analytic charge probability distributions up to normalizing constants. We find that these distributions also have good Gaussian approximations, with analytic expressions for their mean and variance.

  1. Diagnostics of recombining laser plasma parameters based on He-like ion resonance lines intensity ratios

    Science.gov (United States)

    Ryazantsev, S. N.; Skobelev, I. Yu; Faenov, A. Ya; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.

    2016-11-01

    While the plasma created by powerful laser expands from the target surface it becomes overcooled, i.e. recombining one. Improving of diagnostic methods applicable for such plasma is rather important problem in laboratory astrophysics nowadays because laser produced jets are fully scalable to young stellar objects. Such scaling is possible because of the plasma hydrodynamic equations invariance under some transformations. In this paper it is shown that relative intensities of the resonance transitions in He-like ions can be used to measure the parameters of recombining plasma. Intensity of the spectral lines corresponding to these transitions is sensitive to the density in the range of 1016-1020 cm-3 while the temperature ranges from 10 to 100 eV for ions with nuclear charge Zn ∼ 10. Calculations were carried out for F VIII ion and allowed to determine parameters of plasma jets created by nanosecond laser system ELFIE (Ecole Polytechnique, France) for astrophysical phenomenon modelling. Obtained dependencies are quite universal and can be used for any recombining plasma containing He-like fluorine ions.

  2. An Iterated Local Search Algorithm for Estimating the Parameters of the Gamma/Gompertz Distribution

    Directory of Open Access Journals (Sweden)

    Behrouz Afshar-Nadjafi

    2014-01-01

    Full Text Available Extensive research has been devoted to the estimation of the parameters of frequently used distributions. However, little attention has been paid to estimation of parameters of Gamma/Gompertz distribution, which is often encountered in customer lifetime and mortality risks distribution literature. This distribution has three parameters. In this paper, we proposed an algorithm for estimating the parameters of Gamma/Gompertz distribution based on maximum likelihood estimation method. Iterated local search (ILS is proposed to maximize likelihood function. Finally, the proposed approach is computationally tested using some numerical examples and results are analyzed.

  3. Comparison of transport equations based on Maxwellian and bi-Maxwellian distributions for anisotropic plasmas

    Science.gov (United States)

    Barakat, A. R.; Schunk, R. W.

    1982-01-01

    A wide variety of plasma flow conditions is found in aeronomy and space plasma physics. Transport equations based on an isotropic Maxwellian vilecity distribution function can be used to describe plasma flows which contain 'small' temperature anisotropies. However, for plasma flows characterized by large temperature anisotropies, transport equations based on an anisotropic bi-Maxwellian (or two-temperature) velocity distribution function are expected to provide a much better description of the plasma transport properties. The present investigation is concerned with the extent to which transport equations based on both Maxwellian and bi-Maxwellian series expansions can describe plasma flows characterized by non-Maxwellian velocity distributions, giving particular attention to a modelling of the anisotropic character of the distribution function. The obtained results should provide clues as to the extent to which a given series expansion can account for the anisotropic character of a plasma.

  4. Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy

    Indian Academy of Sciences (India)

    Wenfeng Luo; Xiaoxia Zhao; Shuyuan Lv; Haiyan Zhu

    2015-07-01

    Measurements of 1064 nm laser-induced egg shell plasma parameters are presented in this paper. Of special interests were its elemental identification and the determination of spectroscopic temperature and electron density. The electron temperature of 5956 K was inferred using an improved iterative Boltzmann plot method with six calcium atomic emission lines, and the electron number density of 6.1 × 1016 cm−3 was determined by measuring the width of Stark-broadened once-ionized calcium line at 393.37 nm. Based on the experimental results, the laser-induced egg shell plasma was verified to be optically thin and satisfy local thermodynamic equilibrium (LTE). Furthermore, experiments also demonstrated that the loss of energy due to the reflection of the laser beam from the plasma can be neglected and the inverse bremsstrahlung (IB) absorption was the dominant mechanism of plasma heating at the IR wavelength.

  5. Lindhard's polarization parameter and atomic sum rules in the local plasma approximation

    DEFF Research Database (Denmark)

    Cabrera-Trujillo, R.; Apell, P.; Oddershede, J.

    2017-01-01

    In this work, we analyze the effects of Lindhard polarization parameter, χ, on the sum rule, Sp, within the local plasma approximation (LPA) as well as on the logarithmic sum rule Lp = dSp/dp, in both cases for the system in an initial excited state. We show results for a hydrogenic atom with nuc...

  6. Variations in epidemic distribution with some characteristic parameters

    Institute of Scientific and Technical Information of China (English)

    Liu Zhen-Zhen; Wang Xing-Yuan; Wang Mao-Ji

    2012-01-01

    Considering the spread of an epidemic among a population of mobile agents that can get infected and maintain the infection for a period,we investigate the variation in the homogeneity of the distribution of the epidemic with the remaining time of infection τ,the velocity modulus of the agent υ,and the infection rate α.We find that the distribution of the infected cluster size is always exponential.By analyzing the variation of the characteristic infected cluster size coefficient,we show that the inhomogeneity of epidemic distribution increases with an increase in τ for very low υ,while it decreases with an increase in τ for moderate υ.The epidemic distribution also tends to a homogeneous state as both υ and α increase.

  7. Investigation of Normalization Methods using Plasma Parameters for Laser Induced Breakdown Spectroscopy (LIBS) under simulated Martian Conditions

    OpenAIRE

    Vogt, David; Schröder, Susanne; Hübers, H.-W.

    2017-01-01

    Laser Induced Breakdown Spectroscopy data need to be normalized, especially in the field of planetary exploration We investigated plasma parameters as temperature and electron density for this purpose.

  8. Simulated Galactic methanol maser distribution to constrain Milky Way parameters

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Reid, M. J.; Green, J. A.

    2017-08-01

    Context. Using trigonometric parallaxes and proper motions of masers associated with massive young stars, the Bar and Spiral Structure Legacy (BeSSeL) survey has reported the most accurate values of the Galactic parameters so far. The determination of these parameters with high accuracy has a widespread impact on Galactic and extragalactic measurements. Aims: This research is aimed at establishing the confidence with which such parameters can be determined. This is relevant for the data published in the context of the BeSSeL survey collaboration, but also for future observations, in particular from the southern hemisphere. In addition, some astrophysical properties of the masers can be constrained, notably the luminosity function. Methods: We have simulated the population of maser-bearing young stars associated with Galactic spiral structure, generating several samples and comparing them with the observed samples used in the BeSSeL survey. Consequently, we checked the determination of Galactic parameters for observational biases introduced by the sample selection. Results: Galactic parameters obtained by the BeSSeL survey do not seem to be biased by the sample selection used. In fact, the published error estimates appear to be conservative for most of the parameters. We show that future BeSSeL data and future observations with southern arrays will improve the Galactic parameters estimates and smoothly reduce their mutual correlation. Moreover, by modeling future parallax data with larger distance values and, thus, greater relative uncertainties for a larger numbers of sources, we found that parallax-distance biasing is an important issue. Hence, using fractional parallax uncertainty in the weighting of the motion data is imperative. Finally, the luminosity function for 6.7 GHz methanol masers was determined, allowing us to estimate the number of Galactic methanol masers.

  9. Dust acoustic solitary structures in a multi-fluid dusty plasma in the presence of kappa distributed particles

    Science.gov (United States)

    Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika; Kaur, Nimardeep

    2016-07-01

    Dusty plasma is a fully or partially ionized gas which contain micron or sub-micron sized dust particles. These dust particles can be positively or negatively charged, depending upon the mechanism of charging . Dusty plasma is often observed in most of the space and astrophysical plasma environments. Presence of these dust particles can modify the dispersion properties of waves in the plasma and can introduce several new wave modes, e.g., dust acoustic (DA) waves, dust-ion acoustic (DIA) waves, dust-acoustic shock waves etc. In this investigation we have studied the small amplitude dust acoustic waves in an unmagnetized plasma comprising of electrons, positively charged ions, negatively charged hot as well as cold dust. Electrons and ions are described by superthermal distribution which is more appropriate for modeling space and astrophysical plasmas. Kadomtsev- Petviashvili (KP) equation has been derived using reductive perturbation technique. Positive as well as negative potential structures are observed, depending upon some critical values of parameters. Amplitude and width of dust acoustic solitary waves are modified by varying these parameters such as superthermality of electrons and ions, direction of propagation of the wave, relative concentration of hot and cold dust particles etc. This study may be helpful in understanding the formation and dynamics of nonlinear structures in various space and astrophysical plasma environments such Saturn's F-rings.

  10. Estimation of Total Fusion Reactivity and Contribution from Suprathermal Tail using 3-parameter Dagum Ion Speed Distribution

    CERN Document Server

    Majumdar, Rudrodip

    2016-01-01

    Thermonuclear fusion reactivity is a pivotal quantity in the studies pertaining to fusion energy production, fusion ignition and energy break-even analysis in both inertially and magnetically confined systems. Although nuclear fusion reactivity and thereafter the power density of a magnetic confinement fusion reactor and the fulfillment of the ignition criterion are quantitatively determined by assuming the ion speed distribution to be Maxwellian, a significant population of suprathermal ions,with energy greater than the quasi-Maxwellian background plasma temperature, is generated by the fusion reactions and auxiliary heating in the fusion devices. In the current work 3-parameter Dagum speed distribution has been introduced to include the effect of suprathermal ion population in the calculation of total fusion reactivity. The extent of enhancement in the fusion reactivity, at different back-ground temperatures of the fusion fuel plasma, due to the suprathermal ion population has also been discussed.

  11. Influence of Discharge Parameters on Tuned Substrate Self-Bias in an Radio-Frequency Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    Ding Zhenfeng; Sun Jingchao; Wang Younian

    2005-01-01

    The tuned substrate self-bias in an rf inductively coupled plasma source is controlled by means of varying the impedance of an external LC network inserted between the substrate and the ground. The influencing parameters such as the substrate axial position, different coupling coils and inserted resistance are experimentally studied. To get a better understanding of the experimental results, the axial distributions of the plasma density, electron temperature and plasma potential are measured with an rf compensated Langmuir probe; the coil rf peak-to-peak voltage is measured with a high voltage probe. As in the case of changing discharge power, it is found that continuity, instability and bi-stability of the tuned substrate bias can be obtained by means of changing the substrate axial position in the plasma source or the inserted resistance. Additionally,continuity can not transit directly into bi-stability, but evolves via instability. The inductance of the coupling coil has a substantial effect on the magnitude and the property of the tuned substrate bias.

  12. The effect of degeneracy parameter on Weibel instability in dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M. [Physics Department, Mazandaran University, P.O. Box 47415-416 Babolsar (Iran, Islamic Republic of); Khodadadi Azadboni, F. [Physics Department, Mazandaran University, P.O. Box 47415-416 Babolsar (Iran, Islamic Republic of); Young Researchers Club, Sari Branch, Islamic Azad University, P.O. Box 48161-194 Sari (Iran, Islamic Republic of)

    2013-12-15

    In this paper, the role of degeneracy parameter, in both directions parallel and perpendicular with propagation direction of the laser beam in plasma, on the growth rate of Weibel instability, is studied. Calculations show that with the temperature anisotropy, β = T{sub ∥}/T{sub ⊥} = 0.2 and a 0.75 times reduction of the degeneracy parameter, the increased rate of the the Weibel instability growth rate is 72%. The degeneracy required for minimal growth rate in interaction laser plasma with a density of 1.2 × 10{sup 32}m{sup −3}, is larger than 3. The reduction of temperature and the degeneracy parameter of plasma in parallel direction will also increase growth rate about 30% more than incrossing degeneracy parameter in transverse direction. With the minimum pressure costs of cold compression, subsequent degeneracy parameters, and the minimum value of electron quiver energy, we can expect growth rate of Weibel instability order 0.01.

  13. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling.

    Science.gov (United States)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-20

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  14. Cubic spline approximation techniques for parameter estimation in distributed systems

    Science.gov (United States)

    Banks, H. T.; Crowley, J. M.; Kunisch, K.

    1983-01-01

    Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.

  15. Analysis of plasma distribution near the extraction region in surface produced negative ion sources.

    Science.gov (United States)

    Fukano, A; Hatayama, A

    2014-02-01

    In study of a negative ion source, it is important to understand the plasma characteristics near the extraction region. A recent experiment in the NIFS-R&D ion source has suggested that a "double ion plasma layer" which is a region consisting of hydrogen positive and negative ions exists near the plasma grid (PG). Density distribution of plasma near the extraction region is studied analytically. It is shown that the density distribution depends on an amount of the surface produced negative ions and the double ion plasma layer is formed near the PG surface for the case of strong surface production.

  16. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jun [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); R and D Center for PSK-INC Corporation, Hwaseong-si 445-170 (Korea, Republic of); Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun [R and D Center for PSK-INC Corporation, Hwaseong-si 445-170 (Korea, Republic of); Kim, Dong Hwan [Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  17. Effect of Plasma Nitriding Parameters on the Wear Resistance of Alloy Inconel 718

    Science.gov (United States)

    Kovací, Halim; Ghahramanzadeh ASL, Hojjat; Albayrak, Çigdem; Alsaran, Akgün; Çelik, Ayhan

    2016-11-01

    The effect of the temperature and duration of plasma nitriding on the microstructure and friction and wear parameters of Inconel 718 nickel alloy is investigated. The process of plasma nitriding is conducted in a nitrogen-hydrogen gaseous mixture at a temperature of 400, 500 and 600°C for 1 and 4 h. The modulus of elasticity of the nitrided layer, the micro- and nanohardness, the surface roughness, the friction factor and the wear resistance of the alloy are determined prior to and after the nitriding. The optimum nitriding regime providing the best tribological characteristics is determined.

  18. Effect of process parameters on induction plasma reactive deposition of tungsten carbide from tungsten metal powder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tungsten carbide deposit was made directly from tungsten metal powder through the reaction with methane in radio frequency induction plasma. Effect of major process parameters on the induction plasma reactive deposition of tungsten carbide was studied by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, water displacement method, and microhardness test. The results show that methane flow rate, powder feed rate, particle size, reaction chamber pressure and deposition distance have significant influences on the phase composition, density, and microhardness of the deposit. Extra carbon is necessary to ensure the complete conversion of tungsten metal into the carbide.

  19. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    Science.gov (United States)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2016-09-01

    Hysteresis, which is the history dependence of physical systems, indicates that there are more-than-two stable points in a given condition, and it has been considered to one of the most important topics in fundamental physics. Recently, the hysteresis of plasma has become a focus of research because stable plasma operation is very important for fusion reactors, bio-medical plasmas, and industrial plasmas for nano-device fabrication process. Interestingly, the bi-stability characteristics of plasma with a huge hysteresis loop have been observed in inductive discharge plasmas Because hysteresis study in such plasmas can provide a universal understanding of plasma physics, many researchers have attempted experimental and theoretical studies. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. This research was partially supported by Korea Research Institute of Standard and Science.

  20. Breakdown transient study of plasma distributions in a 2.45 GHz hydrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cortázar, O.D., E-mail: daniel.cortazar@uclm.es [Universidad de Castilla-La Mancha, ETSII-INEI, Applied Mechanics and Projects Department, C.J. Cela s/n, 13170 Ciudad Real (Spain); Megía-Macías, A. [ESS Bilbao Consortium, Polígono Ugaldeguren-III Pol. A 7B, 48170-Zamudio, Vizcaya (Spain); Tarvainen, O.; Koivisto, H. [University of Jyväskylä, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2015-05-01

    Plasma distribution transients associated with the breakdown of a 2.45 GHz hydrogen discharge similar to high current microwave ion sources are studied by means of an ultra-fast frame image acquisition system in visible light range. Eight different plasma distributions have been studied by photographing the 2D projections of the discharge through a transparent plasma electrode. The temporal evolution of images in Balmer-alpha and Fulcher band wavelengths have been recorded associated to atomic and molecular excitation and ionization processes. Some unexpected plasma distributions transient behaviors during breakdown are reported.

  1. Improving Distribution Resiliency with Microgrids and State and Parameter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Tuffner, Francis K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Tess L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schneider, Kevin P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elizondo, Marcelo A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sun, Yannan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Chen-Ching [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Yin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gourisetti, Sri Nikhil Gup [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-30

    Modern society relies on low-cost reliable electrical power, both to maintain industry, as well as provide basic social services to the populace. When major disturbances occur, such as Hurricane Katrina or Hurricane Sandy, the nation’s electrical infrastructure can experience significant outages. To help prevent the spread of these outages, as well as facilitating faster restoration after an outage, various aspects of improving the resiliency of the power system are needed. Two such approaches are breaking the system into smaller microgrid sections, and to have improved insight into the operations to detect failures or mis-operations before they become critical. Breaking the system into smaller sections of microgrid islands, power can be maintained in smaller areas where distribution generation and energy storage resources are still available, but bulk power generation is no longer connected. Additionally, microgrid systems can maintain service to local pockets of customers when there has been extensive damage to the local distribution system. However, microgrids are grid connected a majority of the time and implementing and operating a microgrid is much different than when islanded. This report discusses work conducted by the Pacific Northwest National Laboratory that developed improvements for simulation tools to capture the characteristics of microgrids and how they can be used to develop new operational strategies. These operational strategies reduce the cost of microgrid operation and increase the reliability and resilience of the nation’s electricity infrastructure. In addition to the ability to break the system into microgrids, improved observability into the state of the distribution grid can make the power system more resilient. State estimation on the transmission system already provides great insight into grid operations and detecting abnormal conditions by leveraging existing measurements. These transmission-level approaches are expanded to using

  2. Modeling and Control in Distributed Parameter Physical Systems.

    Science.gov (United States)

    2007-11-02

    describe the transport of solutes within the liver. Our particular interest is the chemical compound 2,3,7,8-tetrachloroclibenzo-p-dioxin ( TCDD ). TCDD ...herbicides. In particular, TCDD is an unwanted by- product in the manufacture of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) which was a primary component...describe the hep- atic uptake, distribution, and elimination of TCDD have generally used the well- stirred or venous-equilibrium model to describe

  3. On Parameters Estimation of Lomax Distribution under General Progressive Censoring

    Directory of Open Access Journals (Sweden)

    Bander Al-Zahrani

    2013-01-01

    Full Text Available We consider the estimation problem of the probability S=P(Ydistribution based on general progressive censored data. The maximum likelihood estimator and Bayes estimators are obtained using the symmetric and asymmetric balanced loss functions. The Markov chain Monte Carlo (MCMC methods are used to accomplish some complex calculations. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation study.

  4. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    Science.gov (United States)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  5. Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans

    Energy Technology Data Exchange (ETDEWEB)

    Studer-Rohr, I. [Inst. of Toxicology, Swiss Federal Inst. of Tech. and Univ. of Zurich, Schwerzenbach (Switzerland); Dept. of Food Science, Swiss Federal Inst. of Tech., Zurich (Switzerland); Schlatter, J. [Toxicology Section, Div. of Food Science, Swiss Federal Office of Public Health, Zurich (Switzerland); Dietrich, D.R. [Dept. of Environmental Toxicology, Univ. of Konstanz, Konstanz (Germany); Inst. of Toxicology, Swiss Federal Inst. of Tech. and Univ. of Zurich, Schwerzenbach (Switzerland)

    2000-11-01

    The mycotoxin ochratoxin A (OTA) is a rodent carcinogen produced by species of the ubiquitous fungal genera Aspergillus and Penicillium. OTA is found in a variety of food items and as a consequence is also found in human plasma (average concentrations found in this study: 0.1-1 ng OTA/ml plasma). To improve the scientific basis for cancer risk assessment the toxicokinetic profile of OTA was studied in one human volunteer following ingestion of 395 ng {sup 3}H-labeled OTA (3.8 {mu}Ci). A two-compartment open model consisting of a central compartment was found to best describe the in vivo data. This two-compartment model consisted of a fast elimination and distribution phase (T{sub 1/2} about 20 h) followed by a slow elimination phase (renal clearance about 0.11 ml/min.) and a calculated plasma half-life of 35.55 days. This half-life was approximately eight times longer than that determined previously in rats. In addition, the intraindividual fluctuation of OTA plasma levels was investigated in eight individuals over a period of 2 months. The concentrations determined ranged between 0.2 and 0.9 ng OTA/ml plasma. The plasma levels in some individuals remained nearly constant over time, while others varied considerably (e.g. increase of 0.4 ng/ml within 3 days, decrease of 0.3 ng/ml within 5 days) during the observation period. This intraindividual fluctuation in OTA plasma levels, which may represent differences in OTA exposure and/or metabolism, as well as the large difference in plasma half-life in humans compared to rats must be taken into consideration when the results of rat cancer study data are extrapolated to humans for risk assessment purposes. (orig.)

  6. A TRUST REGION METHOD FOR SOLVING DISTRIBUTED PARAMETER IDENTIFICATION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Yan-fei Wang; Ya-xiang Yuan

    2003-01-01

    This paper is concerned with the ill-posed problems of identifying a parameter in an elliptic equation which appears in many applications in science and industry. Its solution is obtained by applying trust region method to a nonlinear least squares error problem.Trust region method has long been a popular method for well-posed problems. This paper indicates that it is also suitable for ill-posed problems. Numerical experiment is given to compare the trust region method with the Tikhonov regularization method. It seems that the trust region method is more promising.

  7. Bayesian and Non Bayesian Parameter Estimation for Bivariate Pareto Distribution Based on Censored Samples

    Directory of Open Access Journals (Sweden)

    Rania, M. Shalaby

    2015-10-01

    Full Text Available This paper deals with Bayesian and non-Bayesian methods for estimating parameters of the bivariate Pareto (BP distribution based on censored samples are considered with shape parameters λ and known scale parameter β. The maximum likelihood estimators MLE of the unknown parameters are derived. The Bayes estimators are obtained with respect to the squared error loss function and the prior distributions allow for prior dependence among the components of the parameter vector. .Posterior distributions for parameters of interest are derived and their properties are described. If the scale parameter is known, the Bayes estimators of the unknown parameters can be obtained in explicit forms under the assumptions of independent priors. An extensive computer simulation is used to compare the performance of the proposed estimators using MathCAD (14.

  8. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    Science.gov (United States)

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-08-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of Hα and the Hβ lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  9. Simulation of a class of delay stochastic system with distributed parameter

    Institute of Scientific and Technical Information of China (English)

    Song Yanan; Deng Feiqi; Luo Qi

    2005-01-01

    Simulation of a class of delay stochastic system with distributed parameter is discussed. Difference schemes for the numerical computation of delay stochastic system are obtained. The precision of the difference scheme and the efficiency of the difference scheme in simulation of delay stochastic system with distributed parameter are analyzed. Examples are given to illustrate the application of the method.

  10. Parameters Optimization of Plasma Hardening Process Using Genetic Algorithm and Neural Network

    Institute of Scientific and Technical Information of China (English)

    LIU Gu; WANG Liu-ying; CHEN Gui-ming; HUA Shao-chun

    2011-01-01

    Plasma surface hardening process was performed to improve the performance of the AISI 1045 carbon steel.Experiments were carried out to characterize the hardening qualities.A predicting and optimizing model using genetic algorithm-back propagation neural network(GA-BP) was developed based on the experimental results.The non-linear relationship between properties of hardening layers and process parameters was established.The results show that the GA-BP predicting model is reliable since prediction results are in rather good agreement with measured results.The optimal properties of the hardened layer were deduced from GA.And through multi optimizations,the optimum comprehensive performances of the hardened layer were as follows:plasma arc current is 90 A,hardening speed is 2.2 m/min,plasma gas flow rate is 6.0 L/min and hardening distance is 4.3 mm.It concludes that GA-BP mode developed in this study provides a promising method for plasma hardening parameters prediction and optimization.

  11. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Izacard, Olivier, E-mail: izacard@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-637, Livermore, California 94550 (United States)

    2016-08-15

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  12. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    Science.gov (United States)

    Izacard, Olivier

    2016-08-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it

  13. Asymptotic Results for the Two-parameter Poisson-Dirichlet Distribution

    CERN Document Server

    Feng, Shui

    2009-01-01

    The two-parameter Poisson-Dirichlet distribution is the law of a sequence of decreasing nonnegative random variables with total sum one. It can be constructed from stable and Gamma subordinators with the two-parameters, $\\alpha$ and $\\theta$, corresponding to the stable component and Gamma component respectively. The moderate deviation principles are established for the two-parameter Poisson-Dirichlet distribution and the corresponding homozygosity when $\\theta$ approaches infinity, and the large deviation principle is established for the two-parameter Poisson-Dirichlet distribution when both $\\alpha$ and $\\theta$ approach zero.

  14. The possible role of hydrogen sulfide as a modulator of hemostatic parameters of plasma.

    Science.gov (United States)

    Olas, Beata; Kontek, Bogdan

    2014-09-05

    Hydrogen sulfide (H2S) is a well known toxic gas at high levels. However, at physiological levels, H2S may play a role in the pathogenesis of various cardiovascular diseases. The objective was to study the effects of exogenous H2S on the hemostatic parameters (coagulation and fibrinolytic activity) of human plasma. Human plasma was incubated (5, 15 and 30 min) with NaHS as a H2S donor at the final concentration of 0.01-100 μM. Hemostatic factors, such as maximum velocity of clot formation, fibrin lysis half-time, the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) were estimated. Moreover, the aim of our study was to establish the influence of NaHS (10 μM; 5, 15 and 30 min) on the clot formation using the purified fibrinogen. We demonstrated that coagulation/fibrinolytic properties of human plasma incubated with NaHS were changed. APPT, PT and TT of plasma treated with NaHS at tested concentrations--0.01-100 μM were prolonged. We observed that NaHS (0.01-100 μM) reduced fibrin polymerization in whole plasma and 10 μM NaHS also reduced polymerization of purified fibrinogen. In the presence of NaHS (at the low tested concentration--1 μM) the decrease was about 18% (in plasma, p<0.05). Our experiments also showed that NaHS (0.01-100 μM) stimulated the fibrin lysis in whole plasma. However, the time-dependent (5, 15 and 30 min) reduction of fibrin/fibrinogen polymerization and stimulation of fibrin lysis by NaHS (10 μM) was not observed. In conclusion, the present study demonstrates the anticoagulant properties of exogenous H2S in vitro.

  15. Plasma distributions in meteor head echoes and implications for radar cross section interpretation

    Science.gov (United States)

    Marshall, Robert A.; Brown, Peter; Close, Sigrid

    2017-09-01

    The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.

  16. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  17. A Comparison of Estimation Techniques for the Three Parameter Pareto Distribution

    Science.gov (United States)

    1985-12-01

    1897 Vilfredo Pareto (1848-1923), an Italian-born Swiss professor of economics, formulated an empirical law which bears his name (16:233). Pareto’s Law...DTIC00• _ZLECTE! CD S A COMPARISON OF ESTIMATION TECHNIQUES FOR THICTHE REE PARAMETER PARETO DISTRIBUTION THESIS "Dennis J. Charek Major, USAF AFIT...TECHNIQUES FOR THE THREE PARAMETER PARETO DISTRIBUTION THESIS Dennis J. Charek Major, USAF AFIT/GSO/MA/8SD-3 Approved for public release; distribution

  18. SAMDIST: A Computer Code for Calculating Statistical Distributions for R-Matrix Resonance Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.

    1995-01-01

    The: SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.

  19. SAMDIST A Computer Code for Calculating Statistical Distributions for R-Matrix Resonance Parameters

    CERN Document Server

    Leal, L C

    1995-01-01

    The: SAMDIST computer code has been developed to calculate distribution of resonance parameters of the Reich-Moore R-matrix type. The program assumes the parameters are in the format compatible with that of the multilevel R-matrix code SAMMY. SAMDIST calculates the energy-level spacing distribution, the resonance width distribution, and the long-range correlation of the energy levels. Results of these calculations are presented in both graphic and tabular forms.

  20. Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design

    Institute of Scientific and Technical Information of China (English)

    CHENG Jia; ZHU Yu; JI Linhong

    2012-01-01

    The geometry of an inductively coupled plasma (ICP) etcher is usually considered to be an important factor for determining both plasma and process uniformity over a large wafer. During the past few decades, these parameters were determined by the "trial and error" method, resulting in wastes of time and funds. In this paper, a new approach of regression orthogonal design with plasma simulation experiments is proposed to investigate the sensitivity of the structural parameters on the uniformity of plasma characteristics. The tool for simulating plasma is CFD-ACE+, which is commercial multi-physical modeling software that has been proven to be accurate for plasma simulation. The simulated experimental results are analyzed to get a regression equation on three structural parameters. Through this equation, engineers can compute the uniformity of the electron number density rapidly without modeling by CFD-ACE+. An optimization performed at the end produces good results.

  1. Electrostatic instabilities in unmagnetized and magnetized multi-component plasma with non-Maxwellian distribution function

    Science.gov (United States)

    Sehar, Sumbul; Nouman Sarwar, Qureshi Muhammad

    2016-04-01

    In many physical situations such as space or laboratory plasmas a hot low-density electron populations can be generated superimposed on the bulk cold population, resulting in a particle distribution function consisting of a dense cold part and hot superthermal tail. Space observations show that electron distributions are often observed with flat top at low energies and high energy tails. The appropriate distribution to model such non-Maxwellian features is the generalized (r,q) distribution function which in limiting forms can be reduced to kappa and Maxwellian distribution functions. In this study, Kinetic model is employed to study the electron-acoustic and ion-ion acoustic instabilities in four component plasma with generalized (r,q) distribution function for both magnetized and unmagnetized plasmas. Departure of plasma from Maxwellian distributions significantly alters the growth rates as compared to the Maxwellian plasma. Significant growth observed for highly non-Maxwellian distributions as well as plasmas with higher dense and hot electron population. Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian. These results may be applied in both experimental and space physics regimes.

  2. Exact relativistic kinetic theory of an electron beam-plasma system: hierarchy of the competing modes in the system parameter space

    CERN Document Server

    Bret, A; Benisti, D; Lefebvre, E

    2008-01-01

    Besides being one of the most fundamental basic issues of plasma physics, the stability analysis of an electron beam-plasma system is of critical relevance in many areas of physics. Surprisingly, decades of extensive investigation had not yet resulted in a realistic unified picture of the multidimensional unstable spectrum within a fully relativistic and kinetic framework. All attempts made so far in this direction were indeed restricted to simplistic distribution functions and/or did not aim at a complete mapping of the beam-plasma parameter space. The present paper comprehensively tackles this problem by implementing an exact linear model. We show that three kinds of modes compete in the linear phase, which can be classified according to the direction of their wavenumber with respect to the beam. We then determine their respective domain of preponderance in a three-dimensional parameter space. All these results are supported by multidimensional particle-in-cell simulations.

  3. The distribution of radio plasma in time and space.

    Science.gov (United States)

    Blundell, Katherine M

    2005-03-15

    The influence of jet-ejected plasma has been an important theme of this meeting; I draw attention to the prevalence of jet-ejected plasma, in particular that which has not been properly accounted for in the past. There are three strands to this paper: important emission which is prominent only at the lowest radio frequencies; relic radio plasma which must exist if even the most basic aspects of radio source evolutionary models are correct; and evidence that some 'radio-quiet' quasars could be FR-I radio sources.

  4. Intrahippocampal Infusion of Crotamine Isolated from Crotalus durissus terrificus Alters Plasma and Brain Biochemical Parameters

    Directory of Open Access Journals (Sweden)

    Rithiele Gonçalves

    2014-11-01

    Full Text Available Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT, creatine-kinase (CK, creatine kinase-muscle B (CK-MB and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days, respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01, while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01. Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain, carbonyl (plasma and brain and micronucleus compared to the saline-group (p ≤ 0.01. Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.

  5. Ignitor Plasma Physics Performance in the H-Regime at Various Parameters

    Science.gov (United States)

    Detragiache, P.; Coppi, B.

    2010-11-01

    The plasma physics performance of Ignitor at full (BT = 13 T, Ip = 10 MA) as well as at reduced parameters (BT = 8 T, Ip = 5 MA) in the high confinement mode (H-regime) is assessed using global 0-D modelling. At full parameters, high-Q operation is possible if the heating power (a combination of Ohmic, α and limited ICRF power) is above the threshold value Pthr for H-regime confinement. Different scaling expressions for Pthr yield significantly different results when used with Ignitor parameters. Even with the most pessimistic among the proposed scalingsootnotetextY. R. Martin et al., Journal of Physics: Conference Series, 123, 012033 (2008). the access to H-regime confinement is possible for Ignitor at full field when the ICRH system is operated at the highest frequency and the generated power is less than at lower frequencies. At reduced parameters, the lower Pthr and the augmented ICRF power available (about 10 MW) facilitate access to H-regime confinement, while the plasma performance remains respectable.

  6. Electromagnetic ion-cyclotron instability in a dusty plasma with product-bi-kappa distributions for the plasma particles

    CERN Document Server

    Santos, Michel S dos; Gaelzer, Rudi

    2016-01-01

    We study the dispersion relation for parallel propagating ion-cyclotron (IC) waves in a dusty plasma, considering that ions and electrons may be represented by product-bi-kappa (PBK) velocity distributions. The results obtained by numerical solution of the dispersion relation, in a case with isotropic Maxwellian distributions for electrons and PBK distribution for ions, show the occurrence of the electromagnetic ion-cyclotron instability (EMIC), and show that the decrease in the kappa indexes of the PBK ion distribution leads to significant increase of the instability, in magnitude of the growth rates and in range in wavenumber space. On the other hand, for anisotropic Maxwellian distribution for ions and PBK distribution for electrons, the decrease of the kappa index in the PBK electron distribution contributes to reduce the EMIC instability, but the reduction effect is much less pronounced than that obtained with the same combination of distributions in the case of the ion-firehose instability, shown in a r...

  7. Sensitivity analysis of CLIMEX parameters in modeling potential distribution of Phoenix dactylifera L.

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    Full Text Available Using CLIMEX and the Taguchi Method, a process-based niche model was developed to estimate potential distributions of Phoenix dactylifera L. (date palm, an economically important crop in many counties. Development of the model was based on both its native and invasive distribution and validation was carried out in terms of its extensive distribution in Iran. To identify model parameters having greatest influence on distribution of date palm, a sensitivity analysis was carried out. Changes in suitability were established by mapping of regions where the estimated distribution changed with parameter alterations. This facilitated the assessment of certain areas in Iran where parameter modifications impacted the most, particularly in relation to suitable and highly suitable locations. Parameter sensitivities were also evaluated by the calculation of area changes within the suitable and highly suitable categories. The low temperature limit (DV2, high temperature limit (DV3, upper optimal temperature (SM2 and high soil moisture limit (SM3 had the greatest impact on sensitivity, while other parameters showed relatively less sensitivity or were insensitive to change. For an accurate fit in species distribution models, highly sensitive parameters require more extensive research and data collection methods. Results of this study demonstrate a more cost effective method for developing date palm distribution models, an integral element in species management, and may prove useful for streamlining requirements for data collection in potential distribution modeling for other species as well.

  8. Sensitivity analysis of CLIMEX parameters in modelling potential distribution of Lantana camara L.

    Directory of Open Access Journals (Sweden)

    Subhashni Taylor

    Full Text Available A process-based niche model of L. camara L. (lantana, a highly invasive shrub species, was developed to estimate its potential distribution using CLIMEX. Model development was carried out using its native and invasive distribution and validation was carried out with the extensive Australian distribution. A good fit was observed, with 86.7% of herbarium specimens collected in Australia occurring within the suitable and highly suitable categories. A sensitivity analysis was conducted to identify the model parameters that had the most influence on lantana distribution. The changes in suitability were assessed by mapping the regions where the distribution changed with each parameter alteration. This allowed an assessment of where, within Australia, the modification of each parameter was having the most impact, particularly in terms of the suitable and highly suitable locations. The sensitivity of various parameters was also evaluated by calculating the changes in area within the suitable and highly suitable categories. The limiting low temperature (DV0, limiting high temperature (DV3 and limiting low soil moisture (SM0 showed highest sensitivity to change. The other model parameters were relatively insensitive to change. Highly sensitive parameters require extensive research and data collection to be fitted accurately in species distribution models. The results from this study can inform more cost effective development of species distribution models for lantana. Such models form an integral part of the management of invasive species and the results can be used to streamline data collection requirements for potential distribution modelling.

  9. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  10. Effect of process parameters on coating composition of cathodic-plasma-electrolysis-treated copper

    Indian Academy of Sciences (India)

    ASIYEH HABIBI; S MOHAMMAD MOUSAVI KHOIE; FARZAD MAHBOUBI; MUSTAFA URGEN

    2017-04-01

    Cathodic plasma electrolysis is a novel technique to form nanostructured layers on metallic surfaces by application of high voltage in a suitable aqueous electrolyte. In the present study, copper is treated by plasma electrolysisin 50 vol% ethanol electrolyte and coatings comprising carbon nanostructure and copper oxide are formed on the copper. The effect of some process parameters such as electrical conductivity, volume and temperature of electrolyte and ratio of anode to cathode surface area on current–voltage behaviour and subsequently coating compositions are investigated at 150V deposition voltage. The composition and morphology of these coatings are characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Different current–voltage behaviours, temperatures of substrate and the contents and energies of radicals and ions around the substrate by changes in the mentioned parameters cause different compositions from 100 vol% copper oxide to different ratios of copper oxide to carbon, the structure changing from amorphous to graphitic structure in carbon and amorphous to cubic morphology in copper oxide on the substrate. Therefore, the understanding of cathodic plasma electrolysiscan be developed.

  11. DYNAMIC OF CHANGES OF BLOOD PLASMA ENERGY METABOLISM PARAMETERS IN SUCKLING COWS DURING CALVING INTERVAL

    Directory of Open Access Journals (Sweden)

    Ales Pavlik

    2015-02-01

    Full Text Available In this study, effect of environmental condition changes during gazing period on energy metabolism parameters was investigated. Totally 40 Aberdeen Angus cows were selected for observation. Calving all of cows was situated into March. The feeding ration for the animals was comprised by pasture during the grazing period and corn silage, hay and granulated distiller’s grains during the winter period. At average age 9 days before calving, and subsequently 10, 81, 151, 189 and 273 days after calving, blood was sampled and analysed for glucose and NEFA (non-esterified fatty acid concentrations on KONELAB T20xt automatic analyser (Thermo Fisher Scientific, Finland and currently available commercial kits (Biovendor-Laboratorni medicina, Czech Republic. A rapid increase (p < 0.05 of glucose concentration was detected in blood plasma of cows in period before calving to 81 days post partum. Average value of glucose concentration at 273 days postpartum was significant (p < 0.05 lower comparing to day 189. The highest concentrations of NEFA in blood plasma of cows were found at 10 day postpartum. After that, during the persisted higher temperature period the NEFA concentration decreased significantly (p < 0.01 till 189 days postpartum. At the end of monitored period concentration of NEFA in blood plasma significantly decreased (p < 0.05. Changes of hot and cold season during the grazing period probably according to forage quality and had significant effects on blood plasma NEFA and glucose concentrations.

  12. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  13. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F., E-mail: faustob@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas, P.O. Box 3 C. P.1897 Gonnet, La Plata (Argentina); Pacheco Martinez, P. [Grupo de Espectroscopía Óptica de Emisión y Láser, Universidad del Atlántico, Barranquilla (Colombia); Sánchez-Aké, C.; Villagrán-Muniz, M. [Laboratorio de Fotofísica, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México D.F. 04510 (Mexico)

    2015-05-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ{sub jl}I{sub j}/g{sub j}A{sub jl}), where I{sub j} is the integrated intensity of the spectral line, g{sub j} is the statistical weight of the level j, λ{sub jl} is the wavelength of the considered line and A{sub jl} is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B{sub i}, and δ{sub i}, we developed as a power series of time, the logarithm of I{sub n}(t)/I{sub n}(t{sub 0}), where I{sub n}(t) is the integrated intensity of any spectral line at time t, and I{sub n}(t{sub 0}) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B{sub i} and δ{sub i} and therefore the Boltzmann plot surface from the temporal

  14. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, M; Wurz, P; Hohl, M, E-mail: bodendorfer@ep.isas.jaxa.j [Space Research and Planetary Sciences, University of Bern, 3012 Bern (Switzerland)

    2010-08-15

    For the first time, the charge state distribution inside the MEsskammer fuer FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar{sup 1+} to Ar{sup 5+} and in good agreement for Ar{sup 6+}.

  15. Global plasma simulation of charge state distribution inside a 2.45 GHz ECR plasma with experimental verification

    Science.gov (United States)

    Bodendorfer, M.; Wurz, P.; Hohl, M.

    2010-08-01

    For the first time, the charge state distribution inside the MEsskammer für FlugzeitInStrumente und Time-Of-Flight (MEFISTO) electron cyclotron resonance (ECR) plasma and in the extracted ion beam was successfully simulated. A self-consistent ECR plasma ionization model (Hohl M 2002 MEFISTO II: Design, setup, characterization and operation of an improved calibration facility for solar plasma instrumentation PhD Thesis University of Bern) was further developed, recomputing the ion confinement time for every ion species and in every time step based on the actual plasma potential rather than using a prescribed constant ion confinement time. The simulation starts with a user defined set of initial conditions and develops the problem in time space by an adaptive step length fourth order Runge-Kutta (RK4) solver, considering particle densities based on ionization rates, recombination rates, ion confinement times and plasma potential. At the simulation end, a steady-state ion charge state distribution is reached, which is in excellent agreement with the measured ion beam charge state distribution of the MEFISTO ion source for Ar1+ to Ar5+ and in good agreement for Ar6+.

  16. Distributed parameter modeling and thermal analysis of a spiral water wall in a supercritical boiler

    Directory of Open Access Journals (Sweden)

    Zheng Shu

    2013-01-01

    Full Text Available In this paper, a distributed parameter model for the evaporation system of a supercritical spiral water wall boiler is developed based on a 3-D temperature field. The mathematical method is formulated for predicting the heat flux and the metal-surface temperature. The results show that the influence of the heat flux distribution is more obvious than that of the heat transfer coefficient distribution in the spiral water wall tube, and the peak of the heat transfer coefficient decreases with an increment of supercritical pressure. This distributed parameter model can be used for a 600 MW supercritical-pressure power plant.

  17. Distributed chaos and solitons at the edges of magnetically confined plasmas

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of measurements of ion saturation current in the plasma edges of different magnetic fusion confinement devices (tokamaks and stellarators), that the plasma dynamics in the edges is dominated by distributed chaos with spontaneously broken translational symmetry at low magnetic field, and with spontaneously broken reflexional symmetry (by helical solitons) at high magnetic field.

  18. Nonlinear evolution of the electromagnetic electron-cyclotron instability in bi-Kappa distributed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, B., E-mail: bengt.eliasson@strath.ac.uk [SUPA, Physics Department, John Anderson Building, Strathclyde University, Glasgow G4 0NG, Scotland (United Kingdom); Lazar, M., E-mail: mlazar@tp4.rub.de [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum (Germany)

    2015-06-15

    This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.

  19. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Duan, Lian; Lan, Hui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xinbing, E-mail: xbwang@hust.edu.cn; Chen, Ziqi; Zuo, Duluo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu, Peixiang [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-21

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  20. Penentuan Efektifitas Oksitetrasiklin Melalui Parameter Farmakokinetik/farmakodinamik pada Plasma dan Jaringan Ayam Broiler

    Directory of Open Access Journals (Sweden)

    Agustina Dwi Wijayanti

    2010-06-01

    Full Text Available A study was conducted to determine the effectiveness of oxytetracycline on the basis of itspharmacokinetic/pharmacodynamic (PK/PD parameters in the plasma and tissues of broiler following a50 mg/kg single dose of intravenous administration. The male broiler were injected with oxytetracycline attarsal medial venous. The blood, liver, kidney and abdominal muscle were collected at 14 points of timesamplings. Blood was centrifuged to obtain plasma and all tissues were extracted with Mc Ilvine buffer.Drug concentration in samples was determined by High Performance Liquid Chromatography (HPLCusing AOAC standard reference for tetracycline. The pharmacokinetic parameters of oxytetracycline werecalculated using non compartment method. The results were as follows. For plasma: the AUC was 790,615,5 ?g/mL minute , Clearance was 63,242 mL/min/kg bb, Tmax/Cmax was 1 minute/0,7 ?g/mL, T1/2elimination was 6,4, hours, Vd was 37 L/kg. For liver ; AUC was 36418,89, minute , Tmax/Cmax was 16hours/17,15 ?g/g, and T1/2 elimination was 24,5, hours. For kidney; AUC6808,41 ?g/g minute , Tmax/Cmax 1 minute/16,73 ?g/g, , T1/2 elimination was 11,55 hours. For muscle; AUC was 3502 ?g/g minute,Tmax/Cmax was 1 minute/2,58 ?g/g, T1/2 elimination was 167,39 hours. The ratio of AUC/MIC inplasma and tissues appeared to a good pharmacokinetic/pharmacodynamic parameter to determine theeffectiveness of oxytetracycline.

  1. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    Science.gov (United States)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  2. Approximate Bayes Estimators of the Logistic Distribution Parameters Based on Progressive Type-II Censoring Scheme

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud Mohamed

    2016-09-01

    Full Text Available In this paper we develop approximate Bayes estimators of the parameters,reliability, and hazard rate functions of the Logistic distribution by using Lindley’sapproximation, based on progressively type-II censoring samples. Noninformativeprior distributions are used for the parameters. Quadratic, linexand general Entropy loss functions are used. The statistical performances of theBayes estimates relative to quadratic, linex and general entropy loss functionsare compared to those of the maximum likelihood based on simulation study.

  3. Selenium, copper and zinc in seminal plasma of men with varicocele, relationship with seminal parameters.

    Science.gov (United States)

    Camejo, María Isabel; Abdala, Lyzeth; Vivas-Acevedo, Giovanny; Lozano-Hernández, Ricardo; Angeli-Greaves, Miriam; Greaves, Eduardo D

    2011-12-01

    Varicocele has been associated with decrease in seminal parameters. Selenium (Se), copper (Cu), and zinc (Zn) are trace elements essential for normal spermatogenesis of mammals and play a critical role as antioxidant defense system enzymes. Se, Cu, and Zn are associated with sperm quality in fertile and infertile men. However, there is little information about Se, Cu, and Zn concentrations in semen in patients with varicocele and its association with seminal parameters. The purpose of this study was to determine the concentrations of Se, Cu, and Zn in semen of patients with varicocele and the relationship with seminal parameters. Total Reflection X-Ray Fluorescence was used for the fist time in the seminal fluid analysis. The concentration of selenium in men with varicocele was smaller than the normozoospermic group, while no differences were observed for both concentrations of zinc and copper. A significant positive correlation between zinc and selenium concentration was observed. Selenium in seminal plasma correlates with a good spermatozoa concentrations, motility, and morphology. Additionally, a significant positive correlation was observed between zinc levels and sperm count. In conclusion, a decrease in selenium concentration was associated with detriment of seminal parameters. A study should be conducted to evaluate the benefits of both zinc and selenium supplementation to improve seminal parameters in patients with varicocele.

  4. Three-parameter discontinuous distributions for hydrological samples with zero values

    Science.gov (United States)

    Weglarczyk, Stanislaw; Strupczewski, Witold G.; Singh, Vijay P.

    2005-10-01

    A consistent approach to the frequency analysis of hydrologic data in arid and semiarid regions, i.e. the data series containing several zero values (e.g. monthly precipitation in dry seasons, annual peak flow discharges, etc.), requires using discontinuous probability distribution functions. Such an approach has received relatively limited attention. Along the lines of physically based models, the extensions of the Muskingum-based models to three parameter forms are considered. Using 44 peak flow series from the USGS data bank, the fitting ability of four three-parameter models was investigated: (1) the Dirac delta combined with Gamma distribution; (2) the Dirac delta combined with two-parameter generalized Pareto distribution; (3) the Dirac delta combined with two-parameter Weibull (DWe) distribution; (4) the kinematic diffusion with one additional parameter that controls the probability of the zero event (KD3). The goodness of fit of the models was assessed and compared both by evaluation of discrepancies between the results of both estimation methods (i.e. the method of moments (MOM) and the maximum likelihood method (MLM)) and using the log of likelihood function as a criterion. In most cases, the DWe distribution with MLM-estimated parameters showed the best fit of all the three-parameter models.

  5. From conservation laws to port-Hamiltonian representations of distributed-parameter systems

    NARCIS (Netherlands)

    Maschke, B.M.; Schaft, van der A.J.; Piztek, P.

    2005-01-01

    Abstract: In this paper it is shown how the port-Hamiltonian formulation of distributed-parameter systems is closely related to the general thermodynamic framework of systems of conservation laws and closure equations. The situation turns out to be similar to the lumped-parameter case where the Dira

  6. Simulation MLE of Parameters of the Mixture Distribution in the Presence of Two Outliers

    Directory of Open Access Journals (Sweden)

    Einolah Deiri

    2014-12-01

    Full Text Available In the presence paper, we deal with the estimation of parameters of the Exponentiated Gamma (EG distribution with presence of multiple(r=2 outliers. The maximum likelihood and moment of the estimators are derived. These estimators are compared empirically using Monte Carlo simulation when all the parameters are unknown. There bias and MSE are investigated with help of numerical technique.

  7. Spatial variability of the parameters of a semi-distributed hydrological model

    Science.gov (United States)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2016-05-01

    Ideally, semi-distributed hydrologic models should provide better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However, the spatial distribution of model parameters raises issues related to the calibration strategy and to the identifiability of the parameters. To analyse these issues, we propose to base the evaluation of a semi-distributed model not only on its performance at streamflow gauging stations, but also on the spatial and temporal pattern of the optimised value of its parameters. We implemented calibration over 21 rolling periods and 64 catchments, and we analysed how well each parameter is identified in time and space. Performance and parameter identifiability are analysed comparatively to the calibration of the lumped version of the same model. We show that the semi-distributed model faces more difficulties to identify stable optimal parameter sets. The main difficulty lies in the identification of the parameters responsible for the closure of the water balance (i.e. for the particular model investigated, the intercatchment groundwater flow parameter).

  8. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier [Laboratoire des Technologies de la Microelectronique CNRS, Grenoble Cedex 9, Isere 38054 (France); Gahan, David [Impedans Ltd., Dublin 17 (Ireland); Braithwaite, Nicholas St. J. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  9. Expansion of a plasma into vacuum with a bi-Maxwellian electron distribution function

    Directory of Open Access Journals (Sweden)

    Diaw A.

    2013-11-01

    Full Text Available A comprehensive theory is developped to describe the expansion of a plasma into a vacuum with a two-temperature electron distribution function. The characteristics of the rarefaction shock which occurs in the plasma when the hot- to the cold-electron temperature ratio is larger than 9.9 are investigated with a semi-infinite plasma. Furthermore by using a finite plasma foil, a possible heating of the cold electrons population is evidenced, for a sufficiently large hot- to the cold-electron density ratio.

  10. Energy distributions of electrons in electron beam produced nitrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Suhre, D.R.

    1976-01-01

    A theory was developed which predicts the equilibrium electron energy distributions resulting from the injection of an electron beam into molecular nitrogen. The results were highly non-Maxwellian with a depletion region existing near 2.5 eV. Using these distributions, fractional power transfers to various excitation processes were calculated. The theory was verified experimentally by using Langmuir probes to measure the electron energy distributions produced by a beam generated by a cold cathode discharge in low pressure nitrogen. The distributions were measured in absolute units and compared directly with theory. All of the major features of the theory were found to be present in the measurements.

  11. Comment on "Ion distribution function in a plasma with uniform electric field" [Phys. Plasmas 19, 113703 (2012)].

    Science.gov (United States)

    Mustafaev, Alex; Sukhomlinov, Vladimir; Timofeev, Nikolay

    2016-08-01

    The comparison between experimental data of ion distribution function at the parent gas plasma obtained by the authors and results of calculations presented by Lampe et al. are considered. It is shown that the experimental and calculated angular distributions of ions in the case at least of argon differ considerably. The analysis of Lampe et al. assumptions showed that the main reasons of these discrepancies were the assumptions of ion distribution function independence on field orientation and independence of charge exchange cross-section on the relative velocity of ion and atom.

  12. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    Science.gov (United States)

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation.

  13. The Distribution Population-based Genetic Algorithm for Parameter Optimization PID Controller

    Institute of Scientific and Technical Information of China (English)

    CHENQing-Geng; WANGNing; HUANGShao-Feng

    2005-01-01

    Enlightened by distribution of creatures in natural ecology environment, the distribution population-based genetic algorithm (DPGA) is presented in this paper. The searching capability of the algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and the simulation results show that satisfactory performances are obtained.

  14. Influence of geometrical parameters on performance of plasma synthetic jet actuator

    Science.gov (United States)

    Zong, Hao-hua; Wu, Yun; Jia, Min; Song, Hui-min; Liang, Hua; Li, Ying-hong; Zhang, Zhi-bo

    2016-01-01

    Plasma synthetic jet actuator (PSJA) has shown wide and promising application prospects in a high speed flow control field, due to its rapid response, high exhaust velocity, and non-moving components. In this paper, the total pressure profile of a plasma synthetic jet (PSJ) is measured and a new method is developed to evaluate the pulsed thrust of the PSJA. The influence of geometrical parameters including the electrode distance, the orifice diameter, and the throat length on PSJA performance is analyzed based on the pulsed thrust, the discharge characteristics, and the schlieren images. When varying the electrode distance, the dominant factor determining the jet intensity is the heating volume instead of the discharge energy. For the arc discharge, the electrode distance should be extended to increase both the jet velocity and the jet duration time. The design of the orifice diameter should be based on the controlled flow field. A large orifice diameter produces a strong perturbation with short time duration, while a small orifice diameter induces a lasting jet with low mass flux. In order to obtain better high frequency performance, the throat length should be shortened on the condition that the structural strength of the PSJA is maintained, while there is almost no influence of the throat length on the single cycle performance of the PSJA. Once the discharge energy is fixed, the pulsed thrust remains almost unchanged with different orifice diameters and throat lengths. These three geometrical parameters are independent to some extent and can be optimized separately.

  15. Plasma arc cutting optimization parameters for aluminum alloy with two thickness by using Taguchi method

    Science.gov (United States)

    Abdulnasser, B.; Bhuvenesh, R.

    2016-07-01

    Manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. The surface roughness of the cutting area for the material and the material removal rate being removed during the manual plasma arc cutting process were importantly considered. Plasma arc cutter machine model PS-100 was used to cut the specimens made from aluminium alloy 1100 manually based on the selected parameters setting. Two different thicknesses of specimens, 3mm and 6mm were used. The material removal rate (MRR) was measured by determining the difference between the weight of specimens before and after the cutting process. The surface roughness (Ra) was measured by using MITUTOYO CS-3100 machine and analysis was conducted to determine the average roughness (Ra) value, Taguchi method was utilized as an experimental layout to obtain MRR and Ra values. The results indicate that the current and cutting speed is the most significant parameters, followed by the arc gap for both rate of material removal and surface roughness.

  16. Relevant parameter space and stability of spherical tokamaks with a plasma center column

    Science.gov (United States)

    Lampugnani, L. G.; Garcia-Martinez, P. L.; Farengo, R.

    2017-02-01

    A spherical tokamak (ST) with a plasma center column (PCC) can be formed inside a simply connected chamber via driven magnetic relaxation. From a practical perspective, the ST-PCC could overcome many difficulties associated with the material center column of the standard ST reactor design. Besides, the ST-PCC concept can be regarded as an advanced helicity injected device that would enable novel experiments on the key physics of magnetic relaxation and reconnection. This is because the concept includes not only a PCC but also a coaxial helicity injector (CHI). This combination implies an improved level of flexibility in the helicity injection scheme required for the formation and sustainment phases. In this work, the parameter space determining the magnetic structure of the ST-PCC equilibria is studied under the assumption of fully relaxed plasmas. In particular, it is shown that the effect of the external bias field of the PCC and the CHI essentially depends on a single parameter that measures the relative amount of flux of these two entities. The effect of plasma elongation on the safety factor profile and the stability to the tilt mode are also analyzed. In the first part of this work, the stability of the system is explained in terms of the minimum energy principle, and relevant stability maps are constructed. While this picture provides an adequate insight into the underlying physics of the instability, it does not include the stabilizing effect of line-tying at the electrodes. In the second part, a dynamical stability analysis of the ST-PCC configurations, including the effect of line-tying, is performed by numerically solving the magnetohydrodynamic equations. A significant stability enhancement is observed when the PCC contains more than the 70% of the total external bias flux, and the elongation is not higher than two.

  17. Bayesian derivation of plasma equilibrium distribution function for tokamak scenarios and the associated Landau collision operator

    CERN Document Server

    Di Troia, Claudio

    2015-01-01

    A class of parametric distribution functions has been proposed in [C.DiTroia, Plasma Physics and Controlled Fusion,54,2012] as equilibrium distribution functions (EDFs) for charged particles in fusion plasmas, representing supra-thermal particles in anisotropic equilibria for Neutral Beam Injection, Ion Cyclotron Heating scenarios. Moreover, the EDFs can also represent nearly isotropic equilibria for Slowing-Down $alpha$ particles and core thermal plasma populations. These EDFs depend on constants of motion (COMs). Assuming an axisymmetric system with no equilibrium electric field, the EDF depends on the toroidal canonical momentum $P_\\phi$, the kinetic energy $w$ and the magnetic moment \\mu. In the present work, the EDFs are obtained from first principles and general hypothesis. The derivation is probabilistic and makes use of the Bayes' Theorem. The bayesian argument allows us to describe how far from the prior probability distribution function (pdf), e.g. Maxwellian, the plasma is, based on the information...

  18. Estimation of the reliability function for two-parameter exponentiated Rayleigh or Burr type X distribution

    Directory of Open Access Journals (Sweden)

    Anupam Pathak

    2014-11-01

    Full Text Available Abstract: Problem Statement: The two-parameter exponentiated Rayleigh distribution has been widely used especially in the modelling of life time event data. It provides a statistical model which has a wide variety of application in many areas and the main advantage is its ability in the context of life time event among other distributions. The uniformly minimum variance unbiased and maximum likelihood estimation methods are the way to estimate the parameters of the distribution. In this study we explore and compare the performance of the uniformly minimum variance unbiased and maximum likelihood estimators of the reliability function R(t=P(X>t and P=P(X>Y for the two-parameter exponentiated Rayleigh distribution. Approach: A new technique of obtaining these parametric functions is introduced in which major role is played by the powers of the parameter(s and the functional forms of the parametric functions to be estimated are not needed.  We explore the performance of these estimators numerically under varying conditions. Through the simulation study a comparison are made on the performance of these estimators with respect to the Biasness, Mean Square Error (MSE, 95% confidence length and corresponding coverage percentage. Conclusion: Based on the results of simulation study the UMVUES of R(t and ‘P’ for the two-parameter exponentiated Rayleigh distribution found to be superior than MLES of R(t and ‘P’.

  19. Electromagnetic ion-cyclotron instability in a dusty plasma with product-bi-kappa distributions for the plasma particles

    Science.gov (United States)

    dos Santos, M. S.; Ziebell, L. F.; Gaelzer, R.

    2017-01-01

    We study the dispersion relation for parallel propagating ion-cyclotron (IC) waves in a dusty plasma, considering situations where the velocity dispersion along perpendicular direction is greater than along the parallel direction, and considering the use of product-bi-kappa (PBK) velocity distributions for the plasma particles. The results obtained by numerical solution of the dispersion relation, in a case with isotropic Maxwellian distributions for electrons and PBK distribution for ions, show the occurrence of the electromagnetic ion-cyclotron instability (EMIC), and show that the decrease in the kappa indexes of the PBK ion distribution leads to significant increase in the magnitude of the growth rates and in the range of wavenumber for which the instability occurs. On the other hand, for anisotropic Maxwellian distribution for ions and PBK distribution for electrons, the decrease of the kappa index in the PBK electron distribution contributes to reduce the growth rate of the EMIC instability, but the reduction effect is less pronounced than the increase obtained with ion PBK distribution with the same kappa index. The results obtained also show that, as a general rule, the presence of a dust population contributes to reduce the instability in magnitude of the growth rates and range, but that in the case of PBK ion distribution with small kappa indexes the instability may continue to occur for dust populations which would eliminate completely the instability in the case of bi-Maxwellian ion distributions. It has also been seen that the anisotropy due to the kappa indexes in the ion PBK distribution is not so efficient in producing the EMIC instability as the ratio of perpendicular and parallel ion temperatures, for equivalent value of the effective temperature.

  20. A donut-shape distribution of OH radicals in atmospheric pressure plasma jets

    Science.gov (United States)

    Yue, Yuanfu; Wu, Fan; Cheng, He; Xian, Yubin; Liu, Dawei; Lu, Xinpei; Pei, Xuekai

    2017-01-01

    In this work, OH radicals that have a donut-shape distribution in the room-temperature atmospheric-pressure plasma jet are investigated using the laser-induced fluorescence method. The plasma jet driven by a pulse power supply is operated under two conditions: without the ground electrode and with the ground electrode. It is found that the OH radicals distribute as a donut-shape for the first several pulses under both two conditions. With more pulses applied, the donut-shape disappears and OH radicals distribute as a solid disk. Detailed investigations show that the total OH radicals in the plasma plume are formed from two parts. One part is generated by the plasma plume outside the tube with a structure of a donut-shape. The other part is generated by the plasma inside the tube with a structure of a solid disk, which can be transported to the downstream with gas stream and leads to the disappearance of the donut-shape in the plasma plum. Moreover, when the ground electrode is applied, higher intensity of OH is obtained as well as OH donut-shape distribution is observed with dehumidified working gas. It may be due to the higher electron density and its donut-shape distribution in the effluent according to the simulations and experimental results.

  1. Estimating the distribution of radionuclides in agricultural soils - dependence on soil parameters.

    Science.gov (United States)

    Hormann, Volker; Fischer, Helmut W

    2013-10-01

    In this study it is shown how radionuclide distributions in agricultural soils and their dependence on soil parameters can be quantitatively estimated. The most important sorption and speciation processes have been implemented into a numerical model using the geochemical code PHREEQC that is able to include specific soil and soil solution compositions. Using this model, distribution coefficients (Kd values) for the elements Cs, Ni, U and Se have been calculated for two different soil types. Furthermore, the dependencies of these Kd values on various soil parameters (e.g. pH value or organic matter content) have been evaluated. It is shown that for each element, an individual set of soil parameters is relevant for its solid-liquid distribution. The model may be used for the calculation of input parameters used by reference biosphere models (e.g. used for the risk assessment of nuclear waste repositories). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-09-01

    Full Text Available In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT. Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP, which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS. This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  3. A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors.

    Science.gov (United States)

    Zhang, Jilin; Tu, Hangdi; Ren, Yongjian; Wan, Jian; Zhou, Li; Li, Mingwei; Wang, Jue; Yu, Lifeng; Zhao, Chang; Zhang, Lei

    2017-09-21

    In order to utilize the distributed characteristic of sensors, distributed machine learning has become the mainstream approach, but the different computing capability of sensors and network delays greatly influence the accuracy and the convergence rate of the machine learning model. Our paper describes a reasonable parameter communication optimization strategy to balance the training overhead and the communication overhead. We extend the fault tolerance of iterative-convergent machine learning algorithms and propose the Dynamic Finite Fault Tolerance (DFFT). Based on the DFFT, we implement a parameter communication optimization strategy for distributed machine learning, named Dynamic Synchronous Parallel Strategy (DSP), which uses the performance monitoring model to dynamically adjust the parameter synchronization strategy between worker nodes and the Parameter Server (PS). This strategy makes full use of the computing power of each sensor, ensures the accuracy of the machine learning model, and avoids the situation that the model training is disturbed by any tasks unrelated to the sensors.

  4. Canonical-Dissipative Nonequilibrium Energy Distributions: Parameter Estimation via Implicit Moment Method, Implementation and Application

    Science.gov (United States)

    Frank, T. D.; Kim, S.; Dotov, D. G.

    2013-11-01

    Canonical-dissipative nonequilibrium energy distributions play an important role in the life sciences. In one of the most fundamental forms, such energy distributions correspond to two-parametric normal distributions truncated to the left. We present an implicit moment method involving the first and second energy moments to estimate the distribution parameters. It is shown that the method is consistent with Cohen's 1949 formula. The implementation of the algorithm is discussed and the range of admissible parameter values is identified. In addition, an application to an earlier study on human oscillatory hand movements is presented. In this earlier study, energy was conceptualized as the energy of a Hamiltonian oscillator model. The canonical-dissipative approach allows for studying the systematic change of the model parameters with oscillation frequency. It is shown that the results obtained with the implicit moment method are consistent with those derived in the earlier study by other means.

  5. Spatial distribution of the electrical potential and ion concentration in the downstream area of atmospheric pressure remote plasma

    Directory of Open Access Journals (Sweden)

    M. V. Mishin

    2014-10-01

    Full Text Available This paper presents the results from an experimental study of the ion flux characteristics behind the remote plasma zone in a vertical tube reaction chamber for atmospheric pressure plasma enhanced chemical vapor deposition. Capacitively coupled radio frequency plasma was generated in pure He and gas mixtures: He–Ar, He–O2, He–TEOS. We previously used the reaction system He–TEOS for the synthesis of self-assembled structures of silicon dioxide nanoparticles. It is likely that the electrical parameters of the area, where nanoparticles have been transported from the synthesis zone to the substrate, play a significant role in the self-organization processes both in the vapor phase and on the substrate surface. The results from the spatial distribution of the electrical potential and ion concentration in the discharge downstream area measured by means of the external probe of original design and the special data processing method are demonstrated in this work. Positive and negatives ions with maximum concentrations of 106–107 cm−3 have been found at 10–80 mm distance behind the plasma zone. On the basis of the revealed distributions for different gas mixtures, the physical model of the observed phenomena is proposed. The model illustrates the capability of the virtual ion emitter formation behind the discharge gap and the presence of an extremum of the electrical potential at the distance of approximately 10−2–10−1 mm from the grounded electrode.

  6. Effect of high-power laser divergence on the plasma structural parameters during multiple filamentation in air

    Science.gov (United States)

    Geints, Yu. E.; Zemlyanov, A. A.

    2016-06-01

    Multiple filamentation of an infrared high-power laser pulse in air is considered. Based on the numerical solution to the unidirectional pulse propagation equation, the effect of radiation external focusing on the spatial structure of the plasma area produced in the filamentation region is studied. We show that the number of generated plasma channels in the beam wake and the density of their spatial distribution over the filamentation region depend on the initial divergence of laser radiation. We found that in a specific range of beam focusing the number of produced plasma channels could be minimized due to the formation of a consolidated thick plasma bunch at the beam axis.

  7. GeV electron acceleration by a Gaussian field laser with effect of beam width parameter in magnetized plasma

    Science.gov (United States)

    Ghotra, Harjit Singh; Kant, Niti

    2017-01-01

    Electron acceleration due to a circularly polarized (CP) Gaussian laser field has been investigated theoretically in magnetized plasma. A Gaussian laser beam possesses trapping forces on electrons during its propagation through plasma. A single particle simulation indicates a resonant enhancement of electron acceleration with a Gaussian laser beam. The plasma is magnetized with an axial magnetic field in same direction as that of laser beam propagation. The dependence of laser beam width parameter on electron energy gain with propagation distance has been presented graphically for different values of laser intensity. Electron energy gain is relatively high where the laser beam parameter is at its minimum value. Enhanced energy gain of the order of GeV is reported with magnetic field under 20 MG in plasma. It is also seen that the axial magnetic field maintains the electron acceleration for large propagation distance even with an increasing beam width parameter.

  8. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men.

    Directory of Open Access Journals (Sweden)

    Jin-Chun Lu

    Full Text Available This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters.631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT, estradiol (E2 and SHBG levels were detected.Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P < 0.001, while only seminal plasma TG was positively related to them (P < 0.05. For lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042. There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV, sperm concentration (SC, total sperm count (TSC, sperm motility, progressive motility (PR and total normal-progressively motile sperm counts (TNPMS. Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012, both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002, and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051.The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility.

  9. Electron energy distribution in a helium plasma created by nuclear radiations

    Science.gov (United States)

    Lo, R. H.; Miley, G. H.

    1974-01-01

    An integral balance technique for calculation of the electron energy distribution in a radiation-induced plasma is described. Results predict W-values reasonably well and compare favorably with more complicated Monte-Carlo calculations. The distribution found differs from that in a normal electrical discharge and is of interest in radiation-pumped laser research.

  10. Nuclear magnetic resonance-based metabonomics reveals strong sex effect on plasma metabolism in 17-year-old Scandinavians and correlation to retrospective infant plasma parameters.

    Science.gov (United States)

    Bertram, Hanne Christine; Duus, Jens Ø; Petersen, Bent O; Hoppe, Camilla; Larnkjaer, Anni; Schack-Nielsen, Lene; Mølgaard, Christian; Michaelsen, Kim F

    2009-07-01

    Nuclear magnetic resonance (NMR)-based metabonomics was carried out on plasma samples from a total of seventy-five 17-year-old Danes to investigate the impact of key parameters such as sex, height, weight, and body mass index on the plasma metabolite profile in a normal, healthy population. Principal component analysis identified sex to have a large impact on the NMR plasma metabolome, whereas no apparent effects of height, weight, and body mass index were found. Partial least square regression discriminant analysis and quantification of relative metabolite concentrations by integration of NMR signals revealed that the sex effect included differences in plasma lipoproteins (mainly high-density lipoprotein), glucose, choline, and amino acid content. Accordingly, the present study suggests a higher lipid synthesis in young women than young men and a higher protein turnover in young men compared with women. Data on plasma content of triglyceride, lipoprotein fractions, and cholesterol at an age of 9 months were available for selected individuals (n = 40); and partial least square regressions revealed correlations between these infant parameters and the NMR plasma metabolome at an age of 17 years. In conclusion, the present study demonstrates the feasibility of NMR-based metabonomics for obtaining a deeper insight into interindividual differences in metabolism and for exploring relationships between parameters measured early in life and metabolic status at a later stage.

  11. Relationships between organohalogen contaminants and blood plasma clinical–chemical parameters in chicks of three raptor species from Northern Norway

    DEFF Research Database (Denmark)

    Sonne, Christian; Bustnes, Jan Ove; Herzke, Dorte

    2010-01-01

    Organohalogen contaminants (OHCs) may affect various physiological parameters in birds including blood chemistry. We therefore examined blood plasma clinical-chemical parameters and OHCs in golden eagle, white-tailed eagle and goshawk chicks from Northern Norway. Correlation analyses on pooled da...

  12. Roll maneuvering of flexible aircraft with distributed-parameter actuation via modal synthesis

    Science.gov (United States)

    Oz, Hayrani; Khot, Narendra S.

    1999-06-01

    The focus is on obtaining and identifying optimal distributed- parameter-control equivalent actuation profiles for desired roll maneuvers by a modal synthesis approach. The solution for distributed-parameter-control of an aeroelastic system is developed by synthesis of modal-state-space controllers designed via the globally power optimal Independent Modal- Space Control (IMSC) technique. The desired maneuver (set- point) control performance is achieved by a modal-performance- output synthesis (MPOS) approach. The MPOS approach requires that each independent modal controller be allocated a desired portion of the total desired output performance. In view of this, a modal performance-output allocation optimization problem is also defined, which minimizes a hybrid measure of control power and elastic strain energy of the structure during aeroelastic control. Insight to distributed-parameter- control equivalent actuation solutions are sought by considering the aeroservoelastic interactions among vehicle motion, aerodynamics, structural flexibility and control actuators from the perspective of work-energy, control power, and control loading requirements. The modal synthesis approach is illustrated for a flight vehicle wing design to achieve a 90 deg/sec roll-rate in a Mach 2 flight condition at altitude (20000 ft) via distributed-parameter equivalent actuation. The preliminary results indicate that such a roll-rate maneuver can be accomplished via distributed-parameter actuation with feasible levels of control power, work-energy, and control loadings through eliciting favorable aeroservoelastic interactions.

  13. Off-line tracking of series parameters in distribution systems using AMI data

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Tess L.; Sun, Yannan; Schneider, Kevin

    2016-05-01

    Electric distribution systems have historically lacked measurement points, and equipment is often operated to its failure point, resulting in customer outages. The widespread deployment of sensors at the distribution level is enabling observability. This paper presents an off-line parameter value tracking procedure that takes advantage of the increasing number of measurement devices being deployed at the distribution level to estimate changes in series impedance parameter values over time. The tracking of parameter values enables non-diurnal and non-seasonal change to be flagged for investigation. The presented method uses an unbalanced Distribution System State Estimation (DSSE) and a measurement residual-based parameter estimation procedure. Measurement residuals from multiple measurement snapshots are combined in order to increase the effective local redundancy and improve the robustness of the calculations in the presence of measurement noise. Data from devices on the primary distribution system and from customer meters, via an AMI system, form the input data set. Results of simulations on the IEEE 13-Node Test Feeder are presented to illustrate the proposed approach applied to changes in series impedance parameters. A 5% change in series resistance elements can be detected in the presence of 2% measurement error when combining less than 1 day of measurement snapshots into a single estimate.

  14. Relation of Plasma Uric Acid Levels and the Lipid Parameters in Han and Uygur Ethnicity

    Institute of Scientific and Technical Information of China (English)

    Sun Yuping; Yao Hua; Yao Wenhai; Li Qing; You Lan; Wang Qiuyun; Jiang Yan

    2006-01-01

    Objectives Hyperuricemia is a common finding in hypertension and hyperlipidemia,they are all correlated to cardiovascular diseases. The aim of this study was to find the relationship of uric acid and plasma lipid parameters of Han and Uygur ethnicity in Xinjiang. Methods This cross-sectional health examination survey was based on a population random sample from the Urumchi, It included 1166 subjects aged from 20 to 70 years. Serum biochemical testing by Automatic Analyzer (HITACHI 7600-010).Results The uric acid in Han was higher than in Uygur(P< 0.05), men were higher than women in two ethnicities; For lipid parameters men were higher than women, in TG and HDL women were higher than in men in two ethnicity (P < 0.05). Serum uric acid was strongly related to serum triglycerides in Han as well as Uygur ethnicity ( P < 0.001); Compared with the normal group, UA, TG, CHOL, VLDL had ascending trend and HDL had descending trend (P <0.05 ) among groups in Han and Uygur ethnicity,especially Hyperuricemia-hypertriglyceridemia group,uric acid and most some lipid parameters was higher than Hyperuricemia and hypertriglyceridemia group,The prevalence of different groups in Han and Urgur was significantly different (P < 0.05). Conclusions This study shows that the UA and some lipid parameters are different in Han and Uygur ethnicity and show sexual difference; serum uric acid is markedly related to serum triglycerides; Hyperuricemia and hypertriglyceridemia show cooperated effect in uric acid and most lipid parameters. Considering the growing incidence of the potential link between hyperuricemia/hypertriglyceridemia and cardiovascular diseases, more emphasis should be put on the evolving prevalence of hyperuricemia and hypertriglyceridemia in Xinjiang.

  15. Current state-of-the-art for the measurement of non-Maxwellian plasma parameters with the EISCAT UHF Facility

    Directory of Open Access Journals (Sweden)

    D. Hubert

    Full Text Available New results on the information that can be extracted from simulated non-Maxwellian incoherent radar spectra are presented. The cases of a pure ionosphere and of a composite ionosphere typical of a given altitude of the auroral F region are considered. In the case of a pure ionosphere of NO+ or O+ ions it has been shown that the electron temperature and the electron density can be derived from a Maxwellian analysis of radar spectra measured at aspect angles of 0° or 21° respectively; the ion temperature and ion temperature anisotropy can be derived from a non- constraining model such as the 1D Raman fitting of a complementary measurement made at an aspect angle larger than 0° for the NO+ ions, or at an aspect angle larger than 21° for the O+ ions. Moreover with such measurements at large aspect angles, the shape of the velocity ion distribution functions can simultaneously be inferred. The case of a composite ionosphere of atomic O+ and molecular NO+ ions is a difficult challenge which requires simultaneously a complementary measurement of the electron temperature to provide the ion composition and the electron density from the incoherent radar spectra at a specific aspect angle of 21°; hence, a model dependent routine is necessary to derive the ion temperatures and ion temperature anisotropies. In the case where the electron temperature is not given, a routine which depends on ion distribution models is required first: the better the ion distribution models are, the more accurately derived the plasma parameters will be. In both cases of a composite ionosphere, the 1D Raman fitting can be used to keep a check on the validity of the results provided by the ion distribution model dependent routine.

  16. Ion Density Distribution in an Inductively Coupled Plasma Chamber

    Institute of Scientific and Technical Information of China (English)

    陈俊芳; 赵文锋; 吴先球; 樊双莉; 符斯列

    2004-01-01

    The ion density distribution in the reaction chamber was diagnosed by a Langmuir probe. The rules of the ion density distribution were obtained under the pressures of 9 Pa, 13 Pa,27 Pa and 53 Pa in the reaction chamber, different radio-frequency powers and different positions.The result indicates that the ion density decreases as the pressure increases, and increases as the power decreases. The ion density of axial position z = 0 achieves 5.8×10 10 on the center of coil under the power of 200 w and pressure of 9 Pa in the reaction chamber.

  17. A New Insight into the Earthquake Recurrence Studies from the Three-parameter Generalized Exponential Distributions

    Science.gov (United States)

    Pasari, S.; Kundu, D.; Dikshit, O.

    2012-12-01

    Earthquake recurrence interval is one of the important ingredients towards probabilistic seismic hazard assessment (PSHA) for any location. Exponential, gamma, Weibull and lognormal distributions are quite established probability models in this recurrence interval estimation. However, they have certain shortcomings too. Thus, it is imperative to search for some alternative sophisticated distributions. In this paper, we introduce a three-parameter (location, scale and shape) exponentiated exponential distribution and investigate the scope of this distribution as an alternative of the afore-mentioned distributions in earthquake recurrence studies. This distribution is a particular member of the exponentiated Weibull distribution. Despite of its complicated form, it is widely accepted in medical and biological applications. Furthermore, it shares many physical properties with gamma and Weibull family. Unlike gamma distribution, the hazard function of generalized exponential distribution can be easily computed even if the shape parameter is not an integer. To contemplate the plausibility of this model, a complete and homogeneous earthquake catalogue of 20 events (M ≥ 7.0) spanning for the period 1846 to 1995 from North-East Himalayan region (20-32 deg N and 87-100 deg E) has been used. The model parameters are estimated using maximum likelihood estimator (MLE) and method of moment estimator (MOME). No geological or geophysical evidences have been considered in this calculation. The estimated conditional probability reaches quite high after about a decade for an elapsed time of 17 years (i.e. 2012). Moreover, this study shows that the generalized exponential distribution fits the above data events more closely compared to the conventional models and hence it is tentatively concluded that generalized exponential distribution can be effectively considered in earthquake recurrence studies.

  18. Reference distribution functions for magnetically confined plasmas from the minimum entropy production theorem and the MaxEnt principle, subject to the scale-invariant restrictions

    Energy Technology Data Exchange (ETDEWEB)

    Sonnino, Giorgio, E-mail: gsonnino@ulb.ac.be [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium); Cardinali, Alessandro [EURATOM-ENEA Fusion Association, Via E. Fermi 45, C.P. 65-00044 Frascati, Rome (Italy); Steinbrecher, Gyorgy [EURATOM-MEdC Fusion Association, Physics Faculty, University of Craiova, Str. A.I. Cuza 13, 200585 Craiova (Romania); Peeters, Philippe [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium); Sonnino, Alberto [Université Catholique de Louvain (UCL), Ecole Polytechnique de Louvain (EPL), Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve (Belgium); Nardone, Pasquale [Université Libre de Bruxelles (U.L.B.), Department of Physics, Campus de la Plaine Code Postal 231 - Boulevard du Triomphe, 1050 Brussels (Belgium)

    2013-12-09

    We derive the expression of the reference distribution function for magnetically confined plasmas far from the thermodynamic equilibrium. The local equilibrium state is fixed by imposing the minimum entropy production theorem and the maximum entropy (MaxEnt) principle, subject to scale invariance restrictions. After a short time, the plasma reaches a state close to the local equilibrium. This state is referred to as the reference state. The aim of this Letter is to determine the reference distribution function (RDF) when the local equilibrium state is defined by the above mentioned principles. We prove that the RDF is the stationary solution of a generic family of stochastic processes corresponding to an universal Landau-type equation with white parametric noise. As an example of application, we consider a simple, fully ionized, magnetically confined plasmas, with auxiliary Ohmic heating. The free parameters are linked to the transport coefficients of the magnetically confined plasmas, by the kinetic theory.

  19. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaladze, T. [Department of Physics, Government College University (GCU), Lahore 54000 (Pakistan); I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia (United States); Mahmood, S., E-mail: shahzadm100@gmail.com [Theoretical Physics Division (TPD), PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  20. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    Science.gov (United States)

    Kaladze, T.; Mahmood, S.

    2014-03-01

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  1. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men

    Science.gov (United States)

    Yao, Qi; Fan, Kai; Wang, Guo-Hong; Feng, Rui-Xiang; Liang, Yuan-Jiao; Chen, Li; Ge, Yi-Feng; Yao, Bing

    2016-01-01

    Objective This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters. Methods 631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT), estradiol (E2) and SHBG levels were detected. Results Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042). There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV), sperm concentration (SC), total sperm count (TSC), sperm motility, progressive motility (PR) and total normal-progressively motile sperm counts (TNPMS). Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012), both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002), and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051). Conclusion The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility. PMID:26726884

  2. Distributed and decentralized state estimation in gas networks as distributed parameter systems.

    Science.gov (United States)

    Ahmadian Behrooz, Hesam; Boozarjomehry, R Bozorgmehry

    2015-09-01

    In this paper, a framework for distributed and decentralized state estimation in high-pressure and long-distance gas transmission networks (GTNs) is proposed. The non-isothermal model of the plant including mass, momentum and energy balance equations are used to simulate the dynamic behavior. Due to several disadvantages of implementing a centralized Kalman filter for large-scale systems, the continuous/discrete form of extended Kalman filter for distributed and decentralized estimation (DDE) has been extended for these systems. Accordingly, the global model is decomposed into several subsystems, called local models. Some heuristic rules are suggested for system decomposition in gas pipeline networks. In the construction of local models, due to the existence of common states and interconnections among the subsystems, the assimilation and prediction steps of the Kalman filter are modified to take the overlapping and external states into account. However, dynamic Riccati equation for each subsystem is constructed based on the local model, which introduces a maximum error of 5% in the estimated standard deviation of the states in the benchmarks studied in this paper. The performance of the proposed methodology has been shown based on the comparison of its accuracy and computational demands against their counterparts in centralized Kalman filter for two viable benchmarks. In a real life network, it is shown that while the accuracy is not significantly decreased, the real-time factor of the state estimation is increased by a factor of 10.

  3. Correcting cosmological parameter biases for all redshift surveys induced by estimating and reweighting redshift distributions

    CERN Document Server

    Rau, Markus Michael; Paech, Kerstin; Seitz, Stella

    2016-01-01

    Photometric redshift uncertainties are a major source of systematic error for ongoing and future photometric surveys. We study different sources of redshift error caused by common suboptimal binning techniques and propose methods to resolve them. The selection of a too large bin width is shown to oversmooth small scale structure of the radial distribution of galaxies. This systematic error can significantly shift cosmological parameter constraints by up to $6 \\, \\sigma$ for the dark energy equation of state parameter $w$. Careful selection of bin width can reduce this systematic by a factor of up to 6 as compared with commonly used current binning approaches. We further discuss a generalised resampling method that can correct systematic and statistical errors in cosmological parameter constraints caused by uncertainties in the redshift distribution. This can be achieved without any prior assumptions about the shape of the distribution or the form of the redshift error. Our methodology allows photometric surve...

  4. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells

    Science.gov (United States)

    Winter, J.; Wende, K.; Masur, K.; Iseni, S.; Dünnbier, M.; Hammer, M. U.; Tresp, H.; Weltmann, K.-D.; Reuter, S.

    2013-07-01

    In this study, the effect of feed gas humidity on the reactive component generation of an atmospheric-pressure argon plasma jet and its effect on human skin cells are investigated. Feed gas humidity is identified as one key parameter that strongly influences stability and reproducibility of plasma medical studies. The plasma jet is investigated by absorption spectroscopy in the ultraviolet and infrared spectral region for its ozone production depending on the humidity concentration in the feed gas. By optical emission spectroscopy the dependence of present excited plasma species such as hydroxyl radicals, molecular nitrogen, argon and atomic oxygen on the feed gas humidity is investigated. As an interface layer between the plasma jet effluent and the biological cell, a buffer solution is treated and the hydrogen peroxide (H2O2) production is studied with two independent colorimetric assays as a function of humidity admixture to the feed gas. Ultimately, the effect of varying feed gas humidity on the cell viability of indirect plasma treated adherent HaCAT cells is investigated. The highest viability is found for the driest feed gas condition. Furthermore, this work shows answers for the relevance of unwanted—or intended—feed gas humidity in plasma medical experiments and their comparatively large relevance with respect to ambient humidity. The findings will lead to more reproducible experiments in the field of plasma medicine.

  5. Plasma polymers deposited in atmospheric pressure dielectric barrier discharges: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Katja, E-mail: k.fricke@inp-greifswald.de [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Girard-Lauriault, Pierre-Luc [Plasma Processing Laboratory, Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC H3A 0C5 (Canada); Weltmann, Klaus-Dieter [Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Wertheimer, Michael R. [Department of Engineering Physics, École Polytechnique de Montréal, Box 6079, Station Centre-Ville, Montreal, QC H3C 3A7 (Canada)

    2016-03-31

    We present results on the deposition of plasma polymer (PP) films in a dielectric barrier discharge system fed with mixtures of argon or nitrogen carrier gas plus different hydrocarbon precursors, where the latter possess different carbon-to-hydrogen ratios: CH{sub 4} < C{sub 2}H{sub 6} < C{sub 2}H{sub 4} = C{sub 3}H{sub 6} < C{sub 2}H{sub 2}. The influence of precursor gas mixture and flow rate, excitation frequency, and absorbed power on PP film compositions and properties has been investigated. The discharge was characterized by electrical measurements, while the chemical compositions and structures of coatings were analysed by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, total combustion, and elastic recoil detection analyses, the latter two for determining carbon-to-hydrogen ratios. Scanning electron microscopy was used to study the coatings' morphology, and profilometry for evaluating deposition rates. - Highlights: • Atmospheric pressure DBD is used to deposit organic hydrocarbon films. • High deposition rates can be achieved by varying the power and/or gas mixture ratio. • Process parameters affect the films' surface chemical composition and morphology. • Deposited films are not soluble in aqueous environment. • No delamination of coatings produced from argon plasma.

  6. Confidence intervals for functions of coefficients of variation with bounded parameter spaces in two gamma distributions

    Directory of Open Access Journals (Sweden)

    Patarawan Sangnawakij

    2017-02-01

    Full Text Available The problem of estimating parameters in a gamma distribution has been widely studied with respect to both theories and applications. In special cases, when the parameter space is bounded, the construction of the confidence interval based on the classical Neyman procedure is unsatisfactory because the information regarding the restriction of the parameter is disregarded. In order to develop the estimator for this issue, the confidence intervals for the coefficient of variation for the case of a gamma distribution were proposed. Extending to two populations, the confidence intervals for the difference and the ratio of coefficients of variation with restricted parameters were presented. Monte Carlo simulations were used to investigate the performance of the proposed estimators. The results showed that the proposed confidence intervals performed better than the compared estimators in terms of expected length, especially when the coefficients of variation were close to the boundary. Additionally, two examples using real data were analyzed to illustrate the findings of the paper.

  7. Parameter estimation in nonlinear distributed systems - Approximation theory and convergence results

    Science.gov (United States)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework and convergence theory is described for Galerkin approximations applied to inverse problems involving nonlinear distributed parameter systems. Parameter estimation problems are considered and formulated as the minimization of a least-squares-like performance index over a compact admissible parameter set subject to state constraints given by an inhomogeneous nonlinear distributed system. The theory applies to systems whose dynamics can be described by either time-independent or nonstationary strongly maximal monotonic operators defined on a reflexive Banach space which is densely and continuously embedded in a Hilbert space. It is demonstrated that if readily verifiable conditions on the system's dependence on the unknown parameters are satisfied, and the usual Galerkin approximation assumption holds, then solutions to the approximating problems exist and approximate a solution to the original infinite-dimensional identification problem.

  8. Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas

    OpenAIRE

    Izacard, Olivier

    2016-01-01

    In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account specially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numericall...

  9. Parameter estimation for the Pearson type 3 distribution using order statistics

    Science.gov (United States)

    Rocky Durrans, S.

    1992-05-01

    The Pearson type 3 distribution and its relatives, the log Pearson type 3 and gamma family of distributions, are among the most widely applied in the field of hydrology. Parameter estimation for these distributions has been accomplished using the method of moments, the methods of mixed moments and generalized moments, and the methods of maximum likelihood and maximum entropy. This study evaluates yet another estimation approach, which is based on the use of the properties of an extreme-order statistic. Based on the hypothesis that the population is distributed as Pearson type 3, this estimation approach yields both parameter and 100-year quantile estimators that have lower biases and variances than those of the method of moments approach as recommended by the US Water Resources Council.

  10. Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function

    Science.gov (United States)

    Zalvidea; Colautti; Sicre

    2000-05-01

    An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.

  11. Modified Moment, Maximum Likelihood and Percentile Estimators for the Parameters of the Power Function Distribution

    Directory of Open Access Journals (Sweden)

    Azam Zaka

    2014-10-01

    Full Text Available This paper is concerned with the modifications of maximum likelihood, moments and percentile estimators of the two parameter Power function distribution. Sampling behavior of the estimators is indicated by Monte Carlo simulation. For some combinations of parameter values, some of the modified estimators appear better than the traditional maximum likelihood, moments and percentile estimators with respect to bias, mean square error and total deviation.

  12. Bayes Estimation of Shape Parameter of Minimax Distribution under Different Loss Functions

    Directory of Open Access Journals (Sweden)

    Lanping Li

    2015-04-01

    Full Text Available The object of this study is to study the Bayes estimation of the unknown shape parameter of Minimax distribution. The prior distribution used here is the non-informative quasi-prior of the parameter. Bayes estimators are derived under squared error loss function and three asymmetric loss functions, which are the LINEX loss, precaution loss and entropy loss functions. Monte Carlo simulations are performed to compare the performances of these Bayes estimates under different situations. Finally, we summarize the result and give the conclusion of this study.

  13. A Study of Transmission Control Method for Distributed Parameters Measurement in Large Factories and Storehouses

    Directory of Open Access Journals (Sweden)

    Shujing Su

    2015-01-01

    Full Text Available For the characteristics of parameters dispersion in large factories, storehouses, and other applications, a distributed parameter measurement system is designed that is based on the ring network. The structure of the system and the circuit design of the master-slave node are described briefly. The basic protocol architecture about transmission communication is introduced, and then this paper comes up with two kinds of distributed transmission control methods. Finally, the reliability, extendibility, and control characteristic of these two methods are tested through a series of experiments. Moreover, the measurement results are compared and discussed.

  14. Iterative Learning Control with Forgetting Factor for Linear Distributed Parameter Systems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Xisheng Dai

    2014-01-01

    Full Text Available Iterative learning control is an intelligent control algorithm which imitates human learning process. Based on this concept, this paper discussed iterative learning control problem for a class parabolic linear distributed parameter systems with uncertainty coefficients. Iterative learning control algorithm with forgetting factor is proposed and the conditions for convergence of algorithm are established. Combining the matrix theory with the basic theory of distributed parameter systems gives rigorous convergence proof of the algorithm. Finally, by using the forward difference scheme of partial differential equation to solve the problems, the simulation results are presented to illustrate the feasibility of the algorithm.

  15. Statistics on the parameters of nonisothermal ionospheric plasma in large mesospheric electric fields

    Science.gov (United States)

    Martynenko, S.; Rozumenko, V.; Tyrnov, O.; Manson, A.; Meek, C.

    The large V/m electric fields inherent in the mesosphere play an essential role in lower ionospheric electrodynamics. They must be the cause of large variations in the electron temperature and the electron collision frequency at D region altitudes, and consequently the ionospheric plasma in the lower part of the D region undergoes a transition into a nonisothermal state. This study is based on the databases on large mesospheric electric fields collected with the 2.2-MHz radar of the Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada (52°N geographic latitude, 60.4°N geomagnetic latitude) and with the 2.3-MHz radar of the Kharkiv V. Karazin National University (49.6°N geographic latitude, 45.6°N geomagnetic latitude). The statistical analysis of these data is presented in Meek, C. E., A. H. Manson, S. I. Martynenko, V. T. Rozumenko, O. F. Tyrnov, Remote sensing of mesospheric electric fields using MF radars, Journal of Atmospheric and Solar-Terrestrial Physics, in press. The large mesospheric electric fields is experimentally established to follow a Rayleigh distribution in the interval 0 distributions of relative disturbances in temperature, θ , and effective collision frequency, η, to be determined. The most probable θ and η values are determined to be in the 1.4 -- 2.2 interval; therefore, the nonstationary state of the lower part of the D region need to be accounted for in studying processes coupling the electrically active mesosphere and the lower ionospheric plasma.

  16. On the estimation of the structure parameter of a normal distribution of order p

    Directory of Open Access Journals (Sweden)

    Angelo M. Mineo

    2007-10-01

    Full Text Available In this paper we compare four different approaches to estimate the structure parameter of a normal distribution of order p (often called exponential power distribution. In particular, we have considered the maximization of the log-likelihood, of the profile log-likelihood, of the conditional profile log-likelihood and a method based on an index of kurtosis. The results of a simulation study seem to indicate the latter approach as the best.

  17. Analytical evaluation of the plasma dispersion function for a Fermi-Dirac distribution

    Institute of Scientific and Technical Information of China (English)

    B.A. Mamedov

    2012-01-01

    An efficient method for the analytic evaluation of the plasma dispersion function for the Fermi-Dirac distribution is proposed.The new method has been developed using the binomial expansion theorem and the Gamma functions.The general formulas obtained for the plasma dispersion function are utilized for the evaluation of the response function.The resulting series present better convergence rates.Several acceleration techniques are combined to further improve the efficiency.The obtained results for the plasma dispersion function are in good agreement with the known numerical data.

  18. Solar Cluster: multipoint magnetic field and plasma parameter measurements in the solar wind

    Science.gov (United States)

    Vieira, L. E.; Echer, E.; dal Lago, A.; Schuch, N. J.

    This paper has the objective to discus the technical-scientific feasibility of a deep space mission to be proposed to the Brazilian Space Agency (AEB). This mission will be proposed to study the interplanetary magnetic field and the plasma structure of the solar wind. It will consist of a set of identical spacecraft flying in formation in the inner heliosphere during the ascending and maximum phase of the solar cycle 24. It is know that the primary cause of magnetic storms are intense, long duration southward interplanetary magnetic field structures which interconnect with the earth's magnetic field and allow solar wind energy transport into the Earth's magnetotail/magnetosphere. During the most active phase of the solar cycle, solar maximum, the sun's activity is dominated by flares and disappearing filaments, and their concomitant Coronal Mass Ejections (CMEs). Coronal Holes are present, but the holes are small and do not extend from the poles to the equator as often happens in the descending phase of the solar cycle. The fast (>500 km/s) CMEs coming from the sun into the interplanetary space are the solar/coronal features that contain high magnetic fields. These intense southward magnetic fields are observed in the sheath, in the ejection itself and in the rear of the ejection. The interaction between CMEs and the background solar wind, fast co rotating streams and other CMEs are also very important sources of intense southward magnetic fields. In order to study the interplanetary origin of intense geomagnetic storms, several studies have analyzed plasma parameters, composition, ionization state and the interplanetary magnetic field measured by instruments on board of spacecraft as ISEE3, IMP8, Helios, Ulysses, Wind, SOHO and ACE. Great advance on the understanding of the CME structure and interaction with the background solar wind have been reached. However, the spatial scale of these structures could be greater than 0.2 AU, and this kind of observation usually

  19. Enhancement of wave growth for warm plasmas with a high-energy tail distribution

    Science.gov (United States)

    Thorne, Richard M.; Summers, Danny

    1991-01-01

    The classical linear theory of electromagnetic wave growth in a warm plasma is considered for waves propagating parallel to a uniform ambient magnetic field. Wave-growth rates are calculated for ion-driven right-hand mode waves for Kappa and Maxwellian particle distribution functions and for various values of the spectral index, the temperature anisotropy, and the ratio of plasma pressure to magnetic pressure appropriate to the solar wind. When the anisotropy is low the wave growth is limited to frequencies below the proton gyrofrequency and the growth rate increases dramatically as the spectral index is reduced. The growth rate for any Kappa distribution greatly exceeds that for a Maxwellian with the same bulk properties. For large thermal anisotropy the growth rate from either distribution is greatly enhanced. The growth rates from a Kappa distribution are generally larger than for a Maxwellian distribution, and significant wave growth occurs over a broader range of frequencies.

  20. Exact run length distribution of the double sampling x-bar chart with estimated process parameters

    Directory of Open Access Journals (Sweden)

    Teoh, W. L.

    2016-05-01

    Full Text Available Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL. A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose.

  1. Control of ion density distribution by magnetic traps for plasma electrons

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, Oleg; Romanov, Maxim [Plasma Laboratory, National Aerospace University ' KhAI,' Kharkov 61070 (Ukraine); Fang Jinghua [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070 (Australia); School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Cvelbar, Uros [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Ostrikov, Kostya [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070 (Australia); University of Sydney, Sydney, NSW 2006 (Australia)

    2012-10-01

    The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasma electrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

  2. Analytical estimation of particle shape formation parameters in a plasma-chemical reactor

    Directory of Open Access Journals (Sweden)

    Zhukov Ilya A.

    2017-01-01

    Full Text Available Analytical estimation of particle shape formation parameters in a plasma-chemical reactor implementing the process of thermochemical decomposition of liquid droplet agents (precursors in the flow of a high-temperature gaseous heat-transfer medium was obtained. The basic factor which determines the process is the increase of concentration of a dissolved salt precursor component at the surface of a liquid particle due to solvent evaporation. According to the physical concept of the method of integral balance the diffusion process of concentration change is divided into two stages: the first stage is when the size of gradient layer does not reach the center of a spherical droplet and the second stage when the concentration at the center of a liquid droplet begins to change. The solutions for concentration fields were found for each stage using the method of integral balance taking into account the formation of salt precipitate when the concentration at the surface of the droplet reaches certain equilibrium value. The results of estimation of the influence of various reactor operation parameters and characteristics of initial solution (precursor on the morphology of particles formed – mass fraction and localization of salt precipitate for various levels of evaporation.

  3. Sampling the probability distribution of Type Ia Supernova lightcurve parameters in cosmological analysis

    Science.gov (United States)

    Dai, Mi; Wang, Yun

    2016-06-01

    In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia) data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting. We develop a method for sampling the resultant probability density distributions (pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain cosmological parameters, and validate it using simulated data sets. Applying this method to the `joint lightcurve analysis (JLA)' data set of SNe Ia, we find that sampling the SN Ia lightcurve parameter pdf's leads to cosmological parameters closer to that of a flat Universe with a cosmological constant, compared to the usual practice of using only the best-fitting values of the SN Ia lightcurve parameters. Our method will be useful in the use of SN Ia data for precision cosmology.

  4. Estimation of distributional parameters for censored trace level water quality data. 2. Verification and applications

    Science.gov (United States)

    Helsel, D.R.; Gilliom, R.J.

    1986-01-01

    Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters.

  5. Dust acoustic waves in an inhomogeneous plasma having dust size distribution

    Science.gov (United States)

    Banerjee, Gadadhar; Maitra, Sarit

    2017-07-01

    Propagations of nonlinear dust acoustic solitary waves in an inhomogeneous unmagnetized dusty plasma having power law dust distribution are investigated. Using a reductive perturbation technique, a variable coefficient deformed Korteweg-deVries (VCdKdV) equation is derived from the basic set of hydrodynamic equations. The generalized expansion method is employed to obtain a solitary wave solution for the VCdKdV equation. The different propagation characteristics of the solitary waves are studied in the presence of both plasma inhomogeneity and dust distribution.

  6. Effect of current and atomized grain size distribution on the solidification of Plasma Transferred Arc coatings

    Directory of Open Access Journals (Sweden)

    Danielle Bond

    2012-10-01

    Full Text Available Plasma Transferred Arc (PTA is the only thermal spray process that results in a metallurgical bond, being frequently described as a hardfacing process. The superior properties of coatings have been related to the fine microstructures obtained, which are finer than those processed under similar heat input with welding techniques using wire feedstock. This observation suggests that the atomized feedstock plays a role on the solidification of coatings. In this study a model for the role of the powders grains in the solidification of PTA coatings is put forward and discussed. An experiment was setup to discuss the model which involved the deposition of an atomized Co-based alloy with different grain size distributions and deposition currents. X ray diffraction showed that there were no phase changes due to the processing parameters. Microstructure analysis by Laser Confocal Microscopy, dilution with the substrate steel and Vickers microhardness were used the characterized coatings and enriched the discussion confirming the role of the powdered feedstock on the solidification of coatings.

  7. Calibration of Distributed Hydrologic Models Considering the Heterogeneity of the Parameters across the Basin

    Science.gov (United States)

    Athira, P.; Sudheer, K.

    2013-12-01

    Parameter estimation is one of the major tasks in the application of any physics based distributed model. Generally the calibration does not consider the heterogeneity of the parameters across the basin, and as a result the model simulation conforms to the location for which it has been calibrated for. However, the major advantage of distributed hydrological models is to have reasonably good simulations on various locations in the watershed, including ungauged locations. While multi-site calibration can address this issue to some extent, the availability of more gauge sites in a watershed is always not guaranteed. When single site calibration is performed, generally a uniform variation of the parameters is considered across the basin which does not ensure the true heterogeneity of the parameters in the basin. The primary objective of this study is to compare the effect of uniform variation of the parameter with a procedure that identifies actual heterogeneity of the parameters across the basin, while performing calibration of distributed hydrological models. In order to demonstrate the objective, a case study of two watersheds in the USA using the model, Soil and Water Assessment Tool (SWAT) is presented and discussed. Initially, the SWAT model is calibrated for both the watersheds in the traditional way considering uniform variation of the sensitive parameters during the calibration. Further, the hydrological response units (HRU) delineated in the SWAT are classified into various clusters based the land use, soil type and slope. A random perturbation of the parameters is performed in these clusters during calibration. The rationale behind this approach was to identify plausible parameter values that simulate the hydrological process in these clusters appropriately. The proposed procedure is applied to both the basins. The results indicate that the simulations obtained for upstream ungauged locations (other than that used for calibration) are much better when a

  8. Two-dimensional temperature distribution inside a hemispherical bowl-shaped target for plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    刘成森; 王艳辉; 王德真

    2005-01-01

    One important parameter for the plasma source ion implantation (PSII) process is the target temperature obtained during the surface modification. Because the power input to the target being implanted can be large, its temperature is quite high. The target temperature prediction is useful, whether the high temperature is required in the experiment.In addition, there is likely to be temperature variation across the target surface, which can lead to locally different surface properties. In this paper, we have presented a model to predict and explain the temperature distribution on a hemispherical bowl-shaped vessel during plasma source ion implantation. A two-dimensional fluid model to derive both the ion flux to the target and the energy imparted to the substrate by the ions in the plasma sheath simulation is employed. The calculated energy input and radiative heat loss are used to predict the temperature rise and variation inside the sample in the thermal model. The shape factor of the target for radiation is taken into account in the radiative energy loss. The influence of the pulse duration and the pulsing frequency on the temperature distribution is investigated in detail. Our work shows that at high pulsing frequencies the temperature of the bowl will no longer rise with the increase of the pulsing frequency.

  9. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    Directory of Open Access Journals (Sweden)

    O. S. Oyekola

    2009-01-01

    Full Text Available Evening equatorial pre-reversal vertical ion E×B drift (VZP and the peak of the ionospheric F2 maximum altitude (hmF2P of the postsunset equatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  10. Mathematical simulation application for research of nonuniform distributed-parameter circuit transients

    Science.gov (United States)

    Kuleshova, E. O.; Plyusnin, A. A.; Shandarova, E. B.; Tikhomirova, O. V.

    2016-04-01

    This paper considers the simulation capability of nonuniform distributed-parameter circuit transients by using MatLab Simulink. This approach is capable of determining currents and voltages of nodes for power networks of any configurations and modes. The paper contains results of nonuniform line simulations in idle, short-circuit and load modes.

  11. On modeling of lifetime data using two-parameter Gamma and Weibull distributions

    NARCIS (Netherlands)

    Shanker, Rama; Shukla, Kamlesh Kumar; Shanker, Ravi; Leonida, Tekie Asehun

    2016-01-01

    The analysis and modeling of lifetime data are crucial in almost all applied sciences including medicine, insurance, engineering, behavioral sciences and finance, amongst others. The main objective of this paper is to have a comparative study of two-parameter gamma and Weibull distributions for mode

  12. Eliciting hyperparameters of prior distributions for the parameters of paired comparison models

    Directory of Open Access Journals (Sweden)

    Nasir Abbas

    2013-02-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA In the study of paired comparisons (PC, items may be ranked or issues may be prioritized through subjective assessment of certain judges. PC models are developed and then used to serve the purpose of ranking. The PC models may be studied through classical or Bayesian approach. Bayesian inference is a modern statistical technique used to draw conclusions about the population parameters. Its beauty lies in incorporating prior information about the parameters into the analysis in addition to current information (i.e. data. The prior and current information are formally combined to yield a posterior distribution about the population parameters, which is the work bench of the Bayesian statisticians. However, the problems the Bayesians face correspond to the selection and formal utilization of prior distribution. Once the type of prior distribution is decided to be used, the problem of estimating the parameters of the prior distribution (i.e. elicitation still persists. Different methods are devised to serve the purpose. In this study an attempt is made to use Minimum Chi-square (hence forth MCS for the elicitation purpose. Though it is a classical estimation technique, but is used here for the election purpose. The entire elicitation procedure is illustrated through a numerical data set.

  13. Effects of abdominal fat distribution parameters on severity of acute pancreatitis.

    LENUS (Irish Health Repository)

    O'Leary, D P

    2012-07-01

    Obesity is a well-established risk factor for acute pancreatitis. Increased visceral fat has been shown to exacerbate the pro-inflammatory milieu experienced by patients. This study aimed to investigate the relationship between the severity of acute pancreatitis and abdominal fat distribution parameters measured on computed tomography (CT) scan.

  14. An EOQ Model with Two-Parameter Weibull Distribution Deterioration and Price-Dependent Demand

    Science.gov (United States)

    Mukhopadhyay, Sushanta; Mukherjee, R. N.; Chaudhuri, K. S.

    2005-01-01

    An inventory replenishment policy is developed for a deteriorating item and price-dependent demand. The rate of deterioration is taken to be time-proportional and the time to deterioration is assumed to follow a two-parameter Weibull distribution. A power law form of the price dependence of demand is considered. The model is solved analytically…

  15. Empirical Bayes Test for the Parameter of Rayleigh Distribution with Error of Measurement

    Institute of Scientific and Technical Information of China (English)

    HUANG JUAN

    2011-01-01

    For the data with error of measurement in historical samples,the empirical Bayes test rule for the parameter of Rayleigh distribution is constructed,and the asymptotically optimal property is obtained.It is shown that the convergence rate of the proposed EB test rule can be arbitrarily close to O(n-1/2) under suitable conditions.

  16. Estimation of the location parameter of distributions with known coefficient of variation by record values

    Directory of Open Access Journals (Sweden)

    N. K. Sajeevkumar

    2014-09-01

    Full Text Available In this article, we derived the Best Linear Unbiased Estimator (BLUE of the location parameter of certain distributions with known coefficient of variation by record values. Efficiency comparisons are also made on the proposed estimator with some of the usual estimators. Finally we give a real life data to explain the utility of results developed in this article.

  17. Maximum likelihood estimation for constrained parameters of multinomial distributions - Application to Zipf-Mandelbrot models

    NARCIS (Netherlands)

    Izsak, F.

    2006-01-01

    A numerical maximum likelihood (ML) estimation procedure is developed for the constrained parameters of multinomial distributions. The main dif��?culty involved in computing the likelihood function is the precise and fast determination of the multinomial coef��?cients. For this the coef��?cients are

  18. A New Approach for Parameter Estimation of Mixed Weibull Distribution:A Case Study in Spindle

    Institute of Scientific and Technical Information of China (English)

    Dongwei Gu; Zhiqiong Wang; Guixiang Shen; Yingzhi Zhang; Xilu Zhao

    2016-01-01

    In order to improve the accuracy and efficiency of graphical method and maximum likelihood estimation ( MLE) in Mixed Weibull distribution parameters estimation, Graphical-GA combines the advantage of graphical method and genetic algorithm ( GA) is proposed. Firstly, with the analysis of Weibull probability paper (WPP), mixed Weibull is identified to data fitting. Secondly, the observed value of shape and scale parameters are obtained by graphical method with least square, then optimizing the parameters of mixed Weibull with GA. Thirdly, with the comparative analysis on graphical method, piecewise Weibull and two⁃Weibull, it shows graphical⁃GA mixed Weibull is the best. Finally, the spindle MTBF point estimation and interval estimation are got based on mixed Weibull distribution. The results indicate that graphical⁃GA are improved effectively and the evaluation of spindle can provide the basis for design and reliability growth.

  19. THE STUDY ON A KIND OF CONTROL SYSTEM WITH NONLINEAR PARABOLIC DISTRIBUTED PARAMETERS

    Institute of Scientific and Technical Information of China (English)

    周建军; 徐燕侯

    2002-01-01

    The modelling of one kind of nonlinear parabolic distributed parameter control system with moving boundary, which had extensive applications was presented. Two methods were used to investigate the basic characteristics of the system: 1 ) transforming the system in the variable domain into that in the fixed domain; 2) transforming the distributed parameter system into the lumped parameter system. It is found that there are two critical values for the control variable: the larger one determines whether or not the boundary would move, while the smaller one determines whether or not the boundary would stop automatically. For one-dimensional system of planar, cylindrical and spherical cases the definite solution problem can be expressed as a unified form. By means of the computer simulation the open-loop control system and close-cycle feedback control system have been investigated. Numerical results agree well with theoretical results. The computer simulation shows that the system is well posed, stable, measurable and controllable.

  20. Sensitivity analysis of distributed parameter elements In high-speed circuit networks

    Institute of Scientific and Technical Information of China (English)

    Lei DOU; Zhiquan WANG

    2007-01-01

    This paper presents an analysis method,based on MacCormack's technique,for the evaluation of the time domain sensitivity of distributed parameter elements in high-speed circuit networks.Sensitivities can be calculated from electrical and physical parameters of the distributed parameter elements.The proposed method is a direct numerical method of time-space discretization and does not require complicated mathematical deductive process.Therefore,it is very convenient to program this method.It can be applied to sensitivity analysis of general transmission lines in linear or nonlinear circuit networks.The proposed method is second-order-accurate.Numerical experiment is presented to demonstrate its accuracy and efficiency.

  1. Behavior of Plasma and Field Parameters and their Relationship with Geomagnetic Indices during Intense Geomagnetic Storms of Solar Cycle 23

    CERN Document Server

    Joshi, Navin Chandra; Pande, Seema; Pande, Bimal; Pandey, Kavita

    2010-01-01

    A correlative study between the geomagnetic indices and the peak values of various plasma and field parameters during rising, maximum and decay phases as well as during complete solar cycle 23 have been presented. We have also presented the lag/lead analysis between the maximum of Dst and peak values of plasma and field parameters and found that peak values of lag/lead time lies in the +/-10 hr interval. Three geomagnetic storms (GMSs) and associated solar sources observed during these phases of this solar cycle have also been studied and found that GMSs are associated with large flares and halo CMEs.

  2. Solitons collision and freak waves in a plasma with Cairns-Tsallis particle distributions

    Science.gov (United States)

    El-Tantawy, S. A.; Wazwaz, A. M.; Schlickeiser, R.

    2015-12-01

    The solitons collision (head-on collision) and rogue waves in an unmagnetized plasma comprising nonthermal-nonextensive distributed (Cairns-Tsallis) electrons and cold ions are investigated. For solitons collision, the extended Poincaré-Lighthill-Kuo (PLK) method is employed to derive the coupled Korteweg-de Vries (KdV) equations and their corresponding phase shifts. It is found that solitons having two polarities can propagate in the present model. The coefficients of the nonlinear terms of the coupled KdV equations vanish at a critical value of nonthermality. Therefore, another set of coupled modified KdV (mKdV) equations with cubic nonlinearity is derived and the corresponding phase shifts are calculated. It is found analytically and numerically that the solutions of the coupled KdV equations allow solitons collision only when the solitons have the same polarity, whereas the coupled mKdV equations allow the collisions between the two solitons of the same and opposite polarities. The influence of the nonthermal-nonextensive parameters on the phase shifts of the solitons collision is examined. Furthermore, the rogue waves are studied in the framework of the mKdV equation. The behavior of the rogue waves is analyzed using the nonlinear Schrödinger equation (NLSE), derived from the mKdV equation. It is found that the rogue wave amplitude shrinks with the increase of the nonextensive parameter. The NLSE derived from the KdV equation cannot support the presence of rogue waves.

  3. Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions

    Science.gov (United States)

    Liu, C.; Charpentier, R.R.; Su, J.

    2011-01-01

    Two methods are compared for estimating the shape parameters of Pareto field-size (or pool-size) distributions for petroleum resource assessment. Both methods assume mature exploration in which most of the larger fields have been discovered. Both methods use the sizes of larger discovered fields to estimate the numbers and sizes of smaller fields: (1) the tail-truncated method uses a plot of field size versus size rank, and (2) the log-geometric method uses data binned in field-size classes and the ratios of adjacent bin counts. Simulation experiments were conducted using discovered oil and gas pool-size distributions from four petroleum systems in Alberta, Canada and using Pareto distributions generated by Monte Carlo simulation. The estimates of the shape parameters of the Pareto distributions, calculated by both the tail-truncated and log-geometric methods, generally stabilize where discovered pool numbers are greater than 100. However, with fewer than 100 discoveries, these estimates can vary greatly with each new discovery. The estimated shape parameters of the tail-truncated method are more stable and larger than those of the log-geometric method where the number of discovered pools is more than 100. Both methods, however, tend to underestimate the shape parameter. Monte Carlo simulation was also used to create sequences of discovered pool sizes by sampling from a Pareto distribution with a discovery process model using a defined exploration efficiency (in order to show how biased the sampling was in favor of larger fields being discovered first). A higher (more biased) exploration efficiency gives better estimates of the Pareto shape parameters. ?? 2011 International Association for Mathematical Geosciences.

  4. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters

    Directory of Open Access Journals (Sweden)

    Zarghami Nosratollah

    2007-06-01

    Full Text Available Abstract Background There is growing evidence that damage to spermatozoa by reactive oxygen species (ROS play a key role in male infertility. The aim of the present study was to assess seminal plasma levels of total antioxidant capacity (TAC, free 8-Isoprostane and activities of catalase and superoxide dismutase (SOD in men with asthenozoospermia, asthenoteratozoospermia and oligoasthenoteratozoospermia compared with normozoospermic males. Methods The patients consisted of 46 men with seminal parameters abnormalities. The patients were grouped into asthenozoospermic (n = 15, asthenoteratozoospermic (n = 16 and oligoasthenoteratozoospermic (n = 15. The control group consisted of 16 healthy males with normozoospermia. Catalase activity was measured by Aebi spectrophotometeric method. Levels of TAC and SOD were measured by commercially available colorimetric assays. Level of free 8-Isoprostane was assessed by commercially available enzyme immunoassay (EIA method. Differences between groups were assessed using Mann-Whitney U test and Kruskal-Wallis test. Coefficients of correlation were calculated using Spearman's correlation analysis. All hypothesis tests were two-tailed with statistical significance assessed at the p value Results Levels of catalase and TAC were significantly lower in patients than the control group. No significant changes were seen in SOD activities. Levels of free 8-Isoprostane were significantly higher in patients than the control group. Furthermore, asthenozoospermic, asthenoteratozoospermic and oligoasthenoteratozoospermic groups had significantly lower values of catalase activity and TAC when compared to normozoospermic males. Levels of free 8-Isoprostane were significantly higher in all patients subgroups than the control group. Levels of catalase and TAC were positively correlated with sperm motility and morphology. Free 8-Isoprostane levels showed an inverse correlation with sperm motility and morphology. Conclusion

  5. A distributed probabilistic system for adaptive regulation of image processing parameters.

    Science.gov (United States)

    Morino, V; Foresti, G L; Regazzoni, C S

    1996-01-01

    A distributed optimization framework and its application to the regulation of the behavior of a network of interacting image processing algorithms are presented. The algorithm parameters used to regulate information extraction are explicitly represented as state variables associated with all network nodes. Nodes are also provided with message-passing procedures to represent dependences between parameter settings at adjacent levels. The regulation problem is defined as a joint-probability maximization of a conditional probabilistic measure evaluated over the space of possible configurations of the whole set of state variables (i.e., parameters). The global optimization problem is partitioned and solved in a distributed way, by considering local probabilistic measures for selecting and estimating the parameters related to specific algorithms used within the network. The problem representation allows a spatially varying tuning of parameters, depending on the different informative contents of the subareas of an image. An application of the proposed approach to an image processing problem is described. The processing chain chosen as an example consists of four modules. The first three algorithms correspond to network nodes. The topmost node is devoted to integrating information derived from applying different parameter settings to the algorithms of the chain. The nodes associated with data-transformation processes to be regulated are represented by an optical sensor and two filtering units (for edge-preserving and edge-extracting filterings), and a straight-segment detection module is used as an integration site.

  6. Damage constitutive model for strain-softening rock based on normal distribution and its parameter determination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Firstly, using the damage model for rock based on Lemaitre hypothesis about strain equivalence, a new technique for measuring strength of rock micro-cells by adopting the Mohr-Coulomb criterion was developed, and a statistical damage evolution equation was established based on the property that strength of micro-cells is consistent with normal distribution function, through discussing the characteristics of random distributions for strength of micro-cells, then a statistical damage constitutive model that can simulate the full process of rock strain softening under specific confining pressure was set up. Secondly, a new method to determine the model parameters which can be applied to the situations under different confining pressures was proposed, by deeply studying the relations between the model parameters and characteristic parameters of the full stress-strain curve under different confining pressures. Therefore, a unified statistical damage constitutive model for rock softening which can reflect the effect of different confining pressures was set up. This model makes the physical property of model parameters explicit, contains only conventional mechanical parameters, and leads its application more convenient. Finally, the rationality of this model and its parameters-determining method were identified via comparative analyses between theoretical and experimental curves.

  7. Identification of Synchronous Generator Electric Parameters Connected to the Distribution Grid

    Directory of Open Access Journals (Sweden)

    Frolov M. Yu.

    2017-04-01

    Full Text Available According to modern trends, the power grids with distributed generation will have an open system architecture. It means that active consumers, owners of distributed power units, including mobile units, must have free access to the grid, like when using internet, so it is necessary to have plug and play technologies. Thanks to them, the system will be able to identify the unit type and the unit parameters. Therefore, the main aim of research, described in the paper, was to develop and research a new method of electric parameters identification of synchronous generator. The main feature of the proposed method is that parameter identification is performed while the generator to the grid, so it fits in the technological process of operation of the machine and does not influence on the connection time of the machine. For the implementation of the method, it is not necessary to create dangerous operation modes for the machine or to have additional expensive equipment and it can be used for salient pole machines and round rotor machines. The parameter identification accuracy can be achieved by more accurate account of electromechanical transient process, and making of overdetermined system with many more numbers of equations. Parameter identification will be made with each generator connection to the grid. Comparing data obtained from each connection, the middle values can be find by numerical method, and thus, each subsequent identification will accurate the machine parameters.

  8. How important is heterogeneous parameter distribution in capturing the catchment response through hydrologic modelling?

    Science.gov (United States)

    Devak, Manjula; Dhanya, Ct

    2017-04-01

    The scrupulous selection of critical spatial and temporal resolution and the evaluation of optimum values for various model parameters are essential aspects in any hydrological modelling study. The accurate assessment of various model parameters is vitally important for the detailed and complete representation of the various physical processes illustrating land-atmosphere interaction. Studies in the past have taken up various auto-calibration and parameter transferability schemes to address these; but the heterogeneity of calibration parameters across grids is greatly ignored often. In many studies, heterogeneity is often compromised through the usual interpolation approaches adopted across grids. In the present study, we focus to analyze the response of a catchment by adopting a heterogeneous and homogeneous parameter distribution in the hydrological model. The semi-distributed hydrological model, Variable Infiltration Capacity (VIC-3L) model, which offers sub-grid variability in soil moisture storage capacity and vegetation classes, is used for this comparison. Nine model parameters are selected for calibrating the VIC-3L model, namely variable infiltration curve parameter (infilt), maximum velocity of base flow for each grid cells (DSmax), fraction of DSmax where non-linear base flow begins (DS, fraction of maximum soil moisture where non-linear base flow occurs (WS), depth of 2nd soil layer (D2), depth of 3rd soil layer (D3), exponent used in baseflow curve (c), advection coefficient (C) and diffusion coefficient (D). Latin-Hypercube sampling is adopted to sample these nine parameters. In homogenous approach, the traditional way of constant soil parameter distribution (HoSCP) is adopted to prepare the parameter set. While, in heterogeneous approach, grid-to-grid variability is ensured by constructing a Heterogeneous Soil Calibration Parameter (HeSCP) set through systematic sampling of already sampled set. The sampling size is made equal to the number of grids

  9. Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements

    CERN Document Server

    Edberg, N J T; Odelstad, E; Henri, P; Lebreton, J -P; Gasc, S; Rubin, M; André, M; Gill, R; Johansson, E P G; Johansson, F; Vigren, E; Wahlund, J E; Carr, C M; Cupido, E; Glassmeier, K -H; Goldstein, R; Koenders, C; Mandt, K; Nemeth, Z; Nilsson, H; Richter, I; Wieser, G Stenberg; Szego, K; Volwerk, M

    2016-01-01

    We use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be about 1-2x10^-6, at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as about 1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.

  10. Subclinical hypocalcemia, plasma biochemical parameters, lipid metabolism, postpartum disease, and fertility in postparturient dairy cows.

    Science.gov (United States)

    Chamberlin, W G; Middleton, J R; Spain, J N; Johnson, G C; Ellersieck, M R; Pithua, P

    2013-01-01

    A study was conducted to evaluate the potential association between Ca status at calving and postpartum energy balance, liver lipid infiltration, disease occurrence, milk yield and quality parameters, and fertility in Holstein cows. One hundred cows were assigned to 1 of 2 groups based on whole-blood ionized Ca concentration ([iCa]) on the day of calving [d 0; hypocalcemic [iCa] Cows were blocked based on calving date and parity. Blood samples were collected approximately 14 d from expected calving date (d -14), the day of calving (d 0), and on d 3, 7, 14, 21, and 35 postpartum for measurement of plasma nonesterified fatty acid, iCa, total Ca, glucose, and total and direct bilirubin concentrations, and plasma aspartate aminotransferase and gamma glutamyl transferase activities. Liver biopsies were obtained from a subset of cows on d 0, 7, and 35 for quantification of lipid content. Milk samples were collected on d 3, 7, 14, 21, and 35 postpartum for measurement of somatic cell count and percentages of protein, fat, and solids-not-fat. Data for peak test-day milk yield, services per conception, and days open were obtained from Dairy Herd Improvement Association herd records. Disease occurrence was determined based on herd treatment records. Hypocalcemic cows had significantly higher nonesterified fatty acids on d 0. Hypocalcemic cows also had significantly more lipid in hepatocytes on d 7 and 35 postpartum. However, no statistically significant differences were observed between groups for plasma aspartate aminotransferase and gamma glutamyl transferase activities or total and direct bilirubin concentrations. Milk protein percentage was lower in hypocalcemic cows on d 21 and 35. However other milk quality variables (somatic cell count, milk fat percentage, and solids-not-fat) and milk yield variables (peak test-day milk yield and 305-d mature-equivalent 4% fat-corrected milk yield) did not differ between groups. No differences were observed between groups in the

  11. In vivo triglyceride synthesis in subcutaneous adipose tissue of humans correlates with plasma HDL parameters

    Science.gov (United States)

    Tuvdendorj, Demidmaa; Munoz, Alejandro O.; Ruiz-Barros, Viviana; Schwarz, Jean-Marc; Montalto, Giuseppe; Chandalia, Manisha; Sowers, Lawrence C.; Rizzo, Manfredi; Murphy, Elizabeth J; Abate, Nicola

    2016-01-01

    Backgrounds and aims Low concentrations of plasma HDL-C are associated with the development of atherosclerotic cardiovascular diseases and type 2 diabetes. Here we aimed to explore the relationship between the in vivo fractional synthesis of triglycerides (fTG) in subcutaneous (s.q.) abdominal adipose tissue (AT), HDL-C concentrations and HDL particle size composition in non-diabetic humans. Methods The fTG in s.q. abdominal AT was measured in 16 non-diabetic volunteers (7 women, 9 men; Age: 49±20 years; BMI: 31±5 kg/m; Fasting Plasma Glucose: 90±10 mg/dl) after 2H2O labeling. HDL-C concentration and subclasses, large (L-HDL), intermediate (I-HDL) and small (S-HDL) were measured. Results Linear regression analyses demonstrated significant associations of fTG with plasma concentration of HDL-C (r=0.625,p=0.009) and percent contribution of L-HDL (r=0.798,pHDL (r=−0.765,pHDL (r=−0.629, p=0.009). When analyses were performed by gender, the associations remained significant in women (HDL-C: r=0.822,p=0.023; L-HDL: r=0.892,p=0.007; I-HDL: r=−0.927,p=0.003) but not men. Conclusions Our study demonstrated an in vivo association between subcutaneous abdominal adipose tissue lipid dynamics and HDL parameters in humans, but this was true for women not men. Positive association with L-HDL and negative with I-HDL suggest that subcutaneous abdominal adipose tissue lipid dynamics may play an important role in production of mature functional HDL particles. Further studies evaluating the mechanism responsible for these associations and the observed gender differences are important and warranted to identify potential novel targets of intervention to increase the production of atheroprotective subclasses of HDL-Cs and thus decreasing the risks of development of atherosclerotic conditions. PMID:27323227

  12. Arbitrary amplitude ion-acoustic solitary waves in electronegative plasmas with electrons featuring Tsallis distribution

    Science.gov (United States)

    Ghebache, Siham; Tribeche, Mouloud

    2017-10-01

    The problem of arbitrary amplitude ion-acoustic solitary waves (IASWs), which accompany electronegative plasmas having positive ions, negative ions, and nonextensive electrons is addressed. The energy integral equation with a new Sagdeev potential is analyzed to examine the existence regions of the IASWs. Different types of electronegative plasmas inspired from the experimental studies of Ichiki et al. (2001) are discussed. Our results show that in such plasmas IASWs, the amplitude and nature of which depend sensitively on the mass and density ratio of the positive and negative ions as well as the q-nonextensive parameter, can exist. Interestingly, one finds that our plasma model supports the coexistence of smooth rarefactive and spiky compressive IASWs. Our results complement and provide new insights on previously published findings on this problem.

  13. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    Science.gov (United States)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  14. The role of spatial confinement for improvement of laser-induced Mg plasma parameters and growth of surface features

    Science.gov (United States)

    Hayat, Asma; Bashir, Shazia; Rafique, Muhammad Shahid; Ahmad, Riaz; Akram, Mahreen; Mahmood, Khaliq; Zaheer, Ali

    2017-08-01

    The role of spatial confinement for improvement of laser-induced Mg plasma parameters and growth of surface features is investigated by introducing a metallic blocker. Nd: YAG laser at various fluences ranging from 7 to 28 J cm-2 was employed as an irradiation source. All measurements were performed in the presence of Ar under different pressures. Confinement effects offered by metallic blocker are investigated by placing the blocker at different distances of 6, 8 and 10 mm from the target surface. It is revealed from laser-induced breakdown spectroscopy analysis that both plasma parameters, i.e., excitation temperature and electron number density initially increase with increasing laser fluence due to enhancement in energy deposition. With further increase in laser fluence, a decreasing trend followed by saturation is observed which is attributable to shielding effect and self-regulating regime. It is also observed that spatial confinement offered by metallic blocker is responsible for the significant enhancement of both electron temperature and electron number density of Mg plasma. This is true for all laser fluences and pressures of Ar. Maximum values of electron temperature and electron number density without blocker are 8335 K and 2.4 × 1016 cm-3, respectively, whereas these values are enhanced to 12,200 K and 4 × 1016 cm-3 in the presence of the blocker. The physical mechanisms responsible for the enhancement of Mg plasma parameters are plasma compression, confinement and pronounced collisional excitations due to reflection of shock waves. Scanning electron microscope analysis was performed to explore the surface morphology of laser-ablated Mg. It reveals the formation of cones, cavities and ripples. These features become more distinct and well defined in the presence of the blocker due to plasma confinement. The optimum combination of blocker distance, fluence and Ar pressure can identify the suitable conditions for defining the role of plasma parameters

  15. Constraining cosmological parameters when taking into account the distribution of candles

    CERN Document Server

    Qin, Y P; Dong, Y M; Zhang, F W; Li, H Z; Jia, L W; Mao, L S; Lu, R J; Yi, T F; Cui, X H; Zhang, Z B; Qin, Yi-Ping; Zhang, Bin-Bin; Dong, Yun-Ming; Zhang, Fu-Wen; Li, Huai-Zhen; Jia, Lan-Wei; Mao, Li-Sheng; Lu, Rui-Jing; Yi, Ting-Feng; Cui, Xiao-Hong; Zhang, Zhi-Bin

    2005-01-01

    We study in detail the effect of the distribution of cosmological candles. First,we propose to perform a Monte-Carlo simulation to check if the hypothesis that there is not a distribution of the deduced relative luminosity distance moduli of a sample, when the measurement uncertainty is negligible, is true. If there exists such a distribution, the statistic chi2 cannot be defined since the distribution itself is unclear. Second, we suggest replacing the conventional minimizing chi2 2 method with the least square method to find the best estimated cosmological parameters due to this definition problem. Once the cosmological parameters are determined with the least square method, the bare distribution (the intrinsic distribution which is independent of the measurement uncertainty)can be estimated and then a lower and upper limits of chi2 can be determined. With these two extreme values of chi2,we are able to make the confidence contour plot in the conventional way. In addition to the gold SN Ia sample and the GR...

  16. Estimating distribution parameters of annual maximum streamflows in Johor, Malaysia using TL-moments approach

    Science.gov (United States)

    Mat Jan, Nur Amalina; Shabri, Ani

    2017-01-01

    TL-moments approach has been used in an analysis to identify the best-fitting distributions to represent the annual series of maximum streamflow data over seven stations in Johor, Malaysia. The TL-moments with different trimming values are used to estimate the parameter of the selected distributions namely: Three-parameter lognormal (LN3) and Pearson Type III (P3) distribution. The main objective of this study is to derive the TL-moments ( t 1,0), t 1 = 1,2,3,4 methods for LN3 and P3 distributions. The performance of TL-moments ( t 1,0), t 1 = 1,2,3,4 was compared with L-moments through Monte Carlo simulation and streamflow data over a station in Johor, Malaysia. The absolute error is used to test the influence of TL-moments methods on estimated probability distribution functions. From the cases in this study, the results show that TL-moments with four trimmed smallest values from the conceptual sample (TL-moments [4, 0]) of LN3 distribution was the most appropriate in most of the stations of the annual maximum streamflow series in Johor, Malaysia.

  17. Pair distribution function of strongly coupled quark gluon plasma in a molecule-like aggregation model

    CERN Document Server

    Meiling, Yu; Lianshou, Liu

    2008-01-01

    Pair distribution function for delocalized quarks in the strongly coupled quark gluon plasma (sQGP) as well as in the states at intermediate stages of crossover from hadronic matter to sQGP are calculated using a molecule-like aggregation model. The shapes of the obtained pair distribution functions exhibit the character of liquid. The increasing correlation length in the process of crossover indicates a diminishing viscosity of the fluid system.

  18. A physical parameter method for the design of broad-band X-ray imaging systems to do coronal plasma diagnostics

    Science.gov (United States)

    Kahler, S.; Krieger, A. S.

    1978-01-01

    The technique commonly used for the analysis of data from broad-band X-ray imaging systems for plasma diagnostics is the filter ratio method. This requires the use of two or more broad-band filters to derive temperatures and line-of-sight emission integrals or emission measure distributions as a function of temperature. Here an alternative analytical approach is proposed in which the temperature response of the imaging system is matched to the physical parameter being investigated. The temperature response of a system designed to measure the total radiated power along the line of sight of any coronal structure is calculated. Other examples are discussed.

  19. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-01-15

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  20. Squares of different sizes: effect of geographical projection on model parameter estimates in species distribution modeling.

    Science.gov (United States)

    Budic, Lara; Didenko, Gregor; Dormann, Carsten F

    2016-01-01

    In species distribution analyses, environmental predictors and distribution data for large spatial extents are often available in long-lat format, such as degree raster grids. Long-lat projections suffer from unequal cell sizes, as a degree of longitude decreases in length from approximately 110 km at the equator to 0 km at the poles. Here we investigate whether long-lat and equal-area projections yield similar model parameter estimates, or result in a consistent bias. We analyzed the environmental effects on the distribution of 12 ungulate species with a northern distribution, as models for these species should display the strongest effect of projectional distortion. Additionally we choose four species with entirely continental distributions to investigate the effect of incomplete cell coverage at the coast. We expected that including model weights proportional to the actual cell area should compensate for the observed bias in model coefficients, and similarly that using land coverage of a cell should decrease bias in species with coastal distribution. As anticipated, model coefficients were different between long-lat and equal-area projections. Having progressively smaller and a higher number of cells with increasing latitude influenced the importance of parameters in models, increased the sample size for the northernmost parts of species ranges, and reduced the subcell variability of those areas. However, this bias could be largely removed by weighting long-lat cells by the area they cover, and marginally by correcting for land coverage. Overall we found little effect of using long-lat rather than equal-area projections in our analysis. The fitted relationship between environmental parameters and occurrence probability differed only very little between the two projection types. We still recommend using equal-area projections to avoid possible bias. More importantly, our results suggest that the cell area and the proportion of a cell covered by land should be

  1. Neutron Signatures of Non-Thermal Ion Distributions in Z-Pinch Driven ICF Plasmas

    Science.gov (United States)

    Knapp, Patrick; Jennings, Christopher; Sinars, Daniel

    2012-10-01

    In preparation for upcoming ICF experiments on the 26 MA Z machine (e.g., D2 gas puff, MagLIF [1]), we are studying the neutron energy spectra produced by magnetically-driven loads beyond the archetypal single temperature, uniform plasma. Z-pinch sources frequently exhibit evidence of unusual neutron spectra [2], which can be attributed to three-dimensional turbulent motion, high-energy beams, and other phenomena leading to non-Maxwellian ion distributions. Understanding the nature of our plasma neutron sources is critical for understanding how they scale with increasing current. We will show Monte Carlo and analytic calculations for plausible scenarios and discuss the corresponding signatures for the existing set of time-of-flight diagnostics on Z.[4pt] [1] S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)[0pt] [2] V.V. Vikhrev and V.D. Korolev, Plasma Dynamics, Vol. 33, No. 5 (2007)

  2. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr-malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  3. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  4. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere.

    Science.gov (United States)

    Shimoyama, M; Oyama, K-I; Abe, T; Yau, A W

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (thermal to suprathermal energy continuously with high-energy resolution of about 0.15 eV. The measurement principle is based on the combination of a retarding potential analyzer with a channel electron multiplier (CEM) and the Druyvesteyn method, which derives energy distribution from the current-voltage characteristics. The capability of detecting plasma space potential enables absolute calibration of electron energy. The instrument with a small vacuum pump, which is required for the CEM to work in low-vacuum region, was first successfully tested by a sounding rocket S-310-37 in the ionospheric E region. The instrument is expected to provide new opportunities to measure energy distribution of thermal and non-thermal electrons in low-density plasma, where a Langmuir probe cannot measure electron temperature because of low plasma density.

  5. IMF dependence of energetic oxygen and hydrogen ion distributions in the near-Earth plasma sheet

    Science.gov (United States)

    Luo, Hao; Kronberg, Elena; Nykyri, Katariina; Daly, Patrick; Chen, Gengxiong; Du, Aimin; Ge, Yasong

    2017-04-01

    Energetic ion distributions in the near-Earth plasma sheet can provide important information for understanding the entry of ions into the magnetosphere, and their transportation, acceleration, and losses in the near-Earth region. In this study, 11 years of energetic proton and oxygen observations (> 100 keV) from Cluster/RAPID were used to statistically study the energetic ion distributions in the near-Earth region. The dawn-dusk asymmetries of the distributions in three different regions (dayside magnetosphere, near-Earth nightside plasma sheet, and tail plasma sheet) are examined in northern and southern hemispheres. The results show that the energetic ion distributions are influenced by the dawn-dusk IMF direction. The enhancement of intensity largely correlates with the location of the magnetic reconnection at the magnetopause and the consequent formation of a diamagnetic cavity in the same quadrant of the magnetosphere. The results imply that substorm-related processes in the magnetotail are not the only source of energetic ions in the dayside and the near-Earth plasma sheet. We propose that large-scale cusp diamagnetic cavities can be an additional source and can thus significantly affect the energetic ion population in the magnetosphere. We also believe that the influence of the dawn-dusk IMF direction should not be neglected in models of the particle population in the magnetosphere.

  6. Correcting cosmological parameter biases for all redshift surveys induced by estimating and reweighting redshift distributions

    Science.gov (United States)

    Rau, Markus Michael; Hoyle, Ben; Paech, Kerstin; Seitz, Stella

    2017-04-01

    Photometric redshift uncertainties are a major source of systematic error for ongoing and future photometric surveys. We study different sources of redshift error caused by choosing a suboptimal redshift histogram bin width and propose methods to resolve them. The selection of a too large bin width is shown to oversmooth small-scale structure of the radial distribution of galaxies. This systematic error can significantly shift cosmological parameter constraints by up to 6σ for the dark energy equation-of-state parameter w. Careful selection of bin width can reduce this systematic by a factor of up to 6 as compared with commonly used current binning approaches. We further discuss a generalized resampling method that can correct systematic and statistical errors in cosmological parameter constraints caused by uncertainties in the redshift distribution. This can be achieved without any prior assumptions about the shape of the distribution or the form of the redshift error. Our methodology allows photometric surveys to obtain unbiased cosmological parameter constraints using a minimum number of spectroscopic calibration data. For a DES-like galaxy clustering forecast, we obtain unbiased results with respect to errors caused by suboptimal histogram bin width selection, using only 5k representative spectroscopic calibration objects per tomographic redshift bin.

  7. Extraction of the spatial distribution of electron temperature and density in Magnetized Liner Inertial Fusion implosion plasmas

    Science.gov (United States)

    Carpenter, Kyle; Mancini, Roberto

    2016-10-01

    We are testing polychromatic tomography to extract the spatial distribution of electron temperatures and densities in the cylindrical implosion plasmas created during MagLIF. Motivation for this technique stems from its successful application to spherical implosion core plasmas on Omega through the analysis of spatially resolved spectra (SRS) collected via pinhole imaging. In MagLIF, collections of SRS can be extracted from the images created by the slit imaging CRITR spectrometers. These spectra can be complemented with pinhole monochromatic images and spectra recorded with a spherical crystal spectrometer. One axially resolved and one radially resolved CRITR are field during MagLIF and information extracted from one of these SRS would be spatially integrated over a plane of finite thickness given by the spatial resolution of the instrument. In our method, we couple a model that creates synthetic sets of spectra, like those obtained from an experiment, with a Pareto genetic algorithm which searches in parameter space for the spatial distribution which best simultaneously and self-consistently fits the set of SRS/ Solutions obtained are used as the initial solution for a Levenberg-Marquadt minimization algorithm to provide a final ``fine-tuned'' solution. We are testing this method by creating synthetic ``experimental'' data and using the technique to search for the spatial distribution. The results of these feasibility studies will be discussed. The work is supported by a contract from Sandia National Laboratories.

  8. Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Michala Jakubcová

    2015-01-01

    Full Text Available The presented paper provides the analysis of selected versions of the particle swarm optimization (PSO algorithm. The tested versions of the PSO were combined with the shuffling mechanism, which splits the model population into complexes and performs distributed PSO optimization. One of them is a new proposed PSO modification, APartW, which enhances the global exploration and local exploitation in the parametric space during the optimization process through the new updating mechanism applied on the PSO inertia weight. The performances of four selected PSO methods were tested on 11 benchmark optimization problems, which were prepared for the special session on single-objective real-parameter optimization CEC 2005. The results confirm that the tested new APartW PSO variant is comparable with other existing distributed PSO versions, AdaptW and LinTimeVarW. The distributed PSO versions were developed for finding the solution of inverse problems related to the estimation of parameters of hydrological model Bilan. The results of the case study, made on the selected set of 30 catchments obtained from MOPEX database, show that tested distributed PSO versions provide suitable estimates of Bilan model parameters and thus can be used for solving related inverse problems during the calibration process of studied water balance hydrological model.

  9. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  10. Excitation functions of parameters in Erlang distribution, Schwinger mechanism, and Tsallis statistics in RHIC BES program

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Li-Na; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)

    2016-05-15

    Experimental results of the transverse-momentum distributions of φ mesons and Ω hyperons produced in gold-gold (Au-Au) collisions with different centrality intervals, measured by the STAR Collaboration at different energies (7.7, 11.5, 19.6, 27, and 39 GeV) in the beam energy scan (BES) program at the relativistic heavy-ion collider (RHIC), are approximately described by the single Erlang distribution and the two-component Schwinger mechanism. Moreover, the STAR experimental transverse-momentum distributions of negatively charged particles, produced in Au-Au collisions at RHIC BES energies, are approximately described by the two-component Erlang distribution and the single Tsallis statistics. The excitation functions of free parameters are obtained from the fit to the experimental data. A weak softest point in the string tension in Ω hyperon spectra is observed at 7.7 GeV. (orig.)

  11. Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods

    Directory of Open Access Journals (Sweden)

    W. Castaings

    2009-04-01

    Full Text Available Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised with respect to model inputs.

    In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations but didactic application case.

    It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run and the singular value decomposition (SVD of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation.

    For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers is adopted.

    Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting.

  12. Diagnostic analysis of distributed input and parameter datasets in Mediterranean basin streamflow modeling

    Science.gov (United States)

    Milella, Pamela; Bisantino, Tiziana; Gentile, Francesco; Iacobellis, Vito; Trisorio Liuzzi, Giuliana

    2012-11-01

    SummaryThe paper suggests a methodology, based on performance metrics, to select the optimal set of input and parameters to be used for the simulation of river flow discharges with a semi-distributed hydrologic model. The model is applied at daily scale in a semi-arid basin of Southern Italy (Carapelle river, basin area: 506 km2) for which rainfall and discharge series for the period 2006-2009 are available. A classification of inputs and parameters was made in two subsets: the former - spatially distributed - to be selected among different options, the latter - lumped - to be calibrated. Different data sources of (or methodologies to obtain) spatially distributed data have been explored for the first subset. In particular, the FAO Penman-Monteith, Hargreaves and Thornthwaite equations were tested for the evaluation of reference evapotranspiration that, in semi-arid areas, represents a key role in hydrological modeling. The availability of LAI maps from different remote sensing sources was exploited in order to enhance the characterization of the vegetation state and consequently of the spatio-temporal variation in actual evapotranspiration. Different type of pedotransfer functions were used to derive the soil hydraulic parameters of the area. For each configuration of the first subset of data, a manual calibration of the second subset of parameters was carried out. Both the manual calibration of the lumped parameters and the selection of the optimal distributed dataset were based on the calculation and the comparison of different performance metrics measuring the distance between observed and simulated discharge data series. Results not only show the best options for estimating reference evapotranspiration, crop coefficients, LAI values and hydraulic properties of soil, but also provide significant insights regarding the use of different performance metrics including traditional indexes such as RMSE, NSE, index of agreement, with the more recent Benchmark

  13. Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods

    Science.gov (United States)

    Castaings, W.; Dartus, D.; Le Dimet, F.-X.; Saulnier, G.-M.

    2009-04-01

    Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised) with respect to model inputs. In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations) but didactic application case. It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run) and the singular value decomposition (SVD) of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation. For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers) is adopted. Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting.

  14. Estimation of Model and Parameter Uncertainty For A Distributed Rainfall-runoff Model

    Science.gov (United States)

    Engeland, K.

    The distributed rainfall-runoff model Ecomag is applied as a regional model for nine catchments in the NOPEX area in Sweden. Ecomag calculates streamflow on a daily time resolution. The posterior distribution of the model parameters is conditioned on the observed streamflow in all nine catchments, and calculated using Bayesian statistics. The distribution is estimated by Markov chain Monte Carlo (MCMC). The Bayesian method requires a definition of the likelihood of the parameters. Two alter- native formulations are used. The first formulation is a subjectively chosen objective function describing the goodness of fit between the simulated and observed streamflow as it is used in the GLUE framework. The second formulation is to use a more statis- tically correct likelihood function that describes the simulation errors. The simulation error is defined as the difference between log-transformed observed and simulated streamflows. A statistical model for the simulation errors is constructed. Some param- eters are dependent on the catchment, while others depend on climate. The statistical and the hydrological parameters are estimated simultaneously. Confidence intervals, due to the uncertainty of the Ecomag parameters, for the simulated streamflow are compared for the two likelihood functions. Confidence intervals based on the statis- tical model for the simulation errors are also calculated. The results indicate that the parameter uncertainty depends on the formulation of the likelihood function. The sub- jectively chosen likelihood function gives relatively wide confidence intervals whereas the 'statistical' likelihood function gives more narrow confidence intervals. The statis- tical model for the simulation errors indicates that the structural errors of the model are as least as important as the parameter uncertainty.

  15. Effect of dietary protein sources on production performance, egg quality, and plasma parameters of laying hens

    Science.gov (United States)

    Wang, Xiaocui; Zhang, Haijun; Wang, Hao; Wang, Jing; Wu, Shugeng; Qi, Guanghai

    2017-01-01

    Objective This study was conducted to evaluate the effects of dietary protein sources (soybean meal, SBM; low-gossypol cottonseed meal, LCSM; double-zero rapeseed meal, DRM) on laying performance, egg quality, and plasma parameters of laying hens. Methods A total of 432 32-wk-old laying hens were randomly divided into 6 treatments with 6 replicates of 12 birds each. The birds were fed diets containing SBM, LCSM100, or DRM100 individually or in combination with an equal amount of crude protein (CP) (LCSM50, DRM50, and LCSM50-DRM50). The experimental diets, which were isocaloric (metabolizable energy, 11.11 MJ/kg) and isonitrogenous (CP, 16.5%), had similar digestible amino acid profile. The feeding trial lasted 12 weeks. Results The daily egg mass was decreased in the LCSM100 and LCSM50-DRM50 groups (p0.05) and showed increased yolk color at the end of the trial (p0.05). Conclusion Together, our results suggest that the LCSM100 or DRM100 diets may produce the adverse effects on laying performance and egg quality after feeding for 8 more weeks. The 100.0 g/kg LCSM diet or the148.7 g/kg DRM diet has no adverse effects on laying performance and egg quality. PMID:27608634

  16. Parameter Study of Plasma-Induced Atmospheric Sputtering and Heating at Mars

    Science.gov (United States)

    Williamson, Hayley N.; Johnson, Robert E.; Leblanc, Francois

    2014-11-01

    Atoms and molecules in Mars’ upper atmosphere are lost predominately through sputtering, caused by the impact of ions into the exosphere, dissociative recombination, and thermal escape. While all three processes are thought to occur on Mars, a detailed understanding must ascertain the relative importance of each process, due to time variations in pick-up and solar wind ions. In this project, using case studies of an oxygen atmosphere modeled with Direct Simulation Monte Carlo techniques, we have endeavored to categorize when the momentum transfer or thermal escape is more likely to occur. To do this, we vary the incident plasma flux and energy based on models of the interaction of the solar wind with the Martian atmosphere. We first repeat the heating and sputtering rates due to a flux of pick-up O+ examined previously (Johnson et al. 2000; Michael and Johnson 2005; Johnson et al 2013). We have used multiple examples of particle fluxes for various solar wind conditions, from steady solar wind conditions (Luhmann et al. 1992; Chaufray et al. 2007) to more extreme cases (Fang et al. 2013; Wang et al. 2014), which are thought to increase escape by several orders of magnitude. The goal is to explore the escape parameter space in preparation for the expected data from MAVEN on hot atoms and molecules in the Martian exosphere.

  17. Ion shell distributions as free energy source for plasma waves on auroral field lines mapping to plasma sheet boundary layer

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-06-01

    Full Text Available Ion shell distributions are hollow spherical shells in velocity space that can be formed by many processes and occur in several regions of geospace. They are interesting because they have free energy that can, in principle, be transmitted to ions and electrons. Recently, a technique has been developed to estimate the original free energy available in shell distributions from in-situ data, where some of the energy has already been lost (or consumed. We report a systematic survey of three years of data from the Polar satellite. We present an estimate of the free energy available from ion shell distributions on auroral field lines sampled by the Polar satellite below 6 RE geocentric radius. At these altitudes the type of ion shells that we are especially interested in is most common on auroral field lines close to the polar cap (i.e. field lines mapping to the plasma sheet boundary layer, PSBL. Our analysis shows that ion shell distributions that have lost some of their free energy are commonly found not only in the PSBL, but also on auroral field lines mapping to the boundary plasma sheet (BPS, especially in the evening sector auroral field lines. We suggest that the PSBL ion shell distributions are formed during the so-called Velocity Dispersed Ion Signatures (VDIS events. Furthermore, we find that the partly consumed shells often occur in association with enhanced wave activity and middle-energy electron anisotropies. The maximum downward ion energy flux associated with a shell distribution is often 10mWm-2 and sometimes exceeds 40mWm-2 when mapped to the ionosphere and thus may be enough to power many auroral processes. Earlier simulation studies have shown that ion shell distributions can excite ion Bernstein waves which, in turn, energise electrons in the parallel direction. It is possible that ion shell distributions are the link between the X-line and the auroral wave activity and electron

  18. Solution of distributive problems with synthesis of radar information fields parameters

    Directory of Open Access Journals (Sweden)

    А. В. Нестеров

    1999-05-01

    Full Text Available Considered is the approach to solution of the problems of synthesis of radar and information fields parameters. It is proposed that, as the result of the synthesis, the structure of location of ground radar components should be determined. The optimal location of radar and information system is supposed to be determined by the results of the solution of the distribution problems. Considered are three sets of problems: method of linear programming, method of non-linear programming, method of scanning theory. Described are the distinctive features of each method, their advantages and disadvantages also the groups of determining parameters; an advice is given as to the use of particular approach

  19. Block-Nordsieck summation and partonic distributions in impact parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Corsetti, A. [Rome Univ. `La Sapienza (Italy). INFN, Dept. of Physics; Grau, A. [Universidada de Granada (Spain). Dep. de Fisica Teorica y del Cosmos; Pancheri, G. [INFN, Laboratori nazionali di Frascati, Rome (Italy); Srivastava, Y.N. [Perugia Univ. (Italy). INFN, Dept. of Physics

    1996-02-01

    A model for the parton distributions of hadrons in impact parameter space has been constructed using soft gluon summation. This model incorporates the salient features of distributions obtained from the intrinsic transverse momentum behaviour of hadrons. Under the assumption that the intrinsic behaviour is dominated by soft gluon emission stimulated by the scattering process, the b-spectrum becomes softer and softer as the scattering energy increases. In minijet models for the inclusive cross-sections, this will counter the increase from {sigma}{sub j}et.

  20. Angular distributions of the quenched energy flow from dijets with different radius parameters in CMS

    Science.gov (United States)

    McGinn, Christopher F.

    2016-12-01

    The flow of the quenched energy in imbalanced dijet events has been previously studied by transverse vector sum of charged particles with the CMS detector, namely the missing pT measurement. The results have led to new theoretical insights to order to explain the wide angle radiation. The missing pT technique has been improved so that it allows the study of angular distribution of the energy flow with respect to the dijet axis. The measurements are performed using different distance parameters R with the anti-kT clustering algorithm, which provide information about how the angular distribution of the quenched energy depends on the jet width.

  1. Plasma protein-binding parameters of prednisolone in immune disease patients receiving long-term prednisone therapy.

    Science.gov (United States)

    Wagner, J G; Wexler, D; Ağabeyoğlu, I T; Bergstrom, R F; Sakmar, E; Kay, D R

    1981-04-01

    Prednisone and prednisolone bind in plasma to albumin and transcortin. In am attempt to determine whether prednisone side effects and/or type of disease correlated with prednisolone plasma protein binding, multiple plasma samples from 17 patients (three asthma, eight SLE, three RA, two PSS, one PAN) receiving long-term prednisone therapy were monitored during an interval between two prednisone doses. Prednisolone plasma protein binding was nonlinear and exhibited large intrapatient and interpatient variability. For the group, mean association constants of the prednisolone-albumin complex and the prednisolone-transcortin complex were 2.3 X 10(3) M-1 and 2.9 X 10(7) M-1, with coefficients of variation of 82% and 127%, respectively. SLE patients tended to have lower mean prednisolone association constants for albumin and transcortin than did other patients. The presence of corticosteroid side effects did not correlate with prednisolone plasma protein-binding parameters. The wide range of prednisolone free fraction noted in plasma from patients who achieved comparable total prednisolone plasma concentrations implies that administration of a uniform prednisone dose will not lead to a predictable clinical response.

  2. Solitary waves in a dusty plasma with charge fluctuation and dust size distribution and vortex like ion distribution

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, K. [Department of Physics, J.C.C. College, Kolkata 700 033 (India); Mishra, Amar P. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India); Roy Chowdhury, A. [High Energy Physics Division, Department of Physics Jadavpur University, Kolkata 700 032 (India)

    2006-07-15

    A modified KdV equation is derived for the propagation of non-linear waves in a dusty plasma, containing N different dust grains with a size distribution and charge fluctuation with electrons in the background. The ions are assumed to obey a vortex like distribution due to their non-isothermal nature. The standard distribution for the dust size is a power law. The variation of the soliton width is studied with respect to normalized size of the dust grains. A numerical solution of the equation is done by considering the soliton solution of the modified KdV as the initial pulse. It shows considerable broadening of the pulse variation of width with {beta} {sub 1} is shown.

  3. Effects of Dietary Supplementation of Some Antioxidants on Liver Antioxidant Status and Plasma Biochemistry Parameters of Heat-Stressed Quail

    Directory of Open Access Journals (Sweden)

    Senay Sarıca

    2017-07-01

    Full Text Available This study aimed to compare the dietary supplementation of oleuropein (O and α-tocopherol acetate (TA alone or with organic selenium (Se on liver antioxidant status and some plasma biochemistry parameters in Japanese quails reared under heat stress (HS. A total of 800, two-weeks old quails were kept in wire cages in the temperature-controlled rooms at either 22°C or 34°C for 8 h/d and fed on a basal diet (NC or the diets supplemented with TA (TA200 or O (O200 at 200 mg/kg alone or with OSe (TA200+OSe and O200+OSe to the NC diet. HS decreased the total antioxidant status (TAS and increased the total oxidative stress (TOS and oxidative stress index (OSI of liver compared to thermoneutral temperature (TN. The TA200, O200, TA200+OSe and O200+OSe diets increased TAS and decreased TOS of liver compared to those of quails fed NC. OSI was decreased by the TA200, O200 and TA200+OSe diets compared to NC and O200+OSe diets. HS reduced plasma albumin (A and total protein (TP concentrations, on the other hand, increased plasma glucose (G, total cholesterol (CHO and triglyceride (TG levels compared to TN. The TA200, O200, TA200+OSe and O200+OSe diets reduced plasma total CHO and TG levels and increased plasma A level. The TA200 and TA200+OSe diets reduced plasma G level and increased plasma TP levels compared to those of quails fed the other diets. In conclusion, dietary supplementation of vitamin E and oleuropein alone or with organic selenium is necessary to remove the negative effects of heat stress on liver antioxidant status and some plasma parameters of quails.

  4. Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins?

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius

    2008-12-01

    Full Text Available In this study, land surface related parameter distributions of a conceptual semi-distributed hydrological model are constrained by employing time series of satellite-based evaporation estimates during the dry season as explanatory information. The approach has been applied to the ungauged Luangwa river basin (150 000 (km2 in Zambia. The information contained in these evaporation estimates imposes compliance of the model with the largest outgoing water balance term, evaporation, and a spatially and temporally realistic depletion of soil moisture within the dry season. The model results in turn provide a better understanding of the information density of remotely sensed evaporation. Model parameters to which evaporation is sensitive, have been spatially distributed on the basis of dominant land cover characteristics. Consequently, their values were conditioned by means of Monte-Carlo sampling and evaluation on satellite evaporation estimates. The results show that behavioural parameter sets for model units with similar land cover are indeed clustered. The clustering reveals hydrologically meaningful signatures in the parameter response surface: wetland-dominated areas (also called dambos show optimal parameter ranges that reflect vegetation with a relatively small unsaturated zone (due to the shallow rooting depth of the vegetation which is easily moisture stressed. The forested areas and highlands show parameter ranges that indicate a much deeper root zone which is more drought resistent. Clustering was consequently used to formulate fuzzy membership functions that can be used to constrain parameter realizations in further calibration. Unrealistic parameter ranges, found for instance in the high unsaturated soil zone values in the highlands may indicate either overestimation of satellite-based evaporation or model structural deficiencies. We believe that in these areas, groundwater uptake into the root zone and lateral movement of

  5. Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long

    2011-01-01

    Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.

  6. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    Science.gov (United States)

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  7. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    CERN Document Server

    Kronberg, E A; Haaland, S E; Daly, P W; Delcourt, D C; Luo, H; Kistler, L M; Dandouras, I

    2016-01-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure ($\\mathit{P}_{dyn}$) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW $\\mathit{P}_{dyn}$, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of t...

  8. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    Science.gov (United States)

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  9. On the ordinary mode Weibel instability in space plasmas: A comparison of three-particle distributions

    Science.gov (United States)

    Rubab, Nazish; Chian, Abraham C.-L.; Jatenco-Pereira, Vera

    2016-03-01

    Electromagnetic wave fluctuations driven by temperature anisotropy in plasmas are of interest for solar flare, solar corona, and solar wind studies. We investigate the dispersion characteristics of electromagnetic wave propagating perpendicular to the uniform magnetic field which is derived by using multiple particle distribution functions: Maxwellian, bi-kappa, and product bi-kappa. The presence of temperature anisotropy in which the parallel plasma kinetic energy density exceeding by a sufficient amount can lead to Weibel-like electromagnetic instability. A general description is made to calculate the growth/damping rates of Weibel-like modes when the temperature anisotropy and nonthermal features are associated with these distributions. We demonstrate that for the zeroth cyclotron harmonic, our results for bi-Maxwellian and bi-kappa overlap with each other, while the product bi-kappa distribution shows some dependence on parallel kappa index. For higher harmonics, the growth rates vanish and the damping prevails.

  10. Influence of laser design parameters on the hydrodynamics of microfusion plasmas; Influencia de los parametros basicos del laser sobre la hidrodinamica de plasmas para microfusion

    Energy Technology Data Exchange (ETDEWEB)

    Sanmartin, J. A.; Barrero, A.

    1976-07-01

    The quasi neutral, one dimensional motion generated in a cold, infinite, uniform plasma of density n{sub 0}, by the absorption, In a given plane, of a linear pulse of energy per unit time and area {phi} - {phi}{sub 0}t/{tau}, 0< t {<=} {tau}, is considered; the analysis allows for thermal conduction and viscosity of ions and electrons, their energy exchange, and an electron thermal flux limiter. The motion is found to be self similar and governed by single non dimensional parameter {alpha} similar{sub t}o(n{sup 2}{sub 0} {tau}/{phi}{sub 0}){sup 2}/3. Detailed asymptotic results are obtained for both {alpha}<<1and {alpha}>>1; the general (behaviour of the solution for arbitrary {alpha} is discussed. The analysis can be easily extended to the case of a plasma initially occupying a half-space, and throws light on the hydrodynamics of laser fusion plasmas. (Author) 51 refs.

  11. Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Sakthivel, R.

    2016-05-01

    The theoretical and numerical studies have been investigated on nonlinear propagation of weakly relativistic ion acoustic solitary waves in an unmagnetized plasma system consisting of nonextensive electrons, positrons and relativistic thermal ions. To study the characteristics of nonlinear propagation of the three-component plasma system, the reductive perturbation technique has been applied to derive the Korteweg-de Vries equation, which divulges the soliton-like solitary wave solution. The ansatz method is employed to carry out the integration of this equation. The effects of nonextensive electrons, positrons and relativistic thermal ions on phase velocity, amplitude and width of soliton and electrostatic nonlinear propagation of weakly relativistic ion acoustic solitary waves have been discussed taking different plasma parameters into consideration. The obtained results can be useful in understanding the features of small amplitude localized relativistic ion acoustic solitary waves in an unmagnetized three-component plasma system for hard thermal photon production with relativistic heavy ions collision in quark-gluon plasma as well as for astrophysical plasmas.

  12. Interfacial microstructures and hardness distributions of vacuum plasma spraying W-coated ODS ferritic steels for fusion plasma facing applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Nagasaka, Takuya [National Institute for Fusion Science, Toki, Gifu (Japan); Sokolov, Mikhail A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-04-15

    In the present study, interfacial microstructures and hardness distributions of W-coated ODS steels as plasma facing structural materials were investigated. A vacuum plasma spraying (VPS) technique was employed to fabricate a W layer on the surface of the ODS ferritic steel substrates. The microstructural observations revealed that the VPS-W has very fine grains aligned toward the spraying direction, and a favorable interface between W and ODS ferritic steels by a mechanical inter-locking without an intermetallic layer. However, crack-type defects were found in VPS-W. Because a brittle inter-diffused layer does not exist at the joint interface, the hardness was gradually distributed in the joint region. After neutron irradiation, irradiation hardening significantly occurred in the VPS-W. However, the hardening of VPS-W was less than that of bulk W irradiated at 773 K. Thus, the VPS is considered to be one of the promising ways to join dissimilar materials between W and ODS steels, which can avoid the formation of an interfacial intermetallic layer and create favorable irradiation hardening resistance on the W coated layer.

  13. Influence of excited state spatial distributions on plasma diagnostics: Atmospheric pressure laser-induced He-H2 plasma

    Science.gov (United States)

    Monfared, Shabnam K.; Hüwel, Lutz

    2012-10-01

    Atmospheric pressure plasmas in helium-hydrogen mixtures with H2 molar concentrations ranging from 0.13% to 19.7% were investigated at times from 1 to 25 μs after formation by a Q-switched Nd:YAG laser. Spatially integrated electron density values are obtained using time resolved optical emission spectroscopic techniques. Depending on mixture concentration and delay time, electron densities vary from almost 1017 cm-3 to about 1014 cm-3. Helium based results agree reasonably well with each other, as do values extracted from the Hα and Hβ emission lines. However, in particular for delays up to about 7 μs and in mixtures with less than 1% hydrogen, large discrepancies are observed between results obtained from the two species. Differences decrease with increasing hydrogen partial pressure and/or increasing delay time. In mixtures with molecular hydrogen fraction of 7% or more, all methods yield electron densities that are in good agreement. These findings seemingly contradict the well-established idea that addition of small amounts of hydrogen for diagnostic purposes does not perturb the plasma. Using Abel inversion analysis of the experimental data and a semi-empirical numerical model, we demonstrate that the major part of the detected discrepancies can be traced to differences in the spatial distributions of excited helium and hydrogen neutrals. The model yields spatially resolved emission intensities and electron density profiles that are in qualitative agreement with experiment. For the test case of a 1% H2 mixture at 5 μs delay, our model suggests that high electron temperatures cause an elevated degree of ionization and thus a reduction of excited hydrogen concentration relative to that of helium near the plasma center. As a result, spatially integrated analysis of hydrogen emission lines leads to oversampling of the plasma perimeter and thus to lower electron density values compared to those obtained from helium lines.

  14. The ion velocity distribution of tokamak plasmas: Rutherford scattering at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Tammen, H.F.

    1995-01-10

    One of the most promising ways to gererate electricity in the next century on a large scale is nuclear fusion. In this process two light nuclei fuse and create a new nucleus with a smaller mass than the total mass of the original nuclei, the mass deficit is released in the form of kinetic energy. Research into this field has already been carried out for some decades now, and will have to continue for several more decades before a commercially viable fusion reactor can be build. In order to obtain fusion, fuels of extremely high temperatures are needed to overcome the repulsive force of the nuclei involved. Under these circumstances the fuel is fully ionized: it consists of ions and electrons and is in the plasma state. The problem of confining such a hot substance is solved by using strong magnetic fields. One specific magnetic configuration, in common use, is called the tokamak. The plasma in this machine has a toroidal, i.e. doughnut shaped, configuration. For understanding the physical processes which take place in the plasma, a good temporally and spatially resolved knowledge of both the ion and electron velocity distribution is required. The situation concerning the electrons is favourable, but this is not the case for the ions. To improve the existing knowledge of the ion velocity distribution in tokamak plasmas, a Rutherford scattering diagnostic (RUSC), designed and built by the FOM-Institute for Plasmaphysics `Rijnhuizen`, was installed at the TEXTOR tokamak in Juelich (D). The principle of the diagnostic is as follows. A beam of monoenergetic particles (30 keV, He) is injected vertically into the plasma. A small part of these particles collides elastically with the moving plasma ions. By determining the energy of a scattered beam particle under a certain angle (7 ), the initial velocity of the plasma ion in one direction can be computed. (orig./WL).

  15. On the design derivatives of eigenvalues and eigenvectors for distributed parameter systems

    Science.gov (United States)

    Reiss, R.

    1985-01-01

    In this paper, analytic expressions are obtained for the design derivatives of eigenvalues and eigenfunctions of self-adjoint linear distributed parameter systems. Explicit treatment of boundary conditions is avoided by casting the eigenvalue equation into integral form. Results are expressed in terms of the linear operators defining the eigenvalue problem, and are therefore quite general. Sufficiency conditions appropriate to structural optimization of eigenvalues are obtained.

  16. Online platform for simulations of ion energy distribution functions behind a plasma boundary sheath

    Science.gov (United States)

    Wollny, Alexander; Shihab, Mohammed; Brinkmann, Ralf Peter

    2012-10-01

    Plasma processes, particularly plasma etching and plasma deposition are crucial for a large variety of industrial manufacturing purposes. For these processes the knowledge of the ion energy distribution function plays a key role. Measurements of the ion energy and ion angular distribution functions (IEDF, IADF) are at least challenging and often impossible in industrial processes. An alternative to measurements of the IEDF are simulations. With this contribution we present a self-consistent model available online for everyone. The simulation of ion energy and ion angular distribution functions involves the well known plasma boundary sheath model by Brinkmann [1-4], which is controlled via a web interface (http://sheath.tet.rub.de). After a successful simulation run all results are evaluable within the browser and ready for download for further analysis.[4pt] [1] R.P. Brinkmann, J. Phys. D: Appl. Phys. 44, 042002 (2011)[0pt] [2] R.P. Brinkmann, J. Phys. D: Appl. Phys. 42, 194009 (2009)[0pt] [3] R.P. Brinkmann, J. App. Phys. 102, 093303 (2007)[0pt] [4] M. Kratzer et al., J. Appl. Phys. 90, 2169 (2001)

  17. Simulations of energy and angular distributions in plasma processing reactors using CFD-ACE +

    Science.gov (United States)

    Bhoj, Ananth; Jain, Kunal; Megahed, Mustafa

    2013-09-01

    Several plasma processing reactors employ energetic ion bombardment at the substrate to enable surface reactions such as plasma etching, deposition or sputtering. The knowledge and control of the energy and angular distributions is an important requirement and can be used to suppress or enhance reaction rates. The CFD-ACE + platform is used for reactor scale modeling of generic inductively coupled and capacitively coupled rf plasma reactors. CFD-ACE + has a coupled solver approach that includes modules to address in a sequential and iterative manner, fluid flow, heat transfer, the Poisson equation for electric fields, charged species transport equations for species fluxes, surface charge on dielectrics and chemical kinetics in the gas and on all plasma-bounding surfaces. The Monte Carlo transport module of CFD-ACE + is based on the work of Kushner and co-workers and tracks pseudo-particles representing actual species based on source functions in the reactor. Model outputs for visualization include species densities and energy and angular distribution functions. Results discussed will include the effect of process variables such as pressure, power and frequency on the energy and angular distributions. R. J. Hoekstra and M.J. Kushner, Journal of Applied Physics, 79, 2275 (1996).

  18. Investigation of the effect of laser parameters on the target, plume and plasma behavior during and after laser-solid interaction

    Science.gov (United States)

    Stancalie, A.; Ciobanu, S. S.; Sporea, D.

    2017-09-01

    A detailed theoretical and experimental analysis is performed for a wide range of laser operating conditions, typical for laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) experiments on copper metallic target. The plasma parameters were experimentally estimated from the line intensities ratio which reflects the relative population of neutral excited species in the plasma. In the case of LA experiments the highest temperature observed was 8210 ± 370 K. In case of LIBS measurements, a maximum temperature of 8123 K has been determined. The experimental results are in good agreement with a stationary, hydrodynamic model. We have theoretically investigated the plasma emission based on the generalized collisional-radiative model as implemented in the ADAS interconnected set of computer codes and data collections. The ionic population density distribution over the ground and excited states into the cooper plasma is graphically displayed as output from the code. The theoretical line intensity ratios are in good agreement with experimental values for the electron density and temperature range measured in our experiments.

  19. Effect of the initial plasma parameters on the structure of the current sheets developing in two-dimensional magnetic fields with a null line

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.; Bogdanov, S. Yu.

    2010-07-01

    The effect of the initial plasma parameters on the structure of the plasma of the current sheets that form in two-dimensional magnetic fields with a null line is studied by holographic interferometry. The evolution of the plasma sheets that develop in an initial low-density plasma, where a gas is mainly ionized by a pulse current passing through the plasma and initiating the formation of a current sheet, has been comprehensively studied for the first time. At the early stage of evolution, the spatial structure of such a plasma sheet differs substantially from the classic current sheets forming in a dense plasma. Nevertheless, extended plasma sheets with similar parameters form eventually irrespective of the initial plasma density.

  20. Building a Dispersion Relation Solver for Hot Plasmas with Arbitrary Non-relativistic Parallel Velocity Distributions

    Science.gov (United States)

    Fu, X.; Waters, T.; Gary, S. P.

    2014-12-01

    Collisionless space plasmas often deviate from Maxwellian-like velocity distributions. To study kinetic waves and instabilities in such plasmas, the dispersion relation, which depends on the velocity distribution, needs to be solved numerically. Most current dispersion solvers (e.g. WHAMP) take advantage of mathematical properties of the Gaussian (or generalized Lorentzian) function, and assume that the velocity distributions can be modeled by a combination of several drift-Maxwellian (or drift-Lorentzian) components. In this study we are developing a kinetic dispersion solver that admits nearly arbitrary non-relativistic parallel velocity distributions. A key part of any dispersion solver is the evaluation of a Hilbert transform of the velocity distribution function and its derivative along Landau contours. Our new solver builds upon a recent method to compute the Hilbert transform accurately and efficiently using the fast Fourier transform, while simultaneously treating the singularities arising from resonances analytically. We have benchmarked our new solver against other codes dealing with Maxwellian distributions. As an example usage of our code, we will show results for several instabilities that occur for electron velocity distributions observed in the solar wind.

  1. On The Estimation of Survival Function and Parameter Exponential Life Time Distribution

    Directory of Open Access Journals (Sweden)

    Hadeel S. Al-Kutubi

    2009-01-01

    Full Text Available Problem statement: The study and research of survival or reliability or life time belong to the same area of study but they may belong to a different area of application. In survival analysis one can use several life time distribution, exponential distribution with mean life time θ is one of them. To estimate this parameter and survival function we must be used estimation procedures with less MSE and MPE. Approach: The only statistical theory that combined modeling inherent uncertainty and statistical uncertainty is Bayesian statistics. The theorem of Bayes provided a solution to how learn from data. Bayes theorem was depending on prior and posterior distribution and standard Bayes estimator depends on Jeffery prior information. In this study we annexed Jeffery prior information to get the modify Bayes estimator and then compared it with standard Bayes estimator and maximum likelihood estimator to find the best (less MSE and MPE. Results: when we derived Bayesian and Maximum likelihood of the scale parameter and survival functions. Simulation study was used to compare between estimators and Mean Square Error (MSE and Mean Percentage Error (MPE of estimators are computed. Conclusion: The new proposed estimator of modify Bayes estimator in parameter and survival function was the best estimator (less MSE and MPE when we compared it with standard Bayes and maximum likelihood estimator.

  2. Modeling and simulation of ion energy distribution functions in technological plasmas

    CERN Document Server

    Mussenbrock, Thomas

    2011-01-01

    The highly advanced treatment of surfaces as etching and deposition is mainly enabled by the extraordinary properties of technological plasmas. The primary factors that influence these processes are the flux and the energy of various species, particularly ions, that impinge the substrate surface. These features can be theoretically described using the ion energy distribution function (IEDF). The article is intended to summarize the fundamental concepts of modeling and simulation of IEDFs from simplified models to self-consistent plasma simulations. Finally, concepts for controlling the IEDF are discussed.

  3. Approximation of the breast height diameter distribution of two-cohort stands by mixture models I Parameter estimation

    Science.gov (United States)

    Rafal Podlaski; Francis A. Roesch

    2013-01-01

    Study assessed the usefulness of various methods for choosing the initial values for the numerical procedures for estimating the parameters of mixture distributions and analysed variety of mixture models to approximate empirical diameter at breast height (dbh) distributions. Two-component mixtures of either the Weibull distribution or the gamma distribution were...

  4. Selection of outputs for distributed parameter systems by identifiability analysis in the time-scale domain

    Science.gov (United States)

    Teergele, Jane; Danai, Kourosh

    2015-12-01

    A method of sensor location selection is introduced for distributed parameter systems. In this method, the sensitivities of spatial outputs to model parameters are computed by a model and transformed via continuous wavelet transforms into the time-scale domain to characterise the shape attributes of output sensitivities and accentuate their differences. Regions are then sought in the time-scale plane wherein the wavelet coefficient of an output sensitivity surpasses all the others' as indication of the output sensitivity's distinctness. This yields a comprehensive account of identifiability each output provides to the model parameters as the basis of output selection. The proposed output selection strategy is demonstrated for a numerical case of pollutant dispersion by advection and diffusion in a two-dimensional area.

  5. A new algorithm for importance analysis of the inputs with distribution parameter uncertainty

    Science.gov (United States)

    Li, Luyi; Lu, Zhenzhou

    2016-10-01

    Importance analysis is aimed at finding the contributions by the inputs to the uncertainty in a model output. For structural systems involving inputs with distribution parameter uncertainty, the contributions by the inputs to the output uncertainty are governed by both the variability and parameter uncertainty in their probability distributions. A natural and consistent way to arrive at importance analysis results in such cases would be a three-loop nested Monte Carlo (MC) sampling strategy, in which the parameters are sampled in the outer loop and the inputs are sampled in the inner nested double-loop. However, the computational effort of this procedure is often prohibitive for engineering problem. This paper, therefore, proposes a newly efficient algorithm for importance analysis of the inputs in the presence of parameter uncertainty. By introducing a 'surrogate sampling probability density function (SS-PDF)' and incorporating the single-loop MC theory into the computation, the proposed algorithm can reduce the original three-loop nested MC computation into a single-loop one in terms of model evaluation, which requires substantially less computational effort. Methods for choosing proper SS-PDF are also discussed in the paper. The efficiency and robustness of the proposed algorithm have been demonstrated by results of several examples.

  6. Measuring the parameters of a high flux plasma in Proto-MPEX

    Science.gov (United States)

    Skeen, C.; Biewer, T. M.; Cantrell, C. L.; Klemm, J. C.; Musick, R. A.; Nunley, G.; Salazar Sanchez, J. S.; Sawyer, D. J.; Ray, H.; Shaw, G.; Showers, M.

    2016-10-01

    The Prototype Material Plasma Exposure Experiment (Proto-MPEX) is a linear, magnetically confined plasma production device, utilizing a helicon antenna. The plasma column interacts with a material target at the end of the device, creating plasma-material interaction conditions that are relevant to the conditions that are expected in future fusion reactors. Moreover, helicon antenna plasma sources have been proposed as propulsion devices for spacecraft. It has been observed that in some circumstances the Proto-MPEX plasma exerts sufficient force on the target plate to cause the target to recoil. A ballistic probe has been designed to measure the force and heat flux profile of the plasma. The probe response has been calibrated, using scales, thermocouples, and fast camera imaging. The ballistic probe has been inserted into Proto-MPEX plasmas and the heat flux profile of the plasma has been measured. Also the maximum force that is exerted on the probe has been estimated. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725, and the Oak Ridge Associated Universities ARC program.

  7. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  8. Empirical Likelihood based Confidence Regions for first order parameters of a heavy tailed distribution

    CERN Document Server

    Worms, Julien

    2010-01-01

    Let $X_1, \\ldots, X_n$ be some i.i.d. observations from a heavy tailed distribution $F$, i.e. such that the common distribution of the excesses over a high threshold $u_n$ can be approximated by a Generalized Pareto Distribution $G_{\\gamma,\\sigma_n}$ with $\\gamma >0$. This work is devoted to the problem of finding confidence regions for the couple $(\\gamma,\\sigma_n)$ : combining the empirical likelihood methodology with estimation equations (close but not identical to the likelihood equations) introduced by J. Zhang (Australian and New Zealand J. Stat n.49(1), 2007), asymptotically valid confidence regions for $(\\gamma,\\sigma_n)$ are obtained and proved to perform better than Wald-type confidence regions (especially those derived from the asymptotic normality of the maximum likelihood estimators). By profiling out the scale parameter, confidence intervals for the tail index are also derived.

  9. Consistency of change point estimators for symmetrical stable distribution with parameters shift

    Institute of Scientific and Technical Information of China (English)

    SHI XiaoPing; MIAO BaiQi; GE ChunLei

    2008-01-01

    Assume that the characteristic index α of stable distribution satisfies 1<α<2, and that the distribution is symmetrical about its mean. We consider the change point estimators for stable distribution with a or scale parameter β shift. For the one case that mean is a known constant, if or β changes, then density function will change too. To this end, we suppose the kernel estimation for a change point. For the other case that mean is an unknown constant, we suppose to apply empirical characteristic function to estimate the change-point location. In the two cases, we consider the consistency and strong convergence rate of estimators. Furthermore, we consider the mean shift case. If mean changes, then corresponding characteristic function will change too. To this end, we also apply empirical characteristic function to estimate change point. We obtain the similar convergence rate. Finally, we consider its application on the detection of mean shift in financial market.

  10. Determination of the Ion Velocity Distribution in a Rotating Plasma from Measurements of Doppler Broadening

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    The Doppler-broadened profile of the He II 4685.75 AA line was measured along a chord in a rotating plasma, transverse to the magnetic field. Using a single-particle orbit picture, the corresponding velocity spectrum of ions confirm the measurements, so it can be concluded that the single......-particle orbit picture is valid for the discharge period under investigation, except for the first few microseconds during breakdown when a strong interaction between plasma and remaining neutral gas takes place by Alfvens critical velocity mechanism. A simple relation is given between the measured half......-width and shift of the Doppler profile and the macroscopic quantities of ion velocity and energy. Several Doppler-broadened profiles are shown for different plasma parameters....

  11. Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins?

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius

    2008-08-01

    Full Text Available In this study, land surface related parameter distributions of a conceptual semi-distributed hydrological model are estimated by employing time series of satellite-based evaporation estimates during the dry season as explanatory information. A key application for this approach is to identify part of the parameter distribution space in ungauged river basins without the need for ground data. The information, contained in the evaporation estimates implicitly imposes compliance of the model with the largest water balance term, evaporation, and a spatially and temporally realistic depletion of soil moisture within the dry season. Furthermore, the model results can provide a better understanding of the information density of remotely sensed evaporation.

    The approach has been applied to the ungauged Luangwa river basin (150 000 (km2 in Zambia. Model units were delineated on the basis of similar land cover. For each model unit, model parameters for which evaporation is sensitive, have been conditioned on the evaporation estimates by means of Monte-Carlo sampling. The results show that behavioural parameter sets for model units with similar land cover, are indeed clustered. The clustering reveals hydrologically meaningful signatures in the parameter response surface: wetland-dominated areas (also called dambos show optimal parameter ranges that reflect a relatively small unsaturated zone (due to the shallow rooting depth of the vegetation and moisture stressed vegetation. The forested areas and evergreen highlands show parameter ranges that indicate a much deeper root zone and drought resistance.

    Unrealistic parameter ranges, found for instance in the high optimal field capacity values in the highlands may indicate model structural deficiencies. We believe that in these areas, groundwater uptake into the root zone and lateral movement of groundwater should be included in the model structure. Furthermore, a less distinct

  12. A Numerical Model for Ion Charge Distribution of Plasmas in Collisional Radiative Steady State

    Institute of Scientific and Technical Information of China (English)

    DUAN Yaoyong; GUO Yonghui; QIU Aici; KUAI Bin

    2009-01-01

    A numerical model for the charge state distribution of plasmas in a collisional ra-diative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations.It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas,ranging from low Z to high Z elements.The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision.Furthermore,the NLTE effects are investigated by virtue of the model,and the differences between CRSS and LTE models for low density plasmas are quite evident.

  13. Distributed parameter estimation in wireless sensor networks using fused local observations

    Science.gov (United States)

    Fanaei, Mohammad; Valenti, Matthew C.; Schmid, Natalia A.; Alkhweldi, Marwan M.

    2012-05-01

    The goal of this paper is to reliably estimate a vector of unknown deterministic parameters associated with an underlying function at a fusion center of a wireless sensor network based on its noisy samples made at distributed local sensors. A set of noisy samples of a deterministic function characterized by a nite set of unknown param- eters to be estimated is observed by distributed sensors. The parameters to be estimated can be some attributes associated with the underlying function, such as its height, its center, its variances in dierent directions, or even the weights of its specic components over a predened basis set. Each local sensor processes its observation and sends its processed sample to a fusion center through parallel impaired communication channels. Two local processing schemes, namely analog and digital, are considered. In the analog local processing scheme, each sensor transmits an amplied version of its local analog noisy observation to the fusion center, acting like a relay in a wireless network. In the digital local processing scheme, each sensor quantizes its noisy observation before trans- mitting it to the fusion center. A at-fading channel model is considered between the local sensors and fusion center. The fusion center combines all of the received locally-processed observations and estimates the vector of unknown parameters of the underlying function. Two dierent well-known estimation techniques, namely maximum-likelihood (ML), for both analog and digital local processing schemes, and expectation maximization (EM), for digital local processing scheme, are considered at the fusion center. The performance of the proposed distributed parameter estimation system is investigated through simulation of practical scenarios for a sample underlying function.

  14. Reliable estimation of adsorption isotherm parameters using adequate pore size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Husseinzadeh, Danial; Shahsavand, Akbar [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-05-15

    The equilibrium adsorption isotherm has a crucial effect on various characteristics of the solid adsorbent (e.g., pore volume, bulk density, surface area, pore geometry). A historical paradox exists in conventional estimation of adsorption isotherm parameters. Traditionally, the total amount of adsorb material (total adsorption isotherm) has been considered equivalent to the local adsorption isotherm. This assumption is only valid when the corresponding pore size or energy distribution (PSD or ED) of the porous adsorbent can be successfully represented with the Dirac delta function. In practice, the actual PSD (or ED) is far from such assumption, and the traditional method for prediction of local adsorption isotherm parameters leads to serious errors. Up to now, the powerful combination of inverse theory and linear regularization technique has drastically failed when used for extraction of PSD from real adsorption data. For this reason, all previous researches used synthetic data because they were not able to extract proper PSD from the measured total adsorption isotherm with unrealistic parameters of local adsorption isotherm. We propose a novel approach that can successfully provide the correct values of local adsorption isotherm parameters without any a priori and unrealistic assumptions. Two distinct methods are suggested and several illustrative (synthetic and real experimental) examples are presented to clearly demonstrate the effectiveness of the newly proposed methods on computing the correct values of local adsorption isotherm parameters. The so-called Iterative and Optima methods' impressive performances on extraction of correct PSD are validated using several experimental data sets.

  15. Reconstruction of air-shower parameters for large-scale radio detectors using the lateral distribution

    CERN Document Server

    Kostunin, D; Hiller, R; Schröder, F G; Lenok, V; Levinson, E

    2016-01-01

    We investigate features of the lateral distribution function (LDF) of the radio signal emitted by cosmic ray air-showers with primary energies $> 0.1$~EeV and its connection to air-shower parameters such as energy and shower maximum using CoREAS simulations made for the configuration of the Tunka-Rex antenna array. Taking into account all significant contributions to the total radio emission, such as by the geomagnetic effect, the charge excess, and the atmospheric refraction we parameterize the radio LDF. This parameterization is two-dimensional and has several free parameters. The large number of free parameters is not suitable for experiments of sparse arrays operating at low SNR (signal-to-noise ratios). Thus, exploiting symmetries, we decrease the number of free parameters and reduce the LDF to a simple one-dimensional function. The remaining parameters can be fit with a small number of points, i.e. as few as the signal from three antennas above detection threshold. Finally, we present a method for the r...

  16. Angular distribution of cosmological parameters as a probe of inhomogeneities: a kinematic parametrisation

    CERN Document Server

    Carvalho, C Sofia

    2016-01-01

    We use a kinematic parametrisation of the luminosity distance to measure the angular distribution on the sky of time derivatives of the scale factor, in particular the Hubble parameter H_0, the deceleration parameter q_0 and the jerk parameter j_0. We apply the method introduced in Carvalho & Marques (2015) to complement probing the inhomogeneity of the large-scale structure by means of the inhomogeneity in the cosmic expansion. This parametrisation is independent of the cosmological equation of state, which renderes it adequate to test interpretations of the cosmic acceleration alternative to the cosmological constant. We also measure the anisotropy of the parameters by computing the power spectrum of the corresponding parameters' maps up to ell=3. Finally for an analytical toy model of an inhomogeneous ensemble of homogenous pixels, we derive the backreaction term in j_0 due to the fluctuations of {H_0,q_0} and measure it to be of order 0.01 the corresponding average over the pixels in the absence of ba...

  17. Deka-keV X-ray observations of solar bursts with WATCH/GRANAT: frequency distributions of burst parameters

    Science.gov (United States)

    Crosby, N.; Vilmer, N.; Lund, N.; Sunyaev, R.

    1998-06-01

    Solar flare observations in the deka-keV range are performed by the WATCH experiment on board the GRANAT satellite. The WATCH experiment is presented, including the energy calibration as applied in the present work. The creation of the solar burst catalogue covering two years of observation is described and some examples of solar observations are given. The estimated energy releases in the flares presented here are found to extend below the range of hard X-ray flares which were previously studied by ISEE-3 and HXRBS/SMM detectors. The X-ray emitting component cannot be exclusively explained by contributions from a thermal plasma around a few keV. Either a hotter component or a non-thermal population of particles must also be present to produce the observed deka-keV emission. The WATCH data furthermore shows that the relative contributions of these components may change during an event or from event to event and that the injection of energy contained in suprathermal electrons may occur throughout an event and not only during the rise phase. For the most energetic WATCH flares simultaneous observations performed by other experiments at higher energies further indicate that non-thermal emission can be observed as low as 10 keV. A statistical study is performed on the total WATCH solar database and frequency distributions are built on measured X-ray flare parameters. It is also investigated how the properties of these frequency distributions behave when subgroups of events defined by different ranges of parameters are considered. No correlation is found between the elapsed time interval between successive flares arising from the same active region and the peak intensity of the flare.

  18. Nicotine, cotinine, and trans-3-hydroxycotinine levels in seminal plasma of smokers: effects on sperm parameters.

    Science.gov (United States)

    Pacifici, R; Altieri, I; Gandini, L; Lenzi, A; Pichini, S; Rosa, M; Zuccaro, P; Dondero, F

    1993-10-01

    Sperm samples from 44 cigarette smokers and 50 nonsmokers attending an infertility clinic were examined by high-performance liquid chromatography (HPLC) assay and HPLC-mass spectrometry for the presence of nicotine (NIC), cotinine (COT), and trans-3'-hydroxycotinine (THOC) in seminal plasma. Smokers were found to have levels of COT and THOC in seminal plasma that were similar to those found in serum. The level of NIC was significantly increased in seminal plasma compared to serum. Total motility of spermatozoa was significantly and negatively correlated to COT and THOC levels in seminal plasma. Forward motility of spermatozoa was correlated only with cotinine semen levels. On the basis of these results, we suggest that the presence of tobacco smoke constituents in seminal plasma could provide a warning of the adverse effects of cigarette smoke on the physiology of reproduction.

  19. Effect of applying static electric field on the physical parameters and dynamics of laser-induced plasma

    Directory of Open Access Journals (Sweden)

    Asmaa Elhassan

    2010-04-01

    Full Text Available In order to improve the performance of the LIBS technique – in particular its sensitivity, reproducibility and limit of detection – we studied the effect of applying a static electric field with different polarities on the emission spectra obtained in a typical LIBS set-up. The physical parameters of the laser-induced plasma, namely the electron density Ne and the plasma temperature Te, were studied under such circumstances. In addition to the spectroscopic analysis of the plasma plume emission, the laser-induced shock waves were exploited to monitor the probable changes in the plasma plume dynamics due to the application of the electric field. The study showed a pronounced enhancement in the signal-to-noise (S/N ratio of different Al, neutral and ionic lines under forward biasing voltage (negative target and positive electrode. On the other hand, a clear deterioration of the emission line intensities was observed under conditions of reversed polarity. This negative effect may be attributed to the reduction in electron-ion recombinations due to the stretched plasma plume. The plasma temperature showed a constant value in the average with the increasing electric field in both directions. This effect may be due to the fact that the measured values of Te were averaged over the whole plasma emission volume. The electron density was observed to decrease slightly in the case of forward biasing while no significant effect was noticed in the case of reversed biasing. This slight decrease in Ne can be interpreted in view of the increase in the rate of electron–ion recombinations due to the presence of the electric field. No appreciable effects of the applied electric field on the plasma dynamics were noticed.

  20. Elevated aerosols and role of circulation parameters in aerosol vertical distribution

    Science.gov (United States)

    Prijith, S. S.; Aloysius, Marina; Mohan, Mannil; Rao, P. V. N.

    2016-01-01

    The study examines aerosol loading in different vertical layers of the atmosphere and explores the role of atmospheric circulation parameters in vertical distribution of aerosols and in its seasonal variability. Aerosol vertical distribution over the globe is examined, using long term satellite observations, by considering aerosol loading in different layers of atmosphere upto ∼6 km altitudes from surface and fractional contribution of each of these layers to total columnar aerosol loading. Aerosols are observed residing close to the surface in most of the oceanic environments, except over certain regions which are in the close proximity of continents where upper level winds are conducive for long range aerosol transport. In contrast, considerable vertical spread in aerosol distribution with strong seasonal variability, minimum occurring in winter months and maximum in summer, is observed over the continental regions. Vertical spread in aerosol distribution is observed highest over north eastern and north western parts of Africa during northern hemispheric summer, when the convection activity peaks over these regions due to large solar insolation and associated surface heating. Seasonal variation of aerosol vertical spread over both of these regions is observed in phase with variation in atmospheric convergence and vorticity. During summer months, when the aerosol vertical spread is highest, strong surface level convergence and associated cyclonic vorticity is observed along with an upper level (700-600 hPa) divergence. The surface level convergence and upper level divergence together induce an upward flow of air which carries aerosols from ground to higher altitudes. This mechanism of aerosol vertical transport is further corroborated through the correlation and regression relations of surface convergence/vorticity with aerosol loading above different elevations and hence the study reveals role of circulation parameters in aerosol vertical distribution.

  1. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh., E-mail: ravus46@yandex.ru; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  2. Estimation of parameters in a distributed precipitation-runoff model for Norway

    Directory of Open Access Journals (Sweden)

    S. Beldring

    2003-01-01

    Full Text Available A distributed version of the HBV-model using 1 km2 grid cells and daily time step was used to simulate runoff from the entire land surface of Norway for the period 1961-1990. The model was sensitive to changes in small scale properties of the land surface and the climatic input data, through explicit representation of differences between model elements, and by implicit consideration of sub-grid variations in moisture status. A geographically transferable set of model parameters was determined by a multi-criteria calibration strategy, which simultaneously minimised the residuals between model simulated and observed runoff from 141 Norwegian catchments located in areas with different runoff regimes and landscape characteristics. Model discretisation units with identical landscape classification were assigned similar parameter values. Model performance was evaluated by simulating discharge from 43 independent catchments. Finally, a river routing procedure using a kinematic wave approximation to open channel flow was introduced in the model, and discharges from three additional catchments were calculated and compared with observations. The model was used to produce a map of average annual runoff for Norway for the period 1961-1990. Keywords: distributed model, multi-criteria calibration, global parameters, ungauged catchments.

  3. An evaluation of earthquake hazard parameters in the Iranian Plateau based on the Gumbel III distribution

    Science.gov (United States)

    Mohammadi, Hiwa; Bayrak, Yusuf

    2016-04-01

    The Gumbel's third asymptotic distribution (GIII) of the extreme value method is employed to evaluate the earthquake hazard parameters in the Iranian Plateau. This research quantifies spatial mapping of earthquake hazard parameters like annual and 100-year mode beside their 90 % probability of not being exceeded (NBE) in the Iranian Plateau. Therefore, we used a homogeneous and complete earthquake catalogue during the period 1900-2013 with magnitude M w ≥ 4.0, and the Iranian Plateau is separated into equal area mesh of 1° late × 1° long. The estimated result of annual mode with 90 % probability of NBE is expected to exceed the values of M w 6.0 in the Eastern part of Makran, most parts of Central and East Iran, Kopeh Dagh, Alborz, Azerbaijan, and SE Zagros. The 100-year mode with 90 % probability of NBE is expected to overpass the value of M w 7.0 in the Eastern part of Makran, Central and East Iran, Alborz, Kopeh Dagh, and Azerbaijan. The spatial distribution of 100-year mode with 90 % probability of NBE uncovers the high values of earthquake hazard parameters which are frequently connected with the main tectonic regimes of the studied area. It appears that there is a close communication among the seismicity and the tectonics of the region.

  4. Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution

    Science.gov (United States)

    Wirawati, Ika; Iriawan, Nur; Irhamah

    2017-06-01

    Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.

  5. Cable Overheating Risk Warning Method Based on Impedance Parameter Estimation in Distribution Network

    Science.gov (United States)

    Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao

    2017-05-01

    Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.

  6. Distributed Bees Algorithm Parameters Optimization for a Cost Efficient Target Allocation in Swarms of Robots

    Directory of Open Access Journals (Sweden)

    Álvaro Gutiérrez

    2011-11-01

    Full Text Available Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA, previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce.

  7. Binomial Distribution Sample Confidence Intervals Estimation 1. Sampling and Medical Key Parameters Calculation

    Directory of Open Access Journals (Sweden)

    Tudor DRUGAN

    2003-08-01

    Full Text Available The aim of the paper was to present the usefulness of the binomial distribution in studying of the contingency tables and the problems of approximation to normality of binomial distribution (the limits, advantages, and disadvantages. The classification of the medical keys parameters reported in medical literature and expressing them using the contingency table units based on their mathematical expressions restrict the discussion of the confidence intervals from 34 parameters to 9 mathematical expressions. The problem of obtaining different information starting with the computed confidence interval for a specified method, information like confidence intervals boundaries, percentages of the experimental errors, the standard deviation of the experimental errors and the deviation relative to significance level was solves through implementation in PHP programming language of original algorithms. The cases of expression, which contain two binomial variables, were separately treated. An original method of computing the confidence interval for the case of two-variable expression was proposed and implemented. The graphical representation of the expression of two binomial variables for which the variation domain of one of the variable depend on the other variable was a real problem because the most of the software used interpolation in graphical representation and the surface maps were quadratic instead of triangular. Based on an original algorithm, a module was implements in PHP in order to represent graphically the triangular surface plots. All the implementation described above was uses in computing the confidence intervals and estimating their performance for binomial distributions sample sizes and variable.

  8. Distributed bees algorithm parameters optimization for a cost efficient target allocation in swarms of robots.

    Science.gov (United States)

    Jevtić, Aleksandar; Gutiérrez, Alvaro

    2011-01-01

    Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the distributed bees algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA's control parameters by means of a genetic algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots' distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce.

  9. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  10. Fundamental limitations of the local approximation for electron distribution function and fluid model in bounded plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, M. B., E-mail: mihail.krasilnikov@gmail.com; Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Kapustin, K. D. [St. Petersburg University ITMO, St. Petersburg 197101 (Russian Federation)

    2014-12-15

    It is shown that the local approximation for computing the electron distribution function depends both on the ratio between the energy relaxation length and a characteristic plasma length and on the ratio between heating and ambipolar electric fields. In particular, the local approximation is not valid at the discharge periphery even at high pressure due to the fact that the ambipolar electric field practically always is larger than the heating electric field.

  11. Distribution and Determinants of Plasma Homocysteine Levels in Rural Chinese Twins across the Lifespan

    OpenAIRE

    Yuelong Ji; Xiangyi Kong; Guoying Wang; Xiumei Hong; Xin Xu; Zhu Chen; Tami Bartell; Xiping Xu; Genfu Tang; Fanfan Hou; Yong Huo; Xiaobin Wang; Binyan Wang

    2014-01-01

    Plasma homocysteine (Hcy) is a modifiable, independent risk factor for cardiovascular disease (CVD) and is affected by both environmental and genetic factors. This study aimed to describe the gender- and age-specific distribution of Hcy concentration for 1117 subjects aged 10–66 years, a subset of a community-based rural Chinese twin cohort. In addition, we examined environmental and genetic contributions to variances in Hcy concentration by gender and age groups. We found that the distributi...

  12. Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jizheng; Wang Canglong; Zhang Jianrong; Ma Shengqian; Hong Xueren; Sun Jianan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Duan Wenshan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Yang Lei [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2012-08-15

    The effects of dust size distribution and charging process of dust grains on the complex electric conductivity of dusty plasmas have been investigated in the present paper. Comparisons are made between real dusty plasma in which there are many different dust grain species and the mono-sized dusty plasma (MDP) in which there is only one kind of dust grain whose size is the average dust size. In some cases the complex electric conductivity of real dusty plasma is larger than that of MDP, while in other cases it is smaller than that of MDP, it depends on the dust size distribution function.

  13. Incoherent scatter spectra from plasma of a 13-moment approximation distribution function

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The function and physical mechanism of heat flow and the viscous stress in the velocity distribution function expanded by Maxwellian distribution are presented. With the introduction of effective temperature Tf, incoherent scatter spectra from plasma for electromagnetic wave in arbitrary line of sight are given. The effect of asymmetry and anisotropy provided by heat flow and the viscous stress on power spectra is discussed. Radar spectra are calculated for different cases of electric field, direction, collision frequency and temperature. The effect of heat flow and the viscous stress on inversion results is analyzed. With a large electric field, the character of non-Maxwellian must be considered.

  14. Weibel instability with nonextensive distribution

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hui-Bin; Liu, Shi-Bing [Strong-field and Ultrafast Photonics Lab, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China)

    2013-10-15

    Weibel instability in plasma, where the ion distribution is isotropic and the electron component of the plasma possesses the anisotropic temperature distribution, is investigated based on the kinetic theory in context of nonextensive statistics mechanics. The instability growth rate is shown to be dependent on the nonextensive parameters of both electron and ion, and in the extensive limit, the result in Maxwellian distribution plasma is recovered. The instability growth rate is found to be enhanced as the nonextensive parameter of electron increases.

  15. Optimal Configuration of Fault-Tolerance Parameters for Distributed Server Access

    DEFF Research Database (Denmark)

    Daidone, Alessandro; Renier, Thibault; Bondavalli, Andrea

    2013-01-01

    Server replication is a common fault-tolerance strategy to improve transaction dependability for services in communications networks. In distributed architectures, fault-diagnosis and recovery are implemented via the interaction of the server replicas with the clients and other entities such as e...... in replicated server architectures. In order to obtain insight into the system behaviour, a set of relevant environment parameters and controllable fault-tolerance parameters are chosen and the dependability/performance trade-off is evaluated....... such as enhanced name servers. Such architectures provide an increased number of redundancy configuration choices. The influence of a (wide area) network connection can be quite significant and induce trade-offs between dependability and user-perceived performance. This paper develops a quantitative stochastic...

  16. An approximation theory for the identification of nonlinear distributed parameter systems

    Science.gov (United States)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1990-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato appproximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  17. One-Bit Quantization and Distributed Detection with an Unknown Scale Parameter

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2015-08-01

    Full Text Available We examine a distributed detection problem in a wireless sensor network, where sensor nodes collaborate to detect a Gaussian signal with an unknown change of power, i.e., a scale parameter. Due to power/bandwidth constraints, we consider the case where each sensor quantizes its observation into a binary digit. The binary data are then transmitted through error-prone wireless links to a fusion center, where a generalized likelihood ratio test (GLRT detector is employed to perform a global decision. We study the design of a binary quantizer based on an asymptotic analysis of the GLRT. Interestingly, the quantization threshold of the quantizer is independent of the unknown scale parameter. Numerical results are included to illustrate the performance of the proposed quantizer and GLRT in binary symmetric channels (BSCs.

  18. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    Science.gov (United States)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  19. One high-efficiency analysis method for high-speed circuit networks containing distributed parameter elements

    Institute of Scientific and Technical Information of China (English)

    Lei DOU; Zhiquan WANG

    2005-01-01

    In the field of high-speed circuits,the analysis of mixed circuit networks containing both distributed parameter elements and lumped parameter elements becomes ever important.This paper presents a new method for analyzing mixed circuit networks.It adds transmission line end currents to the circuit variables of the classical modified nodal approach and can be applied directly to the mixed circuit networks.We also introduce a frequency-domain technique without requiring decoupling for multiconductor transmission lines.The two methods are combined together to efficiently analyze high-speed circuit networks containing uniform,nonuniform,and frequency-dependent transmission lines.Numerical experiment is presented and the results are compared with that computed by PSPICE.

  20. Modulated Pulses Based High Spatial Resolution Distributed Fiber System for Multi-Parameter Sensing

    CERN Document Server

    Zhang, Jingdong; Zhou, Huan; Li, Yang; Liu, Min; Huang, Wei

    2016-01-01

    We demonstrate a hybrid distributed fiber sensing system for multi-parameter detection. The integration of phase-sensitive optical time domain reflectometry ({\\Phi}-OTDR) and Brillouin optical time domain reflectometry (B-OTDR) enables measurement of vibration, temperature and strain. Exploiting the fast changing property of vibration and the static property of temperature and strain, the laser pulse width and intensity are modulated and then injected into the single-mode sensing fiber proportionally, so that the three concerned parameters can be extracted simultaneously by only one photo-detector and data acquisition channel. Combining with advanced data processing methods, the modulation of laser pulse brings additional advantages because of trade and balance between the backscattering light power and nonlinear effect noise, which enhances the signal-to-noise ratio, and enables sub-meter level spatial resolution together with long sensing distance. The proposed method realizes up to 4.8 kHz vibration sensin...

  1. An informative prior probability distribution of the gompertz parameters for bayesian approaches in paleodemography.

    Science.gov (United States)

    Sasaki, Tomohiko; Kondo, Osamu

    2016-03-01

    In paleodemography, the Bayesian approach has been suggested to provide an effective means by which mortality profiles of past populations can be adequately estimated, and thus avoid problems of "age-mimicry" inherent in conventional approaches. In this study, we propose an application of the Gompertz model using an "informative" prior probability distribution by revising a recent example of the Bayesian approach based on an "uninformative" distribution. Life-table data of 134 human populations including those of contemporary hunter-gatherers were used to determine the Gompertz parameters of each population. In each population, we used both raw life-table data and the Gompertz parameters to calculate some demographic values such as the mean life-span, to confirm representativeness of the model. Then, the correlation between the two Gompertz parameters (the Strehler-Mildvan correlation) was re-established. We incorporated the correlation into the Bayesian approach as an "informative" prior probability distribution, and tested its effectiveness using simulated data. Our analyses showed that the mean life-span (≥ age 15) and the proportion of living persons aging over 45 were well-reproduced by the Gompertz model. The simulation showed that using the correlation as an informative prior provides a narrower estimation range in the Bayesian approach than does the uninformative prior. The Gompertz model can be assumed to accurately estimate the mean life-span and/or the proportion of old people in a population. We suggest that the Strehler-Mildvan correlation can be used as a useful constraint in demographic reconstructions of past human populations. © 2015 Wiley Periodicals, Inc.

  2. Effect of magnetic configuration on plasma parameters in the H-1 heliac

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, B.D.; Pretty, D.G.; Harris, J.H.; Howard, J.; Shats, M.G.; Collis, S.M.; Gardner, H.J.; Michael, C.A.; Punzmann, H. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering Australian National University, ACT (Australia)

    2003-07-01

    The H-1 heliac is a current-free stellarator with a helical magnetic axis which twists around the machine axis (a circular ring conductor, radius 1m) three times in one toroidal rotation. It us a ''flexible'' heliac composed almost entirely of circular coils with the exception of the helical control winding, which also wraps around the ring conductor, in phase with the magnetic axis of the plasma, but with a smaller swing radius (95 mm c.f. {proportional_to} 230 mm). In addition to indicating particle confinement times, this phenomenon may be sensitive to plasma generation efficiency. There may be some interaction between configuration and impurity generation, as plasma boundaries and strike points are varied. Various plasma conditions and formation techniques are compared. (orig.)

  3. Influence of instrumental parameters on the kinetic energy of ions and plasma temperature for a hexapole collision/reaction-cell-based inductively coupled plasma quadrupole mass spectrometer.

    Science.gov (United States)

    Favre, Georges; Brennetot, René; Chartier, Frédéric; Tortajada, Jeanine

    2009-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in inorganic analytical chemistry for element and/or isotope ratio measurements. The presence of interferences, which is one of the main limitations of this method, has been addressed in recent years with the introduction of collision/reaction cell devices on ICP-MS apparatus. The study of ion-molecule reactions in the gas phase then became of great importance for the development of new analytical strategies. Knowing the kinetic energy and the electronic states of the ions prior to their entrance into the cell, i.e., just before they react, thereby constitutes crucial information for the interpretation of the observed reactivities. Such studies on an ICP-MS commonly used for routine analyses require the determination of the influence of different instrumental parameters on the energy of the ions and on the plasma temperature from where ions are sampled. The kinetic energy of ions prior to their entrance into the cell has been connected to the voltage applied to the hexapole according to a linear relationship determined from measurements of ion energy losses due to collisions with neutral gas molecules. The effects of the plasma forward power, sampling depth, and the addition of a torch shield to the ICP source were then examined. A decrease of the plasma potential due to the torch shielding, already mentioned in the literature, has been quantified in this study at about 3 V.

  4. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    Science.gov (United States)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  5. An improved model to analyze Langmuir probe assisted photo-detachment signal for measuring electronegative plasma parameters

    Science.gov (United States)

    Sirse, Nishant; Oudini, Noureddine; Bendib, Abderrezeg; Ellingboe, Albert R.

    2016-09-01

    A diagnostic technique for measuring negative ion parameters based on Langmuir probe assisted laser photo-detachment relies on a theoretical model which relates the rise in the electron saturation current to electronegativity in the plasma. The existing model depend on various assumptions and neglect electrostatic potential barrier formed between the laser column (electropositive column) and the surrounding electronegative plasma in order to prevent the outward flow of electrons from the electropositive plasma column. These assumptions leads to erroneous estimation of the plasma electronegativity. In the present work, we present an analytical model to analyze Langmuir probe assisted photo-detachment signal in order to improve the accuracy of measured electronegativity and extended this technique for measuring electron temperature and charged species density. The analytical model is validated using both experiments and particle-in-cell simulation. The results shows improved accuracy in the measured parameters when compared to existing model. This work was supported by the Korea Institute for the Advancement of Technology and Ministry of Knowledge Economy (L-2010-1438-000), Republic of Korea, Enterprise Ireland and the European Regional Development Fund (ERDF) under NSRF 2007-2013.

  6. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    Science.gov (United States)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  7. Real time measurement of plasma macroscopic parameters on RFX-mod using a limited set of sensors

    Science.gov (United States)

    Kudlacek, Ondrej; Zanca, Paolo; Finotti, Claudio; Marchiori, Giuseppe; Cavazzana, Roberto; Marrelli, Lionello

    2015-10-01

    A method to estimate the plasma boundary and global parameters such as βp+li/2 and the edge safety factor q95 is described. The method is based on poloidal flux extrapolation in the vacuum region between the plasma and the magnetic measurements, and it is efficient and accurate even if a limited set of sensors is used. The discrepancy between the plasma boundary provided by this method and the boundary computed by the Grad-Shafranov solver MAXFEA is lower than 8 mm in all the considered cases. Moreover, the method is robust against the noise level present in the RFX-mod measurements. The difference between the estimated global parameters and the MAXFEA simulation results is lower than 4%. The method was finally implemented in the RFX-mod shape control system, working at 5 kHz cycle frequency, to provide a reliable set of plasma-wall distances (gaps) used as feedback signals. Experimental results obtained in one year of RFX-mod operation are shown.

  8. Improving control and estimation for distributed parameter systems utilizing mobile actuator-sensor network.

    Science.gov (United States)

    Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian

    2014-07-01

    This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included.

  9. Binomial distribution sample confidence intervals estimation for positive and negative likelihood ratio medical key parameters.

    Science.gov (United States)

    Bolboacă, Sorana; Jäntschi, Lorentz

    2005-01-01

    Likelihood Ratio medical key parameters calculated on categorical results from diagnostic tests are usually express accompanied with their confidence intervals, computed using the normal distribution approximation of binomial distribution. The approximation creates known anomalies,especially for limit cases. In order to improve the quality of estimation, four new methods (called here RPAC, RPAC0, RPAC1, and RPAC2) were developed and compared with the classical method (called here RPWald), using an exact probability calculation algorithm.Computer implementations of the methods use the PHP language. We defined and implemented the functions of the four new methods and the five criterions of confidence interval assessment. The experiments run for samples sizes which vary in 14 - 34 range, 90 - 100 range (0 binomial variables (1

  10. Approximation Methods for the Identification and Control of Distributed Parameter Systems.

    Science.gov (United States)

    1987-11-20

    Computacional , 5 (1986), 139-168. 12. The Identification of a Distributed Parameter Model for a Flexible Structure, (with H.T. Banks, S.S. Gates and Y. Wang...Science and Engineering, NASA Langley Research Center, Hampton, VA, and Mat. Applicada e Computacional , 5 (1986). [7] H.T. Banks and P.L. Daniel (Lamm...Bericht 83-26, Techn. Universitat Graz, December 1983; Mat. Aplicada e Computacional 4 (1985), pp. 95-124. [27] J.L. Lions, Optimal Control of

  11. Optimal Control of Distributed Parameter Systems with Application to Transient Thermoelectric Cooling

    Directory of Open Access Journals (Sweden)

    KOTSUR, M.

    2015-05-01

    Full Text Available We give a solution of optimal control problem for distributed parameter systems described by nonlinear partial differential equations with nonstandard boundary conditions. The variational method is used to obtain the general form of the necessary conditions of optimality. A suitable algorithm based on the numerical method of successive approximations has been constructed for computing the optimal control functions. The results are applied for optimization of transient thermoelectric cooling process. Optimal dependences of current on time have been calculated for thermoelectric cooler power supply with the purpose of minimizing the cooling temperature within a preset time interval.

  12. Adjustable Parameter-Based Distributed Fault Estimation Observer Design for Multiagent Systems With Directed Graphs.

    Science.gov (United States)

    Zhang, Ke; Jiang, Bin; Shi, Peng

    2017-02-01

    In this paper, a novel adjustable parameter (AP)-based distributed fault estimation observer (DFEO) is proposed for multiagent systems (MASs) with the directed communication topology. First, a relative output estimation error is defined based on the communication topology of MASs. Then a DFEO with AP is constructed with the purpose of improving the accuracy of fault estimation. Based on H ∞ and H 2 with pole placement, multiconstrained design is given to calculate the gain of DFEO. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed DFEO design with AP.

  13. Parameters of the best approximation of reduced neutron widths distribution. Actinides

    CERN Document Server

    Sukhovoj, A M

    2011-01-01

    The data of ENDF/B-VII library on reduced neutron widths for nuclei 231Pa, 232Th, 233,234,235,236,238U, 237Np, 239,240,241,242Pu, 241,243Am and 243Cm (including p-resonances of 232Th, 238U, 239Pu) in form of cumulative sums in function on Gamma0n/ were approximated by variable number K of partial items 0Parameters of approximation -- mean value of neutron amplitude, its dispersion and portion of contribution of part of widths of distribution number K in their total sum. The problems of their determination from distributions of different number of squares of normally distributed random values with variable threshold of loss of some part of the lowest widths values were studied. It was obtained for some part of neutron resonances that their mean amplitudes can considerably differ from zero value, and dispersions - from mean widths. And it is worth while to perform any quantitative analysis of widths distributions by means of comparison of different model notions with obligatory estimation of random ...

  14. Influence of argon fraction on plasma parameters in H2-N2 mixture discharge with cathodic cage

    Science.gov (United States)

    Naeem, Muhammad; Zaka-ul-Islam, Mujahid; Khattak, Zahid Iqbal; Shafiq, Muhammad; Zakaullah, Muhammad

    2017-01-01

    Low-pressure H2-N2 mixture pulsed DC plasmas with a cathodic cage (active screen) are widely used for plasma nitriding applications. In this study, the low-pressure H2-N2 mixture plasma with a cathodic cage generated by 50 Hz pulsed DC source is investigated with triple Langmuir probe and optical emission spectroscopy. The electron temperature (TeLP T e LP ) and electron number density (ne) are measured using a triple Langmuir probe (TLP). The excitation temperature (TexcOES T e xc OES ) is calculated spectroscopically using Boltzmann plot method whereas nitrogen dissociation fraction is estimated using actinometry as well as the intensity ratio method (IN (746.83 nm)/IN2(337.1 nm)). The results show that the electron and excitation temperatures, electron density and nitrogen atomic species density [N] all increase with the argon admixture, however, the important molecular ionized species density [N2+ N 2 + ] significantly decreases beyond 30% addition. This study provides useful information about the influence of the argon addition on plasma parameters and active species generation. As a result it helps to optimize the plasma nitriding system as a function of argon admixture to avoid random trials in the processing.

  15. Effect of q-nonextensive parameter and saturation time on electron density steepening in electron-positron-ion plasmas

    Science.gov (United States)

    Hashemzadeh, M.

    2015-11-01

    The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening of its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.

  16. Space charge, plasma potential and electric field distributions in HiPIMS discharges of varying configuration

    Science.gov (United States)

    Liebig, B.; Bradley, J. W.

    2013-08-01

    An electron-emitting (emissive) probe has been used to study the temporal and spatial distribution of the plasma potential during high-power impulse magnetron sputtering (HiPIMS) discharges with various substrate and magnetic field configurations. The average power was 700 W, with a repetition frequency of 100 Hz and pulse duration of 100 µs. Strongly negative plasma potentials exceeding -300 V and electric fields up to 10 kV m-1, caused by strong separation of charges with net charge carrier densities Δn of about 1014 m-3, were observed during the ignition of the discharge. The spatial distribution of the plasma potential in the stable stage of the discharge showed values consistently 5 V more negative for a floating substrate compared with a grounded one, so enhancing electron transport around the insulated substrate to grounded walls. However, this change in the electrical configuration of the plasma does not alter significantly the fraction of ionized sputtered particles (of about 30%) that can potentially reach the substrate. By changing the degree of unbalance of the sputtering source, we find a strong correlation between the electric field strength in the magnetic trap (created through charge separation) and the absolute value (and shape) of the magnetic field. For the more unbalanced magnetron, a flattening of the plasma potential structure (decrease in the axial electric field) was observed close to the target. Our findings show in principle that manipulation of the potential barrier close to the target through changing the magnetic field can regulate the proportion of sputtered and ionized species reaching the substrate.

  17. Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    Science.gov (United States)

    Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-08-01

    In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.

  18. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2010-10-01

    Full Text Available Jun Wang1, Yue Chen1, Baoan Chen1, Jiahua Ding1, Guohua Xia1, Chong Gao1, Jian Cheng1, Nan Jin1, Ying Zhou1, Xiaomao Li1, Meng Tang2, Xue Mei Wang21Department of Hematology, Zhongda Hospital, Clinical Medical School, Southeast University, Nanjing, People’s Republic of China; 1Department of Physics, University of Saarland, D-266041 Saarbruechen, Germany; 2National Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory, Southeast University, Nanjing, People’s Republic of ChinaBackground: This study explored the pharmacokinetic parameters and tissue distribution of magnetic iron oxide nanoparticles (Fe3O4 MNPs in imprinting control region (ICR mice.Methods: The Fe3O4 MNPs were synthesized by chemical coprecipitation, and their morphology and appearance were observed by transmission electron microscopy. ICR mice were divided into a control group and a Fe3O4 MNP-treated group. Probable target organs in ICR mice were observed, and the pharmacokinetic parameters and biodistribution of Fe3O4 MNPs in tissues were identified using atomic absorption spectrophotometry.Results: Fe3O4 MNPs were spherical with a well distributed particle diameter, and were distributed widely in various target organs and tissues including the heart, liver, spleen, lungs, kidneys, brain, stomach, small intestine, and bone marrow. The majority of Fe3O4 MNPs were distributed to the liver and the spleen. Fe3O4 MNP levels in brain tissue were higher in the Fe3O4 MNP-treated group than in the control group, indicating that Fe3O4 MNPs can penetrate the blood–brain barrier.Conclusion: These results suggest that the distribution of Fe3O4 MNPs was mostly in the liver and spleen, so the curative effect of these compounds could be more pronounced for liver tumors. Furthermore, Fe3O4 MNPs might be used as drug carriers to overcome physiologic barriers.Keywords: magnetic nanoparticles, Fe3O4, tissue distribution, mice

  19. Density distribution of a dust cloud in three-dimensional complex plasmas

    Science.gov (United States)

    Naumkin, V. N.; Zhukhovitskii, D. I.; Molotkov, V. I.; Lipaev, A. M.; Fortov, V. E.; Thomas, H. M.; Huber, P.; Morfill, G. E.

    2016-09-01

    We propose a method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud, and it provides reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station. We find that the treated dust clouds are both anisotropic and inhomogeneous. One can isolate two regimes in which a stationary dust cloud can be observed. At low pressures, the particle density decreases monotonically with the increase of the distance from the discharge center; at higher pressures, the density distribution has a shallow minimum. Regardless of the regime, we detect a cusp of the distribution at the void boundary and a slowly varying density at larger distances (in the foot region). A theoretical interpretation of the obtained results is developed that leads to reasonable estimates of the densities for both the cusp and the foot. The modified ionization equation of state, which allows for violation of the local quasineutrality in the cusp region, predicts the spatial distributions of ion and electron densities to be measured in future experiments.

  20. Radial distribution of the inner magnetosphere plasma pressure using low-altitude satellite data during geomagnetic storm: the March 1-8, 1982 Event

    CERN Document Server

    Stepanova, M; Bosqued, J M

    2007-01-01

    Plasma pressure distribution in the inner magnetosphere is one of the key parameters for understanding the main magnetospheric processes including geomagnetic storms and substorms. However, the pressure profiles obtained from in-situ particle measurements by the high-altitude satellites do not allow tracking the pressure variations related to the storms and substorms, because a time interval needed to do this generally exceeds the characteristic times of them. On contrary, fast movement of low-altitude satellites makes it possible to retrieve quasi-instantaneous profiles of plasma pressure along the satellite trajectory, using the fluxes of precipitating particles. For this study, we used the Aureol-3 satellite data for plasma pressure estimation, and the IGRF, Tsyganenko 2001 and Tsyganenko 2004 storm time geomagnetic field models for the pressure mapping into the equatorial plane. It was found that during quiet geomagnetic condition the radial pressure profiles obtained coincide with the profiles, obtained ...

  1. Effect of tissue and atmosphere's parameters on human eye temperature distribution.

    Science.gov (United States)

    Firoozan, Mohammad Sadegh; Porkhial, Soheil; Nejad, Ali Salmani

    2015-01-01

    A three dimensional finite element method analysis was employed to investigate the effect of tissue and atmosphere parameters namely, ambient temperature, ambient convection coefficient, local blood temperature, and blood convection coefficient upon temperature distribution of human eyes. As a matter of simplification, only eye ball and skull bone are considered as the system of eye modeling. Decreasing the local blood temperature and keeping it cool is one of the most important ways to control bleeding during surgeries. By lower temperature of body organs such as the eye, the need for oxygenated blood is reduced, allowing for an extension in time for surgery. With this in mind, this study is done to see which one of parameters, such as ambient temperature, ambient convection coefficient, local blood temperature, and blood convection coefficient, has an effective role in decreasing the temperature of the eye. To this end, 3 different paths were employed to find out about the temperature distribution through the eye. The analysis of the three paths demonstrates the interaction of ambient and blood temperature in modeling temperature changes in specific locations of the eye. These data will be important in applications such as eye surgery, relaxation, and sleep therapy.

  2. Interaction of CLAM Steel with Plasma in HT-7 Tokamak During High Parameter Operation

    Institute of Scientific and Technical Information of China (English)

    LI Chunjing; HUANG Qunying; FENG Yan; LI Jiangang; KONG Mingguang

    2007-01-01

    A Plasma Surface Interaction(PSI)experiment on China Low Activation Martensitic(CLAM)steel was done to check if CLAM steel could be used as a Plasma Facing Material (PFM).A specimen with a diameter of 45 mm was exposed to 897 shots of deuterium plasmas with a total duration of 712 sec at a minor radius of 30 cm in HT-7 tokamak.During the exposure experiment,no observable influence Was found on plasma performance.After exposure,the surface of the specimen seemed as smooth as before but with some colour change at the margin of the specimen.Even though some micro-damage,such as dense blisters,melting,splashing,depositions,and dust,Was found on local surfaces with Scanning Electron Microscopic(SEM)observation.The reflectivity of the specimen decreased only slightly.All of these shows CLAM steel has good stability and irradiation resistance.With further optimization,it could possibly be used as the first mirror material for plasma diagnostics in tokamaks.

  3. Probability Distributions for Cyclone Key Parameters and Cyclonic Wind Speed for the East Coast of Indian Region

    Directory of Open Access Journals (Sweden)

    Pradeep K. Goyal

    2011-09-01

    Full Text Available This paper presents a study conducted on the probabilistic distribution of key cyclone parameters and the cyclonic wind speed by analyzing the cyclone track records obtained from India meteorological department for east coast region of India. The dataset of historical landfalling storm tracks in India from 1975–2007 with latitude /longitude and landfall locations are used to map the cyclone tracks in a region of study. The statistical tests were performed to find a best fit distribution to the track data for each cyclone parameter. These parameters include central pressure difference, the radius of maximum wind speed, the translation velocity, track angle with site and are used to generate digital simulated cyclones using wind field simulation techniques. For this, different sets of values for all the cyclone key parameters are generated randomly from their probability distributions. Using these simulated values of the cyclone key parameters, the distribution of wind velocity at a particular site is obtained. The same distribution of wind velocity at the site is also obtained from actual track records and using the distributions of the cyclone key parameters as published in the literature. The simulated distribution is compared with the wind speed distributions obtained from actual track records. The findings are useful in cyclone disaster mitigation.

  4. Deep SDSS optical spectroscopy of distant halo stars I. Atmospheric parameters and stellar metallicity distribution

    CERN Document Server

    Prieto, C Allende; Schlesinger, K J; Lee, Y S; Morrison, H L; Schneider, D P; Beers, T C; Bizyaev, D; Ebelke, G; Malanushenko, E; Malanushenko, V; Oravetz, D; Pan, K; Simmons, A; Simmerer, J; Sobeck, J; Robin, A C

    2014-01-01

    We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with logg (cgs...

  5. Cartographic analysis of the distribution of saline soils in Russia depending on some climatic parameters

    Science.gov (United States)

    Kalinina, N. V.; Rukhovich, D. I.; Pankova, E. I.; Chernousenko, G. I.; Koroleva, P. V.

    2016-11-01

    The subdistrict zoning map distinguishes 27 subjects of the Russian Federation, 109 municipal districts, and 142 districts and subdistricts along the latitude line at 53°44' N in Russia. Among them, soil salinization is observed in 13 subjects of the Russian Federation, 39 municipal districts, and 41 districts and subdistricts. The total length of the transect is 6354 m. The relationship between the distribution of saline soils and climatic parameters has been analyzed in the districts and subdistricts of the subdistrict zoning map. Information about soil salinity has been borrowed from the Soil Salinization Map of Russia (2003) and some regional salinization maps (Khakassia, Barguzin Depression). Climate is the main factor affecting the distribution of soil salinity. Among the analyzed climatic parameters, the Ivanov wetting coefficient (WC) best describes the relationship between climate and soil salinity. The share of saline soils in a district is inversely proportional to the WC value. The degrees of drainage and dissection of the area limit the effect of climate on soil salinity. It is proposed to subdivide the relief into three groups depending on the degree of dissection in order to correct the calculations of relationship between WC and soil salinity. With consideration for relief features, the relationship between soil salinity and WC is represented by a segment of the coordinate plane with WC as the ordinate and the share of saline soils as the abscissa. The segment is limited by two lines corresponding to the maximum and minimum soil salinities at given WC values. The use of the limiting equations allows predicting, with a high probability, the presence and distribution area of saline soils at a given latitude at 0.85 ≥ WC ≥ 0.5.

  6. Dust-acoustic solitons in quantum plasma with kappa-distributed ions

    Indian Academy of Sciences (India)

    Mehran Shahmansouri

    2013-02-01

    Arbitrary amplitude dust-acoustic (DA) solitary waves in an unmagnetized and collisionless quantum dusty plasma comprising cold dust particles, kappa ()-distributed ions and degenerate electrons are investigated. The influence of suprathermality and quantum effects on the linear dispersion relation of DA waves is investigated. Then, the effect of -distributed ions and degenerate electrons on the existence domain of solitons is discussed in the space of (, ). The comparison of the existence domain for higher and lower values of shows that suprathermality results in propagation of solitons with lower values of Mach number, and the quantum effects, lead to a higher values of Mach number. The existence domain of solitons for nondegenerate -distributed electrons is considered for comparison with effect of degenerate electrons. Also, we found that the Sagdeev potential well becomes deeper and wider as $_{F-i}$ decreases, as for lower values, the influence of quantum effects on the Sagdeev pseudopotential profile is smaller.

  7. Cylindrical and spherical dust-acoustic wave modulations in dusty plasmas with non-extensive distributions

    Indian Academy of Sciences (India)

    M Eghbali; B Farokhi

    2015-04-01

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear Schrödinger equation (NLSE) is derived. The presence of hot non-extensive -distributed ions and electron is shown to influence the modulational instability (MI) of the waves. It is shown that the properties of the MI of DAW in cylindrical and spherical geometries differ from those in a planar one-dimensional geometry. Furthermore, it is observed that the non-extensive distributed ions have more effect on the MI of the DAW than electrons. Also, it is found that there is a MI period for cylindrical and spherical wave modulations, which does not exist in the one-dimensional case.

  8. Instability Parameters of Optical Oscillation Frequency in Plasma Central Discharge and Periphery Region

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-Wen; M.A.LIEBERMAN; Sungjin KIM

    2006-01-01

    @@ We have observed relaxation oscillations in a capacitive discharge in Ar gas, connected to a peripheral ground chamber. The plasma oscillations observed from time-varying optical emission from the main discharge chamber show, for example, a high frequency (75.37kHz) relaxation oscillation, at 100mTorr and 8 W absorbed power,and a low frequency (2.72 Hz) relaxation oscillation, 100mTorr and 325 W absorbed power. Time-varying optical emission intensity and plasma density are also detected with a Langmuir probe. The theoretical result agrees well with experiments.

  9. Characterization of Nuclease Activity in Human Seminal Plasma and its Relationship to Semen Parameters, Sperm DNA Fragmentation and Male Infertility.

    Science.gov (United States)

    Fernandez-Encinas, Alba; García-Peiró, Agustí; Ribas-Maynou, Jordi; Abad, Carlos; Amengual, María José; Navarro, Joaquima; Benet, Jordi

    2016-01-01

    Some studies have shown that complementary biomarkers are needed in semen analysis to provide a more accurate diagnosis for couples with infertility problems. To our knowledge no study has been done to determine the relationships among nuclease activity in seminal plasma, semen parameters, sperm DNA fragmentation and male infertility. A total of 94 semen samples were collected according to WHO 2010 semen analysis parameters. Samples were analyzed using the single radial enzyme diffusion method for nuclease activity in seminal plasma, and alkaline and neutral Comet assay for sperm DNA fragmentation. Samples were obtained from 11 fertile donors with proven fertility, 17 patients with normozoospermia in an infertile couple, and 16 patients with asthenozoospermia, 19 with teratozoospermia, 21 with asthenoteratozoospermia and 10 with azoospermia. Nuclease activity analyzed in seminal plasma was higher in patients than in controls. It correlated with sperm motility and morphology, and sperm DNA fragmentation measured by the alkaline Comet assay. No correlation with sperm DNA fragmentation was measured by the neutral Comet assay. ROC curves to determine male infertility revealed 0.658 sensitivity, 0.727 specificity and 0.705 cm(2) AUC for the single radial enzyme diffusion method, 0.918, 1 and 0.994 cm(2) for the alkaline Comet assay, and 0.917, 0.250 and 0.373 cm(2), respectively, for the neutral Comet assay. Nuclease activity in seminal plasma corrected by sperm count is a good variable to predict male infertility. Results indicate that it could be a useful complementary parameter for male infertility diagnosis. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Consistency of change point estimators for symmetrical stable distribution with parameters shift

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Assume that the characteristic indexαof stable distribution satisfies 1<α<2,and that the distribution is symmetrical about its mean.We consider the change point estimators for stable distribution withαor scale parameterβshift.For the one case that mean is a known constant,ifαorβchanges,then density function will change too.To this end,we suppose the kernel estimation for a change point.For the other case that mean is an unknown constant,we suppose to apply empirical characteristic function to estimate the change-point location.In the two cases,we consider the consistency and strong convergence rate of estimators.Furthermore,we consider the mean shift case.If mean changes,then corresponding characteristic function will change too.To this end,we also apply empirical characteristic function to estimate change point.We obtain the similar convergence rate.Finally,we consider its application on the detection of mean shift in financial market.

  11. Electron-acoustic rogue waves in a plasma with Tribeche–Tsallis–Cairns distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Merriche, Abderrzak [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B. P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B. P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2017-01-15

    The problem of electron-acoustic (EA) rogue waves in a plasma consisting of fluid cold electrons, nonthermal nonextensive electrons and stationary ions, is addressed. A standard multiple scale method has been carried out to derive a nonlinear Schrödinger-like equation. The coefficients of dispersion and nonlinearity depend on the nonextensive and nonthermal parameters. The EA wave stability is analyzed. Interestingly, it is found that the wave number threshold, above which the EA wave modulational instability (MI) sets in, increases as the nonextensive parameter increases. As the nonthermal character of the electrons increases, the MI occurs at large wavelength. Moreover, it is shown that as the nonextensive parameter increases, the EA rogue wave pulse grows while its width is narrowed. The amplitude of the EA rogue wave decreases with an increase of the number of energetic electrons. In the absence of nonthermal electrons, the nonextensive effects are more perceptible and more noticeable. In view of the crucial importance of rogue waves, our results can contribute to the understanding of localized electrostatic envelope excitations and underlying physical processes, that may occur in space as well as in laboratory plasmas.

  12. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Department of Physics and Applied Mathematics, PIEAS, P.O. Nilore, Islamabad 44000 (Pakistan)

    2013-06-15

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  13. Colloidal Plasmas : Effect of nonthermal ion distribution and dust temperature on nonlinear dust acoustic solitary waves

    Indian Academy of Sciences (India)

    Tarsem Singh Gill; Harvinder Kaur

    2000-11-01

    The effects of nonthermal ion distribution and finite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the fixed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.

  14. Modification of a nonlocal electron energy distribution in a bounded plasma.

    Science.gov (United States)

    DeJoseph, C A; Demidov, V I; Kudryavtsev, A A

    2005-09-01

    It is demonstrated experimentally, in a pulsed discharge, that it is possible to modify the "tail" of a nonlocal electron energy distribution (EED) without significantly changing the electron density and temperature (mean energy). The EED tail is modified by changing the potential of a small portion of the plasma boundary and/or by changing the volume creation rate of electrons with energies in the range of the tail of the EED. The discussed effects are a direct result of the nonlocal nature of the EED and have applications to a number of basic research issues associated with discharges under nonequilibrium conditions. As an example, we discuss the possibility of utilizing these methods to measure electron impact excitation cross sections from the metastable states of atoms, which are difficult to measure by other means. The experiments have been conducted in an argon and argon-nitrogen pulsed rf inductively coupled plasma discharge.

  15. Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R.J. [Department of Physics, Division of Information and Communications Sciences, Macquarie University, Sydney, NSW (Australia)). E-mail: rcarman@physics.mq.edu.au; Mildren, R.P. [Centre for Lasers and Applications, Division of Information and Communications Sciences, Macquarie University, Sydney, NSW (Australia)

    2000-10-07

    In modelling the plasma kinetics in dielectric barrier discharges (DBDs), the electron energy conservation equation is often included in the rate equation analysis (rather than utilizing the local-field approximation) with the assumption that the electron energy distribution function (EEDF) has a Maxwellian profile. We show that adopting a Maxwellian EEDF leads to a serious overestimate of the calculated ionization/excitation rate coefficients and the electron mobility for typical plasma conditions in a xenon DBD. Alternative EEDF profiles are trialed (Druyvesteyn, bi-Maxwellian and bi-Druyvesteyn) and benchmarked against EEDFs obtained from solving the steady-state Boltzmann equation. A bi-Druyvesteyn EEDF is shown to be more inherently accurate for modelling simulations of xenon DBDs. (author)

  16. A Multi-Parameter Optimization of Plasma Density for an Advanced Linear Collider*

    CERN Document Server

    Muggli, P; Hillenbrand, S

    2011-01-01

    Recent plasma wakefield accelerator (PWFA) experiments showed that an accelerating gradient as high as 50 GV/m can be driven and sustained over a meter-long plasma [1]. Based on this result, a straw man design for a future, multi-stage, PWFA-based electron/positron collider with an energy gain of ~ 25 GeV/stage has been generated [2]. However, the choice of plasma density remains open. On one hand, high density means large accelerating gradients and possibly a shorter collider. On the other it means that the accelerating structure dimensions become very small, on the order of the plasma wavelength. Operating at high gradient and with such small structure imposes very strong constraints on the particle bunches: small dimensions and spacing, large current or limited charge, etc. These constraints result is challenges in producing the bunches (compression, shaping for optimum loading, etc.) and could limit the achievable collider luminosity. We explore the global implications of operating at a lower accelerating...

  17. Surface temperature: A key parameter to control the propanethiol plasma polymer chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Thiry, Damien, E-mail: damien.thiry@umons.ac.be; Aparicio, Francisco J. [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Laha, Priya; Terryn, Herman [Research Group Electrochemical and Surface Engineering (SURF), Department of Materials and Chemistry (MACH), Pleinlaan 2, 1050 Brussel (Belgium); Snyders, Rony [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons, Belgium and Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium)

    2014-09-01

    In this work, the influence of the substrate temperature (T{sub s}) on the chemical composition of propanethiol plasma polymers was investigated for a given set of plasma conditions. In a first study, a decrease in the atomic sulfur content (at. %S) with the deposition time (t{sub d}) was observed. This behavior is explained by the heating of the growing film during deposition process, limiting the incorporation of stable sulfur-based molecules produced in the plasma. Experiments carried out by controlling the substrate temperature support this hypothesis. On the other hand, an empirical law relating the T{sub s} and the at. %S was established. This allows for the formation of gradient layer presenting a heterogeneous chemical composition along the thickness, as determined by depth profile analysis combining X-ray photoelectron spectroscopy and C{sub 60} ion gun sputtering. The experimental data fit with the one predicted from our empiric description. The whole set of our results provide new insights in the relationship between the substrate temperature and the sulfur content in sulfur-based plasma polymers, essential for future developments.

  18. The effect of plasma fluctuations on parallel transport parameters in the SOL

    DEFF Research Database (Denmark)

    Havlíčková, E.; Fundamenski, W.; Naulin, Volker

    2011-01-01

    in the scrape-off layer (SOL) taking into account these fluctuations is presented. Plasma transport in the SOL along the magnetic field between two targets is calculated by a one-dimensional fluid code in order to estimate the response to transient conditions along the SOL and the attention is given...

  19. Evolution of the plasma parameters in the expanding laser ablation plume of silver

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen; Hansen, T.N.;

    2002-01-01

    The angular and radial variation of the ion density and electron temperature in the plasma plume produced by laser ablation of silver at fluences of 0.8-1.3 J cm(-2) at 355 nm have been studied using a time-resolving Langmuir probe. The angular dependence of the electron temperature and the magni...

  20. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  1. Energy loss and charge state distribution of calcium ions in dense moderately coupled carbon plasma; Energieverlust und Ladungsverteilung von Calciumionen in dichtem, schwach gekoppeltem Kohlenstoffplasma

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Alex

    2015-07-15

    In this thesis the interaction of swift calcium ions (Energy: 3.5 MeV/u) with a dense and moderately coupled carbon plasma (Coupling parameter: Γ=0.1-0.5) is investigated. The plasma state is generated by heating a thin carbon foil volumetrically by thermal X-ray radiation. The thermal X-ray radiation itself is generated by the conversion of a high energy laser beam in a hohlraum cavity. Compared to earlier ion stopping experiments the electron density and the plasma coupling parameter could be increased by an order of magnitude. This work provides the first time experimental energy loss and charge state distribution data in this moderately coupled interaction regime. The thesis consists of a theoretical part where the ion beam plasma interaction is studied for a broad range of plasma parameters and an experimental part where the ion beam interaction with the hohlraum plasma target is measured. All the described experiments were carried out at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt. This facility offers the unique possibility to combine a heavy ion beam from an accelerator with a high energy laser beam in one interaction chamber. An intense laser pulse (150 J of laser energy in 1 ns at λ{sub L}=527 nm) is focused inside a 600 μm diameter spherical cavity and generates a hot gold plasma that emits X-rays. The absorbed and reemitted radiation establishes a spatially uniform temperature distribution in the cavity and serves as an intense, isotropic X-ray source with a quasi-thermal spectral distribution. These thermal X-rays with a radiation temperature of T{sub r}=98±6 eV then propagate into a secondary cylindrical hohlraum (diameter: 1000 μm, length: 950 μm) where they volumetrically heat two thin carbon foils to the plasma state. The radiation temperature in the secondary hohlraum is T{sub r}=33±5 eV. This indirect laser heating scheme has the advantage that the whole sample volume is instantaneously heated and that the plasma is

  2. Measurements of the ion velocity distribution in an ultracold neutral plasma derived from a cold, dense Rydberg gas

    OpenAIRE

    S. D. Bergeson; Lyon, M

    2016-01-01

    We report measurements of the ion velocity distribution in an ultracold neutral plasma derived from a dense, cold Rydberg gas in a MOT. The Rydberg atoms are excited using a resonant two-step excitation pathway with lasers of 4 ns duration. The plasma forms spontaneously and rapidly. The rms width of the ion velocity distribution is determined by measuring laser-induced fluorescence (LIF) of the ions. The measured excitation efficiency is compared with a Monte-Carlo wavefunction calculation, ...

  3. Association of Irisin Plasma Levels with Anthropometric Parameters in Children with Underweight, Normal Weight, Overweight, and Obesity

    Directory of Open Access Journals (Sweden)

    Leticia Elizondo-Montemayor

    2017-01-01

    Full Text Available The correlations between irisin levels, physical activity, and anthropometric measurements have been extensively described in adults with considerable controversy, but little evidence about these relationships has been found in children. The objective of this study is to correlate the plasma levels of irisin in underweight, normal weight, overweight, and obese children with anthropometric parameters and physical activity levels. A cross-sample of 40 children was divided into the following groups on the basis of body mass index (BMI percentile. The correlations of plasma irisin levels with physical activity, anthropometric, and metabolic measurements were determined. Plasma irisin levels (ng/mL were lower for the underweight group (164.2 ± 5.95 than for the normal weight and obese groups (182.8 ± 5.58; p<0.05. Irisin levels correlated positively with BMI percentile (0.387, waist circumference (0.373, and fat-free mass (0.353; p<0.05, but not with body muscle mass (−0.027. After a multiple linear regression analysis, only BMI percentile (0.564; p<0.008 showed a positive correlation with irisin. Our results indicated no association with metabolic parameters. A negative correlation with physical activity was observed. Interrelationships among body components might influence irisin levels in children.

  4. Differential Evolution with Adaptive Mutation and Parameter Control Using Lévy Probability Distribution

    Institute of Scientific and Technical Information of China (English)

    Ren-Jie He; Zhen-Yu Yang

    2012-01-01

    Differential evolution (DE) has become a very popular and effective global optimization algorithm in the area of evolutionary computation.In spite of many advantages such as conceptual simplicity,high efficiency and ease of use,DE has two main components,i.e.,mutation scheme and parameter control,which significantly influence its performance.In this paper we intend to improve the performance of DE by using carefully considered strategies for both of the two components.We first design an adaptive mutation scheme,which adaptively makes use of the bias of superior individuals when generating new solutions.Although introducing such a bias is not a new idea,existing methods often use heuristic rules to control the bias.They can hardly maintain the appropriate balance between exploration and exploitation during the search process,because the preferred bias is often problem and evolution-stage dependent.Instead of using any fixed rule,a novel strategy is adopted in the new adaptive mutation scheme to adjust the bias dynamically based on the identified local fitness landscape captured by the current population.As for the other component,i.e.,parameter control,we propose a mechanism by using the Lévy probability distribution to adaptively control the scale factor F of DE.For every mutation in each generation,an Fi is produced from one of four different Lévy distributions according to their historical performance.With the adaptive mutation scheme and parameter control using Lévy distribution as the main components,we present a new DE variant called Lévy DE (LDE).Experimental studies were carried out on a broad range of benchmark functions in global numerical optimization.The results show that LDE is very competitive,and both of the two main components have contributed to its overall performance.The scalability of LDE is also discussed by conducting experiments on some selected benchmark functions with dimensions from 30 to 200.

  5. Nonmigrating tidal signature in the distributions of equatorial plasma bubbles and prereversal enhancement

    Science.gov (United States)

    Kil, Hyosub; Kwak, Young-Sil; Lee, Woo Kyoung; Krall, Jonathan; Huba, Joseph D.; Oh, Seung-Jun

    2015-04-01

    Some wave-like features in the longitudinal distribution of equatorial plasma bubbles understood in association with diurnal eastward propagating zonal wave number 3 nonmigrating tide (DE3) in the dayside. However, whether or not the wave features are the daytime DE3 signature has not yet been rigorously investigated. This study investigates (1) the existence of the DE3 signature in the longitudinal distribution of bubbles by analyzing the first Republic of China (ROCSAT-1) satellite data acquired in 2000-2002 and (2) the role of daytime DE3 in the creation of bubbles by examining the linear growth rate of the generalized Rayleigh-Taylor (R-T) instability. The linear growth rate is derived from the "Sami2 is Another Model of the Ionosphere" model simulation results. In the longitudinal distribution of bubbles derived from ROCSAT-1 observations, the wave number 4 component, the representative characteristic of DE3, is a weak feature. In addition, the amplitude and phase of the wave number 4 component do not show a consistent behavior in comparison with those of DE3. Our numerical calculation results show that the linear growth rate of the R-T instability is not sensitive to the variation of the daytime vertical plasma drift. These results indicate that the DE3 signature in the occurrence rate of bubbles is not obvious and the effect of daytime DE3 on the creation of bubbles is negligible.

  6. Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Ilker; Kramer, Nicolaas J.; Westermann, Rene H. J.; Verheijen, Marcel A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dohnalova, Katerina; Gregorkiewicz, Tom [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Smets, Arno H. M. [Photovoltaic Materials and Devices Laboratory, Delft University of Technology, P.O. Box 5031, 2600 GA Delft (Netherlands); Sanden, Mauritius C. M. van de [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2013-04-07

    We demonstrate a method for synthesizing free standing silicon nanocrystals in an argon/silane gas mixture by using a remote expanding thermal plasma. Transmission electron microscopy and Raman spectroscopy measurements reveal that the distribution has a bimodal shape consisting of two distinct groups of small and large silicon nanocrystals with sizes in the range 2-10 nm and 50-120 nm, respectively. We also observe that both size distributions are lognormal which is linked with the growth time and transport of nanocrystals in the plasma. Average size control is achieved by tuning the silane flow injected into the vessel. Analyses on morphological features show that nanocrystals are monocrystalline and spherically shaped. These results imply that formation of silicon nanocrystals is based on nucleation, i.e., these large nanocrystals are not the result of coalescence of small nanocrystals. Photoluminescence measurements show that silicon nanocrystals exhibit a broad emission in the visible region peaked at 725 nm. Nanocrystals are produced with ultrahigh throughput of about 100 mg/min and have state of the art properties, such as controlled size distribution, easy handling, and room temperature visible photoluminescence.

  7. Density distribution of a dust cloud in three-dimensional complex plasmas

    CERN Document Server

    Naumkin, V N; Molotkov, V I; Lipaev, A M; Fortov, V E; Thomas, H M; Huber, P; Morfill, G E

    2016-01-01

    We propose a novel method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud and provides a reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station. We find that the treated dust clouds are both anisotropic and inhomogeneous. One can isolate two regimes, in which a stationary dust cloud can be observed. At low pressures, the particle density decreases monotonically with the increase of the distance from the discharge center; at higher pressures, the density distribution has a shallow minimum. Regardless of the regime, we detect a cusp of the distribution at the void boundary and a slowly varying density at larger distances (in the foot region). A theoretical interpretation of obtained results is d...

  8. On the distribution of scaling hydraulic parameters in a spatially anisotropic banana field

    Science.gov (United States)

    Regalado, Carlos M.

    2005-06-01

    When modeling soil hydraulic properties at field scale it is desirable to approximate the variability in a given area by means of some scaling transformations which relate spatially variable local hydraulic properties to global reference characteristics. Seventy soil cores were sampled within a drip irrigated banana plantation greenhouse on a 14×5 array of 2.5 m×5 m rectangles at 15 cm depth, to represent the field scale variability of flow related properties. Saturated hydraulic conductivity and water retention characteristics were measured in these 70 soil cores. van Genuchten water retention curves (WRC) with optimized m ( m≠1-1/ n) were fitted to the WR data and a general Mualem-van Genuchten model was used to predict hydraulic conductivity functions for each soil core. A scaling law, of the form ν=ανi*, was fitted to soil hydraulic data, such that the original hydraulic parameters νi were scaled down to a reference curve with parameters νi*. An analytical expression, in terms of Beta functions, for the average suction value, hc, necessary to apply the above scaling method, was obtained. A robust optimization procedure with fast convergence to the global minimum is used to find the optimum hc, such that dispersion is minimized in the scaled data set. Via the Box-Cox transformation P(τ)=(αiτ-1)/τ, Box-Cox normality plots showed that scaling factors for the suction ( αh) and hydraulic conductivity ( αk) were approximately log-normally distributed (i.e. τ=0), as it would be expected for such dynamic properties involving flow. By contrast static soil related properties as αθ were found closely Gaussian, although a power τ=3/4 was best for approaching normality. Application of four different normality tests (Anderson-Darling, Shapiro-Wilk, Kolmogorov-Smirnov and χ2 goodness-of-fit tests) rendered some contradictory results among them, thus suggesting that this widely extended practice is not recommended for providing a suitable probability

  9. Influence of emphysema distribution on pulmonary function parameters in COPD patients

    Directory of Open Access Journals (Sweden)

    Helder Novais e Bastos

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. METHODS: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT and determined the six-minute walk distance (6MWD. RESULTS: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years. The emphysema distribution was categorized as obviously upper lung-predominant (type 1, in 36.0% of the patients; slightly upper lung-predominant (type 2, in 25.6%; homogeneous between the upper and lower lung (type 3, in 16.3%; and slightly lower lung-predominant (type 4, in 22.1%. Type 2 emphysema distribution was associated with lower FEV1, FVC, FEV1/FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016, a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025, and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003. The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. CONCLUSIONS: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients.

  10. Lupin seeds lower plasma lipid concentrations and normalize antioxidant parameters in rats

    Directory of Open Access Journals (Sweden)

    Osman, M.

    2011-06-01

    Full Text Available This study was designed to test bitter and sweet lupin seeds for lipid-lowering and for their antioxidative activities in hypercholesterolemic rats. The levels of plasma lipid, malondialdehyde (MDA and whole blood reduced glutathione (GSH, as well as the activities of transaminases (ALT and AST, lactate dehydrogenase (LDH in plasma, superoxide dismutase (SOD, glutathione peroxidase (GPx in erythrocytes and plasma glutathione reductase (GR, glutathione-S-transferase (GST and catalase (CAT were examined. A hypercholesterolemia-induced diet manifested in the elevation of total lipids (TL, total cholesterol (TC, triglycerides (TG, LDL-C and MDA levels, ALT, AST, LDH activities and the depletion of GSH and enzymic antioxidants. The supplementation of a hypercholesterolemia-induced diet with bitter and sweet lupin seeds significantly lowered the plasma levels of TL, TC, TG and LDL-C. ALT, AST and LDH activities slightly decreased in treated groups compared with the hypercholesterolemic group (HC. Furthermore, the content of GSH significantly increased while MDA significantly decreased in treated groups compared with the HC group. In addition, the bitter lupin seed group improved enzymic antioxidants compared with the HC group. In general, the results indicated that the bitter lupin seed supplements are better than those containing sweet lupin seeds. These results suggested that the hypocholesterolemic effect of bitter and sweet lupin seed supplements might be due to their abilities to lower the plasma cholesterol level as well as to slow down the lipid peroxidation process and to enhance the antioxidant enzyme activity.

    Este estudio fue diseñado para evaluar semillas de altramuces dulces y amargas como agentes que bajan los lípidos y estudiar su efecto en la actividad antioxidante en ratas hipercolesterolémicas. El nivel de lípidos en plasma, malondialdehido (MDA y glutatión reducido (GSH, así como la actividad transaminasa (ALT y AST

  11. Particle-in-cell Simulations of Waves in a Plasma Described by Kappa Velocity Distribution as Observed in the Saturńs Magnetosphere

    Science.gov (United States)

    Alves, M. V.; Barbosa, M. V. G.; Simoes, F. J. L., Jr.

    2016-12-01

    Observations have shown that several regions in space plasmas exhibit non-Maxwellian distributions with high energy superthermal tails. Kappa velocity distribution functions can describe many of these regions and have been used since the 60's. They suit well to represent superthermal tails in solar wind as well as to obtain plasma parameters of plasma within planetary magnetospheres. A set of initial velocities following kappa distribution functions is used in KEMPO1 particle simulation code to analyze the normal modes of wave propagation. Initial conditions are determined using observed characteristics for Saturńs magnetosphere. Two electron species with different temperatures and densities and ions as a third species are used. Each electron population is described by a different kappa index. Particular attention is given to perpendicular propagation, Bernstein modes, and parallel propagation, Langmuir and electron-acoustic modes. The dispersion relation for the Bernstein modes is strongly influenced by the shape of the velocity distribution and consequently by the value of kappa index. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  12. An EOQ inventory model for items with ramp type demand, three-parameter Weibull distribution deterioration and starting with shortage

    Directory of Open Access Journals (Sweden)

    Jain Sanjay

    2010-01-01

    Full Text Available In this present paper an inventory model is developed with ramp type demand, starting with shortage and three - parameter Weibull distribution deterioration. A brief analysis of the cost involved is carried out by an example.

  13. Retrieval of cloud droplet size distribution parameters from polarized reflectance measurements

    Directory of Open Access Journals (Sweden)

    M. Alexandrov

    2011-09-01

    Full Text Available We present an algorithm for retrieval of cloud droplet size distribution parameters (effective radius and variance from the Research Scanning Polarimeter (RSP measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS, which is due to be launched as part of the NASA Glory Project. This instrument measures both polarized and total reflectances in 9 spectral channels with center wavelengths ranging from 410 to 2250 nm. For cloud droplet size retrievals we utilize the polarized reflectances in the scattering angle range between 140 and 170 degrees where they exhibit rainbow. The shape of the rainbow is determined mainly by single-scattering properties of the cloud particles, that simplifies the inversions and reduces retrieval uncertainties. The retrieval algorithm was tested using realistically simulated cloud radiation fields. Our retrievals of cloud droplet sizes from actual RSP measurements made during two recent field campaigns were compared with the correlative in situ observations.

  14. A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution

    Directory of Open Access Journals (Sweden)

    F. Uboldi

    2013-09-01

    Full Text Available Estimation of extreme event distributions and depth-duration-frequency (DDF curves is achieved at any target site by repeated sampling among all available raingauge data in the surrounding area. The estimate is computed over a gridded domain in Northern Italy, using precipitation time series from 1929 to 2011, including data from historical analog stations and from the present-day automatic observational network. The presented local regionalisation naturally overcomes traditional station-point methods, with their demand of long historical series and their sensitivity to very rare events occurring at very few stations, possibly causing unrealistic spatial gradients in DDF relations. At the same time, the presented approach allows for spatial dependence, necessary in a geographical domain such as Lombardy, complex for both its topography and its climatology. The bootstrap technique enables evaluating uncertainty maps for all estimated parameters and for rainfall depths at assigned return periods.

  15. Linking particle and pore-size distribution parameters to soil gas transport properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per

    2012-01-01

    Accurate estimation of soil gas diffusivity (Dp/Do, the ratio of gas diffusion coefficients in soil and free air) and air permeability (ka) from basic texture and pore characteristics will be highly valuable for modeling soil gas transport and emission and their field-scale variations. From......, respectively) and the Campbell water retention parameter b were used to characterize particle and pore size distributions, respectively. Campbell b yielded a wide interval (4.6–26.2) and was highly correlated with α, β, and volumetric clay content. Both Dp/Do and ka followed simple power-law functions (PLFs...... also well (but relatively more weakly) correlated with the basic soil characteristics, again with the best correlations to volumetric clay content and b. As a first attempt at developing a simple Dp/Do model useful at the field scale, we extended the classical Buckingham Dp/Do model (εa2) by a scaling...

  16. Narrow size distributed Ag nanoparticles grown by spin coating and thermal reduction: effect of processing parameters

    Science.gov (United States)

    Ansari, A. A.; Sartale, S. D.

    2016-08-01

    A simple method to grow uniform sized Ag nanoparticles with narrow size distribution on flat support (glass and Si substrates) via spin coating of Ag+ ions (AgNO3) solution followed by thermal reduction in H2 is presented. These grown nanoparticles can be used as model catalytic system to study size dependent oxygen reduction reaction (ORR) activity. Ag nanoparticles formation was confirmed by local surface plasmon resonance and x-ray photoelectron spectroscopy measurements. Influences of process parameters (revolution per minute (rpm), ramp and salt concentration) on grown Ag nanoparticles size, density and size uniformity are studied. With increase in rpm and ramp the size decreases and the particle number density increases, whereas the size dispersion improves. The catalytic activity of the grown Ag particles for ORR is studied and it is found that the catalytic performance is dependent on the size as well as the number density of the grown Ag nanoparticles.

  17. Antarctic pack ice algal distribution: Floe-scale spatial variability and predictability from physical parameters

    Science.gov (United States)

    Meiners, K. M.; Arndt, S.; Bestley, S.; Krumpen, T.; Ricker, R.; Milnes, M.; Newbery, K.; Freier, U.; Jarman, S.; King, R.; Proud, R.; Kawaguchi, S.; Meyer, B.

    2017-07-01

    Antarctic pack ice serves as habitat for microalgae which contribute to Southern Ocean primary production and serve as important food source for pelagic herbivores. Ice algal biomass is highly patchy and remains severely undersampled by classical methods such as spatially restricted ice coring surveys. Here we provide an unprecedented view of ice algal biomass distribution, mapped (as chlorophyll a) in a 100 m by 100 m area of a Weddell Sea pack ice floe, using under-ice irradiance measurements taken with an instrumented remotely operated vehicle. We identified significant correlations (p < 0.001) between algal biomass and concomitant in situ surface measurements of snow depth, ice thickness, and estimated sea ice freeboard levels using a statistical model. The model's explanatory power (r2 = 0.30) indicates that these parameters alone may provide a first basis for spatial prediction of ice algal biomass, but parameterization of additional determinants is needed to inform more robust upscaling efforts.

  18. Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters

    Directory of Open Access Journals (Sweden)

    Zbigniew A. Styczynski

    2013-07-01

    Full Text Available This paper presents in situ measurements of a newly developed current density measurement system for proton exchange membrane fuel cells (PEMFC. While the functional principle and technical evaluation of the measurement system were presented in a previous paper, this paper analyzes the influence of various operation parameters, including multiple start-stop operation, at the anode, cathode and cooling locations on the distribution and long-term development of the current density. The system was operated for 500 h over two years with long periods of inactivity between measurements. The measurement results are evaluated and provide additional information on how to optimize the operation modes of fuel cells, including the start and stop of such systems as well as the water balance.

  19. A Novel Fault Location Algorithm for Double-Circuit Transmission Lines based on Distributed Parameter

    Institute of Scientific and Technical Information of China (English)

    商立群; 施围

    2006-01-01

    A new fault location algorithm for double-circuit transmission lines is described in this paper. The proposed method uses data extracted from two ends of the transmission lines and thus eliminates the effects of the source impedance and the fault resistance. The distributed parameter model and the modal transformation are also employed. Depending on modal transformation, the coupled equations of the lines are converted into decoupled ones. In this way, the mutual coupling effects between adjacent circuits of the lines are eliminated and therefore an accurate fault location can be achieved. The proposed method is tested via digital simulation using EMTP in conjunction with MATLAB. The test results corroborate the high accuracy of the proposed method.

  20. Sub-Daily Runoff Simulations with Parameters Inferred at the Daily Time Scale: Impacts of the temporal distribution of rainfall in parameter inference.

    Science.gov (United States)

    Reynolds Puga, Jose Eduardo; Halldin, Sven; Xu, Chong-Yu; Seibert, Jan

    2016-04-01

    Flood forecasting at sub-daily time scales are commonly required in regions where sub-daily observational data are not available. This has led to approaches to estimate model parameters at sub-daily time scales from data with a lower time resolution. Reynolds et al. (2015) show that parameters inferred at one time scale (e.g., daily) may be used directly for runoff simulations at other time scales (e.g., 1 h) when the modelling time step is the same and sufficiently small during calibration and simulation periods. Their approach produced parameter distributions at daily and sub-daily time scales that were similar and relatively constant across the time scales. The transfer of parameter values across time scales resulted in small model-performance decrease as opposed to when the parameter sets inferred at their respective time scale were used. This decrease in performance may be attributed to the degree of information lost, in terms of the physical processes occurring at short time scales, when the rainfall-runoff data used during the parameter-inference phase become coarser. It is not yet fully understood how the aggregation (or disaggregation) of the rainfall-runoff data affects parameter inference. In this study we analyse the impacts of the temporal distribution of rainfall for inferring model parameters at a coarse time scale and their effects in model performance when they are used at finer time scales, where data may not be available for calibration. The motivation is to improve runoff predictions and model performance at sub-daily time scales when parameters inferred at the daily scale are used for simulating at these scales. First, we calibrated the HBV-light conceptual hydrological model at the daily scale, but modelled discharge internally in 1-h time steps using 3 disaggregation procedures of the rainfall data. This was done in an attempt to maximise the information content of the input data used for calibration at the daily scale. One disaggregation

  1. Comparison between measured scrape-off layer plasma parameters and 2D model calculations for JET X-point discharges

    Energy Technology Data Exchange (ETDEWEB)

    Loarte, A. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Chankin, A. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Clement, S. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Corrigan, G. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Harbour, P. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Horton, L. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Janeschitz, G. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Lingertat, J. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Matthews, G. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Simonini, R. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Tagle, J.A. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Taroni, A. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom); Vlases, G. [JET Joint Undertaking, Abingdon, Oxon, OX14 3EA (United Kingdom)

    1995-04-01

    Modelling with the EDGE2D/U-NIMBUS code of the measured scrape-off layer plasma parameters for JET divertor discharges is presented. Model results agree with the experiment if very small values (< or {approx}0.1 m{sup 2}/s in H-modes and low power L-modes) for the anomalous particle transport diffusion coefficient in the SOL are used. While the assumption of the power flow out of the main plasma being carried equally by the electrons and the ions describes satisfactorily the global power balance for Ohmic and L-mode discharges, more power flowing out through the ion channel is consistent with the power balance in hot ion H-modes. Some sensitivity studies of the code results on the modelling hypothesis are discussed. ((orig.)).

  2. Average Distribution of Ionic Charges and Ionizability for the Au Plasma System

    Institute of Scientific and Technical Information of China (English)

    杨天丽; 蒋刚; 朱正和

    2002-01-01

    Using relativistic multi-configuration Dirac-Fock theory, we calculate the transition data of 3dj - n fj, (n =5, 6, 7) for the M-shell from an Ni-like Au ion to an As-like Auion using the GRASP programme with the core-polarization, quantum electrodynamical effect and Breit correction. Based on the present calculation results andthe experiment of the Xingguang-Ⅱ laser facilities, the average distribution of ionic charge and the ionizabilityhave been derived. The average ionization degree of Au plasma Z* is 49.06 ± 0.5, which is comparable with theresult of the Lawrence Livermore National Laboratory.

  3. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Vagin, K. Yu., E-mail: vagin@sci.lebedev.ru; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-08-15

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function.

  4. The vertical distribution of physical parameters in the Gulf of Riga for future climate projections.

    Science.gov (United States)

    Valainis, Aigars; Sennikovs, Juris

    2010-05-01

    Our goal was to investigate the vertical distribution of physical parameters (temperature, salinity) in the Gulf of Riga for the contemporay climate and for future climate projections. The Gulf of Riga is a semi-enclosed subbasin of the Baltic Sea between Latvia and Estonia. The area of the Gulf of Riga is about 18,000 sq. km. The maximum depth is 67 m. The island of Saaremaa partially separates it from the rest of the Baltic Sea. The main connection of the Gulf with the Baltic Proper is the Irbe Strait allowing limited exchanges with Baltic see. The Gulf of Riga was modelled with 1D model. Calculations were made for 55 m deep water column, taking into account hypsographic curve. The General Ocean Turbulence Model (GOTM) was used. Second order dynamic k-e equation with parameterization from Cheng (2002) was used for turbulence description. The result sensitivity was evaluated regarding models choice. Data from European Centre for Medium-Range Weather Forecasts (ECMWF) where used for calibration and verification period. Data included ECMWF ERA 40 for time period 1957-2002, and ECMWF ERA Interim for 1989-2009. Regional climate models (RCM) and scenarios for future climate change were obtained from Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) project. Time period for future physical parameter vertical distribution simulation was 2071-2100. We applied the bias correction (via histogram equalisation) of RCM data. We employed the setup of hydrological models to generate the contemporary and future river run-off data series Our results conclude that in future the Gulf won't freeze over. In summer surface temperature will increase at least by 2 degrees Celsius. Vertical stratification will begin a month earlier - as a consequence the time period of full mixing will be shorter.

  5. Parameter identification of a distributed runoff model by the optimization software Colleo

    Science.gov (United States)

    Matsumoto, Kazuhiro; Miyamoto, Mamoru; Yamakage, Yuzuru; Tsuda, Morimasa; Anai, Hirokazu; Iwami, Yoichi

    2015-04-01

    The introduction of Colleo (Collection of Optimization software) is presented and case studies of parameter identification for a distributed runoff model are illustrated. In order to calculate discharge of rivers accurately, a distributed runoff model becomes widely used to take into account various land usage, soil-type and rainfall distribution. Feasibility study of parameter optimization is desired to be done in two steps. The first step is to survey which optimization algorithms are suitable for the problems of interests. The second step is to investigate the performance of the specific optimization algorithm. Most of the previous studies seem to focus on the second step. This study will focus on the first step and complement the previous studies. Many optimization algorithms have been proposed in the computational science field and a large number of optimization software have been developed and opened to the public with practically applicable performance and quality. It is well known that it is important to use suitable algorithms for the problems to obtain good optimization results efficiently. In order to achieve algorithm comparison readily, optimization software is needed with which performance of many algorithms can be compared and can be connected to various simulation software. Colleo is developed to satisfy such needs. Colleo provides a unified user interface to several optimization software such as pyOpt, NLopt, inspyred and R and helps investigate the suitability of optimization algorithms. 74 different implementations of optimization algorithms, Nelder-Mead, Particle Swarm Optimization and Genetic Algorithm, are available with Colleo. The effectiveness of Colleo was demonstrated with the cases of flood events of the Gokase River basin in Japan (1820km2). From 2002 to 2010, there were 15 flood events, in which the discharge exceeded 1000m3/s. The discharge was calculated with the PWRI distributed hydrological model developed by ICHARM. The target

  6. Mechanism and operation parameters of a plasma-driven micro-particle accelerator

    Institute of Scientific and Technical Information of China (English)

    HUANG JianGuo; FENG ChunHua; HAN dianWei; LI HongWei; CAI MingHui; LI XiaoYin; ZHANG ZhenLong; CHEN ZhaoFeng; WANG Long; YANG XuanZong

    2009-01-01

    There is a large amount of micro debris ranging between millimeters and micrometers in space, which has significant influence on the reliability and life of spacecrafts through long-duration integrated im-pacts and has to be considered in designing a vehicle's suitability to the space environment. In order to simulate the micro-impacts on exposed materials, a plasma-driven micro-particle accelerator was de-veloped. The major processes, including the acceleration, compression and ejection of plasmas, were modeled. By comparing the theoretical simulations with the experimental results, the acceleration mechanism was clarified. Moreover, through a series of experiments, the optimum operation range was investigated, and the acceleration ability was primarily determined.

  7. Systematic properties of the Tsallis distribution: Energy dependence of parameters in high energy p–p collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cleymans, J., E-mail: jean.cleymans@gmail.com [UCT-CERN Research Centre and Department of Physics, University of Cape Town, Rondebosch 7701, Cape (South Africa); Lykasov, G.I. [JINR, Dubna, 141980 Moscow region (Russian Federation); Parvan, A.S. [JINR, Dubna, 141980 Moscow region (Russian Federation); Institute of Applied Physics, Moldova Academy of Sciences, MD-2028 Chisinau, Republic of Moldova (Moldova, Republic of); Sorin, A.S.; Teryaev, O.V. [JINR, Dubna, 141980 Moscow region (Russian Federation); Worku, D. [UCT-CERN Research Centre and Department of Physics, University of Cape Town, Rondebosch 7701, Cape (South Africa)

    2013-06-25

    Changes in the transverse momentum distributions with beam energy are studied using the Tsallis distribution as a parameterization. The dependence of the Tsallis parameters q, T and the volume are determined as a function of beam energy. The Tsallis parameter q shows a weak but clear increase with beam energy with the highest value being approximately 1.15. The Tsallis temperature and volume are consistent with being independent of beam energy within experimental uncertainties.

  8. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  9. Plasma Oxytocin in Children with Autism and Its Correlations with Behavioral Parameters in Children and Parents

    OpenAIRE

    Husarova, Veronika Marcincakova; Lakatosova, Silvia; Pivovarciova, Anna; Babinska, Katarina; Bakos, Jan; Durdiakova, Jaroslava; Kubranska, Aneta; Ondrejka, Igor; Ostatnikova, Daniela

    2016-01-01

    Objective Oxytocin (OT) has been implicated to play an important role in autism spectrum disorders (ASD) etiology. We aimed to find out the differences in plasma OT levels between children with autism and healthy children, the associations of OT levels with particular autism symptoms and the associations of particular parental autistic traits with their ASD children OT levels. Methods We included 19 boys with autism and 44 healthy age-matched boys. OT levels were analyzed by ELISA method. Chi...

  10. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework

    Directory of Open Access Journals (Sweden)

    J. J. Vélez

    2009-02-01

    Full Text Available A Regional Water Resources study was performed at basins within and draining to the Basque Country Region (N of Spain, with a total area of approximately 8500 km2. The objective was to obtain daily and monthly long-term discharges in 567 points, most of them ungauged, with basin areas ranging from 0.25 to 1850 km2. In order to extrapolate the calibrations at gauged points to the ungauged ones, a distributed and conceptually based model called TETIS was used. In TETIS the runoff production is modelled using five linked tanks at the each cell with different outflow relationships at each tank, which represents the main hydrological processes as snowmelt, evapotranspiration, overland flow, interflow and base flow. The routing along the channels' network couples its geomorphologic characteristics with the kinematic wave approach. The parameter estimation methodology tries to distinguish between the effective parameter used in the model at the cell scale, and the watershed characteristic estimated from the available information, being the best estimation without losing its physical meaning. The relationship between them can be considered as a correction function or, in its simple form, a correction factor. The correction factor can take into account the model input errors, the temporal and spatial scale effects and the watershed characteristics. Therefore, it is reasonable to assume the correction factor is the same for each parameter to all cells within the watershed. This approach reduces drastically the number of parameter to be calibrated, because only the common correction factors are calibrated instead of parameter maps (number of parameters times the number of cells. In this way, the calibration can be performed using automatic methodologies. In this work, the Shuffled Complex Evolution – University of Arizona, SCE-UA algorithm was used. The available recent year's data was used to calibrate the model in 20 of

  11. Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma

    Science.gov (United States)

    Liu, Hao; Truscott, Benjamin S.; Ashfold, Michael N. R.

    2016-05-01

    We illustrate a Stark broadening analysis of the electron density Ne and temperature Te in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of Ne and Te based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area.

  12. The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma

    Science.gov (United States)

    Panchal, V.; Lahoti, G.; Bhandarkar, U.; Neergat, M.

    2011-08-01

    The effects of process parameters on iron nanoparticle formation and properties while using ferrocene as a precursor in a low-pressure capacitively coupled plasma are investigated. The L18 array of the Taguchi method, followed by the L4 array, is used with the notional objective of increasing the yield of nanoparticles. A study of the size, shape and composition of the particles (using transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, x-ray diffraction, CHON and inductively coupled plasma-atomic emission spectroscopy analysis) gives an insight into the role played by various process parameters. Pressure is the most critical parameter in increasing nanoparticle yield, whereas hydrogen flow plays a key role in determining the nanoparticle size and composition. Atomic hydrogen helps in removing amorphous carbon and reducing the nanoparticle size. RF power plays an important role in the dissociation of ferrocene thus also affecting the composition. Nanoparticles obtained using optimized conditions are a mixture of Fe3O4 and Fe2O3 with cluster size 25-40 nm in diameter that are further made up of 2-4 nm crystallites. Magnetic property measurements indicate that the nanoparticles are super-paramagnetic in nature.

  13. The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, V; Neergat, M [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Lahoti, G; Bhandarkar, U, E-mail: bhandarkar@iitb.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2011-08-31

    The effects of process parameters on iron nanoparticle formation and properties while using ferrocene as a precursor in a low-pressure capacitively coupled plasma are investigated. The L{sub 18} array of the Taguchi method, followed by the L{sub 4} array, is used with the notional objective of increasing the yield of nanoparticles. A study of the size, shape and composition of the particles (using transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, x-ray diffraction, CHON and inductively coupled plasma-atomic emission spectroscopy analysis) gives an insight into the role played by various process parameters. Pressure is the most critical parameter in increasing nanoparticle yield, whereas hydrogen flow plays a key role in determining the nanoparticle size and composition. Atomic hydrogen helps in removing amorphous carbon and reducing the nanoparticle size. RF power plays an important role in the dissociation of ferrocene thus also affecting the composition. Nanoparticles obtained using optimized conditions are a mixture of Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} with cluster size 25-40 nm in diameter that are further made up of 2-4 nm crystallites. Magnetic property measurements indicate that the nanoparticles are super-paramagnetic in nature.

  14. Estimation of parameters in a distributed precipitation-runoff model for Norway

    Science.gov (United States)

    Beldring, Stein; Engeland, Kolbjørn; Roald, Lars A.; Roar Sælthun, Nils; Voksø, Astrid

    A distributed version of the HBV-model using 1 km2 grid cells and daily time step was used to simulate runoff from the entire land surface of Norway for the period 1961-1990. The model was sensitive to changes in small scale properties of the land surface and the climatic input data, through explicit representation of differences between model elements, and by implicit consideration of sub-grid variations in moisture status. A geographically transferable set of model parameters was determined by a multi-criteria calibration strategy, which simultaneously minimised the residuals between model simulated and observed runoff from 141 Norwegian catchments located in areas with different runoff regimes and landscape characteristics. Model discretisation units with identical landscape classification were assigned similar parameter values. Model performance was evaluated by simulating discharge from 43 independent catchments. Finally, a river routing procedure using a kinematic wave approximation to open channel flow was introduced in the model, and discharges from three additional catchments were calculated and compared with observations. The model was used to produce a map of average annual runoff for Norway for the period 1961-1990.

  15. THE BUBNOV–GALERKIN PROCEDURE IN PROBLEMS OF MOBILE (SCANNING CONTROL FOR SYSTEMS WITH DISTRIBUTED PARAMETERS

    Directory of Open Access Journals (Sweden)

    Arakelyan Sh. Kh.

    2015-09-01

    Full Text Available We suggest to apply the Bubnov–Galerkin procedure to solve scanning control problems for systems with distributed parameters. The algorithm is described in details for three-dimensional linear heat equation It allows to reduce the solution of control problem to finite-dimensional nonlinear moments problem. The procedure of derivation of moments problem is illustrated in details on the example of one-dimensional equation of thermal conductivity. The solution of obtained moments problem is found in a particular case. Based on obtained results a computer simulation is done using COMSOL Multiphysics platform in one-dimensional case for a rod. The main dependences of control function against input data of the problem are revealed. The state of the rod for several (constant values of the source intensity is expressed in terms of graphs and illustrations. Corresponding illustrations are brought in case of control absence (null-power source for comparison. An effective numerical scheme for solving the obtained system of nonlinear constraints is suggested in the case of extended class of admissible controls. Calculation of control parameters is reduced to the simplest problem of nonlinear programming.

  16. C-parameter Distribution at N${}^3$LL$^\\prime$ including Power Corrections

    CERN Document Server

    Hoang, André H; Mateu, Vicent; Stewart, Iain W

    2014-01-01

    We compute the $e^+ e^-$ C-parameter distribution using the Soft-Collinear Effective Theory with a resummation to N${}^3$LL$^\\prime$ accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to ${\\cal O} (\\alpha_s^3)$, a numerical determination of the two loop non-logarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for $C$ in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments $\\Omega_n$. In order to eliminate an ${\\cal O} (\\Lambda_{\\rm QCD})$ renormalon ambiguity in the soft function, we switch from the $\\overline {\\rm MS}$ to a short distance "Rgap" scheme to define the leading power correction parameter $\\Omega_1$. We show how to simultaneously account for running effects in $\\Omega_1$ due to renormalon subtractions and hadron mass effects, enabling power correction universality between C-para...

  17. Feedback optimal control of distributed parameter systems by using finite-dimensional approximation schemes.

    Science.gov (United States)

    Alessandri, Angelo; Gaggero, Mauro; Zoppoli, Riccardo

    2012-06-01

    Optimal control for systems described by partial differential equations is investigated by proposing a methodology to design feedback controllers in approximate form. The approximation stems from constraining the control law to take on a fixed structure, where a finite number of free parameters can be suitably chosen. The original infinite-dimensional optimization problem is then reduced to a mathematical programming one of finite dimension that consists in optimizing the parameters. The solution of such a problem is performed by using sequential quadratic programming. Linear combinations of fixed and parameterized basis functions are used as the structure for the control law, thus giving rise to two different finite-dimensional approximation schemes. The proposed paradigm is general since it allows one to treat problems with distributed and boundary controls within the same approximation framework. It can be applied to systems described by either linear or nonlinear elliptic, parabolic, and hyperbolic equations in arbitrary multidimensional domains. Simulation results obtained in two case studies show the potentials of the proposed approach as compared with dynamic programming.

  18. Calculation of distribution coefficients in the SAMPL5 challenge from atomic solvation parameters and surface areas

    Science.gov (United States)

    Santos-Martins, Diogo; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2016-11-01

    In the context of SAMPL5, we submitted blind predictions of the cyclohexane/water distribution coefficient (D) for a series of 53 drug-like molecules. Our method is purely empirical and based on the additive contribution of each solute atom to the free energy of solvation in water and in cyclohexane. The contribution of each atom depends on the atom type and on the exposed surface area. Comparatively to similar methods in the literature, we used a very small set of atomic parameters: only 10 for solvation in water and 1 for solvation in cyclohexane. As a result, the method is protected from overfitting and the error in the blind predictions could be reasonably estimated. Moreover, this approach is fast: it takes only 0.5 s to predict the distribution coefficient for all 53 SAMPL5 compounds, allowing its application in virtual screening campaigns. The performance of our approach (submission 49) is modest but satisfactory in view of its efficiency: the root mean square error (RMSE) was 3.3 log D units for the 53 compounds, while the RMSE of the best performing method (using COSMO-RS) was 2.1 (submission 16). Our method is implemented as a Python script available at https://github.com/diogomart/SAMPL5-DC-surface-empirical.

  19. Effects of magnesium on erythrocyte sodium-lithium countertransport and some of plasma biochemical parameters in rabbit

    Directory of Open Access Journals (Sweden)

    Samad Akbarzadeh

    2009-02-01

    Full Text Available Background: Magnesium acts as an essential cofactor for the activity of many enzymes. It regulates the work of cardiovascular system. The activity of sodium–lithium countertransport (SLC and the concentrations of plasma biochemical parameters such as VLDL, LDL-cholesterol, HDL-cholesterol, sodium, potassium, urea and creatinine are changed in cardiovascular diseases. The aim of this study was to determine the effects of magnesium on SLC activity and some of the plasma biochemical parameters. Methods: New Zealand white rabbits (weighed 1350 ± 50g were chosen for these experiments. This study was conducted through two in vitro and in vivo techniques. Through in vitro method, the effects of different concentrations of magnesium on SLC activity were investigated. In order to conduct in vivo method, the rabbits were divided into two groups (5 /group. One group was treated by MgSo4 (40 mg/kg body weight through peritoneum for two weeks. For the second group, deionized water was used. The activity of SLC and mentioned biochemical parameters were determined. Results: The results of both in vitro and in vivo studies showed that magnesium can significantly decrease the SLC activity and also causes an increase in Km and decreased Vmax/Km of the system and plasma concentrations of VLDL, LDL-cholesterol, total cholesterol and triglycerides were significantly decreased. Conclusion: Magnesium may cause a reduction in blood pressure through decreasing the SLC activity and affecting the concentrations of VLDL, LDL-cholesterol, total cholesterol and triglycerides and so improvement the cardiovascular diseases.

  20. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N. [Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.