WorldWideScience

Sample records for plasma optical emission

  1. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  2. Optical Emission Spectroscopic Studies of ICP Ar Plasma

    Institute of Scientific and Technical Information of China (English)

    QI Xuelian; REN Chunsheng; ZHANG Jian; MA Tengcai

    2007-01-01

    The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-frequency (RF) power and different positions in the discharge chamber on the line intensities were investigated in this study. It was found that the intensity of Ar atom line increased firstly and then saturated with the increase of the pressure. The line intensity of Ar+, on the other hand, reached a maximum value and then decreased along with the pressure. The intensity of the line in an RF discharge also demonstrated a jumping mode and a hysteresis phenomenon with the RF power. When the RF power increased to 400 W, the discharge jumped from the E-mode to the H-mode where the line intensity of Ar atom demonstrated a sudden increase, while the intensity of Ar+ ion only changed slightly. If the RF power decreased from a high value, e.g., 1000 W, the discharge would jump from the H-mode back to the E-mode at a power of 300 W. At this time the intensities of Ar and Ar+ lines would also decrease sharply. It was also noticed in this paper that the intensity of the ion line depended on the detective location in the chamber, namely at the bottom of the chamber the line was more intense than that in the middle of the chamber, but less intense than at the top, which is considered to be related to the capacitance coupling ability of the ICP plasma in different discharge areas.

  3. Boosting persistence time of laser-induced plasma by electric arc discharge for optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S., E-mail: simon.eschlboeck-fuchs@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Kolmhofer, P.J.; Bodea, M.A.; Hechenberger, J.G.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-07-01

    Plasma induced by nanosecond laser ablation is re-excited by a pulsed electric discharge and the parameters and optical emission of the plasma are measured. The discharge is a low-voltage and high-current electric arc that is triggered by the laser-induced plasma and slowly decaying with time. The optical emission of such combined plasma lasts up to several milliseconds which is much longer than without re-excitation (μs range). The emission spectra of re-excited plasma measured on different sample materials show higher line intensities than spectra measured by conventional laser-induced breakdown spectroscopy (LIBS). Moreover, emission lines of fluorine (spectral range 683–691 nm) and sulfur (range 520–550 nm) not detected by conventional LIBS become easily detectable with the combined plasma. The concentration of major components in metallurgical slags, as determined by calibration-free LIBS, agrees very well to the reference data evaluating the spectra taken from re-excited plasma. - Highlights: • Persistence time of laser-induced plasma in air is increased from ~ 10 μs to ~ 1 ms. • Laser-induced plasma triggers an electric arc discharge that boosts the plasma. • The combined laser-arc plasma is in LTE state over very long time (ms range). • CF-LIBS method delivers accurate results evaluating spectra of combined plasma. • Emission from S and F, not detected by LIBS, is detected with combined plasma.

  4. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anmin [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Shao, Junfeng; Wang, Tingfeng [State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Huang, Xuri [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Jin, Mingxing [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  5. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  6. Plasma diagnostics in gas metal arc welding by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Valensi, F; Pellerin, S; Zielinska, S [GREMI, Universite d' Orleans (Site de Bourges)/CNRS, BP 4043, 18028 Bourges cedex (France); Boutaghane, A [Universite des Sciences et de la Technologie Houari Boumediene, Alger (Algeria); Dzierzega, K [Marian Smoluchowski Institute of Physics, Jagellonian University, Krakow (Poland); Pellerin, N [CNRS, UPR3079 CEMHTI, 1D av. de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Briand, F, E-mail: flavien.valensi@laplace.univ-tsle.f, E-mail: stephane.pellerin@univ-orleans.f, E-mail: aboutaghane@yahoo.f, E-mail: krzycho@netmail.if.uj.edu.p, E-mail: sylwia.zielinska@airliquide.co, E-mail: nadia.pellerin@univ-orleans.f, E-mail: francis.briand@airliquide.co [CTAS-Air Liquide Welding, Saint Ouen l' Aumone, 95315 Cergy-Pontoise cedex (France)

    2010-11-03

    The plasma column in a metal inert gas welding process is investigated by optical emission spectroscopy and high-speed imaging. The concentration and repartition of iron vapours are measured and correlated with the plasma and electrode geometric configuration. Plasma temperatures and electron densities are also measured for each studied position in the plasma. The temperatures are calculated using two different methods, allowing validation of the local thermodynamic equilibrium state of the plasma. The results show a maximum temperature of 12 500 K in the upper part of the arc, away from the arc axis. The iron concentration reaches a maximum of 0.3% close to the anode and strongly decreases along both the vertical and radial directions. The plasma thermophysical properties, calculated from this plasma composition, are then discussed regarding the metal transfer mode.

  7. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  8. Investigations of GMAW plasma by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, S [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Musiol, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Valensi, F [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Izarra, Ch de [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Briand, F [CTAS - Air Liquide Welding, Rue des Epluches, Saint Ouen l' Aumone (France)

    2007-11-15

    We report on investigations of gas metal arc welding plasma operated in pure argon and in a mixture of argon and CO{sub 2} at a dc current of 326 A. The spatially resolved electron densities and temperatures were directly obtained by measuring the Stark widths of the Ar I 695.5 nm and Fe I 538.3 nm spectral lines. Our experimental results show a reduction of the plasma conductivity and transfer from spray arc to globular arc operation with increasing CO{sub 2} concentration. Although the electron density n{sub e} increases while approaching the core of the plasma in the spray-arc mode, a drop in the electron temperature T{sub e} is observed. Moreover, the maximum T{sub e} that we measure is about 13 000 K. Our experimental results differ from the Haidar model where T{sub e} is always maximum on the arc axis and its values exceed 20 000 K. These discrepancies can be explained as a result of underestimation of the amount of metal vapours in the plasma core and of the assumption of local thermal equilibrium plasma in the model.

  9. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J.; Kronberger, M.; Mahner, E.; Schmitzer, C.; Sanchez, J.; Scrivens, R.; Midttun, O.; O' Neil, M.; Pereira, H.; Paoluzzi, M. [European Organization for Nuclear Research, CERN, 1211 Geneva 23 (Switzerland); Fantz, U.; Wuenderlich, D. [Max-Planck-Institut fuer Plasmaphysik, IPP, 85748 Garching (Germany); Kalvas, T.; Koivisto, H.; Komppula, J.; Myllyperkioe, P.; Tarvainen, O. [Department of Physics, University of Jyvaeskylae, 40500 Jyvaeskylae (Finland)

    2012-02-15

    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H{sup -} ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H{sub {alpha}}, H{sub {beta}}, and H{sub {gamma}} Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  10. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator

    Institute of Scientific and Technical Information of China (English)

    LI Ying-Hong; WU Yun; JIA Min; ZHOU Zhang-Wen; GUO Zhi-Gang; PU Yi-Kang

    2008-01-01

    The optical emission spectroscopy of a surface dielectric barrier discharge plasma aerodynamic actuator is investigated with different electrode configurations, applied voltages and driving frequencies. The rotational temperature of N2 (C3IIu) molecule is calculated according to its rotational emission band near 380.5 nm. The average electron energy of the discharge is evaluated by emission intensity ratio of first negative system to second positive system of N2. The rotational temperature is sensitive to the inner space of an electrode pair. The average electron energy shows insensitivity to the applied voltage, the driving frequency and the electrode configuration.

  11. Optical emission studies of plasma induced by single and double femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Pinon, V. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol, A Coruna (Spain); Anglos, D., E-mail: anglos@iesl.forth.g [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Chemistry, University of Crete, 71003 Heraklion, Crete (Greece)

    2009-10-15

    Double-pulse femtosecond laser ablation has been shown to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to single-pulse ablation particularly when an appropriate interpulse delay is selected, that is typically in the range of 50-1000 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy analysis of materials. A detailed comparative study of collinear double- over single-pulse femtosecond laser-induced breakdown spectroscopy has been carried out, based on measurements of emission lifetime, temperature and electronic density of plasmas, produced during laser ablation of brass with 450 fs laser pulses at 248 nm. The results obtained show a distinct increase of plasma temperature and electronic density as well as a longer decay time in the double-pulse case. The plasma temperature increase is in agreement with the observed dependence of the emission intensity enhancement on the upper energy level of the corresponding spectral line. Namely, intensity enhancement of emission lines originating from higher lying levels is more profound compared to that of lines arising from lower energy levels. Finally, a substantial decrease of the plasma threshold fluence was observed in the double-pulse arrangement; this enables sensitive analysis with minimal damage on the sample surface.

  12. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  13. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  14. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Science.gov (United States)

    Hara, Hiroyuki; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Suzuki, Chihiro; Tamura, Naoki; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Higashiguchi, Takeshi; LHD Experiment Group

    2017-08-01

    The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA) emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5-7.5) × 1013 cm-3. The UTA spectral structure was due to emission from 4d-4f transitions in highly charged ions with average charge states of q = 20-40. A numerical simulation successfully reproduced the observed spectral behavior.

  15. Spatially resolved optical-emission spectroscopy of a radio-frequency driven iodine plasma source

    Science.gov (United States)

    Dedrick, James; Doyle, Scott; Grondein, Pascaline; Aanesland, Ane

    2016-09-01

    Iodine is of interest for potential use as a propellant for spacecraft propulsion, and has become attractive as a replacement to xenon due to its similar mass and ionisation potential. Optical emission spectroscopy has been undertaken to characterise the emission from a low-pressure, radio-frequency driven inductively coupled plasma source operating in iodine with respect to axial distance across its transverse magnetic filter. The results are compared with axial profiles of the electron temperature and density for identical source conditions, and the spatial distribution of the emission intensity is observed to be closely correlated with the electron temperature. This work has been done within the LABEX Plas@Par project, and received financial state aid managed by the ``Agence Nationale de la Recherche'', as part of the ``Programme d'Investissements d'Avenir'' under the reference ANR-11-IDEX-0004-02.

  16. Inductively Coupled Plasma Optical-Emission Spectroscopy Determination of Major and Minor Elements in Vinegar

    Directory of Open Access Journals (Sweden)

    Arzu AKPINAR-BAYIZIT

    2010-12-01

    Full Text Available This study characterizes the mineral content of vinegar samples. The concentrations of Na, K, Ca, Mg and P (major elements as well as Fe, Mn, Sn, Cu, Ni, Zn, Pb and Cd (minor elements were determined in 35 commercial vinegar samples using inductively coupled plasma optical-emission spectrometry (ICP-OES. The elements with the highest concentrations were K, Na, Ca, Mg and P. The concentrations of heavy metals in the vinegar samples, including Cd, Ni, Sn and Pb, were not considered a health risk.

  17. Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000U facility

    Science.gov (United States)

    Skladnik-Sadowska, E.; Dan'ko, S. A.; Kwiatkowski, R.; Sadowski, M. J.; Zaloga, D. R.; Paduch, M.; Zielinska, E.; Kharrasov, A. M.; Krauz, V. I.

    2016-12-01

    Optical emission spectroscopy techniques were used to investigate the spectra of dense deuterium-plasma jets generated by high-current pulse discharges within the large PF-1000U facility and to estimate parameters of plasma inside the jets and their surroundings. Time-resolved optical spectra were recorded by means of a Mechelle®900 spectrometer. From an analysis of the deuterium line broadening, it was estimated that the electron concentration at a distance 57 cm from the electrode outlets amounted to (0.4-3.7) × 1017 cm-3 depending on the initial gas distribution and the time interval of the spectrum registration after the instant of the plasma jet generation. From the re-absorption dip in the Dβ profile, it was assessed that the electron concentration in the surrounding gas was equal to about 1.5 × 1015 cm-3. On the basis of the measured ratio of He II 468.6 nm and He I 587.6 nm line intensities, it was estimated that the electron temperature amounted to about 5.3 eV. Also estimated were some dimensionless parameters of the investigated plasma jets.

  18. A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas

    Institute of Scientific and Technical Information of China (English)

    Niu Tian-Ye; Cao Jin-Xiang; Liu Lei; Liu Jin-Ying; Wang Yan; Wang Liang

    2007-01-01

    In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.

  19. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Science.gov (United States)

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  20. Dimension reduction of multivariable optical emission spectrometer datasets for industrial plasma processes.

    Science.gov (United States)

    Yang, Jie; McArdle, Conor; Daniels, Stephen

    2013-12-19

    A new data dimension-reduction method, called Internal Information Redundancy Reduction (IIRR), is proposed for application to Optical Emission Spectroscopy (OES) datasets obtained from industrial plasma processes. For example in a semiconductor manufacturing environment, real-time spectral emission data is potentially very useful for inferring information about critical process parameters such as wafer etch rates, however, the relationship between the spectral sensor data gathered over the duration of an etching process step and the target process output parameters is complex. OES sensor data has high dimensionality (fine wavelength resolution is required in spectral emission measurements in order to capture data on all chemical species involved in plasma reactions) and full spectrum samples are taken at frequent time points, so that dynamic process changes can be captured. To maximise the utility of the gathered dataset, it is essential that information redundancy is minimised, but with the important requirement that the resulting reduced dataset remains in a form that is amenable to direct interpretation of the physical process. To meet this requirement and to achieve a high reduction in dimension with little information loss, the IIRR method proposed in this paper operates directly in the original variable space, identifying peak wavelength emissions and the correlative relationships between them. A new statistic, Mean Determination Ratio (MDR), is proposed to quantify the information loss after dimension reduction and the effectiveness of IIRR is demonstrated using an actual semiconductor manufacturing dataset. As an example of the application of IIRR in process monitoring/control, we also show how etch rates can be accurately predicted from IIRR dimension-reduced spectral data.

  1. Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses

    Indian Academy of Sciences (India)

    V N Rai; F Y Yueh; J P Singh

    2005-12-01

    Parametric study of optical emission from two successive laser pulses produced chromium and magnesium plasma is presented. The line emission from chromium and magnesium plasma showed an increase by more than six times for double laser pulse excitation than for single-pulse excitation. An optimum increase in emission intensity was noted for inter-pulse delay of ∼ 2–3 s for all the elements. The experimental observations were qualitatively explained on the basis of absorption of second laser pulse in the pre-formed (by first laser) coronal plasma by inverse Bremsstrahlung process, which were found responsible for the excitation of more ions and atoms in the plasma. This process starts as the plasma scale length becomes greater than the laser wavelength. This study further indicated the suitability of this technique in the field of elemental analysis.

  2. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    Science.gov (United States)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  3. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    Science.gov (United States)

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  4. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    Science.gov (United States)

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations.

  5. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    Science.gov (United States)

    Rathore, Kavita; Munshi, Prabhat; Bhattacharjee, Sudeep

    2016-03-01

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal-oxide-semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission Hα (656 nm) and Hβ (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  6. Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S.; Haslinger, M.J.; Hinterreiter, A.; Kolmhofer, P.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2013-09-01

    We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature T{sub S} ≤ 500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with T{sub S}. The size and brightness of expanding plumes increase at higher T{sub S} while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with T{sub S}. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to T{sub S} = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes. - Highlights: • Size and emission of laser-induced plasma increase with sample temperature Ts. • Mean optical intensity of plasma is independent of Ts. • Plasma temperature and electron number density do not vary with Ts. • Major oxides in steel slag are quantified up to Ts = 450 °C. • Industrial steel slags are analyzed by calibration-free LIBS method.

  7. Dynamics of double-pulse laser produced titanium plasma inferred from thin film morphology and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krstulović, N., E-mail: niksak@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Salamon, K., E-mail: ksalamon@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Modic, M., E-mail: martina.modic@ijs.si [Jožef Stefan Institute, Jamova 39, 1001 Ljubljana (Slovenia); Bišćan, M., E-mail: mbiscan@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Milat, O., E-mail: milat@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia); Milošević, S., E-mail: slobodan@ifs.hr [Institute of Physics, Bijenička 46, HR-10000 Zagreb (Croatia)

    2015-05-01

    In this paper, dynamics of double-pulse laser produced titanium plasma was studied both directly using optical emission spectroscopy (OES) and indirectly from morphological properties of deposited thin films. Both approaches yield consistent results. Ablated material was deposited in a form of thin film on the Si substrate. During deposition, plasma dynamics was monitored using optical emission spectroscopy with spatial and temporal resolutions. The influence of ablation mode (single and double) and delay time τ (delay between first and second pulses in double-pulse mode) on plasma dynamics and consequently on morphology of deposited Ti-films was studied using X-ray reflectivity and atomic force microscopy. Delay time τ was varied from 170 ns to 4 μs. The results show strong dependence of both emission signal and Ti-film properties, such as thickness, density and roughness, on τ. In addition, correlation of average density and thickness of film is observed. These results are discussed in terms of dependency of angular distribution and kinetic energy of plasma plume particles on τ. Advantages of using double-pulse laser deposition for possible application in thin film production are shown. - Highlights: • Ti-thin films produced by single and double pulse laser ablation mode. • Ablation mode and delay time influenced plasma plume and film characteristics. • Films are most compact for optimized delay time (thinnest, smoothest and most dense). • Plasma dynamics can be inferred from film characteristics.

  8. Multielemental inductively coupled plasma optical emission spectrometry analysis of nickeliferous minerals.

    Science.gov (United States)

    Abad-Peña, Elizabet; Larrea-Marín, María Teresa; Villanueva-Tagle, Margarita Edelia; Pomares-Alfonso, Mario Simeón

    2014-06-01

    An inductively coupled plasma optical emission spectrometry method for the quantitative simultaneous determination of Al, Ca, Co, Cu, Cr, Fe, K, Mg, Mn, Na, Ni, P and Zn in Cuban laterite and serpentine minerals has been developed. Additionally, V and Ti can be quantitatively determined in laterite mineral; Li, Sr, and Zr can be detected in both mineral types and Pb can be detected just in laterite mineral. The microwave-assisted total acid digestion of samples was achieved with HCl+HNO3+HF and HNO3+HClO4+HF acid mixtures for laterite and serpentine samples, respectively. In non-robust plasma operating conditions, the matrix effect characteristics of the laterite sample were dictated by the principal component Fe; while the character of the Mg principal component matrix effect was some how modified by the concomitants Fe and Ni in serpentine sample. The selection of robust conditions decreased the matrix effect. Additionally, the simulation of the matrix samples by introducing the principal component Fe or Mg, correspondingly, in calibration dissolutions was needed to overcome completely the matrix effect over the analysis accuracy. Precision of analysis was very near or lower than 10% for most elements, except Sr (15%) in L-1; and K (15%) and Li (15%) in SNi sample. Accuracy of analysis was around or lowers than 10% for most elements, except K (15%), Na (19%), P (19%) and V (19%) in L-1 sample; and Ca (14%) and P (20%) in SNi sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Souza, Gilberto B.; Carrilho, Elma Neide V. M.; Oliveira, Camila V.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    A rapid sample preparation method is proposed for decomposition of milk powder, corn bran, bovine and fish tissues, containing certified contents of the analytes. The procedure involves sample combustion in a commercial stainless steel oxygen bomb operating at 25 bar. Most of the samples were decomposed within 5 min. Diluted nitric acid or water-soluble tertiary amines 10% v/v were used as absorption solutions. Calcium, Cu, K, Mg, Na, P, S and Zn were recovered with the bomb washings and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ethanol mixed with paraffin was used as a combustion aid to allow complete combustion. A cooling step prior releasing of the bomb valve was employed to increase the efficiency of sample combustion. Iodine was also determined in milk samples spiked with potassium iodide to evaluate the volatilization and collection of iodine in amine CFA-C medium and the feasibility of its determination by ICP-OES with axial view configuration. Most of the element recoveries in the samples were between 91 and 105% and the certified and found contents exhibited a fair agreement at a 95% confidence level.

  10. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  11. Optical emission spectroscopy characterizations of micro-air plasma used for simulation of cell membrane poration

    Science.gov (United States)

    Zerrouki, A.; Motomura, H.; Ikeda, Y.; Jinno, M.; Yousfi, M.

    2016-07-01

    A micro-air corona discharge, which is one of the plasmas successfully used for gene transfection in terms of high transfection and cell viability rates, is characterized by optical emission spectroscopy. This non-equilibrium low temperature plasma is generated from the tip of a pulsed high voltage micro-tube (0.2 mm inner diameter and 0.7 mm for outer diameter) placed 2 mm in front of a petri dish containing deionized water and set on a grounded copper plate. The electron temperature, equal to about 6.75 eV near the electrode tip and decreased down to 3.4 eV near the plate, has been estimated, with an error bar of about 30%, from an interesting approach based on the experimental ratio of the closest nitrogen emission spectra of \\text{N}2+ (FNS) at 391.4 nm and N2(SPS) at 394.3 nm. This is based on one hand on a balance equation between creations and losses of the excited upper levels of these two UV spectra and on the other hand on the electron impact rates of the creation of these upper levels calculated from solution of the multi-term Boltzmann equation. Then using the measured Hα spectrum, electron density n e has been estimated from Stark broadening versus the inter-electrode position with an average error bar of about 50%. n e  ≈  1  ×  1015 cm-3 is near the tip coherent with the usual magnitude of electron density in the streamer head developed near the tip of the corona discharges. Rotational temperatures, estimated from comparison of synthetic and experimental spectra of OH(A  -  X), \\text{N}2+ (FNS) at 391.4 nm, and N2(SPS) at 337 nm are respectively equal to 2350 K, 2000 K and 700 K in the gap space. This clearly underlines a thermal non-equilibrium of the corresponding excited species generated inside the thin streamer filaments. But, due to the high dilution of these species in the background gas, these high rotational temperatures do not affect the mean gas temperature that remains close to 300

  12. Online diagnosis of electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure by optical emission spectra

    Institute of Scientific and Technical Information of China (English)

    CUI JinHua; XU ZhenFeng; ZHANG JiaLiang; NIE QiuYue; XU GenHui; REN LongLiang

    2008-01-01

    Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy.In this study,CH4+H2 dis-charge plasma was on-line diagnosed by optical emission spectra so as to char-acterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas.The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure.The diagnostic method is easy,efficient and fairly precise.A serious er-ror in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas.

  13. Online diagnosis of electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure by optical emission spectra

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Methane coupling under low temperature plasmas at atmospheric pressure is a green process by use of renewable sources of energy. In this study, CH4+H2 dis- charge plasma was on-line diagnosed by optical emission spectra so as to char- acterize the discharge system and to do spade work for the optimization of the technical parameters for future commercial production of methane coupling under plasmas. The study was focused on a calculation method for the online diagnosis of the electron excitation temperature in CH4+H2 discharge plasma at atmospheric pressure. The diagnostic method is easy, efficient and fairly precise. A serious er- ror in a literature was corrected during the reasoning of its series of equations formerly used to calculate electron temperatures in plasmas.

  14. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    Science.gov (United States)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  15. Similarity ratio analysis for early stage fault detection with optical emission spectrometer in plasma etching process.

    Science.gov (United States)

    Yang, Jie; McArdle, Conor; Daniels, Stephen

    2014-01-01

    A Similarity Ratio Analysis (SRA) method is proposed for early-stage Fault Detection (FD) in plasma etching processes using real-time Optical Emission Spectrometer (OES) data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy etching process. By comparing with the SRA library, a Similarity Ratio (SR) statistic is then calculated for each spectrum scan as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A), takes the SR values as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm, and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but with fault testing conducted only after each process run completes.

  16. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Nurul’Afiqah Hashimah

    2016-01-01

    Full Text Available Analysis of gunshot residue (GSR is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II in GSR using cyclic voltammetry (CV on screen printed carbon electrode (SPCE is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES those required a long time for analysis. SPCE is specially designed to handle with microvolumes of sample such as GSR sample. It gives advantages for identification of copper in GSR on-site preliminary test to prevent the sample loss on the process to be analyzed in the laboratory. SPCE was swabbed directly on the shooter’s arm immediately after firing and acetate buffer was dropped on SPCE before CV analysis. For ICP-OES analysis, cotton that had been soaked in 0.5 M nitric acid was swabbed on the shooter’s arm immediately after firing and kept in a tightly closed sampling tube. Gold coated SPCE that had been through nanoparticles modification exhibits excellent performance on voltammograms. The calibration was linear from 1 to 50 ppm of copper, the limit of detection for copper was 0.3 ppm and a relative standard deviation was 6.1 %. The method was successfully applied to the determination of copper in GSR. The Cu determination on SPCE was compared and validated by ICP-OES method with 94 % accuracy.

  17. Similarity ratio analysis for early stage fault detection with optical emission spectrometer in plasma etching process.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available A Similarity Ratio Analysis (SRA method is proposed for early-stage Fault Detection (FD in plasma etching processes using real-time Optical Emission Spectrometer (OES data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy etching process. By comparing with the SRA library, a Similarity Ratio (SR statistic is then calculated for each spectrum scan as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A, takes the SR values as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm, and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but with fault testing conducted only after each process run completes.

  18. Optical emission spectroscopy of OH lines in N2 and Ar plasma during the treatments of cotton fabric

    Science.gov (United States)

    Skoro, Nikola; Puac, Nevena; Spasic, Kosta; Malovic, Gordana; Gorjanc, Marija; Petrovic, Zoran Lj

    2016-09-01

    Low pressure non-equilibrium plasmas are proven to be irreplaceable tool in material processing. Among other fields their applications in treatments of textiles are still diversifying, but the main role of plasma is activation of the surface of treated sample. After, or during, the treatments these surfaces can be covered with different materials or species (such as microcapsules) that enhance properties of the fabric. In order to investigate mechanisms how active species from plasma interact with the cotton surface, we studied both plasma and surface properties. Bleached cotton samples were treated in low-pressure nitrogen and argon plasma in a chamber with parallel-plate electrodes. The effect of the plasma treatment on the cotton samples was investigated with the colorimetric measurements on dyes absorption by a spectrophotometer. Optical emission spectroscopy was performed by using spectrometer with a sensitive CCD camera. We have recorded the evolution of the maximum of the intensity of OH and N2 second positive band lines. Measurement were done with and without samples in the chamber and comparison between the lines intensity was made. The parameters for optimal plasma treatment conditions were determined. Research supported by the MESTD, projects III41011 and ON171037.

  19. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  20. Uncertainty Estimation of Metals and Semimetals Determination in Wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

    Science.gov (United States)

    Marques, J. R.; Villa-Soares, S. M.; Stellato, T. B.; Silva, T. B. S. C.; Faustino, M. G.; Monteiro, L. R.; Pires, M. A. F.; Cotrim, M. E. B.

    2016-07-01

    The measurement uncertainty is a parameter that represents the dispersion of the results obtained by a method of analysis. The estimation of measurement uncertainty in the determination of metals and semimetals is important to compare the results with limits defined by environmental legislation and conclude if the analytes are meeting the requirements. Therefore, the aim of this paper is present all the steps followed to estimate the uncertainty of the determination of amount of metals and semimetals in wastewater by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Measurement uncertainty obtained was between 4.6 and 12.2% in the concentration range of mg.L-1.

  1. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    Science.gov (United States)

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature.

  2. Evaluation of Five Phase Digitally Controlled Rotating Field Plasma Source for Photochemical Mercury Vapor Generation Optical Emission Spectrometry.

    Science.gov (United States)

    Matusiewicz, Henryk; Ślachciński, Mariusz; Pawłowski, Paweł; Portalski, Marek

    2015-01-01

    A new sensitive method for total mercury determination in reference materials using a 5-phase digitally controlled rotating field plasma source (RFP) for optical emission spectrometry (OES) was developed. A novel synergic effect of ultrasonic nebulization (USN) and ultraviolet-visible light (UV-Vis) irradiation when used in combination was exploited for efficient Hg vapor generation. UV- and Vis-based irradiation systems were studied. It was found that the most advantageous design was an ultrasonic nebulizer fitted with a 6 W mercury lamp supplying a microliter sample to a quartz oscillator, converting liquid into aerosol at the entrance of the UV spray chamber. Optimal conditions involved using a 20% v/v solution of acetic acid as the generation medium. The mercury cold vapor, favorably generated from Hg(2+) solutions by UV irradiation, was rapidly transported into a plasma source with rotating field generated within the five electrodes and detected by digitally controlled rotating field plasma optical emission spectrometry (RFP-OES). Under optimal conditions, the experimental concentration detection limit for the determination, calculated as the concentration giving a signal equal to three times the standard deviation of the blank (LOD, 3σblank criterion, peak height), was 4.1 ng mL(-1). The relative standard deviation for samples was equal to or better than 5% for liquid analysis and microsampling capability. The methodology was validated through determination of mercury in three certified reference materials (corresponding to biological and environmental samples) (NRCC DOLT-2, NRCC PACS-1, NIST 2710) using the external aqueous standard calibration techniques in acetic acid media, with satisfactory recoveries. Mercury serves as an example element to validate the capability of this approach. This is a simple, reagent-saving, cost-effective and green analytical method for mercury determination.

  3. Investigation of local thermodynamic equilibrium of laser induced Al2O3-TiC plasma in argon by spatially resolved optical emission spectroscopy

    Science.gov (United States)

    Alnama, K.; Alkhawwam, A.; Jazmati, A. K.

    2016-06-01

    Plasma plume of Al2O3-TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  4. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  5. Characterization of RF He-N2/Ar mixture plasma via Langmuir probe and optical emission spectroscopy techniques

    Science.gov (United States)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Hussain, S. S.; Zakaullah, M.; Zaka-ul-Islam, M.

    2016-08-01

    A Magnetic Pole Enhanced inductively coupled RF H e - N 2 / A r plasma is characterized using a Langmuir probe and optical emission spectroscopy (OES) techniques. The effect of helium mixing on electron density ( n e ) and temperature ( T e ) , electron energy probability functions (EEPFs), [ N ] atomic density, and N 2 dissociation is investigated. A Langmuir probe and a zero slope method based on trace rare gas-optical emission spectroscopy (TRG-OES) are employed to measure the electron temperature. It is noted that the electron temperature shows an increasing trend for both methods. However, the temperature measured by a zero slope method T e ( Z . S ) approaches the temperature measured by a Langmuir probe; T e ( L . P ) at 56% and above helium concentration in the discharge. "Advance actinometry" is employed to monitor the variation in [ N ] atomic density with helium concentration and gas pressure. It is noted that [ N ] atomic density increases at 56% and above helium in the discharge, which is consistent with the trend of electron temperature and EEPFs. A drastic enhancement in N 2 dissociation fraction D 1 determined by "advance actinometry" is noted at 56% and above helium concentration in the mixture due to modifications in different population and depopulation mechanisms. However, it is also noted that the dissociation fraction D 2 determined by intensity ratio method increases linearly with helium addition.

  6. Diagnosis of Methane Plasma Generated in an Atmospheric Pressure DBD Micro-Jet by Optical Emission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Feng; BIAN Xin-Chao; CHEN Qiang; LIU Fu-Ping; LIU Zhong-Wei

    2009-01-01

    Diagnosis of methane plasma,generated in an atmospheric pressure dielectric barrier discharge (DBD) microplasma jet with a quartz tube as dielectric material by a 25 kHz sinusoidal ac power source,is conducted by optical emission spectroscopy (OES).The reactive radicals in methane plasma such as CH,C2,and Ha are detected insitu by OES.The possible dissociation mechanism of methane in diluted Ar plasma is deduced from spectra.In addition,the density of CH radical,which is considered as one of the precursors in diamond-like (DLC) film formation,affected by the parameters of input voltage and the feed gas flow rate,is emphasized. With the Boltzmann plots,four Ar atomic spectral lines (located at 675.28nm,687.13nm,738.40nm and 794.82nm,respectively) are chosen to calculate the electron temperature,and the dependence of electron temperature on discharge parameters is also investigated.

  7. Determination of Silicon in Gasoline by Directly Measuring under Organic Phase Using Inductively Coupled Plasma Optical Emission Spectroscopy.

    Science.gov (United States)

    Zhang, Wen-mei; Wen, Huan; Lü, Huan-ming; Liu, Hui-qin; Lin, Zhi-sheng; Wang, Rong-hua

    2015-03-01

    A simple and accurate method was developed for determining silicon in gasoline using inductively coupled plasma optical emission spectroscopy (ICP-OES). For sample inroduction a Burgener nubulizer and a Cyclonic spray chamber were used. A gasoline sample was diluted with isooctane and then introduced into the cooled spray chamber of the ICP-OES. Good linearity was achieved in the silicon concentration range 0.1 - 10.0 mg x kg(-1), and the correlation coefficient was 0.999 96. The detection limit for silicon was 0.012 mg x kg(-1) and the silicon recoveries from gasoline samples were 95.8% - 98.4%, with relative standard deviations of less than 3.0% The method was proved to be simple, reliable and highly sensitive, and suitable for determining silicon in samples of motor gasoline, ethanol-gasoline and methanol-gasoline fuel mixtures those containing not more than 15% (V/V) oxygenates.

  8. Online Determination of Sm, Eu and Yb in Environmental Samples by Inductively Coupled PlasmaOptical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dilip Kumar

    2007-01-01

    Full Text Available A procedure was developed for the determination of Sm, Eu and Yb in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES after preconcentration on synthesized 5-(4-pyridyl azo-8-quinolinol supported by Borassus flabellifer inflorescence (BFI. The sorbed element was subsequently eluted with 0.4 M HNO3 and the acid eluates were analyzed by ICP-OES. Under the optimal conditions, Sm, Eu and Yb in aqueous samples were concentrated 100-fold. Recoveries were obtained by the proposed method in the range of 98.6 -99.8%. This method was also applied for the analysis of spiked and natural water samples. The results provide strong evidence to support the hypothesis of an adsorption mechanism.

  9. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Araby, E.H., E-mail: elaraby_20032000@yahoo.com [Faculty of Science, Physics Department, Jezan University, KSA (Saudi Arabia); Abd El-Wahab, M., E-mail: wahab_magda@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Diab, H.M., E-mail: hnndiab@yahoo.co.uk [National Center of Nuclear Safety and Radiation Control, Atomic Energy Authority Cairo (Egypt); El-Desouky, T.M., E-mail: trkhegazy@yahoo.com [Faculty of women for Arts, Science and Education, Physics Department, Ain Shams University, PO11757 Cairo (Egypt); Mohsen, M., E-mail: m1mohsen@yahoo.com [Faculty of Science. Physics Department, Ain-Shams University, PO 11566 Cairo (Egypt)

    2011-10-15

    The aim of the present study is to assess the current level of atmospheric heavy metal pollution of aerosols in different cities of North Egypt using the neutron activation analysis and optical emission inductively coupled plasma techniques. The results revealed that the highest concentrations of particulate matter PM{sub 10} and total suspended particulate matter were close to industrial areas. From the results of the enrichment factor calculations, the most significant elements of anthropogenic origin are Ba, Sb, Ce and Zn. - Highlights: > Average concentration of Cd using OE-ICP is below detection limit for all the samples. > Maximum average concentration of Pb in PM10 and TSP is 5425 and 570.3, respectively. > Concentration of 20 elements in PM{sub 10} and TSP aerosols are determined using the NAA. > EF revealed that Pb, Ba, Br, Ce, Hf, La Sb and Zn are of anthropogenic origin.

  10. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  11. Liquid electrode plasma-optical emission spectrometry combined with solid-phase preconcentration for on-site analysis of lead.

    Science.gov (United States)

    Barua, Suman; Rahman, Ismail M M; Alam, Iftakharul; Miyaguchi, Maho; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2017-08-15

    A relatively rapid and precise method is presented for the determination of lead in aqueous matrix. The method consists of analyte quantitation using the liquid electrode plasma-optical emission spectrometry (LEP-OES) coupled with selective separation/preconcentration by solid-phase extraction (SPE). The impact of operating variables on the retention of lead in SPEs such as pH, flow rate of the sample solution; type, volume, flow rate of the eluent; and matrix effects were investigated. Selective SPE-separation/preconcentration minimized the interfering effect due to manganese in solution and limitations in lead-detection in low-concentration samples by LEP-OES. The LEP-OES operating parameters such as the electrical conductivity of sample solution; applied voltage; on-time, off-time, pulse count for applied voltage; number of measurements; and matrix effects have also been optimized to obtain a distinct peak for the lead at λmax=405.8nm. The limit of detection (3σ) and the limit of quantification (10σ) for lead determination using the technique were found as 1.9 and 6.5ng mL(-1), respectively. The precision, as relative standard deviation, was lower than 5% at 0.1μg mL(-1) Pb, and the preconcentration factor was found to be 187. The proposed method was applied to the analysis of lead contents in the natural aqueous matrix (recovery rate:>95%). The method accuracy was verified using certified reference material of wastewaters: SPS-WW1 and ERM-CA713. The results from LEP-OES were in good agreement with inductively coupled plasma optical emission spectrometry measurements of the same samples. The application of the method is rapid (≤5min, without preconcentration) with a reliable detection limit at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The determination of trace element concentrations in fly ash samples using ultrasound-assisted digestion followed with inductively coupled plasma optical emission spectrometry

    OpenAIRE

    Ilander, Aki; Väisänen, Ari

    2009-01-01

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of trace element (chromium, copper, lead, nickel, vanadium and zinc) concentrations in fly ash samples was developed. All the measurements were performed in robust plasma conditions. Ultrasound-assisted digestion procedures using digestion solutions of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 80% for all the analyte...

  13. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry

    OpenAIRE

    Ilander, Aki; Väisänen, Ari

    2007-01-01

    method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a...

  14. Solid-Sampling Electrothermal Vaporization Inductively Coupled Plasma Optical Emission Spectrometry for Direct Determination of Total Oxygen in Coal.

    Science.gov (United States)

    Vogt, Thomas; Bauer, Daniela; Nennstiel, David; Otto, Matthias

    2015-10-20

    A new analytical method for direct determination of total oxygen contents in eight coal samples of the Argonne Premium Coal (APC) series and in the NIST SRM 1632d is presented. The development of a suitable calibration procedure, optimization of measurement conditions, and the application of a tailored data processing for handling of plasma effects and high blanks enable the quantification of oxygen simultaneously with other trace, minor, or major elements in whole coal samples by means of electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES). For comparison, the oxygen contents were determined by a direct oxygen analyzer. The obtained oxygen values of the APC and the reference material NIST SRM 1632d were compared to data in the literature. The precision of the ETV-ICP OES was within ±3.5%, and the recovery better than 92%. With this good accuracy, the developed direct solid sampling method ETV-ICP OES is well suited for the fast determination of oxygen in coals, varying in rank from lignite to semianthracite, in a content range of about 100 ppm up to 27% using 1.5 mg sample weight. This direct analysis method represents an accurate, advantageous alternative to currently used methods for estimation of total oxygen contents in coals.

  15. Analysis of whole blood samples with low gas flow inductively coupled plasma-optical emission spectrometry.

    Science.gov (United States)

    Nowak, Sascha; Künnemeyer, Jens; Terborg, Lydia; Trümpler, Stefan; Günsel, Andreas; Wiesmüller, Gerhard A; Karst, Uwe; Buscher, Wolfgang

    2015-01-01

    Low gas flow ICP-OES with a total argon consumption below 0.7 L/min is introduced for the analysis of trace elements in blood samples to investigate the influence of samples containing an organic solvent in a demanding matrix on the performance of this plasma for the first time. Therefore, gadolinium was determined in human plasma samples and mercury in red blood cells, human plasma, and precipitated plasma protein fraction. Limits of detection (LOD) were determined to be in the low microgram per liter range for the analytes and the accuracy of the method was assessed by comparison with a conventional Fassel-type torch-based ICP-OES. It was proven that the low gas flow ICP-OES leads to comparable results with the instrument based on the Fassel-type torch.

  16. Potential of Solid Sampling Electrothermal Vaporization for solving spectral interference in Inductively Coupled Plasma Optical Emission Spectrometry

    Science.gov (United States)

    Asfaw, Alemayehu; Wibetoe, Grethe

    2009-05-01

    Spectral interference is one of the main causes of erroneous results in Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This paper describes some cases of spectral interferences with conventional nebulization ICP-OES and the potential of solving them utilizing electrothermal vaporization for volatility-based separation. The cases studied were, the well-known spectral overlap between the As and Cd lines at 228.8 nm that are only 10 pm apart, and the interference of Fe on the main emission lines of As, Cd and Pb. The spectral interferences were studied by monitoring the typical signals of solutions that contain the analytes and the potential interferent, by studying the spectra and calculating Background Equivalent Concentration (BEC)-values. A three step temperature program was developed to be used for direct analysis of solid soil samples by Electrothermal Vaporization (ETV)-ICP-OES: step 1 (760 °C, 40 s), step 2 (1620 °C, 20 s) and a cleaning step (2250 °C, 10 s) where Cd vaporizes in step 1, As, Pb and part of Fe in step 2 and the major part of Fe in the cleaning step. Because As and Cd were time-separated using this program, their prominent lines at 228.8 nm, could be used for determination of each element by ETV-ICP-OES, in spite of the serious wavelength overlap. Selective vaporization was also shown to reduce or eliminate the Fe background emission on As, Cd and Pb lines. To confirm the applicability of the method, a solid soil certified reference materials was analyzed directly without any sample treatment. Good or reasonable accuracy was obtained for the three elements.

  17. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Souza, Sidnei de [Laboratório de Química Analítica Ambiental (LQA), Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe (UFS), 49100-000, São Cristovão, SE (Brazil); Silvério Lopes da Costa, Silvânio [Laboratório de Química Analítica Ambiental (LQA), Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe (UFS), 49100-000, São Cristovão, SE (Brazil); Coordenação de Química, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, 57309-005, Arapiraca, AL (Brazil); Santos, Dayane Melo; Santos Pinto, Jéssica dos; Garcia, Carlos Alexandre Borges [Laboratório de Química Analítica Ambiental (LQA), Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe (UFS), 49100-000, São Cristovão, SE (Brazil); and others

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg{sup −1} for Mn to 77.3 mg kg{sup −1} for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento — MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES). - Highlights: • Determination of inorganic constituents in mineral fertilizers was proposed. • Experimental design methodology was used to optimize analytical method. • The sample preparation procedure using diluted reagents (HNO{sub 3} and H{sub 2}O{sub 2}) was employed. • The analytical method was satisfactorily to the determination of thirteen elements. • The

  18. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K [Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow (Poland); Pokrzywka, B [Mt. Suhora Observatory, Cracow Pedagogical University, ul. Podchorazych 2, 30-083 Cracow (Poland); Pellerin, S [LASEP, Universite d' Orleans-Centre Universitaire de Bourges, Rue Gaston Berger BP 4043, 18028 Bourges (France)

    2004-07-07

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip.

  19. Use of factorial design for evaluation of plasma conditions and comparison of two liquid sample introduction systems for an axially viewed inductively coupled plasma optical emission spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Trevizan, Lilian C. [Grupo de Analise Instrumental Aplicada, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, SP, 13650-970 (Brazil); Vieira, Edivan C. [Grupo de Analise Instrumental Aplicada, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, SP, 13650-970 (Brazil); Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil); Nogueira, Ana Rita A. [Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil); Nobrega, Joaquim A. [Grupo de Analise Instrumental Aplicada, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, Sao Carlos, SP, 13650-970 (Brazil)]. E-mail: djan@terra.com.br

    2005-06-30

    A factorial design was applied to evaluate plasma conditions employing the Mg II 280/Mg I 285 nm intensity ratio in an axially viewed inductively coupled plasma optical emission spectrometer using different sample introduction devices: a concentric or a V-groove nebulizer and a cyclonic or a Sturman-Masters spray chamber. Effects of nebulizer gas flow-rate on Mg II/Mg I ratio were different in each introduction system. Robust conditions were obtained at low nebulizer gas flow-rate when using concentric nebulizer with a cyclonic spray chamber or a concentric nebulizer and a Sturman-Masters spray chamber. However, when using a V-groove nebulizer with a Sturman-Masters spray chamber, Mg II/Mg I ratio increased at high nebulizer gas flow-rates. Recovery experiments for a milk standard reference material diluted in water-soluble tertiary amines in both robust and non-robust conditions indicated that the robust condition was reached at higher nebulizer gas flow-rates and led to better accuracy and precision when using a V-groove nebulizer.

  20. Development of a direct hydride generation nebulizer for the determination of selenium by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, Nereida E-mail: ncarrion@strix.ciens.ucv.ve; Murillo, Miguel; Montiel, Edie; Diaz, Dorfe

    2003-08-15

    A study was conducted to evaluate the performance of a new direct hydride generation nebulizer system for determination of hydride forming elements by inductively coupled plasma optical emission spectroscopy. This system was designed and optimized to obtain the highest sensitivity. Several experimental designs were used for these purposes. To optimize the individual parameters of the system, and to study the interaction between these parameters for both direct hydride generation nebulizers, a central composite orthogonal design with eight factors was set up. Significant behavioral differences were observed in the two direct hydride generation nebulizers studied. Finally, a 70 {mu}m gas orifice nebulizer exhibits a better detection limit than the 120 {mu}m nebulizer. Generally, for determination of selenium, this new direct hydride generation nebulizer system exhibits a linear dynamic range and detection limit (3{sigma}b) of 3 orders of magnitude and 0.2 {mu}g l{sup -1} for selenium, respectively. This new hydride generator is much simpler system that conventional hydride generation systems, which does not need to be changed to work in normal mode with the inductively coupled plasma, since this system may be used for hydride forming elements and those that do not form them. It produces a rapid response with low memory effect. It reduces the interference level of Ni, Co and Cu to 600, 500 and 5 mg l{sup -1}, respectively. The accuracy of the system was verified by the determination of selenium in several standard reference materials of ambient, food and clinical sample matrices. No statistically significant differences (95 confidence level) were obtained between our method and the reference values.

  1. Low gas flow inductively coupled plasma optical emission spectrometry for the analysis of food samples after microwave digestion.

    Science.gov (United States)

    Nowak, Sascha; Gesell, Monika; Holtkamp, Michael; Scheffer, Andy; Sperling, Michael; Karst, Uwe; Buscher, Wolfgang

    2014-11-01

    In this work, the recently introduced low flow inductively coupled plasma optical emission spectrometry (ICP-OES) with a total argon consumption below 0.7 L/min is applied for the first time to the field of food analysis. One goal is the investigation of the performance of this low flow plasma compared to a conventional ICP-OES system when non-aqueous samples with a certain matrix are introduced into the system. For this purpose, arsenic is determined in three different kinds of fish samples. In addition several nutrients (K, Na, Mg, Ca) and trace metals (Co, Cu, Mn, Cd, Pb, Zn, Fe, and Ni) are determined in honey samples (acacia) after microwave digestion. The precision of the measurements is characterized by relative standard deviations (RSD) and compared to the corresponding precision values achieved using the conventional Fassel-type torch of the ICP. To prove the accuracy of the low flow ICP-OES method, the obtained data from honey samples are validated by a conventional ICP-OES. For the measurements concerning arsenic in fish, the low flow ICP-OES values are validated by conventional Fassel-type ICP-OES. Furthermore, a certified reference material was investigated with the low gas flow setup. Limits of detection (LOD), according to the 3σ criterion, were determined to be in the low microgram per liter range for all analytes. Recovery rates in the range of 96-106% were observed for the determined trace metal elements. It was proven that the low gas flow ICP-OES leads to results that are comparable with those obtained with the Fassel-type torch for the analysis of food samples.

  2. On-line system for preconcentration and determination of metals in vegetables by Inductively Coupled Plasma Optical Emission Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Marcos A. [Universidade Federal da Bahia, Instituto de Quimica, Grupo de Pesquisa em Quimica Analitica, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil); Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, Campus de Jequie, Jequie, Bahia 45206-190 (Brazil); Santos, Walter N.L. dos [Departamento de Ciencias Exatas e da Terra, Universidade do Estado da Bahia, R. Silveira Martins, 2555, Salvador, Bahia 41195-001 (Brazil); Lemos, Valfredo A. [Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, Campus de Jequie, Jequie, Bahia 45206-190 (Brazil)], E-mail: vlemos@uesb.br; Korn, Maria das Gracas A.; Ferreira, Sergio L.C. [Universidade Federal da Bahia, Instituto de Quimica, Grupo de Pesquisa em Quimica Analitica, Campus Universitario de Ondina, Salvador, Bahia 40170-290 (Brazil)

    2007-09-05

    A procedure has been developed for the simultaneous determination of trace amounts of cadmium, copper, chromium, nickel and lead in digested vegetable samples. The method involves solid-phase extraction of the metals using a minicolumn of Amberlite XAD-4 modified with dihydroxybenzoic acid (DHB) and detection by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The elution of the metals from minicolumn was performed with 1.0 mol L{sup -1} hydrochloric acid. Variables associated with flow preconcentration system performance, such as pH, buffer concentration, eluent concentration and sampling flow rate, were optimized. The developed procedure provides enrichment factors of 100, 72, 16, 91 and 53, for cadmium, copper, chromium, nickel and lead, respectively. Detection limits (3{sigma}{sub B}) were 0.02 (Cd), 0.23 (Cu), 0.58 (Cr), 0.060 (Ni) and 0.54 (Pb) {mu}g L{sup -1}. The procedure was applied for determination of metals in samples of guarana and cabbage. The accuracy of the method was checked by the analysis of a certified reference material (NIST 1571, Orchard leaves). Results found were in agreement with certified values.

  3. Possibilities of High Resolution Inductively Coupled Plasma Optical Emission Spectrometry in the Determination of Trace Elements in Environmental Materials

    Directory of Open Access Journals (Sweden)

    Nikolaya Velitchkova

    2013-01-01

    Full Text Available This paper presents new quantitative data for the spectral interferences obtained by high resolution 40.68 MHz radial viewing inductively coupled plasma optical emission spectrometry (HR-ICP-OES in the determination of Zn, Cd, Sb, Cu, Mn, Pb, Sn, Cr, U, and Ba in environmental materials in the presence of a complex matrix, containing Al, Ca, Fe, Mg, and Ti. The -concept for quantification of spectral interferences was used. The optimum line selection for trace analysis of a variety of multicomponent matrices requires the choice of prominent lines, which are free or negligibly influenced by line interference problems. The versatility of -concept as basic methodology was experimentally demonstrated in the determination of trace of elements in soil and drinking water. The detection limits are lower in comparison with corresponding threshold concentration levels for soil and drinking water in accordance with environmental regulations. This paper shows the possibilities of present day ICP-OES equipment in the direct determination of trace elements (without preconcentration of impurities in environmental samples.

  4. Evaluation of the mineral profile of textile materials using inductively coupled plasma optical emission spectrometry and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, E.A.; Carapelli, R.; Bianchi, S.R. [Grupo de Analise Instrumental Aplicada, Departamento de Quimica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Embrapa Pecuaria Sudeste, C.P. 339, Sao Carlos, SP 13560-970 (Brazil); Souza, S.N.P. [Grupo de Analise Instrumental Aplicada, Departamento de Quimica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Matos, W.O. [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, Fortaleza, CE (Brazil); Pereira-Filho, E.R. [Grupo de Analise Instrumental Aplicada, Departamento de Quimica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Nogueira, A.R.A., E-mail: anarita@cppse.embrapa.br [Embrapa Pecuaria Sudeste, C.P. 339, Sao Carlos, SP 13560-970 (Brazil)

    2010-10-15

    The content of Al, Ba, Ca, Cr, Cu, Fe, Ni, P, Zn, Cd and Pb was determined in textile material samples after microwave-assisted decomposition in a cavity oven and extraction with an artificial sweat solution. Radial viewing inductively coupled plasma optical emission spectrometry (ICP OES) was the main detection technique, but Cd and Pb were determined by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to increase the sensitivity. Principal components analysis (PCA) was applied to the data sets to characterize the samples with respect to their geographic origin and color difference. The PCA for Brazilian single-color samples showed separation, with one group consisting of blue and green textiles and another with all the other materials evaluated. The geographic origin study showed a clear separation between Brazilian and Chinese textiles. The metals amount extracted with sweat extractable solution were lower than limits values pointed by the International Testing and Certification System for Textiles, Oko Tex Standard 100, in the all considered classes. Recoveries varied from 85 to 112% for additions ranging from 3.0 to 25 mg kg{sup -1} for Ca and from 0.3 to 7.0 mg kg{sup -1} for all other analytes through the microwave-assisted decomposition procedure.

  5. Direct determination of impurities in high purity silicon carbide by inductively coupled plasma optical emission spectrometry using slurry nebulization technique.

    Science.gov (United States)

    Wang, Zheng; Qiu, Deren; Ni, Zheming; Tao, Guangyi; Yang, Pengyuan

    2006-09-08

    A novel method for the determination of Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni and Ti in high purity silicon carbide (SiC) using slurry introduction axial viewed inductively coupled plasma optical emission spectrometry (ICP-OES) was described. The various sizes of SiC slurry were dispersed by adding dispersant polyethylene imine (PEI). The stability of slurry was characterized by zeta potential measurement, SEM observation and signal stability testing. The optimal concentration of PEI was found to be 0.5 wt% for the SiC slurry. Analytical results of sub-mum size SiC by the slurry introduction were in good accordance with those by the alkaline fusion method which verified that determination could be calibrated by aqueous standards. For mum size SiC, results of most elements have a negative deviation and should be calibrated by the Certified Reference Material slurry. Owing to a rather low contamination in the sample preparation and stability of the slurry, the limits of detection (LODs), which are in the range of 40-2000 ng g(-1), superior to those of the conventional nebulization technique by ICP-OES or ICP-MS.

  6. Optical plasma microelectronic devices

    CERN Document Server

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  7. CHF3 Dual-Frequency Capacitively Coupled Plasma by Optical Emission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    XU Yi-Jun; YE Chao; HUANG Xiao-Jiang; YUAN Jing; XING Zhen-Yu; NING Zhao-Yuan

    2008-01-01

    @@ We investigate the intermediate gas phase in the CHF3 13.56 MHz//2 MHz dual-frequency capacitively couple plasma (CCP) for the SiCOH low dielectric constant (low-k) film etching, and the effect of 2MHz power on radicals concentration. The major dissociation reactions of CHF3 in 13.56 MHz CCP are the low dissociation bond energy reactions, which lead to the low F and high CF2 concentrations. The addition of 2MHz power can raise the probability of high dissociation bond energy reactions and lead to the increase of F concentration while keeping the CF2 concentration almost a constant, which is of advantage to the SiCOH low-k films etching. The radical spatial uniformity is dependent on the power coupling of two sources. The increase of 2 MHz power leads to a poor uniformity, however, the uniformity can be improved by increasing 13.56 MHz power.

  8. Dispersive liquid–liquid microextraction combined with laser-induced breakdown spectrometry and inductively coupled plasma optical emission spectrometry to elemental analysis

    OpenAIRE

    Gaubeur, Ivanise; Aguirre Pastor, Miguel Ángel; Kovachev, Nikolay; Hidalgo Núñez, Montserrat; Canals Hernández, Antonio

    2015-01-01

    In this paper, two analytical methodologies based on the combination of dispersive liquid–liquid microextraction with inductively coupled plasma optical emission spectrometry and laser-induced breakdown spectrometry, respectively, were evaluated for simultaneous preconcentration and detection of Cd, Co, Ni, Pb and Zn. The microextraction procedure was based on the injection of appropriate quantities of 1-undecanol and methanol into the sample solution containing the complexes formed between m...

  9. Aerosol generation of As and Se hydrides using a new Flow Blurring® multiple nebulizer for sample introduction in inductively coupled plasma optical emission spectrometry

    OpenAIRE

    Pereira, Catarinie D.; Aguirre Pastor, Miguel Ángel; NÓBREGA, Joaquim A.; Hidalgo Núñez, Montserrat; Canals Hernández, Antonio

    2014-01-01

    A new Flow Blurring® multiple nebulizer (FBMN) has been used for the efficient generation of As and Se hydrides directly into the aerosol formed inside the spray chamber before detection by inductively coupled plasma optical emission spectrometry (ICP OES). The FBMN allowed the hydride generation directly into the spray chamber without using any additional device either for solution and gas control or for gas phase separation. Synthetic solutions containing As and Se plus Ca, Mg and K were us...

  10. Metal and metalloid determination in bioethanol through inductively coupled plasma-optical emission spectroscopy

    Science.gov (United States)

    Sánchez, Carlos; Lienemann, Charles-Philippe; Todolí, José-Luis

    2016-01-01

    A new method to carry out the elemental determination of metals in bioethanol through ICP-OES has been developed. The procedure is based on the use of a heated torch integrated sample introduction system (hTISIS) to directly introduce the vaporized sample into the plasma. Two injection modes (continuous liquid aspiration and air-segmented flow injection analysis) have been evaluated. In a first step, the matrix effects caused by several ethanol-water mixtures were removed by operating the hTISIS at 400 °C in segmented injection. Meanwhile, the results also proved that the system could be operated in continuous mode at 200 °C with the complete interference removal. Finally, twenty-eight real samples with bioethanol contents between 55% and 100% were analyzed with the methods previously developed. Regarding validation, recoveries from 80% to 120% were obtained for 18 analytes and the concentrations found with the proposed method were in agreement with those encountered with a preconcentration method, taken as a reference procedure. Limits of detection went from 3 ng mL- 1 for manganese to about 500 ng mL- 1 for calcium. This allowed to quantify Cr, Fe, Mg, Mn and Zn in segmented flow injection and Al, Cd, Cr, Cu, K, Mg, Mn, Na and Zn in continuous sample aspiration mode in bioethanol samples.

  11. Partial microwave-assisted wet digestion of animal tissue using a baby-bottle sterilizer for analyte determination by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Wladiana O. [Grupo de Analise Instrumental Aplicada, Universidade Federal de Sao Carlos, Sao Carlos SP (Brazil); Grupo de Analise Instrumental Aplicada, Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil)], E-mail: wladianamatos@yahoo.com.br; Menezes, Eveline A. [Grupo de Analise Instrumental Aplicada, Universidade Federal de Sao Carlos, Sao Carlos SP (Brazil); Grupo de Analise Instrumental Aplicada, Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil); Gonzalez, Mario H. [Grupo de Analise Instrumental Aplicada, Universidade Federal de Sao Carlos, Sao Carlos SP (Brazil); Costa, Leticia M. [Departamento de Quimica-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte MG (Brazil); Trevizan, Lilian C. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Piracicaba SP (Brazil); Nogueira, Ana Rita A. [Grupo de Analise Instrumental Aplicada, Embrapa Pecuaria Sudeste, Sao Carlos, SP (Brazil)

    2009-06-15

    A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 {mu}L. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2{sup 4-1} fractional factorial design: 650 W microwave power, 7 min digestion time, 50 {mu}L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.

  12. Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma

    Science.gov (United States)

    Lan, Hui; Wang, Xinbing; Zuo, Duluo

    2016-09-01

    The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns. The temporal behavior of the specific emission lines from the SnO2 plasma was characterized. The intensities of Sn I and Sn II lines first increased, and then decreased with the delay time. The results also showed a faster decay of Sn I atoms than that of Sn II ionic species. The temporal evolutions of the SnO2 plasma parameters (electron temperature and density) were deduced. The measured temperature and density of SnO2 plasma are 4.38 eV to 0.5 eV and 11.38×1017 cm-3 to 1.1×1017 cm-3, for delay times between 0.1 μs and 2.2 μs. We also investigated the effect of the laser pulse energy on SnO2 plasma. supported by National Natural Science Foundation of China (No. 11304235) and the Director Fund of WNLO

  13. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Bings, Nicolas H. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: bings@chemie.uni-hamburg.de; Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2008-02-15

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS{sup TM} spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm{sup -2} and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower {mu}g g{sup -1} range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 {mu}g g{sup -1}.

  14. Macro- and micro-element analysis in milk samples by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Petrović Sanja M.

    2016-01-01

    Full Text Available The paper describes the determination of Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl and Zn, as well as total fat content of milk samples, originated from different sources. The analyzed milk samples were: human milk, fresh cow milk, pasteurized cow milk from a local market, and reconstituted powder milk. The milk samples were obtained from Jablanica District (Serbia territory. Preparation of samples for macro- and micro-analyses was done by wet digestion. Concentrations of the elements after digestion were determined by inductively coupled plasma optical emission spectrometry (ICP-OES. Total fat content of milk samples was determinate by the Weibull and Stoldt method. The results showed that potassium and calcium concentrations were the highest in all samples: 1840.64 - 2993.26 mg/L and 456.05 - 1318.08 mg/L, respectively. Of all heavy metals from the examined milk samples (copper, zinc, manganese, nickel, cadmium, and lead, the most common were zinc and copper, with approximately similar content in the range of 5 - 12 mg/l, while cadmium nickel and manganese were not detected at all. Samples of fresh cow milk and human milk showed the highest fat content of 3.6 and 4.2 %, respectively. Results for total fat and macro- and micro-analyses showed that fresh cow milk has the highest contents of fat and calcium, making it the most nutritious. [Projekat Ministarstva nauke Republike Srbije, br. TR 34012

  15. Slurry micro-sampling technique for use in argon-helium microwave induced plasma optical emission spectrometry.

    Science.gov (United States)

    Ślachciński, Mariusz

    2016-12-01

    The Flow Focusing Pneumatic Nebulizer (FFPN) working at low liquid flow rates was evaluated for the elemental analysis in slurried samples by argon-helium microwave induced plasma optical emission spectrometry (MIP-OES). The obtained results achieved were compared with commercially available V-groove Babington type nebulizer (VBPN). A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. Analytical performance of the micro nebulization system was characterized by a determination of the limits of detection (LODs), the precision (RSDs) and the wash-out times for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr. The experimental concentration detection limits for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 0.9, 0.2, 0.3, 0.2, 0.3, 0.1, 0.2, 0.4, 0.4 and 0.3ngmL(-1) for Ba, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Sr, respectively. The method offers relatively good precision (RSD ranged from 5% to 8%) for micro-slurry sampling analysis. Analyses of the certified reference materials (NRCC DOLT-2, GBW 07302 and SRM 2710) were performed in order to determine the accuracy available with the presented nebulization systems. The measured contents of elements in the reference materials were in satisfactory agreement with the certified values. In addition, these elements were determined in two real samples. Slurry concentration up to 3% m/v (particles technique. An ultrasonic probe was used to homogenize the slurry in the polypropylene bottle just before its introduction into the nebulizer. The nebulizers exhibited no clogging problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Determination of metals in coal fly ashes using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Pontes, Fernanda V M; Mendes, Bruna A de O; de Souza, Evelyn M F; Ferreira, Fernanda N; da Silva, Lílian I D; Carneiro, Manuel C; Monteiro, Maria I C; de Almeida, Marcelo D; Neto, Arnaldo A; Vaitsman, Delmo S

    2010-02-05

    A method for determination of Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn in coal fly ash samples using ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The digestion procedure consisted in the sonication of the previously dried sample with hydrofluoric acid and aqua regia at 80 degrees C for 30 min, elimination of fluorides by heating until dryness for about 1h and dissolution of the residue with nitric acid solution. A classical digestion method, used as comparative method, consisted in the addition of HCl, HNO(3) and HF to 1 g of sample, and heating on a hot plate until dryness for about 6h. The proposed method presents several advantages: it requires lower amounts of sample and reagents, and it is faster. It is also advantageous when compared to the published methods, which also use ultrasound-assisted digestion procedure: lower detection limits for Co, Cu, Ni, V and Zn, and it does not require shaking during the digestion. The detection limits (microg g(-1)) for Co, Cr, Cu, Fe, Mn, Ni, Ti, V and Zn were 0.06, 0.37, 1.0, 25, 0.93, 0.45, 4.0, 1.7 and 4.3, respectively. The results were in good agreement with those obtained by the classical method and reference values. The exception was Cr, which presented low recoveries in classical and proposed methods (83 and 87%, respectively). Also, the concentration for Cu obtained by the proposed method was significantly different from the reference value, in spite of the good recovery (91+/-1%).

  17. Optical emission spectroscopy study of the expansion dynamics of a laser generated plasma during the deposition of thin films by laser ablation

    Directory of Open Access Journals (Sweden)

    Fazio, Enza

    2007-09-01

    Full Text Available The dynamics of the expanding plasma produced by excimer laser ablation of different materials such as silicon, silicon carbide, graphite and tin powder were studied by means of time integrated, spatially resolved emission spectroscopy and fast photography imaging of the expanding plasma. Experiments were performed both in vacuum and in different pure background atmosphere (i.e. oxygen or nitrogen and, finally, in gaseous mixtures (i.e. in O2/Ar and N2/Ar mixtures. These investigations were performed to gather information on the nature of the chemical species present in the plasma and on the occurrence of chemical reactions during the interaction between the plasma and the background gas. Then, we tried to correlate the plasma expansion dynamics to the structural and physical properties of the deposited materials. Experimental results clearly indicate that there is a strong correlation between the plasma expansion dynamics and the structural properties of the deposited thin films. In this respect, the investigations performed by means of fast photography and of optical emission spectroscopy revealed themselves as powerful tools for an efficient control of the deposition process itself.

  18. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  19. Study of effect of H2 addition on the production of fluorocarbon radicals in H2/C4F8 inductively coupled plasma via optical emission spectroscopy actinometry

    Institute of Scientific and Technical Information of China (English)

    Huang Song; Xin Yu; Ning Zhao-Yuan

    2005-01-01

    C4F8 plasma with the addition of H2 is generated by the inductively coupled plasma (ICP) method. The relative densities of CF, CF2, H and F radicals are determined by actinometric optical emission spectroscopy (AOES) as a function of the gas flow rate ratio R=H2/(H2+C4F8) at a pressure of 0.8 Pa and an input r.f. power of 400W, while that of HF is measured by quadrupole mass spectrometry (QMS). The results show that plasma activity increases firstly and then decreases with increasing R. As the gas flow rate ratio R changes from 0 to 0.625, relative densities of both CF and CF2 decrease, and the relative [CF] has a similar tendency as the calculated [CF], indicating that CF radicals are generated mainly by the electron impact dissociation of CF2 radicals. Production of HF is also discussed.

  20. Gas phase optical emission spectroscopy during remote plasma chemical vapour deposition of GaN and relation to the growth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Corr, Cormac; Boswell, Rod [Space Plasma, Power and Propulsion Group, Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra 0200 (Australia); Carman, Robert [Physics Department, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia)

    2011-02-02

    A remote plasma chemical vapour deposition (RPCVD) system for the growth of gallium nitride (GaN) thin films is investigated using optical emission spectroscopy (OES). The intensities of the various excited species in pure nitrogen as well as nitrogen/hydrogen plasmas are correlated with GaN film growth characteristics. We show a correlation between the plasma source spectrum, the downstream spectrum where trimethylgallium is introduced and the GaN film quality. In particular, we investigate the addition of hydrogen, which greatly affects the gas phase species and the GaN film characteristics. OES is demonstrated to be a valuable monitoring tool in a RPCVD system for optimization of GaN growth.

  1. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: binhu@whu.edu.cn

    2007-10-15

    A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg{sup 2+} was complexed with I{sup -} to form HgI{sub 4}{sup 2-}, and the HgI{sub 4}{sup 2-} reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg{sup +}) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L{sup -1} HNO{sub 3} for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg{sup +} by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg{sup +}. The MeHg{sup +} in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg{sup +} with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg{sup +}, respectively. The limits of detection (LODs) were 56.3 ng L{sup -1} for Hg(II) and 94.6 ng L{sup -1} for MeHg{sup +} (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg{sup +} (C = 10 {mu}g L{sup -1}, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2-108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.

  2. Sequential cloud point extraction for the speciation of mercury in seafood by inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Li, Yingjie; Hu, Bin

    2007-10-01

    A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg 2+ was complexed with I - to form HgI 42-, and the HgI 42- reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg +) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L - 1 HNO 3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg + by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg +. The MeHg + in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg + with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg +, respectively. The limits of detection (LODs) were 56.3 ng L - 1 for Hg(II) and 94.6 ng L - 1 for MeHg + (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg + ( C = 10 μg L -1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2-108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.

  3. Straightforward way to enhance robustness in ultrasonic nebulization-axial view inductively coupled plasma optical emission spectrometry via an additional N2 gas stream

    Science.gov (United States)

    Scheffler, Guilherme Luiz; Pozebon, Dirce

    2015-11-01

    In the present study a low flow of N2 is mixed with the aerosol produced by ultrasonic nebulization (USN) prior analysis using inductively coupled plasma optical emission spectrometry (ICP OES). The foreign gas is added for improving plasma characteristics in axially-viewed ICP. By computing the Mg ionic to atomic ratio (plasma robustness) it was concluded that N2 dissociates closer to the load coil when USN is used as sample introduction system. The maximum emission intensity of Mg(II) for pneumatic nebulization (PN) was observed at 11 mm from the load coil while it was 8 mm for USN, indicating earlier aerosol desolvation, atomization and excitation processes in the ICP. Emission profiles of Ar(I) 415.861 nm, Ba(II) 486.601 nm and Ba(II) 233.527 nm indicated that metastable Ar species are overpopulated in the ICP under the N2 flow. Copper and manganese ionic lines with energy close to 16 eV (Ar ionization) were monitored to evaluate spatially dependent charge-transfer reaction along the ICP axis in the presence and absence of the N2 flow. The Cu(II) signal profiles indicated abundance of Ar+ species at low distances from the load coil when N2 was added. On the other hand, differences were not observed at longer distances from the load coil for both plasmas (mixed-gas and pure Ar-ICP). The calculated limits of detection (LODs) for both plasmas had the same order of magnitude. Analysis of certified reference samples demonstrated that the accuracy was preserved by adding the low flow of N2. It was concluded that adding a low flow of N2 to the aerosol produced by USN is a simple way to increase plasma robustness, which is usually lower than that achieved using conventional PN.

  4. Emissivity independent optical pyrometer

    Science.gov (United States)

    Earl, Dennis Duncan; Kisner, Roger A.

    2017-04-04

    Disclosed herein are representative embodiments of methods, apparatus, and systems for determining the temperature of an object using an optical pyrometer. Certain embodiments of the disclosed technology allow for making optical temperature measurements that are independent of the surface emissivity of the object being sensed. In one of the exemplary embodiments disclosed herein, a plurality of spectral radiance measurements at a plurality of wavelengths is received from a surface of an object being measured. The plurality of the spectral radiance measurements is fit to a scaled version of a black body curve, the fitting comprising determining a temperature of the scaled version of the black body curve. The temperature is then output. The present disclosure is not to be construed as limiting and is instead directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone or in various combinations and subcombinations with one another.

  5. Emissivity independent optical pyrometer

    Energy Technology Data Exchange (ETDEWEB)

    Earl, Dennis Duncan; Kisner, Roger A.

    2017-04-04

    Disclosed herein are representative embodiments of methods, apparatus, and systems for determining the temperature of an object using an optical pyrometer. Certain embodiments of the disclosed technology allow for making optical temperature measurements that are independent of the surface emissivity of the object being sensed. In one of the exemplary embodiments disclosed herein, a plurality of spectral radiance measurements at a plurality of wavelengths is received from a surface of an object being measured. The plurality of the spectral radiance measurements is fit to a scaled version of a black body curve, the fitting comprising determining a temperature of the scaled version of the black body curve. The temperature is then output. The present disclosure is not to be construed as limiting and is instead directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone or in various combinations and subcombinations with one another.

  6. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn Alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal

    2011-05-01

    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively-coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.

  7. Correlation between optical emission spectra and the process parameters of a 915 MHz microwave plasma CVD reactor used for depositing polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Awadesh Kumar Mallik; Sandip Bysakh; Someswar Dutta; Debabrata Basu

    2014-08-01

    In this paper, the hydrogen and hydrogen-methane mixed plasma have been generated inside a 33 cm diameter quartz bell jar with a low power (9 KW) and lower frequency 915 MHz microwave plasma chemical vapor deposition system. The reactor is being used for growing polycrystalline diamond (PCD) over large area (100 mm). The generated plasma is diagnosed by in situ optical emission spectroscopy method with wave length ranging from 200 to 900 nm. The effects of microwave power, chamber pressure and gas concentration on plasma characteristics have been studied in this work. Within the optical range, Balmer H, H, C2swan band and CH lines have been detected at the wavelengths of 655.95, 485.7, 515.82 and 430.17 nm, respectively. It has been observed that for hydrogen plasma, the amount of transition from hydrogen atom inner shell 3 to 2 (H) is almost constant with increasing microwave (MW) power (from 2000 to 2800 W) and pressure (from 15 to 30 Torr) initially, after that it increases with further increase of MW power and pressure, whereas, the transition from 4 to 2 (H) is slowly increased with increasing MW power and pressure. For hydrogen-methane plasma, intensities of C2 swan band, i.e., the transitions from D$^3\\Pi_\\text{g}$ to A$^3\\Pi_{\\mu}$ energy levels, are also increased with the increasing microwave power and reactor pressure. It has been observed that the radicals present in the plasma are affected by variation of different reactor parameters like pressure, MW power, CH4 concentration, etc.

  8. Determination of metallic elements in natural and waste water by inductively coupled plasma-optical emission spectrometry (Icp-OES); Determinazione di specie metalliche in acque naturali e reflue mediante spettroscopia di emissione in sorgente al plasma (ICP-OES)

    Energy Technology Data Exchange (ETDEWEB)

    Petruzzelli, D. [Consiglio Nazionale delle Ricerche, Bari (Italy). Ist. di Ricerca sulle Acque; Bettinelli, M.; Spezia, S. [ENEL UML, Piacenza (Italy); Mastroianni, D.; Capri, S.; Pettine, M. [Consiglio Nazionale delle Ricerche, Rome (Italy). Ist. di Ricerca sulle Acque

    1998-12-31

    A method is described for multielement determination of 33 elements in liquids samples by inductively coupled plasma-optical emission spectrometry (Icp-OES). In this method the intensity of the light emitted at specific wavelengths from excited atoms and ions of a sample is measured and used to determine the concentrations of the element of interest. [Italiano] Viene descritto un metodo per la determinazione multielementare di 33 elementi in campioni liquidi basato sull`uso del plasma ottico. In questo metodo si misura l`intensita` della radiazione elettromagnetica emessa dagli atomi e ioni eccitati delle specie presenti nel campione.

  9. Direct determination of sulfur species in coals from the Argonne premium sample program by solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Bauer, Daniela; Vogt, Thomas; Klinger, Mathias; Masset, Patrick Joseph; Otto, Matthias

    2014-10-21

    A new direct solid sampling method for speciation of sulfur in coals by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES) is presented. On the basis of the controlled thermal decomposition of coal in an argon atmosphere, it is possible to determine the different sulfur species in addition to elemental sulfur in coals. For the assignment of the obtained peaks from the sulfur transient emission signal, several analytical techniques (reflected light microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction) were used. The developed direct solid sampling method enables a good accuracy (relative standard deviation ≤ 6%), precision and was applied to determine the sulfur forms in the Argonne premium coals, varying in rank. The generated method is time- and cost-effective and well suited for the fast characterization of sulfur species in coal. It can be automated to a large extent and is applicable for process-accompanying analyses.

  10. Process control by optical emission spectroscopy during growth of a-C:H from a CH4 plasma by plasma-enhanced chemical vapour deposition

    DEFF Research Database (Denmark)

    Barholm-Hansen, C; Bentzon, MD; Vigild, Martin Etchells

    1994-01-01

    of the gas flow. Above a certain flow rate the intensity saturates, since the deposition process is limited by the power input. At low flow rates a large fraction of the feed gas is dissociated and the deposition is limited by the supply of feed gas. A relationship was found for the intensity of the CH 431...... in the process gas. The initial OH intensity was dependent on the ultimate vacuum prior to the plasma cleaning. A correlation was found between the vanishing of the OH line and the appearance of characteristic emission lines From sputtered electrode material....

  11. Tin Content Determination in Canned Fruits and Vegetables by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    Sanda Rončević

    2012-01-01

    Full Text Available Tin content in samples of canned fruits and vegetables was determined by hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-OES, and it was compared with results obtained by standard method of flame atomic absorption spectrometry (AAS. Selected tin emission lines intensity was measured in prepared samples after addition of tartaric acid and followed by hydride generation with sodium borohydride solution. The most favorable line at 189.991 nm showed the best detection limit (1.9 μg L−1 and limit of quantification (6.4 μg kg−1. Good linearity and sensitivity were established from time resolved analysis and calibration tests. Analytical accuracy of 98–102% was obtained by recovery study of spiked samples. Method of standard addition was applied for tin determination in samples from fully protected tinplate. Tin presence at low-concentration range was successfully determined. It was shown that tenth times less concentrations of Sn were present in protected cans than in nonprotected or partially protected tinplate.

  12. Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Illiana; Murillo, Miguel; Carrion, Nereida; Chirinos, Jose [Centro de Quimica Analitica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, P.O. Box 47102, 1041a, Caracas (Venezuela)

    2003-05-01

    A direct hydride generation nebulizer (DHGN) was explored for introduction of the sample in inductively coupled plasma-optical emission spectrometry (ICP-OES) using radially viewed mode. This simple hydride generation system was constructed in our laboratory and requires similar plasma operating conditions to conventional nebulizer-spray-chamber arrangements. This work was focused on the optimization of the operating conditions for hydride generation and evaluation of the main analytical figures of merit for the determination of As, Sb and Se. The excitation conditions of the ICP-OES instrument operated with the DHGN were also explored. Results showed that the analytical performance of the new system for the determination of As, Sb and Se was superior to that of conventional nebulization systems. The DHGN also enabled the determination of elements that do not form volatile hydrides, but with less sensitivity than conventional nebulization systems. Evaluation of the plasma robustness showed that gases generated in hydride generation do not significantly affects the plasma discharge. Similar to conventional hydride generation techniques, analysis with DHGN was susceptible to non-spectroscopic interferences produced by transition metals. Finally, the utility of the DHGN in practical ICP-OES studies was demonstrated in the determination of trace elements in an oyster tissue standard reference material. (orig.)

  13. In-situ optical emission spectroscopy diagnostic of plasma ignition impact on crystalline silicon passivation by a-Si:H films

    Science.gov (United States)

    Meddeb, Hosny; Bearda, Twan; Abdulraheem, Yaser; Dimassi, Wissem; Ezzaouia, Hatem; Gordon, Ivan; Szlufcik, Jozef; Poortmans, Jef

    2016-08-01

    The influence of the plasma ignition condition during PECVD deposition from a silane/hydrogen mixture on the amorphous silicon passivation of crystalline silicon surface is investigated. The changes in this process step mainly consist in varying the power density for very brief durations in between 1 s and 3 s. We find that the ignition phase contributes significantly in the film growth, especially in the a-Si:H/c-Si interface formation. In particular, the deposition rate increases with ignition power density. TEM cross-section inspection presents a rougher a-Si:H/c-Si interface with higher plasma power and thus, a tendency for nano-clusters formation caused by the crystalline nature of the substrate. In-situ plasma diagnostics reveal the gradual raise up of IHa*/ISiH* with the power density leading to worse SiH* abstraction to the surface. Whereas, time-resolved optical emission spectroscopy explains the possible recombination mechanism in the plasma due to higher-silane related reactive species (HSRS) formation via polymerization reactions. Our results point out that the ignition conditions with a rather low power for longer time give the best passivation, resulting an effective lifetime up to 9 ms.

  14. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Ilander, Aki; Väisänen, Ari

    2007-10-29

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of toxic element concentrations (arsenic, barium, cobalt, copper, lead, nickel, strontium, vanadium and zinc) in ash samples was developed. All the measurements were performed in robust plasma conditions which were tested by measuring the Mg(II) 280.270 nm/Mg(I) 285.213 nm line intensity ratios. The highest line intensity ratios were observed when a nebulizer gas flow of 0.6 L min(-1), auxiliary gas flow of 0.2 L min(-1) and plasma power of 1400 W were used for radially viewed plasma. The analysis of SRM 1633b showed that the ultrasound-assisted method developed is highly comparable with the microwave digestion method standardized by the United States Environmental Protection Agency (EPA-3052). The ultrasound-assisted digestion with a digestion solution of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 81%. One exception is arsenic which resulted in recoveries of about 60% only; however, it could be digested with good recovery (>90%) using a digestion solution of 5 mL of water and 5 mL of aqua regia. The major advantage of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (30 samples simultaneously with a sonication time of 18 min).

  15. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    Science.gov (United States)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  16. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Villa, M.; Reyes, P. G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México (Mexico); Villalobos, S. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Facultad de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico)

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  17. Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice.

    Science.gov (United States)

    Sadiq, Nausheen; Beauchemin, Diane

    2014-12-03

    Two different approaches were used to improve the capabilities of solid sampling (SS) electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) for the direct analysis of powdered rice. Firstly, a cooling step immediately before and after the vaporization step in the ETV temperature program resulted in a much sharper analyte signal peak. Secondly, point-by-point internal standardization with an Ar emission line significantly improved the linearity of calibration curves obtained with an increasing amount of rice flour certified reference material (CRM). Under the optimized conditions, detection limits ranged from 0.01 to 6ngg(-1) in the solid, depending on the element and wavelength selected. The method was validated through the quantitative analysis of corn bran and wheat flour CRMs. Application of the method to the multi-elemental analysis of 4-mg aliquots of real organic long grain rice (white and brown) also gave results for Al, As, Co, Cu, Fe, Mg, Se, Pb and Zn in agreement with those obtained by inductively coupled plasma mass spectrometry following acid digestion of 0.2-g aliquots. As the analysis takes roughly 5min per sample (2.5min for grinding, 0.5-1min for weighing a 4-mg aliquot and 87s for the ETV program), this approach shows great promise for fast screening of food samples.

  18. The optical/UV excess of X-ray dim isolated neutron star:bremsstrahlung emission from a strange star plasma atmosphere

    CERN Document Server

    Wang, Weiyang; Tong, Hao; Ge, Mingyu; Li, Zhaosheng; Men, Yunpeng; Xu, Renxin

    2016-01-01

    X-ray dim isolated neutron stars (XDINSs) are characterized by Planckian spectra in X-ray bands, but show optical/ultraviolet(UV) excesses which are the measured photometry exceeding that extrapolated from X-ray spectra. To solve this problem, a radiative model of bremsstrahlung emission from a plasma atmosphere is constructed in the regime of strange (quark-cluster) star. The plasma atmosphere is supposed to be of two-temperature, formed and maintained by the ISM-accreted matter which is bound on a star's surface because of the so-called strangeness barrier. All the seven XDINS spectra could be well fitted by the radiative model, from optical/UV to X-ray bands. The fitted radiation radii of XDINSs are from 7 to 13 km, while the modelled electron temperatures are between 50 and 250 eV, except RX J0806.4$-$4123 with a radiation radius $\\sim 3$ km, indicating that this source could be a low-mass strange star candidate.

  19. Chemical Characterisation of Bulk and Melt-spun Ribbons of NiMnIn alloy using Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    S.S. Kalyan Kamal

    2011-04-01

    Full Text Available Method development for the analysis of NiMnIn, a new magnetocaloric effect (MCE material using inductively coupled plasma optical emission spectrometry (ICPOES is discussed. Spectral interference of Ni and Mn on the analysis of In were studied. The process of method validation was carried out using various analytical techniques like conventional wet chemical techniques and instrumental techniques such as atomic absorption spectrometry. All the techniques show a close agreement in values, thus this method could be applied for regular analysis of NiMnIn alloys. A comparative chemical analysis of bulk and melt-spun ribbons of this alloy is also discussed.Defence Science Journal, 2011, 61(3, pp.270-274, DOI:http://dx.doi.org/10.14429/dsj.61.397

  20. [Determination of nine hazardous elements in textiles by inductively coupled plasma optical emission spectrometer after microwave-assisted dilute nitric acid extraction].

    Science.gov (United States)

    Chen, Fei; Xu, Dian-dou; Tang, Xiao-ping; Cao, Jing; Liu, Ya-ting; Deng, Jian

    2012-01-01

    Textiles are easily contaminated by heavy metals in the course of processing. In order to monitor the quality of textiles, a new method was developed for simultaneous determination of arsenic, antimony, lead, cadmium, chromium, cobalt, copper, nickel and mercury in textiles by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted dilute nitric acid extraction. After optimizing extraction conditions, we ultimately selected 5% nitric acid as extractant and 5 min as extraction time with the extraction temperature of 120 degrees C and instrument power of 400W in the microwave-assisted extraction procedure. Nine hazardous elements were detected sequentially by ICP-OES. The results showed that the detection limits were 0.3-15 microg x L(-1) and the recoveries 73.6%-105% with the RSDs (n = 3) of 0.1%-3%. The proposed method was successfully used to determine nine elements in cotton, wool, terylene and acrylic.

  1. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  2. Laser-induced Fluorescence and Optical Emission Spectroscopy for the Determination of Reactive Species in the Effluent of Atmospheric Pressure Low Temperature Plasma Jets

    Science.gov (United States)

    Pei, Xuekai; Razavi, Hamid; Lu, Xinpei; Laroussi, Mounir

    2014-10-01

    OH radicals and O atoms are important active species in various applications of room temperature atmospheric pressure plasma jet (RT-APPJ). So the determination of absolute density of OH radicals and O atoms in RT-APPJs is necessary. In this work, the time and spatially resolved OH radicals density of a RT-APPJ are measured using the laser-induced fluorescence (LIF) technology. In addition, the spatial distribution of the emitting species along the axial direction of the jet is of interest and is measured using optical emission spectroscopy. The absolute OH density of the RT-APPJ is about 2.0 × 1013 cm-3 at 5 mm away from the plasma jet nozzle and 1 μs after the discharge. The OH density reaches a maximum when H2O concentration in helium gas flow is about 130ppm. In order to control the OH density, the effect of voltage polarity, applied voltage magnitude, pulse frequency, pulse width on the OH density are also investigated and discussed. O atoms are investigated by TA-LIF. It is demonstrated that the O atoms density reaches a maximum when O2 percent is about 0.3% in pure He and the lifetime of O atoms in RT-APPJ is much longer (up to dozens of ms) than OH radicals.

  3. The determination of trace element concentrations in fly ash samples using ultrasound-assisted digestion followed with inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Ilander, Aki; Väisänen, Ari

    2009-08-01

    A method of ultrasound-assisted digestion followed by inductively coupled plasma optical emission spectrometry (ICP-OES) used for the determination of trace element (chromium, copper, lead, nickel, vanadium and zinc) concentrations in fly ash samples was developed. All the measurements were performed in robust plasma conditions. Ultrasound-assisted digestion procedures using digestion solutions of aqua regia and hydrofluoric acid (HF) resulted in recovery rates of over 80% for all the analyte elements. Ultrasound-assisted two-step digestion with digestion solutions of 6mL of HNO(3) (Step 1) and 3mL of HNO(3)+3mL of HF (Step 2) resulted in recovery rates of over 92% for all the analyte elements with one exception, chromium, which had a recovery of about 85%. The analysis of SRM 1633b showed that the two-step ultrasound-assisted digestion method developed resulted in chromium, copper, nickel and zinc concentrations higher than the microwave digestion method standardized by the United States Environmental Protection Agency (USEPA method 3052). This is the very first time when a digestion method using ultrasound resulted in higher efficiency than microwave (USEPA method 3052) for chromium and nickel in very hard to dissolve samples. The major advantages of the ultrasound-assisted digestion over microwave digestion is the high treatment rate (about 30 samples simultaneously with a sonication time of 18min) and the possibility to use new sample vessels without a significant increase in costs.

  4. Optical antenna enhanced spontaneous emission.

    Science.gov (United States)

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  5. 脉冲等离子体推力器等离子体羽流的光谱研究%Study on Plasma Characteristics in a Pulsed Plasma Thruster by Optical Emission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    张华; 吴建军; 何振; 李是良; 张宇

    2016-01-01

    脉冲等离子体推力器(pulsed plasma thruster ,PPT )具有体积小、重量轻、比冲高等优点,特别适合作为执行微小卫星轨道转移、阻力补偿和姿态控制等任务的推进系统。为了深入理解 PPT 推力产生的机理,本文对采用具有张角的舌型极板的尾部馈送式 PPT 等离子体羽流开展了时空分辨光谱诊断研究。通过对光谱数据的分析发现:等离子体羽流的主要成分为 C ,F ,C +,F +,C2+,还含有少量的由于极板烧蚀产生的Cu +和 Cu2+;等离子体在放电通道内的分布不均匀,通道中心的等离子体浓度最大,靠近阳极板的等离子浓度要明显大于靠近阴极板的等离子体浓度;在不同位置处等离子体成分也具有较大差别,F +和中性粒子主要分布在靠近阳极侧的区域;通过对各个分立谱线进行多普勒线性拟合,得到了放电通道内等离子体温度信息;以中轴线靠近工质的观测点为例,对该点在整个放电过程中不同时刻的谱线进行分析,得到了该点等离子体的具体演化过程,发现在放电的不同阶段羽流成分及各组分所占比例差别较大。%The pulsed plasma thruster(PPT ) is suited for various applications ,e .g .,attitude control ,station keeping and for‐mation flying due to its significant advantage with regard to the related savings of wet system mass ,small volume and high spe‐cific impulse .In order to elaborate the mechanism of PPT operation process ,the optical emission spectrum was conducted on a breech‐fed PPT with tongue electrodes .The results show that plasma plume mainly consists of C ,F ,C + ,F + and C2 + ,besides Cu+ and Cu2 + were detected in plasma which were produced by electrodes ablation .The plasma distribution is asymmetric in the discharge channel ,the maximum of plasma density of plasma appears at the central axis of discharge channel and the plasma den‐sity nearby the

  6. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  7. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: A tutorial review. Part I. Theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Amélie, E-mail: amelie.leclercq@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Nonell, Anthony, E-mail: anthony.nonell@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Todolí Torró, José Luis, E-mail: jose.todoli@ua.es [Universidad de Alicante, Departamento de Quimica Analitica, Nutricion y Bromatología, Ap. de Correos, 99, 03080 Alicante (Spain); Bresson, Carole, E-mail: carole.bresson@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Vio, Laurent, E-mail: laurent.vio@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Vercouter, Thomas, E-mail: thomas.vercouter@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Chartier, Frédéric, E-mail: frederic.chartier@cea.fr [CEA Saclay, DEN, DANS, DPC, 91191 Gif-sur-Yvette (France)

    2015-07-23

    Highlights: • Tutorial review addressed to beginners or more experienced analysts. • Theoretical background of effects caused by organic matrices on ICP techniques. • Spatial distribution of carbon species and analytes in plasma. • Carbon spectroscopic and non-spectroscopic interferences in ICP. - Abstract: Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical “matrix removal” approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the

  8. Multivariate optimization by exploratory analysis applied to the determination of microelements in fruit juice by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos Froes, Roberta Eliane; Borges Neto, Waldomiro [Departamento de Quimica, Universidade Federal de Minas Gerais, Campus Pampulha, Cx Postal 702, Belo Horizonte, MG, 31270-901 (Brazil); Oliveira Couto e Silva, Nilton; Lopes Pereira Naveira, Rita [Fundacao Ezequiel Diaz, FUNED, Belo Horizonte, MG (Brazil); Nascentes, Clesia Cristina [Departamento de Quimica, Universidade Federal de Minas Gerais, Campus Pampulha, Cx Postal 702, Belo Horizonte, MG, 31270-901 (Brazil)], E-mail: clesia@qui.ufmg.br; Bento Borba da Silva, Jose [Departamento de Quimica, Universidade Federal de Minas Gerais, Campus Pampulha, Cx Postal 702, Belo Horizonte, MG, 31270-901 (Brazil)

    2009-06-15

    A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 2{sup 3} factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO{sub 3} (Tetra Packed, peach flavor) and spiked with 0.5 mg L{sup - 1} of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min{sup - 1}, 1.3 kW, and 1.25 mL min{sup - 1}) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 {mu}g L{sup - 1}. The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.

  9. Multivariate optimization by exploratory analysis applied to the determination of microelements in fruit juice by inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Froes, Roberta Eliane Santos; Neto, Waldomiro Borges; Silva, Nilton Oliveira Couto e.; Naveira, Rita Lopes Pereira; Nascentes, Clésia Cristina; da Silva, José Bento Borba

    2009-06-01

    A method for the direct determination (without sample pre-digestion) of microelements in fruit juice by inductively coupled plasma optical emission spectrometry has been developed. The method has been optimized by a 2 3 factorial design, which evaluated the plasma conditions (nebulization gas flow rate, applied power, and sample flow rate). A 1:1 diluted juice sample with 2% HNO 3 (Tetra Packed, peach flavor) and spiked with 0.5 mg L - 1 of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Sn, and Zn was employed in the optimization. The results of the factorial design were evaluated by exploratory analysis (Hierarchical Cluster Analysis, HCA, and Principal Component Analysis, PCA) to determine the optimum analytical conditions for all elements. Central point condition differentiation (0.75 L min - 1 , 1.3 kW, and 1.25 mL min - 1 ) was observed for both methods, Principal Component Analysis and Hierarchical Cluster Analysis, with higher analytical signal values, suggesting that these are the optimal analytical conditions. F and t-student tests were used to compare the slopes of the calibration curves for aqueous and matrix-matched standards. No significant differences were observed at 95% confidence level. The correlation coefficient was higher than 0.99 for all the elements evaluated. The limits of quantification were: Al 253, Cu 3.6, Fe 84, Mn 0.4, Zn 71, Ni 67, Cd 69, Pb 129, Sn 206, Cr 79, Co 24, and Ba 2.1 µg L - 1 . The spiking experiments with fruit juice samples resulted in recoveries between 80 and 120%, except for Co and Sn. Al, Cd, Pb, Sn and Cr could not be quantified in any of the samples investigated. The method was applied to the determination of several elements in fruit juice samples commercialized in Brazil.

  10. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    Science.gov (United States)

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques.

  11. Determination of Se in biological samples by axial view inductively coupled plasma optical emission spectrometry after digestion with aqua regia and on-line chemical vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Eder Jose dos [Instituto de Tecnologia do Parana (TECPAR), 81350-010 Curitiba, PR (Brazil)], E-mail: eder@tecpar.br; Herrmann, Amanda Beatriz; Kulik de Caires, Suzete [Instituto de Tecnologia do Parana (TECPAR), 81350-010 Curitiba, PR (Brazil); Azzolin Frescura, Vera Lucia; Curtius, Adilson Jose [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), 880400-900 Florianopolis, SC (Brazil)

    2009-06-15

    A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG-ICP OES) is proposed. The concentrations of HCl and NaBH{sub 4}, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG-ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5-10.0 {mu}g L{sup -} {sup 1} Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL{sup -} {sup 1} was 0.10 {mu}g g{sup -} {sup 1}. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.

  12. Speciation of inorganic selenium in environmental water samples by inductively coupled plasma optical emission spectrometry after preconcentration by using a mesoporous zirconia coating on coal cinder.

    Science.gov (United States)

    Wei, Xiao-Shu; Wu, Yi-Wei; Han, Li-Juan; Guo, Jing; Sun, Hong-Li

    2014-08-01

    A simple, novel, and selective flow-injection solid-phase extraction with inductively coupled plasma optical emission spectrometry method was developed for the speciation of inorganic selenium in environmental water samples. A mesoporous zirconia film was simply introduced to coat coal cinder by means of the sol-gel technique, and the adsorptive performance of the coated material for Se(IV)/Se(VI) was investigated in different media. Both Se(IV) and Se(VI) can be retained quantitatively by the material in HCl/NaOH (pH 1.0-9.0) media, while only Se(IV) was adsorbed quantitatively in sodium acetate buffer (pH 3.5-6.0). Thus, the assay of Se(VI) is based on subtracting Se(IV) from total selenium by controlling different adsorptive media without employing any redox procedure. Under the optimum conditions, the detection limit of Se(IV) is 9.0 ng/L with an enrichment factor of 100, and the relative standard deviation is 3.6% (n = 9, C = 5.0 ng/mL). The developed method was successfully applied to the speciation of inorganic selenium in environmental water samples with satisfactory results. In order to further verify the accuracy of the developed method, it was applied to analysis of total selenium in GSBZ 50031-94 certified reference environmental water, and the determined values coincided with the certified values very well.

  13. Optimization of an open-focused microwave oven digestion procedure for determination of metals in diesel oil by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Sant'Ana, Flavio W; Santelli, Ricardo E; Cassella, Alessandra R; Cassella, Ricardo J

    2007-10-01

    This work reports the optimization of a focused microwave assisted procedure for the wet acid dissolution of diesel oil in order to allow the determination of metals in the samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The dissolution process was monitored by measuring residual carbon content (RCC), also by ICP-OES, in the final solutions obtained after application of digestion program. All experimental work was performed using a commercial sample of diesel oil containing 85.74+/-0.13% of carbon. The initial dissolution program comprised three steps: (i) carbonization with H(2)SO(4); (ii) oxidation with HNO(3) and (iii) final oxidation with H(2)O(2). During work it was verified that the first step played an important role on the dissolution process of this kind of sample. It is therefore, necessary to give a detailed optimization of such step. Employing the optimized conditions it was possible to digest 2.5 g of diesel oil with a 40 min-heating program. At these conditions, residual carbon content was always lower than 5%. Optimized methodology was applied in the determination of metals in three diesel oil samples by ICP-OES. Recovery tests were also performed by adding 10 microg of metals, as organic standards, to the samples before digestion. Recovery percentages always higher than 90% were obtained for the metals of interest (Al, Cu, Fe and Ni), except for Zn, which presented recoveries between 70 and 78%.

  14. Determination of arsenic, cadmium, cobalt, chromium, lead, molybdenum, nickel, and selenium in fertilizers by microwave digestion and inductively coupled plasma-optical emission spectrometry detection: collaborative study.

    Science.gov (United States)

    Kane, Peter F; Hall, William L

    2006-01-01

    There is increasing regulatory interest in the non-nutritive metals content of fertilizer materials, but at present there is no consensus analytical method for acid digestion and instrument detection of those elements in fertilizer matrixes. This lack of method standardization has resulted in unacceptable variability of results between fertilizer laboratories performing metals analysis. A method has been developed using microwave digestion with nitric acid at 200 degrees C, followed by inductively coupled plasma-optical emission spectrometry instrument detection, for the elements arsenic, cadmium, cobalt, chromium, molybdenum, nickel, lead, and selenium. The method has been collaboratively studied, and statistical results are here reported. Fourteen collaborators were sent 62 sample materials in a blind duplicate design. Materials represented a broad cross section of fertilizer types, including phosphate ore, manufactured phosphate products, N-P-K blends, organic fertilizers, and micro-nutrient materials. As much as possible within the limit of the number of samples, materials were selected from different regions of the United States and the world. Limit of detection (LOD) was determined using synthetic fertilizers consisting of reagent grade chemicals with near zero levels of the non-nutritive elements, analyzed blindly. Samples with high iron content caused the most variability between laboratories. Most samples reasonably above LOD gave HorRat values within the range 0.5 to 2.0, indicating acceptable method performance according to AOAC guidelines for analyses in the mg/kg range. The method is recommended for AOAC Official First Action status.

  15. Imaging of elements in leaves of tobacco by solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masson, Pierre, E-mail: masson@bordeaux.inra.fr

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  16. Determination of heavy metals and their speciation in street dusts by inductively coupled plasma-optical emission spectrometry after a Community Bureau of Reference sequential extraction procedure.

    Science.gov (United States)

    Altundag, Huseyin; Imamoglu, Mustafa; Doganci, Secil; Baysal, Erkan; Albayrak, Sinem; Tuzen, Mustafa

    2013-01-01

    Sequential selective extraction techniques are commonly used to fractionate the solid-phase forms of metals in soils. This procedure provides measurements of extractable metals from media, such as acetic acid (0.11 M), hydroxyl ammonium chloride (0.1 M), hydrogen peroxide (8.8 M) plus ammonium acetate (1 M), and aqua regia stages of the sequential extraction procedure. In this work, the extractable Pb, Cu, Mn, Sr, Ni, V, Fe, Zn, and Cr were evaluated in street dust samples from Sakarya, Turkey, between May and October 2009 using the three-step sequential extraction procedure described by the Community Bureau of Reference (BCR, now the Standards, Measurements, and Testing Programme) of the European Union. The sampling sites were divided into 10 categories; a total of 50 street dusts were analyzed. The determination of multielements in the samples was performed by inductively coupled plasma-optical emission spectrometry. Validation of the proposed method was performed using BCR 701 certified reference material. The results showed good agreement between the obtained and the certified values for the metals analyzed.

  17. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)

    Science.gov (United States)

    Karadjov, Metody; Velitchkova, Nikolaya; Veleva, Olga; Velichkov, Serafim; Markov, Pavel; Daskalova, Nonka

    2016-05-01

    This paper deals with spectral interferences of complex matrix containing Mo, Al, Ti, Fe, Mg, Ca and Cu in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). By radial viewing 40.68 MHz ICP equipped with a high resolution spectrometer (spectral bandwidth = 5 pm) the hyperfine structure (HFS) of the most prominent lines of rhenium (Re II 197.248 nm, Re II 221.426 nm and Re II 227.525 nm) was registered. The HFS components under high resolution conditions were used as separate prominent line in order to circumvent spectral interferences. The Q-concept was applied for quantification of spectral interferences. The quantitative databases for the type and the magnitude of the spectral interferences in the presence of above mentioned matrix constituents were obtained by using a radial viewing 40.68 MHz ICP with high resolution and an axial viewing 27.12 MHz ICP with middle resolution. The data for the both ICP-OES systems were collected chiefly with a view to spectrochemical analysis for comparing the magnitude of line and wing (background) spectral interference and the true detection limits with spectroscopic apparatus with different spectral resolution. The sample pretreatment methods by sintering with magnesium oxide and oxidizing agents as well as a microwave acid digestion were applied. The feasibility, accuracy and precision of the analytical results were experimentally demonstrated by certified reference materials.

  18. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination.

    Science.gov (United States)

    Yousefi, Seyed Reza; Ahmadi, Seyed Javad; Shemirani, Farzaneh; Jamali, Mohammad Reza; Salavati-Niasari, Masoud

    2009-11-15

    A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L(-1) HNO(3). The preconcentration factor was 100 for a 100mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 microg L(-1). The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g(-1) for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.

  19. Determination of rare earth elements in waters by inductively coupled plasma optical emission spectrometry after preconcentration with 6-(2-thienyl)-2-pyridinecarboxaldehyde functionalized Amberlite XAD-4 resin.

    Science.gov (United States)

    Karadaş, Cennet; Kara, Derya

    2014-01-01

    A new method has been developed for the determination of rare earth elements (REEs) (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in water samples based on preconcentration with a mini-column packed with 6-(2-thienyl)-2-pyridinecarboxaldehyde functionalized Amberlite XAD-4 resin prior to their determination using inductively coupled plasma optical emission spectrometry (ICP-OES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample and eluent flow rates and sample volume, were investigated. The optimum pH values for quantitative (90-110%) sorption of the REE ions were between 6.0 and 8.0. The elution process was carried out using 2 mL of 1.0 mol L(-1) HNO3 solution. Under the optimum conditions, detection limits between 0.032 and 0.963 μg L(-1) for a 10 mL sample volume and 0.006 and 0.193 μg L(-1) for a 50 mL sample volume were determined. The proposed method was successfully applied to the determination of REEs in water samples with recoveries in the range of 90.1-110.5%.

  20. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    Science.gov (United States)

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the

  1. Optimization of digestion parameters for analysing the total sulphur of mine tailings by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Alam, Raquibul; Shang, Julie Q; Cheng, Xiangrong

    2012-05-01

    The oxidation of sulphidic mine tailings and consequent acid generation poses challenges for the environment. Accurate and precise analysis of sulphur content is necessary for impact assessment and management of mine tailings. Here, the authors aim at developing a rapid and easy digestion procedure, which may analyse and measure the total amount of sulphur in mine tailings by using inductively coupled plasma. For evaluating effects of several variables, the researchers used a univariate (analysis of variance (ANOVA)) strategy and considered factors such as composition of the acid mixture, heating time, and refluxing device to optimize the performance. To do the experiment, the researchers have used two certified reference materials (KZK-1 and RTS-2) and samples of tailings from Musselwhite mine. ANOVA result shows that heating time is the most influencing factor on acid digestion of the reference materials whereas in case of a digestion of tailings sample, hydrochloric acid proved to be the most significant parameter. Satisfactory results between the measured and referenced values are found for all experiments. It is found that the aqua regia (1 ml HNO(3) + 3 ml HCl) digestion of 0.1 g of samples after only 40 min of heating at 95°C produced fast, safe, and accurate analytical results with a recovery of 97% for the selected reference materials.

  2. Field-flow fractionation: An efficient approach for matrix removal of soil extract for inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Sangsawong, Supharart; Waiyawat, Weerawan; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2011-06-01

    An on-line coupling between a continuous-flow sequential extraction (CFSE) unit and flow field-flow fractionation with cross flow matrix removal (FlFFF/CFM) with ICP-OES detection was developed for determination of metal leachability from soil. The use of high concentration of Mg(NO 3) 2 in exchangeable phase can cause undesirable matrix effects by shifting ionization equilibrium in the plasma, etc., resulting in a clear need for matrix removal. Therefore, the capability of FlFFF/CFM to remove Mg matrix ion from soil extract was evaluated. Poly(ethylene imine) (PEI) having molecular weight of 25,000 Da was added to form complexes with analyte elements (Cu, Mn, Pb, and Zn) but not the matrix element (Mg). The free Mg matrix ions were then removed by filtering off through the ultrafiltration membrane, having a 1000-Da molecular weight cut-off, inside the FlFFF channel. With the use of FlFFF/CFM, matrix removal efficiency was approximately 83.5%, which was equivalent to approximately 6-fold dilution of the matrix ion. The proposed hyphenated system of CFSE and FlFFF/CFM with ICP-OES detection was examined for its reliability by checking with SRM 2710 (a highly contaminated soil from Montana). The metal contents determined by the proposed method were not significantly different (at 95% confidence) from the certified values.

  3. High-Resolution Inductively Coupled Plasma Optical Emission Spectrometry for (234)U/(238)Pu Age Dating of Plutonium Materials and Comparison to Sector Field Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Krachler, Michael; Alvarez-Sarandes, Rafael; Rasmussen, Gert

    2016-09-06

    Employing a commercial high-resolution inductively coupled plasma optical emission spectrometry (HR-ICP-OES) instrument, an innovative analytical procedure for the accurate determination of the production age of various Pu materials (Pu powder, cardiac pacemaker battery, (242)Cm heat source, etc.) was developed and validated. This undertaking was based on the fact that the α decay of (238)Pu present in the investigated samples produced (234)U and both mother and daughter could be identified unequivocally using HR-ICP-OES. Benefiting from the high spectral resolution of the instrument (U and (238)Pu were selectively and directly determined in the dissolved samples, i.e., without a chemical separation of the two analytes from each other. Exact emission wavelengths as well as emission spectra of (234)U centered around λ = 411.590 nm and λ = 424.408 nm are reported here for the first time. Emission spectra of the isotopic standard reference material IRMM-199, comprising about one-third each of (233)U, (235)U, and (238)U, confirmed the presence of (234)U in the investigated samples. For the assessment of the (234)U/(238)Pu amount ratio, the emission signals of (234)U and (238)Pu were quantified at λ = 424.408 nm and λ = 402.148 nm, respectively. The age of the investigated samples (range: 26.7-44.4 years) was subsequently calculated using the (234)U/(238)Pu chronometer. HR-ICP-OES results were crossed-validated through sector field inductively coupled plasma mass spectrometry (SF-ICPMS) analysis of the (234)U/(238)Pu amount ratio of all samples applying isotope dilution combined with chromatographic separation of U and Pu. Available information on the assumed ages of the analyzed samples was consistent with the ages obtained via the HR-ICP-OES approach. Being based on a different physical detection principle, HR-ICP-OES provides an alternative strategy to the well-established mass spectrometric approach and thus effectively adds to the quality assurance of (234)U

  4. Measurement of electron temperatures of Argon Plasmas in a High-Density Inductively-Coupled Remote Plasma System by Langmuir Probe and Optical-Emission Spectroscopy

    NARCIS (Netherlands)

    Boogaard, A.; Kovalgin, Alexeij Y.; Aarnink, Antonius A.I.; Wolters, Robertus A.M.; Holleman, J.; Brunets, I.; Schmitz, Jurriaan

    2006-01-01

    We measured electron density and electron energy distribution function (EEDF) in our reactor by a Langmuir probe. The EEDF of Ar plasma in the reactor could largely be described by the Maxwell-Boltzmann distribution function, but it also contained a fraction (~10-3) of electrons which were much

  5. An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry

    KAUST Repository

    Patole, Shashikant P.

    2015-10-21

    It is common for as-prepared carbon nanotube (CNT) and graphene samples to contain remnants of the transition metals used to catalyze their growth; contamination may also leave other trace elemental impurities in the samples. Although a full quantification of impurities in as-prepared samples of carbon nanostructures is difficult, particularly when trace elements are intercalated or encapsulated within a protective layer of graphitic carbon, reliable information is essential for reasons such as quantifying the adulteration of physico-chemical properties of the materials and for evaluating environmental issues. Here, we introduce a microwave-based fusion method to degrade single- and double-walled CNTs and graphene nanoplatelets into a fusion flux thereby thoroughly leaching all metallic impurities. Subsequent dissolution of the fusion product in diluted hydrochloric and nitric acid allowed us to identify their trace elemental impurities using inductively coupled plasma optical emission spectrometry. Comparisons of the results from the proposed microwave-assisted fusion method against those of a more classical microwave-assisted acid digestion approach suggest complementarity between the two that ultimately could lead to a more reliable and less costly determination of trace elemental impurities in carbon nanostructured materials. Graphical abstract A method for the complete digestion of carbon nanostructures has been demonstrated. Photographs (on the left side) show zirconium crucibles containing SWCNTs with flux of Na2CO3 and K2CO3, before and after microwave fusion; (on the right side) the appearance of the final solutions containing dissolved samples, from microwave-assisted fusion and microwave-assisted acid digestion. These solutions were used for determining the trace elemental impurities by ICP‒OES.

  6. Assessment of heavy metal contamination in core sediment samples in Gulf of Izmir, Aegean Sea, Turkey (by inductively coupled plasma-optical emission spectrometry (ICP-OES))

    Science.gov (United States)

    Ünal Yumun, Zeki; Kam, Erol; Kurt, Dilek

    2017-04-01

    Heavy metal and radionuclide analysis studies are crucial in explaining biotic and abiotic interactions in ecosystems. This type of analysis is highly needed in environments such as coastal areas, gulfs or lakes where human activities are generally concentrated. Sediments are one of the best biological indicators for the environment since the pollution accumulates in the sediments by descent to the sea floor. In this study, sediments were collected from the Gulf of Izmir (Eastern Aegean Sea, Turkey) considering the accumulated points of domestic and industrial wastes to make an anthropogenic pollution analysis. The core sediments had different depths of 0.00-30.00 m at four different locations where Karsiyaka, Bayrakli, Incialti and Cesmealti in the Gulf of Izmir. The purpose of the study was determining Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations in the drilling samples to assess their levels and spatial distribution in crucial areas of the Aegean Sea by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion techniques. The heavy metal concentrations found in sediments varied for Cd:

  7. Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    de Wuilloud, Jorgelina C. A.; Wuilloud, Rodolfo G.; Silva, María. F.; Olsina, Roberto A.; Martinez, Luis D.

    2002-02-01

    A pre-concentration and determination methodology for mercury at trace levels in water samples was developed. Cloud point extraction was successfully employed for the pre-concentration of mercury prior to inductively coupled plasma optical emission spectrometry coupled to a flow injection with cold vapor generation system. The mercury was extracted as mercury-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [Hg(II)-(5-Br-PADAP)] complex, at pH 9.2 mediated by micelles of the non-ionic surfactant polyethyleneglycolmono- p-nonylphenylether (PONPE 5). Cold vapor generation was developed from 100 μl of the extracted surfactant-rich phase by means of a stannous chloride (SnCl 2) solution as reluctant. An exhaustive study of the variables affecting the cloud point extraction with PONPE 5 and cold vapor mercury generation from the surfactant phase was performed. The 50-ml sample solution pre-concentration allowed us to raise an enrichment factor of 200-fold. The lower limit of detection obtained under the optimal conditions was 4 ng l -1. The precision for 10 replicate determinations at the 0.5-μg l -1 Hg level was 3.4% relative standard deviation (R.S.D.), calculated with the peak heights. The calibration graph using the pre-concentration system for mercury was linear with a correlation coefficient of 0.9998 at levels near the detection limits up to at least 50 μg l -1. The method was successfully applied to the determination of mercury in tap water samples.

  8. Determination of phosphorus and potassium in commercial inorganic fertilizers by inductively coupled plasma-optical emission spectrometry: single-laboratory validation.

    Science.gov (United States)

    Bartos, James M; Boggs, Barton L; Falls, J Harold; Siegel, Sanford A

    2014-01-01

    A two-part single-laboratory validation study was conducted for determination of the P and K content in commercial fertilizer materials by inductively coupled plasma-optical emission spectrometry (ICP-OES). While several methods exist for determination of P and K in fertilizer products, the main focus of this study was on ICP-OES determination, which offers several unique advantages. Fertilizer samples with consensus P and K values from the Magruder and Association of Fertilizer and Phosphate Chemists (AFPC) check sample programs were selected for this study. Validation materials ranging from 4.4 to 52.4% P205 (1.7 to 22.7% P) and 3 to 62% K20 (2.5 to 51.5% K) were utilized. Because all P and K compounds contained in fertilizer materials are not "available" for plants to use, this study was conducted in two parts. Part A focused on ammonium citrate-disodium EDTA as the extraction solvent, as it estimates the pool of fertilizer P and K that is considered available to plants. Part B focused on hydrochloric acid as the digestion solvent, as it estimates the total P and K content of the fertilizer product. Selectivity studies indicated that this method can have a high bias for fertilizer products containing sources of phosphite or organic P compared to gravimetric or colorimetric methods that measure just orthophosphate. Provided the analytical challenges outlined in this study are addressed, this method offers the potential for a quick, accurate, and safe alternative for determining the P and K content of commercial inorganic fertilizer materials.

  9. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: A tutorial review. Part II. Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Leclercq, Amélie, E-mail: amelie.leclercq@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Nonell, Anthony, E-mail: anthony.nonell@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Todolí Torró, José Luis, E-mail: jose.todoli@ua.es [Universidad de Alicante, Departamento de Quimica Analitica, Nutricion y Bromatología, Ap. de Correos, 99, 03080 Alicante (Spain); Bresson, Carole, E-mail: carole.bresson@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Vio, Laurent, E-mail: laurent.vio@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Vercouter, Thomas, E-mail: thomas.vercouter@cea.fr [CEA Saclay, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, 91191 Gif-sur-Yvette (France); Chartier, Frédéric, E-mail: frederic.chartier@cea.fr [CEA Saclay, DEN, DANS, DPC, 91191 Gif-sur-Yvette (France)

    2015-07-23

    Graphical abstract: This tutorial review is dedicated to the analysis of organic/hydro-organic matrices by ICP techniques. A state-of-the-art focusing on sample introduction, relevant operating parameters optimization and analytical strategies for elemental quantification is provided. - Highlights: • Practical considerations to perform analyses in organic/hydro-organic matrices. • Description, benefits and drawbacks of recent introduction devices. • Optimization to improve plasma tolerance towards organic/hydro-organic matrices. • Analytical strategies for elemental quantification in organic/hydro-organic matrices. - Abstract: Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review

  10. Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Santelli, Ricardo Erthal [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil)], E-mail: santelli@geoq.uff.br; Padua Oliveira, Eliane [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Engenharia Quimica e de Petroleo, Universidade Federal Fluminense, Rua Passos da Patria 156, Sao Domingos, Niteroi/RJ, 24210-230 (Brazil); Batista de Carvalho, Maria de Fatima [Centro de Pesquisas e Desenvolvimento da PETROBRAS, Avaliacao e Monitoramento Ambiental, Av. Horacio Macedo, 950, Cidade Universitaria, Rio de Janeiro/RJ, 21941-598 (Brazil); Almeida Bezerra, Marcos [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Universidade Estadual do Sudoeste da Bahia, Laboratorio de Quimica Analitica, Rua Jose Moreira Sobrinho s/n, Jequiezinho, Jequie/BA, 45206-190 (Brazil); Soares Freire, Aline [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil)

    2008-07-15

    Herein, we present the development of a procedure for the determination of total sulfur in petroleum-derived products (gasoline, kerosene and diesel fuel) employing inductively coupled plasma optical emission spectrometry (ICP OES). For this procedure, samples were prepared as emulsions that were made using concentrated nitric acid, Triton X-100, sample, and ultra pure water in proportions of 5/10/7/78% (v/v), respectively. Sample volumes were weighed because of the density differences, and oxygen was added to the sheat gas entrance of the ICP OES in order to decrease carbon deposition in the torch and to minimize background effects. A Doehlert design was applied as an experimental matrix to investigate the flow ratios of argon (sheat and plasma gas) and oxygen in relation to the signal-to-background ratio. A comparative study among the slopes of the analytical curves built in aqueous media, surfactant/HNO{sub 3}, and by spike addition for several sample emulsions indicates that a unique solution of surfactant in acidic media can be employed to perform the external calibration for analysis of the emulsions. The developed procedure allows for the determination of the total sulfur content in petroleum derivatives with a limit of detection (LOD) and limit of quantification (LOQ) of 0.72 and 2.4 {mu}g g{sup -1}, respectively. Precision values, expressed as the relative standard deviations (% RSD, n = 10) for 12 and 400 {mu}g g{sup -1}, were 2.2% and 1.3%, respectively. The proposed procedure was applied toward the determination of total sulfur in samples of gasoline, kerosene, and diesel fuel commercialized in the city of Niteroi/RJ, Brazil. The accuracy of the proposed method was evaluated by the determination of the total sulfur in three different standard reference materials (SRM): NIST 2723a (sulfur in diesel fuel oil), NIST 1616b (sulfur in kerosene), and NIST 2298 (sulfur in gasoline). The data indicate that the methodology can be successfully applied to these

  11. Laser Induced Breakdown Spectroscopy compared with conventional plasma optical emission techniques for the analysis of metals - A review of applications and analytical performance

    Science.gov (United States)

    Bengtson, A.

    2017-08-01

    This review is focused on a comparison of LIBS with the two most common plasma Optical Emission Spectroscopy (OES) techniques for analysis of metals; spark OES and glow discharge (GD) OES. It is shown that these two techniques have only minor differences in analytical performance. An important part of the paper reviews a direct comparison of the analytical figures of merit for bulk analysis of steels using spark and LIBS sources. The comparison was carried out using one instrument with interchangeable sources, eliminating differences related to the optical system and detectors. It was found that the spark provides slightly better analytical figures of merit. The spark analysis is considerably faster, the simple design of the spark stand has enabled complete automation, both properties of great importance in the metallurgical industry for routine analysis. The analysis of non-metallic inclusions (NMI) with spark and LIBS is presented, in the case of the spark this has become known as Pulse Distribution Analysis (PDA). A very significant difference between the techniques is that the electrical spark typically evaporates 100 times more material than a single laser pulse, resulting in complete evaporation of an NMI present in the evaporated metal. The major advantage of LIBS is that it is localised with very good lateral resolution. The major advantages of spark is that it is much faster (can be done simultaneous with the bulk analysis) and easier to quantify. Compositional Depth Profiling (CDP) is compared for GD-OES and LIBS. It is shown that for applications where GD-OES is well suited, e.g. coated metallic sheet, GD-OES still performs slightly better than LIBS. Similar to the case of NMI analysis, the major advantage of LIBS is the great lateral resolution. This allows elemental surface mapping, as well as CDP of very small areas on μm scale. One further advantage of LIBS is that samples of almost any material, shape and size can be analysed, whereas GD-OES has

  12. Prompt optical emission from residual collisions in GRB outflows

    CERN Document Server

    Li, Zhuo

    2007-01-01

    The prompt $\\gamma$-ray emission in $\\gamma$-ray bursts is believed to be produced by internal shocks within a relativistic unsteady outflow. The recent detection of prompt optical emission accompanying the prompt $\\gamma$-ray emission appears to be inconsistent with this model since the out flowing plasma is expected to be highly optically thick to optical photons. We show here that fluctuations in flow properties on short, $\\sim1$ ms, time scale, which drive the $\\gamma$-ray producing collisions at small radii, are expected to lead to "residual" collisions at much larger radii, where the optical depth to optical photons is low. The late residual collisions naturally account for the relatively bright optical emission. The apparent simultaneity of $\\gamma$-ray and optical emission is due to the highly relativistic speed with which the plasma expands. Residual collisions may also account for the X-ray emission during the early "steep decline" phase, where the radius is inferred to be larger than the $\\gamma$-r...

  13. Real-time optical plasma boundary reconstruction for plasma position control at the TCV Tokamak

    NARCIS (Netherlands)

    Hommen, G.; Baar, M. de; Duval, B.P.; Andrebe, Y.; Le, H.B.; Klop, M.A.; Doelman, N.J.; Witvoet, G.; Steinbuch, M.

    2014-01-01

    A dual, high speed, real-time visible light camera setup was installed on the TCV tokamak to reconstruct optically and in real-time the plasma boundary shape. Localized light emission from the plasma boundary in tangential view, broadband visible images results in clearly resolved boundary edge-feat

  14. Characterization of a microwave microstrip helium plasma with gas-phase sample introduction for the optical emission spectrometric determination of bromine, chlorine, sulfur and carbon using a miniaturized optical fiber spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Pawel; Zapata, Israel Jimenez; Amberger, Martin A.; Bings, Nicolas H. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2008-03-15

    Continuous flow generation of Br{sub 2}, Cl{sub 2} and H{sub 2}S coupled to a low-power 2.45 GHz microwave microstrip He plasma exiting from a capillary gas channel in a micro-fabricated sapphire wafer with microstrip lines has been used for the optical emission spectrometric determination of Br, Cl and S using a miniaturized optical fiber CCD spectrometer. Under optimized conditions, detection limits (3{sigma}) of 330, 190 and 220 {mu}g l{sup -1} for Br, Cl and S, respectively, under the use of the Br II 478.5 nm, Cl I 439.0 nm and S I 469.0 nm lines were obtained and the calibration curves were found to be linear over 2 orders of magnitude. In addition, when introducing CO{sub 2} and using the rotational line of the CN molecular band at 385.7 nm the detection limit for C was 4.6 {mu}g l{sup -1}. The procedure developed was found to be free from interferences from a number of metal cations and non-metal anions. Only the presence of CO{sub 3}{sup 2-} and CN{sup -} was found to cause severe spectral interferences as strong CN and C{sub 2} molecular bands occurred as a result of an introduction of co-generated CO{sub 2} and HCN into the plasma. With the procedure described Br, Cl and S could be determined at a concentration level of 10-30 mg l{sup -1} with accuracy and precision better than 2%.

  15. A methodology for quantifying trace elements in the exoskeletons of Florida stone crab (Menippe mercenaria) larvae using inductively coupled plasma optical emission spectrometry (ICP–OES)

    Science.gov (United States)

    Gravinese, Philip M.; Flannery, Jennifer A.; Toth, Lauren T.

    2016-11-23

    The larvae of the Florida stone crab, Menippe mercenaria, migrate through a variety of habitats as they develop and, therefore, experience a broad range of environmental conditions through ontogeny. Environmental variability experienced by the larvae may result in distinct elemental signatures within the exoskeletons, which could provide a tool for tracking the environmental history of larval stone crab populations. A method was developed to examine trace-element ratios, specifically magnesium-to-calcium (Mg/Ca) and strontium-to-calcium (Sr/Ca) ratios, in the exoskeletons of M. mercenaria larvae. Two developmental stages of stone crab larvae were analyzed—stage III and stage V. Specimens were reared in a laboratory environment under stable conditions to quantify the average ratios of Mg/Ca and Sr/Ca of larval stone crab exoskeletons and to determine if the ratios differed through ontogeny. The elemental compositions (Ca, Mg, and Sr) in samples of stage III larvae (n = 50 per sample) from 11 different broods (mean Sr/Ca = 5.916 ± 0.161 millimole per mole [mmol mol−1]; mean Mg/Ca = 218.275 ± 59.957 mmol mol−1) and stage V larvae (n = 10 per sample) from 12 different broods (mean Sr/Ca = 6.110 ± 0.300 mmol mol−1; mean Mg/Ca = 267.081 ± 67.211 mmol mol–1) were measured using inductively coupled plasma optical emission spectrometry (ICP–OES). The ratio of Sr/Ca significantly increased from stage III to stage V larvae, suggesting an ontogenic shift in Sr/Ca ratios between larval stages. The ratio of Mg/Ca did not change significantly between larval stages, but variability among broods was high. The method used to examine the trace-element ratios provided robust, highly reproducible estimates of Sr/Ca and Mg/Ca ratios in the larvae of M. mercenaria, demonstrating that ICP–OES can be used to determine the trace-element composition of chitinous organisms like the Florida stone crab.

  16. Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy.

    Science.gov (United States)

    Kumakli, Hope; Duncan, A'ja V; McDaniel, Kiara; Mehari, Tsdale F; Stephenson, Jamira; Maple, Lareisha; Crawford, Zaria; Macemore, Calvin L; Babyak, Carol M; Fakayode, Sayo O

    2017-05-01

    Human scalp hair samples were collected and used to assess exposure to toxic elements and essential elements in the state of North Carolina, USA using accelerated microwave assisted acid digestion and inductively coupled plasma optical emission spectroscopy (ICP-OES). The figures-of-merit of the ICP-OES were appropriate for elemental analysis in scalp hair with detection limits as low as 0.0001 mg/L for Cd, good linearity (R(2) > 0.9978), and percent recoveries that ranged from 96 to 106% for laboratory-fortified-blanks and 88-112% for sample spike recovery study. The concentrations of essential elements in scalp hair were larger than those of toxic elements, with Ca having the highest average concentration (3080 μg/g, s = 14,500, n = 194). Some of the maximum concentrations observed for As (65 μg/g), Ni (331 μg/g), Cd (2.96 μg/g), and Cr (84.6 μg/g) in individual samples were concerning, however. Samples were statistically analyzed to determine the influence of race, gender, smoking habits, or age on the elemental concentrations in scalp hair. Higher concentrations of essential elements were observed in the scalp hair of Caucasians, females, and non-smokers, and the differences were often significant at a 90% confidence level. Several pairs of essential elements, for example Ca-K, Ca-Mg, and Ca-Zn, were strongly correlated in Caucasian hair but uncorrelated in African-American hair. Similarly, essential elements were strongly correlated in female hair but weakly correlated in male hair. Toxic element pairs (As-Cd, As-Se, Pb-As, and Se-Cd) were strongly correlated in the hair of smokers but uncorrelated in that of non-smokers, suggesting that cigarette smoke is a common source of toxic elements in humans. Published by Elsevier Ltd.

  17. Ultrasound- and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples.

    Science.gov (United States)

    Welna, Maja; Borkowska-Burnecka, Jolanta; Popko, Malgorzata

    2015-11-01

    Followed the current idea of simplified sample pretratmet before analysis we evaluated the procedure for the determination of Pb in calcium-rich materials such as dolomites after ultrasound- or microwave- assisted extraction with diluted acids using hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES). Corresponding Pb hydride was generated in the reaction of an acidified sample solution with NaBH4 after pre-oxidation of Pb(II) to Pb(IV) by K3[Fe(CN)6]. Several chemical (acidic media: HCl, HNO3 or CH3COOH, concentration of the reductant as well as type and concentration of oxidazing agents) and physical (reagents flow rates, reaction coil length) parameters affecting the efficiency of plumbane formation were optimized in order to improve the detectability of Pb using HG-ICP-OES. Limitation of the method derived from the matrix effects was pointed out. Employing Pb separation by HG technique allows the significant reduction of interferences caused by sample matrix constituents (mainly Ca and Mg), nevertheless they could not be overcame at all, hence calibration based on the standard addition method was recommended for Pb quantification in dolomites. Under the selected conditions, i.e. 0.3 mol L(-1) HCl, HNO3 or CH3COOH, 1.5% NaBH4 and 3.0% K3[Fe(CN)6] the limits of detection (LODs) between 2.3-5.6 μg L(-1) (3.4-6.8 μg L(-1) considering matrix effects) and the precision below 5% were achieved. The accuracy of the procedure was verified by analysis of certified reference materials (NCS DC70308 (Carbonate Rock) and NIST 14000 (Bone Ash)) and recovery test with satisfactory results of Pb recoveries ranging between 94-108% (CRMs analysis) and 92-114% (standard addition method). The applicability of the proposed method was demonstrated by the determination of Pb in dolomites used by different fertiliser factories.

  18. Optical diagnostics of dusty plasmas during nanoparticle growth

    Science.gov (United States)

    Mikikian, M.; Labidi, S.; von Wahl, E.; Lagrange, J. F.; Lecas, T.; Massereau-Guilbaud, V.; Géraud-Grenier, I.; Kovacevic, E.; Berndt, J.; Kersten, H.; Gibert, T.

    2017-01-01

    Carbon-based thin films deposited on surfaces exposed to a typical capacitively-coupled RF plasma are sources of molecular precursors at the origin of nanoparticle growth. This growth leads to drastic changes of the plasma characteristics. Thus, a precise understanding of the dusty plasma structure and dynamics is required to control the plasma evolution and the nanoparticle growth. Optical diagnostics can reveal some particular features occurring in these kinds of plasmas. High-speed imaging of the plasma glow shows that instabilities induced by nanoparticle growth can be constituted of small brighter plasma regions (plasmoids) that rotate around the electrodes. A single bigger region of enhanced emission is also of particular interest: the void, a main central dust-free region, has very distinct plasma properties than the surrounding dusty region. This particularity is emphasized using optical emission spectroscopy with spatiotemporal resolution. Emission profiles are obtained for the buffer gas and the carbonaceous molecules giving insights on the changes of the electron energy distribution function during dust particle growth. Dense clouds of nanoparticles are shown to be easily formed from two different thin films, one constituted of polymer and the other one created by the plasma decomposition of ethanol.

  19. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  20. Terahertz Emission Dependence on the Fundamental Optical Intensity in Generating Terahertz Waves from Two-Color Laser-Induced Gas Plasma

    Institute of Scientific and Technical Information of China (English)

    DAI Hou-Mei; LIU Jin-Song

    2011-01-01

    A transient photocurrent model is used to explain terahertz ermission from gas plasma irritated by two-color laser pulses,with one the second harmonic of the other.Taking multiple degrees of ionization into account,the gas ionization process at different laser intensities from 1014 W/cm2 to 1015 W/cm2 is discussed.The results show that when Iω ≥ 6 × 1014 W/cm2,double ionization plays an important role in producing electrons.The corresponding terahertz spectra and waveforms are calculated,showing that increasing laser intensity can broaden the spectra to high frequencies and enhance the terahertz field.A promising method for generating terahertz (THz) waves involves emission from laser induced gas plasmas,which was first introduced hy Hamster et al.[1,2] By focusing laser femtosecond pulses with intensity greater than the thresholl for ionization of the gas molecules,one can obtain significant plasma formation.The ionized electrons will then accelerate by the lapser ponderomotive force,thus an electromagnetic pulse at THz frcqucncies can be produced.Since then,other plasma-based THz generation scheines have been proposed.L(o)ffler et al.,[3,4] applied an external dc bias to the plasma region,leading to an approximately one order of magnitude increase in the THz field strength.%A transient photocurrent model is used to explain terahertz emission from gas plasma irritated by two-color laser pulses, with one the second harmonic of the other. Taking multiple degrees of iom'xntion into account, the gas ionizntion process at different laser intensities from 1014 W/cm2 to 1015 W/cm2 is discussed. The results show that when /w > 6 X 1014 W/cin2, double ionization plays an important role in producing electrons. The corresponding terahertz spectra and waveforms are calculated, showing that increasing laser intensity can broaden the spectra to high frequencies and enhance the terahertz Geld.

  1. Radio Emissions from Plasma with Electron Kappa-Distributions

    Science.gov (United States)

    Fleishman, G. D.; Kuznetsov, A. A.

    2015-12-01

    Gregory Fleishman (New Jersey Institute of Technology, Newark, USA)Alexey Kuznetsov (Institute of Solar-Terrestrial Physics, Irkutsk, Russia), Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasisteady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these kappa distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa-distribution, and discuss their properties, which are in fact remarkably different from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. In this report, we present analytical formulae and computer codes to calculate the emission parameters. We simulate the gyroresonance emission under the conditions typical of the solar active regions and compare the results for different electron distributions. We discuss the implications of our findings for interpretation of radio observations. This work was supported in part by NSF grants AGS-1250374 and AGS-1262772, NASA grant NNX14AC87G to New Jersey Institute of Technology

  2. Exotic x-ray emission from dense plasmas

    Science.gov (United States)

    Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, M.; Renner, O.

    2015-11-01

    Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X → K1L X-1 + hν hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.

  3. Optical diagnostics of femtosecond laser plasmas

    Institute of Scientific and Technical Information of China (English)

    李玉同; 张杰; 陈黎明; 夏江帆; 腾浩; 赵理曾; 林景全; 李英骏; 魏志义; 王龙; 江文勉

    2001-01-01

    Optical diagnostics of evolution of plasmas produced by ultrashort laser pulses is carried out using a femtosecond probing beam. The time sequence of plasma shadowgrams and interferograms are obtained. The filamentation instability in high_density region induces the local density modification. Large_scale toroidal magnetic fields confine plasma expansion in the transverse direction, resulting in the formation of a plasma jet. The plasma expansion along the target normal direction is found to scale as 1 2.

  4. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  5. Radar detection of a localized 1.4 Hz pulsation in auroral plasma, simultaneous with pulsating optical emissions, during a substorm

    Directory of Open Access Journals (Sweden)

    R. Cosgrove

    2010-10-01

    Full Text Available Many pulsating phenomena are associated with the auroral substorm. It has been considered that some of these phenomena involve kilometer-scale Alfvén waves coupling the magnetosphere and ionosphere. Electric field oscillations at the altitude of the ionosphere are a signature of such wave activity that could distinguish it from other sources of auroral particle precipitation, which may be simply tracers of magnetospheric activity. Therefore, a ground based diagnostic of kilometer-scale oscillating electric fields would be a valuable tool in the study of pulsations and the auroral substorm. In this study we attempt to develop such a tool in the Poker Flat incoherent scatter radar (PFISR. The central result is a statistically significant detection of a 1.4 Hz electric field oscillation associated with a similar oscillating optical emission, during the recovery phase of a substorm. The optical emissions also contain a bright, lower frequency (0.2 Hz pulsation that does not show up in the radar backscatter. The fact that higher frequency oscillations are detected by the radar, whereas the bright, lower frequency optical pulsation is not detected by the radar, serves to strengthen a theoretical argument that the radar is sensitive to oscillating electric fields, but not to oscillating particle precipitation. Although it is difficult to make conclusions as to the physical mechanism, we do not find evidence for a plane-wave-like Alfvén wave; the detected structure is evident in only two of five adjacent beams. We emphasize that this is a new application for ISR, and that corroborating results are needed.

  6. Determinação de elementos essenciais maiores e traço em queijos por espectrometria de emissão atômica com plasma de argônio induzido após digestão parcial Determination of minerals and trace elements in cheese by inductively-coupled plasma optical emission spectrometry after partial digestion

    Directory of Open Access Journals (Sweden)

    Carmen Silvia Kira

    2007-09-01

    Full Text Available Concentrações de Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P e Zn foram determinadas em amostras de quatro tipos de queijo (mussarela, minas, prato e parmesão por espectrometria de emissão atômica com plasma de argônio acoplado indutivamente após dissolução parcial (hidrólise com HCl e total da matéria orgânica (digestão por via seca. As concentrações da maioria dos elementos essenciais maiores e traço, usando o método de dissolução parcial, foram consideradas estatisticamente iguais às obtidas com o método de dissolução total da matéria orgânica, demonstrando a potencialidade da digestão parcial em análises de rotina.Concentrations of Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P and Zn in four different types of cheese (mozzarella, white cheese, prato and parmesan were analyzed by inductively-coupled plasma optical emission spectrometry (ICP-OES after partial digestion (HCl hydrolysis and total digestion of organic matter (dry ashing. The results obtained for most of the elements analyzed here by the partial digestion (HCl hydrolysis and dry ashing methods were found to be statistically congruent, demonstrating the promising potential of the partial digestion method in routine analyses.

  7. Análise de suspensões de argilas por espectrometria de emissão óptica com plasma induzido com configuração axial Clay slurries analysis using inductively coupled plasma optical emission spectrometry with axial view configuration

    Directory of Open Access Journals (Sweden)

    Cíntia S. Silva

    2002-12-01

    Full Text Available The goal of this study was to evaluate the feasibility of direct introduction of clay slurries in an inductively coupled plasma optical emission spectrometer with axial view configuration. Calibration was performed using a certified reference material with a mean particle size of 13 µm (IPT-42 and the analytical curve was applied for quantification of two others reference materials (IPT-28 and IPT-32 and four samples. It was demonstrated that the analytical curve thus obtained was not completely suitable for IPT-28 and samples due to different mineralogical phases determined by X-ray diffraction. After considering this effect, it was possible for most elements to obtain results in agreement with certified values or with values obtained by a conventional technique at a 95% confidence level. It was demonstrated that the ICP-OES with axial view configuration did not present any incompatibility with the direct introduction of a complex inorganic suspension.

  8. Decomposição de argilas em forno de microondas e determinação simultânea dos seus constituintes principais por espectrometria de emissão óptica em plasma indutivamente acoplado Analysis of clays by inductively coupled plasma optical emission spectrometry after closed-vessel microwave-assisted acid decomposition

    Directory of Open Access Journals (Sweden)

    Claudineia R. Silva

    2005-02-01

    Full Text Available In this work a closed-vessel microwave-assisted acid decomposition procedure for clays was developed. Aluminum, Ca, Fe, K, Mg, Na, Si, and Ti were determined in clay digestates by inductively coupled plasma optical emission spectrometry. The most critical parameter for total decomposition of clays was the composition of the reagent mixture. The applied power and the heating time exerted a less critical influence. Best decomposition conditions were attained using a reagent mixture containing 4 mL aqua regia plus 3 mL HF and the heating program was implemented in 12 min. The accuracy of the results was demonstrated using two standard reference materials and a paired t-test showed a good agreement between determined and certified values at a 95% confidence level.

  9. Inductively coupled plasma optical emission spectrometric determination of trace elements in sediments after sequential selective extraction: effects of reagents and major elements on the analytical signal.

    Science.gov (United States)

    Grotti, Marco; Ianni, Carmela; Frache, Roberto

    2002-07-19

    The interfering effects due to the reagents and matrix elements associated with a four step sequential extraction procedure on ICPOES determination of trace elements were investigated in a systematic way. The emission lines were selected in order to include the most interesting elements for environmental studies (Zn, Pb, Ni, Cr, V and Cu) and the concentrations ranged according with the values occurring in the real samples. In order to distinguish between chemical and physical interfering effects, the Mg 280.270-Mg 285.213 line intensity ratio was measured, in each condition. Both pneumatic and ultrasonic nebulization were considered for comparison. It was found that both the elements which constitute the sample and the reagents which are added during the sample preparation steps significantly influence the emission intensity of all the analytes, depending on the analytical concentration and the nebulization system. Generally, the signal variations were higher with ultrasonic nebulization. Concerning the interference mechanism, it was found that the effect of the major elements (Na, K, Mg, Ca, Al and Fe) is essentially related to a change of the aerosol generation and transport processes. Differently, acetic acid, ammonium acetate and hydroxylamine hydrochloride significantly improved the plasma excitation conditions, depending on their concentration. A change of the sample introduction efficiency due to the presence of these reagents was also evident. On the contrary, the effect of hydrochloric and nitric acid emerged to be related only to the processes occurring in the sample introduction system.

  10. Two-dimensional imaging of optical emission in a multicusp-ECR microwave resonant cavity

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1996-02-01

    Optical emission of the electron-cyclotron resonant (ECR) region of a multicusp microwave resonant cavity plasma source has been imaged onto a two-dimensional charge-coupled device (CCD) camera. The technique provides a real-time diagnostic of the plasma emission around the ECR region within a wavelength region defined by low-bandpass filters.

  11. Optical Emission Spectral Characteristics of Glass Plasma Induced by Nanosecond Laser Pulse%纳秒激光烧蚀光学玻璃的等离子体发射光谱特性

    Institute of Scientific and Technical Information of China (English)

    高勋; 宋晓伟; 郭凯敏; 李海军; 林景全

    2011-01-01

    对波长355 nm,脉宽5 ns的激光脉冲烧蚀空气中光学玻璃产生的等离子体发射光谱进行了时间和空间分辨研究.结果表明,在等离子体羽膨胀初期(小于200 ns时间范围内),等离子体发射光谱主要由连续光谱构成.此后,连续光谱强度逐渐减弱,线状光谱开始占主导地位.实验表明,由于存在等离子体屏蔽效应,脉冲能量大于35 mJ后,光谱线强度开始减弱.由时间分辨发射光谱发现,在等离子体羽膨胀过程中等离子体辐射波长(以Si I390.6 nm为例)存在红移现象,波长红移量随时间演化呈二次指数衰减.%The time and space resolved optical emission spectroscopy (OES) of optical glass plasma produced by nanosecond laser pulse (wavelength of 355 nm and pulse width of 5 ns) in air are investigated in this paper. Results show that OES is mainly consisted of continuous spectrum at the early stage of plasma expansion (within the first 200 ns) and the continuous spectrum weakens gradually while the line spectrum becomes dominating. The spectral intensity decreases when the ablated pulse energy increases more than 35 mJ for the existence of the plasma shielding. The wavelength red-shift of Si I 390.6 nm, which has a second order exponential decay with delay time,has been found based on the time-resolved emission spectroscopy.

  12. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  13. Compact collimated fiber optic array diagnostic for railgun plasmas.

    Science.gov (United States)

    Tang, V; Solberg, J M; Ferriera, T J; Tully, L K; Stephan, P L

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  14. Plasma optical modulators for intense lasers

    CERN Document Server

    Yu, Lu-Le; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can be made nowadays with high modulation speed, broad bandwidth, while being compact, owing to the recent advance in material science and microfabrication technology. However, these optical modulators usually work for low intensity light beams. Here, we present an ultrafast, plasma-based optical modulator, which can directly modulate high power lasers with intensity up to 10^16 W/cm^2 level to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser beams in a sub-mm-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser beam is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are presented. Such optical modulators may enable new applications in the high field physics.

  15. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  16. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction

    Science.gov (United States)

    Zhang, Gai; Tian, Min

    2015-04-01

    This proposed method regulated the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in platinum-group ores by nickel sulfide fire assay—inductively coupled plasma optical emission spectrometry (ICP-OES) combined with ultrasound extraction for the first time. The quantitative limits were 0.013-0.023μg/g. The samples were fused to separate the platinum-group elements from matrix. The nickel sulfide button was then dissolved with hydrochloric acid and the insoluble platinum-group sulfide residue was dissolved with aqua regia by ultrasound bath and finally determined by ICP-OES. The proposed method has been applied into the determination of platinum-group element and gold in large amounts of ultrabasic rocks from the Great Dyke of Zimbabwe.

  17. Fundamental plasma emission involving ion sound waves

    Science.gov (United States)

    Cairns, Iver H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.

  18. Atomic processes in optically thin plasmas

    Science.gov (United States)

    Kaastra, Jelle S.; Gu, Liyi; Mao, Junjie; Mehdipour, Missagh; Raassen, Ton; Urdampilleta, Igone

    2016-10-01

    The Universe contains a broad range of plasmas with quite different properties depending on distinct physical processes. In this contribution we give an overview of recent developments in modeling such plasmas with a focus on X-ray emission and absorption. Despite the fact that such plasmas have been investigated already for decades, and that overall there is a good understanding of the basic processes, there are still areas, where improvements have to be made that are important for the analysis of astrophysical plasmas. We present recent work on the update of atomic parameters in the codes that describe the emission from collisional plasmas, where older approximations are being replaced now by more accurate data. Further we discuss the development of models for photo-ionised plasmas in the context of outflows around supermassive black holes and models for charge transfer that are needed for analyzing the data from the upcoming ASTRO-H satellite.

  19. Plasma optical modulators for intense lasers

    Science.gov (United States)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  20. Optical Properties of Relativistic Plasma Mirrors

    CERN Document Server

    Vincenti, H; Kahaly, S; Martin, Ph; Quéré, F

    2013-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for optical components suitable to handle ultrahigh light intensities. Due to the unavoidable laser-induced ionization of matter, these components will have to be based on a plasma medium. An archetype of such optical elements is a plasma mirror, created when an intense femtosecond laser pulse impinges on a solid target. It consists of a dense plasma, formed by the laser field itself, which specularly reflects the main part of the pulse. Plasma mirrors have major potential applications as active optical elements to manipulate the temporal and spatial properties of intense laser beams, in particular for the generation of intense attosecond pulses of light. We investigate the basic physics involved in the deformation of a plasma mirror resulting from the light pressure exerted by the ultraintense laser during reflection, by deriving a simple model of this fundamental process, which we validate both numerically and experimentally. The understanding ...

  1. Mid infrared emission spectroscopy of carbon plasma

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; Yang, Clayton S.-C.; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6 μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10 μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5 μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  2. Mid infrared emission spectroscopy of carbon plasma.

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-05

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  3. High latitude electromagnetic plasma wave emissions

    Science.gov (United States)

    Gurnett, D. A.

    1983-01-01

    The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.

  4. Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O{sub 2}/Cl{sub 2} mixed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seolhye; Roh, Hyun-Joon; Jang, Yunchang; Jeong, Sangmin; Ryu, Sangwon; Choe, Jae-Myung; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-03-31

    Vacuum pumps of different ages were used to prepare Cl{sub 2} based plasmas for use in Cr etching. The effects of the vacuum pump age on the etching results were investigated using optical emission spectroscopy analysis. The composition of gas at the base pressure was mainly nitrogen and oxygen, although the ratio depended on the vacuum pump age and therefore, modulated the etch rate in a manner that was difficult to monitor. The effects of the pump age on the etch rate were clearly observed in the Cl{sub 2} plasma-assisted chromium film etching process, in which oxygen and chlorine radicals were responsible for the etching process. The electron energy distribution function (EEDF), which provided a proxy for the thermal equilibrium properties of the etching plasmas, was monitored. The shape of EEDF was derived from an analysis of the optical emission spectral data using an analysis model described previously. Because molecular nitrogen has a higher threshold energy and a larger cross-section of inelastic collisional processes than oxygen, the tail of the EEDF depends on the mixing ratio between nitrogen and oxygen. The various mechanisms that contribute to the chromium etch rate varied with subtle differences in the vacuum conditions, which were determined by age of the turbo molecular pump. The rates at which oxygen and chlorine radicals were generated were estimated using the measured EEDF, and the estimated oxygen radical and etching product contents were verified by comparing the residual gas analyzer data. The results revealed that the residual nitrogen partial pressures in two etchers equipped with either a new or an aged pump differed by 0.18%, and the EEDF tail areas differed by 10{sup −4}. Importantly, the chromium etch rates in these two instruments differed by 30%. These results suggest that the chamber-to-chamber mismatch should be monitored during plasma-assisted device fabrication processes. - Highlights: • We observed the vacuum pump age effect

  5. An optical tweezer for complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schablinski, Jan; Wieben, Frank; Block, Dietmar [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstrasse 17-19, 24098 Kiel (Germany)

    2015-04-15

    This paper describes the experimental realization of an optical trap for microparticles levitating in the plasma sheath. Single particles can be trapped in a laser beam comparable to optical tweezers known from colloidal suspensions. The trapping mechanism is discussed and two applications of the system are shown.

  6. Optical Antenna Enhanced Spontaneous Emission in Semiconductors

    Science.gov (United States)

    Messer, Kevin James

    Optical antennas can be used to dramatically increase the rate that semiconductors spontaneously emit photons. While traditional LEDs are limited in bandwidth due to the "slow" rate of spontaneous emission, antenna-enhanced LEDs have the potential to be a fast, efficient, nanoscale light emitter. Traditionally, lasers have dominated LEDs as the emitter in optical interconnects due to a 200x speed advantage of stimulated emission over spontaneous emission. This paradigm may be reversed by coupling LEDs to optical antennas. In fact, antenna enhanced spontaneous emission can be faster than the fastest stimulated emission. Spontaneous emission originates from dipole fluctuations within the emitting material. The size of these fluctuations is much less than the wavelength of light emission, which leads to slow spontaneous emission. Coupling the material to an optical antenna corrects the size mismatch and improves the rate of radiation. An optical antenna circuit model is developed to predict the degree to which spontaneous emission can be enhanced. The circuit model presented in this dissertation shows that enhancement over 1000x is possible while still maintaining greater than 50% efficiency. The circuit model provides insight how to design optical antennas for coupling to dipole sources, for maximum enhancement, and for high efficiency. A method for incorporating the anomalous skin effect, often overlooked in metal optics, is provided. While FDTD/FEM simulations cannot include this effect due to its nonlocal nature, its impact can be examined through the use of the optical antenna circuit model. Analysis of the tradeoff between achieving large spontaneous emission enhancement and maintaining high efficiency leads to an ideal antenna feedgap size of 10nm. Experimental demonstration of spontaneous emission enhancement from InP coupled to an arch-dipole antenna is presented. Photoluminescence measurements show light emission from antenna-coupled InP over bare InP ridges

  7. Recent development of plasma optical systems (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, A. A., E-mail: gonchar@iop.kiev.ua [Institute of Physics, National Academy of Science, Kiev 03028 (Ukraine)

    2016-02-15

    The article devotes a brief description of the recent development and current status of an ongoing research of plasma optical systems based on the fundamental plasma optical idea magnetic electron isolation, equipotentialization magnetic field lines, and the axi-symmetric cylindrical electrostatic plasma lens (PL) configuration. The experimental, theoretical, and simulation investigations have been carried out over recent years collaboratively between IP NASU (Kiev), LBNL (Berkeley, USA), and HCEI RAS (Tomsk). The crossed electric and magnetic fields inherent the PL configuration that provides the attractive method for establishing a stable plasma discharge at low pressure. Using PL configuration, several high reliability plasma devices were developed. These devices are attractive for many high-tech applications.

  8. Challenges in Optical Emission Spectroscopy

    Science.gov (United States)

    Siepa, Sarah; Berger, Birk; Schulze, Julian; Schuengel, Edmund; von Keudell, Achim

    2016-09-01

    Collisional-radiative models (CRMs) are widely used to investigate plasma properties such as electron density, electron temperature and the form of the electron energy distribution function. In this work an extensive CRM for argon is presented, which models 30 excited states and various kinds of processes including electron impact excitation/de-excitation, radiation and radiation trapping. The CRM is evaluated in several test cases, i.e. inductively and capacitively coupled plasmas at various pressures, powers/voltages and gas admixtures. Deviations are found between modelled and measured spectra. The escape factor as a means of describing radiation trapping is discussed as well as the cross section data for electron impact processes. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  9. Internal standardization for the determination of cadmium, cobalt, chromium and manganese in saline produced water from petroleum industry by inductively coupled plasma optical emission spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Bezerra, Marcos [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Universidade Estadual do Sudoeste da Bahia, Departamento de Quimica e Exatas, Rua Jose Moreira Sobrinho s/n, Jequiezinho, Jequie/BA, 45206-190 (Brazil)], E-mail: mbezerra@uesb.br; Mitihiro do Nascimento Maeda, Sergio; Padua Oliveira, Eliane [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Fatima Batista de Carvalho, Maria de [Centro de Pesquisas e Desenvolvimento da PETROBRAS, Avaliacao e Monitoramento Ambiental, Av. Jequitiba, 950, Cidade Universitaria, Rio de Janeiro/RJ, 21941-598 (Brazil); Erthal Santelli, Ricardo [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil)

    2007-09-15

    In the present paper a procedure is proposed for the determination of traces of Cd, Co, Mn and Cr in petroleum industry produced water by inductively coupled plasma optical emission spectrometry. The procedure is based on cloud point extraction of these metals, as their dithizonate complexes, into the surfactant-rich phase of octylphenoxypolyethoxyethanol surfactant (Triton X-114). Extractions were carried out in solutions with salinities between 10 per mille and 70 per mille. Since residual salinity in the surfactant-rich phase caused differences in its transport to the plasma, yttrium was used as an internal standard to correct for this effect. The simultaneous metal extraction procedure was optimized by response surface methodology using a Doehlert design and desirability function. Enhancement factors of 21, 21, 9 and 19, along with limits of quantification of 0.093, 0.20, 0.73 and 1.2 {mu}g L{sup -1}, and precision expressed as relative standard deviation (n = 8, 20.0 {mu}g L{sup -1}) of 5.8, 1.2, 1.7 and 5.7% were obtained for Cd, Co, Mn and Cr, respectively. The accuracy was evaluated by spike recovery tests on the high salinity water samples with salinity of 40 and 63 per mille.

  10. Internal standardization for the determination of cadmium, cobalt, chromium and manganese in saline produced water from petroleum industry by inductively coupled plasma optical emission spectrometry after cloud point extraction

    Science.gov (United States)

    Bezerra, Marcos Almeida; Mitihiro do Nascimento Maêda, Sérgio; Oliveira, Eliane Padua; de Fátima Batista de Carvalho, Maria; Santelli, Ricardo Erthal

    2007-09-01

    In the present paper a procedure is proposed for the determination of traces of Cd, Co, Mn and Cr in petroleum industry produced water by inductively coupled plasma optical emission spectrometry. The procedure is based on cloud point extraction of these metals, as their dithizonate complexes, into the surfactant-rich phase of octylphenoxypolyethoxyethanol surfactant (Triton X-114). Extractions were carried out in solutions with salinities between 10‰ and 70‰. Since residual salinity in the surfactant-rich phase caused differences in its transport to the plasma, yttrium was used as an internal standard to correct for this effect. The simultaneous metal extraction procedure was optimized by response surface methodology using a Doehlert design and desirability function. Enhancement factors of 21, 21, 9 and 19, along with limits of quantification of 0.093, 0.20, 0.73 and 1.2 μg L - 1 , and precision expressed as relative standard deviation ( n = 8, 20.0 μg L - 1 ) of 5.8, 1.2, 1.7 and 5.7% were obtained for Cd, Co, Mn and Cr, respectively. The accuracy was evaluated by spike recovery tests on the high salinity water samples with salinity of 40 and 63‰.

  11. Electron Bernstein Wave Emission from RFP Plasmas

    Science.gov (United States)

    Nornberg, M. D.; Thomas, M.; Anderson, J.; Forest, C. B.

    1998-11-01

    Electron cyclotron emission (ECE) has proven to be a powerfull diagnostic tool in tokamak plasmas for determining the time evolution of the electron temperature profile. The standard technique of observing O-mode or X-mode electromagnetic waves normal to the magnetic field is not applicable to reversed field pinch (RFP) plasmas since the plasma frequency is much larger than the electron cyclotron frequency. We are investigating the use of electron Bernstein waves (presumed to be in thermal equilibrium with the electrons) through the aip.org/journal_cgi/ getpdf?KEY=PRLTAO&cvips=PRLTAO000078000018003467000001>O-X-B mode conversion process. At oblique incidence, the evanescent layer separating the plamsa cutoff from the cyclotron cutoff vanishes, allowing conversion of the Bernstein mode waves to the extraordinary mode and finally to the ordinary mode. The O-mode radiation is received by a phased array antenna consisting of two waveguides on the edge of the plasma, and the spectrum of emitted radiation is measured using a radiometer spanning 4-8 GHz. In addition to providing information about the electron temperature profile, the spectrum can provide a novel method of measuring the central magnetic field strength for current profile reconstructions.

  12. Determinação dos teores de minerais em sucos de frutas por espectrometria de emissão óptica em plasma indutivamente acoplado (ICP-OES Minerals determination in juices by inductively coupled plasma optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Marcelo Antônio MORGANO

    1999-12-01

    Full Text Available Dois métodos de preparação de amostra para determinação de minerais em suco de uva foram comparados: extração com ácido clorídrico a frio com agitação e digestão em sistema fechado, sob pressão, empregando-se energia de microondas. As concentrações dos minerais foram obtidas empregando-se a técnica de Espectrometria de Emissão Óptica em Plasma Indutivamente Acoplado (ICP-OES. Os teores dos minerais Ca, P, Na, K, Mg, Zn, Fe, Mn e Cu não diferiram significativamente ao nível de 5% (Teste F para as duas metodologias empregadas. A precisão e exatidão dos métodos foi avaliada usando o suco de uva. A metodologia de extração com ácido clorídrico foi empregada para a determinação dos teores de minerais em sucos processados de abacaxi, acerola, caju, goiaba, manga, maracujá e uva. Para facilitar a interpretação dos teores dos minerais encontrados, foram utilizadas as técnicas de Análise por Componentes Principais (PCA e Análise Hierárquica por Agrupamento (HCA.Two sample preparation methods for the determination of minerals from grape juice were investigated for the purpose of methodological evaluation: using hydrochloric acid by shaking, and digestion in closed system, under pressure, using microwave power. The concentrations of minerals were evaluated by the technique of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES. The minerals contents of Ca, P, Na, K, Mg, Zn, Fe, Mn, and Cu did not differ significantly at the level of 5% (it Tests F for both methodologies used. The precision and accuracy of both methodologies were evaluated using grape juice. The extraction methodology with hydrochloric acid was used for the determination of mineral amounts in processed juices from pineapple, acerola, cashew, guava, mango, passion fruit and grape. To enhance the interpretation of the amounts of minerals, from a nutritional point of view, techniques of Principal Components Analysis (PCA and Hierarchic Cluster

  13. Alternative optical concept for electron cyclotron emission imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. X., E-mail: jsliu9@berkeley.edu [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Milbourne, T. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23185 (United States); Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Kubota, S. [Department of Physics, University of California Los Angeles, Los Angeles, California 90095 (United States); Kasparek, W. [Department of Electrical Engineering, University of Stuttgart, Stuttgart (Germany); Lu, J. [Department of Physics, Chongqing University, Chongqing 400044 (China); Park, H. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of)

    2014-11-15

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  14. Optical endpoint detection for plasma reduction of graphene oxide

    Directory of Open Access Journals (Sweden)

    MaengJun Kim

    2013-03-01

    Full Text Available The plasma reduction process for the production of reduced graphene oxide (rGO requires precise process control in order to avoid the degradation of electrical characteristics. We report that the reduction status of the graphene oxides could be determined by monitoring the optical emission intensity at 844.6 nm. Properties of the rGO samples processed with various plasma exposure times were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, and 4-point probe measurements. Optimum electrical performance and surface morphology were obtained from the sample for which the reduction process was stopped when the emission intensity at 844.6 nm began to decrease.

  15. Theoretical analysis of conditions for observation of plasma oscillations in semiconductors from pulsed terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, Antanas, E-mail: reklaitis@pfi.lt [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goshtauto 11, Vilnius 01108 (Lithuania)

    2014-08-28

    Oscillations of electron-hole plasma generated by femtosecond optical pulse in freestanding semiconductor are studied using hydrodynamic model and Monte Carlo simulations. The conditions required for the observation of coherent plasma oscillations in THz emission from semiconductor are determined. It is shown that several conditions have to be fulfilled in order to observe coherent plasma oscillations. First, the intensity of the optical pulse must exceed some threshold value. Second, the optical absorption depth must exceed the thickness of the built-in electric field region. Third, the generation of electron-hole pairs with uniform illumination is required, i.e., the laser beam with the flattop intensity profile has to be used. It is found that the duration of the optical pulse does not play a vital role in the development of plasma oscillations.

  16. Optics and Plasma Research Department annual progress report for 2004

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Lynov, Jens-Peter; Pedersen, C.

    2005-01-01

    , optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperaturecalibration, and infrared measurement techniques. The research is supported by several EU programmes, including...

  17. Chemometric evaluation of Cd, Co, Cr, Cu, Ni (inductively coupled plasma optical emission spectrometry) and Pb (graphite furnace atomic absorption spectrometry) concentrations in lipstick samples intended to be used by adults and children.

    Science.gov (United States)

    Batista, Érica Ferreira; Augusto, Amanda dos Santos; Pereira-Filho, Edenir Rodrigues

    2016-04-01

    A method was developed for determining the concentrations of Cd, Co, Cr, Cu, Ni and Pb in lipstick samples intended to be used by adults and children using inductively coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic absorption spectrometry (GF AAS) after treatment with dilute HNO3 and hot block. The combination of fractional factorial design and Desirability function was used to evaluate the ICP OES operational parameters and the regression models using Central Composite and Doehlert designs were calculated to stablish the best working condition for all analytes. Seventeen lipstick samples manufactured in different countries with different colors and brands were analyzed. Some samples contained high concentrations of toxic elements, such as Cr and Pb, which are carcinogenic and cause allergic and eczematous dermatitis. The maximum concentration detected was higher than the permissible safe limits for human use, and the samples containing these high metal concentrations were intended for use by children. Principal component analysis (PCA) was used as a chemometrics tool for exploratory analysis to observe the similarities between samples relative to the metal concentrations (a correlation between Cd and Pb was observed). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edson Luiz, E-mail: edsonqmc@hotmail.com [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil); Santos Roldan, Paulo dos [Universidade Federal de Alagoas, Campus A.C. Simoes, Av. Lourival Melo Mota, Tabuleiro do Martins, CEP: 57072-970 AL (Brazil); Gine, Maria Fernanda [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario, 303, CP 96, 13416-000 Piracicaba, SP (Brazil)

    2009-11-15

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L{sup -1}, 0.3 mL, 0.15% (w/v), 50 deg. C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 {mu}g L{sup -1}, respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  19. Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin, E-mail: binhu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2010-02-15

    The on-line incorporation of cloud point extraction (CPE) with/without 8-hydroxyquinoline (8-Ox) as chelating agent into flow injection analysis associated with inductively coupled plasma optical emission spectrometry (ICP-OES) for determining trace rare earth elements (REEs) is presented and evaluated. The significant parameters affecting on-line cloud point extraction of REEs such as sample pH, flow rate, 8-Ox concentration, Triton X-114 concentration were systematically studied. Under the optimized conditions, with the consumption of 3.0 mL sample solution, the limits of detection (3{sigma}) were ranged from 41.4 pg mL{sup -1} (Yb) to 448 pg mL{sup -1} (Gd) with relative standard deviations (RSDs) of 1.0% (Eu)-5.9% (Sm) for on-line CPE-ICP-OES with 8-Ox as chelating agent, and 69.0 pg mL{sup -1} (Sc) to 509.5 pg mL{sup -1} (Sm) with RSDs of 2.9% (Yb)-7.5% (Ho) for on-line CPE-ICP-OES without 8-Ox as chelating agent, respectively. The sample throughput of 17 samples h{sup -1} was obtained for both systems. The developed methods of on-line CPE-ICP-OES were validated by the analysis of certified reference material (GBW07605, tea leaves) and real biological samples of pig liver, Auricularia auricula and mushroom.

  20. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry.

    Science.gov (United States)

    Silva, Edson Luiz; Roldan, Paulo dos Santos; Giné, Maria Fernanda

    2009-11-15

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1), 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n=9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 microg L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  1. Restricted accessed material-copper(II) ion imprinted polymer solid phase extraction combined with inductively coupled plasma-optical emission spectrometry for the determination of free Cu(II) in urine and serum samples.

    Science.gov (United States)

    Cui, Chao; He, Man; Chen, Beibei; Hu, Bin

    2013-11-15

    A novel restricted accessed material (RAM)-Cu(II) ion imprinted polymer (IIP) was synthesized by the surface imprinted-emulsion method, and possessed a high selectivity to Cu(II) and good macromolecules exclusion property. And a novel method of RAM-IIP packed microcolumn solid phase extraction (SPE) combined with inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed for the determination of trace free Cu(II) in human body fluids. Under the optimized conditions, the adsorption capacity of RAM-IIP for Cu(II) was 15.9 mg g(-1). With a preconcentration factor of 30, the limit of detection was 0.17 µg L(-1), and the relative standard deviation was 2.2% (n=7, c=1 µg L(-1)). The developed method was validated by the analysis of two Certified Reference Materials, and the determined values were in good agreement with the certified values. This method was also successfully applied for the direct analysis of free Cu(II) in human urine and serum samples. While the total Cu can be determined by the proposed method after microwave digestion. The concentrations of free Cu(II) were much lower than that of total Cu, indicating that Cu is mainly coordinated with macromolecules in these biological samples. From this point of view, the developed method exhibits application potential in speciation of free metal ions and metallic complex molecules in biological samples. © 2013 Elsevier B.V. All rights reserved.

  2. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    Science.gov (United States)

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.

  3. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, D

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  4. Molecular emission in the edge plasma of T-10 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zimin, A. M., E-mail: zimin@power.bmstu.ru [Bauman Moscow State Technical University (Russian Federation); Krupin, V. A. [National Research Centre Kurchatov Institute (Russian Federation); Troynov, V. I. [Bauman Moscow State Technical University (Russian Federation); Klyuchnikov, L. A. [National Research Centre Kurchatov Institute (Russian Federation)

    2015-12-15

    The experiments on recording molecular emission in the edge plasma of the T-10 tokamak are described. To obtain reliable spectra with sufficient spectral, temporal, and spatial resolution, the optical circuit is optimized for various experimental conditions. Typical spectra measured in two sections of the tokamak are shown. It is shown that, upon varying the parameters of the discharge, the molecular spectrum not only changes significantly in intensity but also undergoes a qualitative change in the rotational and vibrational structure. For a detailed analysis, we use the Fulcher-α system (d{sup 3}Π{sub u}–a{sup 3}Σ{sub g}{sup +}) of deuterium in the wavelength range from 590 to 640 nm. The rotational temperatures of ground state X{sup 1}Σ{sub g}{sup +} and upper excited state d{sup 3}Π{sub u} are estimated by the measured spectra.

  5. Ion cyclotron emission in tokamak plasmas; Emission cyclotronique ionique dans les plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fraboulet, D.

    1996-09-17

    Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.

  6. Optical Characterization of Plasma Generated in a Commercial Grade Plasma Etching System

    Science.gov (United States)

    Hardy, Ashley; Drake, Dereth

    2015-11-01

    The use of plasma for etching and cleaning of many types of metal surfaces is becoming more prominent in industry. This is primarily due to the fact that plasma etching can reduce the amount of time necessary to clean/etch the surface and does not require large amounts of environmentally hazardous chemicals. Most plasma etching systems are designed and built in academic institutions. These systems provide reasonable etching rates and easy accessibility for monitoring plasma parameters. The downside is that the cost is typically high. Recently a number of commercial grade plasma etchers have been introduced on the market. These etching systems cost near a fraction of the price, making them a more economical choice for researchers in the field. However, very few academics use these devices because their effectiveness has not yet been adequately verified in the current literature. We will present the results from experiments performed in a commercial grade plasma etching system, including analysis of the pulse characteristics observed by a photo diode and the plasma parameters obtained with optical emission spectroscopy.

  7. On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Claudia; Cerutti, Soledad; Silva, Maria F. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Olsina, Roberto A.; Martinez, Luis D. [Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Avda. Rivadavia 1917, CP C1033AAJJ, Buenos Aires (Argentina)

    2003-01-01

    An on-line dysprosium preconcentration and determination system based on the hyphenation of cloud point extraction (CPE) to flow injection analysis (FIA) associated with ICP-OES was studied. For the preconcentration of dysprosium, a Dy(III)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex was formed on-line at pH 9.22 in the presence of nonionic micelles of PONPE-7.5. The micellar system containing the complex was thermostated at 30 C in order to promote phase separation, and the surfactant-rich phase was retained in a microcolumn packed with cotton at pH 9.2. The surfactant-rich phase was eluted with 4 mol L{sup -1} nitric acid at a flow rate of 1.5 mL min{sup -1}, directly in the nebulizer of the plasma. An enhancement factor of 50 was obtained for the preconcentration of 50 mL of sample solution. The detection limit value for the preconcentration of 50 mL of aqueous solution of Dy was 0.03 {mu}g L{sup -1}. The precision for 10 replicate determinations at the 2.0 {mu}g L{sup -1}Dy level was 2.2% relative standard deviation (RSD), calculated from the peak heights obtained. The calibration graph using the preconcentration system for dysprosium was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 100 {mu}g L {sup -1}. The method was successfully applied to the determination of dysprosium in urine. (orig.)

  8. Optics and Plasma Research Department. Annual progress report for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Lynov, J.P.; Pedersen, C.; Petersen, P.M.; Skaarup, B. (eds.)

    2005-03-01

    The Optics and Plasma Research Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma physics and technology. The department has core competencies in optical sensors, optical materials, biophotonics, fusion plasma physics, and industrial plasma technology. The department employs key technologies in micro- and nanotechnology for optical systems, temperature calibration, and infrared measurement techniques. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2004 is presented. (au)

  9. Spectral analysis of optical emission of microplasma in sea water

    Science.gov (United States)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  10. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    Science.gov (United States)

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  11. Development of plasma bolometers using fiber-optic temperature sensors

    Science.gov (United States)

    Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.

    2016-11-01

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve coatings, along with improving the spectral resolution of the interrogator.

  12. Investigations on the use of pneumatic cross-flow nebulizers with dual solution loading including the correction of matrix effects in elemental determinations by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mathieu [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2007-02-15

    The use of a so-called trihedral and a T-shaped cross-flow pneumatic nebulizer with dual solution loading for inductively coupled plasma optical emission spectrometry has been studied. By these devices analyte clouds from two solutions can be mixed during the aerosol generation step. For both nebulizers the correction of matrix effects using internal standardization and standard addition calibration in an on-line way was investigated and compared to elemental determinations using a conventional cross-flow nebulizer and calibration with synthetic standard solutions without matrix matching. A significant improvement of accuracy, both for calibration with internal standardization and standard addition, was obtained in the case of four synthetic solutions containing each 40 mmol L{sup -1} Na, K, Rb and Ba as matrix elements and 300 {mu}g L{sup -1} Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as analytes. Calibration by standard addition in the case of dual solution loading has been shown to be very useful in the determination of elements at minor and trace levels in steel and alumina reference materials. The results of analysis for minor concentrations of Cr, Cu and Ni in steel as well as for Ca, Fe, Ga, Li, Mg, Mn, Na, Si and Zn in alumina powder certified reference materials subsequent to sample dissolution were found to be in good agreement with the certificates. Limits of detection were found to be only slightly above those for a conventional cross-flow nebulizer and a precision better than 3% was realized with both novel nebulizers.

  13. Analysis of metals and phosphorus in biodiesel B100 from different feedstock using a Flow Blurring® multinebulizer in inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Avila Orozco, Francisco D. [Lab. FIA, Sección Química Analítica, INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB, Bahía Blanca (Argentina); Kovachev, Nikolay; Aguirre Pastor, Miguel Ángel [Dpto. Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante (Spain); Domini, Claudia E.; Fernández Band, Beatriz S. [Lab. FIA, Sección Química Analítica, INQUISUR (UNS-CONICET), Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB, Bahía Blanca (Argentina); Canals Hernández, Antonio, E-mail: a.canals@ua.es [Dpto. Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, Alicante (Spain)

    2014-05-01

    Highlights: • The elemental analysis of biodiesel by the proposed method is simple and fast. • Two-nozzles Flow Blurring® nebulizer allow to reduce the spectral interferences. • Two-nozzles Flow Blurring® nebulizer avoid the formation of carbon deposits. • The analysis may be carried out without any sample pretreatment. Abstract: A simple and fast method for determining the content of Na, K, Ca, Mg, P, and 20 heavy metals in biodiesel samples with inductively coupled plasma optical emission spectrometry (ICP OES) using a two-nozzle Flow Blurring® multinebulizer prototype and on-line internal standard calibration, are proposed. The biodiesel samples were produced from different feedstock such as sunflower, corn, soybean and grape seed oils, via a base catalyst transesterification. The analysis was carried out without any sample pretreatment. The standards and samples were introduced through one of the multinebulizer nozzles, while the aqueous solution containing yttrium as an internal standard was introduced through the second nozzle. Thus, the spectral interferences were compensated and the formation of carbon deposits on the ICP torch was prevented. The determination coefficients (R²) were greater than 0.99 for the studied analytes, in the range 0.21–14.75 mg kg⁻¹. Short-term and long-term precisions were estimated as relative standard deviation. These were acceptable, their values being lower than 10%. The LOQ for major components such as Ca, K, Mg, Na, and P, were within a range between 4.9 ng g⁻¹ for Mg (279.553 nm) and 531.1 ng g⁻¹ for Na (588.995 nm), and for the other 20 minor components they were within a range between 1.1 ng g⁻¹ for Ba (455.403 nm) and 2913.9 ng g⁻¹ for Pb (220.353 nm). Recovery values ranged between 95% and 106%.

  14. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Deng, Biyang; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    To understand the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system, the intermediate products produced in the reaction of lead(II) and NaBH4 in the presence of K3Fe(CN)6 were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH4; (2) the black Pb is oxidized by K3Fe(CN)6 to form Pb2[Fe(CN)6], which further reacts with NaBH4 to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K3Fe(CN)6 to form more Pb2[Fe(CN)6] complex, which would produce more plumbane. In short, the black Pb and Pb2[Fe(CN)6] complex are the key intermediate products for the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L(-1). The linearity range of lead was found between 0.3 and 50,000 μg L(-1) with correlation coefficient of 0.9993. The recovery of lead was determined as 97.6% (n=5) for adding 10 μg L(-1) lead into the milk sample.

  15. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  16. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  17. Plasma simulations of emission line regions in high energy environments

    Science.gov (United States)

    Richardson, Chris T.

    This dissertation focuses on understanding two different, but in each case extreme, astrophysical environments: the Crab Nebula and emission line galaxies. These relatively local objects are well constrained by observations and are test cases of phenomena seen at high-z where detailed observations are rare. The tool used to study these objects is the plasma simulation code known as Cloudy. The introduction provides a brief summary of relevant physical concepts in nebular astrophysics and presents the basic features and assumptions of Cloudy. The first object investigated with Cloudy, the Crab Nebula, is a nearby supernova remnant that previously has been subject to photoionization modeling to reproduce the ionized emission seen in the nebula's filamentary structure. However, there are still several unanswered questions: (1) What excites the H2 emitting gas? (2) How much mass is in the molecular component? (3) How did the H2 form? (4) What is nature of the dust grains? A large suite of observations including long slit optical and NIR spectra over ionized, neutral and molecular gas in addition to HST and NIR ground based images constrain a particularly bright region of H2 emission, Knot 51, which exhibits a high excitation temperature of ˜3000 K. Simulations of K51 revealed that only a trace amount of H2 is needed to reproduce the observed emission and that H2 forms through an uncommon nebular process known as associative detachment. The final chapters of this dissertation focus on interpreting the narrow line region (NLR) in low-z emission line galaxies selected by a novel technique known as mean field independent component analysis (MFICA). A mixture of starlight and radiation from an AGN excites the gas present in galaxies. MFICA separates galaxies over a wide range of ionization into subsets of pure AGN and pure star forming galaxies allowing simulations to reveal the properties responsible for their observed variation in ionization. Emission line ratios can

  18. Instability Parameters of Optical Oscillation Frequency in Plasma Central Discharge and Periphery Region

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-Wen; M.A.LIEBERMAN; Sungjin KIM

    2006-01-01

    @@ We have observed relaxation oscillations in a capacitive discharge in Ar gas, connected to a peripheral ground chamber. The plasma oscillations observed from time-varying optical emission from the main discharge chamber show, for example, a high frequency (75.37kHz) relaxation oscillation, at 100mTorr and 8 W absorbed power,and a low frequency (2.72 Hz) relaxation oscillation, 100mTorr and 325 W absorbed power. Time-varying optical emission intensity and plasma density are also detected with a Langmuir probe. The theoretical result agrees well with experiments.

  19. Calculation of opacities and emissivities for carbon plasmas under NLTE and LTE conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Martel, P. [Las Palmas de Gran Canaria Univ., Dept. de Fisica (Spain); Sauvan, P. [Universidad Nacional de Educacion a Distancia, Dept. de Ingenieria Energetica, Madrid (Spain); Minguez, E. [Madrid Univ. Politecnica, Instituto de Fusion Nuclear-DENIM (Spain)

    2006-06-15

    We calculate different optical properties for carbon plasma in a wide range of temperatures and densities by using ATOM3R-OP code which has been recently developed. In this code we have implemented the rate equations, the Saha equation (for local thermodynamic equilibrium) and the coronal equilibrium model. We have calculated average ionizations, level populations, opacities and emissivities and we focus our study on the identification with our code of coronal equilibrium, non-local thermodynamic equilibrium and local thermodynamic equilibrium regions for this kind of plasma. Moreover, we analyse the differences in the optical properties when they are calculated in non-local thermodynamic equilibrium and local thermodynamic equilibrium. (authors)

  20. Plasma spectroscopy using optical vortex laser

    Science.gov (United States)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Toda, Yasunori; Czarnetzki, Uwe; Shikano, Yutaka

    2014-10-01

    Laser spectroscopy is a useful tool for nonintrusive plasma diagnostics; it can provide many important quantities in a plasma such as temperature, density, and flow velocity of ions and neutrals from the spectrum obtained by scanning the frequency of narrow bandwidth laser. Obtainable information is, however, limited in principle to the direction parallel to the laser path. The aim of this study is to introduce a Laguerre-Gaussian beam, which is called as optical vortex, in place of a widely used Hermite-Gaussian beam. One of the remarkable properties of the Laguerre-Gaussian beam is that it carries an angular momentum in contrast to the Hermite-Gaussian beam. It follows that particles in the laser beam feel the Doppler effect even in the transverse direction of the laser path. Therefore it is expected that the limitation imposed by the laser path can be overcome by using an optical vortex laser. The concept of optical vortex spectroscopy, the development of the laser system, and some preliminary results of a proof-of-principle experiment will be presented. This work is performed with the support and under the auspices of NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI Grant Number 25287152.

  1. Enhanced field emission of plasma treated multilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Ruchita T.; More, Mahendra A. [Department of Physics, Center for Advanced Studies in Material Science and Condensed Matter Physics, S P Pune University, Pune 411007 (India); Gelamo, Rogerio V. [Instituto de Ciências Tecnológicas e Exatas, UFTM, Uberaba, Minas Gerais 38025-180 (Brazil); Late, Dattatray J., E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra (India); Rout, Chandra Sekhar, E-mail: dj.late@ncl.res.in, E-mail: csrout@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013, Odisha (India)

    2015-09-21

    Electron emission properties of multilayer graphene (MLG) prepared by a facile exfoliation technique have been studied. Effect of CO{sub 2} Ar, N{sub 2}, plasma treatment was studied using Raman spectroscopy and investigated for field emission based application. The CO{sub 2} plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm{sup 2} at an applied field of 0.35 V/μm. Further the plasma treated MLG exhibits excellent current stability at a lower and higher emission current value.

  2. VLF emissions from ionospheric/magnetospheric plasma

    Indian Academy of Sciences (India)

    R P Patel; R P Singh

    2001-05-01

    VLF emissions such as hiss, chorus, oscillating tones, hiss-triggered chorus and whistler triggered emissions have been observed at low latitude Indian stations. In this paper we present dynamic spectra of these emissions and discuss their various observed features. It is argued that most of the emissions are generated during Doppler shifted cyclotron resonance interaction between the whistler mode wave and counter streaming energetic electrons. Resonance energy of the participating electron and interaction length are evaluated to explain the generation mechanism of some of these emissions observed at Indian stations.

  3. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    CERN Document Server

    Daksha, M; Schuengel, E; Korolov, I; Derzsi, A; Koepke, M; Donko, Z; Schulze, J

    2016-01-01

    A Computationally Assisted Spectroscopic Technique to measure secondary electron emission coefficients ($\\gamma$-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of Phase Resolved Optical Emission Spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient $\\gamma$...

  4. Reversible tuning of ZnO optical band gap by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Szetsen, E-mail: slee@cycu.edu.tw [Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China); Peng, Jr-Wei [Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China); Ho, Ching-Yuan [Department of Mechanical Engineering, Chung Yuan Christian University, Jhongli, Taoyuan 32023, Taiwan (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ZnO optical band gap blue-shifts with hydrogen plasma treatment. Black-Right-Pointing-Pointer The ZnO optical band gap red-shifts with oxygen plasma treatment. Black-Right-Pointing-Pointer The ZnO optical band gap can be reversibly fine-tuned. - Abstract: Zinc oxide (ZnO) films synthesized by reacting zinc nitrate with hexamethylenetetramine were treated with hydrogen and oxygen plasmas. From UV-visible absorption and optical emission inspection, we have found that the optical band gap of ZnO films blue-shifted with hydrogen plasma treatment, but red-shifted with oxygen plasma treatment. By alternating the treatment sequence of hydrogen and oxygen plasmas, the ZnO optical band gap can be reversibly fine-tuned with the tunable range up to 80 meV. Scanning electron microscopy characterization indicates that the variation of the optical band gap is attributed to the competition between amorphous and crystalline forms of ZnO. The mechanism of reversible optical band gap tuning is discussed.

  5. Fe XVII Emission from Hot, Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Bitter, M; von Goeler, S; Hill, K W

    2004-12-03

    The ratios of the Fe XVII 3s {yields} 2p transitions to that of the dominant 3d {yields} 2p transition measured in high-temperature tokamak plasmas are compared to solar and astrophysical observations. Good agreement is found, indicating that the collisional line formation processes active in opacity-free, low-density, high-temperature laboratory plasmas are a good description of those found in astrophysical plasmas.

  6. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    Science.gov (United States)

    Vera, L. P.; Pérez, J. A.; Riascos, H.

    2014-05-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C2 Swan System (d3Πg→a3Πu), the First Negative System N2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x1018 cm-3 respectively.

  7. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  8. Simultaneous determination of 11 trace elements in coal by inductively coupled plasma-optical emission spectrometry%ICP-OES法同时测定煤中11种微量元素

    Institute of Scientific and Technical Information of China (English)

    吕鑫磊

    2015-01-01

    To quickly determine microelements of coal in batch,the coal sample was ashed first at high temperature,then the product was dissolved by the mixture of HCl,HF and HClO4 ,the third step was to extract the microelements with HCl. The microelements which were Ga,Th,V,P,Cu,Co,Ni,Zn,Pb,Cr,Cd were determined with ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). With reasonable sample dissolution methods,radio-frequency power,analytical spectral line and experimental data,the influence of spec-tral interference on determination was eliminated by off-peak background deduction method, meanwhile, the 11 kinds of microelements could be determined by ICP-OES at the same time. The detection limits for the elements was 0. 03~1. 17 μg/g. The method was applied to the determination of 11 microelements in Soil National Standard Reference Materials and the results were in agreement with certified val-ues with precision of 0. 32% ~3. 19% RSD (n=11).%为实现煤中多种微量元素的批量快速测定,煤样经高温灰化、盐酸-氢氟酸-高氯酸三元体系溶解、盐酸提取后,使用电感耦合等离子体发射光谱( ICP-OES )同时测定煤中镓钍钒磷铜钴镍锌铅铬镉11种微量元素. 在对样品分解方法、射频功率、分析谱线和积分点数合理选择的基础上,通过离峰扣背景法消除了各种光谱干扰对测定的影响,建立了采用ICP-OES同时测定煤中镓钍钒磷铜钴镍锌铅铬镉 11 种微量元素的实验方法. 方法检出限为 0. 03 ~1. 17 μg/g,方法精密度( n=11 ) 0. 32% ~3. 19%,土壤国家标准物质的分析测定值与标准值吻合较好. 与传统化学方法相比,该方法快速准确,提高了分析效率,满足煤质分析的一般要求.

  9. The influence of N2 flow rate on Ar and Ti Emission in high-pressure magnetron sputtering system plasma

    Science.gov (United States)

    How, Soo Ren; Nayan, Nafarizal; Lias, Jais

    2017-03-01

    For ionized physical vapor deposition (known as IPVD) technique, investigation on the ionization mechanism of titanium atoms is very important during the deposition of titanium nitride (TiN) thin film using reactive magnetron sputtering plasma. The introduction of nitrogen gas into the chamber discharge leads to modifications of plasma parameters and ionization mechanism of transition species. In this work, an investigation on the influence of nitrogen flow rate on spectrum properties of argon and titanium during the deposition process have been carried out. The experimental configuration consists of OES and structure of magnetron sputtering device with the turbo molecular pump. A high-pressure magnetron sputtering plasma was used as plasma discharge chamber with various flow rate of nitrogen gas. Optical emission spectroscopy (OES) measurements were employed as plasma diagnostics tool in magnetron sputtering plasma operated at relatively high pressure. OES is a non-invasive plasma diagnostics method and that can detect the atomic and ionic emission during plasma discharge. The flow rate of the Ar and N2 gas are controlled by mass flow controller. The changes of relative emission for both neutral and ionic of argon as well as titanium were observed using optical spectrometer when the nitrogen gas is introduced into the discharged chamber. We found that the titanium emission decreased very rapidly with the flow rate of nitrogen. In addition, the argon emission slightly decreased with the flow rate of nitrogen.

  10. Emission of fast non-Maxwellian hydrogen atoms in low-density laboratory plasma

    Science.gov (United States)

    Brandt, Christian; Marchuk, Oleksandr; Pospieszczyk, Albrecht; Dickheuer, Sven

    2017-03-01

    The source of strong and broad emission of the Balmer-α line in mixed plasmas of hydrogen (or deuterium) and noble gases in front of metallic surfaces is a subject of controversial discussion of many plasma types. In this work the excitation source of the Balmer lines is investigated by means of optical emission spectroscopy in the plasma device PSI-2. Neutral fast non-Maxwellian hydrogen atoms are produced by acceleration of hydrogen ions towards an electrode immersed into the plasma. By variation of the electrode potential the energy of ions and in turn of reflected fast atoms can be varied in the range of 40-300 eV. The fast atoms in front of the electrode are observed simultaneously by an Echelle spectrometer (0.001 nm/channel) and by an imaging spectrometer (0.01 nm/channel) up to few cm in the plasma. Intense excitation channels of the Balmer lines are observed when hydrogen is mixed with argon or with krypton. Especially in Ar-H and Ar-D mixed plasmas the emission of fast hydrogen atoms is very strong. Intermixing hydrogen with other noble gases (He, Ne or Xe) one observes the same effect however the emission is one order of magnitude less compared to Kr-H or Kr-D plasmas. It is shown, that the key process, impacting this emission, is the binary collision between the fast neutral hydrogen atom and the noble gas atom. Two possible sources of excitation are discussed in details: one is the excitation of hydrogen atoms by argon atoms in the ground state and the second one is the process of the so-called excitation transfer between the metastable states of noble gases and hydrogen. In the latter case the atomic data for excitation of Balmer lines are still not available in literature. Further experimental investigations are required to conclude on the source process of fast atom emission.

  11. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  12. Optical spectroscopic analyses of CVD plasmas used in the deposition of transparent and conductive ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Espinos, J.P.; Yubero, F.; Barranco, A.; Gonzalez-Elipe, A.R. [Instituto de Ciencias de Materiales de Sevilla, CSIC-Universidad de Sevilla (Spain); Cotrino, J. [Universidad de Sevilla, Facultad de Fisica, Dept. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain)

    2001-07-01

    Transparent conducting ZnO:A1 thin films have been prepared by remote plasma enhanced chemical vapor deposition. Emission line profiles were recorded as a function of different plasma gas composition (oxygen and hydrogen mixtures) and different rates of precursors (Zn(C{sub 2}H{sub 5}){sub 2} and A1(CH{sub 3}){sub 3}) in the downstream zone of the plasma reactor. Optical emission spectroscopy were used to characterize the oxygen/hydrogen plasma as a function of hydrogen flow rate. The variation of plasma hydrogen content has an important influence in the resistivity of the films. (authors)

  13. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    Science.gov (United States)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  14. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    Science.gov (United States)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  15. Temporal structure of double plasma frequency emission of thin beam-heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Postupaev, V. V.; Ivanov, I. A.; Arzhannikov, A. V.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Burdakov, A. V.; Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Sklyarov, V. F.; Gavrilenko, D. Ye.; Kandaurov, I. V.; Kurkuchekov, V. V.; Mekler, K. I.; Popov, S. S.; Rovenskikh, A. F.; Sudnikov, A. V.; Sulyaev, Yu. S.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Kasatov, A. A. [Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2013-09-15

    In the work presented here dynamics of spiky microwave emission of a beam-heated plasma near the double plasma frequency in ∼100 GHz band was studied. The plasma is heated by 80 keV, ∼2 MW, sub-ms electron beam that is injected into the multiple-mirror trap GOL-3. The beam-heated plasma diameter is of the order of the emitted wavelength. Modulation of individual emission spikes in the microwave radiation is found. The radiation dynamics observed can be attributed to a small number of compact emitting zones that are periodically distorted.

  16. Optical boundary reconstruction of tokamak plasmas for feedback control of plasma position and shape

    NARCIS (Netherlands)

    Hommen, G.; de M. Baar,; Nuij, P.; McArdle, G.; Akers, R.; Steinbuch, M.

    2010-01-01

    A new diagnostic is developed to reconstruct the plasma boundary using visible wavelength images. Exploiting the plasma's edge localized and toroidally symmetric emission profile, a new coordinate transform is presented to reconstruct the plasma boundary from a poloidal view image. The plasma b

  17. Correlated optical and gamma emissions from GRB 081126

    CERN Document Server

    Klotz, Alain; Atteia, J L; Boër, Michel; Coward, David M; Imerito, Alan C

    2009-01-01

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, using BAT data from the Swift spacecraft, and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time lag of 8.4 $\\pm$ 3.9 s. This is the first well-resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma-ray burst early emissions. Furthermore, observations of time lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  18. Development of plasma bolometers using fiber-optic temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M. L., E-mail: reinkeml@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Han, M.; Liu, G. [University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Eden, G. G. van [Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Evenblij, R.; Haverdings, M. [Technobis, Pyrietstraat 2, 1812 SC Alkmaar (Netherlands); Stratton, B. C. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  19. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2016-09-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator. We find that electrons accelerated by electric fields can reach significantly higher energies than predicted by the commonly used radiative stopping-power model. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution by causing pitch-angle scattering at a rate that increases with energy.

  20. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    CERN Document Server

    Embréus, Ola; Fülöp, Tünde

    2016-01-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons. We find that electrons accelerated by electric fields can reach significantly higher energies than what is expected from energy-loss considerations. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution.

  1. Enhancement of terahertz pulse emission by optical nanoantenna.

    Science.gov (United States)

    Park, Sang-Gil; Jin, Kyong Hwan; Yi, Minwoo; Ye, Jong Chul; Ahn, Jaewook; Jeong, Ki-Hun

    2012-03-27

    Bridging the gap between ultrashort pulsed optical waves and terahertz (THz) waves, the THz photoconductive antenna (PCA) is a major constituent for the emission or detection of THz waves by diverse optical and electrical methods. However, THz PCA still lacks employment of advanced breakthrough technologies for high-power THz emission. Here, we report the enhancement of THz emission power by incorporating optical nanoantennas with a THz photoconductive antenna. The confinement and concentration of an optical pump beam on a photoconductive substrate can be efficiently achieved with optical nanoantennas over a high-index photoconductive substrate. Both numerical and experimental results clearly demonstrate the enhancement of THz wave emission due to high photocarrier generation at the plasmon resonance of nanoantennas. This work opens up many opportunities for diverse integrated photonic elements on a single PCA at THz and optical frequencies.

  2. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  3. VUV Emission of Microwave Driven Argon Plasma Source

    Science.gov (United States)

    Henriques, Julio; Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Dias, Francisco; Ferreira, Carlos

    2013-09-01

    An experimental and kinetic modeling investigation of a low-pressure (0.1-1.2 mbar), surface wave (2.45 GHz) induced Ar plasma as a source vacuum ultraviolet (VUV) light is presented, using visible and VUV optical spectroscopy. The electron density and the relative VUV emission intensities of excited Ar atoms (at 104.8 nm and 106.6 nm) and ions (at 92.0 nm and 93.2 nm) were determined as a function of the microwave power and pressure. The experimental results were analyzed using a 2D self-consistent theoretical model based on a set of coupled equations including the electron Boltzmann equation, the rate balance equations for the most important electronic excited species and for charged particles, the gas thermal balance equation, and the wave electrodynamics. The principal collisional and radiative processes for neutral Ar(3p54s) and Ar(3p54p) and ionized Ar(3s3p6 2S1/2) levels are accounted for. Model predictions are in good agreement with the experimental measurements. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  4. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system

    Science.gov (United States)

    Nam, Y. B.; Lee, D. J.; Lee, J.; Kim, C.; Yun, G. S.; Lee, W.; Park, H. K.

    2016-11-01

    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) Te fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2-2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ˜2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  5. Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.

  6. An optical analysis tool for avoiding dust formation in VHF hydrogen diluted silane plasmas at low substrate temperatures

    NARCIS (Netherlands)

    de Jong, M.M.; de Koning, J.; Rath, J.K.; Schropp, R.E.I.

    2012-01-01

    Control of the formation of dust particles in a silane deposition plasma is very important for avoiding electrical shunts in devices, such as thin film silicon solar cells. In this work we present a noninvasive in situ method for identification of the plasma regime, based on optical emission spectro

  7. Optical emission spectroscopy study on deposition process of microcrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    Wu Zhi-Meng; Lei Qing-Song; Geng Xin-Hua; Zhao Ying; Sun Jian; Xi Jian-Ping

    2006-01-01

    This paper reports that the optical emission spectroscopy (OES) is used to monitor the plasma during the deposition process of hydrogenated microcrystalline silicon films in a very high frequency plasma enhanced chemical vapour deposition system. The OES intensities (SiH*, H*α and H*β) are investigated by varying the deposition parameters. The result shows that the discharge power, silane concentrations and substrate temperature affect the OES intensities. When the discharge power at silane concentration of 4% increases, the OES intensities increase first and then are constant, the intensities increase with the discharge power monotonously at silane concentration of 6%. The SiH* intensity increases with silane concentration, while the intensities of H*α and H*β increase first and then decrease. When the substrate temperature increases, the SiH* intensity decreases and the intensities of H*α and H*β are constant. The correlation between the intensity ratio of IH*α/ISiH* and the crystalline volume fraction (Xc) of films is confirmed.

  8. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    OpenAIRE

    Kosch, M. J.; Pedersen, T; Hughes, J; Marshall, R.; Gerken, E.; A. Senior; Sentman, D.; McCarrick, M.; Djuth, F. T.

    2005-01-01

    International audience; High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The Hig...

  9. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    OpenAIRE

    M. J. Kosch; Pedersen, T; Hughes, J; Marshall, R; Gerken, E.; Senior, A.; Sentman, D.; McCarrick, M.; Djuth, F. T.

    2005-01-01

    International audience; High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The Hig...

  10. Uranium plasma emission coefficient in the visible and near UV.

    Science.gov (United States)

    Mack, J. M., Jr.; Usher, J. L.; Schneider, R. T.; Campbell, H. D.

    1971-01-01

    Measurements of the specific emission coefficient in the near ultra-violet and visible region of a uranium arc plasma are reported. Spatial unfolding of the intensity profile is used to determine the emission coefficient in the spectral range of 2000 A to 6000 A. The uranium partial pressure is estimated to range between .001 and .01 atmosphere, and the corresponding temperature range is 5000 - 10,000 K.

  11. Uranium plasma emission coefficient in the visible and near UV.

    Science.gov (United States)

    Mack, J. M., Jr.; Usher, J. L.; Schneider, R. T.; Campbell, H. D.

    1971-01-01

    Measurements of the specific emission coefficient in the near ultra-violet and visible region of a uranium arc plasma are reported. Spatial unfolding of the intensity profile is used to determine the emission coefficient in the spectral range of 2000 A to 6000 A. The uranium partial pressure is estimated to range between .001 and .01 atmosphere, and the corresponding temperature range is 5000 - 10,000 K.

  12. Studies of extreme ultraviolet emission from laser produced plasmas, as sources for next generation lithography

    Science.gov (United States)

    Cummins, Thomas

    The work presented in this thesis is primarily concerned with the optimisation of extreme ultraviolet (EUV) photoemission around 13.5 nm, from laser produced tin (Sn) plasmas. EUV lithography has been identified as the leading next generation technology to take over from the current optical lithography systems, due to its potential of printing smaller feature sizes on integrated circuits. Many of the problems hindering the implementation of EUV lithography for high volume manufacturing have been overcome during the past 20 years of development. However, the lack of source power is a major concern for realising EUV lithography and remains a major roadblock that must be overcome. Therefore in order to optimise and improve the EUV emission from Sn laser plasma sources, many parameters contributing to the make-up of an EUV source are investigated. Chapter 3 presents the results of varying several different experimental parameters on the EUV emission from Sn laser plasmas. Several of the laser parameters including the energy, gas mixture, focusing lens position and angle of incidence are changed, while their effect on the EUV emission is studied. Double laser pulse experiments are also carried out by creating plasma targets for the main laser pulse to interact with. The resulting emission is compared to that of a single laser pulse on solid Sn. Chapter 4 investigates tailoring the CO2 laser pulse duration to improve the efficiency of an EUV source set-up. In doing so a new technique for shortening the time duration of the pulse is described. The direct effects of shortening the CO2 laser pulse duration on the EUV emission from Sn are then studied and shown to improve the efficiency of the source. In Chapter 5 a new plasma target type is studied and compared to the previous dual laser experiments. Laser produced colliding plasma jet targets form a new plasma layer, with densities that can be optimised for re-heating with the main CO2 laser pulse. Chapter 6 will present

  13. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Biyang, E-mail: dengby16@163.com; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K{sub 3}Fe(CN){sub 6} in plumbane generation. • Clarified the controversial aspects in the mechanism of K{sub 3}Fe(CN){sub 6} enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K{sub 3}Fe(CN){sub 6} and K{sub 4}Fe(CN){sub 6} as new additives. - Absract: To understand the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system, the intermediate products produced in the reaction of lead(II) and NaBH{sub 4} in the presence of K{sub 3}Fe(CN){sub 6} were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH{sub 4}; (2) the black Pb is oxidized by K{sub 3}Fe(CN){sub 6} to form Pb{sub 2}[Fe(CN){sub 6}], which further reacts with NaBH{sub 4} to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K{sub 3}Fe(CN){sub 6} to form more Pb{sub 2}[Fe(CN){sub 6}] complex, which would produce more plumbane. In short, the black Pb and Pb{sub 2}[Fe(CN){sub 6}] complex are the key intermediate products for the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L{sup −1}. The linearity range of lead was found between 0.3 and 50,000 μg L{sup −1} with correlation coefficient of 0

  14. Incoherent synchrotron emission of laser-driven plasma edge

    CERN Document Server

    Serebryakov, D A; Kostyukov, I Yu

    2015-01-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  15. Incoherent synchrotron emission of laser-driven plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Serebryakov, D. A., E-mail: dmserebr@gmail.com; Nerush, E. N.; Kostyukov, I. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  16. Incoherent synchrotron emission of laser-driven plasma edge

    Science.gov (United States)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  17. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    Science.gov (United States)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  18. Vertical Electron Cyclotron Emission Diagnostic for TCV Plasmas

    Directory of Open Access Journals (Sweden)

    Goodman T. P.

    2012-09-01

    Full Text Available Electron cyclotron resonance heating (ECRH and electron cyclotron current drive (ECCD are used to heat the plasma, to tailor the current profiles and to achieve different operating regimes of tokamak plasmas. Plasmas with ECRH/ECCD are characterized by non-thermal electrons, which cannot be described by a Maxwellian distribution. Non-thermal electrons are also generated during MHD activity, like sawteeth crashes. Quantifying the non-thermal electron distribution is therefore a key for understanding EC heated fusion plasmas. For this purpose a vertical electron cyclotron emission (V-ECE diagnostic is being installed at TCV. The diagnostic layout, the calibration, the analysis technique for data interpretation, the physics potentials and limitations are discussed.

  19. A novel method for fast enrichment and monitoring of hexavalent and trivalent chromium at the ppt level with modified silica MCM-41 and its determination by inductively coupled plasma optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Ganjali Mohammad Reza

    2006-01-01

    Full Text Available Chromium(III at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC and determined by inductively coupled plasma optical emision spectrometry (ICP OES. The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5?4.7 µg for Cr(III. The method was applied to the determination of Cr(III and Cr(VI in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper.

  20. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  1. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    Science.gov (United States)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  2. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    Science.gov (United States)

    Daksha, M.; Berger, B.; Schuengel, E.; Korolov, I.; Derzsi, A.; Koepke, M.; Donkó, Z.; Schulze, J.

    2016-06-01

    A computationally assisted spectroscopic technique to measure secondary electron emission coefficients (γ-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of phase resolved optical emission spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient γ. This sensitvity, in turn, allows γ to be determined by comparing experimental excitation profiles and simulation data obtained with various γ-coefficients. The diagnostic, tested here in a geometrically symmetric argon discharge, yields an effective secondary electron emission coefficient of γ =0.066+/- 0.01 for stainless steel electrodes.

  3. The Masses of Distant Galaxies from Optical Emission Line Widths

    CERN Document Server

    Gillespie, E B; Gillespie, Elizabeth Barton; Zee, Liese van

    2002-01-01

    Promising methods for studying galaxy evolution rely on optical emission line width measurements to compare intermediate-redshift objects to galaxies with equivalent masses at the present epoch. However, emission lines can be misleading. We show empirical examples of galaxies with concentrated central star formation from a survey of galaxies in pairs; HI observations of these galaxies indicate that the optical line emission fails to sample their full gravitational potentials. We use simple models of bulge-forming bursts of star formation to demonstrate that compact optical morphologies and small half-light radii can accompany these anomalously narrow emission lines; thus late-type bulges forming on rapid (0.5-1 Gyr) timescales at intermediate redshift would exhibit properties similar to those of heavily bursting dwarfs. We conclude that some of the luminous compact objects observed at intermediate and high redshift may be starbursts in the centers of massive galaxies and/or bulges in formation.

  4. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or opticalplasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  5. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  6. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon.

    Science.gov (United States)

    Cloutier, Sylvain G; Kossyrev, Pavel A; Xu, Jimmy

    2005-12-01

    Persistent efforts have been made to achieve efficient light emission from silicon in the hope of extending the reach of silicon technology into fully integrated optoelectronic circuits, meeting the needs for high-bandwidth intrachip and interchip connects. Enhanced light emission from silicon is known to be theoretically possible, enabled mostly through quantum-confinement effects. Furthermore, Raman-laser conversion was demonstrated in silicon waveguides. Here we report on optical gain and stimulated emission in uniaxially nanopatterned silicon-on-insulator using a nanopore array as an etching mask. In edge-emission measurements, we observed threshold behaviour, optical gain, longitudinal cavity modes and linewidth narrowing, along with a collimated far-field pattern, all indicative of amplification and stimulated emission. The sub-bandgap 1,278 nm emission peak is attributed to A-centre mediated phononless direct recombination between trapped electrons and free holes. The controlled nanoscale silicon engineering, combined with the low material loss in this sub-bandgap spectral range and the long electron lifetime in such A-type trapping centres, gives rise to the measured optical gain and stimulated emission and provides a new pathway to enhance light emission from silicon.

  7. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  8. Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma

    Science.gov (United States)

    Ono, Ryo

    2016-03-01

    This paper reviews optical measurements of reactive species in atmospheric-pressure nonthermal plasmas: streamer discharge, dielectric barrier discharge (DBD), plasma jet, and plasma-assisted ignition and combustion. Measurements of OH, O, N, {{\\text{O}}3} , NO, {{\\text{N}}2} (A, B, C), {{\\text{O}}2} (a, b), {{\\text{N}}2}(v) , {{\\text{O}}2}(v) , He*, Ar*, \\text{N}2+ , CH, and CH2O by laser-induced fluorescence, absorption, optical emission spectroscopy, and coherent anti-Stokes Raman scattering methods are included. Reactive species measurement in low-frequency (\\cong 1 Hz) pulsed streamer discharge is introduced, and reactive species production and reaction processes indicated by these measurements are described in detail. Measurements in high-frequency DBD, atmospheric-pressure diffuse discharge, and dc corona discharge are described. Measurements in plasma jets are also reviewed: rf plasma jets, kHz plasma jets, and additional plasma jets. Finally, measurements in plasma-assisted ignition and combustion are described and reviewed in addition to measurements in conventional spark ignition. A comprehensive list of the reviewed measurements is provided.

  9. Optical emission enhancement in laser-induced breakdown spectroscopy using micro-torches

    Science.gov (United States)

    Liu, L.; Huang, X.; Li, S.; Lu, Yao; Chen, K.; Lu, Y. F.

    2016-03-01

    A cost effective method for optical emission enhancement in laser-induced breakdown spectroscopy (LIBS) has been proposed in this research. The pulsed Nd:YAG laser with a wavelength of 532 nm was used for sample ablation and plasma generation. A cost effective commercial butane micro-torch was put parallel to the sample surface to generate a small flame above the surface. The laser-induced plasma expanded in the flame environment. The time-resolved optical emission intensity and signal-to-noise ratio (SNR) have been observed with and without micro torch. For laser with pulse energy of 20 mJ, the relationship between optical emission intensity and delay time indicates that signal intensities have been greatly enhanced in the initial several microseconds when using micro torch. The time-resolved study of signal-to-noise ratio shows that the maximum SNR occurs at the delay time of 2 μs. The laser energy effects on the enhancements of optical emission intensity and SNR have also been analyzed, which indicates that the enhancement factors are both delay time and laser energy dependent. The maximum enhancement factors for both optical emission intensity and SNR gradually decreases with the laser energy increase. The limits of detection (LODs) for aluminum (Al) and molybdenum (Mo) in steel have been estimated, which shows that the detection sensitivity has been improved by around 4 times. The LODs of Al and Mo have been reduced from 18 to 6 ppm and from 110 to 36 ppm in LIBS, respectively. The method of LIBS by a micro torch has been demonstrated to be a cost effective method for detection sensitivity improvement, especially in the situation of low laser pulse energy.

  10. Observation of the Emission Spectra of an Atmospheric Pressure Radio-frequency Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz)power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.

  11. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  12. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Posada, E; Arronte, M A; Ponce, L; Rodriguez, E; Flores, T [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada-Unidad Altamira, Tamaulipas (Mexico); Lunney, J G, E-mail: edeposada@ipn.mx [School of Physics, Trinity College Dublin (Ireland)

    2011-01-01

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  13. Second harmonic plasma emission involving ion sound waves

    Science.gov (United States)

    Cairns, Iver H.

    1987-01-01

    The theory for second harmonic plasma emission by the weak turbulence (or random phase) processes L + L + or - S to T, proceeding in two three-wave steps, L + or - S to L prime and L + L prime to T, where L, S and T denote Langmuir, ion sound and electromagnetic waves, respectively, is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes, and constraints on the characteristics of the source plasma, are derived. Limits on the brightness temperature of the radiation and the levels of the L prime and S waves are determined. Expressions for the growth rates and path-integrated wave temperatures are derived for simple models of the wave spectra and source plasma.

  14. Optical Characteristics Investigation of the Cold Argon Plasma Jet for the Medical Applications

    Science.gov (United States)

    Nguyen-Kuok, Shi; Malakhov, Yury; Bach, Sy Minh; Korotkikh, Ivan

    2016-09-01

    The medical setup was designed for the treatment of wounds, disinfection of inflammation, for the destruction of damaged cells. The results of experimental determination of the optical characteristics of Argon cold plasma at atmospheric pressure are presented in the paper. The main components of the experimental setup are plasma torch, spectrometer, photo-electron multiplier, oscilloscope, gas consumption QAr = 1 - 20 l/min. Spectrum of the plasma jet is obtained using the grating spectrometer Spectra with radiometric calibration, operating in the visible range λ = 380 - 760 nm. The sun-blind photodetector was used for determination of the intensity of radiation in the UV range λ = 190 - 380 nm. The emission spectrum consists of a continuous radiation and the emissions of atoms and ions ArI and ArII. The analysis of spectral lines was carried out.

  15. Spatio-temporal evolution of uranium emission in laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S.S., E-mail: hari@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Diwakar, P.K. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); LaHaye, N.L.; Phillips, M.C. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2015-09-01

    Laser-induced plasma spectroscopy provides much impetus as a nuclear forensics tool because of its capability of standoff detection and real-time analysis. However, special nuclear materials like U, Pu, etc. provide very crowded spectra and, when combined with shifts and broadening of spectral lines caused by ambient atmospheric operation, generate a complex plasma spectroscopy system. We explored the spatio-temporal evolution of excited U species in a laser ablation plume under various ambient pressure conditions. Plasmas were generated using 1064 nm, 6 ns pulses from a Nd:YAG laser on a U containing glass matrix target. The role of air ambient pressure on U line intensities, signal-to-background ratios, and linewidths were investigated. Spatially and temporally resolved optical time-of-flight emission spectroscopy of excited uranium atoms were used for studying the expansion hydrodynamics and the persistence of U species in the plume. Our results showed that U emission linewidths increased with pressure due to increased Stark broadening; however, the broadening was less than that for Ca. A comparison with U emission features in the presence of an inert gas showed the persistence of U species in plasmas in ambient air is significantly reduced; this could be due to oxide and other reactive species formation. - Highlights: • Spatio-temporal evolution of U species in a multicomponent laser-induced plasma (LIP) is explored. • The linewidth of U species in LIP is compared to other species in a multicomponent system. • The position-time mapping of U species in LIP show complex expansion dynamics with varying pressure levels. • The persistence of U species in LIP is greatly influenced by nature and pressure of the ambient gas. • The plasma chemistry is affecting the persistence of the species as well as analytical merits.

  16. Cascade emission in electron beam ion trap plasma

    CERN Document Server

    Jonauskas, Valda; Kyniene, Ausra; Kucas, Sigitas

    2013-01-01

    We present investigation of the influence of cascade emission to the formation of spectra from plasma created by electron beam ion trap (EBIT) in electron trapping mode. It has been shown that cascade emission can play an important role in the formation of spectra from the EBIT plasma. Process of the cascade emission takes place when ion having cycloidal orbit leaves electron beam where coronal approximation is applicable. Thus both processes - excitation from ground or metastable levels and cascade emission - take part in the population of levels. Demonstration is based on the investigation of $W^{13+}$ spectra. The present investigation helps to resolve long-standing discrepancies; in particular, the present structure of $W^{13+}$ spectra is in good agreement with measurements on electron beam ion trap. Lines in the experimental spectra are identified as $4f^{13} 5s 5p \\rightarrow 4f^{13} 5s^{2}$ and $4f^{12} 5s 5p^{2} \\rightarrow 4f^{12} 5s^{2} 5p$ transitions from Dirac-Fock-Slater calculations.

  17. Net Emission Coefficients for Copper and Iron Plasmas

    Science.gov (United States)

    Kassubek, Frank; Zilberberg, Oded; Doiron, Charles

    2016-09-01

    Radiative heat transfer is an important mechanism for heat transport in electrical arcs, e.g. in electrical switchgear. An exact description of this phenomenon is important (i) for the energy balance of the arc itself, and (ii) for the estimate of the escaping radiation that leads to evaporation of polymer nozzles; the evaporated material and its flow have a strong effect on the arcs. For low voltage arcs, the plasma composition within the arc is dominated by the contact material. In the present study, we compare copper and iron. Especially, we discuss the calculation of absorption and emission spectra and their characterisation by net emission coefficients. The latter describe well the effective power balance at the centre of the arc. We show that in addition to the net emission coefficients, it is important to characterise the radiation that is emitted from the arc core.

  18. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  19. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  20. Optical properties of hydroxyethyl cellulose film treated with nitrogen plasma

    Science.gov (United States)

    Mahmoud, K. H.

    2016-03-01

    Hydroxyethyl cellulose (HEC) film has been prepared by casting technique. The prepared sample has been treated with nitrogen plasma at different exposure times. The optical absorption was recorded at room temperature in the wavelength range of 200-800 nm. Absorbance fitting procedure curves revealed a direct allowed transition with optical band gap, Eopt, of 4.9 eV for pristine film, and this value decreases to 4.30 eV for 20 min plasma treatment time. The band tail values (Ee) were found to be increased under plasma time treatment from 1.74 eV in case of the pristine film to 2.20 eV for 20 min. The dispersion of refractive index and complex dielectric constants under plasma treatment was also studied. Variation of color parameters under effect of the plasma treatment is analyzed in the framework of CIE L*U*V* color space.

  1. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    Science.gov (United States)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  2. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in technological rf plasmas

    Science.gov (United States)

    Berger, Birk; Schulze, Julian; Daksha, Manaswi; Schuengel, Edmund; Koepke, Mark; Korolov, Ihor; Derzsi, Aranka; Donko, Zoltan

    2016-09-01

    A Computationally Assisted Spectroscopic Technique to measure secondary electron emission coefficients (y-CAST) in capacitive rf plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of Phase Resolved Optical Emission Spectroscopy and PIC simulations. Under most conditions in electropositive plasmas the spatio-temporally resolved electron-impact excitation rate features two distinct maxima adjacent to each electrode at different times within one rf period. One maximum is the consequence of an energy gain of the electrons due to sheath expansion. The second maximum is produced by electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the sheath. Due to the different excitation mechanisms the ratio of the intensities of these maxima is very sensitive to y, which allows for its determination via comparing the experimentally measured excitation profiles with corresponding simulation data obtained with various y-coefficients. This diagnostic is tested here in a geometrically symmetric reactor, for stainless steel electrodes and argon gas. An effective secondary electron emission coefficient of y = 0.067+-0.010 is obtained, which is in excellent agreement with previous experimental results.

  3. Prompt Optical Emission from Gamma-ray Bursts

    CERN Document Server

    Kehoe, R; Balsano, R; Barthelmy, S D; Bloch, J; Butterworth, P S; Casperson, D E; Cline, T; Fletcher, S; Frontera, F; Gisler, G; Heise, J; Hills, J; Hurley, K; Lee, B; Marshall, S; McKay, T; Pawl, A; Piro, L; Priedhorsky, B; Szymanski, J J; Wren, J; Kehoe, Robert; Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; Kay, Tim Mc; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    2001-01-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting sensitivities are m(V) > 13.0 at 14.7 seconds after the gamma-ray rise, and m(V) > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray em...

  4. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K.; Harilal, S. S.; Philip, Reji; Bruzzese, R.; Amoruso, S.

    2016-11-14

    The characteristic emission features of a laser-produced plasma strongly depend strongly on the laser fluence. We investigated the spatial and temporal dynamics of neutrals and ions in femtosecond laser (800 nm, ≈ 40 fs, Ti:Sapphire) induced copper plasma in vacuum using both optical emission spectroscopy (OES) and spectrally resolved two-dimensional (2D) imaging methods over a wide fluence range of 0.5 J/cm2-77.5 J/cm2. 2D fast gated monochromatic images showed distinct plume splitting between the neutral and ions especially at moderate to higher fluence ranges. OES studies at low to moderate laser fluence regime confirm intense neutral line emission over the ion emission whereas this trend changes at higher laser fluence with dominance of the latter. This evidences a clear change in the physical processes involved in femtosecond laser matter interaction at high input laser intensity. The obtained ion dynamics resulting from the OES, and spectrally resolved 2D imaging are compared with charged particle measurement employing Faraday cup and Langmuir probe and results showed good correlation.

  5. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Pawel; Zapata, Israel Jimenez; Bings, Nicolas H. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Voges, Edgar [Universitaet Dortmund, Fakultaet fuer Elektrotechnik und Informationstechnik, Friedrich-Woehler-Weg 4, D-44221 Dortmund (Germany); Broekaert, Jose A.C. [Universitaet Hamburg, Institut fuer Anorganische und Angewandte Chemie, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2007-05-15

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH{sub 4} concentration, the concentration of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 {mu}g ml{sup -1}. The microstrip plasma tolerated the introduction of 4.2 ml min{sup -1} of H{sub 2} in the Ar working gas, which corresponded to an H{sub 2}/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H{sub {beta}} line was of the order of 5500 K and 1.50 . 10{sup 14} cm{sup -3}, respectively. Detection limits (3{sigma}) of 18 ng ml{sup -1} for As and 31 ng ml{sup -1} for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 {mu}g ml{sup -1} level in a galvanic bath solution containing 2.5% of NiSO{sub 4}. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 {+-} 15 {mu}g g{sup -1} and a value of 144 {+-} 4 {mu}g g{sup -1} was found.

  6. Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions

    Institute of Scientific and Technical Information of China (English)

    H. MARTINEZ; O. FLORES; J. C. POVEDA; B. CAMPILLO

    2012-01-01

    Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an ac generator at a frequency of 60 Hz, output power of 50 W and a gas flow rate of 1.8 L/min. The electron temperature and ion density were estimated to be 2.15±0.11 eV and (1.24±0.05)× 10^16 m^-3, respectively, using a double Langmuir probe. OES was employed to observe the emission from the asphaltene exposed to air plasma. Both molecular band emission from N2, N2+, OH, CH, NH, O2 as well as CN, and atomic light emission from V and Hγ were observed and used to monitor the evolution of asphaltene erosion. The asphaltene erosion was analyzed with the aid of a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) detector. The EDX analysis showed that the time evolution of elements C, O, S and V were similar and the chemical composition of the exposed asphaltenes remained constant. Particle size evolution was measured, showing a maximum size of 2307 μm after 60 min. This behavior is most likely related to particle agglomeration as a function of time.

  7. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  8. Optical diagnostics of femtosecond laser plasmas

    Institute of Scientific and Technical Information of China (English)

    LI; Yutong

    2001-01-01

    [1]Benattar, R., Popovics, C., Sigel, R., Polarized light interferometer for laser fusion studies, Rev. Sci. Instrum., 979, 50(2): 583.[2]Young, P. E., Hammer, J. H., Wilks, S. C. et al., Laser beam propagation and channel formation in underdense plasmas, Phys. Plasmas, 995, 2(7): 2825.[3]Zhang, P., He, J.T., Chen, D.B. et al., Effects of a prepulse on γ-ray radiation produced by a femtosecond laser with only mJ energy, Phys. Rev. E., 998, 57: R3746.[4]Stamper, J. A., Review on spontaneous magnetic fields in laser-produced plasmas: phenomena and measurements, Laser and Particle Beams, 99, 9(4): 84.[5]Stamper, J. A., McLean, E. A., Ripin, B. H., Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation, Phys. Rev. Lett., 978, 40(8): 77.[6]Raven, A., Willi, O., Rumsby, P. T., Megagauss magnetic field profiles in laser-produced plasmas, Phys. Rev. Lett., 978, 4(8): 554.[7]Burgess, M. D. J., Luther-Davis, B., Nugent, K. A., An experimental study of magnetic fields in plasmas created by high intensity one micron laser radiation, Phys. Fluids, 985, 28(7): 2286.[8]Borghesi, M., Mackinnon, A. J., Bell, A. R. et al., Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse, Phys. Rev. Lett., 998, 8(): 2.

  9. Optical inverse Compton emission from clusters of galaxies

    CERN Document Server

    Yamazaki, Ryo

    2015-01-01

    Shocks around clusters of galaxies accelerate electrons which upscatter the Cosmic Microwave Background photons to higher-energies. We use an analytical model to calculate this inverse Compton (IC) emission, taking into account the effects of additional energy losses via synchrotron and Coulomb scattering. We find that the surface brightness of the optical IC emission increases with redshift and halo mass. The IC emission surface brightness, 32--34~mag~arcsec$^{-2}$, for massive clusters is potentially detectable by the newly developed Dragonfly Telephoto Array.

  10. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    Science.gov (United States)

    Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; Austin, M. E.; Beno, J. H.; Hubbard, A. E.; Khodak, A.; Ouroua, A.; Taylor, G.

    2016-11-01

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  11. Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, W. L., E-mail: w.l.rowan@austin.utexas.edu; Houshmandyar, S.; Phillips, P. E.; Austin, M. E. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Beno, J. H.; Ouroua, A. [Center for Electromechanics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hubbard, A. E. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Khodak, A.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration.

  12. A device for obtaining stimulated optical emission

    Energy Technology Data Exchange (ETDEWEB)

    Kvaril, J.; Kubelka, J.; Kvapil, J.; Perner, B.

    1983-04-30

    A laser is proposed which is characterized by the use of a YAG active material in the laser with neodymium ion and/or ionic elements with atomic numbers of 58-59 and 61-71 used as the dopant. The ratio of the molar concentration of the yttrium oxide and dopant oxide in the initial mixture is equal to (3.001 to 3.030) to 5. Additionally, an optical active filter is used in the laser; this filter includes a methyl orange and rhodamine 6G solution or glass with a dopant of 1 percent cesium oxide and 2.5 percent titanium oxide.

  13. A compact plasma focus device and its neutron emission

    Institute of Scientific and Technical Information of China (English)

    王新新; 韩旻; 王志文; 刘坤

    1999-01-01

    A 2.2-kJ compact plasma focus device was developed and its characteristics of neutron emission were investigated. A maximum neutron yield of (3.1 ± 1.5) × 10~7 was obtained at 15 hPa deuterium filling pressure. It was found that the neutron yield Y_n is strongly correlated with the amplitude of the pinch dip in di/dt waveform. The time resolved measurement of the neutron pulse indicated that both the hard X-rays and the neutrons are emitted from plasma focus at the same instant and the width of neutron pulse (FWHM) changes slightly from 50 to 53 ns. The pinch time t_p varies from 1.5 to 16.5 ns and it is usually the case that the shorter t_p, the higher the neutron yield. It was also found that the squirrel cage cathode is better than the tubular cathode.

  14. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡志丹; 盛政明; 丁文君; 王伟民; 董全力; 张杰

    2012-01-01

    A wakefield driven by a short intense laser pulse in a perpendicularly magnetized underdense plasma is studied analytically and numerically for both weakly relativistic and highly relativistic situations. Owing to the DC magnetic field, a transverse component of the electric fields associated with the wakefield appears, while the longitudinal wave is not greatly affected by the magnetic field up to 22 Tesla. Moreover, the scaling law of the transverse field versus the longitudinal field is derived. One-dimensional particle-in-cell simulation results confirm the analytical results. Wakefield transmission through the plasma-vacuum boundary, where electromagnetic emission into vacuum occurs, is also investigated numerically. These results are useful for the generation of terahertz radiation and the diagnosis of laser wakefields.

  15. X-ray emission of exotic ions in dense plasmas

    Science.gov (United States)

    Rosmej, F. B.; Khaghani, D.; Dozières, M.; Dachicourt, R.; Šmíd, M.; Renner, O.

    2017-03-01

    Hollow ion X-ray emission has been observed in experiments studying interaction of heavy ion beams with solids and their occurrence has been ascribed to charge exchange processes occurring when highly charged ions interact with a metal surface. In high temperature high-density plasmas, like, e.g., high intensity laser produced plasmas or high current Z-pinches, numerous researchers have reported about "exotic" X-ray transitions of hollow ions: K0LX →K1LX-1+hνhollow. Although atomic structure calculations seem to confirm that measured line positions correspond to transitions in hollow ions, line identification is difficult and the observed high intensity remains a mystery (by orders of magnitude) up to present days.

  16. Electron beam generated whistler emissions in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  17. Surface Emission of Quark Gluon Plasma at RHIC and LHC

    Institute of Scientific and Technical Information of China (English)

    XIANG Wen-Chang; WAN Ren-Zhuo; ZHOU Dai-Cui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor RLHCAA~0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC.

  18. Electron beam generated whistler emissions in a laboratory plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-12-01

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  19. Generalized dispersive wave emission in nonlinear fiber optics.

    Science.gov (United States)

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  20. Acoustic emission monitoring using a multimode optical fiber sensor

    Science.gov (United States)

    Vandenplas, Steve; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2004-07-01

    Permanent damage in various materials and constructions often causes high-energy high-frequency acoustic waves. To detect those so called `acoustic emission (AE) events', in most cases ultrasonic transducers are embedded in the structure or attached to its surface. However, for many applications where event localization is less important, an embedded low-cost multimode optical fiber sensor configured for event counting may be a better alternative due to its corrosion resistance, immunity to electromagnetic interference and light-weight. The sensing part of this intensity-modulated sensor consists of a multimode optical fiber. The sensing principle now relies on refractive index variations, microbending and mode-mode interferences by the action of the acoustic pressure wave. A photodiode is used to monitor the intensity of the optical signal and transient signal detection techniques (filtering, frame-to-frame analysis, recursive noise estimation, power detector estimator) on the photodiode output are applied to detect the events. In this work, the acoustic emission monitoring capabilities of the multimode optical fiber sensor are demonstrated with the fiber sensor embedded in the liner of a Power Data Transmission (PDT) coil to detect damage (delamination, matrix cracking and fiber breaking) while bending the coil. With the Hankel Total Least Square (HTLS) technique, it is shown that both the acoustic emission signal and optical signal can be modeled with a sum of exponentially damped complex sinusoids with common poles.

  1. Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet%Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    费小猛; Shin-ichi KURODA; Yuki KONDO; Tamio MORI; Katsuhiko HOSOI

    2011-01-01

    Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3yIu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.

  2. X-mode artificial optical emissions and attendant phenomena at EISCAT/Heating

    Science.gov (United States)

    Blagoveshchenskaya, Nataly; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Haggstrom, Ingemar; Kosch, Michael; Borisova, Tatiana; Yeoman, Tim

    We present the experimental evidence for the formation of the artificial optical emissions induced by the X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) into the high latitude F region of the ionosphere. The experiments were conducted in the course of Russian EISCAT heating campaigns in October 2012 and October 2013 at the Heating facility at Tromsø, Norway. The HF pump wave with the X-mode polarization was radiated at 7.1 or 6.2 MHz. The phased array 1, resulting in an ERP = 430 - 600 MW was used. Optical emissions at red (630 nm) and green (557 nm) lines were imaged from Tromsø site by the digital All-Sky Imager mark 2 (DASI - 2) and from a remote site at Abisco by the Auroral Large Imaging System (ALIS) in Scandinavia. The intensities of X-mode emissions at red and green lines varied between about of 150 - 1000 R and 50 - 300 R above the background respectively in different experiments. The artificial optical emissions were accompanied by very strong HF-enhanced ion lines and HF induced plasma lines from the EISCAT UHF incoherent scatter radar measurements and artificial small-scale field-aligned irregularities from CUTLASS (SuperDARN) HF coherent radar in Finland. The results obtained are discussed.

  3. Empirical Emission Functions for LPM Suppression of Photon Emission from Quark-Gluon Plasma

    CERN Document Server

    Sastry, S

    2003-01-01

    The LPM suppression of photon emission rates from the quark gluon plasma have been studied at different physical conditions of the plasma given by temperature and chemical potentials.The integral equation for the transverse vector function (f(p_t)) consisting of multiple scattering effects is solved for the parameter set {p,k,kappa,T}, for bremsstrahlung and AWS processes. The peak positions of these distributions depend only on the dynamical variable x=(T/kappa)|1/p-1/(p+k)|. Integration over these distributions multiplied by x^2 factor also depends on this variable x,leading to a unique global emission function g(x) for all parameters. Empirical fits to this dimensionless emission function, g(x), are obtained. The photon emission rate calculations with LPM suppression effects reduce to one dimensional integrals involving folding over the empirical g(x) function with appropriate distribution functions and the kinematic factors. Using this approach, the suppression factors for both bremsstrahlung and AWS have...

  4. Optimization of the optical system for electron cyclotron emission imaging diagnostics on the HL-2A tokamak

    Science.gov (United States)

    Jiang, Min; Shi, Zhongbing; Zhu, Yilun

    2017-08-01

    The optical system of the electron cyclotron emission imaging diagnostics on the HL-2A tokamak has been optimized in both the narrow zoom pattern and the wide zoom pattern. The two main features of the improved optical system are (1) larger coverage of the measurement region in the plasma and (2) a flatter imaging surface. The new optics has good focal characteristics over the whole plasma cross section. The curvature of the field of the image surface (ΔR between the core channel and the edge channel) is within 5.3 cm in the narrow zoom pattern and 6.7 cm in the wide zoom pattern after optimization, whereas the values with the present optics were 23 cm in the narrow zoom pattern and 15 cm in the wide zoom pattern. The optics will be fabricated, tested and installed on the HL-2A tokamak before the next experimental campaign.

  5. Kinetic model of stimulated emission created by resonance pumping of aluminum laser-induced plasma

    Science.gov (United States)

    Gornushkin, I. B.; Kazakov, A. Ya.

    2017-06-01

    Stimulated emission observed experimentally in an aluminum laser induced plasma is modeled via a kinetic approach. The simulated emission at several cascade transitions is created by a pump laser guided through the plasma at several microseconds after its creation and tuned in resonance with the strong 3s23p-3s24s transition at 266 nm. A two-dimensional space-time collisional radiative plasma model explains the creation of the population inversion and lasing at wavelengths of 2100 n m and 396.1 nm. The population inversion for lasing at 2100 n m is created by depopulation of the ground 3s23p state and population of the 3s25s state via the absorption of the resonant radiation at 266 nm. The population inversion for lasing at 396.1 nm occurs during the laser pulse via the decay of the population of the pumped 3s25s state to the excited 3s24s state via cascade transitions driven optically and by collisions. In particular, efficient are the mixing transitions between neighboring states separated by small gaps on the order of k T at plasma temperatures of 5000-10 000 K. The model predicts that the population inversion and corresponding gain may reach high values even at very moderate pump energy of several μJ per pulse. The efficiency of lasing at 2100 n m and 396.1 nm is estimated to be ˜3% and 0.05%, correspondingly with respect to the pump laser intensity. The gain for lasing at 396.1 nm can reach as high as ˜40 cm-1. The polarization effect that the pump radiation at 266 nm imposes on the stimulated emission at 396.1 nm is discussed. The calculated results are favorably compared to experimental data.

  6. Penning plasma based simultaneous light emission source of visible and VUV lights

    Science.gov (United States)

    Vyas, G. L.; Prakash, R.; Pal, U. N.; Manchanda, R.; Halder, N.

    2016-06-01

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20-106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  7. Penning plasma based simultaneous light emission source of visible and VUV lights

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, G. L., E-mail: glvyas27@gmail.com [Manipal University Jaipur (India); Prakash, R.; Pal, U. N. [CSIR-Central Electronics and Engineering Research Institute, Microwave Tubes Division (India); Manchanda, R. [Institute for Plasma Research (India); Halder, N. [Manipal University Jaipur (India)

    2016-06-15

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  8. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    Science.gov (United States)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  9. Unidirectional enhanced spontaneous emission with metallo-dielectric optical antenna

    Science.gov (United States)

    Shen, Hongming; Lu, Guowei; He, Yingbo; Cheng, Yuqing; Gong, Qihuang

    2017-07-01

    A metallo-dielectric system consisted of two coupled metallic nanoparticles embedded in a planar dielectric antenna is proposed to control the light emission from a localized emitter. Such design integrates the advantages of planar dielectric antenna and plasmonic antenna such as highly localized excitation enhancement, emission direction control, and high collection efficiency. For specific configurations, the antenna can achieve unidirectional and plasmon-enhanced emission from single emitters, simultaneously presenting remarkable collection efficiency up to 96%. We show that the unidirectional effect is mainly determined by the plasmon coupling effect of the plasmonic dimer. The dependences of directivity property on the antenna geometry and emitter's position are also discussed in detail. These findings provide a promising route to realize novel optical devices involving directional and surface enhanced spontaneous emission, e.g. bright single-photon sources with high collection efficiency.

  10. The Kalman filter approach to inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Van Veen, E. H.; Bosch, S.; De Loos-Vollebregt, M. T. C.

    1994-07-01

    This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text, comprising the main article and two appendices, is accompanied by a disk containing the compiled program, a reference manual and data files. The work deals with data handling in inductively coupled plasma atomic emission spectrometry (ICP-AES). With this technique, the analyte signal is superimposed on a background signal. When separating the signals by manual or automated three-point background correction, there are many instances in which the data reduction fails. Based on scans recorded in a fast-scanning mode and on a library of pure-component scans, the Kaiman filter approach models the emission in the spectral window (about 100 pm) of the analyte and mathematically solves the problem of background correction. By using a criterion-based algorithm to correct for optical instability, the uncertainty in the determination of the interferent line signal is eliminated. Therefore, the present filter implementation yields more accurate and precise results, especially in the case of line overlap. The Kalman filter Approach to Atomic Spectrometry (KAAS) software automatically processes Perkin-Elmer Plasma 1000/2000 text files, but can also handle ASCII data files. Practical and comprehensive examples are given to evoke the "Kalman filter feeling" in the crucial step of creating the emission model.

  11. MHD marking using the MSE polarimeter optics in ILW JET plasmas

    Science.gov (United States)

    Reyes Cortes, S.; Alper, B.; Alves, D.; Baruzzo, M.; Bernardo, J.; Buratti, P.; Coelho, R.; Challis, C.; Chapman, I.; Hawkes, N.; Hender, T. C.; Hobirk, J.; Joffrin, E.

    2016-11-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  12. MHD marking using the MSE polarimeter optics in ILW JET plasmas

    CERN Document Server

    Reyes Cortes, S.; Alves, D.; Baruzzo, M.; Bernardo, J.; Buratti, P.; Coelho, R.; Challis, C.; Chapman, I.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Joffrin, E.

    2016-01-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  13. Significance of ambient conditions in uranium absorption and emission features of laser ablation plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Skrodzki, P. J.; Shah, N. P.; Taylor, N.; Hartig, K. C.; LaHaye, N. L.; Brumfield, B. E.; Jovanovic, I.; Phillips, M. C.; Harilal, S. S.

    2016-11-01

    This study employs laser ablation (LA) to investigate mechanisms for U optical signal variation under various environmental conditions during laser absorption spectroscopy (LAS) and optical emission spectroscopy (OES). Potential explored mechanisms for signal quenching related to ambient conditions include plasma chemistry (e.g., uranium oxide formation), ambient gas confinement effects, and other collisional interactions between plasma constituents and the ambient gas. LA-LAS studies show that the persistence of the U ground state population is significantly reduced in the presence of air ambient compared to nitrogen. LA-OES results yield congested spectra from which the U I 356.18 nm transition is prominent and serves as the basis for signal tracking. LA-OES signal and persistence vary negligibly between the test gases (air and N2), unlike the LA-LAS results. The plume hydrodynamic features and plume fundamental properties showed similar results in both air and nitrogen ambient. Investigation of U oxide formation in the laser-produced plasma suggests that low U concentration in a sample hinders consistent detection of UO molecular spectra.

  14. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    CERN Document Server

    Annenkov, V V; Volchok, E P

    2015-01-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in the realistic formulation allowing for the continuous injection of a relativistic electron beam through the plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of electromagnetic plasma eigenmodes, as in the infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  15. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    Science.gov (United States)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  16. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  17. Spontaneous emission effects in optically pumped x-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Smetanin, I.V.; Grigor`ev, S.V. [P.N. Lebedev Physics Institute, Moscow (Russian Federation)

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  18. Discrepancy between infrared and optical emission in some Be stars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An expanding ring model is put forward to investigate the original regions of Hα line emission and infrared excess emission in Be stars, by taking optical depth into account. We find that the two regions depend strongly on the physical properties of the envelope of Be stars such as the initial density and density structure. This model can be used to qualitatively interpret the disagreement between the near infrared excess and the equivalent width (EW) of Hα emissionline, as observed in some Be stars.

  19. Obsidian hydration profiles measured by sputter-induced optical emission.

    Science.gov (United States)

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  20. Observations of Microwave Continuum Emission from Air Shower Plasmas

    CERN Document Server

    Gorham, P W; Varner, G S; Beatty, J J; Connolly, A; Chen, P; Conde, M E; Gai, W; Hast, C; Hebert, C L; Miki, C; Konecny, R; Kowalski, J; Ng, J; Power, J G; Reil, K; Saltzberg, D; Stokes, B T; Walz, D

    2007-01-01

    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, cou...

  1. Correlations between radio emission of the parsec-scale jet and optical nuclear emission of host AGN

    CERN Document Server

    Torrealba, Janet; Chavushyan, Vahram; Cruz-Gonzalez, Irene

    2011-01-01

    We study the relation between the VLBA (Very Long Baseline Array) radio emission at 15 GHz and the optical nuclear emission at 5100 A for a sample of 233 core-dominated AGN with relativistic jets. For 181 quasars, there is a significant positive correlation between optical nuclear emission and total radio (VLBA) emission of unresolved cores (on milliarcsecond scales) of the jet at 15 GHz. Optical continuum emission correlates with radio emission of the jet for 31 BL Lacs. These correlations confirm that the radio and optical emission are beamed and originate at sub-parsec scales in the innermost part of the jet in quasars, while they are generated in the parsec-scale jet in BL Lacs. These results are in agreement with that reported earlier by Arshakian et al. 2010 for a sample of 135 AGN.

  2. Synthetic diagnostic for the beam emission spectroscopy diagnostic using a full optical integration

    Science.gov (United States)

    Hausammann, L.; Churchill, R. M.; Shi, L.

    2017-02-01

    The beam emission spectroscopy (BES) diagnostic is used to measure fluctuations of electron density in the edge and core of fusion plasmas, and is a key in understanding turbulence in a plasma reactor. A synthetic BES diagnostic for the turbulence simulation code XGC1 has been developed using a realistic neutral beam model and an optical system easily adaptable to different kinds of tokamaks. The beam is modeled using multiple beam energy components, each one with a fraction of the total energy and their own mass and energy (mono-energetic components). The optical system consists of a lens focusing a bundle of optical fibers and resulting in a 2D measurement. The synthetic diagnostic gives similar correlation functions and behaviour of the turbulences than the usual methods that do not take into account the full 3D optical effects. The results, based on a simulation of XGC1, contain an analysis of the correlation (in space and time), a comparison of different approximations possible and their importance in accurately modeling the BES diagnostic.

  3. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  4. Staging optics considerations for a plasma wakefield acceleration linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrøm, C.A., E-mail: c.a.lindstrom@fys.uio.no [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adli, E. [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Allen, J.M.; Delahaye, J.P.; Hogan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Joshi, C. [Department of Electrical Engineering, UCLA, Los Angeles, CA 90095 (United States); Muggli, P. [Max Planck Institute for Physics, 80805 Munich (Germany); Raubenheimer, T.O.; Yakimenko, V. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  5. Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma

    CERN Document Server

    Kaplan, A E

    2010-01-01

    An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.

  6. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  7. Investigation of the atomic emission spectroscopy of F atoms and CF2 molecules in CF4 plasma processing

    Science.gov (United States)

    Jin, Huiliang; Li, Jie; Tang, Caixue; Deng, Wenhui; Chen, Xianhua

    2016-10-01

    The surface chemistry reaction involved in the processing of Atmospheric Pressure Plasma Jet (APPJ) produced from CF4 precursor has been explored. The atomic emission spectroscopy of F atoms and CF2 molecules was investigated as they contribute to substrate etching and FC film formation during APPJ processing. Optical emission spectroscopy (OES) spectra were acquired for CF4 plasma, relative concentrations of excited state species of F atoms and CF2 molecules were also dependent upon plasma parameters. The densities of F atoms increased dramatically with increasing applied RF power, whereas CF2 molecules decreased monotonically over the same power range, the subsequent electron impacted decomposition of plasma species after CF4 precursor fragmentation. The spectrum of the F atoms and CF2 molecules fallowed the same tendency with the increasing concentration of gas CF4, reaching the maximum at the 20sccm and 15sccm respectively, and then the emission intensity of reactive atoms decreased with more CF4 molecules participating. Addition certain amount O2 into CF4 plasma resulted in promoting CF4 dissociation, O2 can easily react with the dissociation product of CF2 molecules, which inhibit the compound of the F atoms, so with the increasing concentration of O2, the concentration of the CF2 molecules decreased and the emission intensities of F atoms showed the maximum at the O2/CF4 ratio of 20%. These results have led to the development of a scheme that illustrates the mechanisms of surface chemistry reaction and the affection of plasma parameters in CF4 plasma systems with respect to F and CF2 gas-phase species.

  8. Escape factors for Paschen 2p-1s emission lines in low-temperature Ar, Kr, and Xe plasmas

    Science.gov (United States)

    Zhu, Xi-Ming; Cheng, Zhi-Wen; Pu, Yi-Kang; Czarnetzki, Uwe

    2016-06-01

    Radiation trapping phenomenon is often observed when investigating low-temperature plasmas. Photons emitted from the upper excited states may be reabsorbed by the lower states before they leave the plasmas. In order to account for this effect in the modelling and optical diagnostics of plasmas, either an ‘escape factor’ of a function of the optical depth or a strict solution of the radiation transfer equation can be employed. However, the former is more convenient in comparison and thus is widely adopted. Previous literatures have provided several simple expressions of the escape factor for the uniform plasmas. The emission line profiles are assumed to be dominated by the Doppler broadening, and the line splitting due to the hyperfine structure is not considered. This kind of expression is only valid for small atoms, e.g. Ar in low-pressure uniform discharges. Actually, the excited state density in many of the low-temperature plasmas is non-uniform and the emission line profile can be significantly influenced by the collisional broadening at medium and high pressures. In these cases, a new escape factor equation should be calculated. In this work, we study the escape factor equations for the often used 2p-1s transitions (Paschen’s notation) of the Ar, Kr, and Xe atoms. Possible non-uniform density profiles are considered. In addition, we include the line splitting due to the hyperfine structure for Kr and Xe. For the low-pressure plasmas, an escape factor expression mainly based on the Gaussian line profile is given and particularly verified by an experiment in a low-pressure capacitive discharge. For the high-pressure plasmas, an equation based on the Voigt line profile is also calculated. In this way, the new escape factor expression is ready for use in the modelling of the Ar, Kr, and Xe plasmas from low to atmospheric pressure.

  9. Attenuation correction for X-ray emission computed tomography of laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Wei; Nakao, Zensho [Ryukyus Univ., Nishihara, Okinawa (Japan). Faculty of Engineering; Tamura, Shinichi

    1996-08-01

    An attenuation correction method was proposed for laser-produced plasma emission computed tomography (ECT), which is based on a relation of the attenuation coefficient and the emission coefficient in plasma. Simulation results show that the reconstructed images are dramatically improved in comparison to the reconstructions without attenuation correction. (J.P.N.)

  10. Temperature Effect on the Optical Emission Intensity in Laser Induced Breakdown Spectroscopy of Super Alloys

    Science.gov (United States)

    Darbani, S. M. R.; Ghezelbash, M.; Majd, A. E.; Soltanolkotabi, M.; Saghafifar, H.

    2014-12-01

    In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.

  11. Tissue differentiation by means of high resolution optical emission spectroscopy during electrosurgical intervention

    Science.gov (United States)

    Bürger, Ines; Scharpf, Marcus; Hennenlotter, Jörg; Nüßle, Daniela; Spether, Dominik; Neugebauer, Alexander; Bibinov, Nikita; Stenzl, Arnulf; Fend, Falko; Enderle, Markus; Awakowicz, Peter

    2017-01-01

    Electrosurgery is the use of radio-frequency electric current for the cutting of biological tissue e.g. for resection of tumour tissue. In this work, the optical emission of plasma being generated during the electrosurgical procedure is investigated with a high resolution echelle spectrometer to find differences between tumour tissue and normal renal tissue in a pre-clinical ex vivo study. Trace elements like zinc, iron, copper and cadmium are present in the tissue spectra as well as the electrolytes magnesium, calcium, sodium and potassium and some diatomic molecules such as hydroxyl radical, cyano radical, dicarbon, nitrogen monohydride and molecular nitrogen which are mainly dissociated from polyatomic molecules. With the atomic emission line of cadmium at 228.8 nm the treated tissue can be differentiated in tumorous and healthy tissue with correct assignment of 95% for tumour tissue and 92% for normal renal tissue.

  12. Results of direct measurements of the plasma potential using a laser-heated emissive probe

    Energy Technology Data Exchange (ETDEWEB)

    Schrittwieser, R.; Sarma, A.; Amarandei, G.; Ionita, C. [Univ. of Innsbruck (Austria). Inst. for Ion Physics; Klinger, T.; Grulke, O.; Vogelsang, A.; Windisch, T. [Max Planck Inst. for Plasma Physics, Greifswald (Germany)

    2006-04-15

    Reliable diagnostics of the plasma potential is one of the most important challenges in context with the production, control and confinement of a plasma. Emissive probes are readily available as direct diagnostic tools for the plasma potential with a good temporal and spatial resolution in many plasmas, even up to middle-sized fusion experiments. We present the results of investigations on the heating of lanthanum hexaboride and graphite with an infrared diode laser and on the development of a laser-heated emissive probe. Such a probe has a higher electron emission, much longer life time and better time response than a conventional emissive wire probe. We have observed that from both materials electron emission current can be achieved sufficiently strongly even for dense laboratory and experimental fusion plasmas.

  13. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    Science.gov (United States)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  14. Improvement of Optical Reactivity for Nano-TiO2 Film by Nitrogen ECR Plasma

    Institute of Scientific and Technical Information of China (English)

    Yuying XIONG; Tao MA; Linghong KONG; Junfang CHEN; Xianqiu WU; Honghua YU; Zhenxi ZHANG

    2006-01-01

    Nitrogen ion was implanted into the nano-TiO2 film surfaces by electron cyclotron resonance (ECR) plasma modification to improve the optical reactivity in visible-light region for nano-TiO2. Diagnosing the N2 plasma by optical emission spectroscopy (OES) was applied to the process of plasma modification. X-ray photoelectron spectroscopy (XPS) was used for analysis of the binding of element after plasma modification. It is shown that the surface modification was caused by excitated N. The injecting of N2 and N2+ leads to the increase in the dissociative interstitial state N in the films. The doped N makes for TiO2-xNx appearing in the TiO2films. TiO2-xNx forms the impurity energy state in the TiO2 energy band gap and reduces the energy band gap. This is the main reason leading to the red shift of absorption edge.

  15. Optical absorption and emission of nitrogen-doped silicon nanocrystals.

    Science.gov (United States)

    Pi, Xiaodong; Chen, Xiaobo; Ma, Yeshi; Yang, Deren

    2011-11-01

    Silicon nanocrystals (Si NCs) may be both unintentionally and intentionally doped with nitrogen (N) during their synthesis and processing. Since the importance of Si NCs largely originates from their remarkable optical properties, it is critical to understand the effect of N doping on the optical behavior of Si NCs. On the basis of theoretical calculations, we show that the doping of Si NCs with N most likely leads to the formation of paired interstitial N at the NC surface, which causes both the optical absorption and emission of Si NCs to redshift. But these redshifts are smaller than those induced by doubly bonded O at the NC surface. It is found that high radiative recombination rates can be reliably obtained for Si NCs with paired interstitial N at the NC surface. The current results not only help to understand the optical behavior of Si NCs synthesized and processed in N-containing environments, but also inspire intentional N doping as an additional means to control the optical properties of Si NCs.

  16. Effect of nebulizer/spray chamber interfaces on simultaneous, axial view inductively coupled plasma optical emission spectrometry for the direct determination of As and Se species separated by ion exchange high-performance liquid chromatography

    Science.gov (United States)

    Gettar, Raquel T.; Smichowski, Patricia; Garavaglia, Ricardo N.; Farías, Silvia; Batistoni, Daniel A.

    2005-06-01

    Different nebulizer/expansion chamber combinations were evaluated to assess their performance for sample introduction in the direct coupling with an axial view inductively coupled plasma multielement spectrometer for on-line determination of As and Se species previously separated by ion exchange-high performance liquid chromatography. The column effluents were injected into the plasma without prior derivatization. The instrument operation software was adapted for data acquisition and processing to allow multi-wavelength recording of the transient chromatographic peaks. After optimization of the chromatographic operating conditions, separation of mixtures of inorganic As and Se species, and of inorganic and two organic As species (monomethylarsonic and dimethylarsinic acids), was achieved with excellent resolution. Species discrimination from mixtures of As and Se oxyanions was further improved by the simultaneous element detection at specific analytical wavelengths. Three nebulizers and three spray chambers, employed in seven combinations, were tested as interfaces. Concentric nebulizers associated to a glass cyclonic chamber appear most suitable regarding sensitivity and signal to noise ratio. Measured element detection limits (3 σ) were around 10 ng ml - 1 for all the species considered, making the method a viable alternative to similar procedures that employ volatile hydride generation previous to sample injection into the plasma. Analytical recoveries both for inorganic and organic species ranged between 92 and 107%. The method was demonstrated to be apt for the analysis of surface waters potentially subjected to natural contamination with arsenic.

  17. Diagnostics of Femtosecond Laser-Plasmas Using Fundamental and Second Harmonic Emission

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-Zeng; ZHANG Ping; FENG Bao-Hua; WEI Zhi-Yi; ZHANG Jie

    2000-01-01

    By observing the fundamental and second harmonic emission from a plasma produced by a 150 fs, 5 mJ laser at 800nm, the electron temperature, the expansion speed and the scalelength of the plasma have been diagnosed. Moreover the polarization of the fundamental and second harmonic emission has been studied. This could be a useful diagnostic for modulation at the critical surface of the plasma.

  18. The UV-Optical Albedo of Broad Emission Line Clouds

    CERN Document Server

    Korista, K T; Korista, Kirk; Ferland, Gary

    1997-01-01

    We explore the effective UV-optical albedos of a variety of types of broad emission line clouds, as well as their possible effects on the observed spectra of AGN. An important albedo source in moderately ionized ionization-bounded clouds is that due to neutral hydrogen: Rayleigh scattering of continuum photons off the extreme damping wings of Lya. The photons resulting from this scattering mechanism may contribute significantly to the Lya emission line, especially in the very broad wings. In addition, line photons emitted near 1200 Angstroms (e.g., N V 1240) that stream toward the neutral portion of the cloud may be reflected off this Rayleigh scattering mirror, so that they preferentially escape from the illuminated face. Inclusion of this effect can alter predicted emission line strengths and profiles. In more highly-ionized ionization-bounded clouds, Thompson scattering dominates the UV-optical albedo, but this albedo is lessened by the hydrogen gas opacity. These clouds are most reflective on the long wav...

  19. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L. [Department of Applied Physics, E.T.S.I. Aeronáutica y del Espacio. Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  20. Simultaneous determination of arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in fertilizers by microwave acid digestion and inductively coupled plasma-optical emission spectrometry detection: single-laboratory validation of a modification and extension of AOAC 2006.03.

    Science.gov (United States)

    Webb, Sharon; Bartos, James; Boles, Rhonda; Hasty, Elaine; Thuotte, Ethel; Thiex, Nancy J

    2014-01-01

    A single-laboratory validation study was conducted for the simultaneous determination of arsenic, cadmium, calcium, cobalt, copper, chromium, iron, lead, magnesium, manganese, molybdenum, nickel, selenium, and zinc in all major types of commercial fertilizer products by microwave digestion and inductively coupled plasma-optical emission spectroscopy analysis. This validation study proposes an extension and modification of AOAC 2006.03. The extension is the inclusion of calcium, copper, iron, magnesium, manganese, and zinc, and the modification is incorporation of hydrochloric acid in the digestion system. This dual acid digestion utilizes both hydrochloric and nitric acids in a 3 to 9 mL volume ratio/100 mL. In addition to 15 of the 30 original validation materials used in the 2006.03 collaborative study, National Institute of Standards and Technology Standard Reference Material 695 and Magruder 2009-06 were incorporated as accuracy materials. The main benefits of this proposed method are a significant increase in laboratory efficiency when compared to the use of both AOAC Methods 965.09 and 2006.03 to achieve the same objective and an enhanced recovery of several metals.

  1. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    Science.gov (United States)

    Ilik, Erkan; Akan, Tamer

    2016-05-01

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N2, N2+, oxygen, and helium intensities for various flow rates.

  2. On-line depth measurement for laser-drilled holes based on the intensity of plasma emission

    Science.gov (United States)

    Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung

    2014-09-01

    The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.

  3. Optical Instabilities and Spontaneous Light Emission by Polarizable Moving Matter

    Directory of Open Access Journals (Sweden)

    Mário G. Silveirinha

    2014-07-01

    Full Text Available One of the most extraordinary manifestations of the coupling of the electromagnetic field and matter is the emission of light by charged particles passing through a dielectric medium: the Vavilov-Cherenkov effect. Here, we theoretically predict that a related phenomenon may be observed when neutral fast polarizable particles travel near a metal surface supporting surface plasmon polaritons. Based on a classical formalism, we find that at some critical velocity, even if the initial optical field is vanishingly small, the system may become unstable and may start spontaneously emitting light such that in some initial time window the electromagnetic field grows exponentially with time.

  4. Fast figuring of large optics by reactive atom plasma

    Science.gov (United States)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  5. Emission spectroscopy of laser-ablated Si plasma related to nanoparticle formation

    Science.gov (United States)

    Narayanan, V.; Thareja, R. K.

    2004-01-01

    We report on the laser ablation of Si in vacuum, and in the presence of helium ambient at 1 and 10 Torr, respectively. The silicon nanoparticles were deposited on silicon substrate at room temperature by ablating silicon wafer in ambient atmosphere of helium at 1 Torr. The mean cluster size ranging from 1.8 to 4.4 nm is observed depending on the laser intensity. Optical emission spectroscopy and images of the plume are used to study the spatial and temporal variation of the silicon plasma. The electron density, measured by the Stark-broadening of Si I transition 3 p2 1S-4 s 1P0 at 390.55 nm and temperature, assuming thermal equilibrium, were found to be 1.2×10 18 cm -3 and 2 eV, respectively. The temporal variation of Si I transition 3 p2 1S-4 s 1P0 at 390.55 nm showed a shift in peak position attributed to collisions at an early stage of plasma formation. The relative concentration of Si II/Si I estimated by using the Saha-Boltzmann relation showed abundance of Si I. Time resolved images of the plume were used to investigate the dynamics of the expanding plasma plume, estimating the vapor pressure, vapor temperature, velocity, and stopping distance of the plume. The photoluminescent spectra of the Si thin films showed three distinct emission bands at 2.7, 2.2 and 1.69 eV, the origin of these bands is attributed to defects and quantum confinement.

  6. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  7. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Basovic, Milos [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  8. Collector optic cleaning by in-situ hydrogen plasma

    Science.gov (United States)

    Elg, Daniel T.; Panici, Gianluca A.; Srivastava, Shailendra N.; Ruzic, D. N.

    2015-03-01

    Extreme ultraviolet (EUV) lithography sources produce EUV photons by means of a hot, dense, highly-ionized Sn plasma. This plasma expels high-energy Sn ions and neutrals, which deposit on the collector optic used to focus the EUV light. This Sn deposition lowers the reflectivity of the collector optic, necessitating downtime for collector cleaning and replacement. A method is being developed to clean the collector with an in-situ hydrogen plasma, which provides hydrogen radicals that etch the Sn by forming gaseous SnH4. This method has the potential to significantly reduce collector-related source downtime. EUV reflectivity restoration and Sn cleaning have been demonstrated on multilayer mirror samples attached to a Sn-coated 300mm-diameter steel dummy collector driven at 300W RF power with 500sccm H2 and a pressure of 260mTorr. Use of the in-situ cleaning method is also being studied at industriallyapplicable high pressure (1.3 Torr). Plasma creation across the dummy collector surface has been demonstrated at 1.3 Torr with 1000sccm H2 flow, and etch rates have been measured. Additionally, etching has been demonstrated at higher flow rates up to 3200sccm. A catalytic probe has been used to measure radical density at various pressures and flows. The results lend further credence to the hypothesis that Sn removal is limited not by radical creation but by the removal of SnH4 from the plasma. Additionally, further progress has been made in an attempt to model the physical processes behind Sn removal.

  9. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan

    2014-01-01

    -state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy......We demonstrate a plasma discharge which is generated between two diverging electrodes and extended into a gliding arc in non-equilibrium condition by an air flow at atmospheric pressure. Effects of the air flow rates on the dynamics, ground-state OH distributions and spectral characterization of UV...

  10. Emission characteristics of kerosene-air spray combustion with plasma assistance

    Directory of Open Access Journals (Sweden)

    Xingjian Liu

    2015-09-01

    Full Text Available A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  11. Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions

    Indian Academy of Sciences (India)

    V K Unnikrishnan; Kamlesh Alti; V B Kartha; C Santhosh; G P Gupta; B M Suri

    2010-06-01

    Plasma produced by a 355 nm pulsed Nd:YAG laser with a pulse duration of 6 ns focussed onto a copper solid sample in air at atmospheric pressure is studied spectroscopically. The temperature and electron density characterizing the plasma are measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time window of 300–2000 ns. An echelle spectrograph coupled with a gated intensified charge coupled detector is used to record the plasma emissions. The temperature is obtained using the Boltzmann plot method and the electron density is determined using the Saha– Boltzmann equation method. Both parameters are studied as a function of delay time with respect to the onset of the laser pulse. The results are discussed. The time window where the plasma is optically thin and is also in local thermodynamic equilibrium (LTE), necessary for the laser-induced breakdown spectroscopy (LIBS) analysis of samples, is deduced from the temporal evolution of the intensity ratio of two Cu I lines. It is found to be 700–1000 ns.

  12. Curve of growth methodology applied to laser-induced plasma emission spectroscopy

    Science.gov (United States)

    Gornushkin, I. B.; Anzano, J. M.; King, L. A.; Smith, B. W.; Omenetto, N.; Winefordner, J. D.

    1999-04-01

    The curve-of-growth (COG) method was applied to a laser-induced plasma. The plasma was produced by a Nd:YAG laser on the surface of steel samples containing 0.007-1.3% of Cr. The emission was collected from the top of the plasma by means of a 45° pierced mirror and aligned onto an intensified charge-coupled device (ICCD) with a gate width of 1 μs and a variable delay time. The resonance 425.4 nm Cr line was used for construction of the COG. The temperature of the plasma (˜8000 K at 5-μs delay) was determined from a Boltzmann plot. The damping constant a, proportional to the ratio of the Lorentzian to the Doppler line widths, was found from the best fit of a series of calculated COG to the experimental data points and was 0.20±0.05. The number density of neutral Cr atoms which corresponded to the transition between low and high optical densities, was ≈6.5·10 12 cm -3. The cross-section for broadening collisions of Cr atoms with atmospheric species (presumably N 2) was calculated to be (66±16) Å. The shape of the 425.4-nm Cr line was additionally checked by scanning an ultra-narrow cw Ti:Sapphire laser across the atomic transition and found to be in agreement with preliminary estimates. The potential of the COG method for laser breakdown spectroscopy is discussed.

  13. The Gridless Plasma Ion Source(GIS)for Plasma Ion Assisted Optical Coating

    Institute of Scientific and Technical Information of China (English)

    尤大伟; 李晓谦; 王宇; 林永昌

    2004-01-01

    High-quality optical coating is a key technology for modern optics. Ion-assisted deposition technology was used to improve the vaporized coating in 1980's. The GIS (gridless ion source), which is an advanced plasma source for producing a high-quality optical coating in large area, can produce a large area uniformity>1000 mm(diameter), a high ion current density ~ 0.5mA/cm2, 20 eV ~ 200 eV energetic plasma ions and can activate reactive gas and film atoms. Now we have developed a GIS system. The GIS and the plasma ion-assisted deposition technology are investigated to achieve a high-quality optical coating. The GIS is a high power and high current source with a power of I kW ~ 7.5 kW, a current of 10 A ~ 70 A and an ion density of 200μA/cm2 ~ 500μA/cm2. Because of the special magnetic structure, the plasma-ion extraction efficiency has been improved to obtain a maximum ion density of 500μA/cm2 in the medium power (~ 4 kW) level. The GIS applied is of a special cathode structure, so that the GIS operation can be maintained under a rather low power and the lifetime of cathode will be extended. The GIS has been installed in the LPSX-1200 type box coating system. The coated TiO2, SiO2 films such as antireflective films with the system have the same performance reported by Leybold Co, 1992, along with a controllable refractive index and film structure.

  14. Continuous optical monitoring during the prompt emission of GRB 060111B

    CERN Document Server

    Klotz, A; Stratta, G; Atteia, J L; Boër, M; Malacrino, F; Damerdji, Y; Behrend, R; Klotz, Alain; Gendre, Bruce; Stratta, Giulia; Atteia, Jean-Luc; Boer, Michel; Malacrino, Frederic; Damerdji, Yassine; Behrend, Raoul

    2006-01-01

    We present the time-resolved optical emission of GRB 060111B during its prompt phase, measured with the TAROT robotic observatory. This is the first time that the optical emission from a gamma-ray burst has been continuously monitored with a temporal resolution of a few seconds during the prompt gamma-ray phase. The temporal evolution of the prompt optical emission at the level of several seconds is used to provide a clue to the origin of this emission. The optical emission was found to decay steadily from our first measure, 28s after the trigger, in contrast to the gamma-ray emission, which exhibits strong variability at the same time. This behaviour strongly suggests that the optical emission is due to the reverse shock.

  15. Detection of metal ions in potassium hydroxide with inductively coupled plasma optical emission spectrometry method%电感耦合等离子光谱法测定氢氧化钾中金属离子

    Institute of Scientific and Technical Information of China (English)

    丁灵; 张天兰; 弓创周; 夏俊玲

    2012-01-01

    Silicate,iron,sodium,aluminum,calcium,and nickel in high-quality flaky potassium hydroxide were respectively detected with visual colorimetry, spectrophotorrietry, and atomic absorption spectrometry .These methods are too complex and need too much time.Now the six elements (silicate, iron, sodium, aluminum, calcium, and nickel) can be detected at the same time with inductively coupled plasma spectrometry .The method is simple and rapid, and has a high precision and accuracy.%高品质片状氢氧化钾中硅酸盐、铁、钠、铝、钙、镍6项指标通常分别采用目视比色法、分光光度法、原子吸收法测定,其操作繁琐并且耗费时间较长.采用电感耦合等离子发射光谱仪可同时测定硅酸盐、铁、钠、铝、钙、镍6项指标.该法简便、快速,并有较高的精密度和准确度.

  16. BAT AGN Spectroscopic Survey II: X-ray Emission and High Ionization Optical Emission Lines

    CERN Document Server

    Berney, Simon; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Schawinski, Kevin; Balokovic, Mislav; Crenshaw, D Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Ichikawa, Kohei; Mushotzky, Richard; Oh, Kyuseok; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2015-01-01

    We investigate the relationship between X-ray and optical line emission in 340 nearby AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (14-195 keV) with a [OIII] large scatter (R_Pear = 0.64, sigma = 0.62 dex) and a similarly large scatter with the intrinsic 2-10 keV to [O III] luminosities (RPear=0.63, sigma = 0.63 dex). Correlations of the hard X-ray fluxes with the fluxes of high-ionization narrow lines ([O III], He II, [Ne III] and [Ne V]) are not significantly better than with the low ionization lines (Halpha, [SII]). Factors like obscuration or physical slit size are not found to be a significant part of the large scatter. In contrast, the optical emission lines show much better correlations with each other (sigma = 0.3 dex) than with the X-ray flux. The inherent large scatter questions the common usage of narrow emission lines as AGN bolometric luminosity indicators and suggests that other issues such as geometrical...

  17. Adaptive optical design in surface plasma resonance sensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng; ZHONG Jin-gang

    2006-01-01

    A double-prism adaptive optical design in surface plasma resonance (SPR) sensor is proposed,which consists of two identical isosceles right-triangular prisms. One prism is used as a component of Kretschmann configuration,and the other is for regulation of the optical path. When double-prism structure is angle-scanned by an immovable incident ray,the output ray will be always parallel with the incident ray and just has a small displacement with the shift of output point.The output ray can be focused on a fixed photodetector by a convex lens.Thus it can be avoided that a prism and a photodetector rotate by θ and 2θ respectively in conventional angular scanning SPR sensor.This new design reduces the number of the movable components,makes the structure simple and compact,and makes the manipulation convenient.

  18. Optically stimulated exoelectron emission processes in quartz: comparison of experiment and theory

    DEFF Research Database (Denmark)

    Pagonis, V.; Ankjærgaard, Christina; Murray, A.S.

    2009-01-01

    Recent experiments have demonstrated that it is possible to measure optically stimulated exoelectron emission (OSE) signals simultaneously with optically stimulated luminescence (OSL) from quartz samples. These experiments provide valuable information on the charge movement in quartz grains. Two...

  19. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    Science.gov (United States)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  20. Startup of Plasma Current in J-TEXT Tokamak Prompted by the Hα Line Emission Criterion

    Institute of Scientific and Technical Information of China (English)

    GAO Li; ZHUANG Ge; HU Xiwei; ZHANG Ming

    2009-01-01

    An Hα line-emission detection system was developed on the joint texas experimental tokamak (J-TEXT), which is used to determine the Hα emission level during the gas breakdown and hereafter to control the startup of the plasma current. The detector consists of an Hα in-terference filter, a focusing lens, a photodiode and a preamplifier. In the J-TEXT operation, the Hα emission is taken as a monitor signal which is highly sensitive to the generation of a plasma.Furthermore, the power supply control system using the above signal as an input is capable of de-termining whether and when to fire the Ohmic heating capacitor banks, which are applied to drive the plasma current ramp-up. The experimental results confirm that the Hα emission criterion is acceptable for controlling the plasma current promotion in the J-TEXT tokamak.

  1. Optical Emissions Associated with Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, W.; Celestin, S. J.; Pasko, V. P.

    2013-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Measurements have correlated TGFs with initial development stages of normal polarity intracloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. Moreover, Østgaard et al. [GRL, 40, 2423, 2013] have recently reported, for the first time, space-based observations of optical emissions from TGF-associated IC lightning flashes. The purpose of the present work is to quantify the intensities of optical emissions resulting from the excitation of air molecules produced by conventional streamer discharges in negative corona flashes of stepping negative leaders and by the large amount of electrons involved in TGF events based on two production mechanisms: relativistic runaway electron avalanches (RREAs) [Dwyer and Smith, GRL, 32, L22804, 2005] and production of runaway electrons by high-potential +IC lightning leaders [e.g., Celestin and Pasko, JGR, 116, A03315, 2011; Xu et al., GRL, 39, L08801, 2012]. We employ a Monte Carlo model to simulate the acceleration of electrons in the energy range from sub-eV to GeV in either large-scale homogeneous electric field sustaining RREAs or highly inhomogeneous electric field produced around the lightning leader tip region. With the knowledge of the electron energy distribution function, a model similar to that described in [Liu and Pasko, JGR, 109, A

  2. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.

    Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  3. Laser-driven hole boring and gamma-ray emission in high-density plasmas

    CERN Document Server

    Nerush, Evgeny

    2014-01-01

    Ion acceleration in laser-produced dense plasmas is a key topic of many recent investigations thanks to its potential applications. Besides, at forthcoming laser intensities ($I \\gtrsim 10^{23} \\text{W}\\,\\text{cm}^{-2}$) interaction of laser pulses with plasmas can be accompanied by copious gamma-ray emission. Here we demonstrate the mutual influence of gamma-ray emission and ion acceleration during relativistic hole boring in high-density plasmas with ultra-intense laser pulses. If gamma-ray emission is abundant, laser pulse reflection and hole-boring velocity are lower and gamma-ray radiation pattern is narrower than in the case of low emission. Conservation of energy and momentum allows one to elucidate the effects of gamma-ray emission which are more pronounced at higher hole-boring velocities.

  4. Influence of COsub>2sub> pressure on the emission spectra and plasma parameters in underwater laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Goueguel, Christian L; McIntyre, Dustin L; Jain, Jinesh C

    2016-12-01

    Optical emission spectroscopic studies have been carried out to investigate the pressure effect of COsub>2sub> on laser-produced underwater plasma. The plasma was generated by focusing 1064 nm, 6 ns pulses from a Nd:YAG laser in a COsub>2sub>-bearing solution. The temporal evolution of the continuum emission, Sr and Ba lines, and plasma electron density and temperature was characterized under COsub>2sub> pressure ranging from 10 to 300 bars. The electron density measurements were made using the Stark broadening of the 455.40 nm Ba II line, while the temperature measurements have been performed by the Saha-Boltzmann method using the Sr I-II lines at 460.73 and 407.77 nm, respectively. It was found that COsub>2sub> pressure has little effect on the emission line intensity and signal-to-background ratio. The electron density and the temperature are found to be independent of the COsub>2sub> pressure at early times. When time becomes longer, the electron density exhibits an appreciable rise as the COsub>2sub> pressure increases, while the temperature is found to be unchanged.

  5. Fundamental and analytical studies of optical emission from the Mach disk extracted from an ICP

    Energy Technology Data Exchange (ETDEWEB)

    Luan, S.; Pang, H.; Houk, R.S. [Iowa State Univ., Ames, IA (United States)

    1994-12-31

    An inductively coupled plasma is extracted into a small quartz vacuum chamber (approximately 1 torr) through a sampling orifice in a copper disk. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer with two segmented-array charge-coupled device detectors (SCD), the Optima 3000 from Perkin-Elmer. This detector provides excellent quantum efficiency throughout the UV-visible region, as well as low dark current and readout noises. The spectral background emitted by the Mach disk is very low. If analyte line intensities from the Mach disk can be enhanced, the combined ICP-Mach disk-Optima instrument should provide excellent detection limits for simultaneous multielement analysis. Axial profiles of the optical emission of various atom and ion lines are measured. Intensities of various lines are maximized at the Mach disk location. The relationship between the location of the Mach disk and the vacuum operating pressure is studied, using a cathetometer to measure small changes in the location of the Mach disk. The effects of aerosol gas flow rate on the intensities of various lines are also investigated. Finally, several schemes for boosting the intensity from the Mach disk will be presented.

  6. Optical diagnostics for laser wakefields in plasma channels

    Science.gov (United States)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  7. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode%Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    Institute of Scientific and Technical Information of China (English)

    Alexander I. PUSHKAREV; Yulia I. ISAKOVA

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode.

  8. Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD

    Science.gov (United States)

    Hou, Guo-Fu; Geng, Xin-Hua; Zhang, Xiao-Dan; Sun, Jian; Zhang, Jian-Jun; Zhao, Ying

    2011-07-01

    A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si-H stretching mode shifts from 2000 cm-1 to 2100 cm-1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm-1 to 620 cm-1. At the same time the SiH/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.

  9. Optical steganography based on amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver.

  10. Optical emission spectrum of filamentary nanosecond surface dielectric barrier discharge

    Science.gov (United States)

    Shcherbanev, S. A.; Khomenko, A. Yu; Stepanyan, S. A.; Popov, N. A.; Starikovskaia, S. M.

    2017-02-01

    Streamer-to-filament transition is a general feature of high pressure high voltage (HV) nanosecond surface dielectric barrier discharges. The transition was studied experimentally using time- and space-resolved optical emission in UV and visible parts of spectra. The discharge was initiated by HV pulses 20 ns in duration and 2 ns rise time, positive or negative polarity, 20-60 kV in amplitude on the HV electrode. The experiments were carried out in a single-shot regime at initial pressures P  >  3 bar and ambient initial temperature in air, N2, H2:N2 and O2:Ar mixtures. It was shown that the transition to filamentary mode is accompanied by the appearance of intense continuous radiation and broad atomic lines. Electron density calculated from line broadening is characterized by high absolute values and long decay in the afterglow. The possible reasons for the continuous spectra were analyzed.

  11. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies

    CERN Document Server

    Fausnaugh, M M; Bentz, M C; Denney, K D; De Rosa, G; Peterson, B M; Kochanek, C S; Pogge, R W; Adams, S M; Barth, A J; Beatty, Thomas G; Bhattacharjee, A; Borman, G A; Boroson, T A; Bottorff, M C; Brown, Jacob E; Brown, Jonathan S; Brotherton, M S; Coker, C T; Crawford, S M; Croxall, K V; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M D; Henderson, C B; Holoien, T W -S; Horne, Keith; Hutchison, T; Kaspi, Shai; Kim, S; King, Anthea L; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F; Manne-Nicholas, E R; Mason, M; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R; Nazarov, S V; Nguyen, M L; Okhmat, D N; Onken, Christopher A; Ou-Yang, B; Pancoast, A; Pei, L; Penny, Matthew T; Poleski, Radoslaw; Rafter, Stephen; Romero-Colmenero, E; Runnoe, Jessie; Sand, David J; Schimoia, Jaderson S; Sergeev, S G; Shappee, B J; Simonian, Gregory V; Somers, Garrett; Spencer, M; Starkey, D; Stevens, Daniel J; Tayar, Jamie; Treu, T; Valenti, Stefano; Van Saders, J; Villanueva, S; Villforth, C; Weiss, Yaniv; Winkler, H; Zhu, W

    2016-01-01

    We present the first results from an optical reverberation mapping campaign executed in 2014, targeting the active galactic nuclei (AGN) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a "changing look" AGN and a broad-line radio galaxy. Based on continuum-H$\\beta$ lags, we measure black hole masses for all five targets. We also obtain H$\\gamma$ and He{\\sc ii}\\,$\\lambda 4686$ lags for all objects except 3C 382. The He{\\sc ii}\\,$\\lambda 4686$ lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100--300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.

  12. Hybrid formulation of radiation transport in optically thick divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2016-08-15

    Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  13. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    Science.gov (United States)

    Singh, Divya; Malik, Hitendra K.

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  14. Tunable polarization plasma channel undulator for narrow bandwidth photon emission

    Science.gov (United States)

    Rykovanov, S. G.; Wang, J. W.; Kharin, V. Yu.; Lei, B.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2016-09-01

    The theory of a plasma undulator excited by a short intense laser pulse in a parabolic plasma channel is presented. The undulator fields are generated either by the laser pulse incident off-axis and/or under the angle with respect to the channel axis. Linear plasma theory is used to derive the wakefield structure. It is shown that the electrons injected into the plasma wakefields experience betatron motion and undulator oscillations. Optimal electron beam injection conditions are derived for minimizing the amplitude of the betatron motion, producing narrow-bandwidth undulator radiation. Polarization control is readily achieved by varying the laser pulse injection conditions.

  15. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2010-07-15

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  16. Experimental Studies of Low-Pressure Plasma Jet by Means of Langmuir Probes and Emission Spectra

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; CAO Jinxiang; NIU Tianye; WANG Liang; MENG Gang; LIU Xin; YUAN Lei; WU Runhui; ZHANG Shengjun; REN Aimin

    2009-01-01

    An investigation was made into the argon plasma jet that expanded in a low-pressure vacuum chamber. The spatial distributions of the parameters of the plasma jet with different supplied powers were measured using a ten-channel Langmuir probe array. The chemical species in the plasma jet were identified by emission spectroscopy. The electron excitation temperatures at two positions, 10 cm and 50 cm downstream from the nozzle exit were calculated, respectively, by the Boltzmann plot method.

  17. Nonlinear Optical Parameters of Magnetoactive Semiconductor-Plasmas

    Science.gov (United States)

    Singh, M.; Joseph, D.; Duhan, S.

    The nonlinear optical parameters (absorption coefficient and refractive index) of semiconductor-plasmas subjected to a transverse magnetic field have been investigated analytically. By employing the coupled-mode scheme, an expression of third-order optical susceptibility and resultant nonlinear absorption and refractive index of the medium are obtained. The analysis has been applied to both cases, viz., centrosymmetric (β = 0) and noncentrosymmetric (β ≠ 0) in the presence of magnetic field. The numerical estimates are made for InSb crystal at liquid nitrogen temperature duly irradiated by a 10-nanosecond pulsed 10.6 μm CO2 laser. The influence of doping concentration and magnetic field on both the nonlinear absorption and refractive index has been explored, and the results are found to be well in agreement with theory and experiment. Analysis further establishes that absorption coefficient and refractive index can be controlled with precision in semiconductors by the proper selection of doping concentration and an external magnetic field, and hence these media may be used for fabrication of fast cubic nonlinear optical devices under off-resonant transition regime.

  18. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706 (United States); Radovanov, Svetlana; Persing, Harold [Applied Materials Inc., Gloucester, Massachusetts 01939 (United States)

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  19. Terahertz current oscillations assisted by optical phonon emission in GaN n+nn+ diodes: Monte Carlo simulations

    Science.gov (United States)

    Íñiguez-de-la-Torre, A.; Mateos, J.; González, T.

    2010-03-01

    Under certain conditions, plasma instabilities associated with streaming motion of carriers taking place in n+nn+ diodes can lead to current oscillations. The origin of the phenomenon, known as optical phonon transit time resonance, is characterized by a frequency related to the transit time between consecutive optical phonon emissions by electrons along the active region of the diode. By means of Monte Carlo simulations, the possibility to obtaining current oscillations in GaN n+nn+ diodes is analyzed. The optimum conditions for the onset of such mechanism are investigated: applied bias, temperature, doping, and length of the active n region. Simulations show that current oscillations at frequencies in the terahertz range can be obtained at very low temperatures. Moreover, by choosing the appropriate applied voltage and length of the n region, some degree of tunability can be achieved for frequencies close to the plasma frequency of the n region of the n+nn+ diode.

  20. Second harmonic electromagnetic emission of a turbulent magnetized plasma driven by a powerful electron beam

    CERN Document Server

    Timofeev, I V

    2012-01-01

    The power of second harmonic electromagnetic emission is calculated for the case when strong plasma turbulence is excited by a powerful electron beam in a magnetized plasma. It is shown that the simple analytical model of strong plasma turbulence with the assumption of a constant pump power is able to explain experimentally observed bursts of electromagnetic radiation as a consequence of separate collapse events. It is also found that the electromagnetic emission power calculated for three-wave interaction processes occurring in the long-wavelength part of turbulent spectrum is in order-of-magnitude agreement with experimental results.

  1. Optical Emission Spectroscopy Study of Competing Phases of Electrons in the Second Landau Level.

    Science.gov (United States)

    Levy, A L; Wurstbauer, U; Kuznetsova, Y Y; Pinczuk, A; Pfeiffer, L N; West, K W; Manfra, M J; Gardner, G C; Watson, J D

    2016-01-01

    Quantum phases of electrons in the filling factor range 2≤ν≤3 are probed by the weak optical emission from the partially populated second Landau level and spin wave measurements. Observations of optical emission include a multiplet of sharp peaks that exhibit a strong filling factor dependence. Spin wave measurements by resonant inelastic light scattering probe breaking of spin rotational invariance and are used to link this optical emission with collective phases of electrons. A remarkably rapid interplay between emission peak intensities manifests phase competition in the second Landau level.

  2. Simultaneous electrical and optical study of spoke rotation, merging and splitting in HiPIMS plasma

    Science.gov (United States)

    Klein, P.; Lockwood Estrin, F.; Hnilica, J.; Vašina, P.; Bradley, J. W.

    2017-01-01

    To gain more information on the temporal and spatial behaviour of self-organized spoke structures in HiPIMS plasmas, a correlation between the broadband optical image of an individual spoke (taken over 200 ns) and the current it delivers to the target has been made for a range of magnetron operating conditions. As a spoke passes over a set of embedded probes in the niobium cathode target, a distinct modulation in the local current density is observed, (typically up to twice the average value), matching very well the radially integrated optical emission intensities (obtained remotely with an ICCD camera). The dual diagnostic system allows the merging and splitting of a set of spokes to be studied as they rotate. It is observed that in the merger of two spokes, the trailing spoke maintains its velocity while the leading spoke either decreases its velocity or increases its azimuthal length. In the spoke splitting process, the total charge collected by an embedded probe is conserved. A simple phenomenological model is developed that relates the spoke mode number m to the spoke dimensions, spoke velocity and gas atom velocity. The results are discussed in the context of the observations of spoke dynamics made by Hecimovic et al (2015 Plasma Sources Sci. Technol. 24 045005)

  3. Theory of terahertz emission from femtosecond-laser-induced micro-plasmas

    CERN Document Server

    Thiele, I; Bousquet, B; Tikhonchuk, V; Davoine, X; Gremillet, L; Bergé, L; Skupin, S

    2016-01-01

    We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on micro-plasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel-ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both, ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multi-cycle lasers pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conver...

  4. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Suter, Jonathan D.; Phillips, Mark C.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlO is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.

  5. Mapping the X-Ray Emission Region in a Laser-Plasma Accelerator

    Science.gov (United States)

    Corde, S.; Thaury, C.; Phuoc, K. Ta; Lifschitz, A.; Lambert, G.; Faure, J.; Lundh, O.; Benveniste, E.; Ben-Ismail, A.; Arantchuk, L.; Marciniak, A.; Stordeur, A.; Brijesh, P.; Rousse, A.; Specka, A.; Malka, V.

    2011-11-01

    The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.

  6. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    Science.gov (United States)

    Sakhalkar, H. S.; Dewhirst, M.; Oliver, T.; Cao, Y.; Oldham, M.

    2007-04-01

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate or BABB

  7. Laser induced surface emission of neutral species and its relationship to optical surface damage processes

    Science.gov (United States)

    Chase, L. L.; Smith, L. K.

    1988-03-01

    The laser-induced emission of neutral constituents and impurities from surfaces of several optical materials is shown to be correlated with optical surface damage thresholds. The characteristics of the emission can be utilized to investigate physical processes involved in the absorption of laser energy at the surface. Examples are given of neutral emission correlated with catastrophic surface heating, changes in surface stoichiometry, and thermally-induced cracking.

  8. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    CERN Document Server

    Arzhannikov, A V

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 ${MW/cm}^3$ with 1% conversion efficiency of beam energy losses to electromagnetic emission.

  9. On Floating Potential of Emissive Probes in a Partially-Magnetized Plasma

    Science.gov (United States)

    Raitses, Yevgeny; Kraus, Brian

    2016-10-01

    We compare measurements of plasma potential in a cross-field Penning discharge from two probes: swept biased Langmuir probe and floating emissive probe. The plasma potential was deduced from the first derivative of the Langmuir probe characteristic. In previous studies, the emissive and swept biased probes were placed at the channel exit of a Hall thruster (HT). Measurements showed that the emissive probe floats below the plasma potential, in agreement with conventional theories. However, recent measurements in the Penning discharge indicate a floating potential of a strongly-emitting hot probe above the plasma potential. In both probe applications, xenon plasmas have magnetized electrons and non-magnetized ions with similar plasma densities (1010 - 1011 cm-3) . Though their electron temperatures differ by an order of magnitude (Penning 5 eV, HT 50 eV), this difference cannot explain the difference in measurement values of the hot floating potential because both temperatures are much higher than the emitting wire. In this work, we investigate how the ion velocity and other plasma parameters affect this discrepancy between probe measurements of the plasma potential. This work was supported by DOE contract DE-AC02-09CH11466.

  10. Development of robotic plasma radiochemical assays for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Alexoff, D.L.; Shea, C.; Fowler, J.S.; Gatley, S.J.; Schlyer, D.J. [Brookhaven National Lab., Upton, NY (United States). Dept. of Chemistry

    1995-12-01

    A commercial laboratory robot system (Zymate PyTechnology II Laboratory Automation System; Zymark Corporation, Hopkinton, MA) was interfaced to standard and custom laboratory equipment and programmed to perform rapid radiochemical analyses for quantitative PET studies. A Zymark XP robot arm was used to carry out the determination of unchanged (parent) radiotracer in plasma using only solid phase extraction methods. Robotic throughput for the assay of parent radiotracer in plasma is 4--6 samples/hour depending on the radiotracer. Robotic assays of parent compound in plasma were validated for the radiotracers [{sup 11}C]Benztropine, [{sup 11}C]cocaine, [{sup 11}C]clorgyline, [{sup 11}C]deprenyl, [{sup 11}C]methadone, [{sup 11}C]methylphenidate, [{sup 11}C]raclorpride, and [{sup 11}C]SR46349B. A simple robot-assisted methods development strategy has been implemented to facilitate the automation of plasma assays of new radiotracers.

  11. Observations of the Prompt Optical Emission of GRB 160625B with Mini-MegaTORTORA

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.

    2017-06-01

    Here we report our observations of bright optical flash coincident with Fermi GRB160625B using Mini-MegaTORTORA wide-field monitoring system. The prompt optical emission is correlated with gamma one and lags behind it for about 3 seconds, that suggests that optical and gamma emission are formed in different regions of the burst. The multiwavelength properties of this burst are very similar to ones of Naked-Eye Burst, GRB080319B, we detected earlier with TORTORA camera.

  12. An accurate automated technique for quasi-optics measurement of the microwave diagnostics for fusion plasma

    Science.gov (United States)

    Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan

    2017-08-01

    A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.

  13. Is optical Fe II emission related to the soft X-ray properties of quasars?

    Science.gov (United States)

    Wilkes, Belinda J.; Elvis, Martin; Mchardy, Ian

    1987-01-01

    Radio-quiet quasars generally show broad, blended multiplets of Fe II emission in their optical and UV spectra. Radio-loud quasars also show UV Fe II emission, but their optical Fe II emission is generally weaker. No satisfactory theory connecting the generation of Fe II and radio emission has been found to explain this effect. A second, well-established distinction between the two clases of quasar is in their X-ray properties: radio-loud quasars are more X-ray luminous, and recent results have shown that they also have systematically flatter soft X-ray slopes. Here it is proposed that the second effect causes the first; i.e., that the primary factor controlling the optical Fe II emission is the soft X-ray spectrum. This proposition is supported by X-ray and optical data for nine quasars, which shows a correlation between the soft X-ray slope and the strength of the optical Fe II emission. One of these quasars (1803+676) is radio-quiet, and yet its optical spectrum shows no evidence for Fe II emission. This quasar is also unusual in that it has a flat X-ray spectrum. This further supports the proposal that the X-ray spectrum is important in determining the relative strengths of UV and optical Fe II emission.

  14. Plasma-etched nanostructures for optical applications (Presentation Recording)

    Science.gov (United States)

    Schulz, Ulrike; Rickelt, Friedrich; Munzert, Peter; Kaiser, Norbert

    2015-08-01

    A basic requirement for many optical applications is the reduction of Fresnel-reflections. Besides of interference coatings, nanostructures with sub-wavelength size as known from the eye of the night-flying moth can provide antireflective (AR) properties. The basic principle is to mix a material with air on a sub-wavelength scale to decrease the effective refractive index. To realize AR nanostructures on polymers, the self-organized formation of stochastically arranged antireflective structures using a low-pressure plasma etching process was studied. An advanced procedure involves the use of additional deposition of a thin oxide layer prior etching. A broad range of different structure morphologies exhibiting antireflective properties can be generated on almost all types of polymeric materials. For applications on glass, organic films are used as a transfer medium. Organic layers as thin film materials were evaluated to identify compounds suitable for forming nanostructures by plasma etching. The vapor deposition and etching of organic layers on glass offers a new possibility to achieve antireflective properties in a broad spectral range and for a wide range of light incidence.

  15. Structural and optical properties of chlorinated plasma polymers

    Energy Technology Data Exchange (ETDEWEB)

    Turri, Rafael [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas, Campinas, SP (Brazil); Schreiner, Wido [Departamento de Fisica, Universidade Federal de Parana, PR (Brazil); Dias da Silva, Jose Humberto [Faculdade de Ciencias, Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil); Appolinario, Marcelo Borgatto [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil); Durrant, Steven F., E-mail: steve@sorocaba.unesp.br [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco 511, Alto de Boa Vista, 18087-180, Sorocaba, SP (Brazil)

    2011-12-30

    Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform-acetylene-argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, R{sub C}, which was varied from 0 to 80%. Deposition rates of 80 nm min{sup -1} were typical for the chlorinated films. Infrared reflection-absorption spectroscopy revealed the presence of C-Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at {approx} 47 at.% for R{sub C} {>=} 40%. The refractive index and optical gap, E{sub 04}, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet-visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from {approx} 40 Degree-Sign to {approx} 77 Degree-Sign .

  16. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  17. Optical Emission Spectroscopic Measurement of Hydroxyl Radicals in Air Discharge with Atomized Water%Optical Emission Spectroscopic Measurement of Hydroxyl Radicals in Air Discharge with Atomized Water

    Institute of Scientific and Technical Information of China (English)

    孙明; 陈维刚; 张颖

    2011-01-01

    Effects of discharge mode, voltage applied, size of the nozzle discharge electrode and flow rate of water on the generation of hydroxyl radical were investigated in air discharge with atomized water, by using optical emission spectroscopy (OES). Water was injected into the discharge region through the discharge nozzle electrode, and a large amount of fine water drops, formed and distributed in the discharge region, corona discharge was more effective to generate were observed. It was found that negative DC the hydroxyl radicals in comparison to positive DC corona discharge or negative pulsed discharge. A larger outer diameter of the nozzle electrode or a stronger electric field is beneficial for hydroxyl-radical generation. Moreover, there is a critical value in the flow rate of atomized water against the discharge voltage. Below this critical value, hydroxyl-radical generation increases with the increase in flow rate of the water, while above this value, it decreases. In addition, it is observed that OES from the discharge is mainly in the ultraviolet domain. The results are helpful in the study of the mechanism and application of plasma in pollution-control in either air or water.

  18. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    Science.gov (United States)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  19. Optical sensors for process control and emissions monitoring in industry

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  20. Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma

    CERN Document Server

    Laulainen, J; Koivisto, H; Komppula, J; Tarvainen, O

    2015-01-01

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  1. Photoelectron emission from metal surfaces induced by VUV-emission of filament driven hydrogen arc discharge plasma

    Science.gov (United States)

    Laulainen, J.; Kalvas, T.; Koivisto, H.; Komppula, J.; Tarvainen, O.

    2015-04-01

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  2. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  3. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    Science.gov (United States)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  4. Optical Emission Spectroscopy in PECVD Helps Modulate Key Features in Biofunctional Coatings for Medical Implants

    Science.gov (United States)

    Santos, Miguel; Michael, Praveesuda; Filipe, Elysse; Wise, Steven; Bilek, Marcela; University of Sydney Collaboration

    2015-09-01

    We explore the use of optical emission spectroscopy (OES) diagnostic tools as a process feedback control strategy in plasma-assisted deposition of biofunctional coatings. Hydrogenated carbon nitride coatings are deposited on medical-grade metallic substrates using radio-frequency (rf) discharges sustained in C2H2/N2/Ar gaseous mixtures. The discharge is generated by capacitively coupling the rf power (supplied at f = 13.56 MHz) to the plasma and the substrates are electrically biased using a pulse generator to provide microsecond square profiled pulses at voltages in the range |Vbias| = 250 V - 1000 V. Nitrogen content and CN bonding configurations in the coatings follow similar trends to those of CN radicals and nitrogen molecular ions in the discharge. OES is used as a non-intrusive diagnostic technique to identify a suitable window of process parameters and ultimately achieve biofunctional interfaces compatible with current clinical demands. Importantly, we demonstrate that key features of the coatings can be modulated and made suitable for blood and/or tissue contacting medical implants, such as coronary stents and orthopaedic implants. The coatings are mechanically robust, inherently non-thrombogenic and can be readily modified, enabling an easy functionalization through the immobilization of biological molecules in a bioactive conformation.

  5. Analysis of trace elements in food fortificants with inductively coupled plasma optical emission spectrometry%电感耦合等离子体原子发射光谱分析食品营养强化剂中的痕量元素

    Institute of Scientific and Technical Information of China (English)

    段建坤; 曾爱民; 杨永; 朱有涛; 唐立平; 沈丽

    2011-01-01

    A simple and fast method was developed for the determination of Ca, K, Na, Fe, Zn, Mn, Pb and As in food fortificants by inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of the sample matrix was studied and the results showed that there was little matrix effect existing if the concentration of the organic food fortificants and inorganic metal ion in the sample solution were no more than 20 and 2 g/L, respectively. Three methods for sample pretreatment were investigated and compared. External standard and matrix matching methods were used for quantification of the analytes in the samples. It is found than the former showed better analytical performances. The proposed method was applied for the analysis of six food fortificants with satisfied recoveries.%以电感耦合等离子体发射光谱(ICP—OES)作为检测手段分析了营养强化剂中的钙、钾、钠、铁、锌、锰、铅和砷等元素。研究了样品基体对于分析过程的影响,实验结果表明,有机强化剂浓度不超过20g/L,无机强化剂中的无机金属元素含量不超过2g/L时,可以认为基体没有影响。考察了不同的样品处理方式的优缺点。比较了校正曲线法(外标法)和基体匹配法两种定量分析方法,发现前者的分析性能更为优越。分析了6种强化剂中的钙、钾、钠、铁、锌、锰、铅和砷,加标回收结果满意。

  6. Efficient regime of electromagnetic emission in a plasma with counterstreaming electron beams

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.

    2014-08-01

    Efficiency of electromagnetic emission produced in a magnetized plasma with counterstreaming electron beams was investigated using both the linear kinetic theory and particle-in-cell simulations. We calculated the growth rate of the beam-plasma instability taking into account both kinetic and relativistic effects and showed that there exists a regime in which transversely propagating electromagnetic waves can be generated by the coupling of the most unstable oblique beam-driven modes. It was confirmed by numerical simulations that such a tune-up of system parameters for a specific nonlinear process can lead to a substantial increase in electromagnetic emission efficiency. It was found that electromagnetic radiation emerging from the plasma in such a regime is generated near the harmonics of the pump frequency that is determined by the typical eigenfrequency of the beam-driven modes. It was also shown that the peak emission power can reach 5% of the maximal power lost by beam electrons.

  7. Efficient regime of electromagnetic emission in a plasma with counterstreaming electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V. [Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2014-08-15

    Efficiency of electromagnetic emission produced in a magnetized plasma with counterstreaming electron beams was investigated using both the linear kinetic theory and particle-in-cell simulations. We calculated the growth rate of the beam-plasma instability taking into account both kinetic and relativistic effects and showed that there exists a regime in which transversely propagating electromagnetic waves can be generated by the coupling of the most unstable oblique beam-driven modes. It was confirmed by numerical simulations that such a tune-up of system parameters for a specific nonlinear process can lead to a substantial increase in electromagnetic emission efficiency. It was found that electromagnetic radiation emerging from the plasma in such a regime is generated near the harmonics of the pump frequency that is determined by the typical eigenfrequency of the beam-driven modes. It was also shown that the peak emission power can reach 5% of the maximal power lost by beam electrons.

  8. Emission reduction by means of low temperature plasma. Summary

    DEFF Research Database (Denmark)

    Bindslev, H.; Fateev, Alexander; Kusano, Yukihiro

    2006-01-01

    The work performed during the project is summarised. In the project we focused on removal of nitrogen oxides NOx (NO, NO2) and, in particular, on removal of nitrogen monoxide (NO) by injection of plasma-produced reactive agents. As reactive agents wetested ozone (O3), NH and NH2 radicals from amm...

  9. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    Directory of Open Access Journals (Sweden)

    Zhang JX

    2009-01-01

    Full Text Available Abstract Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

  10. Plasmonic emission and plasma lattice structures induced by pulsed laser in Purcell cavity on silicon

    Institute of Scientific and Technical Information of China (English)

    黄伟其; 黄忠梅; 苗信建; 刘世荣; 秦朝建

    2015-01-01

    The lattice structure image of a plasma standing wave in a Purcell cavity of silicon is observed. The plasma wave produced by the pulsed laser could be used to fabricate the micro-nanostructure of silicon. The plasma lattice structures induced by the nanosecond pulsed laser in the cavity may be similar to the Wigner crystal structure. It is interesting that the beautiful diffraction pattern could be observed in the plasma lattice structure. The radiation lifetime could be shortened to the nanosecond range throughout the entire spectral range and the relaxation time could be lengthened for higher emission efficiency in the Purcell cavity, which results in the fact that the plasmonic emission is stronger and its threshold is lower.

  11. Cascade emission in electron beam ion trap plasma of W$^{25+}$ ion

    CERN Document Server

    Jonauskas, V; Kučas, S; Masys, Š; Kynienė, A; Gaigalas, G; Kisielius, R; Radžiūtė, L; Rynkun, P; Merkelis, G

    2015-01-01

    Spectra of the W$^{25+}$ ion are studied using the collisional-radiative model (CRM) with an ensuing cascade emission. It is determined that the cascade emission boosts intensities only of a few lines in the $10 - 3$ nm range. The cascade emission is responsible for the disappearance of structure of lines at about 6 nm in the electron beam ion trap plasma. Emission band at 4.5 to 5.3 nm is also affected by the cascade emission. The strongest lines in the CRM spectrum correspond to $4d^{9} 4f^{4} \\rightarrow 4f^{3}$ transitions, while $4f^{2} 5d \\rightarrow 4f^{3}$ transitions arise after the cascade emission is taken into account.

  12. Characterization of a high current pulsed arc using optical emission spectroscopy

    Science.gov (United States)

    Sousa Martins, R.; Zaepffel, C.; Chemartin, L.; Lalande, Ph; Soufiani, A.

    2016-10-01

    In this paper, we present the investigation realized on an experimental setup that simulates an arc column subjected to the transient phase of a lightning current waveform in laboratory conditions. Optical emission spectroscopy is employed to assess space- and time-resolved properties of this high current pulsed arc. Different current peak levels are utilised in this work, ranging from 10 kA to 100 kA, with a peak time around 15 µs. Ionic lines of nitrogen and oxygen are used to determine the radial profiles of temperature and electron density of the arc channel over time from 2 µs to 36 µs. A combination of 192 N II and O II lines is considered in the calculation of the bound-bound contribution of the absorption coefficient of the plasma channel. Calculations of the optical thickness showed that self-absorption of these ionic lines in the arc column is important. To obtain temperature and electron density profiles in the arc, we solved the radiative transfer equation across the channel under an axisymmetric assumption and considering the channel formed by uniform concentric layers. For the 100 kA current peak level, the temperature reaches more than 38 000 K and the electron density reaches 5  ×  1018 cm-3. The pressure inside the channel is calculated using the air plasma composition at local thermodynamic equilibrium, and reaches 45 bar. The results are discussed and utilised to estimate the electrical conductivity of the arc channel.

  13. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  14. Dynamics of surface plasma generation by the microsecond emission of the XeF laser

    Science.gov (United States)

    Min'ko, L. Ia.; Chumakov, A. N.; Efremov, V. V.; Bakeev, A. A.; Nikolashina, L. I.; Prokopenko, N. V.; Sorokin, V. A.

    1991-06-01

    The dynamics of surface plasma generation by the microsecond emission of the XeF laser and the interaction of the ultraviolet emission with absorbent materials and the plasma at atmospheric pressure were investigated experimentally. The XeF laser used in the experiments operated at a wavelength of 0.35 micron, with a maximum emergy of 30 J and a pulse width of 3 microsec; the target materials included aluminum, bismuth, and graphite. The experimental results are presented in graphic form and compared with theoretical data.

  15. Enhanced photon emission and pair production in laser-irradiated plasmas

    Science.gov (United States)

    Wan, Feng; Lv, Chong; Jia, Moran; Xie, Baisong

    2017-07-01

    Enhanced photon emission and pair production due to heavy ion mass in the interaction of an ultraintense laser with overdense plasmas is explored by particle-in-cell simulation. It is found that plasmas with heavier ion mass can excite a higher and broader electrostatic field, which causes the enhancement of backward photon emission. The pair yields are then enhanced due to the increase of backwards photons colliding with the incoming laser pulse. By examining the density evolution and angle distribution of each particle species, the origin of pair yield enhancement is clarified.

  16. Stimulated emission of fast Alfv\\'en waves within magnetically confined fusion plasmas

    CERN Document Server

    Cook, J W S; Chapman, S C

    2016-01-01

    A fast Alfv\\'en wave with finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer mid-plane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "alpha-particle channelling" scenario for the first time.

  17. Stimulated Emission of Fast Alfvén Waves within Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2017-05-01

    A fast Alfvén wave with a finite amplitude is shown to grow by a stimulated emission process that we propose for exploitation in toroidal magnetically confined fusion plasmas. Stimulated emission occurs while the wave propagates inward through the outer midplane plasma, where a population inversion of the energy distribution of fusion-born ions is observed to arise naturally. Fully nonlinear first-principles simulations, which self-consistently evolve particles and fields under the Maxwell-Lorentz system, demonstrate this novel "α -particle channeling" scenario for the first time.

  18. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  19. Detection of a Cool, Accretion Shock-Generated X-ray Plasma in EX Lupi During the 2008 Optical Eruption

    CERN Document Server

    Teets, William K; Kastner, Joel H; Grosso, Nicolas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS ToO observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a ~0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main sequence stars. From 2008 March through October, this cool p...

  20. Acoustic emission study on flexural behaviour of WC-Co coatings obtained by atmospheric plasma spray; Estudio por emision acustica del comportamiento a flexion de recubrimientos WC-Co obtenidos por plasma atomosferico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, F.; Klyatskina, E.; Bonache, V.; Salvador, M. D.; Sanchez, E.; Cantavella, V.; Bloem, C.

    2007-07-01

    Plasma spayed cermet coatings WC-Co are used in a wide range of industrial applications, mainly due to their wear resistance even in corrosive environments. the objective of this work is to analyze mechanical response of hard metal coatings by means of three-and four-points bend tests applying acoustic emission technique to determine failure critical strength. It has been observed the effect of supported charge level in structural damage by means of optical microscopy and scanning electron microscopy. Acoustic emission has allowed us to relate damage level to stresses level and then to understand coatings failure mechanism. (Author) 29 refs.

  1. Emissions treatment of diesel engines by plasma outside of balance; Tratamiento de emisiones de motores diesel por plasma fuera de equilibrio

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco P, M.; Pacheco S, J.; Valdivia B, R.; Garcia R, M.; Estrada M, N. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Santana D, A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Mexico D. F. (Mexico); Lefort, B.; Le Moyne, L.; Zamilpa, C., E-mail: marquidia.pacheco@inin.gob.mx [Institut Superieur d l' Automobile et des Transports, 49 rue Madeimoiselle Bourgeois BP31, 58027 Nevers cedex (France)

    2013-07-01

    Nowadays, diesel engines are greatly developed in automobiles allowing the reduction of carbon dioxide emissions (CO{sub 2}); however high emissions of particulate matter (Mp) and nitric oxides (NO{sub x}) still remain. A technology based on non-thermal plasma to diminish toxic emissions is exposed in this work. From previous experimental and simulation results, a chemical mechanism is proposed showing a rapidly diminution of Mp and NO{sub x}, in presence of plasma. (Author)

  2. Abnormal Enhancement of N2+ Emission Induced by Lower Frequency in N2 Dual-Frequency Capacitively Coupled Plasmas

    Institute of Scientific and Technical Information of China (English)

    虞一青; 辛煜; 陆文琪; 宁兆元

    2012-01-01

    Nitrogen dual-frequency capacitively coupled plasmas (DF-CCPs) with different fre- quency configurations, i.e., 60/2 MHz and 60/13.56 MHz, are investigated by means of opticM emission spectroscopy (OES) and a floating double probe. The excited nitrogen molecule ion N+(B) is monitored by measuring the emission intensity of the (0,0) bandhead of the first neg- ative system (FNS) at 391.44 nm. It is shown that in the discharge with 60/13.56 MHz, the N+ emission intensity decreases with the increase in pressure. In the discharge with 60/2 MHz, however, an abnormal enhancement of N+ emission at higher pressure is observed when a higher power of 2 MHz is added. Variation in the ion density shows a similar dependence on the gas pressure. This indicates that in the discharge with 60/2 MHz there is a mode transition from the alpha to gamma type when a higher power of 2 MHz is added at high pressures. Combining the measurements using OES and double probe, the influence of low frequency on the discharge is investigated and the excitation route of the N+(B) state in the discharge of 60/2 MHz is also discussed.

  3. GRB 090727 and gamma-ray bursts with early time optical emission

    CERN Document Server

    Kopac, D; Gomboc, A; Japelj, J; Mundell, C G; Guidorzi, C; Melandri, A; Bersier, D; Cano, Z; Smith, R J; Steele, I A; Virgili, F J

    2013-01-01

    We present a multi-wavelength analysis of gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2-m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early time optical emission in GRB 090727 and instead conclude that the early time optical flash likely corresponds to emission from an internal dissipation processes. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early time optical emission shows sharp and steep beha...

  4. A Novel Acoustic Emission Fiber Optic Sensor Based on a Single Mode Optical Fiber Coupler

    Institute of Scientific and Technical Information of China (English)

    CHEN Rongsheng; LIAO Yanbiao; ZHENG Gangtie; LIU Tongyu; Gerard Franklyn Fernando

    2001-01-01

    This paper reports, for the first time, on the use of a fused-taper single mode optical fiber coupler as a sensing element for the detection of acoustic emission (AE) and ultrasound. When an acoustic wave impinges on the mode-coupling region of a coupler, the coupling coefficient is modulated via the photo-elastic effect. Therefore, the transfer function of the coupler is modulated by an acoustic wave. The sensitivity of the sensor at 140 kHz was approximately 5.2 mV/Pa and the noise floor was 1 Pa. The bandwidth of the sensor was up to several hundred kHz. This AE sensor exhibits significant advantage compared with interferometer-based AE sensors.

  5. Advances in physical study of high enthalpy plasma jets of technological interest: emission spectra and plasma characteristics

    Science.gov (United States)

    Belevtsev, A. A.; Chinnov, V. F.; Isakaev, E. Kh.; Markin, A. V.; Tazikova, T. F.; Tereshkin, S. A.

    1998-10-01

    Offers a comprehensive study of the emission spectra and plasma characteristics of high enthalpy atmospheric pressure argon and nitrogen jets produced by a high- current industrially important arc plasmatron with a vortex stabilized channel-anode (I4g/s, jet diameter at a minimum-6mm). The spectra are taken at different distances from the cathode in the 200-950nm region with a spectral resolution=3D0.01nm allowing a fine structure of vibronic bands to be essentially resolved except that due to the dublet (spin) splitting and Λ-doubling. Also derived (through the Abel inversion) are radial distributions of plasma components. The spectra obtained have been used for determining plasma composition, the electron component parameters (by atomic/ionic Stark half-widths and intensities) and the assessment of rotational and vibrational temperatures by simulating molecular bands.

  6. An optical fiber sensor based on cladding photoluminescence for high power microwave plasma ultraviolet lamps used in water treatment

    Science.gov (United States)

    Fitzpatrick, C.; Lewis, E.; Al-Shamma'A, A.; Pandithas, I.; Cullen, J.; Lucas, J.

    2001-11-01

    Low-pressure mercury lamps are commonly used for germicidal applications such as water and wastewater sterilisation. The germicidal effect is due to the emission of light at 254 nm, which leads to the destruction of most waterborne bacteria. The Microwave plasma ultraviolet lamp (MPUVL) is a new technology for generating a high intensity ultraviolet (UV) light. A Fluorescent optical fiber based sensor is presented which is used for monitoring the output of a high power microwave UV light source and its control. This sensor is a fiber which has had its cladding removed and been coated with a phosphor doped polymer.

  7. Bistable Intrinsic Charge Fluctuations of a Dust Grain Subject to Secondary Electron Emission in a Plasma

    CERN Document Server

    Shotorban, Babak

    2015-01-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  8. Bistable intrinsic charge fluctuations of a dust grain subject to secondary electron emission in a plasma.

    Science.gov (United States)

    Shotorban, B

    2015-10-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  9. Boundary Conditions at the Walls with Thermionic Electron Emission in Two Temperature Modeling of "Thermal" Plasmas

    CERN Document Server

    Pekker, Leonid

    2015-01-01

    In this paper we propose new boundary conditions at the hot walls with thermionic electron emission for two-temperature thermal arc models. In the derived boundary conditions the walls are assumed to be made from refractory metals and that the erosion of the wall is small and, therefore, is not taken into account in the model. In these boundary conditions the plasma sheath formed at the electrode is considered as the interface between the plasma and the wall. The derived boundary conditions allow the calculation of the heat flux to the walls from the plasma and consequently the thermionic electron current that makes the two temperature thermal model self consistent.

  10. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    Science.gov (United States)

    Alexander, I. Pushkarev; Yulia, I. Isakova

    2011-12-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode.

  11. Optical transistor action by nonlinear coupling of stimulated emission and coherent scattering

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2010-08-01

    In the pursuit of improved platforms for computing, communications and internet connectivity, all-optical systems offer excellent prospects for a speed and fidelity of data transmission that will greatly surpass conventional electronics, alongside the anticipated benefits of reduced energy loss. With a diverse range of sources and fiber optical connections already in production, much current effort is being devoted towards forging optical components for signal switching, such as an all-optical transistor. Achievement of the desired characteristics for any practicable device can be expected to depend crucially on the engagement of a strongly nonlinear optical response. The innovative scheme proposed in the present work is based upon a third-order nonlinearity - its effect enhanced by stimulated emission - operating within a system designed to exploit the highly nonlinear response observed at the threshold for laser emission. Here, stimulated emission is strongly driven by coupling to the coherent scattering of a signal input beam whose optical frequency is purposely off-set from resonance. An electrodynamical analysis of the all-optical coupling process shows that the signal beam can significantly modify the kinetics of emission, and so lead to a dramatically enhanced output of resonant radiation. The underlying nonlinear optical mechanism is analyzed, model calculations are performed for realizable three-level laser systems, and the results exhibited graphically. The advantages of implementing this all-optical transistor scheme, compared to several previously envisaged proposals, are then outlined.

  12. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation

    Science.gov (United States)

    Jiang, Nan; Guo, Lianjie; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2017-04-01

    In this work, a nanosecond bipolar pulsed voltage coupled with a negative DC component is employed to generate sliding dielectric barrier discharge (DBD) plasma in a three-electrode geometry reactor and improve volatile organic compound (VOC) degradation at room temperature. The effects of the bipolar pulsed voltage (U ±pulse) and negative DC voltage (U ‑DC) on the discharge characteristic, optical characteristic, plasma gas temperature (T gas), and vibrational temperature (T vib) are discussed. The horizontal distribution characteristics of the N2(C3Πu  →  B3Πg) emission intensity, T gas, and T vib are also investigated to understand the propagation mechanism of sliding DBD along the dielectric surface. The experimental results reveal that a negative DC component applied to a third electrode can extend the plasma extension region, indicating that the gas ionization is ignited by the nanosecond high-voltage pulse, while charge drift is forced by the surface potential difference caused by the negative high-voltage DC. The T gas is measured by optical emission spectroscopy related to the rotational bands of N2(C3 Πu  →  B3Πg), and is approximately 375  ±  5 K under the condition of U ±pulse  =  20 kV and U ‑DC  =  ‑20 kV. Compared with typical surface DBD plasma, sliding DBD plasma is quasi-diffusive and distributed more uniformly within the whole discharge gap. Furthermore, both surface DBD and sliding DBD are used for removing toluene from flowing air. It is found that sliding DBD has higher toluene degradation efficiency and energy yield than surface DBD when they are excited by the positive pulsed voltage (U +pulse).

  13. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  14. Real-time tissue differentiation based on optical emission spectroscopy for guided electrosurgical tumor resection

    OpenAIRE

    Spether, Dominik; Scharpf, Marcus; Hennenlotter, Jörg; Schwentner, Christian; Neugebauer, Alexander; Nüßle, Daniela; Fischer, Klaus; Zappe, Hans; Stenzl, Arnulf; Fend, Falko; Seifert, Andreas; Enderle, Markus

    2015-01-01

    Complete surgical removal of cancer tissue with effective preservation of healthy tissue is one of the most important challenges in modern oncology. We present a method for real-time, in situ differentiation of tissue based on optical emission spectroscopy (OES) performed during electrosurgery not requiring any biomarkers, additional light sources or other excitation processes. The analysis of the optical emission spectra, enables the differentiation of healthy and tumorous tissue. By using m...

  15. Emission Spectroscopy of the Interior of Optically Dense Post-Detonation Fireballs

    Science.gov (United States)

    2013-03-01

    TP-2013-011 Emission Spectroscopy of the Interior of Optically Dense Post-Detonation Fireballs Distribution A: Approved for public release...Detonation Fireballs 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) W.K. Lewis1, C.G. Rumchik2, M.J...detonation fireballs that form as under- oxidized detonation products burn in the surrounding air are optically dense and the corresponding emission

  16. Electron Emission from Nano and MicroStructured Materials for Plasma Applications

    Science.gov (United States)

    Patino, Marlene; Raitses, Yevgeny; Wirz, Richard

    2016-09-01

    Secondary electron emission (SEE) from plasma-confining walls can lead to adverse effects (e.g. increased plasma heat flux to the wall) in plasma devices, including plasma processing, confinement fusion, and plasma thrusters. Reduction in SEE from engineered materials with nm to mm-sized structures (grooves, pores, fibers), has been previously observed for primary electrons incident normal to the material. Here we present SEE measurements from one such engineered material, carbon velvet with microfibers (5 μm diameter, 1-2 mm length), and from a plasma-structured material, tungsten fuzz with nm fibers (35-50 nm diameter, 100-200 nm length). Additionally, dependence of SEE on incident angle was explored for tungsten fuzz. Results for carbon velvet and tungsten fuzz at normal incidence show 75% and 50% decrease in total yield from smooth graphite and tungsten, respectively. More notable is the independence of SEE on the incident angle for tungsten fuzz, as opposed to inverse cosine dependence for smooth materials. Hence, the reduction in SEE from tungsten fuzz is more pronounced at grazing angles. This is important for plasma-facing materials where a retarding plasma sheath leads to increased likelihood of plasma electrons impacting at grazing angles. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR grants FA9550-14-1-0053, FA9550-11-1-0282, AF9550-09-1-0695, and FA9550-14-10317; and DOE Office of Science Graduate Student Research Program.

  17. Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source.

    Science.gov (United States)

    Dotta, Blake T; Buckner, Carly A; Cameron, Dianne; Lafrenie, Robert F; Persinger, Michael A

    2011-09-01

    Photon emissions were measured at ambient temperature (21°C) in complete darkness once per min from cultures of 10(6) cells during the 12 h following removal from 37°C. The energy of emission was about 10(-20) J/s/cell. Of 8 different cell lines, B16-BL6 (mouse melanoma cells) demonstrated the most conspicuous emission profile. Acridine orange and ethidium bromide indicated the membranes were intact with no indication of (trypan blue) cell necrosis. Treatments with EGF and ionomycin produced rapid early (first 3 h) increases in energy emission while glutamine-free, sodium azide and wortmanin-treated cells showed a general diminishment 3 to 9 h later. The results suggested the most probable origin of the photon emission was the plasma cell membrane. Measures from cells synchronized at the M- and S-phase supported this inference.

  18. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-07-28

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented.

  19. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas

    Science.gov (United States)

    Chow, V. W.; Mendis, D. A.; Rosenberg, M.

    1993-01-01

    By virtue of being generally immersed in a plasma environment, cosmic dust is necessarily electrically charged. The fact that secondary emission plays an important role in determining the equilibrium grain potential has long been recognized, but the fact that the grain size plays a crucial role in this equilibrium potential, when secondary emission is important, has not been widely appreciated. Using both conducting and insulating spherical grains of various sizes and also both Maxwellian and generalized Lorentzian plasmas (which are believed to represent certain space plasmas), we have made a detailed study of this problem. In general, we find that the secondary emission yield delta increases with decreasing size and becomes very large for grains whose dimensions are comparable to the primary electron penetration depth, such as in the case of the very small grains observed at comet Halley and inferred in the interstellar medium. Moreover, we observed that delta is larger for insulators and equilibrium potentials are generally more positive when the plasma has a broad non-Maxwellian tail. Interestingly, we find that for thermal energies that are expected in several cosmic regions, grains of different sizes can have opposite charge, the smaller ones being positive while the larger ones are negative. This may have important consequences for grain accretion in polydisperse dusty space plasmas.

  20. Volume effect of laser produced plasma on X-ray emissions

    Indian Academy of Sciences (India)

    V K Senecha; Y B S R Prasad; M P Kamath; A S Joshi; G S Solanki; A P Kulkarni; S Gupta; R Pareek; H C Pant

    2000-11-01

    An investigation of x-ray emission from Cu plasma produced by 1.054 m Nd:glass laser pulses of 5 ns duration, at 2 × 1012-2 × 1013 W cm-2 is reported. The x-ray emission has been studied as a function of target position with respect to the laser beam focus position. It has been observed that x-ray emissions from ns duration plasma show a volume effect similar to subnanosecond plasmas. Due to this effect the x-ray yield increases when target is moved away relative to the best focal plane of the laser beam. This result supports the theoretical model of Tallents and has also been testified independently using suitably modified theoretical model for our experimental conditions. While above result is in good agreement with similar experimental results obtained for sub-nanosecond laser produced plasmas, it differs from result claiming filamentation rather than pure geometrical effect leading to x-ray enhancement for ns plasmas.

  1. Extreme ultraviolet emission from dense plasmas generated with sub-10-fs laser pulses

    CERN Document Server

    Osterholz, J; Cerchez, M; Fischer, T; Hemmers, D; Hidding, B; Pipahl, A; Pretzler, G; Rose, S J; Willi, O

    2008-01-01

    The extreme ultraviolet (XUV) emission from dense plasmas generated with sub-10-fs laser pulses with varying peak intensities up to 3*10^16 W/cm^2 is investigated for different target materials. K shell spectra are obtained from low Z targets (carbon and boron nitride). In the spectra a series limit for the hydrogen and helium like resonance lines is observed indicating that the plasma is at high density and pressure ionization has removed the higher levels. In addition, L shell spectra from titanium targets were obtained. Basic features of the K and L shell spectra are reproduced with computer simulations. The calculations include hydrodynamic simulation of the plasma expansion and collisional radiative calculations of the XUV emission.

  2. IR emission from the target during plasma magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cormier, P.-A. [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Thomann, A.-L., E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Dolique, V. [LMA, Université Claude Bernard Lyon I 7 Avenue Pierre de Coubertin, 69622 Villeurbanne Cedex (France); Balhamri, A. [ChIPS, Université de Mons, 20 Place du Parc, 7000 Mons (Belgium); Université Hassan 1, École Supérieure de Technologie, 218 Berrechid (Morocco); Dussart, R.; Semmar, N.; Lecas, T.; Brault, P. [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Snyders, R. [ChIPS, Université de Mons, 20 Place du Parc, 7000 Mons (Belgium); Materia Nova R and D Center, Avenue Corpernic 1, Mons (Belgium); Konstantinidis, S. [Materia Nova R and D Center, Avenue Corpernic 1, Mons (Belgium)

    2013-10-31

    In this article, energy flux measurements at the substrate location are reported. In particular, the energy flux related to IR radiation emanating from the titanium (10 cm in diam.) target surface is quantified during magnetron sputter deposition processes. In order to modulate the plasma–target surface interaction and the radiative energy flux thereof, the working conditions were varied systematically. The experiments were performed in balanced and unbalanced magnetic field configurations with direct current (DC), pulsed DC and high power impulse magnetron sputtering (HiPIMS) discharges. The power delivered to the plasma was varied too, typically from 100 to 800 W. Our data show that the IR contribution to the total energy flux at the substrate increases with the supplied sputter power and as the discharge is driven in a pulse regime. In the case of HiPIMS discharge generated with a balanced magnetic field, the energy flux associated to the IR radiation produced by the target becomes comparable to the energy flux originating from collisional processes (interaction of plasma particles such as ions, electron, sputtered atoms etc. with the substrate). From IR contribution, it was possible to estimate the rise of the target surface temperature during the sputtering process. Typical values found for a titanium target are in the range 210 °C to 870 °C. - Highlights: • During magnetron sputtering process the heated target emits IR radiation. • We follow in real time the energy transferred to the deposited film by IR radiation. • IR radiation can be the main energy contribution in balanced pulsed processes. • IR radiation might affect the deposition process and the final film properties.

  3. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies.

    Science.gov (United States)

    Liao, Qingliang; Qin, Zi; Zhang, Zheng; Qi, Junjie; Zhang, Yue; Huang, Yunhua; Liu, Liang

    2011-12-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170-180 A/cm(2) were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.

  4. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    Directory of Open Access Journals (Sweden)

    Liu Liang

    2011-01-01

    Full Text Available Abstract Large area well-aligned carbon nanotube (CNT arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.

  5. Statistical characterization of the reproducibility of neutron emission of small plasma focus devices

    Energy Technology Data Exchange (ETDEWEB)

    Tarifeno-Saldivia, Ariel; Soto, Leopoldo [Comision Chilena de Energia Nuclear (CCHEN), Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4 (Chile) and Departamento de Ciencias Fisicas, Universidad Andres Bello, Republica 220, Santiago (Chile)

    2012-09-15

    The purpose of this work is to discuss the techniques related to the detection of fast pulsed neutrons produced in plasma focus (PF) devices, the statistical analysis of the corresponding data, and the methodologies for evaluation of the device performance in low emission neutron sources. A general mathematical framework is presented for the assessment of the reproducibility of the neutron emission of small PF devices given the shot-to-shot distribution and detector efficiency. The effect on the reproducibility in case of using two independent detectors is also discussed. The analysis is applied to the neutron emission of the plasma focus device PF-50J operating in repetitive mode (0.1-0.5 Hz and 65 J bank energy).

  6. Development of a gated optical multichannel analyser for laser-plasma spectroscopy

    OpenAIRE

    Corcoran, Richard

    1990-01-01

    An Optical Multichannel Analyser (OMA) has been developed for the detection of radiation from laser-produced plasmas (LPPs). The system is based on a gated image - intensified photodiode array (PDA) Software for the control of, and data acquisition from, the OMA system has been developed. A high resolution (10ns) delay generator was also designed and constructed to permit timeresolved. optical spectroscopy. The system has been tested and operated with a laser plasma source m...

  7. Optical properties of lamps with cold emission cathode

    Science.gov (United States)

    Kalenik, Jerzy; Czerwosz, ElŻbieta; Biernacki, Krzysztof; Rymarczyk, Joanna; Stepińska, Izabela

    2016-12-01

    A luminescent lamp was constructed and tested. Phosphor excited by electrons is the source of light. The source of electrons is field emission cathode. The cathode is covered with nickel-carbon layer containing carbon nanotubes that enhance electron emission from the cathode. Results of luminance measurements are presented. Luminance is high enough for lighting application.

  8. Atomic Emission, Absorption and Fluorescence in the Laser-induced Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Winefordner, J. D.

    2009-01-22

    The main result of our efforts is the development and successful application of the theoretical model of laser induced plasma (LIP) that allows a back-calculation of the composition of the plasma (and the condensed phase) based on the observable plasma spectrum. The model has an immediate experimental input in the form of LIP spectra and a few other experimentally determined parameters. The model is also sufficiently simple and, therefore, practical. It is conveniently interfaced in a graphical user-friendly form for using by students and any laboratory personnel with only minimal training. In our view, the model opens up the possibility for absolute analysis, i.e. the analysis which requires no standards and tedious calibration. The other parts of this proposal (including plasma diagnostics) were somewhat subordinate to this main goal. Plasma diagnostics provided the model with the necessary experimental input and led to better understanding of plasma processes. Another fruitful direction we pursued was the use of the correlation analysis for material identification and plasma diagnostics. Through a number of computer simulations we achieved a clear understanding of how, where and why this approach works being applied to emission spectra from a laser plasma. This understanding will certainly improve the quality of forensic and industrial analyses where fast and reliable material identification and sorting are required.

  9. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    Science.gov (United States)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  10. Spatio-spectral characteristics of ultra-broadband THz emission from two-colour photoexcited gas plasmas and their impact for nonlinear spectroscopy

    Science.gov (United States)

    Blank, V.; Thomson, M. D.; Roskos, H. G.

    2013-07-01

    We present a characterization of the combined spatial and spectral properties of the terahertz (THz) and mid-infrared emission from gas plasmas generated and driven by two-colour femtosecond optical pulses. For its use in nonlinear spectroscopy, the impact of the relatively complex spatial profile for both broadband (∼ 10 THz) and ultra-broadband (> 100 THz) emission needs to be considered, in particular for experiments based on z-scan techniques. Here we apply spatially resolved measurements based on both field autocorrelation and sum-frequency (up-conversion) detection. Based on these results, we present simulations of the ultra-broadband profile during its passage through a focal region. In addition to the inherent features of the emission profile due to the generation mechanism in the plasma filament, we also analyse the role of the semconductor (silicon) wafer typically placed after the plasma to discard the optical pump beams, whose photoexcitation also can play a role in the resultant THz profile.

  11. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    OpenAIRE

    Liu Liang; Liao Qingliang; Qin Zi; Zhang Zheng; Qi Junjie; Zhang Yue; Huang Yunhua

    2011-01-01

    Abstract Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric fie...

  12. Broadband field-resolved terahertz detection via laser induced air plasma with controlled optical bias.

    Science.gov (United States)

    Li, Chia-Yeh; Seletskiy, Denis V; Yang, Zhou; Sheik-Bahae, Mansoor

    2015-05-04

    We report a robust method of coherent detection of broadband THz pulses using terahertz induced second-harmonic (TISH) generation in a laser induced air plasma together with a controlled second harmonic optical bias. We discuss a role of the bias field and its phase in the process of coherent detection. Phase-matching considerations subject to plasma dispersion are also examined.

  13. Optical Methods For Transient Plasmas Studies By Multichannel TEA Nitrogen Laser

    Science.gov (United States)

    Ursu, Ioan; Popescu, Ion M.; Ivascu, M.; Baltog, I.; Mihut, L.; Zambreanu, V.; Zoita, V.

    1989-05-01

    A multichannel TEA nitrogen laser has been realized for some optical diagnostics. The following methods have been applied on the plasma focus device (PFD): interferometry, schlieren, shadowgraphy and a new combination of the last two. The background of these methods and some qualitative and quantitative results obtained in plasma focus (PF) studies are presented.

  14. Determination of Nb and Ta in Nb-Ta Ore by Inductively Coupled Plasma-Optical Emission Spectrometry with a Combined Microwave Digestion Hydrofluoric Acid-resistant System%微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽

    Institute of Scientific and Technical Information of China (English)

    马生凤; 温宏利; 李冰; 王蕾; 朱云

    2016-01-01

    Niobium and tantalum in hydrofluoric acid can form a stable solution,and thus the Nb and Ta content of Nb-Ta ore can be determined accurately by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) with a hydrofluoric acid resistant system.The determination method described in this paper for Nb and Ta in Nb-Ta ore,uses the microwave digestion mode of modular small tank and multiple digestion tank assembly (70 tank /group),and hydrofluoric acid resistant system of ICP-OES.This method shortens the dissolution time from 48 h to 1 h.By using a hydrofluoric acid medium the hydrolysis of high-level Nb and Ta in low acid concentration media is avoided.The detection limits of this method are 5.58 μg/g for Nb and 5.87 μg/g for Ta.The result of Nb-Ta concentrate with 19% Nb2 O5 and 27% Ta2 O5 is consistent with that acquired by the alkali fusion method and can be used to determine both high-grade and low-grade Nb-Ta ore with 42 μg/g -19% of Nb2 O5 and 86 μg/g -27%of Ta2 O5 .The main advantage of this method is to accurately determine Nb and Ta in high-grade Nb-Ta ore.%铌、钽在氢氟酸介质中能够形成稳定的溶液,使用耐氢氟酸进样系统的电感耦合等离子体发射光谱(ICP -OES)有利于提高分析的准确性。本文采用模块化的小罐型、多罐体组合(70罐/组)酸溶罐体的微波消解溶样模式,结合 ICP -OES 仪器的耐氢氟酸进样系统,建立了测定铌钽矿中铌、钽的分析方法。本方法加快了酸溶的溶样速度,溶样时间从原来的48 h 减少至1 h,且在氢氟酸介质中测定避免了高含量铌、钽在低酸度介质中容易水解的影响。方法检出限为铌5.58μg/g,钽5.87μg/g。本方法应用于测定铌钽精矿(19%Nb2 O5,27%Ta2 O5)的分析结果与碱熔方法一致,能够测定 Nb2 O5含量在42μg/g ~19%和 Ta2 O5含量在86μg/g ~27%高低品位的铌钽矿,尤其对于铌、钽在百分含量以上的铌钽矿具有优势。

  15. High field side measurements of non-thermal electron cyclotron emission on TCV plasmas with ECH and ECCD

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P.; Alberti, S.; Coda, S.; Weisen, H.; Nikkola, P.; Klimanov, I

    2002-07-01

    Measurements of electron cyclotron emission from the high field side of the TCV tokamak have been made on plasmas heated by second and third harmonic X-mode Electron Cyclotron Heating (ECH) and Electron Cyclotron Current Drive (ECCD). Suprathermal Electron Cyclotron Emission (ECE), up to a factor of 6 in excess of thermal emission, is detected in the presence of second harmonic X-mode (X2) ECCD and of third harmonic X-mode (X3) ECH. The measured ECE spectra are modelled using a bi-Maxwellian describing the bulk and the suprathermal electron populations. Suprathermal temperatures between 10-50keV and densities in the range 1. 10{sup 1}7 -6. 10{sup 1}8m{sup -3} are obtained, and correspond to 3 -15 bulk temperatures and 1% -20% bulk densities. Good agreement between ECE suprathermal temperatures and energetic photon temperatures, measured by a hard X-ray camera, is found. For optically thin X3 Low Field Side (LFS) injection in presence of X2 CO-ECCD, the suprathermal population partly explains the discrepancy between global and first pass absorption measurements. (author)

  16. Photoelectron emission from metal surfaces induced by VUV-emission of filament driven hydrogen arc discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Laulainen, J.; Kalvas, T.; Koivisto, H.; Komppula, J.; Tarvainen, O. [University of Jyväskylä, Department of Physics (Finland)

    2015-04-08

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H{sup −} ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  17. Is it possible to deduce the ground state OH density from relative optical emission intensities of the OH(A 2Σ+-X 2Πi) transition in atmospheric pressure non-equilibrium plasmas?—An analysis of self-absorption

    Science.gov (United States)

    Du, Yanjun; Peng, Zhimin; Ding, Yanjun; Sadeghi, Nader; Bruggeman, Peter J.

    2016-08-01

    The measurement of absolute densities of reactive species and radicals such as OH is of growing interest for many plasma applications. In this paper, we extend the use of a self-absorption model for atomic emission spectroscopy to molecular emission spectroscopy. The proposed analysis of self-absorbed molecular emission spectra is a simple and inexpensive method to determine OH(X) densities and rotational temperatures compared to laser induced fluorescence. We compare the recorded absolute OH density in a non-equilibrium diffuse atmospheric-pressure RF glow discharge by this method with broadband UV absorption considering a number of rotational lines with J‧  ⩽  6.5, the detection limit of the line integrated OH(X) density with this method is of the order of 2  ×  1019 m-2. The accuracy of the density is sensitive to the rotational temperature of the OH(A) state and the non-equilibrium rotational population distribution.

  18. On the absence of plasma wave emissions and the magnetic field orientation in the distant magnetosheath

    Energy Technology Data Exchange (ETDEWEB)

    Coroniti, F.V.; Greenstadt, E.W.; Moses, S.L. [TRW Space and Electronics Group, Redondo Beach, CA (United States); Tsurutani, B.T.; Smith, E.J. [California Institute of Technology, Pasadena, CA (United States)

    1994-12-01

    In early September, 1983 ISEE-3 made a long traversal of the distant dawnside magnetosheath starting near x = {minus}150 R{sub E} downstream. The distant magnetosheath often contains moderately intense plasma wave emissions at frequencies from several hundred Hz to 5 kHz. However, over time scales of many days, a clear correlation exists between the occurrence of the plasma waves and the cone angle ({theta}{sub xB}) between the magnetic field and the plasma flow velocity (x-direction). For {theta}{sub xB} large (small), the plasma wave amplitudes are near background (high). Sudden (<1 minute) changes in the local magnetic field orientation produce correspondingly sudden changes in the wave amplitudes. Statistically, the wave amplitudes decrease continuously with increasing {theta}{sub xB}. 7 refs., 5 figs.

  19. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xiaohai; Zhou, Yuming, E-mail: ymzhou@seu.edu.cn; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  20. The Nature of Emission from Optical Breakdown Induced by Pulses of fs and ns Duration

    Energy Technology Data Exchange (ETDEWEB)

    Carr, C W; Feit, M D; Rubenchik, A M; Demange, P; Kucheyev, S; Shirk, M D; Radousky, H B; Demos, S G

    2004-11-09

    Spectral emission from optical breakdown in the bulk of a transparent dielectric contains information about the nature of the breakdown medium. We have made time resolved measurements of the breakdown induced emission caused by nanosecond and femtosecond infrared laser pulses. We previously demonstrated that the emission due to ns pulses is blackbody in nature allowing determination of the fireball temperature and pressure during and after the damage event. The emission due to femtosecond pulse breakdown is not blackbody in nature; two different spectral distributions being noted. In one case, the peak spectral distribution occurs at the second harmonic of the incident radiation, in the other the distribution is broader and flatter and presumably due to continuum generation. The differences between ns and fs breakdown emission can be explained by the differing breakdown region geometries for the two pulse durations. The possibility to use spectral emission as a diagnostic of the emission region morphology will be discussed.

  1. Emission properties of plasmas induced by near IR laser pulses in the far VUV

    Science.gov (United States)

    Khater, Mohamed

    2013-07-01

    Influence of pulsed laser energy on emission characteristics of laser plasmas induced in various inert atmospheres and pressures is demonstrated by emission spectroscopy in the far vacuum UV zone (around 100 nm). In this context, argon and helium were employed and their pressures were controlled in the range 0.005-5.0 mbar. A Q-switched Nd:YAG laser emitting in the near IR at 1064 nm was employed in the experiments. The laser energy was varied between 200 and 800 mJ and focused onto a reference steel sample within a vacuum-tight chamber. The radiation emitted from the line plasmas generated was recorded from a section located 2.5 mm from the target surface. Under any gas composition and pressure studied, line and background emission intensities as well as signal-to-background ratios showed significant dependence on the laser energy. For example, at 800 mJ the highest spectral line intensity was obtained in argon atmosphere at a pressure of about 0.5 mbar, while helium at the same pressure produced the largest signal-to-background ratio using lower laser pulse energy of 400 mJ. In any case, the nature and characteristics of laser plasma-based emission in the far vacuum UV are similar to those recorded in the UV-visible range.

  2. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    CERN Document Server

    Gu, Liyi; Raassen, A J J

    2016-01-01

    Charge exchange X-ray emission provides unique insights into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to $n$ and $l$ atomic subshells, and carrying out complete radiative cascade calculation, we create a new spectral code to evaluate the charge exchange emission in the X-ray band. Comparing to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-$n$ shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge ...

  3. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy; Probabilidades de transicion de algunos niveles de Cr II, Na II y Sb I medediante espectroscopia de plasma producidos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-07-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities ({approx}{approx} 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs.

  4. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.

    Science.gov (United States)

    Takino, Hideo; Yamamura, Kazuya; Sano, Yasuhisa; Mori, Yuzo

    2012-01-20

    We propose a plasma chemical vaporization machining device with a hemispherical tip electrode for optical fabrication. Radio-frequency plasma is generated close to the electrode under atmospheric conditions, and a workpiece is scanned relative to the stationary electrode under three-axis motion control to remove target areas on a workpiece surface. Experimental results demonstrate that surface removal progresses although process gas is not forcibly supplied to the plasma. The correction of shape errors on conventionally polished spheres is performed. As a result, highly accurate smooth surfaces with the desired rms shape accuracy of 3 nm are successfully obtained, which confirms that the device is effective for the fabrication of optics.

  5. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  6. A comparison of inflection point and floating point emissive probe techniques for electric potential measurements in a Hall thruster plasma

    Science.gov (United States)

    Sheehan, J. P.; Raitses, Yevgeny; Hershkowitz, Noah; Fisch, Nathaniel

    2010-11-01

    Theory suggests that when increasing the electron emission of an emissive probe the floating potential will saturate ˜Te/e below the plasma potential. This can introduce significant errors in plasma potential measurements in Hall thrusters where Te> 10 eV. The method of determining the plasma potential from the inflection point of emissive IV traces in the limit of zero emission may give a more accurate measurement of the plasma potential. The two methods are compared in a Hall thruster where ne˜10^11 cm-3, Te˜20 eV, and ion flows are significant. The results can be generalized to other types of plasmas.

  7. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  8. High field terahertz emission from relativistic laser-driven plasma wakefields

    CERN Document Server

    Chen, Zi-Yu

    2015-01-01

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range 1-10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  9. Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam

    Science.gov (United States)

    Gupta, D. N.; Kulagin, V. V.; Suk, H.

    2017-10-01

    We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.

  10. Iodine Determination by Microwave Plasma Torch Atomic Emission Spectrometer Coupled with Online Preconcentration Vapor Generation Technique

    Institute of Scientific and Technical Information of China (English)

    FEI Yan-qun; LUO Gui-min; FENG Guo-dong; CHEN Huan-wen; FEI Qiang; HUAN Yan-fu; JIN Qin-han

    2008-01-01

    This article focuses on iodine determination by microwave plasma torch atomic emission spectrometry (MPT-AES) coupled with online preconcentration vapor generation method.A new desolvation device,multistrand Nation dryer,was used as the substitute for condenser desolvation system.Some experimental conditions,such as preconcentration time,acidity of sample solution,rinsing solution acidity and dynamic linear range were investigated and optimized.The new desolvation system eliminates the problem of decreasing emission intensity of I(I) 206.238 nm line with the increase of working time on a conventional condenser desolvation system,thus greatly improving the reproducibility.

  11. A Search for Optical Laser Emission Using Keck HIRES

    CERN Document Server

    Tellis, Nathaniel K

    2015-01-01

    We present a search for laser emission coming from point sources in the vicinity of 2796 stars, including 1368 Kepler Objects of Interest (KOIs) that host one or more exoplanets. We search for extremely narrow emission lines in the wavelength region between 3640 and 7890 Angstroms using the Keck 10-meter telescope and spectroscopy with high resolution ($\\lambda/\\Delta \\lambda$ = 60,000). Laser emission lines coming from non-natural sources are distinguished from natural astrophysical sources by being monochromatic and coming from an unresolved point in space. We search for laser emission located 2-7 arcsec from the 2796 target stars. The detectability of laser emission is limited by Poisson statistics of the photons and scattered light, yielding a detection threshold flux of approximately $10^{-2}$ photons $m^{-2} s^{-1}$ for typical Kepler stars and 1 photon $m^{-2} s^{-1}$ for solar-type stars within 100 light-years. Diffraction-limited lasers having a 10-meter aperture can be detected from 100 light-years ...

  12. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  13. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Science.gov (United States)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  14. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  15. [Two-temperature diagnostic studies by emission spectra for nonequilibrium Ti-H plasma].

    Science.gov (United States)

    Deng, Chun-feng; Lu, Biao; Wu, Chun-lei; Wang, Yi-fu; Wen, Zhong-wei

    2014-12-01

    Using the T-H solid solution made by titanium absorbed hydrogen as the cathode, the Ti-H plasma produced by the pulsed vacuum are ion source was nonequilibrium: it contained both the component of titanium and hydrogen; there existed gradient in the radiaL, the horizontal and the time. As a result, it could not be described by a single temperature. The present paper assumed that the subsystem consisting of electrons and the subsystem consisting of other heavy particles reached equilibrium respectively, meaning that the Ti-H plasma was described by the two temperatures as electron temperature and heavy ion temperature, it was non-equilibrium two-temperature plasma Using Culdberg-Waage dissociation equation to describe the molecular dissociation process in the system, using Saha ionization equation to describe the atomic ionization process, combining plasma's charge quasi-neutral condition and introducing atomic emission spectroscopy as a plasma diagnostic method which would not interfere the plasma at the same time; the temperature and the particle number density of the Ti-H plasma were diagnosed. Using MATLAB as a tool, both the titanium atoms and monovalent titanium ions' ionization were considered, and the calculated results showed that with the electtron density determined by the Stark broadening of spectral lines in advance, except the heavy particle temperature and the hydrogen number density, the Ti-H plasma's parameters could be diagnosed fairly accurately; the accuracy of the electron density values had a great effect on the calculation results; if the heavy particle temperature could be determined in advance, the temperature and the particle number density of the Ti-H plasma could be accurately analyzed quantitatively.

  16. Impurity line emission due to thermal charge exchange in JET edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, C.F.; Horton, L.D.; Koenig, R.; Stamp, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Summers, H.P. [Strathclyde Univ., Glasgow (United Kingdom)

    1994-07-01

    High n-shell emission from hydrogen-like carbon (C VI, n=8-7) has been routinely observed from the plasma edge of JET. By comparing the measured spectral line intensities with the signals predicted by advanced atomic physics modelling of carbon and hydrogen radiation, integrated with modelling of the divertor and edge plasma, it is concluded that charge transfer from excited state hydrogen donors into fully stripped carbon ions can account for the observed spectral emission, but that the hydrogen distribution and to a lesser extent the carbon distribution away from the strike zone predicted by the transport model are too low. Data presented are those of three upper X-point discharges, where the target material was carbon. 5 refs., 1 fig., 3 tabs.

  17. On thermionic emission from plasma-facing components in tokamak-relevant conditions

    Science.gov (United States)

    Komm, M.; Ratynskaia, S.; Tolias, P.; Cavalier, J.; Dejarnac, R.; Gunn, J. P.; Podolnik, A.

    2017-09-01

    The first results of particle-in-cell simulations of the electrostatic sheath and magnetic pre-sheath of thermionically emitting planar tungsten surfaces in fusion plasmas are presented. Plasma conditions during edge localized modes (ELMs) and during inter-ELM periods have been considered for various inclinations of the magnetic field and for selected surface temperatures. All runs have been performed under two assumptions for the sheath potential drop; fixed or floating. The primary focus lies on the evaluation of the escaping thermionic current and the quantification of the suppression due to the combined effects of space-charge and Larmor gyration. When applicable, the results are compared with the predictions of analytical models. The heat balance in the presence of thermionic emission as well as the contribution of the escaping thermionic current to surface cooling are also investigated. Regimes are identified where emission needs to be considered in the energy budget.

  18. Non-linear plasma effects on laser-induced terahertz emission from the atmosphere

    Science.gov (United States)

    Shin, J.-H.; Zhidkov, A.; Jin, Z.; Hosokai, T.; Kodama, R.

    2012-02-01

    Power, spectral characteristics, and angle distribution of terahertz (THz) radiation from air irradiated by a single (ω) or coupled (ω, 2ω) femtosecond laser pulses are analyzed for higher intensities, for which non-linear plasma effects on the pulse propagation become essential, by means of multidimensional particle-in-cell simulations exploiting the self-consistent plasma kinetics. THz radiation is shown to be a result of beat waves generated at ionization front with fundamental and second harmonic waves. At lower intensities, the THz power growth is far faster than the linear; at pulse intensities over I > 1015 W/cm2, the power increases slower than the linear. Along with the forward emission, strong power in around 30o angles occurs at high intensities. Ionization of air results in poor focusing of laser pulses and, therefore, lower efficiency of THz emission.

  19. Verification of optical diagnostic methods in H{sub 2}/D{sub 2} - plasmas; Verifikation von optischen Diagnostikmethoden an H{sub 2}/D{sub 2} - Plasmen

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Stephan

    2010-12-02

    For the neutral beam injection of the fusion experiment ITER negative deuterium ions have to be extracted from an ion source, accelerated to 1 MeV and subsequently neutralized. To control the plasma processes of the non-thermal hydrogen low temperature plasmas in the ion sources the knowledge of the plasma parameters like electron temperature and electron density is necessary. Among the required diagnostic methods the optical emission spectroscopy has one of the simplest setups which allows non-invasive and in situ measurements of the parameters. Within the scope of this thesis a modular diode system was developed, which allows together with systematically verified and improved optical diagnostic methods a time resolved online monitoring of the plasma parameters. The verification was carried out in stable and reproducible electron cyclotron resonance plasmas. These plasmas allows a simple comparison between the optical emission spectroscopy and various reference methods in a large parameter range of electron temperature and electron density. In order to verify the effective population densities from collisional radiative models and the deduced emission rate coefficients reference measurements were carried out using a Langmuir probe, a double probe, the Boyd-Twiddy-Method, interferometry, laser detachment, a mass spectrometer and already verified optical diagnostic methods of diagnostic gases like helium and argon. By a correction of the used collisional radiative model the determination of the electron density was significantly improved. (orig.)

  20. X-ray emission from a small 2 kJ plasma focus

    Science.gov (United States)

    Beg, F. N.; Ross, I.; Dangor, A. E.

    1997-05-01

    We report on a study of a 2 kJ, 200 kA plasma focus device as an x-ray source. The x-ray yield from a number of pure gases, deuterium, nitrogen, neon, argon, and xenon, was measured as a function of pressure. X-ray emission is mainly due to line radiation. Maximum x-ray yield of 12.5 J obtained for neon. At lower pressures, electron beams are generated which play an important role.

  1. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  2. Early emission of rising optical afterglows: The case of GRB 060904B and GRB 070420

    CERN Document Server

    Klotz, A; Stratta, G; Galli, A; Corsi, A; Preger, B; Cutini, S; Pelangeon, A; Atteia, J L; Boër, M; Piro, L

    2008-01-01

    We present the time-resolved optical emission of gamma-ray bursts GRB 060904B and GRB 070420 during their prompt and early afterglow phases. We used time resolved photometry from optical data taken by the TAROT telescope and time resolved spectroscopy at high energies from the Swift spacecraft instrument. The optical emissions of both GRBs are found to increase from the end of the prompt phase, passing to a maximum of brightness at t_{peak}=9.2 min and 3.3 min for GRB 060904B and GRB 070420 respectively and then decrease. GRB 060904B presents a large optical plateau and a very large X-ray flare. We argue that the very large X-flare occurring near t_{peak} is produced by an extended internal engine activity and is only a coincidence with the optical emission. GRB 070420 observations would support this idea because there was no X-flare during the optical peak. The nature of the optical plateau of GRB 060904B is less clear and might be related to the late energy injection.

  3. PAH 8μm Emission as a Diagnostic of HII Region Optical Depth

    Science.gov (United States)

    Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.

    2017-01-01

    PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.

  4. Multiband fiber optic radiometry for measuring the temperature and emissivity of gray bodies of low or high emissivity.

    Science.gov (United States)

    Sade, Sharon; Katzir, Abraham

    2004-03-20

    Infrared fiber optic radiometry was used for noncontact thermometry of gray bodies whose temperature was close to room temperature (40-70 degrees C). We selected three gray bodies, one with high emissivity (epsilon = 0.97), one with medium emissivity (epsilon = 0.71), and one with low emissivity (epsilon = 0.025). We carried out optimization calculations and measurements for a multiband fiber optic radiometer that consisted of a silver halide (AgClBr) infrared-transmitting fiber, a dual-band cooled infrared detector, and a set of 18 narrowband infrared filters that covered the 2-14-microm spectral range. We determined the optimal spectral range, the optimal number of filters to be used, and the optimal chopping scheme. Using these optimal conditions, we performed measurements of the three gray bodies and obtained an accuracy of better than 1 degrees C for body temperature and for room temperature. An accuracy of 0.03 was obtained for body emissivity.

  5. Uncertainties in Carbonaceous Aerosol Emissions, Scavenging Parameterizations, and Optical Properties

    Science.gov (United States)

    Koch, D.; Bond, T.; Kinne, S.; Klimont, Z.; Sun, H.; van Aardenne, J.; van der Werf, G.

    2006-12-01

    Estimates of human influence on climate are especially hindered by poor constraint on the amount of anthropogenic carbonaceous aerosol absorption in the atmosphere. Coordination of observation and model analyses attempt to constrain particle absorption amount, however these are limited by uncertainties in aerosol emission estimates, model scavenging parameterization, aerosol size assumption, contributions from organic aerosol absorption, air concentration observational techniques and by sparsity of data coverage. We perform multiple simulations using GISS modelE and six present-day emission estimates for black carbon (BC) and organic carbon (OC) (Bond et al 2004 middle and upper estimates, IIASA, EDGAR, GFED v1 and v2); for one of these emissions we apply 4 different BC/OC scavenging parameterizations. The resulting concentrations will be compared with a new compilation of observed BC/OC concentrations. We then use these model concentrations, together with effective radius assumptions and estimates of OC absorption to calculate a range of carbonaceous aerosol absorption. We constrain the wavelength-dependent model τ- absorption with AERONET sun-photometer observations. We will discuss regions, seasons and emission sectors with greatest uncertainty, including those where observational constraint is lacking. We calculate the range of model radiative forcing from our simulations and discuss the degree to which it is constrained by observations.

  6. Boron nitride nanowalls: low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties

    Science.gov (United States)

    Merenkov, Ivan S.; Kosinova, Marina L.; Maximovskii, Eugene A.

    2017-05-01

    Hexagonal boron nitride (h-BN) nanowalls (BNNWs) were synthesized by plasma-enhanced chemical vapor deposition (PECVD) from a borazine (B3N3H6) and ammonia (NH3) gas mixture at a low temperature range of 400 °C-600 °C on GaAs(100) substrates. The effect of the synthesis temperature on the structure and surface morphology of h-BN films was investigated. The length and thickness of the h-BN nanowalls were in the ranges of 50-200 nm and 15-30 nm, respectively. Transmission electron microscope images showed the obtained BNNWs were composed of layered non-equiaxed h-BN nanocrystallites 5-10 nm in size. The parallel-aligned h-BN layers as an interfacial layer were observed between the film and GaAs(100) substrate. BNNWs demonstrate strong blue light emission, high transparency (>90%) both in visible and infrared spectral regions and are promising for optical applications. The present results enable a convenient growth of BNNWs at low temperatures.

  7. Progress in theory and simulation of ion cyclotron emission from magnetic confinement fusion plasmas

    Science.gov (United States)

    Dendy, Richard; Chapman, Ben; Chapman, Sandra; Cook, James; Reman, Bernard; McClements, Ken; Carbajal, Leopoldo

    2016-10-01

    Suprathermal ion cyclotron emission (ICE) is detected from all large tokamak and stellarator plasmas. Its frequency spectrum has narrow peaks at sequential cyclotron harmonics of the energetic ion population (fusion-born or neutral beam-injected) at the outer edge of the plasma. ICE was the first collective radiative instability driven by confined fusion-born ions observed in deuterium-tritium plasmas in JET and TFTR, and the magnetoacoustic cyclotron instability is the most likely emission mechanism. Contemporary ICE measurements are taken at very high sampling rates from the LHD stellarator and from the conventional aspect ratio KSTAR tokamak. A correspondingly advanced modelling capability for the ICE emission mechanism has been developed using 1D3V PIC and hybrid-PIC codes, supplemented by analytical theory. These kinetic codes simulate the self-consistent full orbit dynamics of energetic and thermal ions, together with the electric and magnetic fields and the electrons. We report recent progress in theory and simulation that addresses: the scaling of ICE intensity with energetic particle density; the transition between super-Alfvénic and sub-Alfvénic regimes for the collectively radiating particles; and the rapid time evolution that is seen for some ICE measurements. This work was supported in part by the RCUK Energy Programme [Grant Number EP/I501045] and by Euratom.

  8. Photon Temperatures of Hard X-Ray Emission of LHCD Plasmas in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Jawad YOUNIS; WAN Baonian; CHEN Zhongyong; LIN Shiyao; SHI Yuejiang; SHAN Jiafang; LIU Fukun

    2008-01-01

    A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented.The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density.In lower hybrid power and phase scanning experiments;there is no appreciable change in the photon temperature.The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation.Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population,synergy between the fast electron and the loop voltage and the Coulomb slowing down.

  9. Probing electron acceleration and X-ray emission in laser-plasma accelerator

    CERN Document Server

    Thaury, C; Corde, S; Brijesh, P; Lambert, G; Mangles, S P D; Bloom, M S; Kneip, S; Malka, V

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam is focused in the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  10. Stimulated electromagnetic terahertz emissions (SEE) from laser-induced plasma filaments

    Science.gov (United States)

    Isham, Brett; Kunhardt, Erich

    2016-07-01

    Advances in terawatt laser technology have made it possible to ionize the troposphere in long (centimeters to kilometers), narrow (less than 1 mm), wire-like plasma filaments. These filaments emit high-power stimulated electromagnetic emissions (SEE) at terahertz (submillimeter) frequencies, a frontier in the electromagnetic spectrum lying between the microwave and far infrared bands. Using an accepted model for the plasma oscillations in the filament and a thin-wire approximation, we have calculated the current density and the resulting pattern of terahertz radiation emitted by the filament. The conical shape and opening angle of the calculated radiation pattern match those of recent measurements. Future work could include measurements of both the radiation pattern and of the frequency spectrum, for comparison with detailed calculations of filament plasma processes. Potential applications include high-resolution imaging and remote spectroscopic identification of chemical substances.

  11. Discovery of Early Optical Emission from GRB 021211

    CERN Document Server

    Fox, D W; Soderberg, A M; Berger, E; Kulkarni, S R; Sari, R; Frail, D A; Harrison, F A; Yost, S A; Matthews, K; Peterson, B A; Tanaka, I; Christiansen, J; Moriarty-Schieven, G H

    2003-01-01

    We report our discovery and early time optical, near-infrared, and radio wavelength follow-up observations of the afterglow of the gamma-ray burst GRB 021211. Our optical observations, beginning 21 min after the burst trigger, demonstrate that the early afterglow of this burst is roughly three magnitudes fainter than the afterglow of GRB 990123 at similar epochs, and fainter than almost all known afterglows at an epoch of 1d after the GRB. Our near-infrared and optical observations indicate that this is not due to extinction. Combining our observations with data reported by other groups, we identify the signature of a reverse shock. This reverse shock is not detected to a 3-sigma limit of 110 uJy in an 8.46-GHz VLA observation at t=0.10d, implying either that the Lorentz factor of the burst gamma ~ 1 week, we find that the late-time radio flux is suppressed by a factor of two relative to the >~ 80 uJy peak flux at optical wavelengths. This suppression is not likely to be due to synchrotron self-absorption or ...

  12. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation.

    Science.gov (United States)

    Guo, L B; Zhang, B Y; He, X N; Li, C M; Zhou, Y S; Wu, T; Park, J B; Zeng, X Y; Lu, Y F

    2012-01-16

    In laser-induced breakdown spectroscopy (LIBS), a pair of aluminum-plate walls were used to spatially confine the plasmas produced in air by a first laser pulse (KrF excimer laser) from chromium (Cr) targets with a second laser pulse (Nd:YAG laser at 532 nm, 360 mJ/pulse) introduced parallel to the sample surface to re-excite the plasmas. Optical emission enhancement was achieved by combing the spatial confinement and dual-pulse LIBS (DP-LIBS), and then optimized by adjusting the distance between the two walls and the interpulse delay time between both laser pulses. A significant enhancement factor of 168.6 for the emission intensity of the Cr lines was obtained at an excimer laser fluence of 5.6 J/cm(2) using the combined spatial confinement and DP-LIBS, as compared with an enhancement factor of 106.1 was obtained with DP-LIBS only. The enhancement mechanisms based on shock wave theory and reheating in DP-LIBS are discussed.

  13. A Fokker-Planck operator for the emission and absorption of electron plasma waves in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.A.

    1993-03-01

    For slab geometry the perturbation of the electrostatic wake of a superthermal test electron in a magnetized plasma ({omega}{sub ce} {much_gt} {omega}{sub pe}) due to moderate magnetic shear is determined. Allowing for the spherical symmetry of the surfaces of constant phase to the rear of the test electron, the ``resonant`` field electrons causing the damping of the wave in a magnetic surface at a distance x from the test electron are those with parallel velocity {upsilon}{prime}{parallel} = {upsilon}{parallel} cos {beta} cos({beta} + {gamma}). Here {beta} is the angle between the emitted ray and B(0), {gamma} is the angle between B(0) and B(x) and {upsilon}{parallel} is the velocity of the test electron. As a result the damping in the WKB approximation for the wave emission is a function of both the angle of emission and {gamma}. A Fokker-Planck equation is derived for the rate of change of the electron distribution function (f) due to the emission and absorption of the waves under these conditions. f is assumed approximately Maxwellian for {upsilon}{parallel} > {upsilon}{sub T}.

  14. A Fokker-Planck operator for the emission and absorption of electron plasma waves in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.A.

    1993-03-01

    For slab geometry the perturbation of the electrostatic wake of a superthermal test electron in a magnetized plasma ([omega][sub ce] [much gt] [omega][sub pe]) due to moderate magnetic shear is determined. Allowing for the spherical symmetry of the surfaces of constant phase to the rear of the test electron, the resonant'' field electrons causing the damping of the wave in a magnetic surface at a distance x from the test electron are those with parallel velocity [upsilon][prime][parallel] = [upsilon][parallel] cos [beta] cos([beta] + [gamma]). Here [beta] is the angle between the emitted ray and B(0), [gamma] is the angle between B(0) and B(x) and [upsilon][parallel] is the velocity of the test electron. As a result the damping in the WKB approximation for the wave emission is a function of both the angle of emission and [gamma]. A Fokker-Planck equation is derived for the rate of change of the electron distribution function (f) due to the emission and absorption of the waves under these conditions. f is assumed approximately Maxwellian for [upsilon][parallel] > [upsilon][sub T].

  15. Optical diagnostics and mass spectrometry on the afterglow of an atmospheric pressure Ar/O$_2$ radiofrequency plasma used for polymer surface treatment

    CERN Document Server

    Duluard, Corinne Y; Hubert, Julie; Reniers, François

    2016-01-01

    In the context of polymer surface treatment, the afterglow of an atmospheric pressure Ar/O$_2$ radiofrequency plasma is characterized by optical emission spectroscopy, laser induced fluorescence and mass spectrometry. The influence of the O$_2$ gas flow rate and the source power on the plasma properties (gas temperature, Ar excitation temperature, relative concentrations of O atoms and OH radicals) are evaluated. We show that for plasma torch-to-substrate distances lower than 6 mm, the afterglow creates a protective atmosphere, thus the plasma gas composition interacting with the substrate is well controlled. For higher distances, the influence of ambient air can no longer be neglected and gradients in Ar, O$_2$ and N$_2$ concentrations are measured as a function of axial and vertical position.

  16. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge; Diagnostico del equilibrio termico local por espectroscopia optica de emision en la evolucion de una descarga electrica

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Velazquez P, S. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)

    2008-07-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  17. Optical polarisation of the Crab pulsar: precision measurements and comparison to the radio emission

    CERN Document Server

    Słowikowska, Agnieszka; Kramer, Michael; Stefanescu, Alexander

    2009-01-01

    The linear polarisation of the Crab pulsar and its close environment was derived from observations with the high-speed photo-polarimeter OPTIMA at the 2.56-m Nordic Optical Telescope in the optical spectral range (400 - 750 nm). Time resolution as short as 11 microseconds, which corresponds to a phase interval of 1/3000 of the pulsar rotation, and high statistics allow the derivation of polarisation details never achieved before. The degree of optical polarisation and the position angle correlate in surprising details with the light curves at optical wavelengths and at radio frequencies of 610 and 1400 MHz. Our observations show that there exists a subtle connection between presumed non-coherent (optical) and coherent (radio) emissions. This finding supports previously detected correlations between the optical intensity of the Crab and the occurrence of giant radio pulses. Interpretation of our observations require more elaborate theoretical models than those currently available in the literature.

  18. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    Science.gov (United States)

    Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.

    2016-04-01

    Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.

  19. Electrophoretic Carb on Nanotub e Field Emission Layer for Plasma Display Panels

    Institute of Scientific and Technical Information of China (English)

    Qifa Liu; Zhuoqing Yang; Yan Wang; Guifu Ding∗

    2012-01-01

    A carbon-nanotube (CNT) electrophoretic deposition (EPD) process has been developed to pre-pare a field emission layer in plasma display panels (PDP) for discharge voltage reduction. The CNT layer as a source of discharge priming electrons has been fabricated on the PDP front panel. The balling grinding, mix-acid treatment and EPD parameters have been investigated in order to obtain good uniformity and ex-cellent field emission capability of CNT layer, in order to meet the specifications of CNTs in PDP cell. The measured turn-on field was around 1.1 V/µm in the field emission testing while the minimum sustaining voltage was decreased by 30∼40 V with the use of CNT layer in the discharge testing.

  20. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    C L Linslal; Jaison Peter; S Mathew; M Kailasnath

    2014-02-01

    Well-resolved multimode laser emission was observed for the first time from a freestanding microring cavity based on Rhodamine B dye-doped hollow polymer optical fibre by transverse pumping. Fibres with different diameters such as 180, 460, 640 and 800 m were fabricated from a dye-doped hollow polymer preform. A blueshift in the mode structure was observed with decrease in fibre diameter leading to wide range tunability of the laser emission.

  1. Optical sensors of gas on the basis of semiconductor sources of infrared emission

    Directory of Open Access Journals (Sweden)

    Kabatsiy V. N.

    2008-08-01

    Full Text Available Various constructions of optic sensors of gas and gas analyzers on their basis with the use of low-powered semiconductor sources of infrared emission for wave-length of 2,5–5,0 mm made on basis of InGaAs/InAs and InAsSbP/InAs heterostructures are worked out. The experimental results demonstrating the ability of application of semiconductor sources of infrared emission in optic sensors for measuring of metan concentration (CH4 and carbon dioxide (CO2 are given. The availability of use of such sensors in the gas analysis equipment of new generation is shown.

  2. Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas.

    Science.gov (United States)

    Crank, M; Harilal, S S; Hassan, S M; Hassanein, A

    2012-02-01

    We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-α and He-α are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-α to He-α emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

  3. Laser Plasmas : Lie-optic matrix algorithm for computer simulation of paraxial self-focusing in a plasma

    Indian Academy of Sciences (India)

    D Subbarao; R Uma; Kamal Goyal; Sanjeev Goyal; Karuna Batra

    2000-11-01

    Propagation algorithm for computer simulation of stationary paraxial self-focusing laser beam in a medium with saturating nonlinearity is given in Lie-optic form. Accordingly, a very natural piece-wise continuous Lie transformation that reduces to a restricted Lorentz group of the beam results. It gives rise to a matrix method for self-focusing beam propagation that is constructed and implemented. Although the results use plasma nonlinearities of saturable type, and a gaussian initial beam, these results are applicable for other media like linear optical fibers and to more general situations.

  4. Optical processes in the formation of stimulated emission from ZnO nanowires

    Institute of Scientific and Technical Information of China (English)

    Liu Rui-Bin; Pan An-Lian; Wang Fei-Fei; Zou Bing-Suo

    2007-01-01

    This paper studies power dependent photoluminescence spectra, the stimulated emission occurring at ultraviolet (UV) band instead of the green emission band of ZnO nanowires, which are prepared with a chemical reduction method.The dynamics of the UV emission and green emission is given to demonstrate the reason of stimulated emission occurring at UV band but not the green emission band under high excitation, which indicates that the slow decay rate of trap state makes it easy to be fully filled and saturated, while the fast decay rate of near-band-edge exciton state makes the UV emission dominate the radiative recombination under high excitation. The UV emission, as well as the corresponding stimulated emission, occurs in competition with the green deep-trap emission. In addition, when pump fluence further increases, the multiple lasing modes appear. The dependence of these lasing modes on the pump fluence is first discussed.This diagram should be helpful to understand and design the optical nanodevices of ZnO nanowires.

  5. Supersonic metal plasma impact on a surface: An optical investigation of the pre-surface region

    Energy Technology Data Exchange (ETDEWEB)

    Fusion Science Group, AFRD; Plasma Applications Group, AFRD; Ni, Pavel A.; Anders, Andre

    2009-12-15

    Aluminum plasma, produced in high vacuum by a pulsed, filtered cathodic arc plasma source, was directed onto a wall where if formed a coating. The accompanying ?optical flare? known from the literature was visually observed, photographed, and spectroscopically investigated with appropriately high temporal (1 ?s) and spatial (100 ?m) resolution. Consistent with other observations using different techniques, it was found that the impact of the fully ionized plasma produces metal neutrals as well as desorbed gases, both of which interact with the incoming plasma. Most effectively are charge exchange collisions between doubly charged aluminum and neutral aluminum, which lead to a reduction of the flow of doubly charged before they reach the wall, and a reduction of neutrals as the move away from the surface. Those plasma-wall interactions are relevant for coating processes as well as for interpreting the plasma properties such as ion charge state distributions.

  6. Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    Science.gov (United States)

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bontà, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, Scott M.; Beatty, Thomas G.; Bigley, A.; Brown, Jacob E.; Brown, Jonathan S.; Canalizo, G.; Comerford, J. M.; Coker, Carl T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, Michael; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, Ana; Mudd, Dale; Muller Sanchez, F.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, Matthew T.; Pizzella, A.; Poleski, Radosław; Runnoe, Jessie; Scott, B.; Schimoia, Jaderson S.; Shappee, B. J.; Shivvers, I.; Simonian, Gregory V.; Siviero, A.; Somers, Garrett; Stevens, Daniel J.; Strauss, M. A.; Tayar, Jamie; Tejos, N.; Treu, T.; Van Saders, J.; Vican, L.; Villanueva, S., Jr.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; De Lorenzo-Cáceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.

    2017-03-01

    We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He ii λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by {4.17}-0.36+0.36 {days} and {0.79}-0.34+0.35 {days}, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ∼50% longer than that measured against the optical continuum, and the la