WorldWideScience

Sample records for plasma nox adsorber

  1. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  2. Electrochemical NOx reduction on an LSM/CGO symmetric cell modified by NOx adsorbents

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    nitrate reduction. The cell with the BaO/Pt/Al2O3 layer exhibited a preferable performance at low temperatures (350 and 400 °C) and low voltages (1.5 to 2 V) due to the NO oxidation ability of the Pt catalyst, although its performance was relatively poor at elevated temperatures and voltages due......This study investigated the effect of modifying a (La0.85Sr0.15)0.99MnO3 (LSM)/Ce0.9Gd0.1O1.95 (CGO) symmetric cell by NOx adsorbents on the electrochemical reduction of NOx under O2-rich conditions. The modification was based on a full ceramic cell structure without any noble metals. Three cells...... were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a BaO/Pt/Al2O3 layer. The electrochemical reduction of NOx on the three cells was studied by conversion measurement, degradation testing, and microstructure characterization. The modification, either...

  3. A Cascaded Discharge Plasma-Adsorbent Technique for Engine Exhaust Treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A cascaded system of electrical discharges (non-thermal plasma) and adsorptionprocess was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons(THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processeswere separately studied first and then the cascaded process was studied. In this study, differenttypes of adsorbents were used. The NOx removal efficiency was higher with plasma-associatedadsorption (cascaded) process compared to the individual processes and the removal efficiencywas found almost invariant in time. When associated by plasma, among the adsorbents studied,activated charcoal and MS-13X were more effective for NOx and THC removal respectively. Theexperiments were conducted at no load and at 50 % load conditions. The plasma reactor was keptat room temperature throughout the experiment, while the temperature of the adsorbent reactorwas varied. A relative comparison of adsorbents was discussed at the end.

  4. A Cascaded Discharge Plasma-Adsorbent Technique for Engine Exhaust Treatment

    Science.gov (United States)

    Rajanikanth, B. S.; Srinivasan, A. D.; Arya, Nandiny B.

    2003-06-01

    A cascaded system of electrical discharges (non-thermal plasma) and adsorption process was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processes were separately studied first and then the cascaded process was studied. In this study, different types of adsorbents were used. The NOx removal efficiency was higher with plasma-associated adsorption (cascaded) process compared to the individual processes and the removal efficiency was found almost invariant in time. When associated by plasma, among the adsorbents studied, activated charcoal and MS-13X were more effective for NOx and THC removal respectively. The experiments were conducted at no load and at 50% load conditions. The plasma reactor was kept at room temperature throughout the experiment, while the temperature of the adsorbent reactor was varied. A relative comparison of adsorbents was discussed at the end.

  5. Characterization of LSM/CGO Symmetric Cells Modified by NOx Adsorbents for Electrochemical NOx Removal with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    /CGO electrode by selectively trapping NO2 in the form of nitrate over the BaO sites and provided availability for a direct reduction of the stored nitrate. The BaO-Pt-Al2O3 layer enhanced the NOx adsorption and promoted the formation of NO2 due to the NO oxidation ability of the Pt catalyst, but hindered......This study uses electrochemical impedance spectroscopy (EIS) to characterize an LSM/CGO symmetric cell modified by NOx adsorbents for the application of electrochemical NOx reduction. Three cells were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a Ba...

  6. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  7. Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

    2003-10-01

    Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed

  8. Reduce NOx Emissions by Adsorber-Reduction Catalyst on Lean Burn Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Dongpeng Yue

    2013-09-01

    Full Text Available The effect of a new catalyst system composed of traditional three way catalyst converter and adsorber-reduction catalysis converter on the emission characteristics and BSFC (Breake Specific Fuel Consumption- BSFCof a lean burn gasoline engine operated were investigated in this paper under different schemes of catalyst converter arrangement and different speeds and loads. The results show that the position of Three Way Catalyst is before the NOx adsorber Catalyst was the best scheme of catalyst converter arrangement. Which has the highest converter efficiency of reduction NOx emission in lean burn gasoline engine. The effects of speed on the exhaust emission and BSFC were also related to the ratio of lean burn time to rich burn time and the absolute value of both time of the adsorber-reduction catalyst converter. The load of the engine was the main influential factor to the exhaust emission characteristics and BSFC of lean burn gasoline engine, and the more load of the engine was, the more NOx emission , the less NOx conversion rate (CNOx and the better BSFC were.

  9. NOx Removal and Effect of Adsorbate-Adsorbate Interactions

    DEFF Research Database (Denmark)

    Khan, Tuhin Suvra

    to obtain more accurate catalytic rates than with the commonly used non-interacting mean field model. I then applied the proposed adsorbate-adsorbate interaction model to three important catalytic reactions, the direct NO decomposition, CO methanation, and steam reforming of methane, and analyzed the effect...

  10. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the

  11. Pilot test and optimization of plasma based deNOx

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Michelsen, Poul

    The NOx reduction of flue gas by plasma generated ozone was investigated in pilot test experiments at two industrial power plants running on natural gas (Ringsted) and biomass (Haslev). Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx of 1.56. Fourier transform infrared....... Experiments are in good agreement with numerical simulations. An optimized oxidation scheme for NOx reduction processes with time dependent combustion, such as the biomass power plants, was developed. Ozone production by micro-hollow and capillary discharges at atmospheric pressures was investigated...

  12. NOx reduction by ozone injection and direct plasma treatment

    DEFF Research Database (Denmark)

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration....... The process chemistry is monitored by FTIR, chemiluminiscence and absorbtion spectroscopy. The kinetic mechanism is also investigated in 3D simulations....

  13. Development of Scaling Algorithms and Economic Evaluation for Non-Thermal Plasma Reactors - Adsorbant/Catalyzer Hybrid System for Control of NOx Released During Army and Related U.S. Department of Defense (DOD) Operations

    National Research Council Canada - National Science Library

    Urashima, K

    1998-01-01

    Computer code (SUENTP-J) to predict scale-up and economic evaluation of several eligible non-thermal plasma processes for air pollution control - electron beam process, pulsed corona process, and corona radical shower...

  14. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    Energy Technology Data Exchange (ETDEWEB)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine

  15. AN EXPERIMENTAL STUDY ON REMOVAL OF NOX IN FLUE GAS AT THE NONEQUILIBRIUM PLASMA

    Institute of Scientific and Technical Information of China (English)

    张强; 许世森; 顾璠

    2004-01-01

    Removal of nitrogen oxides (NOX) in flue gas by means of nonequilibrium plasma technology is a very prospect and attractive method. As the nonequilibrium plasma micro discharges can generate a powerful energy flux, imparted to the flue gas, the molecules and atoms of pollutants are motivated and decomposed, and then NOX in the flue gas are decomposed and conversed in the particular conditions. Based on nonequilibrium plasma in combination with catalytic principle, an experimental investigation on NOX decomposition and conversion with Al2O3 catalysts was carried out and the NOX removal rate up to 95% was obtained. The NOX decomposition and conversion principle with Al2O3 catalysts was also discussed.

  16. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    Science.gov (United States)

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  17. Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.

    Science.gov (United States)

    Peng, Han Hsuan; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-10-01

    A new NOx storage and reduction (NSR) system is developed for NOx removal by combining perovskite-like catalyst with nonthermal plasma technology. In this hybrid system, catalyst is mainly used for oxidizing NO to NO2 and storing them, while nonthermal plasma is applied as a desorption-reduction step for converting NOx into N2. An innovative catalyst with a high NOx storage capacity and good reduction performance is developed by successive impregnation. The catalysts prepared with various metal oxides were investigated for NOx storage capacity (NSC) and NOx conversion. Characterization of the catalysts prepared reveals that addition of cobalt (Co) and potassium (K) considerably increases the performance for NSC. Results also show that SrKMn0.8Co0.2O4 supported on BaO/Al2O3 has good NSC (209 μmol/gcatalyst) for the gas stream containing 500 ppm NO and 5 % O2 with N2 as carrier gas. For plasma reduction process, NOx conversion achieved with SrKMn0.8Co0.2O4/BaO/Al2O3 reaches 81 % with the applied voltage of 12 kV and frequency of 6 kHz in the absence of reducing agents. The results indicate that performance of plasma reduction process (81 %) is better than that of thermal reduction (64 %). Additionally, mixed gases including 1 % CO, 1 % H2 and 1 % CH4, and 2 % H2O(g) are simultaneously introduced into the system to investigate the effect on NSR with plasma system and results indicate that performance of NSR with plasma can be enhanced. Overall, the hybrid system is promising to be applied for removing NOx from gas streams. Graphical abstract ᅟ.

  18. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  19. In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NOx over a Cu-SSZ-13 zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haiyang; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos

    2013-04-30

    DRIFT spectroscopy combined with mass spectrometry was used to investigate the oxidation of adsorbed ammonia by NO2, NO+O2 and NO2+O2 on a copper ion exchanged SSZ 13 (Cu-SSZ-13) zeolite. Compared with both NO2 and NO, the adsorption of ammonia is much stronger on the Cu-SSZ-13 zeolite. Two adsorbed ammonia species were found over the Cu-SSZ-13 zeolite studied here; notably ammonia on Brönsted acid sites (proton) and ammonia on Lewis acid sites (copper ions). These adsorbed ammonia species present different activity profiles and selectivity to N2 during NH3 oxidation. The results obtained suggest that ammonia adsorbed onto copper ions in Cu-SSZ-13 are more active at low temperatures than proton-adsorbed NH3, and give rise to a higher selectivity to N2. The formation of N2O is associated primarily with the reaction of NOx with proton-adsorbed NH3 via the formation and subsequent thermal decomposition of NH4NO3. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Portions of this work were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle.

  20. Simultaneous Oxidization of NOx and 802 by a New Non-thermal Plasma Reactor Enhanced by Catalyst and Additive

    Institute of Scientific and Technical Information of China (English)

    Heejoon KIM; HAN Jun; Yuhei SAKAGUCHI; Wataru MINAMI

    2008-01-01

    The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attracted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200℃.

  1. Enhancement of NOx and hydrocarbon conversion in plasma-activated catalysis

    Science.gov (United States)

    Graham, Bill; Adress, Wahmeed; Goguet, Alexandre; Yang, Hui; De Rosa, Fabio; Hardacre, Christopher; Stere, Cristina

    2016-09-01

    Atmospheric pressure, non-thermal plasma-activated-catalysis is showing real promise in a number of applications. Here we report on how electrical, visible and FTIR spectroscopy and mass spectroscopy measurements in a kHz atmospheric pressure He plasma jet coupled with a Ag/Al2O3 catalyst allowed us produce and confirm a strong enhancement of both NOx and hydrocarbon conversion at a measured gas temperature of <= 250° C. How these and other measurements have provided an insight into the fundamental physical and chemical processes in the plasma environment that have helped us move to a more efficient system and other processes will be discussed.

  2. Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.

    Science.gov (United States)

    Chen, Jun Xiang; Pan, Kuan Lun; Yu, Sheng Jen; Yen, Shaw Yi; Chang, Moo Been

    2017-07-26

    In this study, the concept of fast SCR for NO reduction with NH3 as reducing agent is realized via the combination of nonthermal plasma (NTP) with Mn-based catalyst. Experimental results indicate that 10% wt. Mn-Ce-Ni/TiO2 possesses better physical and chemical properties of surface, resulting in higher NO removal efficiency if compared with 10% wt. Mn-Ce/TiO2 and 10% wt. Mn-Ce-Cu/TiO2. Mn-Ce-Ni/TiO2 of 10% wt. achieves 100% NOx conversion at 150 °C, while 10% wt. Mn-Ce/TiO2 and 10% wt. Mn-Ce-Cu/TiO2 need to be operated at a temperature above 200 °C for 100% NOx conversion. However, NO conversion achieved with 10% wt. Mn-Ce-Ni/TiO2 is significantly reduced as H2O(g) and SO2 are introduced into the SCR system simultaneously. Further, two-stage system (SCR with DBD) is compared with the catalyst-alone for NOx conversion and N2 selectivity. The results indicate that 100% NOx conversion can be achieved with two-stage system at 100 °C, while N2 selectivity reaches 80%. Importantly, NOx conversion achieved with two-stage system could maintain >95% in the presence of C2H4, CO, SO2, and H2O(g), indicating that two-stage system has better tolerance for complicated gas composition. Overall, this study demonstrates that combining NTP with Mn-based catalyst is effective in reducing NOx emission at a low temperature (≤200 °C) and has good potential for industrial application.

  3. Effect of hydrocarbons on plasma treatment of NOx

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Pitz, W.J.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Lean burn gasoline engine exhausts contain a significant amount of hydrocarbons in the form of propene. Diesel engine exhausts contain little gaseous hydrocarbon; however, they contain a significant amount of liquid-phase hydrocarbons (known as the volatile organic fraction) in the particulates. The objective of this paper is to examine the fate of NO{sub x} when an exhaust gas mixture that contains hydrocarbons is subjected to a plasma. The authors will show that the hydrocarbons promote the oxidation of NO to NO{sub 2}, but not the reduction of NO to N{sub 2}. The oxidation of NO to NO{sub 2} is strongly coupled with the hydrocarbon oxidation chemistry. This result suggests that gas-phase reactions in the plasma alone cannot lead to the chemical reduction of NO{sub x}. Any reduction of NO{sub x} to N{sub 2} can only be accomplished through heterogeneous reactions of NO{sub 2} with surfaces or particulates.

  4. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood

    Directory of Open Access Journals (Sweden)

    Heuck, Claus-Chr.

    2011-01-01

    Full Text Available Polyacrylate (PAA adsorbents selectively bind low density lipoproteins (LDL from human plasma and blood, whereas very low density lipoproteins (VLDL are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw of the polyanion ligand. Ca++ and Mg++ inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL are repelled from the adsorbents due to their higher negative surface charge density.

  5. Polyacrylate adsorbents for the selective adsorption of cholesterol-rich lipoproteins from plasma or blood.

    Science.gov (United States)

    Heuck, Claus-Chr

    2011-01-24

    Polyacrylate (PAA) adsorbents selectively bind low density lipoproteins (LDL) from human plasma and blood, whereas very low density lipoproteins (VLDL) are only minimally adsorbed. The adsorption of cholesterol-rich lipoproteins to PAA adsorbents is related to the molecular weight (mw) of the polyanion ligand. Ca(++) and Mg(++) inhibit the binding of LDL to PAA adsorbents. The chemical composition of the organic hardgels of the adsorbents does not have an influence on adsorption. The selective adsorption of LDL to PAA adsorbents can be explained to result from their low negative surface charge density and the specific colloid-chemical properties of the surface-bound PAA, which do not prevent LDL from binding to charge-like domains of the ligand. By contrast, VLDL and high density lipoproteins (HDL) are repelled from the adsorbents due to their higher negative surface charge density.

  6. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  7. Consequences of unburned hydrocarbons on microstreamer dynamics and chemistry during plasma remediation of NOx using dielectric barrier discharges

    Science.gov (United States)

    Dorai, Rajesh; Kushner, Mark J.

    2003-05-01

    Atmospheric pressure plasmas, and dielectric barrier discharges (DBDs) in particular, are being investigated for their use in the remediation of nitrogen oxides (NOx) from automotive exhausts. In their normal mode of operation, DBDs consist of a large density of short-lived filamentary microdischarges. Localized energy deposition results in spatially nonuniform gas temperatures and species densities which initiate advective and diffusive transport. Diesel exhausts, one of the major sources of NOx, typically contain unburned hydrocarbons (UHCs) which significantly influence the NOx chemistry during plasma remediation. In this paper, we discuss results from a computational investigation of the consequences of UHC chemistry on radial transport dynamics and remediation of NOx. In the presence of UHCs, radicals such as O and OH are dominantly consumed in the microstreamer region and their transport to larger radii is reduced. As a result, the conversion of NO to NO2 is mainly restricted to the core of the microstreamer.

  8. Diesel NO(x) aftertreatment by combined process using temperature swing adsorption, NO(x) reduction by nonthermal plasma, and NO(x) recirculation: improvement of the recirculation process.

    Science.gov (United States)

    Yoshida, Keiichiro; Kuwahara, Takuya; Kuroki, Tomoyuki; Okubo, Masaaki

    2012-09-15

    NO(x) emitted from a stationary diesel engine generator was treated with a hybrid system comprising NO(x) reduction by nonthermal plasma (NTP) and temperature swing adsorption (TSA) driven by engine waste heat. TSA produces a low-volume gas mixture of N(2) and highly concentrated NO(x), which is effectively reduced by NTP treatment. Improved treatment performance and efficiency are achieved by re-injecting the NTP-treated gas mixture into the engine intake. The system comprises two switchable adsorption chambers; the operation of this system was simulated by using a one-chamber system. The maximum energy efficiency for NO(x) treatment is 200 g(NO(2))/kWh. The respective contributions of NTP and injection of N(2) and NO(x) to the performance were theoretically analyzed. The analysis predicts that high energy efficiency and high NO(x)-removal efficiency can be simultaneously achieved with this system but miniaturization of the adsorption chambers will be a challenge. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Low-Temperature Plasma-Catalytic Reduction of Nox by C2H2 in the Presence of Excess Oxygen

    Institute of Scientific and Technical Information of China (English)

    NIU Jinhai; ZHANG Zhihui; LIU Dongping; WANG Qi

    2008-01-01

    Synergistic effects of pulsed DC dielectric barrier discharge (DBD) plasma and In-dium modified HZSM-5 (In/HZSM-5) catalyst for C2H2 selective reduction of Nox at 200℃, in the presence of enriched oxygen by using a one-stage plasma-over-catalyst (POC) reactor, are reported. With a reactant gas mixture of 480 ppm NO, 500 ppm C2H2, 13.0% O2 in N2 and gas hourly space velocity (GHSV) = 10000 h-1, pure catalytic, pure plasma-induced (discharges over fused silica pellets) and plasma-catalytic Nox conversion percentages are 45.0%, 4.0% and 92.2%, respectively. Nox conversion rates and energy costs were also compared for pulsed DC DBD and AC DBD reactors.

  10. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  11. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    Science.gov (United States)

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-11-24

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N2 is used as desorbing gas. In addition, as air or O2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O2 plasmas generate active species to oxidize IPA to form acetone, CO2, and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  12. Preparation and Adsorption Properties of PAM Based Adsorbents for Plasma Lipoproteins

    Institute of Scientific and Technical Information of China (English)

    Hai Tao LI; Zhi YUAN; Xin Fu CHEN; Bin LIU; Bin SHEN; Bing Lin HE

    2004-01-01

    Crosslinked macroporous polyacrylamide(PAM)was prepared with inverse phase suspension polymerization technique.After treatment with hydrazine,the polymer was functionalized with chloroacetic acid,trifluoroacetic acid diethylenetriaminepentaacetic acid (DEPAA), and maleic acid, respectively,and PAM based adsorbents bearing carboxyl functional groups for low density lipoprotein(LDL)apheresis use were obtained.The blood compatibility and the adsorption properties for plasma lipoproteins of PAM based adsorbents were investigated.

  13. Simultaneous catalytic removal of NOx and diesel PM over La0.9 K0.1 CoO3 catalyst assisted by plasma

    Institute of Scientific and Technical Information of China (English)

    PEI Mei-xiang; LIN He; SHANGGUAN Wen-feng; HUANG Zhen

    2005-01-01

    The simultaneous removal of NOx and particulate matter(PM) from diesel exhaust is investigated over a mixed metal oxide catalyst of La0.9 K0.1 CoO3 loaded on γ-Al2O3 spherules with the assistant of plasma. It was found that NOx was reduced by PM in oxygen rich atmosphere, the CO2 and N2 were produced in the same temperature window without considering the N2 formed by plasma decomposition. As a result, the temperature for the PM combustion decreases and the reduction efficiency of NOx to N2 increases during the plasma process, which indicated that the activity of the catalyst can be improved by plasma. The NOx is decomposed by plasma at both low temperature and high temperature. Therefore, the whole efficiency of NOx conversion is enhanced.

  14. Surface modification of chromatography adsorbents by low temperature low pressure plasma

    DEFF Research Database (Denmark)

    Arpanaei, Ayyoob; Winther-Jensen, Bjørn; Theodosiou, E.

    2010-01-01

    changes to the elemental composition of Q HyperZ's exterior had been inflicted in all cases. The atomic percent changes in carbon, nitrogen, oxygen, yttrium and zirconium observed after being exposed to air plasma etching were entirely consistent with: the removal of pendant Q (trimethylammonium...... and zirconium provided clear evidence that thin polymer coats had been created at the exteriors of Q HyperZ adsorbent particles. No changes in adsorbent size and surface morphology, nor any evidence of plasma-induced damage could be discerned from scanning electron micrographs, light micrographs...

  15. Surface modification of chromatography adsorbents by low temperature low pressure plasma.

    Science.gov (United States)

    Arpanaei, A; Winther-Jensen, B; Theodosiou, E; Kingshott, P; Hobley, T J; Thomas, O R T

    2010-10-29

    In this study we show how low temperature glow discharge plasma can be used to prepare bi-layered chromatography adsorbents with non-adsorptive exteriors. The commercial strong anion exchange expanded bed chromatography matrix, Q HyperZ, was treated with plasmas in one of two general ways. Using a purpose-designed rotating reactor, plasmas were employed to either: (i) remove anion exchange ligands at or close to the exterior surface of Q HyperZ, and replace them with polar oxygen containing functions ('plasma etching and oxidation'); or (ii) bury the same surface exposed ligands beneath thin polymer coatings ('plasma polymerization coating') using appropriate monomers (vinyl acetate, vinyl pyrrolidone, safrole) and argon as the carrier gas. X-ray photoelectron spectroscopy analysis (first ∼10 nm depth) of Q HyperZ before and after the various plasma treatments confirmed that substantial changes to the elemental composition of Q HyperZ's exterior had been inflicted in all cases. The atomic percent changes in carbon, nitrogen, oxygen, yttrium and zirconium observed after being exposed to air plasma etching were entirely consistent with: the removal of pendant Q (trimethylammonium) functions; increased exposure of the underlying yttrium-stabilised zirconia shell; and introduction of hydroxyl and carbonyl functions. Following plasma polymerization treatments (with all three monomers tested), the increased atomic percent levels of carbon and parallel drops in nitrogen, yttrium and zirconium provided clear evidence that thin polymer coats had been created at the exteriors of Q HyperZ adsorbent particles. No changes in adsorbent size and surface morphology, nor any evidence of plasma-induced damage could be discerned from scanning electron micrographs, light micrographs and measurements of particle size distributions following 3 h exposure to air (220 V; 35.8 W L(-1)) or 'vinyl acetate/argon' (170 V; 16.5 W L(-1)) plasmas. Losses in bulk chloride exchange capacity

  16. Sorbent track: Quantitative monitoring of adsorbed VOCs under in-situ plasma exposure

    Science.gov (United States)

    Jia, Zixian; Rousseau, Antoine

    2016-08-01

    Sorbent-TRACK is a new device developed to monitor adsorption and surface oxidation of pollutants under direct plasma exposure. It is based on direct transmitted Fourier Transformed Infrared (FTIR) spectroscopy. A pyrex reactor under controlled gas pressure and composition is inserted on the infrared beam of a commercially available Nicolet 5700 FTIR spectrometer. A substrate holder is located on the optical path of the infrared beam. A thin pellet of a dedicated catalyst (CeO2 in the present work) is inserted in a substrate holder and can be exposed to direct plasma treatment using a Dielectric Barrier Discharge. The time resolution of Sorbent-TRACK is limited by the time resolution of the Nicolet 5700 FTIR spectrometer and close to 30 s. The dynamic of the adsorption and plasma oxidation of acetone and isopropanol on CeO2 are studied and intermediates are monitored. Performances and sensitivity of Sorbent-TRACK are reported Adsorption and oxidation of acetone leads to production of adsorbed isobutene and acetic acid, where oxidation of isopropanol gives mainly to adsorbed acetone, mesityl oxide and acetate. An increase of the plasma power leads to an increase of the isopropanol and acetone oxidation rate and a related increase of the production of adsorbed intermediates.

  17. Bilirubin adsorption properties of water-soluble adsorbents with different cyclodextrin cavities in plasma dialysis system.

    Science.gov (United States)

    Wang, Zhi; Cao, Yaming; Wei, Houliang; Jia, Lingyun; Xu, Li; Xie, Jian

    2012-02-01

    In this study, we explored the use of α-, β- or γ-cyclodextrin (CD)-grafted polyethyleneimine (PEI) as water-soluble adsorbent for removing excess plasma bilirubin. To evaluate the bilirubin-binding capacity of these adsorbents, bovine serum albumin (BSA) solution or plasma with high level of bilirubin were dialyzed against CD-PEI-spiked dialysate. In BSA solution with an initial biliurbin concentration of 171.5mg/L, α-CD-PEI, β-CD-PEI and γ-CD-PEI achieved adsorption capacities of 2.5, 5.8 and 3.8 mg/g, respectively. In a plasma dialysis system, 45.6% of bilirubin (260 mg/L) was removed from 200 mL plasma by 1L dialysate spiked with 10mg/mL β-CD-PEI, which was significantly higher than that removed by the same volume of BSA-spiked dialysate (Padsorption was related to the CD functional group, not the PEI matrix. Subsequent molecular docking study indicated that the size of CD cavity could affect the affinity energy of CD-bilirubin complex. The cavity of β-CD was most suitable for accommodating the pyrrole rings of bilirubin. The inclusion complex of bilirubin and β-CD in the molar ratio of 1:2 was more logical in terms of affinity energy. All the results demonstrated the potential of β-CD-PEI (water-soluble adsorbent) as an effective agent for removing of bilirubin from plasma in dialysis system. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of

  19. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    Science.gov (United States)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  20. Removal of formaldehyde by adsorption and plasma treatment of mineral adsorbent

    Science.gov (United States)

    Saulich, K.; Müller, S.

    2013-01-01

    Formaldehyde is a harmful ambient air pollutant which can be produced by incomplete combustion processes, e.g. in power plants or automobiles. In this work a cycled adsorption and discharge process using mineral granulate in a packed bed dielectric barrier discharge plasma reactor was applied for formaldehyde (99 ppm) removal from gas streams. The mineral granulate used consisted of 80% halloysite and showed a good adsorption capacity for formaldehyde. In the discharge step, the adsorbed formaldehyde molecules were decomposed to COx and hydrocarbons in a N2 plasma at a low input discharge power of 2.2 W. The decomposition performance on adsorbed formaldehyde molecules was studied depending on space-time, a specific oxygen fraction of the carrier gas and the influence of temperature. With rising N2 space times in the discharge area, the total amount of decomposed formaldehyde molecules increased and the decomposition reaction mechanism shifted to CO2 formation. An oxygen fraction in the carrier gas further raised the oxidized amount of formaldehyde to CO2. The mineral granulate showed satisfied regeneration ability during the cycled plasma process.

  1. Adsorbed plasma proteins modulate the effects of single-walled carbon nanotubes on neutrophils in blood.

    Science.gov (United States)

    Vlasova, Irina I; Mikhalchik, Elena V; Barinov, Nikolay A; Kostevich, Valeria A; Smolina, Natalia V; Klinov, Dmitry V; Sokolov, Alexey V

    2016-08-01

    Proteins adsorbed on a surface may affect the interaction of this surface with cells. Here, we studied the binding of human serum albumin (HSA), fibrinogen (FBG) and immunoglobulin G (IgG) to PEGylated single-walled carbon nanotubes (PEG-SWCNTs) and evaluated the impact of PEG-SWCNT treated by these proteins on neutrophils in whole blood samples. Measurements of adsorption parameters revealed tight binding of proteins to PEG-SWCNTs. AFM was employed to directly observe protein binding to sidewalls of PEG-SWCNTs. Fluorescein-labeled IgG was used to ascertain the stability of PEG-SWCNT-IgG complexes in plasma. In blood samples, all plasma proteins mitigated damage of neutrophils observed just after blood exposure to PEG-SWCNTs, while only treatment of PEG-SWCNTs with IgG resulted in dose- and time-dependent enhancement of CNT-induced neutrophil activation and in potentiation of oxidative stress. Our study demonstrates the ability of adsorbed plasma proteins to influence neutrophil response caused by PEG-SWCNTs in whole blood.

  2. Endothelial (NOS3 E298D) and inducible (NOS2 exon 22) nitric oxide synthase polymorphisms, as well as plasma NOx, influence sepsis development.

    Science.gov (United States)

    Martin, Guadalupe; Asensi, Víctor; Montes, A Hugo; Collazos, Julio; Alvarez, Victoria; Pérez-Is, Laura; Carton, José A; Taboada, Francisco; Valle-Garay, Eulalia

    2014-11-15

    Nitric oxide (NO) influences susceptibility to infection and hemodynamic failure (HF) in sepsis. NOS3 and NOS2 SNPs might modify plasma nitrite/nitrate (NOx) levels, sepsis development, hemodynamics and survival. 90 severely septic and 91 non-infected ICU patients were prospectively studied. NOS3 (E298D), NOS3 (-786 T/C), NOS3 (27 bp-VNTR), and NOS2A (exon 22) SNPs and plasma NOx levels were assessed. 21 patients (11.6%) died, 7 with sepsis. TT homozygotes and T allele carriers of NOS3 (E298D) and AG carriers of the NOS2A (exon 22) SNPs were more frequent among septic compared to non-infected ICU patients (p NOS3 (E298D) SNP (p = 0.006). Sepsis independently associated with HF, increased NOx, peripheral neutrophils, and fibrinogen levels, decreased prothrombin and the presence of the NOS3 (E298D) and NOS2A (exon 22) SNPs. A low APACHE II score was the only variable associated with sepsis survival. NOx was independently associated with sepsis, HF, decreased neutrophils and higher APACHE. NOS3 (E298D) and NOS2A (exon 22) SNPs, individually and in combination, and plasma NOx, associated with sepsis development. NOx associated with HF and fatal outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Deactivation mechanism of potassium on the V₂O₅/CeO₂ catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx.

    Science.gov (United States)

    Peng, Yue; Li, Junhua; Huang, Xu; Li, Xiang; Su, Wenkang; Sun, Xiaoxu; Wang, Dezhi; Hao, Jiming

    2014-04-15

    A series of V2O5/CeO2 catalysts with different potassium loadings were prepared to investigate alkali deactivations for selective catalytic reduction of NOx with NH3. An alkali poisoning mechanism could be attributed to surface acidity, reducibility, and NOx adsorption/desorption behaviors. The detailed factors are as follows: (1) decrease of surface acidity suppresses NH3 adsorption by strong bonding of alkali to vanadia (major factor); (2) low reducibility prohibits NH3 activation and NO oxidation by formation bonding of alkali to vanadia and ceria (important factor); (3) active NOx(-) species at low temperature diminish because of coverage of alkali on the surfaces (minor factor); and (4) stable, inactive nitrate species at high temperature increase by generating new basic sites (important factor).

  4. Industrial application of the decomposition of CO2 . NOx by large flow atmospheric microwave plasma LAMP employed in motorcar

    Science.gov (United States)

    Pandey, Anil; Niwa, Syunta; Morii, Yoshinari; Ikezawa, Shunjiro

    2012-10-01

    In order to decompose CO2 . NOx [1], we have developed the large flow atmospheric microwave plasma; LAMP [2]. It is very important to apply it for industrial innovation, so we have studied to apply the LAMP into motorcar. The characteristics of the developed LAMP are that the price is cheap and the decomposition efficiencies of CO2 . NOx are high. The mechanism was shown as the vertical configuration between the exhaust gas pipe and the waveguide was suitable [2]. The system was set up in the car body with a battery and an inverter. The battery is common between the engine and the inverter. In the application of motorcar, the flow is large, so the LAMP which has the merits of large flow, high efficient decomposition, and cheap apparatus will be superior.[4pt] [1] H. Barankova, L. Bardos, ISSP 2011, Kyoto.[0pt] [2] S. Ikezawa, S. Parajulee, S. Sharma, A. Pandey, ISSP 2011, Kyoto (2011) pp. 28-31; S. Ikezawa, S. Niwa, Y. Morii, JJAP meeting 2012, March 16, Waseda U. (2012).

  5. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States); Wan, C.Z.; Rice, G.W.; Voss, K.E. [Engelhard Corp., Iselin, NJ (United States)

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  6. A Luminescence Characterization of Adsorbed Hydrogen Atoms on Plasma Facing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Grankin, V.P. [Azov Sea State Technical Univ., Mariupol (Ukraine). Computer Science Dept.; Styrov, V.V. [Azov Sea State Technical Univ., Mariupol (Ukraine). Phisics Dept.

    2004-06-01

    An atomic probe technique for characterization of hydrogen atoms on fusion related materials is described. The technique for determining surface coverage by hydrogen atoms or isotopes under both non-steady-state and stationary conditions is based on detection of heterogeneous chemiluminescence (HCL) excited in the interaction between adsorbed atoms and the pulsed normalized probing atomic flow. The recombination of hydrogen atoms from the gas phase was found to occur in general case via both collision Rideal-Eley (RE) and diffusion Langmuir-Hinshelwood (LH) mechanisms. The instantaneous optical response allows extracting the contributions of these two mechanisms to the overall reaction rate for various experimental conditions. The HCL method is also applicable for quick measurement of the reactivity of adatoms (in terms of the recombination coefficient {gamma}) for all the materials including metals. The spectra and kinetics of HCL are useful for estimation of heats of adsorption for hydrogen atoms or isotopes.

  7. Plasma oxidation for achieving supported TiO2 photocatalysts derived from adsorbed TiCl4 using dielectric barrier discharge

    Science.gov (United States)

    Zhang, Xiu-Ling; Nie, Long-Hui; Xu, Yong; Shi, Chuan; Yang, Xue-Feng; Zhu, Ai-Min

    2007-03-01

    At atmospheric pressure and room temperature, dielectric barrier discharge induced plasma oxidation for achieving supported TiO2 photocatalysts derived from TiCl4 adsorbed onto γ-Al2O3 pellets was studied. The supported TiO2/γ-Al2O3photocatalysts prepared by a cyclic 'adsorption-discharge' approach, without requirement of heat treatment, exhibit high activity in the photocatalytic degradation reaction of formaldehyde. The mass spectra and optical emission spectra during O2/Ar discharge for oxidizing the adsorbed-state TiCl4 were measured. The mechanism for the TiO2 formation from adsorbed-state TiCl4 by plasma oxidation was discussed.

  8. Molecularly imprinted polymers as selective adsorbents for ambient plasma mass spectrometry.

    Science.gov (United States)

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2017-05-01

    The application of molecularly imprinted polymers (MIPs) as molecular scavengers for ambient plasma ionization mass spectrometry has been reported for the first time. MIPs were synthesized using methacrylic acid as functional monomer; nicotine, propyphenazone, or methylparaben as templates; ethylene glycol dimethacrylate as a cross-linker; and 2,2'-azobisisobutyronitrile as polymerization initiator. To perform ambient plasma ionization experiments, a setup consisting of the heated crucible, a flowing atmospheric-pressure afterglow (FAPA) plasma ion source, and a quadrupole ion trap mass spectrometer has been used. The heated crucible with programmable temperature allows for desorption of the analytes from MIPs structure which results in their direct introduction into the ion stream. Limits of detection, linearity of the proposed analytical procedure, and selectivities have been determined for three analytes: nicotine, propyphenazone, and methylparaben. The analytes used were chosen from various classes of organic compounds to show the feasibility of the analytical procedure. The limits of detections (LODs) were 10 nM, 10, and 0.5 μM for nicotine, propyphenazone, and methylparaben, respectively. In comparison with the measurements performed for the non-imprinted polymers, the values of LODs were improved for at least one order of magnitude due to preconcentration of the sample and reduction of background noise, contributing to signal suppression. The described procedure has shown linearity in a broad range of concentrations. The overall time of single analysis is short and requires ca. 5 min. The developed technique was applied for the determination of nicotine, propyphenazone, and methylparaben in spiked real-life samples, with recovery of 94.6-98.4%. The proposed method is rapid, sensitive, and accurate which provides a new option for the detection of small organic compounds in various samples. Graphical abstract The experimental setup used for analysis.

  9. 吸附催化-等离子体烟气NOx/SOx同步脱除技术综述%Simultaneous removal of NOx and SOx from flue gas by absorption, catalysis, and plasma

    Institute of Scientific and Technical Information of China (English)

    任荣; 叶丹; 王东方; 顾璠; 陆文龙; 石江凌; 刘洛谦

    2006-01-01

    介绍了吸附催化-等离子体烟气NOx/SOx同步脱除原理、工艺流程及各系统,并对等离子体烟气NOx/SOx同步脱除原理与技术工程研究技术路线的先进性、可实现性及大机组应用前景进行了分析展望.

  10. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  11. Opportunity NOx

    Energy Technology Data Exchange (ETDEWEB)

    Karrs, M.; Albano, J.V. [ABB Lummus Global Inc., (United States)

    2002-03-01

    Legislation on the emission of oxides of nitrogen (NO{sub x}) from stationery fired sources is becoming ever more stringent. The only proven technology for reducing NOx to below 10 ppm in flue gas is selective catalytic reduction (SCR) at temperatures of 400 - 700 Fahrenheit. But, since modern refinery and petrochemical heater stack temperatures are below this range, retrofitting a catalytic reducer to an existing heater was difficult and expensive. ABB Lummus Heat Transfer took up this problem and have developed a low impact solution for SCR retrofits. The system developed is compact and the modular design facilitates fabrication almost anywhere in the world. The modular design keeps downtime to a minimum. The investment costs are site specific but the system has marked advantages over the retrofitting of low NO{sub x} burners.

  12. Demonstration of a Filter Cart for NOx Removal from Ground Support Equipment.

    Science.gov (United States)

    2007-11-02

    emissions. The filter cart was designed to control emissions of NOx, particulate, and unburned hydrocarbons ( UHCs ) from mobile diesel generators. It uses a...rows of activated carbon (AC) filters to adsorb NOx and UHCs . A separate stand-alone system is used to desorb and destroy the contaminants adsorbed

  13. Plasma regeneration of mineral adsorbents for the precipitation of formaldehyde from exhaust gases of biogas engines; Plasmaregeneration mineralischer Adsorbentien zur Formaldehydabscheidung aus Abgasen von Biogas-Motoren

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Siegfried; Saulich, Katja [Leibniz-Institut fuer Plasmaforschung und Technologie, Greifswald (Germany); Schomburg, Joachim [DURTEC, Neubrandenburg (Germany)

    2013-10-01

    Formaldehyde.is a harmful ambient air pollutant which can be produced by incomplete combustion processes, e.g. in power plants or combustion engines. Adsorbents are widely applied in the area of cleaning as well as enrichment of gas components. In this study, we designed a bench-scale experiment to investigate a gas pollution treatment technique, which integrated the adsorption process and the plasma treatment for formaldehyde removal from gas streams. The mineral granulate used consisted of 80% halloysite and showed a good adsorption capacity for formaldehyde. In the discharge step, the adsorbed formaldehyde molecules were decomposed to CO{sub 2}, CO and hydrocarbons. For the further optimization of the method the influence of the power and the pulse break ratio of sustaining voltage were tested. Further the decomposition performance on adsorbed formaldehyde molecules was studied depending on space-time, a 10% oxygen fraction of the carrier gas, and the influence of temperature. It was shown that with the chosen plasma method the absorber material could be loaded repeatedly and subsequently regenerated at a low input discharge power. (orig.)

  14. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  15. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  16. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  17. In vitro studies of PBT Nonwoven Fabrics adsorbent for the removal of low density lipoprotein from hyperlipemia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cao Ye; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong Rui [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Lei Yu [Chengdu Blood Center, Chengdu 610041 (China); Sun Kang [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Jiaxin, E-mail: jxliu8122@vip.sina.com [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China)

    2011-06-15

    Polyanion ligands such as acrylic acid (AA) and heparin were grafted on PBT Nonwoven Fabrics (PBTNF) to study their effect on the adsorption of low density lipoprotein (LDL). These modified PBTNFs were characterized by Horizontal Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron spectroscopy. The blood compatibilities of the modified PBTNFs were examined using in vitro hemolysis rate (HR), platelet adhesion, total protein (TP) and activated partial thromboplastin time. The results showed that direct immobilized heparin could improve PBTNF-PAA's blood compatibility and decrease the adsorption capability of useful high density lipoprotein, but would possess so low bioactivity that could not further improve the absorption of LDL and TC. Since the PBTNF-PAA55-Heparin adsorbent had quite good adsorption selectivity for these proteins, it can be an excellent candidate for depletion of LDL with good blood compatibility.

  18. Research advance in non-thermal plasma induced selective catalytic reduction NOx with low hydrocarbon compounds%低温等离子体诱导低碳烃选择性催化还原NOx研究进展

    Institute of Scientific and Technical Information of China (English)

    苏清发; 刘亚敏; 陈杰; 潘华; 施耀

    2009-01-01

    The emission of nitrogen oxides (NOx) from stationary sources, primarily from power stations, industrial heaters and cogeneration plants, represents a major environmental problem. This paper intends to give a general review over the advances in non-thermal plasma assisted selective catalytic reduction (SCR) of NOx with lower hydrocarbon compounds. In the last decade, the non-thermal plasma induced SCR of nitrogen oxide with low hydrocarbon compounds has received much attention. The different hydrocarbons (≤C3) used in the research are discussed. As we know,methane is more difficultly activated than non-methane hydrocarbons, such as ethylene and propylene etc. The reduction mechanism is also discussed. In addition, aiming at the difficulties existed, the direction for future research is prospected.%综述了近年来低温等离子体诱导低碳烃选择性催化还原NOx的研究进展,详细介绍了难活化的甲烷及较易活化的非甲烷低碳烃气体如乙烯、丙烯及丙烷等的研究现状,探讨了低温等离子体诱导低碳烃选择性催化还原NOx的反应机理,并展望了低温等离子体诱导低碳烃选择性催化还原NOx今后研究方向.

  19. Electron beam treatment of exhaust gas with high NOx concentration

    Science.gov (United States)

    Licki, Janusz; Chmielewski, Andrzej G.; Pawelec, Andrzej; Zimek, Zbigniew; Witman, Sylwia

    2014-05-01

    Simulated exhaust gases with a high NOx concentration, ranging from 200 to 1700 ppmv, were irradiated by an electron beam from an accelerator. In the first part of this study, only exhaust gases were treated. Low NOx removal efficiencies were obtained for high NOx concentrations, even with high irradiation doses applied. In the second part of study, gaseous ammonia or/and vapor ethanol were added to the exhaust gas before its inlet to the plasma reactor. These additions significantly enhanced the NOx removal efficiency. The synergistic effect of high SO2 concentration on NOx removal was observed. The combination of electron beam treatment with the introduction of the above additions and with the performance of irradiation under optimal parameters ensured high NOx removal efficiency without the application of a solid-state catalyst.

  20. 大气等离子体中氮氧化物粒子行为的数值模拟%Numerical simulation of NO_x species behaviour in atmosphere plasma

    Institute of Scientific and Technical Information of China (English)

    庞学霞; 邓泽超; 贾鹏英; 梁伟华

    2011-01-01

    利用一个空间零维大气等离子体模型对其中的氮氧化物在不同电离度情况下的变化规律进行了数值模拟,得到了放电后不同初始电子密度下的氮氧化物(包括NO,NO+,NO2,NO2+,N2O,N2O+,NO3和N2O5)及影响其产消的主要反应物N和O3的密度随时间的演化规律.结果表明,电子初始密度ne0=109cm-3时,NO和NO2的去除率较高,氮氧化物总密度较小,最适合消除氮氧化物污染.同时,还对N和O3随电离度变化的行为进行了分析.%A zero-dimensional model is used for studying the behaviors of NOx in atmosphere plasmas with different ionization degrees.The temporal evolutions of NOx (including NO,NO+,NO2,NO+2,N2O,N2O+,NO3 and N2O5),N and O3,the main important reactants which influence the producing and the consuming of NOx,are obtained in different initial densities for afterglow plasmas.The results show that the removal rates of NO and NO2 are higher when ne0=109 cm-3,and the total nitrogen oxide density is lower,so it is suited for the removal of the pollution of NOx.Some important reactants such as N and O3 varying with the increase of ionization degree are also analyzed.

  1. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...... in current diesel after-treatment techniques. The electrochemical system consisted of an electrochemical cell modified with NOx adsorbents and a diesel oxidation catalyst placed upstream of the cell. The system offers highly selective NOx reduction and a strong resistance to oxygen interference with almost...

  2. Plasma Using a Simulated Gas Mixture: A Case Study on the Effect of Corona Electrodes

    Institute of Scientific and Technical Information of China (English)

    K. YOSHIDA; B. S. RAJANIKANTH; M. OKUBO

    2009-01-01

    In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe-type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175 J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode, indicating the possibility that corona-generated species play a crucial role in desorption.

  3. Impact of Soot on NOx Adsorption over Cu-Modified Hydrotalcite-Derived Lean NOx Trap Catalyst.

    Science.gov (United States)

    Li, Bo; Song, Chonglin; Lv, Gang; Chen, Ke; Cao, Xiaofeng

    2017-03-28

    The impact of soot on NOx adsorption was studied over a Cu-modified hydrotalcite-derived lean NOx trap catalyst in a NO + O2 atmosphere. Powder X-ray diffraction, scanning electron microscopy, Raman scattering spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the surface properties of the pure catalyst and the soot/catalyst mixture. The adsorbed NOx species on the samples were evaluated by in situ diffuse reflectance Fourier transform spectroscopy. The soot coverage decreases the available adsorption sites on the surface of the catalyst, and a portion of active oxygen species are consumed by the soot oxidation during He pretreatment process. The NOx adsorption on two catalyst samples simultaneously undergoes two routes: the "nitrite route" and the "nitrate route". The "nitrite route" is more dominant than the "nitrate route". During NOx adsorption, the soot oxidation weakens the NO oxidation to NO2, and the released CO2 competes with NOx on the adsorption sites. Moreover, the temperature-programmed desorption tests indicate that the presence of soot reduces the NOx storage capacity of the catalyst and shifts the NO desorption peak to the lower temperature range by 50 °C.

  4. A dual-use of DBD plasma for simultaneous NO(x) and SO(2) removal from coal-combustion flue gas.

    Science.gov (United States)

    Obradović, Bratislav M; Sretenović, Goran B; Kuraica, Milorad M

    2011-01-30

    Dielectric barrier discharge (DBD) was investigated for the simultaneous removal of NO(x) and SO(2) from flue gas in a coal-combustion power plant. The DBD equipment was used in either a mode where flue gas was directed through the discharge zone (direct oxidation), or a mode where produced ozonized air was injected in the flue gas stream (indirect oxidation). Removal efficiencies of SO(2) and NO for both methods were measured and compared. Oxidation of NO is more efficient in the indirect oxidation, while oxidation of SO(2) is more efficient in the direct oxidation. Addition of NH(3), has lead to efficient removal of SO(2), due to thermal reaction, and has also enhanced NO removal due to heterogeneous reactions on the surface of ammonium salt aerosols. In the direct oxidation, concentration of CO increased significantly, while it maintained its level in the indirect oxidation.

  5. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SO_x and NO_x of flue gas at low temperature

    Institute of Scientific and Technical Information of China (English)

    S.; SUMATHI; S.; BHATIA; K.T.; LEE; A.; R.; MOHAMED

    2009-01-01

    This study examined the individual and simultaneous adsorption of SOx (SO2) and NOx (NO-NO2) on activated carbon prepared from waste palm shell. The adsorption process was examined in a fixed bed reactor at low temperatures (100―300℃). For individual adsorption without any catalytic activation, SOx showed good adsorption whereas NOx was very much poor. In the simultaneous adsorption of SOx and NOx, SOx showed greater adsorption affinity than NOx. For palm shell activated carbon (PSAC) impregnated with metal catalyst (Ni and Ce) the concentration adsorbed profile showed that the amount of SOx adsorbed decreased regularly, while the amount of the adsorbed NOx increased irregularly. The properties of the pure and impregnated PSAC were analyzed by BET, SEM and EDX. These investiga-tions indicated that PSAC impregnated with metal catalyst is the determining factor in the adsorption of SOx and NOx simultaneously.

  6. Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SOx and NOx of flue gas at low temperature

    Institute of Scientific and Technical Information of China (English)

    S.SUMATHI; S.BHATIA; K.T.LEE; A.R.MOHAMED

    2009-01-01

    This study examined the individual and simultaneous adsorption of SOx (SO2) and NOx (NO-NO2) on activated carbon prepared from waste palm shell. The adsorption process was examined in a fixed bed reactor at low temperatures (100-300℃). For individual adsorption without any catalytic activation, SOx showed good adsorption whereas NOx was very much poor. In the simultaneous adsorption of SOx and NOx, SOx showed greater adsorption affinity than NOx. For palm shell activated carbon (PSAC) im-pregnated with metal catalyst (Ni and Ce) the concentration adsorbed profile showed that the amount of SOx adsorbed decreased regularly, while the amount of the adsorbed NOx increased irregularly. The properties of the pure and impregnated PSAC were analyzed by BET, SEM and EDX. These investiga-tions indicated that PSAC impregnated with metal catalyst is the determining factor in the adsorption of SOxand NOx simultaneously.

  7. NOsize: 12px;">X Reduction Using an Electrochemical Cell with NOX adsorbents

    DEFF Research Database (Denmark)

    Shao, Jing

    This thesis studied the electrochemical cells modified by NOx adsorbents for the NOx reduction under O2-rich conditions. The structure of a multilayer electrochemical cell with a NOx adsorption layer was optimized by removing a yttria-stabilized zirconia (YSZ) cover layer coated on a Pt/Ni/YSZ el......This thesis studied the electrochemical cells modified by NOx adsorbents for the NOx reduction under O2-rich conditions. The structure of a multilayer electrochemical cell with a NOx adsorption layer was optimized by removing a yttria-stabilized zirconia (YSZ) cover layer coated on a Pt....../Ni/YSZ electrode. It was found that the NOx removal properties of the electrochemical cell were dramatically enhanced through this optimization, which was attributed to the extensive release of selective reaction sites for NOx species and a strong promotion for NOx reduction from the interaction of the directly...... reduction on the LSM/CGO symmetric cell, by enhancing the adsorption and storage of NOx species, or by providing reaction sites for direct nitrate reduction. Cells with adsorption layers exhibited a superior performance at low temperatures (350 and 400 °C) and at low voltages (1.5 to 2 V) due...

  8. Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 o C. The studies were conducted at different temperatures and the results were discussed.

  9. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Verification project relative to ignition and NOx reduction using plasma sub-burner in pulverized coal-fired furnace); 1999 nendo plasma sabubana ni yoru bifuntan nenshoro ni okeru chakka oyobi NO{sub x} teigen gijutsu ni kansuru jissho project seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project is executed through the cooperation of a Russian research institute, Akita Prefectural University, and the Ishikawajima-Harima Heavy Industries Co., Ltd. In the development of a plasma sub-burner and the basic research for its verification, a pulverized coal burning plasma sub-burner is designed and fabricated, a basic burning experiment is conducted for the plasma sub-burner, and plasma stabilization in a pulverized coal flow is simulated. In the verification study of the ignition by the plasma sub-burner in a pulverized coal-fired furnace, it is found that the newly-developed plasma sub-burner satisfies the prescribed operating conditions in the system and that the ignition of pulverized coal takes place across the air ratio range of 0.5-1.5 when pulverized coal is fed to the sub-burner. It is also found that NOx is reduced a great deal when a plasma operating on an orifice gas of air or nitrogen is generated in a gas which contains NOx. (NEDO)

  10. Diffuse Reflectance Infrared Fourier Transform Study of NOx Adsorption on CGO10 Impregnated with K2O or BaO

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Härelind Ingelsten, H.; Kammer Hansen, Kent

    2012-01-01

    In the present work Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy is applied to study the adsorption of NOx at 300-500 °C in different atmospheres on gadolinium doped ceria (CGO), an important material in electrodes investigated for electrochemical NOx removal. Furthermore......, the effect on the NOx adsorption when adding K2O or BaO to the CGO is investigated. The DRIFT study shows mainly the presence of nitrate species at 500 °C, while at lower temperature a diversity of adsorbed NOx species exists on the CGO. Presence of O2 is shown to have a strong effect on the adsorption of NO......, but no effect on the adsorption of NO2. Addition of K2O and BaO dramatically affects the NOx adsorption and the results also show that the adsorbed NOx species are mobile and capable of changing adsorption state in the investigated temperature range....

  11. Extraction of methocarbamol from human plasma with a polypyrrole/multiwalled carbon nanotubes composite decorated with magnetic nanoparticles as an adsorbent followed by electrospray ionization ion mobility spectrometry detection.

    Science.gov (United States)

    Saraji, Mohammad; Khayamian, Taghi; Hashemian, Zahra

    2014-12-01

    In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3 O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic-modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X-ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2-150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3 O4 -polypyrrole and Fe3 O4 -multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  13. Modeling adsorption: Investigating adsorbate and adsorbent properties

    Science.gov (United States)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  14. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false NOX RACT and NOX conformity exemption... RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of nitrogen (NOX) reasonably available control technology (RACT) and NOX conformity exemption request submitted...

  15. Mechanistic Investigation of the Reduction of NOx over Pt- and Rh-Based LNT Catalysts

    Directory of Open Access Journals (Sweden)

    Lukasz Kubiak

    2016-03-01

    Full Text Available The influence of the noble metals (Pt vs. Rh on the NOx storage reduction performances of lean NOx trap catalysts is here investigated by transient micro-reactor flow experiments. The study indicates a different behavior during the storage in that the Rh-based catalyst showed higher storage capacity at high temperature as compared to the Pt-containing sample, while the opposite is seen at low temperatures. It is suggested that the higher storage capacity of the Rh-containing sample at high temperature is related to the higher dispersion of Rh as compared to Pt, while the lower storage capacity of Rh-Ba/Al2O3 at low temperature is related to its poor oxidizing properties. The noble metals also affect the catalyst behavior upon reduction of the stored NOx, by decreasing the threshold temperature for the reduction of the stored NOx. The Pt-based catalyst promotes the reduction of the adsorbed NOx at lower temperatures if compared to the Rh-containing sample, due to its superior reducibility. However, Rh-based material shows higher reactivity in the NH3 decomposition significantly enhancing N2 selectivity. Moreover, formation of small amounts of N2O is observed on both Pt- and Rh-based catalyst samples only during the reduction of highly reactive NOx stored at 150 °C, where NOx is likely in the form of nitrites.

  16. Low-temperature NOx reduction processes using combined systems of pulsed corona discharge and catalysts

    Science.gov (United States)

    Kim, H. H.; Takashima, K.; Katsura, S.; Mizuno, A.

    2001-02-01

    In this paper, we will report NOx removal via reduction processes using two types of combined system of pulse corona discharge and catalysts: the single-stage plasma-driven catalyst (PDC) system, and the two-stage plasma-enhanced selective catalytic reduction (PE-SCR) system. Several catalysts, such as γ-alumina catalysts, mechanically mixed catalysts of γ-alumina with BaTiO3 or TiO2, and Co-ZSM-5 were tested. In the PDC system, which is directly activated by the discharge plasma, it was found that the use of additives was necessary to achieve NOx removal by reduction. Removal rates of NO and NOx were linearly increased as the molar ratio of additive to NOx increased. The dependence of NO and NOx removal on the gas hourly space velocity (GHSV) at a fixed specific input energy (SIE) indicates that plasma-induced surface reaction on the catalyst plays an important role in the PDC system. It was found that the optimal GHSV of the PDC system with the γ-alumina catalyst was smaller than 6000 h-1. Mechanical mixing of γ-alumina with BaTiO3 or TiO2 did not enhance NO and NOx removal and γ-alumina alone was found to be the most suitable catalyst. The dielectric constant of the catalyst only influenced the plasma intensity, not the NOx removal. In the PE-SCR system, plasma-treated NOx (mostly NO2) was reduced effectively with NH3 over the Co-ZSM-5 catalyst at a relatively low temperature of 150 °C. Under optimal conditions the energy cost and energy yield were 25 eV/molecule and 21 g-N (kWh)-1, respectively.

  17. Heparin interaction with protein-adsorbed surfaces

    NARCIS (Netherlands)

    Winterton, Lynn C.; Andrade, Joseph D.; Feijen, Jan; Kim, Sung Wan

    1986-01-01

    Albumin and fibrinogen show no binding affinity to varied molecular weights of heparin at physiological pH. Human plasma fibronectin was shown to bind heparins in both the solution and adsorbed states. Fibronectin was shown to have six active binding sites for heparins which may be sterically blocke

  18. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.

    2010-01-01

    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...

  19. Evaluation of conductive polymers as an adsorbent for eradication of As (III from aqueous solution using inductively coupled plasma optical emission spectroscopy (ICP-OES

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Din

    2014-04-01

    Full Text Available 1024x768 The main focused of this research work is the preparation of conductive polymers like polypyrrole, polyaniline and polythiophene and their application as adsorbent materials for the removal of hyper toxic metal As (III from aqueous solution. The metal ions get attached on the π-electrons at the back bone of polymer that illustrate excellent affinity for metal ions. The adsorption of As (II ions was carried out on polythiophene due to its redox properties and the stronger interaction between sulfur atoms with arsenic atoms. To attain large surface area and for maximum interaction of As (III ions with polymers, the particle size of polymers was ranged in nano scale. As the surface area increases with decrease in particle size, the active sites for metal ions also increases. These polymers were characterized by FIIR spectroscopy and SEM analysis. Adsorption isothermal data was examined by two parameters (Langmuir, Freundlich, and Dubinin-Radushkevich and three parameters Redlich-Petrson, Sips and Toth models. Experimental results showed that based on standard deviation (SD and Chi square test (χ2 the experimental data was best explained by Freundlich and Toth isotherm. Thermodynamics parameters such as free energy change (ΔG0, enthalpy change (ΔH0 and entropy change (ΔS0 have been calculated respectively, which revealed the spontaneous, endothermic and feasible nature of adsorption process.   Normal 0 false false false EN-US X-NONE X-NONE

  20. Sustained Low Temperature NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Yuhui

    2017-04-05

    Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oC range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to

  1. Plasma-surface modification vs air oxidation on carbon obtained from peach stone: Textural and chemical changes and the efficiency as adsorbents

    Science.gov (United States)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.

    2016-10-01

    Carbons were prepared from peach stones (Prunus persica) using different carbonization temperatures (600, 800 and 1000 °C). A selected sample was modified by oxidation using conventional oxidation techniques (thermal treatment in air atmosphere) and with cold oxygen plasma oxidation, under different conditions. Samples were characterized using elemental analysis, FT-IR spectroscopy, nitrogen adsorption isotherms at -196 °C, SEM/EDX analysis, potentiometric titration and XPS analysis. Carbons with and without oxidation were employed in the adsorption of Pb2+ in aqueous solution. Results obtained indicated that the materials with high contents of acidic oxygen groups were more efficient in the removal of Pb2+, values as high as approx. 40 mg g-1 being obtained for the best performing carbon. Textural properties of the original, un-oxidized carbon were significantly altered only after oxidation under air atmosphere at 450 °C. On the other hand, the samples oxidized with plasma show little changes in the textural parameters and a slight increase in the specific surface was observed for the sample treated at high RF power (100 W). Additionally, a significant increment of the oxygen content was observed for the plasma oxidized samples, as measured by XPS.

  2. Removal of Nox from flue gas with radical oxidation combined with chemical scrubber

    Institute of Scientific and Technical Information of China (English)

    LIN He; GAO Xiang; LUO Zhong-yang; GUAN Shi-pian; CEN Kefa; HUANG Zhen

    2004-01-01

    In this paper, removal of NOx(namely DeNOx) from flue gas by radical injection combined with NaOH solution(26% by weight of NaOH in water) scrubbing was investigated. The experimental results showed that the steady streamer corona occurs through adjusting the flow rate of the oxygen fed into the nozzles electrode. The vapor in the oxygen has influence on the V-I characteristics of corona discharge. Both HNO2 and HNO3 come into being in the plasma reactor and the DeNOx efficiency in the plasma reactor is more than 60%. The overall DeNOx efficiency of the whole system reaches 81.7% when the NaOH solution scrubbing is collaborated.

  3. Five-fold way to NOx nirvana

    Energy Technology Data Exchange (ETDEWEB)

    Monro, R.J.; Halloran, J.; Krishnan, R. [RJM Corp., Norwalk, CT (United States)

    2002-03-01

    A layered approach to NOx reduction can achieve up to 90% lower NOx emissions from coal plants, but at much lower cost than the alternatives. The paper explains the main elements of the five layered approach consisting of: burner modifications; overair fire; NOx tempering; selective non-catalytic reduction (SNCR), and amine injection. 1 fig.

  4. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  5. Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins.

    Science.gov (United States)

    Kullolli, Majlinda; Hancock, William S; Hincapie, Marina

    2008-08-01

    We report on the preparation of an improved multi-lectin affinity support for HPLC separations. We combined the selectivity of three different lectins: concanavalin A (ConA), wheat germ agglutinin (WGA), and jacalin (JAC). Each lectin was first covalently immobilized onto a polymeric matrix and then the three lectin media were combined in equal ratios. The beads were packed into a column to produce a mixed-bed multi-lectin HPLC column (high-performance multi-lectin affinity chromatography (HP-M-LAC)) for fast chromatographic affinity separations. The support was characterized with respect to kinetics of immobilization, ligand density, and binding capacity for human plasma glycoproteins. A high lectin density (15 mg/mL of beads) was found to be optimal for the binding of glycoproteins from human plasma. A single clinical sample can be fractionated in less than 10 min per run, making this a useful sample preparation tool for proteomics/glycoproteomics studies associated with disease abnormalities.

  6. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  7. PHOTOCATALYTIC OXIDATION FOR NOx ABATEMENT: DEVELOPMENT OF A KINETIC EXPRESSION AND DESIGN TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Rajiv Srivastava; M. A. Ebadian

    2000-09-15

    The ''Nitrogen Oxides Emission Reduction Program'' and ''Ozone Non-Attainment Program'' in the 1990 Clean Air Act provide guidelines for controlling NOx (NO and NO{sub 2}) emissions in new and existing stationary sources. NOx emissions have local (air quality), regional (acid rain), and global (ozone production) consequences. This study aids in developing the photocatalyst technology that has potential for use in abatement of NOx. The objective of the proposed project is to apply the principles of chemical engineering fundamentals--reaction kinetics, transport phenomena and thermodynamics--in the process design for a system that will utilize a photocatalytic reactor to oxidize NOx to nitric acid (HNO{sub 3}). HNO{sub 3} can be more easily trapped than NOx on adsorbent surfaces or in water. The project dealt with the engineering aspect of the gas-solid heterogeneous oxidation of NOx. The experiments were conducted in a photocatalyst wash-coated glass flow tube reactor. A mathematical model was developed based on a rigorous description of the physical and chemical processes occurring in the reactor. The mathematical model took into account (1) intrinsic reaction kinetics (i.e., true reaction rates), (2) transport phenomena that deal with the mass transfer effects in the reactor, and (3) the geometry of the reactor. The experimental results were used for validation of the mathematical model that provides the basis for a versatile and reliable method for the purpose of design, scale-up and process control. The NOx abatement was successfully carried out in a flow tube reactor surrounded by black lights under the exploratory grant. Due to lack of funds, a comprehensive kinetic analysis for the photocatalytic reaction scheme could not be carried out. The initial experiments look very promising for use of photocatalysis for NOx abatement.

  8. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus

  9. NOx Change over China and Its Influences

    Institute of Scientific and Technical Information of China (English)

    LIU Yu(刘煜); I. S. A. ISAKSEN; J. K. SUNDET; HE Jinhai(何金海); YAN Peng(颜鹏)

    2004-01-01

    A 3-D chemical transport model (OSLO CTM2) is used to investigate the impact of the increase of NOx emission over China.The model is capable to reproduce basically the seasonal variation of surface NOx and ozone over eastern China.NOx emission data and observations reveal that NOx over easternChina increases quite quickly with the economic development of China.Model results indicate that NOxconcentration over eastern China increasingly rises with the increase of NOx emission over China,and accelerates to increase in winter.When the NOx emission increases from 1995 to its double,the ratio of NO2/NOx abruptly drops in winter over northern China.Ozone at the surface decreases in winter with the continual enhancement of the NOx level over eastern China,but increases over southern China in summertime.It is noticeable that peak ozone over northern China increases in summer although mean ozone changes little.In summer,ozone increases in the free troposphere dominantly below 500 hPa.Moreover,the increases of total ozone over eastern China are proportional to the increases of NOx emission.In a word,the model results suggest that the relationship between NOx and ozone at the surface would change with NOx increase.

  10. Composite TiO2/clays materials for photocatalytic NOx oxidation

    Science.gov (United States)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  11. The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng-Bin; Wai, Chien; Khangaonkar, Tarang; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, R. Shane; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D’Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage

  12. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  13. Composite TiO{sub 2}/clays materials for photocatalytic NOx oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, P.O. Box 60037, 153 10, Ag. Paraskevi, Attiki (Greece); Vaimakis, T. [Department of Chemistry, University of Ioannina, P.O. Box 1186, 451 10, Ioannina (Greece); Trapalis, C., E-mail: trapalis@ims.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, P.O. Box 60037, 153 10, Ag. Paraskevi, Attiki (Greece)

    2014-11-15

    Graphical abstract: - Highlights: • Clays-supported TiO{sub 2} photocatalysts are prepared by simple, scalable method. • Visible light active TiO{sub 2} is incorporated in hydrotalcite, talk and kunipia clays. • The alkali substrates facilitate the NOx adsorption to the photocatalytic surface. • Low-content TiO{sub 2} photocatalysts demonstrated high NOx oxidation activity. • Titania/hydrotalcite photocatalyst exhibited remarkable NOx removal activity. - Abstract: TiO{sub 2} photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO{sub 2} in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO{sub 2}). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al{sup 3+} and Ca{sup 2+} intercalation was applied in order to improve the dispersion of TiO{sub 2} and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania

  14. Evaluating NOx Emissions Using Satellite Observations

    Science.gov (United States)

    Frost, G. J.; Kim, S.; Brioude, J.; McKeen, S. A.; Trainer, M.; Heckel, A.; Hilboll, A.; Richter, A.; Burrows, J. P.; Gleason, J. F.; Boersma, K. F.; Hsie, E.; Lee, S.; Angevine, W. M.; Granier, C.; Peischl, J.; Ryerson, T. B.; Fehsenfeld, F. C.

    2012-12-01

    Atmospheric NO2 columns retrieved from satellites can provide a useful top-down assessment of bottom-up NOx emissions inventories. We present three case studies of an approach to evaluate NOx emissions at a sector level by comparing satellite retrievals to regional chemical-transport model calculations of NO2 columns. In the first example, the atmospheric impact of implementing NOx controls at eastern US power plants is demonstrated. In the second study, we use NOx monitors at western US power plants to calibrate our satellite-model comparisons. We then apply our approach to evaluate bottom-up estimates of NOx emissions from western US cities. In the third example, we validate our satellite-model approach using in-situ aircraft measurements and assess NOx emissions from power plants, cities, industrial facilities, and ports in eastern Texas. We conclude with some general insights on the usefulness of this approach and suggestions for future areas of research.

  15. Nox reduction in the sintering process

    Institute of Scientific and Technical Information of China (English)

    Yan-guang Chen; Zhan-cheng Guo; Zhi Wang; Gen-sheng Feng

    2009-01-01

    A new process, NOx reduction with recycling flue gas and modifying coke breeze, was proposed. The effects of modified coke breeze and recycled flue gas on NOx reduction were investigated by sinter pot tests. The results show that the NOx reduction rate is over 10wt% in the sintering of modified coke breeze, the effects of the additives on NOx reduction are: CeO2CaOK2CO3.The NOx reduction rate increases with the amount of recycled flue gas, and is 22.35wt% in the sintering with recycling 30vo1% of the flue gas. When 30vo1% of the flue gas is recycled into the sintering of CeO2, CaO, and K2CO3 modified coke breeze, the NOx reduc-tion rates are 36.10wt%, 32.56wt%, and 32.17wt%, respectively.

  16. Hydrotalcite-derived MnxMg3-xAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal.

    Science.gov (United States)

    Li, Qian; Meng, Ming; Xian, Hui; Tsubaki, Noritatsu; Li, Xingang; Xie, Yaning; Hu, Tiandou; Zhang, Jing

    2010-06-15

    The hydrotalcite-based Mn(x)Mg(3-x)AlO catalysts with different Mn:Mg atomic ratios were synthesized by coprecipitation, and employed for soot combustion, NOx storage and simultaneous soot-NO(x) removal. It is shown that with the increase of Mn content in the hydrotalcite-based Mn(x)Mg(3-x)AlO catalysts the major Mn-related species vary from MnAl(2)O(4) and Mg(2)MnO(4) to Mn(3)O(4) and Mn(2)O(3). The catalyst Mn(1.5)Mg(1.5)AlO displays the highest soot combustion activity with the temperature for maximal soot combustion rate decreased by 210 degrees C, as compared with the Mn-free catalyst. The highly reducible Mn(4+) ions in Mg(2)MnO(4) are identified as the most active species for soot combustion. For NO(x) storage, introduction of Mn greatly influences bulk NO(x) storage, with the adsorbed NO(x) species varying from linear nitrites to ionic and chelating bidentate nitrates gradually. The coexistence of highly oxidative Mn(4+) and highly reductive Mn(2+) in Mn(1.0)Mg(2.0)AlO is favorable to the simultaneous soot-NO(x) removal, giving a NO(x) reduction percentage of 24%. In situ DRIFTS reveals that the ionic nitrate species are more reactive with soot than nitrites and chelating bidentate nitrates, showing higher NO(x) reduction efficiency.

  17. Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility

    Science.gov (United States)

    Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.

    2017-02-01

    Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.

  18. Impact of Aircraft NOx Emission on NOx and Ozone over China

    Institute of Scientific and Technical Information of China (English)

    刘煜; I.S.A.ISAKSEN; J.K.SUNDET; 周秀骥; 马建中

    2003-01-01

    A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NOx emission on NOz and ozone over China in terms of a year 2000 scenario of subsonic aircraft NOx emission. The results show that subsonic aircraft NOx emission significantly affects northern China, which makes NOx at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NOx increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NOx increases by less than 10 pptv by virtue of subsonic aircraft NOx emission over China,and ozone changes less than 0.4 ppbv. When subsonic aircraft NOx emission over China is doubled, its influence is still relatively small.

  19. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2005-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  20. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer

  1. Removal of NOx by radical injection

    Institute of Scientific and Technical Information of China (English)

    LIN He; GAO Xiang; LUO Zhongyang; CEN Kefa; PEI Meixiang; HUANG Zhen

    2004-01-01

    Removal of NOx ( DeNOx, NOx is the total of NO and NO2) from flue gas by radical injection has been investigated . The discharge characteristics were examined and the steady streamer corona was acquired by adjusting the nozzle gases properly. It was found that an increase in the voltage resulted in a decrease in the NO concentration and the concentration of the NO2 increased at low voltages but decreased as the voltage rose to a certain level. The DeNOx efficiency increased as the applied voltage rose and reached a maximum of 70% when the voltage approached the breakdown voltage. The hypothetical mechanism of NOx removal suggested that the radicals formed in the discharge process converted the NO and NO2 into acidic species. The Monte Carlo method was used to calculate the rate coefficients and the productivity of the radicals, and then the concentrations of both NO and NO2 and the DeNOx efficiencies were calculated with chemical kinetics. The calculated DeNOx efficiencies were comparable with the experimental DeNOx efficiencies at low voltages, but were lower at high voltages.

  2. NOX2-dependent regulation of inflammation.

    Science.gov (United States)

    Singel, Kelly L; Segal, Brahm H

    2016-04-01

    NADPH oxidase (NOX) isoforms together have multiple functions that are important for normal physiology and have been implicated in the pathogenesis of a broad range of diseases, including atherosclerosis, cancer and neurodegenerative diseases. The phagocyte NADPH oxidase (NOX2) is critical for antimicrobial host defence. Chronic granulomatous disease (CGD) is an inherited disorder of NOX2 characterized by severe life-threatening bacterial and fungal infections and by excessive inflammation, including Crohn's-like inflammatory bowel disease (IBD). NOX2 defends against microbes through the direct antimicrobial activity of reactive oxidants and through activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the breakdown of cell membranes and extracellular release of chromatin and neutrophil granular constituents that target extracellular pathogens. Although the immediate effects of oxidant generation and NETosis are predicted to be injurious, NOX2, in several contexts, limits inflammation and injury by modulation of key signalling pathways that affect neutrophil accumulation and clearance. NOX2 also plays a role in antigen presentation and regulation of adaptive immunity. Specific NOX2-activated pathways such as nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that induces antioxidative and cytoprotective responses, may be important therapeutic targets for CGD and, more broadly, diseases associated with excessive inflammation and injury.

  3. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  4. Rise and fall of the NOx emissions trade; Opkomst en ondergang van NOx-emissiehandel

    Energy Technology Data Exchange (ETDEWEB)

    Van der Velde, R. [Royal Haskoning DHV, Amersfoort (Netherlands); Van der Kolk, J. [Van der Kolk Advies, Soest (Netherlands)

    2013-04-15

    In 2005, the Netherlands started NOx emission trading. In 2014 they are terminating these activities. Are they stopping because the targets have been realized? This article provides an overview of the developments and experiences that have ultimately led to the termination of the NOx emission trade in the Netherlands [Dutch] In 2005 is Nederland begonnen in NOx-emissiehandel. In 2014 stoppen we er weer mee. Stoppen we omdat de doelen zijn gehaald? Een overzicht wordt gegeven van de ontwikkelingen en ervaringen die uiteindelijk hebben geleid tot beeindiging van de NOx-emissiehandel in Nederland.

  5. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    S. Wu

    2003-12-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the October 1 to December 31, 2003 time period.

  6. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    S. Wu; Z. Fan; R. Herman

    2004-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

  7. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Science.gov (United States)

    2010-07-01

    ... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection...

  8. Correlating Engine NOx Emission with Biodiesel Composition

    Science.gov (United States)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2016-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  9. Control of NOx during stationary combustion

    Energy Technology Data Exchange (ETDEWEB)

    James T. Yeh; Wei-Yin Chen

    2004-11-01

    Nitrogen oxides (NOx) and sulfur oxides (SOx) emissions are primary contributors to acid rain, which is associated with a number of effects including acidification of lakes and streams, accelerated corrosion of buildings, and visibility impairment. Among the various nitrogen oxides emitted from stationary combustion; nitrogen oxide (NO), nitrous oxide (N{sub 2}O), and nitrogen dioxide (NO{sub 2}) are stable, and NO predominates (over 90%). In health effects, NO{sub 2} can irritate the lungs and lower resistance to respiratory infection. In the area of ozone nonattainment, NOx and volatile organic compounds (VOCs) react in the atmosphere to form ozone, a photochemical oxidant and a major component of smog. Atmospheric ozone can cause respiratory problems by damaging lung tissue and reducing lung function. It is generally believed that over 80% of the total NOx emitted to the atmosphere originate at sources where fossil fuels and industrial wastes are burned. About one-half of the emissions are produced during combustion of fossil fuels in the utility industries. The rate of NOx formation is affected by fuel nitrogen content and by combustor design parameters. Higher firing temperature and combustor pressure increase NOx emissions. Nitric acid plants also produce large amounts of NOx as waste gas, but in much higher concentration than emissions from utility boiler flue gas.

  10. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  11. Removal of Pollutants by Atmospheric Non Thermal Plasmas

    CERN Document Server

    Khacef, Ahmed; Pouvesle, Jean Michel; Van, Tiep Le

    2008-01-01

    Results on the application of non thermal plasmas in two environmentally important fields: oxidative removal of VOC and NOx in excess of oxygen were presented. The synergetic application of a plasma-catalytic treatment of NOx in excess of oxygen is also described.

  12. Substrate-adsorbate coupling in CO-adsorbed copper

    CERN Document Server

    Lewis, S P; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    The vibrational properties of carbon monoxide adsorbed to the copper (100) surface are explored within density functional theory. Atoms of the substrate and adsorbate are treated on an equal footing in order to examine the effect of substrate--adsorbate coupling. This coupling is found to have a significant effect on the vibrational modes, particularly the in-plane frustrated translation, which mixes strongly with substrate phonons and broadens into a resonance. The predicted lifetime due to this harmonic decay mechanism is in excellent quantitative agreement with experiment.

  13. Adsorbed Water Illustration

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe on NASA's Phoenix Mars Lander detected small and variable amounts of water in the Martian soil. In this schematic illustration, water molecules are represented in red and white; soil minerals are represented in green and blue. The water, neither liquid, vapor, nor solid, adheres in very thin films of molecules to the surfaces of soil minerals. The left half illustrates an interpretation of less water being adsorbed onto the soil-particle surface during a period when the tilt, or obliquity, of Mars' rotation axis is small, as it is in the present. The right half illustrates a thicker film of water during a time when the obliquity is greater, as it is during cycles on time scales of hundreds of thousands of years. As the humidity of the atmosphere increases, more water accumulates on mineral surfaces. Thicker films behave increasingly like liquid water. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Chemical Analysis of NOx Removal Under Different Reduced Electric Fields

    Science.gov (United States)

    Haddouche, A.; Lemerini, M.

    2015-07-01

    This work presents a chemical kinetic analysis of different species involved in nitrogen-oxygen mixed gas induced by stationary corona discharge at room temperature and atmospheric pressure. This study takes into account twenty different chemical species participating in one hundred and seventy selected chemical reactions. The reaction rate coefficients are taken from the literature, and the density is analyzed by the continuity equation without the diffusion term. A large number of investigations considered the removal of NOx showing the effects of N, O and O3 radicals. The aim of the present simulation is to complete these studies by analysing various plasma species under different reduced electric fields in the range of 100-200 Td (1 Td=10-21 V·m2). In particular, we analyze the time evolution of depopulation (10-9-10-3 s) of NOx. We have found that the depopulation rate of NO and NO2 is substantially affected by the rise of reduced electric field as it grows from 100 Td to 200 Td. This allows us to ascertain the important role played by the reduced electric field.

  15. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  16. Electrochemical Studies of Paraquat Adsorbed onto Crystalline Apatite

    Directory of Open Access Journals (Sweden)

    Moulay Abderrahim EL MHAMMEDI

    2007-09-01

    Full Text Available The carbon paste electrode (CPE has been used to analyze the electrochemical behavior of paraquat (PQ adsorbed onto synthesized hydroxyapatite phosphocalcique (HAP in K2SO4 (0.1M. The cyclic voltammetry results obtained corrobate with square wave voltammetry. The influence of variables such as the concentration of paraquat adsorbed onto apatite (PQ/HAP, and the potential scan rate was tested.X-ray diffraction analysis (XRD, Fourier transformed infrared spectroscopy (FTIR analysis and inductively coupled plasma-atomic emission spectrometry (ICP, AES were used for characterization of the apatite.

  17. NOx processing on Solar gas turbines; Turbines, traitement des nox sur les turbines a gaz solar

    Energy Technology Data Exchange (ETDEWEB)

    Chausse, X. [Spie Trindel, 95 - Cergy (France). Service TAG

    1997-12-31

    The Solar Company, in cooperation with Tuma Turbomach, has developed the SoLoNOx combustion system with a dry, lean, premixed compound, allowing for reduced NOx and CO emission levels (respectively 42 ppmv and 50 ppmv at 15 pc O{sub 2}). The combustor size is larger than a conventional combustor in order to maintain combustion efficiency and reduce carbon monoxide levels. Leaner combustion occurs at lower temperatures which produce less nitrogen oxides but require more volume to complete the combustion process. New developments should allow for a further reduction of NOx level at 25 ppmv

  18. NOX2 inhibition impairs early muscle gene expression induced by a single exercise bout

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Olguín

    2016-07-01

    Full Text Available Reactive oxygen species (ROS participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2 in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB. Moreover, exercise significantly increased NOX2 complex assembly (p47phox-gp91phox interaction demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD, glutathione peroxidase (GPx, citrate synthase (CS, mitochondrial transcription factor A (tfam and interleukin-6 (IL-6 in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p<0.001. These results were corroborated using gp91-dstat in an in-vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  19. NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.

    Science.gov (United States)

    Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M

    2016-01-01

    Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.

  20. FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum.

    Science.gov (United States)

    Zhang, Chengkang; Lin, Yahong; Wang, Jianqiang; Wang, Yang; Chen, Miaoping; Norvienyeku, Justice; Li, Guangpu; Yu, Wenying; Wang, Zonghua

    2016-01-01

    Fusarium graminearum is a filamentous fungal pathogen that causes wheat Fusarium head blight. In this study, we identified FgNoxR, a regulatory subunit of NADPH oxidases (Nox) in F. graminearum, and found that it plays an important role in the pathogenicity of F. graminearum. FgNoxR is localized on punctate structures throughout the cytoplasm in aerial hyphae while these structures tend to accumulate at or near the plasma membrane, septa and hyphal tips in germinated conidia. Deletion of the FgNOXR gene results in reduced conidiation and germination. Importantly, sexual development is totally abolished in the FgNOXR deletion mutant. In addition, the disease lesion of FgNOXR deletion mutant is limited to the inoculated spikelets of wheat heads. Finally, FgNoxR interacts with FgRac1 and FgNoxA, and all three proteins are required for female fertility. Taken together, our data indicate that FgNoxR contributes to conidiation, sexual reproduction and pathogenesis in F. graminearum.

  1. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  2. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  3. AMMONIA-FREE NOx CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  4. NOX, NOX who is there?, The contribution of NADPH Oxidase to beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    David eTaylor-Fishwick

    2013-04-01

    Full Text Available Predictions of diabetes prevalence over the next decades warrant the aggressive discovery of new approaches to stop or reverse loss of functional beta cell mass. Beta cells are recognized to have a relatively high sensitivity to reactive oxygen species (ROS and become dysfunctional under oxidative stress conditions. New discoveries have identified NADPH oxidases in beta cells as contributors to elevated cellular ROS. Reviewed are recent reports that evidence a role for NADPH oxidase-1 (NOX-1 in beta cell dysfunction. NOX-1 is stimulated by inflammatory cytokines that are elevated in diabetes. First, regulation of cytokine-stimulated NOX-1 expression has been linked to inflammatory lipid mediators derived from 12-lipoxyganase activity. For the first time in beta cells these data integrate distinct pathways associated with beta cell dysfunction. Second, regulation of NOX-1 in beta cells involves feed-forward control linked to elevated ROS and Src-kinase activation. This potentially results in unbridled ROS generation and identifies candidate targets for pharmacologic intervention. Third, consideration is provided of new, first-in-class, selective inhibitors of NOX-1. These compounds could have an important role in assessing a disruption of NOX-1/ROS signaling as a new approach to preserve and protect beta cell mass in diabetes.

  5. Protein purification using magnetic adsorbent particles

    DEFF Research Database (Denmark)

    Franzreb, M; Siemann-Herzberg, M.; Hobley, Timothy John

    2006-01-01

    separations are fast, gentle, scaleable, easily automated, can achieve separations that would be impossible or impractical to achieve by other techniques, and have demonstrated credibility in a wide range of disciplines, including minerals processing, wastewater treatment, molecular biology, cell sorting...... and clinical diagnostics. However, despite the highly attractive qualities of magnetic methods on a process scale, with the exception of wastewater treatment, few attempts to scale up magnetic operations in biotechnology have been reported thus far. The purpose of this review is to summarise the current state...... of other suspended solids. Thus, it becomes possible to magnetically separate selected target species directly out of crude biological process liquors (e.g. fermentation broths, cell disruptates, plasma, milk, whey and plant extracts) simply by binding them on magnetic adsorbents before application...

  6. Determinação de Cd, Ni e Zn por espectrometria de emissão atômica com plasma indutivamente acoplado, após separação e pré-concentração em coluna contendo p-dimetilaminobenzilidenorodanina adsorvida sobre sílica gel Determination of Cd, Ni and Zn by inductively coupled plasma emission atomic spectrometry after separation and preconcentration in column packed with 5-(4-dimethylaminobenzylidene rhodanine adsorbed on silica gel

    Directory of Open Access Journals (Sweden)

    Laerte da Cunha Azeredo

    1999-07-01

    Full Text Available A column packed with 5-(4-dimethylaminobenzylidenerhodanine adsorbed on silica gel was used for the preconcentration of Cd, Ni and Zn at different spiked solutions prior to their determination by inductively coupled plasma atomic emission spectrometry. This column allowed recoveries over than 98% for the above elements and accurate analyses of coastal sea-water certified reference material were also achieved.

  7. Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures

    Directory of Open Access Journals (Sweden)

    Max R. Mullen

    2015-12-01

    Full Text Available Several technologies are available for decreasing nitrogen oxide (NOx emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO and nitrogen dioxide (NO2. As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated.

  8. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  9. Study of the "Fast SCR" -like mechanism of H2-assisted SCR of NOx with ammonia over Ag/Al2O3

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Fogel, Sebastian; Tamm, Stefanie;

    2012-01-01

    It is shown that Ag/Al2O3 is a unique catalytic system for H2-assisted selective catalytic reduction of NOx by NH3 (NH3-SCR) with both Ag and alumina being necessary components of the catalyst. The ability of Ag/Al2O3 and pure Al2O3 to catalyse SCR of mixtures of NO and NO2 by ammonia...... is demonstrated, the surface species occurring discussed, and a "Fast SCR" -like mechanism of the process is proposed. The possibility of catalyst surface blocking by adsorbed NOx and the influence of hydrogen on desorption of NOx were evaluated by FTIR and DFT calculations. © 2011 Elsevier B.V....

  10. Commercial introduction of the Advanced NOxTECH system

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, B.C. [NOxTECH, Inc., Irvine, CA (United States)

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  11. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator...... translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application...... of contact uncoupling and TGFβ. Nox4 knockdown abrogates epithelial-myofibroblast transition-associated reactive oxygen species production. Laser capture microdissection reveals increased Nox4 expression in the tubular epithelium also during obstructive nephropathy. MRTF down-regulation/inhibition suppresses...

  12. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    in the formation of acid rain and photochemical smog. Some basic concepts and reactions regarding the formation and removal of NOx are presented in chapter 1 and 2. Two approaches are undertaken in the present work to reduce the emission of NOx: by means of catalytic removal, and by NO absorption in ionic liquids...... a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different...... permolecule ionic liquid. However, [BMIM]OTf exhibited promising behavior due to its reversible absorption/desorption properties. This in principle allows recycling of the ionic liquid as well as harvesting the NO. The accumulated NO could hereby be used in e.g. the synthesis of nitric acid allowing...

  13. PVN adenovirus-siRNA injections silencing either NOX2 or NOX4 attenuate aldosterone/NaCl-induced hypertension in mice.

    Science.gov (United States)

    Xue, Baojian; Beltz, Terry G; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2012-02-01

    Mineralocorticoid excess increases superoxide production by activating NADPH oxidase (NOX), and intracerebroventricular infusions of NADPH oxidase inhibitors attenuate aldosterone (Aldo)/salt-induced hypertension. It has been hypothesized that increased reactive oxygen species (ROS) in the brain may be a key mechanism in the development of hypertension. The present study investigated the brain regional specificity of NADPH oxidase and the role of NOX2 and NOX4 NADPH oxidase subunits in the hypothalamic paraventricular nucleus (PVN) in Aldo/salt-induced hypertension. PVN injections of adenoviral vectors expressing small interfering (si)RNA targeting NOX2 (AdsiRNA-NOX2) or NOX4 (AdsiRNA-NOX4) mRNAs were used to knock down NOX2 and NOX4 proteins. Three days later, delivery of Aldo (0.2 mg·kg(-1)·day(-1) sc) via osmotic pump commenced and 1% NaCl was provided in place of water. PVN injections of either AdsiRNA-NOX2 or AdsiRNA-NOX4 significantly attenuated the development of Aldo/NaCl-induced hypertension. In an additional study, Aldo/salt-induced hypertension was also significantly attenuated in NOX2 (genomic) knockout mice compared with wild-type controls. When animals from both functional studies underwent ganglionic blockade, there was a reduced fall in blood pressure in the NOX2 and NOX4 knockdown/knockout mice. Western blot analyses of the PVN of siRNA-NOX2- or siRNA-NOX4-injected mice confirmed a marked reduction in the expression of NOX2 or NOX4 protein. In cultured PVN neurons, silencing either NOX2 or NOX4 protein production by culturing PVN cells with siRNA-NOX2 or siRNA-NOX4 attenuated Aldo-induced ROS. These data indicate that both NOX2 and NOX4 in the PVN contribute to elevated sympathetic activity and the hypertensivogenic actions induced by mineralocorticoid excess.

  14. Black Sprayable Molecular Adsorber Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This novel molecular adsorber coating would alleviate the size, weight, and complexity issues of traditional molecular adsorber puck.  A flexible tape version...

  15. Formation of nitrogen oxides from atmospheric electrodeless microwave plasmas in nitrogen-oxygen mixtures

    Science.gov (United States)

    Lee, Jungwun; Sun, Hojoong; Im, Seong-kyun; Soo Bak, Moon

    2017-08-01

    Electrodeless microwave plasmas were produced in nitrogen-oxygen mixtures at atmospheric pressure to investigate the formation of nitrogen oxides (NOx) from the plasma. The oxygen content in the mixtures is varied in the range of 1%-3%, and the total flowrate is varied in the range of 25-45 slpm while the microwave power is fixed at 2 kW. The rotational and vibrational temperatures of the plasma are measured based on plasma optical emission spectroscopy, and the amount of NOx is measured using a NOx analyzer far downstream from the plasma. The temperatures at the plasma region reach ˜6700 K, and little difference is observed between the rotational and vibrational temperatures as a result of fast vibrational-translational relaxation. Moreover, these temperatures are found to be independent of the flowrate. As the flowrate decreases and the oxygen content in the mixture increases, the level of NOx is increased from 1612 ppm to 9380 ppm. For detailed investigation, plasma kinetic simulations considering trans-rotational, vibrational, and electron temperatures separately are developed and conducted for the plasma region. The level of NOx from the kinetic simulations is found to be considerably smaller than that measured. As the equilibrium mole fraction of NOx is the highest at a temperature of 3120 ± 100 K, with the variation attributable to the composition of species, significant production of NOx is expected to occur at the post-plasma region when the plasma stream is quenched by mixing with the surrounding flow.

  16. Toward improved catalytic low-temperature NOx removal in diesel-powered vehicles.

    Science.gov (United States)

    Klingstedt, Fredrik; Arve, Kalle; Eränen, Kari; Murzin, Dmitry Yu

    2006-04-01

    The potential of different catalytic after treatment techniques to meet future diesel emission standards, which are strongly shifted toward urban driving conditions including cold start, are critically discussed in this Account and evaluated for their suitability for commercial applications. The dominating techniques in this field are NO(x) storage, urea-selective catalytic reduction (SCR), and HC-SCR. Each of these techniques have significant disadvantages such as sulfur sensitiveness and regeneration requirements of NO(x)-storage materials, infrastructure issues and formation of ammonium nitrate (at low temperatures) for urea-SCR, and low-temperature activity of HC-SCR catalysts. Ways to overcome these disadvantages in commercial applications may involve optimized regeneration strategies, reactor modifications, flow reversal, closed-loop NO(x) feedback systems, nonthermal plasma, and/or hydrogen-assisted catalyses, etc.

  17. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  18. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which...... is the most energy demanding process, takes place at lower temperature in the calciner. When dealing with NOx from solid fuel combustion it is important to consider reactions of volatile contents and char separately.Chapter 4 presents an overview of NOx from cement production. Thermal NOx dominates from......, calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile...

  19. Potential of using stable nitrogen isotope ratio measurements to resolve fuel and thermal NOx in coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chenggong Sun; Janos Lakatos; Colin E. Snape; Tony Fallick [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering (SChEME)

    2003-07-01

    In order to examine the potential of applying isotopic analysis to apportion NOx formation from different mechanisms, stable nitrogen isotope ratio measurements have been conducted on a number of thermal/prompt (diesel) and actual (coal) PF NO samples generated from a 1MW test facility at Powergen (UK), together with measurements on a range of pyrolysis and combustion chars obtained from a drop-tube reactor. A highly effective nitrogen-free sorbent, derived from white sugar with Mn as promoter, has been developed using an innovative procedure. This adsorbent has facilitated, for the first time, the determination of {delta}{sup 15}N values without background corrections. The isotopic data indicate that the thermal/prompt NOx collected during start-up with diesel as fuel has a {delta}{sup 15}N of close to 6.5(per thousand) compared to +15(per thousand) for the actual PF sample analysed. Thus, differences of up to ca. 20(per thousand) have been found to exist between thermal and PF fuel (char) NOx isotopic values. This augurs very well for the further development of the approach in order to help quantify the extent of thermal/prompt NOx formation in PF combustion. Measurements on chars have indicated that the extent of isotopic fractionation that occurs between coal-N and NOx from char is related to the reactivity of coals. Further, it would appear that much of the isotopic fractionation that occurs between coal nitrogen and fuel NO arises in the formation of char, although further fractionation can be inferred to occur during char combustion. In contrast, a lesser degree of isotopic fractionation is associated with the formation of thermal NO (ca. 6(per thousand)), atmospheric nitrogen having a value of 0(per thousand). 4 refs., 6 tabs.

  20. Study on the Conversion of Fuel Nitrogen Into NOx

    Directory of Open Access Journals (Sweden)

    Raminta Plečkaitienė

    2011-12-01

    Full Text Available The aim of this work is to investigate NOx regularities combusting fuels having high concentration of nitrogen and to develop methods that will reduce the conversion of fuel nitrogen into NOx. There are three solutions to reducing NOx concentration: the combustion of fuel mixing it with other types of “clean” fuel containing small amounts of nitrogen, laundering fuel and the combustion of fuel using carbon additives. These solutions can help with reducing the amount of nitrogen in the wood waste of furniture by about 30% by washing fuel with water. Therefore, NOx value may decrease by about 35%.Article in Lithuanian

  1. FCC DeSOx and DeNOx additive technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fluid catalytic cracking(FCC) is the principal gasoline-producing process in the refinery. Considerable amounts of harmful sulfur oxides and nitrogen oxides (SOx and NOx ) are generated with the FCC operation. Impacted by strengthening environmental regulations and the current global emphasis on environmental protection and pollution abatement, refiners have been meaning to look for effective ways to control and reduce SOx and NOx emissions. FCC DeSOx and DeNOx additives is the most promising measure. The present paper reviews the developments in FCC DeSOx and DeNOx additive technology based on the respective authors' works, the future directions of the technology are also discussed.

  2. Analysis of NOx Budget Trading Program Units Brought into the CAIR NOx Ozone Season Trading Program

    Science.gov (United States)

    EPA analyzed the effect of having the large non-EGU units in the NBP and the CAIR NOX ozone season trading program and evaluated whether or not emissions from this group of units were reduced as a result of their inclusion in those trading programs.

  3. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  4. NOx emissions in China: historical trends and future perspectives

    Science.gov (United States)

    Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-10-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  5. NOx emissions in China: historical trends and future perspectives

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2013-06-01

    Full Text Available Nitrogen oxides (NOx are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995–2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4, 34.0, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU and an alternative policy scenario (PC, were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64 and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010 by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector and more than half is distributed equally between industry and transportation sectors. Selective Catalytic Reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020, and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was

  6. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease

    Science.gov (United States)

    Rastogi, Radhika; Geng, Xiaokun; Li, Fengwu; Ding, Yuchuan

    2017-01-01

    Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation. PMID:28119569

  7. DeNOx Study in Diesel Engine Exhaust Using Barrier Discharge Corona Assisted by V2O5/TiO2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    B. S. Rajanikanth; V. Ravi

    2004-01-01

    A plasma-assisted catalytic reactor was used to remove nitrogen oxides (Nox) from diesel engine exhaust operated under different load conditions. Initial studies were focused on plasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at various temperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust was treated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust was treated. Studies were then made with plasma reactor combined with a catalytic reactor consisting of a selective catalytic reduction (SCR) catalyst, V2O5/TiO2. Ammonia was used as a reducing agent for SCR process in a ratio of 1:1 to Nox. The studies were focused on temperatures of the SCR catalytic reactor below 200 ℃. The plasma-assisted catalytic reactor was operated well to remove Nox under no-load and load conditions. For an energy input of 96 J/l, the Nox removal efficiencies obtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperature of 100 ℃.

  8. Method for the control of NOx emissions in long-range space travel

    Science.gov (United States)

    Xu, X. H.; Shi, Y.; Liu, S. H.; Wang, H. P.; Chang, S. G.; Fisher, J. W.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2003-01-01

    The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 2 h by the activated carbons when 10% oxygen was present and the ratio of carbon weight to the flue gas flow rate (W/F) was 30 g min/L, with a contact time of 10.2 s. All of NO was reduced to N2 by the activated carbon at 450 degrees C with a W/F ratio of 15 g min/L and a contact time of 5.1 s. Reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency. However, the reduction of the adsorbed NO resulted in a loss of carbon which was determined to be about 0.99% of the activated carbon per cycle of regeneration. The sufficiency of the amount of wheat straw in providing the activated carbon based on a six-person crew, such as the mission planned for Mars, has been determined. This novel approach for the control of NOx emissions is sustainable in a closed system such as the case in space travel. It is simple to operate and is functional under microgravity environment.

  9. Method for the control of NOx emissions in long-range space travel

    Science.gov (United States)

    Xu, X. H.; Shi, Y.; Liu, S. H.; Wang, H. P.; Chang, S. G.; Fisher, J. W.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2003-01-01

    The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 2 h by the activated carbons when 10% oxygen was present and the ratio of carbon weight to the flue gas flow rate (W/F) was 30 g min/L, with a contact time of 10.2 s. All of NO was reduced to N2 by the activated carbon at 450 degrees C with a W/F ratio of 15 g min/L and a contact time of 5.1 s. Reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency. However, the reduction of the adsorbed NO resulted in a loss of carbon which was determined to be about 0.99% of the activated carbon per cycle of regeneration. The sufficiency of the amount of wheat straw in providing the activated carbon based on a six-person crew, such as the mission planned for Mars, has been determined. This novel approach for the control of NOx emissions is sustainable in a closed system such as the case in space travel. It is simple to operate and is functional under microgravity environment.

  10. Using hydroponic biomass to regulate NOx emissions in long range space travel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2002-02-01

    The incineration of wastes is one of the most promising reclamation technologies being developed for life support in long range space travel. However, incineration in a closed environment will build up hazardous NOx if not regulated. A technology that can remove NOx under microgravity conditions without the need of expendables is required. Activated carbon prepared from inedible wheat straw and sweet potato stalk that were grown under hydroponic conditions has been demonstrated to be able to adsorb NO and reduce it to N{sub 2}. The high mineral content in the activated carbon prepared from hydroponic biomass prohibits high surface area production and results in inferior NO adsorption capacity. The removal of mineral from the carbon circumvents the aforementioned negative effect. The optimal production conditions to obtain maximum yield and surface area for the activated carbon have been determined. A parametric study on the NO removal efficiency by the activated carbon has been done. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. The NO adsorption capacity and the duration before it exceeds the Space Maximum Allowable Concentration were determined. After the adsorption of NO, the activated carbon can be regenerated for reuse by heating the carbon bed under anaerobic conditions to above 500 C, when the adsorbed NO is reduced to N{sub 2}. The regenerated activated carbon exhibits improved NO adsorption efficiency. However, regeneration had burned off a small percentage of the activated carbon.

  11. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do

  12. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms

    Science.gov (United States)

    Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.

    2001-01-01

    NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.

  13. Nanomaterials to Combat NO(x) Pollution.

    Science.gov (United States)

    Balbuena, J; Cruz-Yusta, M; Sánchez, L

    2015-09-01

    The presence of NO9x) gases (NO+NO2) in the atmosphere is a major concern of society because of their associated adverse and harmful effects. In order to remove the NO(x) gases from the air, photocatalysis arises as an innovative and promising technique. Through the use of photochemical oxidation processes the NO and NO2 gases are oxidised to NO3- form and thus removed from the air. In recent years new nanomaterials are being developed by researchers with the aim to enhance their photocatalytic activity to combat the NO(x) pollution. The main focus is devoted to preparing new TiO2 based compounds with the highest specific surface area (SSA), different morphology and chemical modifications. In order to increase the SSA, different substrates were used to disperse the TiO2 nanoparticles: organic and carbon fibres, mesoporous materials, clays composites and nanoporous microparticles. In the other hand, high photocatalytic performances were obtained with nanotubes, self-orderer nano-tubular films and nanoparticles with the lowest size. Conversely, when TiO2 is doped with ions the oxide exhibited a better photocatalytic performance under visible light, which is related to the creation of intermediate energy states between the conduction band and the valence band. Alternatively, visible light photocatalysts different from titanium oxide have been studied, which exhibit a good De-NO(x) efficiency working under λ > 400 nm visible light irradiation.

  14. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H2O2) or overexpression of Nox4, which produces H2O2, increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H2O2 to promote mtROS production. Mechanistically, H2O2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H2O2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  15. 不同吸附剂对百草枯中毒大鼠血浆浓度的影响%Protection effect of adsorbent on paraquat plasma concentrations in rats with paraquat intoxication

    Institute of Scientific and Technical Information of China (English)

    张永成; 姜银松; 王占青

    2016-01-01

    Objective To evaluate the effects of smecta and activated charcoal on lung injury,paraquat(PQ) plasma concentrations and transforming growth factor-β1 (TGF-β1) in rats with paraquat intoxication,and investigate its mechanism.Methods Seventy-eight SD rats were randomly divided into group A,group B,group C and group D.Group B,C,D were treated intragastrically with PQ at60 mg/kg,group C was given smecta and group D was given activated charcoal,only saline was treated intragastrically in group A and group B.Live rats in each group were sacrificed at 6 hours,24 hours,48 hours and 72 hours,for the HE staining of lung,the paraquat plasma concentrations and TGF-β1 in plasma of rats were determined.Results Lung pathological injuries of rats in group B such as large area congestion,severe edema,the larger number of leukocyte infiltration were remarkable.Compared with group B,pathological injury of group C alleviated significantly.The levels of paraquat plasma concentrations and TGF-β1 increased at 6 hours after paraquat intoxication in group B,group C and group D,and peaked at 72 hours later,with significant difference from group A (P all < 0.05);Compared with group B,delayed,lower increasing extent,obviously reducing tendency in group C and D,there was significant difference (P <0.01).Conclusions Smecta and activated charcoal can reduce lung injury by decreasing paraquat plasma concentrations and the expression of TGF-β1,and the protection effect of smecta is better.%目的 对比研究思密达、活性炭灌胃对百草枯中毒大鼠血浆浓度、转化生长因子-β1(TGF-β1)以及肺病理变化的影响.方法 78只SD大鼠随机分为氯化钠注射液对照组、百草枯染毒对照组、思密达干预组,活性炭干预组.染毒对照组、思密达组、活性炭组均于中毒后6、24、48、72 h分批处死存活的大鼠,光镜下观察肺病理改变,并测定血浆百草枯浓度、TGF-β1含量.结果 柒毒对照组大鼠肺组织出现明

  16. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity.

    Science.gov (United States)

    Sipkens, Jessica A; Hahn, Nynke; van den Brand, Carlien S; Meischl, Christof; Cillessen, Saskia A G M; Smith, Desirée E C; Juffermans, Lynda J M; Musters, René J P; Roos, Dirk; Jakobs, Cornelis; Blom, Henk J; Smulders, Yvo M; Krijnen, Paul A J; Stehouwer, Coen D A; Rauwerda, Jan A; van Hinsbergh, Victor W M; Niessen, Hans W M

    2013-11-01

    Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.

  17. NOX Activity Is Increased in Mild Cognitive Impairment

    Science.gov (United States)

    Gupta, Sunita; Parrino, Taryn E.; Knight, Alecia G.; Ebenezer, Philip J.; Weidner, Adam M.; LeVine, Harry; Keller, Jeffrey N.; Markesbery, William R.

    2010-01-01

    Abstract This study was undertaken to investigate the profile of NADPH oxidase (NOX) in the clinical progression of Alzheimer's disease (AD). Specifically, NOX activity and expression of the regulatory subunit p47phox and the catalytic subunit gp91phox was evaluated in affected (superior and middle temporal gyri) and unaffected (cerebellum) brain regions from a longitudinally followed group of patients. This group included both control and late-stage AD subjects, and also subjects with preclinical AD and with amnestic mild cognitive impairment (MCI) to evaluate the profile of NOX in the earliest stages of dementia. Data show significant elevations in NOX activity and expression in the temporal gyri of MCI patients as compared with controls, but not in preclinical or late-stage AD samples, and not in the cerebellum. Immunohistochemical evaluations of NOX expression indicate that whereas microglia express high levels of gp91phox, moderate levels of gp91phox also are expressed in neurons. Finally, in vitro experiments showed that NOX inhibition blunted the ability of oligomeric amyloid beta peptides to injure cultured neurons. Collectively, these data show that NOX expression and activity are upregulated specifically in a vulnerable brain region of MCI patients, and suggest that increases in NOX-associated redox pathways in neurons might participate in the early pathogenesis of AD. Antioxid. Redox Signal. 12, 1371–1382. PMID:19929442

  18. 40 CFR 91.319 - NOX converter check.

    Science.gov (United States)

    2010-07-01

    ... following the manufacturer's specifications using zero and span gas (the NO content of which must amount to... of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not pass... analyzer in the most common range the NOX converter cannot give a reduction from 80 percent to 20...

  19. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  20. ASCR{trademark}: lower NOx removal costs without sacrificing performance

    Energy Technology Data Exchange (ETDEWEB)

    Bible, S.; Rummenhohl, V.; Siebeking, M.; Thomas, R.; Triece, C. [Fuel Tech (United States)

    2011-05-15

    With recent regulatory initiatives, the new Industrial Emissions Directive in Europe, and new rules being proposed by EPA in the USA, the question for power plants is now whether they will be required to reduce NOx emissions in the future to stay in operation, but when. What is needed is a low-capital-cost but high-performance NOx removal technology. 7 figs.

  1. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review

    Directory of Open Access Journals (Sweden)

    TsungYu Lee

    2016-05-01

    Full Text Available The removals of NOx by catalytic technology at low temperatures (100–300 °C for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx with ammonia (NH3-SCR is reviewed. Reaction mechanisms and effects of operating factors on low temperature NH3-SCR are addressed, and the SCR efficiencies of Mn-based metal oxides with and without SO2 poisoning have also been discussed with different supports and co-metals. The key factors for enhancing low temperature NH3-SCR efficiency and SO2 resistance with Mn-based catalysts are identified to be (1 high specific surface area; (2 high surface acidity; (3 oxidation states of manganese; (4 well dispersion of manganese oxide metals; (5 more surface adsorbed oxygen; (6 more absorbed NO3− on the catalyst surface; (7 easier decomposition of ammonium sulfates. Moreover, the regenerative methods such as water washing, acid and/or alkali washing and heat treatment to the poisoned catalysts could help to recover the low temperature SCR efficiency to its initial level.

  2. A novel fiber-based adsorbent technology

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.A. [Chemica Technologies, Inc., Bend, OR (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Chemica Technologies, Inc. is developing an economical, robust, fiber-based adsorbent technology for removal of heavy metals from contaminated water. The key innovation is the development of regenerable adsorbent fibers and adsorbent fiber cloths that have high capacity and selectivity for heavy metals and are chemically robust. The process has the potential for widespread use at DOE facilities, mining operations, and the chemical process industry.

  3. Constraining NOx emissions over East Asia using satellite NO2 column retrievals with emphasis on the role of NOx transport

    Science.gov (United States)

    Lee, H.; Kim, S.; Brioude, J. F.; Cooper, O. R.; Frost, G. J.; Kim, C.; Trainer, M.

    2013-12-01

    Satellite observations have provided a continuous view of significant changes in NOx emissions over the past two decades. In this study, tropospheric NO2 columns from the polar orbiting OMI, SCIAMACHY and GOME-2 instruments were used to diagnose the annual and seasonal variations and the spatial characteristic of NOx emissions over East Asia. As expected, we found substantial increases in both NO2 columns and bottom-up NOx emissions over China from 2005 to 2011, resulting from rapid economic growth. However, the year-to-year change in NO2 columns over Korea showed increasing trends, in contrast to decreasing inventoried NOx emissions. Both NO2 columns and bottom-up NOx emissions over Japan decreased during this period. Seasonally, maximum and minimum NO2 columns occur in winter and summer above China, Korea, and Japan, as NOx chemical lifetime changes. Above Korea and Japan, however, secondary peaks are found in spring. Numerical simulations using Lagrangian and Eulerian chemical transport models indicate that transport of NOx from China could explain the spring peaks of NO2 columns above Korea and Japan and the discrepancy between annual trends of satellite observations and bottom-up emissions downwind of China . The model results also quantify the contributions of emissions and transport to the local NOx budget over each country and sub-regions of China.

  4. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    NARCIS (Netherlands)

    Maas, van der P.M.F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and expensi

  5. Molecularly Imprinted Filtering Adsorbents for Odor Sensing

    Directory of Open Access Journals (Sweden)

    Sho Shinohara

    2016-11-01

    Full Text Available Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA, composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules.

  6. Studies on Nitrogen Oxides Removal Using Plasma Assisted Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    V. Ravi; Young Sun Mok; B. S. Rajanikanth; Ho-Chul Kang

    2003-01-01

    An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO+NO2)level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WOa/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/1.

  7. Growth of Aligned Multiwall Carbon Nanotubes and the Effect of Adsorbates on the Field Emission Properties

    Science.gov (United States)

    Milne, W. I.; Teo, K. B. K.; Lansley, S. B.; Chhowalla, M.; Amaratunga, G. A. J.; Semet, V.; Binh, Vu Thien; Pirio, G.; Legagneux, P.

    2003-10-01

    In attempt to decipher the field emission characteristics of multiwall carbon nanotubes (MWCNTs), we have developed a fabrication method based on plasma enhanced chemical vapour deposition (PECVD) to provide utmost control of the nanotube structure such as their alignment, individual position, diameter, length and morphology. We investigated the field emission properties of these nanotubes to elucidate the effect of adsorbates on the nanotubes. Our results show that although the adsorbates cause an apparent lowering of the required turn on voltage/field of the nanotubes, the adsorbates undesirably cause a saturation of the current, large temporal fluctuations in the current, and also a deviation of the emission characteristics from Fowler-Nordheim like emission. The adsorbates are easily removed by extracting an emission current of 1 uA per nanotube or using a high applied electric field (˜25V/um).

  8. The use of rice hulls for sustainable control of NOx emissions in deep space missions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.W.; Pisharody, S.; Moran, M.J.; Wignarajah, K.

    2001-12-21

    The use of the activated carbon produced from rice hulls to control NOx emissions for the future deep space missions has been demonstrated. The optimal carbonization temperature range was found to be between 600 C and 750 C. The burnoff of 61.8% was found at 700 C in pyrolysis and 750 C in activation. The BET surface area of the activated carbon from rice hulls was determined to be 172 m{sup 2}/g when prepared at 700 C. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of NO in the flue gas was removed for more than one and a half hours when 10% oxygen was present and using a ratio of the carbon weight to the flue gas flow rate (W/F) of 15.4 g-min/L. The reduction of the adsorbed NO to form N{sub 2} can be effectively accomplished under anaerobic conditions at 550 C. For NO saturated activated carbon, the loss of carbon mass was determined to be about 0.16% of the activated carbon per cycle of regeneration. The reduction of the adsorbed NO also regenerates the activated carbon. The regenerated activated carbon exhibits improved NO adsorption efficiency.

  9. Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Chris [ORNL; Yatsandra, Oyola [ORNL; Mayes, Richard [ORNL; none,; Gill, Gary [PNNL; Li-Jung, Kuo [PNNL; Wood, Jordana [PNNL; Sadananda, Das [ORNL

    2014-04-30

    ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.

  10. The metal-organic framework MIL-101(Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinib mesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: Application to a pharmacokinetic study.

    Science.gov (United States)

    Qi, Chao; Cai, Qianqian; Zhao, Pan; Jia, Xiuna; Lu, Nan; He, Lu; Hou, Xiaohong

    2016-06-03

    Metal-organic framework MIL-101(Cr) was successfully used as an efficient sorbent in a vortex-assisted dispersive solid-phase extraction (VA-DSPE) and applied for the determination and the pharmacokinetic of imatinib mesylate in rat plasma by UPLC-MS/MS. In the enrichment of imatinib from rat plasma, the analyte was efficiently adsorbed on MIL-101(Cr) and simply recovered by using initial mobile phase (0.1% formic acid-methanol (6:4 v/v)) as elution solvent. Meanwhile, the protein in the plasma samples was excluded from the porous structure of MIL-101(Cr), leading to direct extraction of drug molecule from protein-rich biological samples without any other pretreatment procedure. After being removed, the supernatant was filtered and directly injected into the UPLC-MS/MS for the analysis of the target. The experimental parameters, including nature of MOFs, amount of MIL-101(Cr), pH value of aqueous solution, extraction time, type and volume of elution solvent, were systematically optimized. After VA-DSPE, chromatographic separation was performed on an ACQUITY UPLC(®) BEH C18 column (2.1mm×100mm, 1.7μm) with a 3min gradient elution using 0.1% formic acid and methanol as mobile phase at a flow rate of 0.3mL/min. The detection was accomplished on a tandem mass spectrometer via an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in the positive ionization mode. The lower limit of quantification of 1ng/mL was achieved and the mean recovery of the analyte was higher than 81.2%. Moreover, computational simulation was primarily applied to predict the adsorption behavior and revealed the molecular interactions and free binding energies between MIL-101(Cr) and imatinib with the molecular modeling method, providing certain explanation of the adsorption mechanism. The originally established pretreatment and detection method has some merits, such as less solvent consumption, easy operation, higher sensitivity and lower matrix effect. And the MIL-101

  11. NOX4 is an early initiator of neuropathic pain.

    Science.gov (United States)

    Geis, Christian; Geuss, Eva; Sommer, Claudia; Schmidt, Harald H H W; Kleinschnitz, Christoph

    2017-02-01

    Treatment of neuropathic pain remains challenging as the etiology is heterogeneous and pathomechanisms are incompletely understood. One possible mechanism is oxidative stress due to unphysiological reactive oxygen species (ROS) formation. The only know dedicated enzymatic source of ROS are NADPH oxidases of which the type 4 isoform (NOX4) has been suggested to be involved in the subacute and chronic phase of neuropathic pain. Here, we aim to translate this finding into a treatment strategy by examining the efficacy of the NOX1/4-specific inhibitor GKT136901 using the chronic constriction injury (CCI) mouse model of neuropathic pain. Unexpectedly, post-nerve lesion treatment using GKT136901 was ineffective to reduce pain-related behavior after CCI. We therefore re-investigated the role of NOX4 using an independent KO mouse model. Early after CCI we found an increase in pro-inflammatory cytokines, ROS formation and the oxidative stress marker nitrotyrosine in the lesioned nerve together with an upregulated Nox4 gene expression. In NOX4 KO mice, mechanical allodynia was markedly reduced from day 4 after nerve injury as were all ROS related and acute biomarkers. In addition, we observed a reduction in the CCI-induced upregulation of pro-inflammatory cytokines in the sciatic nerve and dorsal root ganglia along with NOX4-deficiency. Thus, we conclude that NOX4 is involved in the development of neuropathic pain states by producing oxidative stress and subsequent cytokine dysregulation at the lesion site. This appears at very early stages immediately after nerve injury explaining ineffectiveness of post-acute pharmacological NOX inhibition. We suggest that future target validation of NOX4 should now focus on defining the possible therapeutic window in human neuropathic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Full-scale NOx reduction experiments at Norcem Brevik

    OpenAIRE

    Bregge, Christine

    2015-01-01

    The NOx reduction system installed at Norcem Brevik is based on the SNCR technology. It was installed in 2012 and substantial reduction of NOx has been achieved. However, it has never been performed experiments or optimizations of the system. SNCR technology is based on injection of a nitrogen-containing reduction agent, in this case ammonium hydroxide, to reduce the NOx concentration within the required temperature range, 1100-1400K (827-1127oC). The developed experiments were based on fi...

  13. Preparation of carbon monoliths from orange peel for NOx retention

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2014-12-01

    Full Text Available A series of monoliths are prepared from orange peels and chemically activated with H3PO4, KOH, ZnCl2, and water vapor without a binder. The monoliths were characterized by N2 adsorption-desorption isotherms at 77 K, Boehm titrations and XPS. Thereafter, monoliths were tested for their ability to establish NOx retention. The results show that the retention capacities of NOx were a function of the textural properties and chemistries. The carbons synthesized with ZnCl2 and KOH retained similar amounts of NOx.

  14. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen...

  15. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    Directory of Open Access Journals (Sweden)

    Marcin Dutka

    2015-04-01

    Full Text Available In this study, the influence of various factors on nitrogen oxides (NOx emissions of a low NOx burner is investigated using a central composite design (CCD approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane, amount of excess air (5%–30%, burner head position (20–25 mm from the burner throat and secondary fuel fraction provided to the burner (0%–6%. The measurements were performed at a constant thermal load equal to 25 kW (calculated based on lower heating value. Response surface methodology and CCD were used to develop a second-degree polynomial regression model of the burner NOx emissions. The significance of the tested factors over their respective ranges has been evaluated using the analysis of variance and by the consideration of the coefficients of the model equation. Results show that hydrogen addition to methane leads to increased NOx emissions in comparison to emissions from pure methane combustion. Hydrogen content in a fuel is the strongest factor affecting NOx emissions among all the factors tested. Lower NOx formation because of increased excess air was observed when the burner was fuelled by pure methane, but this effect diminished for hydrogen-rich fuel mixtures. NOx emissions were slightly reduced when the burner head was shifted closer to the burner outer tube, whereas a secondary fuel stream provided to the burner was found to have no impact on NOx emissions over the investigated range of factors.

  16. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  17. 40 CFR 96.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.86 Withdrawal from NOX Budget Trading Program. (a)...

  18. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual...

  19. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as...

  20. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.386 Section 97.386 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading...

  1. 40 CFR 97.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.86 Withdrawal from NOX Budget Trading Program. (a) Requesting withdrawal....

  2. Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K(.).

    Science.gov (United States)

    Rosseler, Olivier; Sleiman, Mohamad; Montesinos, V Nahuel; Shavorskiy, Andrey; Keller, Valerie; Keller, Nicolas; Litter, Marta I; Bluhm, Hendrik; Salmeron, Miquel; Destaillats, Hugo

    2013-02-07

    Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3(-), adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3(-) conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3(-) in the vicinity of coadsorbed K(+) cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.

  3. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  4. Study on the NOx release rule along the boiler during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    JIN Jing; ZHANG Zhongxiao; LI Ruiyang

    2007-01-01

    Numerical simulation and experimental study on NOx release along the boiler during pulverized coal combustion have been conducted.With the increase of temperature the NOx emission increased and the peak value of NOx release moved forward.But when the temperature increased to a certain degree,NOx emission began to reduce.NOx emission increased with the increase of nitrogen content of coal.The peak value of NOx release moved backwards with the increase of coal rank.NOx emission increased obviously with the increase of stoichiometric ratio.There existed a critical average diameter of the pulverized coal (de).If d≤dc,NOx emission reduced with the decrease of pulverized coal size.If d>de,NOx emission reduced with the increase of the pulverized coal size.The results showed that the simulation results are in agreement with the experimental results for concentration distribution of NOx along the axis of the furnace.

  5. Update on microkinetic modeling of lean NOx trap chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S.; Daw, C. Stuart (Oak Ridge National Laboratory, Oak Ridge, TN); Pihl, Josh A. (Oak Ridge National Laboratory, Oak Ridge, TN); Choi, Jae-Soon (Oak Ridge National Laboratory, Oak Ridge, TN); Chakravarthy, V, Kalyana (Oak Ridge National Laboratory, Oak Ridge, TN)

    2010-04-01

    Our previously developed microkinetic model for lean NOx trap (LNT) storage and regeneration has been updated to address some longstanding issues, in particular the formation of N2O during the regeneration phase at low temperatures. To this finalized mechanism has been added a relatively simple (12-step) scheme that accounts semi-quantitatively for the main features observed during sulfation and desulfation experiments, namely (a) the essentially complete trapping of SO2 at normal LNT operating temperatures, (b) the plug-like sulfation of both barium oxide (NOx storage) and cerium oxide (oxygen storage) sites, (c) the degradation of NOx storage behavior arising from sulfation, (d) the evolution of H2S and SO2 during high temperature desulfation (temperature programmed reduction) under H2, and (e) the complete restoration of NOx storage capacity achievable through the chosen desulfation procedure.

  6. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  7. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  8. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  9. Effect of oxygen on NOx removal in corona discharge field: NOx behavior without a reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    M. Arai; M. Saito; S. Yoshinaga [Gunma University, Gunma (Japan). Department of Mechanical System Engineering

    2004-10-01

    A DeNOx process using a DC corona discharge was investigated experimentally. A mixture system of N{sub 2}/O{sub 2}/NO was used as a test gas. The compositions such as NO, NO{sub 2}, N{sub 2}O and so on were analyzed with Fourier transform infrared spectroscopy and an NOx meter. It was found that the characteristics of NO removal by corona discharge differed remarkably whether or not oxygen exists in the mixture. In regard to the spectrum of light emission from the corona discharge in N{sub 2} atmosphere or N{sub 2}/O{sub 2} mixture, some N{sub 2} bands were detected. N{sub 2} dissociation into atomic N and N{sub 2} radical in the corona discharge field was conjectured. Furthermore, ozone was yielded by the corona discharge in the case of the N{sub 2}/O{sub 2} mixture. Ozone gas from an ozonizer was added into the N{sub 2}/O{sub 2} mixture without corona discharge to investigate the effect of O{sub 3} on the characteristics of NOx removal by corona discharge. In the case of the N{sub 2}/NO mixture, the process of NO reduction was mainly controlled by N{sub 2} radicals excited by the corona discharge. On the other hand, in the case of the N{sub 2}/O{sub 2}/NO mixture, NO was oxidized by ozone generated from the corona discharge and converted to NO{sub 2} and N{sub 2}O{sub 5}.

  10. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes;

    2012-01-01

    Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared...... by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  11. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace...... of molecules such as NH3 or the internal modes of adsorbed molecules such as C4H10. Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H2 physisorbed...

  12. Federal NOx Budget Trading Program and CAIR NOx and SO2 Trading Programs (40 CFR Part 97)

    Science.gov (United States)

    This part establishes general provisions and the applicability, permitting, allowance, excess emissions, monitoring, and opt-in provisions for the federal NOx Budget Trading Program as a means of mitigating interstate transport of ozone and nitrogen oxides

  13. CO2 reduction using adsorption followed by nonthermal plasma treatment

    Science.gov (United States)

    Nakajima, Kenji; Takahashi, Kazuya; Tanaka, Masanari; Kuroki, Tomoyuki; Okubo, Masaaki

    2015-10-01

    Carbon dioxide (CO2) is one of the main substances linked to global warming, and its emission should be reduced. In this study, a CO2 reduction treatment using an adsorbent and a nonthermal plasma flow is investigated. This treatment comprises a physical adsorption process and nitrogen (N2) plasma reduction process. In the physical adsorption process, CO2 is adsorbed by the adsorbent. In the N2 plasma reduction process, the adsorbed CO2 is reduced to CO by a nonthermal plasma flow that is generated by a plasma reactor with a circulating N2 plasma flow. The generated CO can be reused as a fuel. We estimate this experimental results by calculating conversion efficiency of CO2 to CO. In the N2 plasma reduction process, the CO concentration reaches approximately 1%, regardless of the number of experiments, and conversion efficiency reaches at most 5.3%.

  14. IR investigations of surfaces and adsorbates

    CERN Document Server

    Gwyn, W

    2001-01-01

    Synchrotron infrared reflection-absorption measurements on single crystal metal surfaces with adsorbates have led to the determination of many key parameters related to the bonding vibrational modes and the dynamics of adsorbates. In particular, energy couplings between electrons and adsorbate motion have been shown to be a dominant mechanism on metal surfaces. Excellent agreement has been obtained with calculations for many of the observations, and the synergy between theory and experiment has led to a deeper understanding of the roles of electrons and phonons in determining the properties of interfaces and their roles in phenomena as diverse as friction, lubrication, catalysis and adhesion. Nonetheless, as the experiments are pushed harder, to describe such effects as co-adsorbed systems, disagreements continue to challenge the theory and our comprehension also is still evolving.

  15. Chitin Adsorbents for Toxic Metals: A Review

    Directory of Open Access Journals (Sweden)

    Ioannis Anastopoulos

    2017-01-01

    Full Text Available Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4-N-acetyl-d-glucosamine is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  16. Chitin Adsorbents for Toxic Metals: A Review.

    Science.gov (United States)

    Anastopoulos, Ioannis; Bhatnagar, Amit; Bikiaris, Dimitrios N; Kyzas, George Z

    2017-01-07

    Wastewater treatment is still a critical issue all over the world. Among examined methods for the decontamination of wastewaters, adsorption is a promising, cheap, environmentally friendly and efficient procedure. There are various types of adsorbents that have been used to remove different pollutants such as agricultural waste, compost, nanomaterials, algae, etc., Chitin (poly-β-(1,4)-N-acetyl-d-glucosamine) is the second most abundant natural biopolymer and it has attracted scientific attention as an inexpensive adsorbent for toxic metals. This review article provides information about the use of chitin as an adsorbent. A list of chitin adsorbents with maximum adsorption capacity and the best isotherm and kinetic fitting models are provided. Moreover, thermodynamic studies, regeneration studies, the mechanism of adsorption and the experimental conditions are also discussed in depth.

  17. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  18. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for describing the behavior of macromolecules in adsorbed layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106 and chain charged density of 0.254.

  19. ADSORBENTS USED IN THE CLEARANCE OF ENDOTOXIN

    Institute of Scientific and Technical Information of China (English)

    YU Mei; LIU Tao; Hou Guanghui; YUAN Zhi

    2003-01-01

    A series of modified poly (methyl methacrylate, PMMA) resins were prepared and compared their adsorption abilities to endotoxin. The results showed that adsorbents, which were grafted with tertiary amine and long spacing arms, had the best adsorption capacities and good blood compatibility, It is hopeful to be used as adsorbent in hemoperfusion for clinical clearance of endotoxin. The influence of original concentration of endotoxin on adsorption and the adsorption mechanism were also investigated.

  20. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  1. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  2. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    of molecules such as NH3 or the internal modes of adsorbed molecules such as C4H10. Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H2 physisorbed...... to activated alumina and in an example where hydrogen is chemisorbed to Raney nickel...

  3. Low-cost carbon pellets for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Soriano-Mora; A. Bueno-Lopez; A. Garcia-Garcia; R. Perry; C.E. Snape [University of Alicante (Spain). Department of Inorganic Chemistry

    2005-07-01

    Carbonaceous materials have been proposed as potential inexpensive reducing agents for NOx reduction under suitable operating conditions. Potassium has been found to be an effective catalyst in the C-NOx reaction at sufficiently high concentration. In the current work it was decided to explore low-cost carbon precursors for their suitability for NOx reduction, and to incorporate them in pellets rather than briquettes. The much greater surface area afforded by pellets should allow them to be used to better effect in removing NOx from flue gases passing through a fixed bed. The feedstocks selected included bituminous coal, high- and medium-temperature cokes, petroleum coke, anthracite, scrap tyre pyrolysis char and power station PFA. Cashew nut shell liquid (CNSL) was used as a binder, as it can be heat-cured per se at ca. 275{sup o}C, with little loss in volatile matter. To test their propensity to reduce NOx in flue gas, 10g samples of pellets were heated in a reactor at 325 - 350{sup o}C in a 2 dm{sup 3}/min flow of gas comprising 2000 ppmv NO, 5% oxygen with nitrogen as the balance. A selectivity factor was then calculated for each pellet sample and test condition, which defines the proportion of carbon consumed in reducing NOx relative to its combustion with oxygen. The results show that constant levels of NOx reduction are kept after 2 hours of reaction, being the consumption of O{sub 2} hardly appreciable, leading to satisfactory values of selectivity factor. This parameter is highly dependent on potassium content of the samples following all stages of heat treatment. The highest selectivity of ca. 0.4 was obtained for the carbonised bituminous coal and this was comparable to that achieved for briquettes from earlier studies. (Abstract only).

  4. Nox2 and Cyclosporine-Induced Renal Hypoxia.

    Science.gov (United States)

    Djamali, Arjang; Wilson, Nancy A; Sadowski, Elizabeth A; Zha, Wei; Niles, David; Hafez, Omeed; Dorn, Justin R; Mehner, Thomas R; Grimm, Paul C; Hoffmann, F Michael; Zhong, Weixiong; Fain, Sean B; Reese, Shannon R

    2016-06-01

    We hypothesized that nicotinamide adenosine diphosphate oxidase 2 (Nox2) plays an important role in cyclosporine A (CsA)-induced chronic hypoxia. We tested this hypothesis in Fisher 344 rats, C57BL/6 J wild type and Nox2-/- mice, and in liver transplant recipients with chronic CsA nephrotoxicity. We used noninvasive molecular imaging (blood oxygen level-dependent magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging) and molecular diagnostic tools to assess intrarenal oxygenation and perfusion, and the molecular phenotype of CsA nephrotoxicity. We observed that chemical and genetic inhibition of Nox2 in rats and mice resulted in the prevention of CsA-induced hypoxia independent of regional perfusion (blood oxygen level-dependent magnetic resonance imaging and dynamic contrast-enhanced magnetic resonance imaging, pimonidazole, HIF-1α). Nicotinamide adenosine diphosphate oxidase 2 knockout was also associated with decreased oxidative stress (Nox2, HIF-1α, hydrogen peroxide, hydroxynonenal), and fibrogenesis (α-smooth muscle actin, picrosirius red, trichrome, vimentin). The molecular signature of chronic CsA nephrotoxicity using transcriptomic analyses demonstrated significant changes in 40 genes involved in injury repair, metabolism, and oxidative stress in Nox2-/- mice. Immunohistochemical analyses of kidney biopsies from liver transplant recipients with chronic CsA nephrotoxicity showed significantly greater Nox2, α-smooth muscle actin and picrosirius levels compared with controls. These studies suggest that Nox2 is a modulator of CsA-induced hypoxia upstream of HIF-1α and define the molecular characteristics that could be used for the diagnosis and monitoring of chronic calcineurin inhibitor nephrotoxicity.

  5. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies

    Science.gov (United States)

    Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei

    2016-04-01

    Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.

  6. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation.

    Science.gov (United States)

    Gianni, Davide; DerMardirossian, Céline; Bokoch, Gary M

    2011-01-01

    NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47(phox)-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67(phox), which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5. Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.

  7. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.

    Science.gov (United States)

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2017-09-01

    To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O2, including KD, kon, and koff, of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The KD(NO) and KD(CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  9. OPTIMIZATION OF CHAR FOR NOx REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    J. Phillips; L.R. Radovic; B. Xia; J.A. Menendez

    1999-09-01

    Work performed for this study demonstrates that the temperature of treatment and the identity of the treatment gas both strongly impact the surface chemistry of activated carbon. Two commercial activated carbons were treated in either N{sub 2} or H{sub 2} at different temperatures up to 2600 C. Several techniques--including microcalorimetry, point of zero charge measurements, thermal desorption--were used to provide insight into important aspects of the chemical surface properties. The results show that activated carbons treated at high temperatures (ca. 950 C) in hydrogen will not react with oxygen and water at ambient temperatures; moreover, surfaces created in this fashion have stable properties in ambient conditions for many months. In contrast, the same carbons treated in an inert gas (e.g., N{sub 2}) will react strongly with oxygen and water at ambient temperatures. In the presence of platinum (or any other noble metal), stable basic carbons, which will not adsorb oxygen in ambient laboratory conditions, can be created via a relatively low-temperature process. Treatment at higher temperatures (>1500 C) produced increasingly stable surfaces in either N{sub 2} or H{sub 2}. A structural model is proposed. To wit: Treatment at high temperatures in any gas will lead to the desorption of oxygen surface functionalities in the form of CO and/or CO{sub 2}. Absent any atom rearrangement, the desorption of these species will leave highly unsaturated carbon atoms (''dangling carbons'') on the surface, which can easily adsorb O{sub 2} and H{sub 2}O. In an inert gas these ''dangling carbons'' will remain, but hydrogen treatments will remove these species and leave the surface with less energetic sites, which can only adsorb O{sub 2} at elevated temperatures. Specifically, hydrogen reacts with any highly unsaturated carbons in the surface to form methane. At temperatures greater than 1500 C (e.g., 1800 C, 2600 C), structural annealing

  10. Proteins involved in the Vroman effect during exposure of human blood plasma to glass and polyethylene

    NARCIS (Netherlands)

    Turbill, P.; Beugeling, T.; Poot, A.A.

    1996-01-01

    The amounts of fibrinogen adsorbed to glass from various human blood plasmas have been measured as a function of time. The plasmas were 11 single donor plasmas, pooled plasma, a single donor high molecular weight kininogen (HMWK)-deficient plasma and HMWK-deficient plasma, which had been reconstitut

  11. Nuclear Nox4-Derived Reactive Oxygen Species in Myelodysplastic Syndromes

    Directory of Open Access Journals (Sweden)

    Marianna Guida

    2014-01-01

    Full Text Available A role for intracellular ROS production has been recently implicated in the pathogenesis and progression of a wide variety of neoplasias. ROS sources, such as NAD(PH oxidase (Nox complexes, are frequently activated in AML (acute myeloid leukemia blasts and strongly contribute to their proliferation, survival, and drug resistance. Myelodysplastic syndromes (MDS comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop AML. The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is the genomic instability. NADPH oxidases are now recognized to have specific subcellular localizations, this targeting to specific compartments for localized ROS production. Local Nox-dependent ROS production in the nucleus may contribute to the regulation of redox-dependent cell growth, differentiation, senescence, DNA damage, and apoptosis. We observed that Nox1, 2, and 4 isoforms and p22phox and Rac1 subunits are expressed in MDS/AML cell lines and MDS samples, also in the nuclear fractions. Interestingly, Nox4 interacts with ERK and Akt1 within nuclear speckle domain, suggesting that Nox4 could be involved in regulating gene expression and splicing factor activity. These data contribute to the elucidation of the molecular mechanisms used by nuclear ROS to drive MDS evolution to AML.

  12. Adsorbent Selection by Functional Group Interaction Screening for Peptide Recovery

    NARCIS (Netherlands)

    Wijntje, Renze; Bosch, Hans; Haan, de Andre B.; Bussman, Paul

    2005-01-01

    In order to selectively adsorb small peptides from complex aqueous feeds, selective adsorbents are required. The goal is to first find adsorbents with capacity for triglycine, as triglycine contains all groups common to small peptides. Selectivity studies will follow. Adsorbent selection was based o

  13. Effects of heat release rate on NOx time history in diesel combustion; Diesel nensho ni okeru netsu hasseiritsu keika ga NOx nodo rireki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, T.; Miwa, K.; Higashida, M. [Tokushima Univ., Tokushima (Japan). Faculty of Engineering; Watanabe, S. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1996-06-25

    For determining the optimum combination of combustion control techniques to reduce NOx emission from diesel engines, it is important to clarify the effects of each technique not only on the NOx emission but also on its time history during combustion. In this paper, NOx concentration in the combustion chamber of a rapid compression machine has been measured by using a total gas sampling method. In order to elucidate the relation between NOx history and heat release rate, air temperatures nozzle hole size and air motion are varied to control the heat release process. The results show that NOx emission is not solely dependent upon initial combustion. Air utilization in the main diffusive combustion phase has great influence on NOx formation and its decay. NOx formation is accelerated by activation of the initial stage of the main combustion when using a nozzle with small holes. 9 refs., 13 figs.

  14. Impacts of the abolition of NOx emission trade; Effecten van de afschaffing van NOx- emissiehandel

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P. [ECN Beleidsstudies, Petten (Netherlands)

    2012-09-15

    The consequences of abolishing the NOx emission trade have been analyzed for the installations that are covered by BEMS legislation (Dutch decree on emission limits for medium-sized combustion plants). The following aspects have been analyzed: What are the enforcement costs if these installations need to comply with BEMS requirements as of 2014?; How are these costs distributed across the various sectors and in particular for the sectors of onshore/offshore gas and oil extraction, greenhouse horticulture and hospitals?; To what extent can costs be lowered by allowing a 2-,3- or 5-year delay of the implementation date for existing installations in BEMS? To answer the above questions, data were used from the NEA (Netherlands Emission Authority) at sector level. Model calculations were conducted to determine the costs and effects [Dutch] De gevolgen van de afschaffing van NOx-emissiehandel zijn geanalyseerd voor het installatiepark dat terugvalt op BEMS-wetgeving (Besluit emissie-eisen middelgrote stookinstallaties). De volgende zaken zijn geanalyseerd: Wat zijn de nalevingskosten indien vanaf 2014 deze installaties aan de BEMS-eisen moeten voldoen?; Hoe zijn deze kosten verdeeld over de verschillende sectoren en in het bijzonder voor de sectoren offshore/onshore gas- en oliewinning, de glastuinbouw en ziekenhuizen?; In hoeverre zijn de kosten te verlagen door 2, 3 of 5 jaar uitstel te geven ten opzichte van de implementatiedatum voor bestaande installaties in BEMS? Voor het beantwoorden van de bovenstaande vragen is gebruik gemaakt van gegevens van de NEa (Nederlandse Emissie autoriteit) op sectorniveau. Met modelberekeningen zijn hiermee kosten en effecten bepaald.

  15. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  16. Size selective hydrophobic adsorbent for organic molecules

    Science.gov (United States)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  17. NOx Emissions from Diesel Passenger Cars Worsen with Age

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  18. N+2 Advanced Low NOx Combustor Technology Final Report

    Science.gov (United States)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  19. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  20. Adsorbent catalytic nanoparticles and methods of using the same

    Science.gov (United States)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  1. Expression of NADPH oxidase (NOX 5 in rabbit corneal stromal cells.

    Directory of Open Access Journals (Sweden)

    Farhan Rizvi

    Full Text Available PURPOSE: To determine whether NOX 5 is expressed in rabbit corneal stromal cells (RCSC. NADPH oxidases (NOXes are enzymes that preferentially use NADPH as a substrate and generate superoxide. Several isoforms of NOXes function as multi-protein complexes while NOX5 and DUOXs do not require the accessory proteins for their activity and possess calcium binding EF hands. METHODS: Human NOX5 primers were used to amplify the rabbit NOX5 by RT-PCR. Amplified product was sequenced to confirm its identity. The protein encoded by the NOX5 was identified by western blot analysis. NOX5 siRNA was used to reduce transcript, protein, and calcium stimulated activity. In silico analyses were performed to establish the putative structure, functions, and evolution of rabbit NOX5. RESULTS: NOX activity was measured in RCSC with NADPH rather than NADH as a substrate. RT-PCR with NOX5 primers amplified 288 bp product using RCSC cDNA, which, when sequenced, confirmed its identity to human NOX5 mRNA. This sequence was used to predict the rabbit (Oryctolagus cuniculus NOX5 gene. NOX5 siRNA reduced amounts of NOX5 mRNA in RCSC and reduced ionomycin stimulated superoxide production. A protein of about 65 to 70 kDa encoded by the NOX5 was detected by western blot analysis. In silico analysis predicted a putative rabbit NOX5 protein containing 801 amino acids. Motif searches predicted the presence of at least 3 putative EF-hands in N-terminus and a NOX domain in C terminal region. CONCLUSIONS: The data document that the NOX5 gene was expressed in cells of lagomorphs unlike rodents, making the rabbit an interesting model to study NOX5 functions. The activity of the rabbit NOX5 was calcium stimulated, a trait of NOX5 in general. NOX5 may also prove to be a useful genetic marker for studying the taxonomic position of lagomorphs and the Glires classification.

  2. Influence of fuel quality on vehicular NOx emissions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The quality of gasoline and diesel fuel affects pollutant emissions from vehicles. By applying the COMPLEX model, developed by the MUS EPA and industry to relate fuel composition to vehicle emissions, this paper estimates the influence of improvements in gasoline quality to lower vehicular NOx emissions. A case study is performed for Guangzhou City that has NOr concentrations significantly above the national ambient air quality standards(NAAQS).The paper discusses the potential for reducing NOx in Guangzhou by improving the quality of gasoline.

  3. The Adsorption of NOx on Magnesium Aluminium Hydrotalcite

    Institute of Scientific and Technical Information of China (English)

    Zhe Ming NI; Wei Hua YU; Shao Fen ZHAO; Zhong Hua GE

    2004-01-01

    Magnesium aluminium hydrotalcite (Mg-Al-HT) with molar ratio of Mg-to-Al of 3 to 1 was prepared and characterized by X-ray diffraction (XRD) and infrared spectra (IR).The performances of Mg-Al-HT for the adsorption and desorption of NOx were studied.The results indicated that the adsorption capacity of the hydrotalcite for NOx was 1398.2 mg/g, and it was higher than the acticarbon's.The adsorption capacities depended on adsorption time and temperature.Mg-Al-HT could be regenerated by thermal decomposition, and the adsorption efficiency had not changed markedly after three cycles.

  4. THE CONTEMPORARY ARCHITECTURAL DESIGN METHOD: THE CASE OF GROUP NOX

    Directory of Open Access Journals (Sweden)

    Marcela ALMEIDA

    2008-11-01

    Full Text Available Nowadays, different groups of architects search for the possibilities of digital technology contribution to architecture. Among the various stances, this paper particularly highlights the Dutch architects group called NOX, which develops a design method that uses both digital and analogical techniques, as well as incorporates knowledge from other disciplines. The Dutch group’s work serves as a guideline, as it indicates the subjects to be examined. Also based on the studies of other authors, the present research analyses the modifications contemporary architecture is going through, such as matters related to form, design method and conceiving of space, time and reality. Keywords: Contemporary architecture; NOX group; design methodology; digital; analogical.

  5. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe;

    2012-01-01

    Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...... on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through...

  6. Polymer-based adsorbent for heavy metals removal from aqueous solution

    Science.gov (United States)

    Mahmud, H. N. M. E.; Huq, A. K. O.; Yahya, R.

    2017-06-01

    A novel conducting polymer-based adsorbent, polypyrrole (PPy) fine powder has successfully been prepared as a new adsorbent and utilized in the adsorption of heavy metal ions like arsenic, zinc and cadmium ions from aqueous solution. PPy was chemically synthesized by using FeCl3.6H2O as an oxidant. The prepared PPy adsorbent was characterized by Brunauer-Emmet-Teller (BET) surface analysis, field emission scanning electron microscopy (FESEM) and attenuated total reflectance fourier transform infrared ATR-(FTIR) spectroscopy. The adsorption was conducted by varying different parameters such as, contact time, pH and adsorbent dosage. The concentrations of metal ions were measured by inductively coupled plasma mass spectroscopy (ICP-MS). The results show that PPy acts as an effective sorbent for the removal of arsenic, zinc and cadmium ions from aqueous solution. The as-prepared PPy fine powder is easy to prepare and appeared as an effective adsorbent for heavy metal ions particularly arsenic in wastewater treatment.

  7. Characterization of NOx emission in the suburbs of Tokyo based on simultaneous and real-time observations of atmospheric Ox and NOx

    Science.gov (United States)

    Matsumoto, J.

    2013-12-01

    Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0

  8. Optimum NOx abatement in diesel exhaust using inferential feedforward reductant control

    Energy Technology Data Exchange (ETDEWEB)

    Krijnsen, H.C.; Leeuwen, J.C.M. van; Bakker, R.; Bleek, C.M. van den; Calis, H.P.A. [Delft University of Technology, Delft (Netherlands). DelftChem Tech, Faculty of Applied Sciences, Chemical Reactor Engineering

    2001-05-01

    To adequately control the reductant flow for the selective catalytic reduction of NOx in diesel exhaust gas a tool is required that is capable of accurately and quickly predicting the engine's fluctuating NOx emissions based on its time-dependent operating variables, and that is also capable of predicting the optimum reductant/NOx ratio for NOx abatement. Measurements were carried out on a semi-stationary diesel engine. Four algorithms for non-linear modelling are evaluated. The models resulting from the algorithms gave very accurate NOx predictions with a short computation time. Together with the small errors this makes the models very promising tools for on-line automotive NOx emission control. The optimum reductant/NOx ratio (to get the lowest combined NOx + reduction emission of the exhaust treating system) was best predicted by a neural network. 24 refs., 6 figs., 5 tabs.

  9. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  10. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Woo, L Y; Glass, R S

    2008-11-14

    % NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  11. Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface

    Science.gov (United States)

    Chueh, Pin-Ju; Kim, Chinpal; Cho, NaMi; Morre, Dorothy M.; Morre, D. James

    2002-01-01

    NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit prion-like properties. The two enzymatic activities alternate to generate a regular period length of about 24 min. Here we report the expression, cloning, and characterization of a tumor-associated NADH oxidase (tNOX). The cDNA sequence of 1830 bp is located on gene Xq25-26 with an open reading frame encoding 610 amino acids. The activities of the bacterially expressed tNOX oscillate with a period length of 22 min as is characteristic of tNOX activities in situ. The activities are inhibited completely by capsaicin, which represents a defining characteristic of tNOX activity. Functional motifs identified by site-directed mutagenesis within the C-terminal portion of the tNOX protein corresponding to the processed plasma membrane-associated form include quinone (capsaicin), copper and adenine nucleotide binding domains, and two cysteines essential for catalytic activity. Four of the six cysteine to alanine replacements retained enzymatic activity, but the period lengths of the oscillations were increased. A single protein with two alternating enzymatic activities indicative of a time-keeping function is unprecedented in the biochemical literature.

  12. Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia.

    Science.gov (United States)

    Li, Xiang; Li, Xiansheng; Li, Junhua; Hao, Jiming

    2016-11-15

    Arsenic resistance on MoO3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) is investigated. It is found that the activity loss of CeO2-MoO3/TiO2 caused by As oxide is obvious less than that of CeO2/TiO2 catalysts. The fresh and poisoned catalysts are compared and analyzed using XRD, Raman, XPS, H2-TPR and in situ DRIFTS. The results manifest that the introduction of arsenic oxide to CeO2/TiO2 catalyst not only weakens BET surface area, surface acid sites and adsorbed NOx species, but also destroy the redox circle of Ce(4+) to Ce(3+) because of interaction between Ce and As. When MoO3 is added into CeO2/TiO2 system, the main SCR reaction path are found to be changed from the reaction between coordinated NH3 and ad-NOx species to that between an amide and gaseous NO. Additionally, for CeO2-MoO3/TiO2 catalyst, As toxic effect on active sites CeO2 can be released because of stronger As-Mo interaction. Moreover, not only are the reactable Brønsted and Lewis acid sites partly restored, but the cycle of Ce(4+) to Ce(3+) can also be free to some extent.

  13. NOx emission trends in megacities derived from satellite measurements

    Science.gov (United States)

    Konovalov, Igor; Beekmann, Matthias; Richter, Andreas

    2010-05-01

    The effects of air pollutant emissions on both local air quality in megacities and composition of the atmosphere on regional and global scales are currently an important issue of atmospheric researches. In order to properly evaluate these effects, atmospheric models should be provided with accurate information on emissions of major air pollutants. However, such information is frequently very uncertain, as it is documented in literature. The quantification of emissions and related effects is an especially difficult task in the case of developing countries. Recently, it has been demonstrated that satellite measurements of nitrogen dioxide (NO2) can be used as a source of independent information on NOx emissions. In particular, the satellite measurements were used in our earlier studies to improve spatial allocation of NOx emissions, to estimate multi-annual changes of NOx emissions on regional scales and to validate data of traditional emission inventories (see Ref. 1, 2). The goals of the present study are (1) developing an efficient method for estimation of NOx emissions trend in megacity regions by using satellite measurements and an inverse modeling technique and (2) obtaining independent estimates of NOx emission trends in several megacities in Europe and the Middle East in the period from 1996 to 2008. The study is based on the synergetic use of the data for tropospheric NO2 column amounts derived from the long-term GOME and SCIAMACHY measurements and simulations performed by the CHIMERE chemistry transport model. We performed the analysis involving methods of different complexity ranging from estimation of linear trends in the tropospheric NO2 columns retrieved from satellite measurements to evaluation of nonlinear trends in NOx emission estimates obtained with the inverse modeling approach, which, in the given case, involves only very simple and transparent formulations. The most challenging part of the study is the nonlinear trend estimation, which is

  14. The DeNOx process and NO2 adsorption in MOF74

    Science.gov (United States)

    Zuluaga, S.; Thonhauser, T.; Tan, K.; Chabal, Y.

    2014-03-01

    Due to the harmful character of NO2 and its slow decomposition rate, the use of catalytic materials for its removal (DeNOx process) has attracted a lot of attention. The high porosity and highly reactive uncoordinated metal centers of MOF74 have led us to investigate the use of Mg- and Zn-MOF74 as materials for trapping NO2 with resistance to poisoning by SO2. In this combined theoretical and experimental study, we investigate the interaction between the unsaturated metal centers of the MOF and the NO2 guest molecules. For our theoretical modeling we use ab initio calculations at the DFT level, utilizing vdW-DF to capture the significant van der Waals component of the interaction between NO2 and the MOF. We present detailed first-principle results concerning the adsorption energies and geometries, as well as vibration frequencies of the NO2 molecule adsorbed in the MOF. Our experimental efforts (IR and Raman spectroscopy) have shown a blue shift to 1684 cm-1 in the vibration stretching mode of the NO2 upon adsorption and a thermal stability up to 150°C. Our first-principle calculations and experimental results show a remarkable agreement, allowing us to give a complete picture of the adsorption of NO2 molecules in the MOF74 structure. Supported by DOE DE-FG02-08ER46491.

  15. Factors Affecting the Relative Success of EPA’s NOx CAP-and-Trade Program.

    Science.gov (United States)

    1998-06-01

    concerns as the use of banked NOx allowances. 27. See Laurel J. Carlson, NESCAUM/ MARAMA NOx Budget Model Rule (prepared for the Northeast States for...Coordinated Air Use Management (NESCAUM) and the Mid-Atlantic Regional Air Management Association ( MARAMA ) NO, Budget Task Force’s NESCAUM/ MARAMA NOx...a two-for-one basis. See Laurel J. Carlson, NESCA UM/ MARAMA NOxBudget Model Rule (prepared for the Northeast States for Coordinated Air Use

  16. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  17. Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration

    Institute of Scientific and Technical Information of China (English)

    黄宏宇; 何兆红; 袁浩然; 小林敬幸; 赵丹丹; 窪田光宏; 郭华芳

    2014-01-01

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can af-fect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters.

  18. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  19. 40 CFR 96.10 - Authorization and responsibilities of the NOX authorized account representative.

    Science.gov (United States)

    2010-07-01

    ... submissions, legally bind each owner and operator of the NOX Budget source represented and each NOX Budget... permitting authority, the Administrator, or a court regarding the source or unit. (d) No NOX Budget permit... knowledge and belief true, accurate, and complete. I am aware that there are significant penalties for...

  20. Re-vision as Remediation : Hypermediacy and Translation in Anne Carson’s Nox

    NARCIS (Netherlands)

    Brillenburg Wurth, C.A.W.

    2013-01-01

    This article explores Anne Carson’s Nox (2010) in the light of remediation. Nox is a book about death and the recording of loss: lost time, a lost brother, and lost presence. It conveys this loss through the logic of hypermediacy and a word-for-word translation of Catullus 101. Nox reworks the mater

  1. 40 CFR 1065.670 - NOX intake-air humidity and temperature corrections.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false NOX intake-air humidity and... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.670... may correct NOX emissions for the effects of intake-air humidity or temperature. Use the NOX...

  2. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.386 Section 96.386 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR... Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone...

  3. Modeling and Simulation of Plasma-Assisted Ignition and Combustion

    Science.gov (United States)

    2013-10-01

    GRI Mech 3.0 has been validated extensively in 1000-2500 K and 25 torr to 10 atm range. • USC Mech has been validated in 900-2500 K and 16 torr to...64 species) GRI Mech 3.0 CH4/N2/O2 plasma NOX reactions C2H4-air (70 species) USC Mech C2H4/N2/O2 plasma NOX reactions Pi = 100 torr...3 -15 kV peak voltage 7 ns FWHM Mdot : 0.00377 kg/m2-s GRI Mech 3.0 + CH4/N2/O2/CO/CO2 plasma + NOX chemistry CH4-air validation of flame

  4. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    Science.gov (United States)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  5. The biogeochemical cycle of the adsorbed template. II - Selective adsorption of mononucleotides on adsorbed polynucleotide templates

    Science.gov (United States)

    Lazard, Daniel; Lahav, Noam; Orenberg, James B.

    1988-01-01

    Experimental results are presented for the verification of the specific interaction step of the 'adsorbed template' biogeochemical cycle, a simple model for a primitive prebiotic replication system. The experimental system consisted of gypsum as the mineral to which an oligonucleotide template attaches (Poly-C or Poly-U) and (5-prime)-AMP, (5-prime)-GMP, (5-prime)-CMP and (5-prime)-UMP as the interacting biomonomers. When Poly-C or Poly-U were used as adsorbed templates, (5-prime)-GMP and (5-prime)-AMP, respectively, were observed to be the most strongly adsorbed species.

  6. NASA Glenn High Pressure Low NOx Emissions Research

    Science.gov (United States)

    Tacina, Kathleen M.; Wey, Changlie

    2008-01-01

    In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.

  7. Sulfur Deactivation of NOx Storage Catalysts: A Multiscale Modeling Approach

    Directory of Open Access Journals (Sweden)

    Rankovic N.

    2013-09-01

    Full Text Available Lean NOx Trap (LNT catalysts, a promising solution for reducing the noxious nitrogen oxide emissions from the lean burn and Diesel engines, are technologically limited by the presence of sulfur in the exhaust gas stream. Sulfur stemming from both fuels and lubricating oils is oxidized during the combustion event and mainly exists as SOx (SO2 and SO3 in the exhaust. Sulfur oxides interact strongly with the NOx trapping material of a LNT to form thermodynamically favored sulfate species, consequently leading to the blockage of NOx sorption sites and altering the catalyst operation. Molecular and kinetic modeling represent a valuable tool for predicting system behavior and evaluating catalytic performances. The present paper demonstrates how fundamental ab initio calculations can be used as a valuable source for designing kinetic models developed in the IFP Exhaust library, intended for vehicle simulations. The concrete example we chose to illustrate our approach was SO3 adsorption on the model NOx storage material, BaO. SO3 adsorption was described for various sites (terraces, surface steps and kinks and bulk for a closer description of a real storage material. Additional rate and sensitivity analyses provided a deeper understanding of the poisoning phenomena.

  8. 40 CFR 90.319 - NOX converter check.

    Science.gov (United States)

    2010-07-01

    ... the manufacturer's specifications using zero and span gas (the NO content of which must amount to... percent of the NO concentration). The NOX analyzer must be in the NO mode so that the span gas does not... (a)(2) of this section. Record the indicated concentration “d.” Note: If, with the analyzer in...

  9. NOx and SO2 emission factors for Serbian lignite Kolubara

    Directory of Open Access Journals (Sweden)

    Jovanović Vladimir V.

    2012-01-01

    Full Text Available Emission factors are widely accepted tool for estimation of various pollutants emissions in USA and EU. Validity of emission factors is strongly related to experimental data on which they are based. This paper is a result of an effort to establish reliable NOx and SO2 emission factors for Serbian coals. The results of NOx and SO2 emissions estimations based on USA and EU emission factors from thermal power plants Nikola Tesla Obrenovac A and B utilizing the Serbian lignite Kolubara are compared with experimental data obtained during almost one decade (2000-2008 of emissions measurements. Experimental data are provided from regular annual emissions measurement along with operational parameters of the boiler and coal (lignite Kolubara ultimate and proximate analysis. Significant deviations of estimated from experimental data were observed for NOx, while the results for SO2 were satisfactory. Afterwards, the estimated and experimental data were plotted and linear regression between them established. Single parameter optimization was performed targeting the ideal slope of the regression line. Results of this optimization provided original NOx and SO2 emission factors for Kolubara lignite.

  10. Synergie Klimaat- en NOx-beleid: Een kostenevaluatie tot 2010

    NARCIS (Netherlands)

    Smeets WLM; Hoen A; Wijngaart RA van den; LED

    2005-01-01

    Bij de aankoop van relatief goedkope CO2-emissierechten in het buitenland worden binnenlandse synergetische neveneffecten op de emissies van luchtverontreinigende stoffen gemist en zullen extra kosten moeten worden gemaakt voor het realiseren van de nationale emissieplafonds van NOx, SO2, en NMV

  11. Synergie Klimaat- en NOx-beleid: Een kostenevaluatie tot 2010

    NARCIS (Netherlands)

    Smeets WLM; Hoen A; Wijngaart RA van den; LED

    2005-01-01

    The acquisition of relative cheap CO2 emission rights from foreign countries may mean missing synergistic side-effects on the domestic emissions of air-polluting substances. Extra costs will be necessary if the emission ceilings for NOx, SO2, and NMVOS are to be realised. These factors have, to date

  12. Linear Sweep Voltammetry of Adsorbed Neutral Red.

    Science.gov (United States)

    1982-05-01

    E. Creager, G. T. Marks, D. A. Aikens and H. H. Richtol Prepared for Publication in Journal of Electroanalytical Chemistry Rensselaer Polytechnic... Electroanalytical Chemistry It. KEY WORDS (Continue oun reverse side It necessary mid Ideneliy by block ntaibor) Neutral Red, cyclic voltammetry, adsorbed dye 20

  13. Radon emanation from radium specific adsorbents.

    Science.gov (United States)

    Alabdula'aly, Abdulrahman I; Maghrawy, Hamed B

    2010-01-01

    Pilot studies were undertaken to quantify the total activity of radon that is eluted following no-flow periods from several Ra-226 adsorbents loaded to near exhaustion. The adsorbents studied included two types of barium sulphate impregnated alumina (ABA-8000 and F-1) and Dowex MSC-1 resin treated by either barium hydroxide or barium chloride. In parallel, radium loaded plain activated aluminas and Dowex MSC-1 resin were similarly investigated. The results revealed that radon was quantitatively eluted during the first few bed volumes of column operation after no-flow periods. Although similar radon elution profiles were obtained, the position of the radon peak was found to vary and depended on the adsorbent type. Radon levels up to 24 and 14 kBq dm(-3) were measured after a rest period of 72h from radium exhausted Dowex MSC-1 treated with barium chloride and F-1 impregnated alumina with barium sulphate, respectively. The eluted radon values measured experimentally were compared to those calculated theoretically from accumulated radium quantities for the different media. For plain adsorbents, an agreement better than 10% was obtained. For treated resin-types a consistency within 30% but for impregnated alumina-types high discrepancy between respective values were obtained.

  14. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  15. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  16. Nitric oxide adsorbed on zeolites: EPR studies.

    Science.gov (United States)

    Yahiro, Hidenori; Lund, Anders; Shiotani, Masaru

    2004-05-01

    CW-EPR studies of NO adsorbed on sodium ion-exchanged zeolites were focused on the geometrical structure of NO monoradical and (NO)2 biradical formed on zeolites. The EPR spectrum of NO monoradical adsorbed on zeolite can be characterized by the three different g-tensor components and the resolved y-component hyperfine coupling with the 14N nucleus. Among the g-tensor components, the value of g(zz) is very sensitive to the local environment of zeolite and becomes a measure of the electrostatic field in zeolite. The temperature dependence of the g-tensor demonstrated the presence of two states of the Na-NO adduct, in rigid and rotational states. The EPR spectra of NO adsorbed on alkaline metal ion-exchanged zeolite and their temperature dependency are essentially the same as that on sodium ion-exchanged zeolite. On the other hand, for NO adsorbed on copper ion-exchanged zeolite it is known that the magnetic interaction between NO molecule and paramagnetic copper ion are observable in the spectra recorded at low temperature. The signals assigned to (NO)2 biradical were detected for EPR spectrum of NO adsorbed on Na-LTA. CW-EPR spectra as well as their theoretical calculation suggested that the two NO molecules are aligned along their N-O bond axes. A new procedure for automatical EPR simulation is described which makes it possible to analyze EPR spectrum easily. In the last part of this paper, some instances when other nitrogen oxides were used as a probe molecule to characterize the zeolite structure, chemical properties of zeolites, and dynamics of small molecules were described on the basis of selected literature data reported recently.

  17. Atmospheric emission of NOx from mining explosives: A critical review

    Science.gov (United States)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems

  18. Low-cost carbon pellets for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Mora, J.M.; Bueno-Lopez, A.; Garcia-Garcia, A.; Perry, R.; Snape, C.E. [University of Alicante, Alicante (Spain)

    2005-07-01

    Various low-cost carbon precursors were examined for their suitability and selectivity towards NOx reduction. The carbon feedstocks selected included bituminous coal, high- and medium-temperature cokes, petroleum coke, anthracite, scrap tyre pyrolysis char and power station PFA. Cashew nut shell liquid (CNSL) was the binder. Pellets were prepared from a solid mixture containing 65 mass % of air-dried carbon feedstock crushed to {lt} 0.5 mm, 30% potassium hydroxide milled to {lt}0.2 mm and 5% CNSL. To test their propensity to reduce NOx in flue gas, 10 g samples of pellets were heated in a reactor at 325-350{sup o}C in a 2 dm{sup 3}/min flow of gas comprising 2000 ppmv NO, 5% oxygen with nitrogen as the balance. The reduction in NOx and O{sub 2} conversion were measured on-line together with CO{sub 2} and CO evolution. A selectivity factor was then calculated for each pellet sample and test condition, which defines the proportion of carbon consumed in reducing NOx relative to its combustion with oxygen. The results show that constant values of NOx reduction are kept after 2 hours of reaction leading to satisfactory values of selectivity factor. This parameter is highly dependent on potassium content of the samples following all stages of heat treatment. Final potassium content is itself obviously dependent on the loss in mass experienced by the pellets during heat treatment, but measured potassium contents were without exception higher than those attributable to volatile losses alone, suggesting that there was alkali-induced activation occurring resulting in some of the carbon being consumed during carbonisation. The highest selectivity of around 0.4 was obtained for the carbonised bituminous coal. 3 refs., 1 fig., 1 tab.

  19. Combustion and NOx Emission Behavior of Chinese Coals

    Institute of Scientific and Technical Information of China (English)

    CHENHonggang; XIEKechang

    2002-01-01

    Seven Chinese coals ranking from anthracite to sub-bituminous from the Shanxi province were selected for study to forecast the combustion and NOx emission behavior.Three UK,one Indonesia and one South Africa coal was included in the study for reference.A flat flame-turbulent jet apparatus was employed to assess flame stability,ignition performance and NOx emission behavior for the initial stage of devolatilization and combustion. This apparatus can simulate particle heating rates,maximum temperatures and the influence of the turbulent fluid interactionson the fate of volatiles.To simulate processes occurring over longer residence time, additional devolatilization experiments were performed in a drop tube furnace.Char reactivity was studied through thermogravimetric analysis.Finally,fouling propensity was studied with the aid of a purpose-built laboratory combustor that enabled the characteristics of the ash deposit to be assessed empirically.The results show that Chinese coals do not appear to possess unusual features in respect of NOx formation,flame stability and ignition,char burnout and ash slagging.The range of coals available in China appears sufficiently broad that suits all requirements.In particular,Shenfu coal,with its initial fast devolatilization and nitrogen release rates and its low initial nitrogen content and high char reactivity,will perform well when fired in industrial boilers as far as NOx emission,flame stability and combustion efficiency are concerned.Pingshuo coal exhibits high char reactivity and an attractive slagging performance suggesting that this fuel represents a good compromise between NOx emission and overall plant efficiency.

  20. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  1. Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation.

    Science.gov (United States)

    Brun, Sylvain; Malagnac, Fabienne; Bidard, Frédérique; Lalucque, Hervé; Silar, Philippe

    2009-10-01

    NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR, the homologue of the gene encoding the regulatory subunit p67(phox), conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina, if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina, develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.

  2. A theoretical study of adsorbate-adsorbate interactions on Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using density functional theory we study the effect of pre-adsorbed atoms on the dissociation of N(2) and the adsorption of N, N(2), and CO on Ru(0001). We have done calculations for pre-adsorbed Na, Cs, and S, and find that alkali atoms adsorbed close to a dissociating N(2) molecule will lower...... the barrier for dissociation, whereas S will increase it. The interaction with alkali atoms is mainly of an electrostatic nature. The poisoning by S is due to two kinds of repulsive interactions: a Pauli repulsion and a reduced covalent bond strength between the adsorbate and the surface d-electrons. In order...... to investigate these different interactions in more detail, we look at three different species (N atoms, and terminally bonded N(2) and CO) and use them as probes to study their interaction with two modifier atoms (Na and S). The two modifier atoms have very different properties, which allows us to decouple...

  3. Hyphopodium-Specific VdNoxB/VdPls1-Dependent ROS-Ca2+ Signaling Is Required for Plant Infection by Verticillium dahliae.

    Directory of Open Access Journals (Sweden)

    Yun-Long Zhao

    2016-07-01

    Full Text Available Verticillium dahliae is a phytopathogenic fungus obligate in root infection. A few hyphopodia differentiate from large numbers of hyphae after conidia germination on the root surface for further infection. However, the molecular features and role of hyphopodia in the pathogenicity of V. dahliae remain elusive. In this study, we found that the VdPls1, a tetraspanin, and the VdNoxB, a catalytic subunit of membrane-bound NADPH oxidases for reactive oxygen species (ROS production, were specifically expressed in hyphopodia. VdPls1 and VdNoxB highly co-localize with the plasma membrane at the base of hyphopodia, where ROS and penetration pegs are generated. Mutant strains, VdΔnoxb and VdΔpls1, in which VdPls1 and VdNoxB were deleted, respectively, developed defective hyphpodia incapable of producing ROS and penetration pegs. Defective plasma membrane localization of VdNoxB in VdΔpls1 demonstrates that VdPls1 functions as an adaptor protein for the recruitment and activation of the VdNoxB. Furthermore, in VdΔnoxb and VdΔpls1, tip-high Ca2+ accumulation was impaired in hyphopodia, but not in vegetative hyphal tips. Moreover, nuclear targeting of VdCrz1 and activation of calcineurin-Crz1 signaling upon hyphopodium induction in wild-type V. dahliae was impaired in both knockout mutants, indicating that VdPls1/VdNoxB-dependent ROS was specifically required for tip-high Ca2+ elevation in hyphopodia to activate the transcription factor VdCrz1 in the regulation of penetration peg formation. Together with the loss of virulence of VdΔnoxb and VdΔpls1, which are unable to initiate colonization in cotton plants, our data demonstrate that VdNoxB/VdPls1-mediated ROS production activates VdCrz1 signaling through Ca2+ elevation in hyphopodia, infectious structures of V. dahliae, to regulate penetration peg formation during the initial colonization of cotton roots.

  4. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  5. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?

    Science.gov (United States)

    Göltl, Florian; Sautet, Philippe; Hermans, Ive

    2015-06-26

    Copper-exchanged SSZ-13 is a very efficient material in the selective catalytic reduction of NO(x) using ammonia (deNO(x)-SCR) and characterizing the underlying distribution of copper sites in the material is of prime importance to understand its activity. The IR spectrum of NO adsorbed to divalent copper sites are modeled using ab initio molecular dynamics simulations. For most sites, complex multi-peak spectra induced by the thermal motion of the cation as well as the adsorbate are found. A finite temperature spectrum for a specific catalyst was constructed, which shows excellent agreement with previously reported data. Additionally these findings allow active and inactive species in deNO(x)-SCR to be identified. To the best of our knowledge, this is the first time such complex spectra for single molecules adsorbed to single active centers have been reported in heterogeneous catalysis, and we expect similar effects to be important in a large number of systems with mobile active centers.

  6. Investigation on Adsorption State of Surface Adsorbate on Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    An adsorption kinetics model for adsorbate on the specularly polished silicon wafer was suggested. The mathematical model of preferential adsorption and the mechanism controlling the adsorption state of adsorbate were discussed.

  7. Adsorbed Proteins Influence the Biological Activity and Molecular Targeting of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Debamitra; Sundaram, S. K.; Teeguarden, Justin G.; Riley, Brian J.; Fifield, Leonard S.; Jacobs, Jon M.; Addleman, Raymond S.; Kaysen, George A.; Moudgil, Brij M.; Weber, Thomas J.

    2007-11-01

    The possible combination of unique physicochemical properties operating at unique sites of action within cells and tissues has led to considerable uncertainty surrounding nanomaterial toxic potential. Here we have investigated the relative importance of proteins adsorbed onto nanomaterial surfaces in guiding uptake and toxicity to determine whether a priori identification of adsorbed proteins will contribute to nanomaterial toxicity assessment. Albumin was identified as the major protein adsorbed onto single walled carbon nanotubes (SWCNTs) following incubation with fetal bovine or human serum/plasma, but not when plasma from the Nagase Analbuminemic Rat (NAR) was used, and precoating SWCNTs with a non-ionic surfactant (Pluronic F127) inhibited albumin adsorption. Damaged or structurally altered albumin is rapidly cleared by scavenger receptors. In the RAW 264.7 macrophage-like model, we observed that SWCNTs inhibited the induction of cyclooxygenase-2 (Cox-2) by lipopolysaccharide (LPS; 1 ng/ml, 6 hr) and this anti-inflammatory response was inhibited by fucoidan (scavenger receptor antagonist) and by precoating SWCNTs with Pluronic F127. Fucoidan also reduced the uptake of fluorescent SWCNTs (Alexa647) in RAW 264.7 cells. Albumin-coated SWCNTs reduced LPS-mediated Cox-2 induction. SWCNTs did not appear to reduce binding of a fluorescent LPS (Alexa488) to RAW 264.7 cells. The profile of proteins adsorbed onto amorphous silica (50 – 1000 nm) was qualitatively different, relative to SWCNTs, and coating amorphous silica with Pluronic F127 dramatically reduced protein binding and toxicity. Collectively, these observations are consistent with an important role for adsorbed proteins in guiding nanomaterial disposition and toxicity.

  8. Direct satellite observation of lightning-produced NOx

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2010-08-01

    Full Text Available Lightning is an important source of NOx in the free troposphere, especially in the tropics, with high impact on ozone production. However, estimates of lightning NOx (LNOx production efficiency (LNOx per flash are still quite uncertain. In this study we present a systematic analysis of NO2 column densities from SCIAMACHY measurements over active thunderstorms, as detected by the World-Wide Lightning Location Network (WWLLN, where the WWLLN detection efficiency was estimated using the flash climatology of the satellite lightning sensors LIS/OTD. Only events with high lightning activity are considered, where corrected WWLLN flash rate densities inside the satellite pixel within the last hour are above 1 /km2/h. For typical SCIAMACHY ground pixels of 30×60 km2, this threshold corresponds to 1800 flashes over the last hour, which, for literature estimates of lightning NOx production, should result in clearly enhanced NO2 column densities. From 2004–2008, we find 287 coincidences of SCIAMACHY measurements and high WWLLN flash rate densities. For some of these events, a clear enhancement of column densities of NO2 could be observed, indeed. But overall, the measured column densities are below the expected values by more than one order of magnitude, and in most of the cases, no enhanced NO2 could be found at all. Our results are in contradiction to the currently accepted range of LNOx production per flash of 15 (2–40×1025 molec/flash. This probably partly results from the specific conditions for the events under investigation, i.e. events of high lightning activity in the morning (local time and mostly (for 162 out of 287 events over ocean. Within the detected coincidences, the highest NO2 column densities were observed around the US Eastcoast. This might be partly due to interference with ground sources of NOx being uplifted by the convective systems. However, it could also indicate that flashes in this region are particularly productive. We

  9. NO Removal in Continuous BioDeNOx Reactors: Fe(II)EDTA2- Regeneration, Biomass Growth, and EDTA Degradation

    NARCIS (Netherlands)

    Maas, van der P.M.F.; Brink, van den P.; Utomo, S.; Klapwijk, A.; Lens, P.N.L.

    2006-01-01

    BioDeNOx is a novel technique for NOx removal from industrial flue gases. In principle, BioDeNOx is based on NO absorption into an aqueous Fe(II)EDTA2- solution combined with biological regeneration of that scrubber liquor in a bioreactor. The technical and economical feasibility of the BioDeNOx

  10. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  11. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  12. Fluorescence of dyes adsorbed on highly organized nanostructured gold surfaces

    NARCIS (Netherlands)

    Levi, Stefano A.; Mourran, Ahmed; Spatz, Joachim P.; Veggel, van Frank C.J.M.; Reinhoudt, David N.; Möller, M.

    2002-01-01

    It is shown that fluorescent dyes can be adsorbed selectively on gold nanoparticles which are immobilized on a glass substrate and that the fluorescence originating from the adsorbed dyes exhibits significantly less quenching when compared to dyes adsorbed on bulk gold. Self-assembled monolayers of

  13. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  14. Green Adsorbents for Wastewaters: A Critical Review

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-01-01

    Full Text Available One of the most serious environmental problems is the existence of hazardous and toxic pollutants in industrial wastewaters. The major hindrance is the simultaneous existence of many/different types of pollutants as (i dyes; (ii heavy metals; (iii phenols; (iv pesticides and (v pharmaceuticals. Adsorption is considered to be one of the most promising techniques for wastewater treatment over the last decades. The economic crisis of the 2000s led researchers to turn their interest in adsorbent materials with lower cost. In this review article, a new term will be introduced, which is called “green adsorption”. Under this term, it is meant the low-cost materials originated from: (i agricultural sources and by-products (fruits, vegetables, foods; (ii agricultural residues and wastes; (iii low-cost sources from which most complex adsorbents will be produced (i.e., activated carbons after pyrolysis of agricultural sources. These “green adsorbents” are expected to be inferior (regarding their adsorption capacity to the super-adsorbents of previous literature (complex materials as modified chitosans, activated carbons, structurally-complex inorganic composite materials etc., but their cost-potential makes them competitive. This review is a critical approach to green adsorption, discussing many different (maybe in some occasions doubtful topics such as: (i adsorption capacity; (ii kinetic modeling (given the ultimate target to scale up the batch experimental data to fixed-bed column calculations for designing/optimizing commercial processes and (iii critical techno-economical data of green adsorption processes in order to scale-up experiments (from lab to industry with economic analysis and perspectives of the use of green adsorbents.

  15. Behavior of macromolecules in adsorbed layers

    Institute of Scientific and Technical Information of China (English)

    牟伯中[1; 姚恒申[2; 罗平亚[3

    2000-01-01

    A model for describing the behavior ot macromoiecuies in aosoroea layers is developed by introducing a concept of distribution density of layer thickness U based on stochastic process and probabilistic statistics. The molecular behavior of layers adsorbed on clay particle surfaces is discussed; the random distribution and its statistics of the layer thickness are given by incorporating experimental results with an ionic polyelectrolyte with the molecular weight of 1.08×106and chain charged density of 0.254.

  16. MOLECULAR IMPRINTED POLYMERS--Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LI Haitao; XU Mancai; SHI Zuoqing; HE Binglin

    2001-01-01

    Molecular imprinted polymers (MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules. These novel functional polymers have promised potential applications in racemic resolution, sensor, chromatography, adsorptive separation and other fields. This review exhibits the approach for preparing MIPs, the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs. The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  17. NADPH Oxidases NOX-1 and NOX-2 Require the Regulatory Subunit NOR-1 To Control Cell Differentiation and Growth in Neurospora crassa▿ †

    Science.gov (United States)

    Cano-Domínguez, Nallely; Álvarez-Delfín, Karen; Hansberg, Wilhelm; Aguirre, Jesús

    2008-01-01

    We have proposed that reactive oxygen species (ROS) play essential roles in cell differentiation. Enzymes belonging to the NADPH oxidase (NOX) family produce superoxide in a regulated manner. We have identified three distinct NOX subfamilies in the fungal kingdom and have shown that NoxA is required for sexual cell differentiation in Aspergillus nidulans. Here we show that Neurospora crassa NOX-1 elimination results in complete female sterility, decreased asexual development, and reduction of hyphal growth. The lack of NOX-2 did not affect any of these processes but led instead to the production of sexual spores that failed to germinate, even in the presence of exogenous oxidants. The elimination of NOR-1, an ortholog of the mammalian Nox2 regulatory subunit gp67phox, also caused female sterility, the production of unviable sexual spores, and a decrease in asexual development and hyphal growth. These results indicate that NOR-1 is required for NOX-1 and NOX-2 functions at different developmental stages and establish a link between NOX-generated ROS and the regulation of growth. Indeed, NOX-1 was required for the increased asexual sporulation previously observed in mutants without catalase CAT-3. We also analyzed the function of the penta-EF calcium-binding domain protein PEF-1 in N. crassa. Deletion of pef-1 resulted in increased conidiation but, in contrast to what occurs in Dictyostelium discoideum, the mutation of this peflin did not suppress the phenotypes caused by the lack of NOX-1. Our results support the role of ROS as critical cell differentiation signals and highlight a novel role for ROS in regulation of fungal growth. PMID:18567788

  18. Effective Thermal Conductivity of Adsorbent Packed Beds

    Science.gov (United States)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  19. Remediation of AMD using industrial waste adsorbents

    Science.gov (United States)

    Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.

  20. Molecular Mechanisms of Curcumin on Diabetes-Induced Endothelial Dysfunctions: Txnip, ICAM-1, and NOX2 Expressions

    Directory of Open Access Journals (Sweden)

    Natchaya Wongeakin

    2014-01-01

    Full Text Available We aim to investigate the effects of curcumin on preventing diabetes-induced vascular inflammation in association with its actions on Txnip, ICAM-1, and NOX2 enzyme expressions. Male Wistar rats were divided into four groups: control (CON, diabetic (DM; streptozotocin (STZ, i.v. 55 mg/kg BW, control-treated with curcumin (CONCUR; 300 mg/kg BW, and diabetes treated with curcumin (DMCUR; 300 mg/kg BW. 12th week after STZ injection, iris blood perfusion, leukocyte adhesion, Txnip, p47phox, and malondialdehyde (MDA levels were determined by using laser Doppler, intravital fluorescent confocal microscopy, Western Blot analysis, and TBAR assay, respectively. The iris blood perfusion of DM and DMCUR was decreased significantly compared to CON and CONCUR (P<0.001. Plasma glucose and HbA1c of DM and DMCUR were increased significantly compared to CON and CONCUR (P<0.001. Leukocyte adhesion, ICAM-1, p47phox expression, and MDA levels in DM were increased significantly compared to CON, CONCUR, and DMCUR (P<0.05. Txnip expression in DM and DMCUR was significantly higher than CON and CONCUR (P<0.05. From Pearson’s analysis, the correlation between the plasma MDA level and the endothelial functions was significant. It suggested that curcumin could ameliorate diabetic vascular inflammation by decreasing ROS overproduction, reducing leukocyte-endothelium interaction, and inhibiting ICAM-1 and NOX2 expression.

  1. Nitric Oxide Plasma Level as a Barometer of Endothelial Dysfunction in Factory Workers.

    Science.gov (United States)

    Miyata, Seiko; Noda, Akiko; Hara, Yuki; Ueyama, Jun; Kitaichi, Kiyoyuki; Kondo, Takaaki; Koike, Yasuo

    2017-07-27

    Objective Nitric oxide (NO) plays a key role in the regulation of vascular tone and is known as one of the key markers of endothelial dysfunction. We investigated the relationship between NO and risk factors of lifestyle-related disease in factory workers. Methods Our study included 877 factory workers presenting hypertension, dyslipidemia and type 2 diabetes. oxidated forms of NO, NO2-/NO3- (NOx) plasma concentrations were measured using a colorimetric method. Results NOx plasma levels in patients with lifestyle-related disease were significantly lower than those in the controls. The brachial-ankle pulse wave velocity (baPWV) measured in those patients was significantly greater than that of the controls. Multiple regression analysis revealed that LDL cholesterol was an independent risk factor for reducing NOx plasma concentrations. Interestingly, individuals with low NOx plasma concentrations were more likely to present type 2 diabetes compared to those with the highest plasma levels of NOx (odds ratio [OR] [95% confidence interval; CI]=3.65 [1.61-8.28], P=0.002, 2.67 [1.15-6.20], P=0.022, and 3.27 [1.43-7.48], P=0.005). Subjects with the lowest levels of plasma NOx were more likely to present dyslipidemia (OR [95% CI]=1.69 [1.13-2.53], P=0.01). Conclusion Endothelial function evaluated with plasma NOx may be indicative of lifestyle-related diseases independently from the vascular function assessed using baPWV. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...... effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model...

  3. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  4. An overview of photocatalysis phenomena applied to NOx abatement.

    Science.gov (United States)

    Ângelo, Joana; Andrade, Luísa; Madeira, Luís M; Mendes, Adélio

    2013-11-15

    This review provides a short introduction to photocatalysis technology in terms of the present environmental remediation paradigm and, in particular, NOx photoabatement. The fundamentals of photoelectrochemical devices and the photocatalysis phenomena are reviewed, highlighting the main reaction mechanisms. The critical historical developments on heterogeneous photocatalysis are briefly discussed, giving particular emphasis to the pioneer works in this field. The third part of this work focus mainly on NOx removal technology considering topics such as: TiO2 photochemistry; effect of the operating conditions on the photocatalysis process; Langmuir-Hinshelwood modeling; TiO2 photocatalytic immobilization approaches; and their applications. The last section of the paper presents the main conclusions and perspectives on the opportunities related to this technology.

  5. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    Energy Technology Data Exchange (ETDEWEB)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of

  6. NO x and SO2 Formation in the Sintering Process and Influence of Sintering Material Composition on NO x Emissions%烧结过程NOx 和SO2形成规律及烧结料组成对NOx排放的影响

    Institute of Scientific and Technical Information of China (English)

    任重培; 朱天乐; 朱廷钰; 吕栋

    2014-01-01

    采用烧结杯实验方法,研究了烧结过程NOx 和SO2的形成规律,以及焦粉含量、含水率和添加助剂对烧结过程NOx 排放的影响。结果表明,烧结启动后,烧结带自上而下逐层推进,烧结带以下各断面NOx 浓度基本相同。烧结带产生的SO2先被待烧结料吸附蓄积,再被热解析出,最后从底部排出,因此只在烧结最后阶段出口能检测到较高浓度的SO2,且SO2浓度与时间的关系呈倒V形曲线。烧结过程产生的NOx 以热力型为主,而且绝大部分为NO, NO2浓度非常低。降低焦粉含量和含水率,或添加烧结助剂均有助于降低NOx 排放。%NOx and SO2 formation in the sintering process and the influence of coke powder content, moisture content and adding additives on NOx emissions were investigated by the sintering pot experimental method. The results showed that the combustion zone moved downward along the sintering pot after the sintering started. The NOx concentrations of all monitoring points below the combustion zone were basically the same. SO2 generated in the combustion zone was adsorbed and accumulated in the sintering materials below the zone. Then, SO2 was released by pyrolysis, and finally discharged from the outlet of sintering pot. So the significant SO2 couldn't be detected before the burning through point, and the relationship between the SO2 concentration and the sintering time displayed an inverted “V” curve. NOx produced from the sintering process was mainly thermal-NOx, and most of it was NO, the NO2 concentration was very low. Reducing the coke powder and moisture contents, or adding sintering additives could effectively reduce NOx emissions.

  7. Electrochemical removal of NOx with porous cell stacks

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Kammer Hansen, Kent; Mogensen, Mogens Bjerg

    2010-01-01

    In this study porous cell stacks were investigated for their ability to remove NOx electrochemically. The cell stacks were made from laminated tapes of porous electrolyte Ce0.9Gd0.1O1.95 and composite electrodes of La1−xSrxMnO3 (x = 0.15, and 0.5) and ceria doped with Gd or Pr. The cell stacks were...

  8. Transport of atmospheric NOx and HNO3 over Cape Town

    Science.gov (United States)

    Abiodun, B. J.; Ojumu, A. M.; Jenner, S.; Ojumu, T. V.

    2013-05-01

    Cape Town, the most popular tourist city in Africa, usually experiences air pollution with unpleasant odour in winter. Previous studies have associated the pollution with local emission of pollutants within the city. The present study examines the transport of atmospheric pollutants (NOx and HNO3) over South Africa and shows how the transport of pollutants from the Mpumalanga Highveld may contribute to the pollution in Cape Town. The study analysed observation data (2001-2008) from Cape Town air quality network and simulation data (2001-2004) from regional climate model (RegCM4) over southern Africa. The simulation accounts for the influence of complex topography, atmospheric condition, and atmospheric chemistry on emission and transport of pollutants over southern Africa. Flux budget analysis was used to examine whether Cape Town is a source or sink for NOx and HNO3 during the extreme pollution events. The results show that extreme pollution events over Cape Town are associated with the low-level (surface-850 hPa) transport of NOx from the Mpumalanga Highveld to Cape Town, and with a tongue of high concentration of HNO3 that extends from the Mpumalanga Highveld to Cape Town along the south coast of South Africa. The prevailing atmospheric conditions during the extreme pollution events feature an upper-level (700 hPa) anticyclonic flow over South Africa and a low-level col over Cape Town. The anticyclonic flow induces a strong subsidence motion, which prevents vertical mixing of the pollutants and caps high concentration of pollutants close to the surface as they are transported from the Mpumalanga Highveld toward Cape Town, while the col accumulates the pollutants over the city. This study shows that Cape Town can be a sink for the NOx and HNO3 during extreme pollution events and suggests that the accumulation of pollutants transported from other areas (e.g. Mpumalanga Highveld) may contribute substantially to the air pollution in Cape Town.

  9. NOx Emissions from a Rotating Detonation-wave Engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2016-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.

  10. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the

  11. Real world NOx emissions of Euro V vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Verbeek, R.; Vonk, W.A.; Verbeek, R.P.; Dekker, H. [TNO Science and Industry, Delft (Netherlands)

    2010-11-15

    In the past decade, vehicle emissions have been reduced substantially as a result of the European emission legislation. Air quality problems are still present, however, in particular in urban areas where local authorities have difficulty meeting European limits regarding air quality (mainly NO2). Therefore, the emission performance of vehicles under urban conditions is of increasing importance for air quality improvement in cities. In this context, TNO was commissioned by the Dutch Ministry of Environment (VROM) to investigate the real-world NOx emissions of Euro V trucks and buses during the past two years. The investigation has shown that, in general, there is a large variety in real-world emissions between different vehicles, in particular under urban conditions. Some vehicles demonstrate the possibility of achieving low emissions under urban conditions, but the results also clearly show that this is not the case for most of the trucks. This outcome is based on two lines of research. Firstly, the real world emissions of eleven trucks and one bus were measured on-road using a Portable Emission Measurement System (PEMS), under conditions typical of everyday use. Secondly, AdBlue consumption data for a number of Dutch vehicle fleets were analysed. AdBlue is the reagent that is used for NOx emission reduction in SCR systems (catalytic after treatment systems), and the amount of reagent used in daily practice is related to the real-world NOx emissions. Both lines of research support the general outcome.

  12. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  13. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William

    2014-08-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  14. NOx and NOy in the Tropical Marine Boundary Layer

    Science.gov (United States)

    Reed, Chris; Evans, Mathew J.; Lee, James D.; Carpenter, Lucy J.; Read, Katie A.; Mendes, Luis N.

    2016-04-01

    Nitrogen oxides (NOx=NO+NO2) and their reservoir species (NOy) play a central role in determining the chemistry of the troposphere. Although their concentrations are low (1-100 ppt) in regions such as the remote marine boundary layer, they have a profound impact on ozone production and the oxidizing capacity. There are very few observations of NOx and NOy in remote oceanic regions due to the technical challenges of measuring such low concentrations, and thus our understanding of this background chemistry is incomplete. Here we present long term measurements of NOx (2006-2015) and more recent measurements of speciated NOy (total peroxyacetyl nitrates, PANs; alkyl nitrates, ANs; nitric acid; and aerosol analogues) made at the Cape Verde Atmospheric Observatory (CVAO; 16° 51' N, 24° 52' W) located in the tropical Atlantic Ocean. We identify potential interferences in the NO2 and NOy measurements and methods to eliminate them. Diurnal and seasonal cycles are interpreted using a box model. We find a complex chemistry with interactions between organic and inorganic chemistry, between the aerosol and gas phase, and between the very local and large scales.

  15. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    Science.gov (United States)

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  16. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms.

    Science.gov (United States)

    Manea, Simona-Adriana; Constantin, Alina; Manda, Gina; Sasson, Shlomo; Manea, Adrian

    2015-08-01

    NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.

  17. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA

    Science.gov (United States)

    Wild, Robert J.; Dubé, William P.; Aikin, Kenneth C.; Eilerman, Scott J.; Neuman, J. Andrew; Peischl, Jeff; Ryerson, Thomas B.; Brown, Steven S.

    2017-01-01

    Nitrogen oxides (NOx = NO + NO2) emitted by on-road combustion engines are important contributors to tropospheric ozone production. The NOx fraction emitted as nitrogen dioxide (NO2) is usually presumed to be small but can affect ozone production and distribution, and this fraction is generally not reported in emissions inventories. We have developed an accurate method for determination of this primary NO2 emission and demonstrated it during measurement of on-road vehicle emission plumes from a mobile laboratory during July and August 2014 in the region between Denver and Greeley in Colorado. During a total of approximately 90 h of sampling from an instrumented mobile laboratory, we identified 1867 vehicle emission plumes, which were extracted using an algorithm that looks for rapid and large increases in measured NOx. We find a distribution of NO2/NOx emissions similar to a log-normal profile, with an average emission ratio of 0.053 ± 0.002 per sampled NOx plume. The average is not weighted by the total NOx emissions from sampled vehicles, which is not measured here, and so may not represent the NO2/NOx ratio of the total NOx emission if this ratio is a function of NOx itself. Although our current data set does not distinguish between different engine types (e.g., gasoline, light duty diesel and heavy duty diesel), the ratio is on the low end of recent reports of vehicle fleet NO2 to NOx emission ratios in Europe.

  18. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China.

    Science.gov (United States)

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C H; Lau, Alexis K H

    2016-05-01

    As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0-4405) respiratory deaths and 991 (0-2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources.

  19. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2015-08-01

    Full Text Available NADPH oxidases (Nox represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS. Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases.

  20. NOx emission from incineration of organic hazardous liquid waste containing hexamethylendiamine in fluidized bed

    Institute of Scientific and Technical Information of China (English)

    别如山; 李季; 杨励丹

    2002-01-01

    Experiments have been conducted to investigate NOx concentration profiles along bed height and influences of temperature and excess air on NOx emission in the range from 700 ℃ to 900 ℃, when waste water containing 5% Hexamethylenediamine incinerated in a bench scale hot fluidized bed. The testing results indicate that the concentration of NO2 is larger than that of NO along bed height except in the freeboard at 900 ℃, where NO, NO2 concentrations are zero. Temperature and excess air play significant role on NOx emission. With increasing in temperature the NOx emission decreases very rapidly in the range from 700 ℃ to 900 ℃. With increasing in excess air, NOx emission increases considerably at 700 ℃, but it is almost independent of excess air at 800 ℃,and at 900 ℃ NOx emission is zero indicating that NH2 from NH2(CH2)6NH2 has strong effect on de-NOx with increasing in temperature and excess air. NOx concentration profiles decrease progressively with bed height because of reduction of NOx by NH2. The mechanism of NOx formation and destruction is presented in the paper.

  1. Role of smooth muscle Nox4-based NADPH oxidase in neointimal hyperplasia.

    Science.gov (United States)

    Tong, Xiaoyong; Khandelwal, Alok R; Qin, Zhexue; Wu, Xiaojuan; Chen, Lili; Ago, Tetsuro; Sadoshima, Junichi; Cohen, Richard A

    2015-12-01

    Elevated levels of reactive oxygen species (ROS) in the vascular wall play a key role in the development of neointimal hyperplasia. Nox4-based NADPH oxidase is a major ROS generating enzyme in the vasculature, but its roles in neointimal hyperplasia remain unclear. Our purpose was to investigate the role of smooth muscle cell (SMC) Nox4 in neointimal hyperplasia. Mice overexpressing a human Nox4 mutant form, carrying a P437H dominant negative mutation (Nox4DN) and driven by SM22α promoter, to achieve specific expression in SMC, were generated in a FVB/N genetic background. After wire injury-induced endothelial denudation, Nox4DN had significantly decreased neointima formation compared with non-transgenic littermate controls (NTg). ROS production, serum-induced proliferation and migration, were significantly decreased in aortic SMCs isolated from Nox4DN compared with NTg. Both mRNA and protein levels of thrombospondin 1 (TSP1) were significantly downregulated in Nox4DN SMCs. Downregulation of TSP1 by siRNA decreased cell proliferation and migration in SMCs. Similar to Nox4DN, downregulation of Nox4 by siRNA significantly decreased TSP1 expression level, cell proliferation and migration in SMCs. Downregulation of smooth muscle Nox4 inhibits neointimal hyperplasia by suppressing TSP1, which in part can account for inhibition of SMC proliferation and migration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Possibility of Reducing Formations of NOx and SO2 Simultaneously during Coal Combustion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Comparing with other NOx and SO2 control technologies, in-bed reducing NOx and SO2 simultaneously during coal combustion may lower the investment and operation cost. However, there are several possible contradictions between the reduction of NOx and the capture of SO2 during combustion: 1) CO rich atmosphere is favorable for the reduction of NOx, whereas O2 rich favorable for the capture of SO2; 2) higher preheating temperature of coal is favorable for reducing NOx, but unfavorable for reducing SO2; 3) sulphation of some minerals may deactivate their catalytic effect on the reduction of NOx. The attempts to eliminate such contradictions by coating coal granules with thin layer of monometallic oxides and mixed oxides were proposed. Ni2O3 and Fe2O3 showed high activity on NOx reduction and CaO and Cr2O3 showed good effect on sulfur capture. The mixed metallic oxides, e.g., Fe2O3NiO, etc., showed effective for both NOx reduction and SO2 retention. It is possible to in-bed reduce NOx and SO2 simultaneously if the adhering materials are properly chosen to be difunctional materials of both active catalysts for NOx reduction reactions and better sorbents for SO2 retention.

  3. Interplay of adsorbate-adsorbate and adsorbate-substrate interactions in self-assembled molecular surface nanostructures

    DEFF Research Database (Denmark)

    Schnadt, Joachim; Xu, Wei; Vang, Ronnie Thorbjørn

    2010-01-01

    The adsorption of 2,6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X......-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent...

  4. Determination of the NOx loading of an automotive lean NOx trap by directly monitoring the electrical properties of the catalyst material itself.

    Science.gov (United States)

    Fremerey, Peter; Reiss, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf

    2011-01-01

    Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps.

  5. Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2011-08-01

    Full Text Available Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps.

  6. Adherence of platelets to in situ albumin-binding surfaces under flow conditions: role of surface-adsorbed albumin.

    Science.gov (United States)

    Guha Thakurta, Sanjukta; Miller, Robert; Subramanian, Anuradha

    2012-08-01

    Surfaces that preferentially bind human serum albumin (HSA) were generated by grafting albumin-binding linear peptide (LP1) onto silicon surfaces. The research aim was to evaluate the adsorption pattern of proteins and the adhesion of platelets from platelet-poor plasma and platelet-rich plasma, respectively, by albumin-binding surfaces under physiological shear rate (96 and 319 s(-1)) conditions. Bound proteins were quantified using enzyme-linked immunosorbent assays (ELISAs) and two-dimensional gel electrophoresis. A ratio of ∼1000:100:1 of adsorbed HSA, human immunoglobulin (HIgG) and human fibrinogen (HFib) was noted, respectively, on LP1-functionalized surfaces, and a ratio of ∼5:2:1 of the same was noted on control surfaces, as confirmed by ELISAs. The surface-adsorbed von Willebrand factor was undetectable by sensitive ELISAs. The amount of adhered platelets correlated with the ratio of adsorbed HSA/HFib. Platelet morphology was more rounded on LP1-functionalized surfaces when compared to control surfaces. The platelet adhesion response on albumin-binding surfaces can be explained by the reduction in the co-adsorption of other plasma proteins in a surface environment where there is an excess of albumin molecules, coupled with restrictions in the conformational transitions of other surface-adsorbed proteins into hemostatically active forms.

  7. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2005-01-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  8. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    H. M. Kelder

    2005-05-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3D distribution of lightning produced nitrogen oxides (NOx=NO2+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parametrisations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parametrisations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parametrisations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal correlation

  9. H-NOX from Clostridium botulinum, like H-NOX from Thermoanaerobacter tengcongensis, Binds Oxygen but with a Less Stable Oxyferrous Heme Intermediate.

    Science.gov (United States)

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2015-12-08

    Heme nitric oxide/oxygen binding protein isolated from the obligate anaerobe Clostridium botulinum (Cb H-NOX) was previously reported to bind NO with a femtomolar K(D) (Nioche, P. et al. Science 2004, 306, 1550-1553). On the other hand, no oxyferrous Cb H-NOX was observed despite full conservation of the key residues that stabilize the oxyferrous complex in the H-NOX from Thermoanaerobacter tengcongensis (Tt H-NOX) (the same study). In this study, we re-measured the kinetics/affinities of Cb H-NOX for CO, NO, and O2. K(D)(CO) for the simple one-step equilibrium binding was 1.6 × 10(-7) M. The K(D)(NO) of Cb H-NOX was 8.0 × 10(-11) M for the first six-coordinate NO complex, and the previous femtomolar K(D)(NO) was actually an apparent K(D) for its multiple-step NO binding. An oxyferrous Cb H-NOX was clearly observed with a K(D)(O2) of 5.3 × 10(-5) M, which is significantly higher than Tt H-NOX's K(D)(O2) = 4.4 × 10(-8) M. The gaseous ligand binding of Cb H-NOX provides another supportive example for the "sliding scale rule" hypothesis (Tsai, A.-L. et al. Antioxid. Redox Signal. 2012, 17, 1246-1263), and the presence of hydrogen bond donor Tyr139 in Cb H-NOX selectively enhanced its affinity for oxygen.

  10. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  11. NOx reduction by ozone injection and direct plasma treatment

    OpenAIRE

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration. The process chemistry is monitored by FTIR, chemiluminiscence and absorbtion spectroscopy. The kinetic mechanism is also investigated in 3D simulations.

  12. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  13. Plasma treatment of onychomycosis

    Science.gov (United States)

    Xiong, Zilan; Roe, Jeff; Grammer, Tim; Him, Yeon-Ho; Graves, David B.

    2015-09-01

    Onychomycosis or fungal infection of the toenail or fingernail is a common affliction. Approximately 10% of the world's adult population is estimated to suffer from onychomycosis. Current treatment options such as topical creams, oral drugs, or laser treatments are generally limited by a variety of problems. We present results for an alternative onychomycosis treatment scheme using atmospheric pressure cold air plasmas. Using thinned cow hoof as a model nail material, we tested the ability of various plasma sources to act through the model nail to eradicate either bacteria or fungus deposited on the opposite side. Following 20 minute exposure to a surface microdischarge (SMD) device operating in room air, we observed a ~ 2 log reduction of E. coli. A similar result was obtained against T. rubrum after 45 min plasma treatment. NOx species concentration penetrating through the model nail as well as uptake into the nail were measured as a function of nail thickness. We propose that these plasma-generated species, or perhaps their reaction products, are responsible for at least part of the observed anti-microbial effect. We also explore the use of ultraviolet light acting in synergy with plasma-generated chemical species.

  14. Laboratory and Field Measurements of the Nitrogen Isotopic Composition of NOx

    Science.gov (United States)

    Fibiger, D. L.; Miller, D. J.; Dahal, B. R.; Lew, A. F.; Peltier, R.; Hastings, M. G.

    2014-12-01

    The nitrogen isotopic composition of nitrogen oxides (NOx = NO + NO2) has been measured from several NOx emissions sources in prior studies. These measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, but none of these methods have been verified for complete conversion of NOx. Less than 100% conversion can result in isotopic fractionations. We present a method for accurately measuring the nitrogen isotopic composition of NOx using a .25 M KMnO4 and 0.5 M NaOH solution. Based on laboratory tests, this technique has been found to collect all NOx passed through under a variety of conditions (e.g., air flow rate, NOx concentration, temperature, humidity), allowing for diagnosis of δ15N-NOx without correction for fractionation. The precision across the entire analytic technique is 1.5‰. This active collection method is advantageous for collecting NOx over short time scales in environments with highly variable NOx sources and concentrations. The major drawback of the NaOH/KMnO4 method is a significant nitrate background found in the KMnO4, but this background is consistent and can be easily accounted for. We aim to use this method to provide more robust constraints on the isotopic signatures of NOx emissions from different sources. Initial results will be presented from lab- and field-based collections of NOx emissions. Emissions from a diesel engine were measured in a laboratory smog chamber and yielded δ15N values with a mean of -18.0‰ (n = 5, 1σ = 0.97‰). Measurements of δ15N-NOx were also made on a rooftop between two highways in Providence, RI. The values ranged from -7.7 to -0.63‰ for different time periods sampled, with excellent reproducibility in side-by-side collections. Additionally, the NaOH/KMnO4 was deployed in a laboratory study of biomass burning (FLAME4) to analyze the nitrogen isotopic composition of NOx produced from the burning of variety of materials (e.g. trees, agricultural

  15. Macroporous poly(vinyl alcohol) microspheres bearing phosphate groups as a new adsorbent for low-density lipoprotein apheresis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weichao; Xie Hui; Ou Lailiang; Wang Lianyong; Yu Yaoting; Kong Deling [Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071 (China); Sun Lisha, E-mail: wly@nankai.edu.c, E-mail: kongdeling@nankai.edu.c [General Hospital, Tianjin Medical University, Tianjin 300052 (China)

    2009-12-15

    A new low-density lipoprotein (LDL) adsorbent with phosphate groups as the ligand was prepared in this study. Macroporous poly(vinyl acetate-co-triallyl isocyanurate) microspheres were prepared using a free-radical suspension polymerization method. A hydrolysis reaction in sodium hydroxide/methanol changed the materials into poly(vinyl alcohol) (PVA) microspheres. Further reaction with phosphorus oxychloride in anhydrous DMF led to the LDL adsorbent PVA-phosphate microspheres. The preparation conditions such as reaction time, temperature and the amount of phosphorus oxychloride were optimized. The adsorption of plasma lipoproteins was examined by in vitro adsorption assays. The influence of adsorption time, plasma volume and ionic strength on the adsorption capacity was investigated. The circulation adsorption showed that the pathogenic lipoproteins in the plasma such as total cholesterol (TC), LDL and triglyceride (TG) could be removed markedly, in which the removal percentages were 42.9%, 45.0% and 44.74%, respectively. However, the reduction of high-density lipoprotein (HDL) and other normal plasma components was very slight. For in vivo experiment, rabbits were fed with high-cholesterol food to develop a hyperlipidemia model and treated by extracorporeal blood perfusion using the PVA-phosphate columns. Eight hyperlipidemia rabbits were treated with the PVA-phosphate adsorbent, and the removal of TC, LDL and TG was 45.03 +- 6.64%, 48.97 +- 9.92% and 35.42 +- 14.17%, respectively. The sterilization and storage tests showed that the adsorbent was chemically and functionally stable. It could be easily sterilized by a common method and stored for months without loss of adsorption capacity. Therefore, this new PVA-phosphate-based LDL adsorbent may have potential for application in LDL apheresis.

  16. MOLECULAR IMPRINTED POLYMERS—Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LIHaitao; XUMancai; 等

    2001-01-01

    Molecular imprinted polymers(MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules,These novel functional polymers have promised potential applications in racemic resolution,sensor,chromatography,adsorptive separation and other fields.This review exhibits the approach for preparing MIPs,the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs.The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  17. Adsorbate Azimuthal Orientation from Reflectance Anisotropy Spectroscopy

    Science.gov (United States)

    Frederick, B. G.; Power, J. R.; Cole, R. J.; Perry, C. C.; Chen, Q.; Haq, S.; Bertrams, Th.; Richardson, N. V.; Weightman, P.

    1998-05-01

    We have determined the azimuthal orientation of an adsorbate on a metal surface from an intramolecular-transition-derived feature in reflectance anisotropy spectroscopy (RAS). Adsorption of 9-anthracene carboxylic acid onto p\\(2×1\\)O/Cu110 led to an ordered structure with a strong (2%), derivativelike feature at 4.5 eV. Fresnel theory predicts the measured intensity, functional behavior, and sense of the RAS signal for the molecule aligned along [110]. IR measurements confirm that the molecular plane is perpendicular to the surface and STM measurements support the azimuthal orientation. We reassign the sense of the clean Cu(110) surface RA spectrum.

  18. Adsorption characteristics of water vapor on honeycomb adsorbents

    Science.gov (United States)

    Wajima, Takaaki; Munakata, Kenzo; Takeishi, Toshiharu; Hara, Keisuke; Wada, Kouhei; Katekari, Kenichi; Inoue, Keita; Shinozaki, Yohei; Mochizuki, Kazuhiro; Tanaka, Masahiro; Uda, Tatsuhiko

    2011-10-01

    Recovery of tritium released into working areas in nuclear fusion plants is a key issue of safety. A large volume of air from tritium fuel cycle or vacuum vessel should be processed by air cleanup system (ACS). In ACS, tritium gas is oxidized by catalysts, and then tritiated water vapor is collected by adsorbents. This method can remove tritium effectively, whereas high throughput of air causes high-pressure drop in catalyst and adsorbent beds. In this study, the applicability of honeycomb-type adsorbents, which offers a useful advantage in terms of their low-pressure drop, to ACS was examined, in comparison with conventional pebble-type adsorbent. Honeycomb-type adsorbent causes far less pressure drop than pebble-type adsorbent beds. Adsorption capacity of water vapor on a honeycomb-type adsorbent is slightly lower than that on a pebble-type adsorbent, while adsorption rate of water vapor on honeycomb-type adsorbent is much higher than that of pebble-type adsorbent.

  19. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  20. Advances in catalytic removal of NOx under lean-burn conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Zhiming; HAO Jiming; FU Lixin; LI Junhua; CUI Xiangyu

    2004-01-01

    The catalytic removal of NOx under lean conditions is one of the most important targets in catalysis research. The activities of metal oxides, zeolite-based catalysts and noble metal catalysts together with the factors are influencing the selective reduction of NOx with hydrocarbons are reviewed. The reaction mechanisms for the three types of catalysts are briefly discussed. Recent progress in combined catalyst and NOx storage reduction catalysts is also introduced. Finally, future research directions are forecasted.

  1. Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence

    Science.gov (United States)

    Tie, Xuexi; Emmons, Louisa; Horowitz, Larry; Brasseur, Guy; Ridley, Brian; Atlas, Elliot; Stround, Craig; Hess, Peter; Klonecki, Andrzej; Madronich, Sasha; Talbot, Robert; Dibb, Jack

    2003-02-01

    The distributions of NOx and O3 are analyzed during TOPSE (Tropospheric Ozone Production about the Spring Equinox). In this study these data are compared with the calculations of a global chemical/transport model (Model for OZone And Related chemical Tracers (MOZART)). Specifically, the effect that hydrolysis of N2O5 on sulfate aerosols has on tropospheric NOx and O3 budgets is studied. The results show that without this heterogeneous reaction, the model significantly overestimates NOx concentrations at high latitudes of the Northern Hemisphere (NH) in winter and spring in comparison to the observations during TOPSE; with this reaction, modeled NOx concentrations are close to the measured values. This comparison provides evidence that the hydrolysis of N2O5 on sulfate aerosol plays an important role in controlling the tropospheric NOx and O3 budgets. The calculated reduction of NOx attributed to this reaction is 80 to 90% in winter at high latitudes over North America. Because of the reduction of NOx, O3 concentrations are also decreased. The maximum O3 reduction occurs in spring although the maximum NOx reduction occurs in winter when photochemical O3 production is relatively low. The uncertainties related to uptake coefficient and aerosol loading in the model is analyzed. The analysis indicates that the changes in NOx due to these uncertainties are much smaller than the impact of hydrolysis of N2O5 on sulfate aerosol. The effect that hydrolysis of N2O5 on global NOx and O3 budgets are also assessed by the model. The results suggest that in the Northern Hemisphere, the average NOx budget decreases 50% due to this reaction in winter and 5% in summer. The average O3 budget is reduced by 8% in winter and 6% in summer. In the Southern Hemisphere (SH), the sulfate aerosol loading is significantly smaller than in the Northern Hemisphere. As a result, sulfate aerosol has little impact on NOx and O3 budgets of the Southern Hemisphere.

  2. Phase II NOx controls for the Marama and Nescaum regions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This technical report discusses Phase II NOx controls for utility boilers in the Mid-Atlantic Regional Air Management Association (MARAMA) and the Northeast States for Coordinated Air Use Management (NESCAUM) regions. The subject areas include: Utility boiler population profile in the MARAMA and NESCAUM regions; Discussion of RACT controls; Available NOx controls and their levels of performance; and Costs and cost effectiveness of NOx controls.

  3. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2013-04-01

    Full Text Available An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT for NOx storage catalysts (NSC enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD. The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1 time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2 during the short-term thermal NOx release.

  4. Equilibrium molecular theory of two-dimensional adsorbate drops on surfaces of heterogeneous adsorbents

    Science.gov (United States)

    Tovbin, Yu. K.

    2016-08-01

    A molecular statistical theory for calculating the linear tension of small multicomponent droplets in two-dimensional adsorption systems is developed. The theory describes discrete distributions of molecules in space (on a scale comparable to molecular size) and continuous distributions of molecules (at short distances inside cells) in their translational and vibrational motions. Pair intermolecular interaction potentials (the Mie type potential) in several coordination spheres are considered. For simplicity, it is assumed that distinctions in the sizes of mixture components are slight and comparable to the sizes of adsorbent adsorption centers. Expressions for the pressure tensor components inside small droplets on the heterogeneous surface of an adsorbent are obtained, allowing calculations of the thermodynamic characteristics of a vapor-fluid interface, including linear tension. Problems in refining the molecular theory are discussed: describing the properties of small droplets using a coordination model of their structure, considering the effect an adsorbate has on the state of a near-surface adsorbent region, and the surface heterogeneity factor in the conditions for the formation of droplets.

  5. An NMR study of adsorbed helium films

    Science.gov (United States)

    Kent, Anthony Joseph

    The properties of sub-monolayer Helium-3 films adsorbed on two totally different but planar substrates, Mylar† film and exfoliated graphite have been studied using NMR. The nuclear magnetic relaxation times T1 and T 2 have been measured as functions of fractional monolayer completion, temperature, substrate plane orientation and Larmor frequency using a specially designed and constructed NMR spectrometer system. The results obtained with a Mylar film substrate are consistent3with the formation of patches of solid 3He at regions of preferential adsorption on the substrate. Measurements of T2 m very low coverage 3He films on exfoliated graphite also indicate that the adsorbate forms areas of relatively high density solid, in agreement with the thermodynamic analysis of Elgin and Goodstein. Finally, detailed measurements of T2 as a function of all of the above parameters at low areal densities will help us to characterise the relaxation processes for the fluid phase of 33He on exfoliated graphite. †Mylar is the tradename of poly(ethelene-terephthalate) film, marketed by Du Pont.

  6. TRMM project contamination control using molecular adsorbers

    Energy Technology Data Exchange (ETDEWEB)

    Straka, S.; Chen, P.; Thomson, S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Bettini, R.; Triolo, J.; Carosso, N. [Swales and Associates, Inc., 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States)

    1996-03-01

    The Tropical Rainfall Measuring Mission (TRMM) is a spacecraft under development by the National Aeronautics and Space Administration (NASA) and the National Space Development Agency of Japan (NASDA) and is scheduled for launch in August 1997. The spacecraft design includes the use of numerous optical instruments and the thermal control surfaces. In addition to the inherent contamination sensitivities of the optical and thermal systems, TRMM has had the added challenge of designing systems to function at a relatively low altitude (350 km), with solar exposure. Under these conditions, high atomic oxygen densities and potentially high levels of backscattered contamination (self-contamination), as well as UV photopolymerization effects, all pose major threats to sensitive TRMM elements. In considering the various contamination control paths to follow, the TRMM project management has opted for pursuing a relatively new, but very promising technology for the TRMM spacecraft in order to lower the on-orbit contamination levels. TRMM will be incorporating Molecular Adsorbers as part of the basic spacecraft design. This paper will summarize the TRMM requirements, describe the Molecular Adsorbers being fabricated for the mission, and discuss the expected benefits of this method of on-orbit contamination control. {copyright} {ital 1996 American Institute of Physics.}

  7. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    Science.gov (United States)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  8. Dye sequestration using agricultural wastes as adsorbents

    Directory of Open Access Journals (Sweden)

    Kayode Adesina Adegoke

    2015-12-01

    Full Text Available Color is a visible pollutant and the presence of even minute amounts of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 283 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 h. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8–10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.

  9. Transport versus energetic particle precipitation: Northern polar stratospheric NOx and ozone in January-March 2012

    Science.gov (United States)

    Päivärinta, S.-M.; Verronen, P. T.; Funke, B.; Gardini, A.; Seppälä, A.; Andersson, M. E.

    2016-05-01

    In early 2012, a strong sudden stratospheric warming (SSW) took place, accompanied by several medium-scale solar proton events (SPEs). Here we use a chemistry transport model (CTM) in order to assess the relative contributions of (1) intensified downward transport of odd nitrogen (NOx) and (2) in situ production of NOx by protons, on stratospheric NOx and ozone during January-March 2012. The CTM is constrained by an upper boundary condition for reactive nitrogen (NOy) species, based on satellite observations from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat, and includes a new parameterization of the SPE-caused effects on NOy and odd hydrogen (HOx) species. We found that the amount of NOx increases due to both transport and in situ production effects, the intensified descent of NOx dominating the middle and upper stratospheric impact. The model results indicate NOx enhancements of 120-3300% (5-48 ppbv) between 38 and 50 km, caused by the transport of mesosphere/lower thermosphere NOx down to the stratosphere following the SSW. The SPEs increase NOx by up to 820-1200% (14-21 ppbv) at 33 to 50 km. The effect on the stratospheric ozone is larger following the downward transport of NOx than during and after the SPEs. The model predicts ozone losses of up to 17% and 9% at around 40 km due to transport and SPE effects, respectively.

  10. Variation of radiative forcings and global warming potentials from regional aviation NOx emissions

    Science.gov (United States)

    Skowron, Agnieszka; Lee, David S.; De León, Ruben R.

    2015-03-01

    The response to hemispherical and regional aircraft NOx emissions is explored by using two climate metrics: radiative forcing (RF) and Global Warming Potential (GWP). The global chemistry transport model, MOZART-3 CTM, is applied in this study for a series of incremental aircraft NOx emission integrations to different regions. It was found that the sensitivity of chemical responses per unit emission rate from regional aircraft NOx emissions varies with size of aircraft NOx emission rate and that climate metric values decrease with increasing aircraft NOx emission rates, except for Southeast Asia. Previous work has recognized that aircraft NOx GWPs may vary regionally. However, the way in which these regional GWPs are calculated are critical. Previous studies have added a fixed amount of NOx to different regions. This approach can heavily bias the results of a regional GWP because of the well-established sensitivity of O3 production to background NOx whereby the Ozone Production Efficiency (OPE) is greater at small background NOx. Thus, even a small addition of NOx in a clean-air area can produce a large O3 response. Using this 'fixed addition' method of 0.035 Tg(N) yr-1, results in the greatest effect observed for North Atlantic and Brazil, ∼10.0 mW m-2/Tg(N) yr-1. An alternative 'proportional approach' is also taken that preserves the subtle balance of local NOx-O3-CH4 systems with the existing emission patterns of aircraft and background NOx, whereby a proportional amount of aircraft NOx, 5% (N) yr-1, is added to each region in order to determine the response. This results in the greatest effect observed for North Pacific that with its net NOx RF of 23.7 mW m-2/Tg(N) yr-1 is in contrast with the 'fixed addition' method. For determining regional NOx GWPs, it is argued that the 'proportional' approach gives more representative results. However, a constraint of both approaches is that the regional GWP determined is dependent on the relative global emission pattern

  11. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    Science.gov (United States)

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-07

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device.

  12. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    Science.gov (United States)

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-05

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  13. Emission reduction by means of low temperature plasma. Summary

    DEFF Research Database (Denmark)

    Bindslev, H.; Fateev, Alexander; Kusano, Yukihiro

    2006-01-01

    The work performed during the project is summarised. In the project we focused on removal of nitrogen oxides NOx (NO, NO2) and, in particular, on removal of nitrogen monoxide (NO) by injection of plasma-produced reactive agents. As reactive agents wetested ozone (O3), NH and NH2 radicals from amm...

  14. Characterization of superoxide overproduction by the D-Loop(Nox4)-Nox2 cytochrome b(558) in phagocytes-Differential sensitivity to calcium and phosphorylation events.

    Science.gov (United States)

    Carrichon, Laure; Picciocchi, Antoine; Debeurme, Franck; Defendi, Federica; Beaumel, Sylvain; Jesaitis, Algirdas J; Dagher, Marie-Claire; Stasia, Marie-José

    2011-01-01

    NADPH oxidase is a crucial element of phagocytes involved in microbicidal mechanisms. It becomes active when membrane-bound cytochrome b(558), the redox core, is assembled with cytosolic p47(phox), p67(phox), p40(phox), and rac proteins to produce superoxide, the precursor for generation of toxic reactive oxygen species. In a previous study, we demonstrated that the potential second intracellular loop of Nox2 was essential to maintaining NADPH oxidase activity by controlling electron transfer from FAD to O(2). Moreover, replacement of this loop by the Nox4-D-loop (D-loop(Nox4)-Nox2) in PLB-985 cells induced superoxide overproduction. In the present investigation, we demonstrated that both soluble and particulate stimuli were able to induce this superoxide overproduction. Superoxide overproduction was also observed after phosphatidic acid activation in a purified cell-free-system assay. The highest oxidase activity was obtained after ionomycin and fMLF stimulation. In addition, enhanced sensitivity to Ca(2+) influx was shown by thapsigargin, EDTA, or BTP2 treatment before fMLF activation. Mutated cytochrome b(558) was less dependent on phosphorylation triggered by ERK1/2 during fMLF or PMA stimulation and by PI3K during OpZ stimulation. The superoxide overproduction of the D-loop(Nox4)-Nox2 mutant may come from a change of responsiveness to intracellular Ca(2+) level and to phosphorylation events during oxidase activation. Finally the D-loop(Nox4)-Nox2-PLB-985 cells were more effective against an attenuated strain of Pseudomonas aeruginosa compared to WT-Nox2 cells. The killing mechanism was biphasic, an early step of ROS production that was directly bactericidal, and a second oxidase-independent step related to the amount of ROS produced in the first step.

  15. Lean NOx Trap Modeling in Vehicle Systems Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

    2010-09-01

    A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

  16. NOx production and rainout from Chicxulub impact ejecta reentry

    Science.gov (United States)

    Parkos, Devon; Alexeenko, Alina; Kulakhmetov, Marat; Johnson, Brandon C.; Melosh, H. Jay

    2015-12-01

    The Chicxulub impact 66.0 Ma ago initiated the second biggest extinction in the Phanerozoic Eon. The cause of the concurrent oceanic nitrogen isotopic anomaly, however, remains elusive. The Chicxulub impactor struck the Yucatán peninsula, ejecting 2 × 1015 kg of molten and vaporized rock that reentered globally as approximately 1023 microscopic spherules. Here we report that modern techniques indicate that this ejecta generates 1.5 × 1014 moles of NOx, which is enough to cause the observed nitrogen enrichment of the basal layer. Additionally, reentry-based NO production would explain the anomalously heavy isotopic composition of the observed nitrogen. We include N, O, N2, O2, and NO species in simulations of nonequilibrium chemically reacting flow around a reentering spherule. We then determine the net production of NO from all the spherules and use turbulence models to determine how quickly this yield diffuses through the atmosphere. Upon reaching the stratosphere and troposphere, cloud moisture absorbs the NOx and forms nitric acid. We model this process and determine the acidity of the resulting precipitation, which peaks about 1 year after the impact. The precipitation ultimately reaches the upper ocean, where we assume that the well-mixed surface layer is 100 m deep. We then model the naturally occurring carbonate/bicarbonate buffer and determine the net pH. We find that insufficient NOx reaches the ocean to directly cause the observed end-Cretaceous oceanic extinction via acidification and buffer removal. However, the resulting nitrates are sufficient to explain the concurrent nitrogen isotopic anomaly and facilitate an end-Cretaceous algae bloom.

  17. FY-2016 Methyl Iodide Higher NOx Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2016 under the Department of Energy (DOE) Fuel Cycle Technology (FCT) Program Offgas Sigma Team to further research and advance the technical maturity of solid sorbents for capturing iodine-129 in off-gas streams during used nuclear fuel reprocessing. Adsorption testing with higher levels of NO (approximately 3,300 ppm) and NO2 (up to about 10,000 ppm) indicate that high efficiency iodine capture by silver aerogel remains possible. Maximum iodine decontamination factors (DFs, or the ratio of iodine flowrate in the sorbent bed inlet gas compared to the iodine flowrate in the outlet gas) exceeded 3,000 until bed breakthrough rapidly decreased the DF levels to as low as about 2, when the adsorption capability was near depletion. After breakthrough, nearly all of the uncaptured iodine that remains in the bed outlet gas stream is no longer in the form of the original methyl iodide. The methyl iodide molecules are cleaved in the sorbent bed, even after iodine adsorption is no longer efficient, so that uncaptured iodine is in the form of iodine species soluble in caustic scrubber solutions, and detected and reported here as diatomic I2. The mass transfer zone depths were estimated at 8 inches, somewhat deeper than the 2-5 inch range estimated for both silver aerogels and silver zeolites in prior deep-bed tests, which had lower NOx levels. The maximum iodine adsorption capacity and silver utilization for these higher NOx tests, at about 5-15% of the original sorbent mass, and about 12-35% of the total silver, respectively, were lower than for trends from prior silver aerogel and silver zeolite tests with lower NOx levels. Additional deep-bed testing and analyses are recommended to expand the database for organic iodide adsorption and increase the technical maturity if iodine adsorption processes.

  18. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  19. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  20. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  1. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liao, W. -P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Jordana [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, Gary [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Byers, Maggie Flicker [Univ. of Texas, Austin, TX (United States); Schneider, Eric [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  2. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  3. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  4. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  5. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  6. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  7. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  8. The condensation of water on adsorbed viruses.

    Science.gov (United States)

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  9. Experimental and modeling analysis of the NOxOUT process

    Energy Technology Data Exchange (ETDEWEB)

    Rota, R.; Antos, D.; Zanoelo, E.V.; Morbidelli, M. [Politecnico di Milano, Milano (Italy). Dipartimento di Chimica Fisica Applicata/CIIRCO

    2002-01-01

    The selective non-catalytic reduction of nitric oxide with urea has been investigated experimentally in a temperature range from 950 to 1450 K using a laboratory reactor that approximates well stirred conditions. From the experimental results it has been possible not only to deduce some generate trends of interest in the NOxOUT process, but also to validate a detailed kinetic mechanism. In particular, the experiments showed that the NOxOUT process is effective in a narrow temperature window. The effect of increasing the ratio of nitrogen in the reducing agent and in NO is to increase the efficiency of abatement, while that of increasing O{sub 2} concentration depends on the temperature considered. Moreover, the effect of increasing the CO/NO ratio up to one is not very pronounced. The detailed kinetic mechanism developed has been validated by comparison with several experimental findings, thus providing an effective tool for process simulation in a wide range of operating conditions.

  10. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  11. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  12. 40 CFR 96.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Science.gov (United States)

    2010-07-01

    ... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Transfers § 96.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR... and is to be transferred; and (c) The name and signature of the CAIR authorized account...

  13. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  14. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  15. On-road NOx and CO2 investigations of Euro 5 Light commercial vehicles

    NARCIS (Netherlands)

    Kadijk, G.; Ligterink, N.E.; Spreen, J.S.

    2015-01-01

    NOx emissions of vehicles contribute to the ambient NO2 concentration. To gain insight into those NOx emissions, TNO, commissioned by the Dutch Ministry of Infrastructure and the Environment, regularly performs real-world emission measurements on vehicles. The measurements mainly focus on vehicles w

  16. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    NARCIS (Netherlands)

    Castellanos, P.; Boersma, K.F.; Werf, van de G.R.

    2014-01-01

    Biomass burning is an important contributor to global total emissions of NOx (NO+NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome-specific emission factors, defined in units of grams of NO per kilogram of dry matter

  17. SEMS operating as a proven system for screening real-world NOx and NH3 emissions

    NARCIS (Netherlands)

    Vermeulen, R.J.; Goethem, S. van; Baarbe, H.L.; Zuidgeest, L.W.M.; Spreen, J.S.; Vonk, W.A.

    2014-01-01

    NOx emissions of heavy-duty and light-duty diesel vehicles depend strongly on the driving conditions. The introduction of combined emission reduction technologies in Euro VI vehicles have demonstrated that NOx emissions become less predictable when the data is based on relatively short test cycles.

  18. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome.

    Science.gov (United States)

    Whitmore, Laura C; Goss, Kelli L; Newell, Elizabeth A; Hilkin, Brieanna M; Hook, Jessica S; Moreland, Jessica G

    2014-07-01

    Systemic inflammatory response syndrome (SIRS) is a common clinical condition in patients in intensive care units that can lead to complications, including multiple organ dysfunction syndrome (MODS). MODS carries a high mortality rate, and it is unclear why some patients resolve SIRS, whereas others develop MODS. Although oxidant stress has been implicated in the development of MODS, several recent studies have demonstrated a requirement for NADPH oxidase 2 (NOX2)-derived oxidants in limiting inflammation. We recently demonstrated that NOX2 protects against lung injury and mortality in a murine model of SIRS. In the present study, we investigated the role of NOX2-derived oxidants in the progression from SIRS to MODS. Using a murine model of sterile systemic inflammation, we observed significantly greater illness and subacute mortality in gp91(phox-/y) (NOX2-deficient) mice compared with wild-type mice. Cellular analysis revealed continued neutrophil recruitment to the peritoneum and lungs of the NOX2-deficient mice and altered activation states of both neutrophils and macrophages. Histological examination showed multiple organ pathology indicative of MODS in the NOX2-deficient mice, and several inflammatory cytokines were elevated in lungs of the NOX2-deficient mice. Overall, these data suggest that NOX2 function protects against the development of MODS and is required for normal resolution of systemic inflammation. Copyright © 2014 the American Physiological Society.

  19. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    NARCIS (Netherlands)

    Castellanos, P.; Boersma, K.F.; Werf, van de G.R.

    2014-01-01

    Biomass burning is an important contributor to global total emissions of NOx (NO+NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome-specific emission factors, defined in units of grams of NO per kilogram of dry matter c

  20. Nature of nitrogen specie in coke and their role in NOx formation during FCC catalyst regeneration.

    NARCIS (Netherlands)

    Babych, Igor V.; Seshan, Kulathuiyer; Lefferts, Leonardus

    2005-01-01

    NOx emission during the regeneration of coked fluid catalytic cracking (FCC) catalysts is an environmental problem. In order to follow the route to NOx formation and try to find ways to suppress it, a coked industrial FCC catalyst has been prepared using model N-containing compounds, e.g., pyridine,

  1. Schatting van de effecten van een reductie in NOx-emissies op oxidantniveaus

    NARCIS (Netherlands)

    de Leeuw FAAM

    1984-01-01

    Uit berekeningen m.b.v. computersimulatiemodellen volgt dat de oxidantproduktiesnelheid tijdens fotochemische episoden afhankelijk is van de NOx- en van de koolwaterstofconcentraties. Zowel lage als hoge NOx-concentraties hebben een remmende invloed op de oxidantproduktiesnelheid. Dit heeft tot g

  2. Urinary NOx:creatinine ratios during gluten challenge in children with celiac disease.

    NARCIS (Netherlands)

    Koster-Kamphuis, L.; Straaten, E.A. van; Kors, W.A.; Schrijver, J.E. de; Bovee-Oudenhoven, I.M.; Meer, R. van der; Forget, P.P.

    2003-01-01

    OBJECTIVES: Celiac disease is a gluten-induced small bowel enteropathy. Inflammation is known to be associated with enhanced nitric oxide (NO) production. An increase in urinary nitrate and nitrite (NOx) reflects increased NO production. The urinary NOx:creatinine ratio can be used as an indicator

  3. Lightning NOx Production in CMAQ Part I – Using Hourly NLDN Lightning Strike Data

    Science.gov (United States)

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past dec...

  4. Research of Boiler Combustion Regulation for Reducing Nox Emission and its Effect on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-dong; LUAN Tao; CHENG Lin; XIAO Kun

    2007-01-01

    The effect of boiler combustion regulation on Nox emission of two 1025t/h boilers has been studied. The researches show that Nox emission is influenced by coal species, operation conditions, etc, and can be reduced by regulating the combustion conditions. The effect of combustion regulation on boiler efficiency has also been checked.

  5. Numerical simulation of NOx formation in a cyclone-opposed coal-fired utility boiler

    Institute of Scientific and Technical Information of China (English)

    LI Fang-qin; REN Jian-xing; WEI Dun-song

    2005-01-01

    In this paper, FLUENT software was used to simulate the burning process in a utility boiler. Chose the kinetics/diffusion-limited as combustion model, two-compet-ingrates as devolatjlization model, RNG k-εmodel as viscous model, and PDF model as combustion turbulent flow model. Numerical calculation of NOx formation in a 330 MW cyclone-opposed coal-fired utility boiler with 32 double air registers was done. The distribution characteristics of temperature, NOx and oxygen concentration in furnace were studied. They were symmetrically distributed in furnace. In the combustion area, temperature and NOx concentration are high, while oxygen concentration is low. Temperature and NOx concentration are declined gradually along with furnace height, while oxygen concentration is raised. The higher the temperature is and the greater the excess air coefficient is, the more NOx formation.

  6. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  7. Estimation of NOx Emission from Fossil Fuel Consumption in China for the Period 1980-2012

    Directory of Open Access Journals (Sweden)

    Du Yu

    2016-01-01

    Full Text Available As the largest consumer of fossil fuel, China NOx emission from energy consumption has become a hotspot for studies. In this study, emission inventory was used to analysis the historical variation of NOx emission in china for the period 1980 to 2012. Results indicate that NOx mission of China has increased from 446.45 × 104t to 2499.72 × 104t during 1980-2012, electricity, industry and transportation was the main contributor and NOx emission has increased from 145.04 × 104t, 206.75 × 104t, 39.44 × 104t to 1311.6 × 104t, 479.46 × 104t, 576.31 × 104t respectively; from the spatial pattern, high total NOx emission with mainly concentrated in the north of China and the high emission intensity mainly concentrate in eastern China.

  8. OH-initiated oxidation of benzene - Part II. Influence of elevated NOx concentrations

    DEFF Research Database (Denmark)

    Klotz, B; Volkamer, R; Hurley, MD

    2002-01-01

    -containing species in high yield. The results from the present work also show that experimental studies aimed at establishing/verifying chemical mechanisms for aromatic hydrocarbons must be performed using NOx levels which are representative of those found in the atmosphere......., respectively). In contrast to results from previous studies, a pronounced dependence of the product distribution on the NOx concentration was observed. The phenol yield decreases from approximately 50-60% in the presence of low concentrations (10 000 ppb) NOx concentrations. In the presence of high......The present work represents a continuation of part I of this series of papers, in which we investigated the phenol yields in the OH-initiated oxidation of benzene under conditions of low to moderate concentrations of NOx, to elevated NOx levels. The products of the OH-initiated oxidation of benzene...

  9. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  10. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  11. Lead Removal from Water by Low Cost Adsorbents: A Review

    National Research Council Canada - National Science Library

    Zahra, Naseem

    2012-01-01

    ..., industrial wastes and low cost synthetic oxides as adsorbents for the removal of poisonous lead from water. Keywords: Adsorption; Adsorbents; Lead; Water; Toxic. Introduction Lead and its toxicity Lead has environmental importance due to its well known toxicity [1] and intensive use in industries such as storage-battery manufacture, printing, pigment ...

  12. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.

    2005-01-01

    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it unav

  13. Adsorbent Carbon Fabrics : New Generation Armour for Toxic Chemicals

    Directory of Open Access Journals (Sweden)

    K. Gurudatt

    1997-04-01

    Full Text Available Activated carbon in the form of a regular fabric obtained using viscose rayon precursor is a new generation adsorbent material having superior sorptional properties and is finding varied defence applications. Carbonisation and activation mechanisms and properties and applications of adsorbent carbort fibres made from viscose rayon precursor are reviewed in this paper.

  14. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, Maria-Elena; Borneman, Zandrie; Wessling, Matthias

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an ethyle

  15. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    Energy Technology Data Exchange (ETDEWEB)

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  16. Nox4 Is Expressed In Pulmonary Artery Adventitia And Contributes To Hypertensive Vascular Remodeling

    Science.gov (United States)

    Barman, Scott A.; Chen, Feng; Su, Yunchao; Dimitropoulou, Christiana; Wang, Yusi; Catravas, John D.; Han, Weihong; Orfi, Laszlo; Szantai-Kis, Csaba; Keri, Gyorgy; Szabadkai, Istvan; Barabutis, Nektarios; Rafikova, Olga; Rafikov, Ruslan; Black, Stephen M.; Jonigk, Danny; Giannis, Athanassios; Asmis, Reto; Stepp, David W.; Ramesh, Ganesan; Fulton, David J.R.

    2014-01-01

    OBJECTIVE Pulmonary Hypertension (PH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PA) resulting in high pulmonary blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species (ROS) by NADPH oxidase 4 (Nox4) is associated with increased pressure in PH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PH remains poorly understood. Therefore, we sought to identify the vascular cells expressing Nox4 in PA and determine the functional relevance of Nox4 in PH. APPROACH AND RESULTS Elevated expression of Nox4 was detected in hypertensive PA from 3 rat PH models and human PH using qRT-PCR, Western blot, and immunofluorescence. In the vascular wall, Nox4 was detected in both endothelium and adventitia and perivascular staining was prominently increased in hypertensive lung sections, colocalizing with cells expressing fibroblast and monocyte markers and matching the adventitial location of ROS production. Small molecule inhibitors of Nox4 reduced adventitial ROS generation and vascular remodeling as well as ameliorating right ventricular hypertrophy and non-invasive indices of PA stiffness in monocrotaline (MCT)-treated rats as determined by morphometric analysis and high resolution digital ultrasound. Nox4 inhibitors improved PH in both prevention and reversal protocols and reduced the expression of fibroblast markers in isolated PA. In fibroblasts, Nox4 over-expression stimulated migration and proliferation and was necessary for matrix gene expression. CONCLUSIONS These findings indicate that Nox4 is prominently expressed in the adventitia and contributes to altered fibroblast behavior, hypertensive vascular remodeling and the development of PH. PMID:24947524

  17. Importance of NOx control for peak ozone reduction in the Pearl River Delta region

    Science.gov (United States)

    Li, Ying; Lau, Alexis K. H.; Fung, Jimmy C. H.; Zheng, Junyu; Liu, Shawchen

    2013-08-01

    As major air pollutants and key precursors of several secondary air pollutants, nitrogen oxide (NOx) emissions are regulated in many countries. However, NOx control increases ozone concentrations when the ozone formation regime is volatile organic compound (VOC) limited. Although many studies have shown that NOx regulation reduces ozone levels over the long term, it is still of concern that NOx regulation increases short-term ozone levels in metropolitan regions, where ozone formation is found to be predominantly VOC-limited. The Pearl River Delta (PRD) in China is such a region. Our modeling sensitivity study shows that while NOx reduction in the PRD region may raise the mean ozone concentration, it can also decrease peak ozone levels. Similar changes are observed in the NOx and ozone data of the PRD regional air quality monitoring network (2006-2012), lending further credence to our results. In the model, this NOx control effect is a result of the complicated spatial and diurnal variations of the ozone formation regime. In most of the PRD region, the formation regime is VOC-limited in the morning and becomes NOx-limited during peak ozone hours. Although some areas are always VOC-limited, their ozone concentrations are relatively low, and the ozone increases caused by NOx reduction generally do not cause higher ozone levels than the region's original ozone maxima. Several control scenarios are simulated to evaluate the effects of various possible control regulations. Our results show that in addition to VOC control, NOx control can be effective for reducing peak ozone concentrations in the PRD region.

  18. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  19. Advanced combustor design concept to control NOx and air toxics

    Energy Technology Data Exchange (ETDEWEB)

    Eddings, E.G.; Pershing, D.W.; Molina, A.; Sarofim, A.F.; Spinti, J.P.; Veranth, J.

    1999-03-29

    Direct coal combustion needs to be a primary energy source for the electric utility industry and for heavy manufacturing during the next several decades because of the availability and economic advantage of coal relative to other fuels and because of the time required to produce major market penetration in the energy field. However, the major obstacle to coal utilization is a set of ever-tightening environmental regulations at both the federal and local level. It is, therefore, critical that fundamental research be conducted to support the development of low-emission, high-efficiency pulverized coal power systems. The objective of this program was to develop fundamental understanding regarding the impact of fuel and combustion changes on NOx formation, carbon burnout and air toxic emissions from pulverized coal (pc) combustion. During pc combustion, nitrogen in the coal can be oxidized to form nitrogen oxides (NO{sub x}). The 1990 Clean Air Act Amendments established much stricter NO{sub x} emissions limits for new and existing coal-fired plants, so there has been renewed interest in the processes by which NO{sub x} forms in pc flames. One of the least understood aspects of NO{sub x} formation from pc combustion is the process by which char-N (nitrogen remaining in the char after devolatilization) forms either NO{sub x} or N{sub 2}, and the development of a fundamental understanding of this process was a major focus of this research. The overall objective of this program was to improve the ability of combustion system designers and boiler manufacturers to build high efficiency, low emission pulverized coal systems by improving the design tools available to the industry. The specific program goals were to: Use laboratory experiments and modeling to develop fundamental understanding for a new submodel for char nitrogen oxidation (a critical piece usually neglected in most NOx models.); Use existing bench scale facilities to investigate alternative schemes to

  20. 40 CFR 51.10 - How does my state report emissions that are required by the NOX SIP Call?

    Science.gov (United States)

    2010-07-01

    ... are required by the NOX SIP Call? 51.10 Section 51.10 Protection of Environment ENVIRONMENTAL... does my state report emissions that are required by the NOX SIP Call? The District of Columbia and states that are subject to the NOX SIP Call § 51.121) are subject to the emissions reporting...

  1. 40 CFR 86.004-15 - NOX plus NMHC and particulate averaging, trading, and banking for heavy-duty engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false NOX plus NMHC and particulate... Heavy-Duty Vehicles § 86.004-15 NOX plus NMHC and particulate averaging, trading, and banking for heavy-duty engines. (a)(1) Heavy-duty engines eligible for NOX plus NMHC and particulate averaging,...

  2. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, Hg, and flow rate.

    Science.gov (United States)

    2010-07-01

    ... SO2 concentration (MPC) value for each type of fuel combusted in the unit, in a manner consistent with... units. For each hour of missing volumetric flow rate data, NOX emission rate data, or NOX concentration... units using operational bins. Whenever no prior quality-assured flow rate data, NOX concentration data...

  3. 40 CFR 75.17 - Specific provisions for monitoring emissions from common, bypass, and multiple stacks for NOX...

    Science.gov (United States)

    2010-07-01

    ... chooses to monitor in the ducts rather than the stack, the owner or operator shall monitor the NOX... NOX emission rate at the unit level, in lieu of installing flow monitors on each stack or duct. If... emissions from common, bypass, and multiple stacks for NOX emission rate. 75.17 Section 75.17 Protection...

  4. Bio-regeneration of π-complexation desulfurization adsorbents

    Institute of Scientific and Technical Information of China (English)

    LI; Wangliang; XING; Jianmin; XIONG; Xiaochao; SHAN; Guob

    2005-01-01

    The coupling of adsorption desulfurization and biodesulfurization is a new approach to produce clean fuels. Sulfur compounds are firstly adsorbed on adsorbents, and then the adsorbents are regenerated by microbial conversion. π-Complexation adsorbent, Cu(Ⅰ)-Y, was obtained by ion exchanging Y-type zeolite with Cu2+ and then by auto-reduction in helium at 450℃ for 3 h. Dibenzothiophene (DBT) was used as a model compound. The effects of cell concentration, volume of oil phase, the ratio of aqueous phase to adsorbent on DBT desorption by a bacterium were studied. The amounts of DBT desorbed and 2-HBP produced can be apparently increased with addition of n-octane. BDS activity can be improved by increasing cell concentration and the ratio of water-to-adsorbent. 89% of DBT desorbed from the adsorbents can be converted to 2-HBP within 6 h and almost 100% within 24 h, when the volume ratio of oil-to-water was 1/5 mL/mL, the cell concentration was 60 g·L-1, and the ratio of adsorbent-to-oil was 0.03 g·mL-1. The amount of 2-HBP produced was strongly dependent on the volume ratio of oil-to- water, cell concentration and amount of adsorbent. Adsorption capacity of the regenerated adsorbent is 95% that of the fresh one after being desorbed with Pseudomonas delafieldii R-8, washed with n-octane, dried at 100℃ for 24 h and auto-reduced in He.

  5. Milestone Report - Complete New Adsorbent Materials for Marine Testing to Demonstrate 4.5 g-U/kg Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T. [ORNL; Saito, Tomonori [ORNL; Brown, Suree [ORNL; Gill, Gary [PNNL; Kuo, Li-Jung [PNNL; Wood, Jordana [PNNL

    2014-08-01

    This report describes work on the successful completion of Milestone M2FT-14OR03100115 (8/20/2014) entitled, “Complete new adsorbent materials for marine testing to demonstrate 4.5 g-U/kg adsorbent”. This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed two new families of fiber adsorbents that have demonstrated uranium adsorption capacities greater than 4.5 g-U/kg adsorbent after marine testing at PNNL. One adsorbent was synthesized by radiation-induced graft polymerization of itaconic acid and acrylonitrile onto high surface area polyethylene fibers followed by amidoximation and base conditioning. This fiber showed a capacity of 4.6 g-U/kg adsorbent in marine testing at PNNL. The second adsorbent was prepared by atom-transfer radical polymerization of t-butyl acrylate and acrylonitrile onto halide-functionalized round fibers followed by amidoximation and base hydrolysis. This fiber demonstrated uranium adsorption capacity of 5.4 g-U/kg adsorbent in marine testing at PNNL.

  6. Low NOx nozzle tip for a pulverized solid fuel furnace

    Science.gov (United States)

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  7. The deactivation mechanism of Pb on the Ce/TiO2 catalyst for the selective catalytic reduction of NOx with NH3: TPD and DRIFT studies.

    Science.gov (United States)

    Wang, Shu-Xian; Guo, Rui-Tang; Pan, Wei-Guo; Li, Ming-Yuan; Sun, Peng; Liu, Shu-Ming; Liu, Shuai-Wei; Sun, Xiao; Liu, Jian

    2017-02-15

    It was well recognized that Pb had a poisoning effect on a SCR catalyst. In this study, the deactivation mechanism of Pb on the Ce/TiO2 catalyst was investigated based on the characterization results of TPD and in situ DRIFT studies. It was found that the addition of Pb on the Ce/TiO2 catalyst not only inhibited the adsorption and activation of NH3 species, but also led to the decrease of the activity of adsorbed NH3 species in the SCR reaction. The adsorption of NOx species and the oxidation of NO by O2 over the Ce/TiO2 catalyst were also suppressed by the addition of Pb, while the reactivity of adsorbed NO2 species did not decrease. Moreover, the results revealed that the NH3-SCR reaction over the Ce/TiO2 catalyst followed both the E-R and L-H mechanisms, while the NH3-SCR reaction over Ce/TiO2-Pb was mainly controlled by the L-H mechanism. The contributions of the L-H mechanism to the SCR reactions over Ce/TiO2 and Ce/TiO2-Pb decreased with increasing reaction temperature. The deactivation of Ce/TiO2-Pb was mainly attributed to the suppressed NH3 adsorption and activation, accompanied by the inhibited NO oxidation and the decrease of Brønsted acid sites.

  8. Chemerin Regulates Crosstalk Between Adipocytes and Vascular Cells Through Nox.

    Science.gov (United States)

    Neves, Karla Bianca; Nguyen Dinh Cat, Aurelie; Lopes, Rheure Alves Moreira; Rios, Francisco Jose; Anagnostopoulou, Aikaterini; Lobato, Nubia Souza; de Oliveira, Ana Maria; Tostes, Rita C; Montezano, Augusto C; Touyz, Rhian M

    2015-09-01

    Adipocytes produce adipokines, including chemerin, a chemoattractant that mediates effects through its ChemR23 receptor. Chemerin has been linked to endothelial dysfunction and vascular injury in pathological conditions, such as obesity, diabetes mellitus, and hypertension. Molecular mechanisms underlying this are elusive. Here we assessed whether chemerin through redox-sensitive signaling influences molecular processes associated with vascular growth, apoptosis, and inflammation. Human microvascular endothelial cells and vascular smooth muscle cells were stimulated with chemerin (50 ng/mL). Chemerin increased generation of reactive oxygen species and phosphorylation of mitogen-activated protein kinases, effects that were inhibited by ML171, GKT137831 (Nox inhibitors), and N-acetylcysteine (reactive oxygen species scavenger). Chemerin increased mRNA expression of proinflammatory mediators in vascular cells and increased monocyte-to-endothelial cell attachment. In human vascular smooth muscle cells, chemerin induced phosphorylation of mitogen-activated protein kinases and stimulated proliferation (increased proliferating cell nuclear antigen expression [proliferation marker] and BrdU incorporation [proliferation assay]). Chemerin decreased phosphatidylinositol 3-kinase/protein kinase B activation and increased TUNEL-positive human vascular smooth muscle cells. In human microvascular endothelial cells, chemerin reduced endothelial nitric oxide synthase activity and nitric oxide production. Adipocyte-conditioned medium from obese/diabetic mice (db/db), which have elevated chemerin levels, increased reactive oxygen species generation in vascular smooth muscle cells, whereas adipocyte-conditioned medium from control mice had no effect. Chemerin actions were blocked by CCX 832, a ChemR23 inhibitor. Our data demonstrate that chemerin, through Nox activation and redox-sensitive mitogen-activated protein kinases signaling, exerts proapoptotic, proinflammatory, and

  9. Development of chemical kinetic models for lean NOx traps.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S.

    2010-04-01

    Overall project goal: Obtain the fundamental surface chemistry knowledge needed for the design and optimal utilization of NOx trap catalysts, thereby helping to speed the widespread adoption of this technology. Relevance to VT Program goals: Effective, durable advanced aftertreatment systems for lean-burn engines must be available if the fuel economy advantages of these engines are to be realized. Specific current year objective: Identify and correct any deficiencies in the previously developed reaction mechanism describing normal storage/regeneration cycles, and complete development of a supplementary mechanism accounting for the effects of sulfation. A fundamental understanding of LNT chemistry is needed to realize the full potential of this aftertreatment technology, which could lead to greater use of fuel-efficient lean-burn engines. We have used a multi-tiered approach to developing an elementary chemical mechanism benchmarked against experimental data: (1) Simulate a set of steady flow experiments, with storage effects minimized, to infer a tentative mechanism for chemistry on precious metal sites (completed). (2) Simulate a set of long cycle experiments to infer a mechanism for NOx and oxygen storage sites while simultaneously finalizing precious metal chemistry (completed). (3) Simulate a simplified sulfation/desulfation protocol to obtain a supplementary set of reactions involving sulfur on all three kinds of sites (nearly completed). (4) Investigate the potential role of reductants other than CO and H{sub 2}. While simulation of isothermal experiments is the preferred way to extract kinetic parameters, simulation of realistic storage/regeneration cycles requires that exotherms be considered. Our ultimate goal is to facilitate improved designs for LNT-based aftertreatment systems and to assist in the development of improved catalysts.

  10. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  11. Unfiltered Diesel Engine Exhaust Treatment by Discharge Plasma:Effect of Soot Oxidation

    Institute of Scientific and Technical Information of China (English)

    B. S. Rajanikanth; Subhankar Das; A. D. Srinivasan

    2004-01-01

    A cascaded system of electrical discharges (Non-thermal plasma), catalyst and adsorption process was investigated for the removal of oxides of nitrogen (NO x) and carbon monoxide (CO) from a Diesel engine raw exhaust. The three processes were separately studied first, and then the cascaded processes, namely plasma-catalyst and plasma-adsorbent, were investigated. In this paper main emphasis was laid on the effect of carbonaceous soot oxidation on the plasma treatment process. While the cascaded plasma-catalyst process exhibits a higher CO removal, the cascaded plasma-adsorbent process exhibits a higher NO x removal. The experiments were conducted under no-load. The plasma and adsorbent reactors were kept at room temperature throughout the experiment while the catalyst reactor was kept at 200oC / 300oC.

  12. Efficacy of a novel endotoxin adsorber polyvinylidene fluoride fiber immobilized with L-serine ligand on septic pigs

    Institute of Scientific and Technical Information of China (English)

    Jian-ping GAO; Man HUANG; Ning LI; Peng-fei WANG; Huan-lin CHEN; Qiu-ping XU

    2011-01-01

    A novel adsorber, polyvinylidene fluoride matrix immobilized with L-serine ligand (PVDF-Ser), was developed in the present study to evaluate its safety and therapeutic efficacy in septic pigs by extracorporeal hemoperfusion.Endotoxin adsorption efficiency (EAE) of the adsorber was firstly measured in vitro. The biocompatibility and hemodynamic changes during extracorporeal circulation were then evaluated. One half of 16 pigs receiving lipopolysaccharide (Escherichia coli O111 :B4, 5 μg/kg) intravenously in 1 h were consecutively treated by hemoperfusion with the new adsorber for 2 h. The changes of circulating endotoxin and certain cytokines and respiratory function were analyzed.The 72 h-survival rate was assessed eventually. EAE reached 46.3% (100 EU/ml in 80 ml calf serum) after 2 hcirculation. No deleterious effect was observed within the process. The plasma endotoxin, interleukin-6 (IL-6), and tumornecrosis factor-α (TNF-α) levels were decreased during the hemoperfusion. Arterial oxygenation was also improved during and after the process. Furthermore, the survival time was significantly extended (>72 h vs. 47.5 h for median survival time). The novel product PVDF-Ser could adsorb endotoxin with high safety and efficacy. Early use of extracorporeal hemoperfusion with the new adsorber could reduce the levels of circulating endotoxin, IL-6, and TNF-α,besides improve respiratory function and consequent 72 h-survival rate of the septic pigs. Endotoxin removal strategy with blood purification using the new adsorber renders a potential promising future in sepsis therapy.

  13. Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions

    Science.gov (United States)

    Browne, E. C.; Cohen, R. C.

    2012-12-01

    We present an analysis of the NOx budget in conditions of low NOx (NOx = NO + NO2) and high biogenic volatile organic compound (BVOC) concentrations that are characteristic of most continental boundary layers. Using a steady-state model, we show that below 500 pptv of NOx, the NOx lifetime is extremely sensitive to organic nitrate (RONO2) formation rates. We find that even for RONO2 formation values that are an order of magnitude smaller than is typical for continental conditions significant reductions in NOx lifetime, and consequently ozone production efficiency, are caused by nitrate forming reactions. Comparison of the steady-state box model to a 3-D chemical transport model (CTM) confirms that the concepts illustrated by the simpler model are a useful approximation of predictions provided by the full CTM. This implies that the regional and global budgets of NOx, OH, and ozone will be sensitive to assumptions regarding organic nitrate chemistry. Changes in the budgets of these species affect the representation of processes important to air quality and climate. Consequently, CTMs must include an accurate representation of organic nitrate chemistry in order to provide accurate assessments of past, present, and future air quality and climate. These findings suggest the need for further experimental constraints on the formation and fate of biogenic RONO2.

  14. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    Science.gov (United States)

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  15. Nox2 Mediates Skeletal Muscle Insulin Resistance Induced by a High Fat Diet*

    Science.gov (United States)

    Souto Padron de Figueiredo, Alvaro; Salmon, Adam B.; Bruno, Francesca; Jimenez, Fabio; Martinez, Herman G.; Halade, Ganesh V.; Ahuja, Seema S.; Clark, Robert A.; DeFronzo, Ralph A.; Abboud, Hanna E.; El Jamali, Amina

    2015-01-01

    Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle. PMID:25825489

  16. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  17. Methane Recovery from Gaseous Mixtures Using Carbonaceous Adsorbents

    Science.gov (United States)

    Buczek, Bronisław

    2016-06-01

    Methane recovery from gaseous mixtures has both economical and ecological aspect. Methane from different waste gases like mine gases, nitrogenated natural gases and biogases can be treated as local source for production electric and heat energy. Also occurs the problem of atmosphere pollution with methane that shows over 20 times more harmful environmental effect in comparison to carbon dioxide. One of the ways utilisation such gases is enrichment of methane in the PSA technique, which requires appropriate adsorbents. Active carbons and carbon molecular sieve produced by industry and obtained in laboratory scale were examined as adsorbent for methane recuperation. Porous structure of adsorbents was investigated using densimetry measurements and adsorption of argon at 77.5K. On the basis of adsorption data, the Dubinin-Radushkevich equation parameters, micropore volume (Wo) and characteristics of energy adsorption (Eo) as well as area micropores (Smi) and BET area (SBET) were determined. The usability of adsorbents in enrichment of the methane was evaluated in the test, which simulate the basic stages of PSA process: a) adsorbent degassing, b) pressure raise in column by feed gas, c) cocurrent desorption with analysis of out flowing gas. The composition of gas phase was accepted as the criterion of the suitability of adsorbent for methane separation from gaseous mixtures. The relationship between methane recovery from gas mixture and texture parameters of adsorbents was found.

  18. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    Science.gov (United States)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  19. Summertime NOx measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles?

    Directory of Open Access Journals (Sweden)

    H. K. Roscoe

    2009-09-01

    Full Text Available NOx measurements were conducted at the Halley Research Station, Antarctica, during the austral summer period 1 January–10 February 2005. A clear NOx diurnal cycle was observed with minimum concentrations close to instrumental detection limit (5 pptv measured between 04:00–05:00 GMT. NOx concentrations peaked (24 pptv between 19:00–20:00 GMT, approximately 5 h after local solar noon. An optimised box model of NOx concentrations based on production from in-snow nitrate photolysis and chemical loss derives a mean noon emission rate of 3.48×108 molecules cm−2 s−1, assuming a 100 m boundary layer mixing height, and a relatively short NOx lifetime of ~6.4 h. This emission rate compares to directly measured values ranging from 1.7 to 3.4×108 molecules cm−2 s−1 made on 3 days at the end of the study period. Calculations of the maximum rate of NO2 loss via a variety of conventional HOx and halogen oxidation processes show that the lifetime of NOx is predominantly controlled by halogen processing, namely BrNO3 and INO3 gas-phase formation and their subsequent heterogeneous uptake, with a potential smaller contribution from HNO4 formation and uptake. Furthermore the presence of halogen oxides is shown to significantly perturb NOx concentrations by decreasing the NO/NO2 ratio. We conclude that in coastal Antarctica, the potential ozone production efficiency of NOx emitted from the snowpack is mitigated by the more rapid NOx loss due to halogen nitrate hydrolysis. These results suggest that the role of halogen oxides need to be considered when interpreting the isotopic signature of nitrate impurities held within snow and ice.

  20. Dióxido de estanho nanoestruturado como sensor de NOx Nanostructured tin dioxide as a NOx gas sensor

    Directory of Open Access Journals (Sweden)

    A. P. Maciel

    2003-09-01

    Full Text Available Neste trabalho, nanopartículas de SnO2 foram obtidas pelo método do precursor polimérico e caracterizadas por difração de raios X, isotermas de adsorção-dessorção, microscopia eletrônica de varredura e microscopia eletrônica de transmissão. Apenas a fase cassiterita (tetragonal foi observada. O material obtido apresenta com alta área superficial e porosidade. Estas características são pré-requisitos para um bom sensor de gás. A sensibilidade ao NOx para o SnO2 foi estudado na faixa de temperatura compreendida entre 200 e 500 ºC. Observou-se uma baixa sensibilidade entre 200 e 350 ºC, porém, a partir de 400 ºC ocorreu um aumento de três vezes na sensibilidade do sensor. A máxima sensibilidade ocorreu em 400 ºC, com um tempo de resposta de 730 s.In this work SnO2 nanoparticles were obtained by the polimeric precursor method and characterized by X-ray diffraction, gas adsorption and desorption isotherms, scanning electron microscopy and transmission electron microscopy. Only the cassiterite (tetragonal phase was observed. The obtained material presents a high surface area and high porosity. These characteristics are prerequisites for a good gas sensor. The NOx sensibility was studied in the temperature range between 200 and 500 °C. A low sensibility between 200 to 350 °C is also observed; however, starting from 400 °C, an increase of three times in the sensor sensibility occurs. The maximum sensibility was measured at 400 °C with a response time of 730 s.

  1. [Study on LDL adsorbent modified by lauric acid].

    Science.gov (United States)

    Cong, Haixia; Du, Longbing; Fang, Bo; You, Chao

    2010-06-01

    A hydrophobic low-density lipoprotein cholesterol (LDL-C) adsorbent was synthesized with lauric acid and chitosan. The condition for adsorption was obtained by investigating the influence of adsorbent amount and adsorption time. The results of adsorption in vitro showed that the average adsorption rates for total cholesterol (TC), LDL-C, high-density lipoprotein cholesterol (HDL-C) and total protein (TP) were 47.7%, 84.7%, 18.1% and 5.9% respectively. The adsorbent possesses good selectivity in removing LDL-C.

  2. Atom-Specific Identification of Adsorbed Chiral Molecules by Photoemission

    Science.gov (United States)

    Kim, J. W.; Carbone, M.; Dil, J. H.; Tallarida, M.; Flammini, R.; Casaletto, M. P.; Horn, K.; Piancastelli, M. N.

    2005-09-01

    The study of chiral adsorbed molecules is important for an analysis of enantioselectivity in heterogeneous catalysis. Here we show that such molecules can be identified through circular dichroism in core-level photoemission arising from the chiral carbon atoms in stereoisomers of 2,3-butanediol molecules adsorbed on Si(100), using circularly polarized x rays. The asymmetry in the carbon 1s intensity excited by right and left circularly polarized light is readily observed, and changes sign with the helicity of the radiation or handedness of the enantiomers; it is absent in the achiral form of the molecule. This observation demonstrates the possibility of determining molecular chirality in the adsorbed phase.

  3. Preparation and Characterization of Impurely Irrigated Soil Adsorbent from Beaches

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective]We aimed to study the preparation methods of impurely irrigated soil adsorbent from beaches,as well as its ability to absorb phenol.[Method]Using hydrochloric acid as activator,we compared the influences of various soil adsorbents on the adsorption of phenol through the desired orthogonal tests where the usage of saw dust,concentration of hydrochloric acid,liquid-solid ratio and carbonization temperature varied.Afterwards,we characterized this soil adsorbent.[Result]The optimal conditions for pre...

  4. The Electrochemical Properties of Thionine Adsorbed Monolayer on Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A gold electrode modified with adsorbed thionine monolayer was investigated with ac impedance and cyclic voltammetry method. It was found therewere some different redox properties for the adsorbed thionine depended on the different potential scanning rate. At the slower potential scanning rate (10 mV@s-1), the dimer of thionine appeared and possessed the catalytic activity for the oxidation of ascorbic acid.The underpotential deposition (UPD) and the bulk deposition of Cu2+ were also employed to investigate the monolayer of adsorbed thionine.

  5. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    LIXiang; LIZhong; 等

    2001-01-01

    Desorption of volatile organic compounds(VOCs) from polymeric adsorbents by microwave was investigated experimentally.Two kinds of organic compounds.benzene and toluene.were separately used as adsorbates in this work Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration,but also make the temperatures of the fixed beds much lower than that when using the heat regeneration the weaker the polarity of a polymericadsorbent,the easier its regeneration was.

  6. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    PANBingcai; CHENJinlong; 等

    2002-01-01

    Several macroporous polymeric adsorbents(NDA-999,XAD-8,X-5 and XAD-2)were emplyed in the study to adsorb phenylacetic acid from aqueous solution.Effect of salt and ambient temperature on adsorption was studied using NDA-999 adsorbent and the adsorption process conforms to Freundlich′s model reasonably.Adsorption dynamics were conducted in batch experiments in order to make clear the mechanism of adsorption process.It is proved that the squared driving force mass transfer model can be adopted to elucidate the process.The treatment process of industrial wastewater containing high strength of phenylacetic acid was proposed for cleaner production of phenylacetic acid.

  7. ADSORPTION OF PHENYLACETIC ACID ON MACROPOROUS POLYMERIC ADSORBENTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several macroporous polymeric adsorbents (NDA-999, XAD-8, X-5 and XAD-2) wereemployed in the study to adsorb phenylacetic acid from aqueous solution. Effect of salt and ambienttemperature on adsorption was studied using NDA-999 adsorbent and the adsorption processconforms to Freundlich's model reasonably. Adsorption dynamics were conducted in batchexperiments in order to make clear the mechanism of adsorption process. It is proved that thesquared driving force mass transfer model can be adopted to elucidate the process. The treatmentprocess of industrial wastewater containing high strength of phenylacetic acid was proposed forcleaner production of phenylacetic acid.

  8. 微波加热技术在催化 NOx 脱除中的应用%Application of microwave heating technology in catalytic removal of NOx

    Institute of Scientific and Technical Information of China (English)

    刘艳春; 郭亚琴; 曾令可; 王慧; 任雪谭

    2014-01-01

    The types,harm and removal methods of nitrogen oxides in the air were summarized. Nitrogen oxides mainly consisted of NO,N2 O and NO2 ,which were produced by the combustion of fossil fuel and plants,and the conversion of nitrogen compounds in animal waste and the soil. NOx was one of major for-mation causes of acid rain and the smog,which had a serious influence on the health of human beings. Selective catalytic reduction technology based on the interaction of reducing agents such as ammonia and catalysts could make NOx into N2 and H2 O,while non-selective catalytic reduction technology achieved the removal of NOx with reducing agents such as ammonia at high temperature. However,the traditional techniques for removing NOx had shortcomings of low removal efficiency and easy production of secondary pollution. Microwave discharge technology could directly decompose NOx to N2 by producing high-energy electrons,and microwave carbon thermal reduction technology could significantly improve NOx removal ability by utilizeing thermal effects of microwave irradiation on active charcoal. The removal efficiency of NO was more than 96% . The application researches on microwave relating to de-NOx technology in com-mercial catalytic denitrification field showed that the combination of catalysts,microwave and other tech-niques was an ideal way of removing the nitrogen oxides,which had a good application prospect.%综述了空气中氮氧化物的类型、危害及脱除方法。空气中氮氧化物主要为 NO、N2 O 和NO2,化石燃料和植物体的燃烧以及土壤和动物排泄物中含氮化合物的转化是其主要来源,NOx 是酸雨和雾霾天气形成的主要原因之一,严重影响人类健康。选择性催化还原技术通过氨等还原剂和催化剂的共同作用将 NOx 还原成 N2和 H2 O,选择性非催化还原技术利用氨等还原剂在高温环境下的还原能力实现 NOx 的脱除。传统 NOx 脱除技术存在脱除效率不高和

  9. Lowering USAF Diesel Engine NOx Emissions With Utilizing B20 Biodiesel Fuel

    Science.gov (United States)

    2005-09-01

    6.5L engine. Table 2. IS0 8178 Weighted Average B20 Emission Deviations from DF-2 Certification Fuel 6.5L HMMWV Engine UHC CO NOx CO2 Smoke g/hp-hr g/hp...manifold CO2. Most data was obtained in triplicate runs. The UHC , CO, NOx, and Smoke emission values were similar to values reported in the...Base Timing (0) and Base EGR (0%) UHC [g/kWh] CO [g/kWh] CO2 [g/kWh] NOx [g/kWh] Smoke [AVL] BSFC [g/kWh] EGR Target [%] EGR Target [%] EGR Target

  10. Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi.

    Science.gov (United States)

    Lacaze, Isabelle; Lalucque, Hervé; Siegmund, Ulrike; Silar, Philippe; Brun, Sylvain

    2015-03-01

    NADPH oxidases (Nox) are membrane complexes that produce O2(-). Researches in mammals, plants and fungi highlight the involvement of Nox-generated ROS in cell proliferation, differentiation and defense. In mammals, the core enzyme gp91(phox)/Nox2 is associated with p22(phox) forming the flavocytochrome b558 ready for activation by a cytosolic complex. Intriguingly, no homologue of the p22(phox) gene has been found in fungal genomes, questioning how the flavoenzyme forms. Using whole genome sequencing combined with phylogenetic analysis and structural studies, we identify the fungal p22(phox) homologue as being mutated in the Podospora anserina mutant IDC(509). Functional studies show that the fungal p22(phox), PaNoxD, acts along PaNox1, but not PaNox2, a second fungal gp91(phox) homologue. Finally, cytological analysis of functional tagged versions of PaNox1, PaNoxD and PaNoxR shows clear co-localization of PaNoxD and PaNox1 and unravel a dynamic assembly of the complex in the endoplasmic reticulum and in the vacuolar system.

  11. Preferential adsorption of high density lipoprotein (HDL) in blood plasma/polymer interaction

    NARCIS (Netherlands)

    Bantjes, A.; Breemhaar, W.; Beugeling, T.; Brinkman, E.; Ellens, D.J

    1985-01-01

    A few studies on the adsorption of plasma proteins to polymeric surfaces show that major plasma proteins: albumin (Alb), fibrinogen (Fb) and immunoglobulin (IgG) are adsorbed in much smaller quantities from plasma than from protein solutions (1,2). Present results show that this difference in adsorp

  12. Dynamics of CO 2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design

    KAUST Repository

    Bollini, Praveen

    2012-11-21

    Packed bed breakthrough experiments are reported for commercial zeolite 13X and 3-aminopropyl-functionalized SBA-15 silica materials with three different amine loadings. Mass and heat transfer dynamics for all four materials are modeled successfully. Amine adsorbents with open pores are found to exhibit faster mass diffusion rates compared to zeolite 13X. When amine loading is increased by coupling aminopropyl groups, premature breakthrough combined with a long tail is observed. Contrary to conventional physisorbants, finite heat losses to the column wall do not explain the long breakthrough tail. A rate model that accounts for heterogeneity in diffusion was found to accurately capture the breakthrough shape of the high loading material. Batch uptake measurements support the hypothesis that slow diffusion through the polymer phase is what hampers adsorption kinetics in the high amine loading adsorbent. The results emphasize the importance of designing materials that are not overloaded with amine sites, as excessive amine loadings can lead to depressed adsorption kinetics and premature column breakthrough. © 2012 American Chemical Society.

  13. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-12-15

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

  14. Involvement of the NADH oxidase-encoding noxA gene in oxidative stress responses in Corynebacterium glutamicum.

    Science.gov (United States)

    Park, Jung Chul; Kim, Younhee; Lee, Heung-Shick

    2015-02-01

    Corynebacterium glutamicum ORF NCgl0328, designated noxA, encodes an NADH oxidase enzyme. The noxA gene, which was preferentially expressed in the log growth phase, was found to be under the control of the whcA, whcB, and whcE genes, which play regulatory roles in cells under oxidative stress. While noxA transcription was minimal in whcE-deleted mutant cells (ΔwhcE) during growth, its transcription was maximal even in the stationary phase in ΔwhcA cells. The transcription levels of noxA in ΔwhcB and whcB-overexpressing cells were comparable to the levels only in the log growth phase in ΔwhcA and whcA-overexpressing cells, respectively. Direct binding of purified WhcA to the promoter region of noxA was observed in vitro. The DNA-protein interaction was only possible in the presence of the reducing agent dithiothreitol. A noxA-deleted mutant strain and a strain overexpressing the noxA gene (P180-noxA) were established, and these strains were found to exhibit defective cell growth. The ΔnoxA and P180-noxA strains were sensitive to the redox-cycling oxidant menadione, suggesting a role of noxA in redox balancing. Accordingly, the purified NoxA enzyme exhibited NADH-oxidizing activity. Taken together, these data show that noxA plays a role in oxidative stress responses and also that the gene is under direct control of the WhcA protein, which was shown to be a regulatory DNA-binding protein. Furthermore, the involvement and roles of the whcA, whcB, and whcE genes in regulating the expression of noxA were demonstrated.

  15. Application of a high density adsorbent in expanded bed adsorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... The high density of the adsorbent allowed the EBA to be operated at linear velocity as high as 657 cm/h ... through precipitation and even dialyzed before sample ... In EBA process, upward fluidized stationary phase with.

  16. Low Pressure Adsorbent for Recovery & Storage Vented Hydrogen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance fullerene-based adsorbent is proposed for recovery and storage hydrogen and separating helium via pressure-swing-adsorption (PSA) process....

  17. Sol-Gel Synthesized Adsorbents for Metal Separation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of organo-ceramic adsorbents have been synthesized by a sol-gel processing technique for metal ion extraction. These adsorbents generally have significantly high metal uptake capacities, good physical-chemical stabilities, and well-designed pore geometries compared to other pre-existing metalchelating ceramic-based adsorbents. This work describes the synthesis and evaluation of pyrazole and calix[4]arene crown adsorbents for selective separation of platinum, palladium, and gold and cesium ions,respectively, from solutions. These materials exhibit mesoporous properties with high surface areas and pore volumes. The sol-gel synthesis starting with precursor silanes and titania results in gel particles of desired pore characteristics and high capacity and stability. Characterization studies, such as adsorption isotherms, breakthrough curves for fixed bed operation, and material stability, show promising results for applications to metal sepation.

  18. Structure and properties of carbonaceous adsorbents obtained from furanformolites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Y.B.; Oleinik, M.S.; Proskuryakov, V.A.

    1982-12-10

    We have shown previously (1) that a new copolycondensate based on petroleum residues -- fuaranformolite -- is a valuable carbon-containing raw material by the use of which carbonaceous adsorbents have been obtained. The latter can be used as catalysts and catalyst supports and also for the fine purification and separation of gases. The present paper is devoted to the study of the porous structure and sorption characteristics of the adsorbents obtained. High-strength carbonaceous adsorbents obtained from new copolymers of asphaltite -- fuaranformolites may, depending on the degree of burn-off, be used for the adsorption of poorly sorbed gases, of vapors of organic solvents, and of substances from solution. By varying the composition of the copolymer it is possible to direct the formation of the porous structure of the adsorbents in a desired manner.

  19. A NOVEL METAL CHELATE AFFINITY ADSORBENT FOR PROTEIN UPTAKE

    Institute of Scientific and Technical Information of China (English)

    WANGYongjian; BAIShu; 等

    2001-01-01

    In this article,a spherical chitosan gel crosslinked by epichlorohydrin was prepared.It was then loaded with copper ions to produce a metal chelate affinity adsorbent for protein.The uptake of bovine serum albumin(BSA)by the affinity adsorbent was investigated.and the adsorption capacity for BSA as high as 40mg/g-wet beads was observed.The adsorption equilibrium data was well correlated by the Langmuir equation.The adsorption was considerably affected by pH.In additio.The amount of BSA adsorbed onto the beads decreased with the increasing of aqueous phase ionic strength,so adsorbed BAS can be desorbed by adjusting pH orionic strength of the solution.

  20. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  1. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  2. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NOx abatement

    Science.gov (United States)

    Tobaldi, D. M.; Pullar, R. C.; Gualtieri, A. F.; Otero-Irurueta, G.; Singh, M. K.; Seabra, M. P.; Labrincha, J. A.

    2015-11-01

    Titanium dioxide (TiO2) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO2 has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO2 to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO2 lattice using our green sol-gel nanosynthesis method, used to create 10 nm TiO2 NPs. Two parallel routes were studied to produce nitrogen-modified TiO2 nanoparticles (NPs), using HNO3+NH3 (acid-precipitated base-peptised) and NH4OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NOx) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NOx abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO2 NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects of four simultaneous occurrences: (i) loss of OH groups and water adsorbed

  3. Oil palm biomass as an adsorbent for heavy metals.

    Science.gov (United States)

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The

  4. Kinetics of ozone and nitric oxides in dielectric barrier discharges in O2/NOx and N2/O2/NOx mixtures

    Science.gov (United States)

    Stefanovic, I.; Bibinov, N. K.; Deryugin, A. A.; Vinogradov, I. P.; Napartovich, A. P.; Wiesemann, K.

    2001-08-01

    Concentrations of NO, NO2, NO3, N2O5, and O3 were measured by classical absorption spectroscopy in dielectric barrier discharges in flowing O2/NOx and N2/O2/NOx mixtures. The results of measurements in different parts of the discharge chamber and in its exhaust are compared to a numerical zero-dimensional kinetic model and good agreement is found. The experimentally found upper limit of the NOx concentration allowing ozone production is confirmed by the kinetic calculations for both gas mixtures. The rotational temperature of different nitrogen bands was measured by high-resolution emission spectroscopy. The results are explained on the basis of a simplified model and related to the gas temperature in the microdischarge channel and the surrounding gas.

  5. Residence time determination for adsorbent beds of different configurations

    Energy Technology Data Exchange (ETDEWEB)

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  6. Plant waste materials from restaurants as the adsorbents for dyes

    OpenAIRE

    Pavlović Marija D.; Nikolić Ivan R.; Milutinović Milica D.; Dimitrijević-Branković Suzana I.; Šiler-Marinković Slavica S.; Antonović Dušan G.

    2015-01-01

    This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was mo...

  7. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream

  8. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    Science.gov (United States)

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  9. NOx-Catalyzed Gas-Phase Activation of Methane:the Formation of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Chaoxian Xiao; Zhen Yan; Yuan Kou

    2003-01-01

    NOx-catalyzed oxidation of methane without a solid catalyst was investigated, and a hydrogen selectivity of 27% was obtained with an overall methane conversion of 34% and a free O2 concentration of 1.7% at 700 ℃.

  10. Observations of a seasonal cycle in NOx emissions from fires in the African savanna

    Science.gov (United States)

    Mebust, A. K.; Cohen, R. C.

    2012-12-01

    Nitrogen oxide (NOx) emissions from wildfires account for ~15% of the global total, inducing large fluctuations in the chemical production and loss rates of O3 and CH4 and thereby affecting Earth's radiative balance. NOx emissions from fires depend on fuel N content, combustion stage, and total biomass burned; sparse observations limit current understanding of the variability in these factors across biomes. Here we use satellite-based measurements to study emission coefficients (ECs), a value proportional to emission factors i.e. NOx emitted per unit of biomass burned, from fires in African savannas. NOx ECs decrease steadily across the fire season, rather than remaining constant as is currently assumed. We speculate that this is due to reallocation of nutrients, including N, to plant roots after the growing season. We account for the observed cycle in the GEOS-Chem chemical transport model to show the impacts on monthly tropospheric ozone.

  11. NOx Catalyzed Pathway of Stratospheric Ozone Depletion: A Coupled Cluster Investigation.

    Science.gov (United States)

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2012-06-12

    We report a theoretical investigation on the NOx catalyzed pathways of stratospheric ozone depletion using highly accurate coupled cluster methods. These catalytic reactions represent a great challenge to state-of-the-art ab initio methods, while their mechanisms remain unclear to both experimentalists and theoreticians. In this work, we have used the so-called "gold standard of quantum chemistry," the CCSD(T) method, to identify the saddle points on NOx-based reaction pathways of ozone hole formation. Energies of the saddle points are calculated using the multireference variants of coupled cluster methods. The calculated activation energies and rate constants show good agreement with available experimental results. Tropospheric precursors to stratospheric NOx radicals have been identified, and their potential importance in stratospheric chemistry has been discussed. Our calculations resolve previous conflicts between ab initio and experimental results for a trans nitro peroxide intermediate, in the NOx catalyzed pathway of ozone depletion.

  12. Electrochemical Removal of NOx on Ceria-Based Catalyst-Electrodes

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2017-02-01

    Full Text Available This study reports the electrochemical properties for NOx reduction of a ceria-based mixed ionic electronic conducting porous electrode promoted by Pt nanoparticles, as efficient catalyst for NO oxidation, and BaO, as sorbent to store NOx. This catalytic layer was deposited by screen-printing on a dense membrane of gadolinia-doped ceria, an O2− ionic conductor. The targeted Ba and Pt loadings were 150 and 5 μg/cm2, respectively. The NOx selective electrochemical reduction was performed between 400 °C and 500 °C with and without oxygen in the feed. Variations of the open-circuit voltage with time were found to be a good sensor of the NOx storage process on the ceria-based catalyst-electrode. However, no N2 production was observed in the presence of O2 phase in spite of nitrates formation.

  13. Influence of constricted air distribution on NOx emissions in pulverized coal combustion boiler

    Institute of Scientific and Technical Information of China (English)

    WEI Feng(魏风); ZHANG Jun-ying(张军营); TANG Bi-guang(唐必光); ZHENG Chu-guang(郑楚光)

    2003-01-01

    This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NOx emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NOx emissions and the principle of boiler operation and regulation through analyzing NOx emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NOx emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.

  14. Urea-SCR technology for deNOx after treatment of diesel exhausts

    CERN Document Server

    Nova, Isabella

    2014-01-01

    Of intense interest both to academics and industry professionals, this groundbreaking book-length treatment of selective catalytic reduction of NOx using ammonia/urea includes papers by researchers at the leading edge of diesel exhaust abatement.

  15. Pilot-scale development of a low-NOx coal-fired tangential system

    Science.gov (United States)

    Kelly, J. T.; Brown, R. A.; Chu, E. K.; Wightman, J. B.; Pam, R. L.; Swenson, E. L.; Merrick, E. B.; Busch, C. F.

    1981-08-01

    A 293 kWt (1 million Btu/hr) pilot scale facility is used to develop a low NOx pulverized coal fired tangential system. A burner concept is developed which achieves low NOx by directing the fuel and a fraction of the secondary combustion air into the center of the furnace, with the remaining secondary combustion air directed horizontally and parallel to the furnance walls. Such separation of secondary combustion air creates a fuel rich zone in the center of the furnace where NOx production is minimized. This combustion modification technique lowers NOx 64%, relative to conventional tangential firing, by injecting 85% of the secondary air along the furnace walls. Under these conditions, NO emissions are 180 ppm corrected to 0% 02. Also at these conditions, CO, UHC, and unburned carbon emissions are less than 40 ppm, 3 ppm, and 2.4%, respectively, comparable to conventional tangentially fired pilot scale results.

  16. The NOx Budget Trading Program: A Collaborative, Innovative Approach to Solving a Regional Air Pollution Problem

    Science.gov (United States)

    This article examines the development and implementation of the NOx Budget Trading Program (NBP) and the lessons the Environmental Protection Agency has learned from this seasonal emissions cap-and-trade program.

  17. Optical and Electronic NO(x) Sensors for Applications in Mechatronics.

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A; Wolter, Scott D; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  18. Efforts to Consolidate Chalcogels with Adsorbed Iodine

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Chun, Jaehun

    2013-08-28

    This document discusses ongoing work with non-oxide aerogels, called chalcogels, that are under development at the Pacific Northwest National Laboratory as sorbents for gaseous iodine. Work was conducted in fiscal year 2012 to demonstrate the feasibility of converting Sn2S3 chalcogel without iodine into a glass. This current document summarizes the work conducted in fiscal year 2013 to assess the consolidation potential of non-oxide aerogels with adsorbed iodine. The Sn2S3 and Sb13.5Sn5S20 chalcogels were selected for study. The first step in the process for these experiments was to load them with iodine (I2). The I2 uptake was ~68 mass% for Sn2S3 and ~50 mass% for Sb13.5Sn5S20 chalcogels. X-ray diffraction (XRD) of both sets of sorbents showed that metal-iodide complexes were formed during adsorption, i.e., SnI4 for Sn2S3 and SbI3 for Sb13.5Sn5S20. Additionally, metal-sulfide-iodide complexes were formed, i.e., SnSI for Sn2S3 and SbSI for Sb13.5Sn5S20. No XRD evidence for unreacted iodine was found in any of these samples. Once the chalcogels had reached maximum adsorption, the consolidation potential was assessed. Here, the sorbents were heated for consolidation in vacuum-sealed quartz vessels. The Sb13.5Sn5S20 chalcogel was heated both (1) in a glassy carbon crucible within a fused quartz tube and (2) in a single-containment fused quartz tube. The Sn2S3 chalcogel was only heated in a single-containment fused quartz tube. In both cases with the single-containment fused quartz experiments, the material consolidated nicely. However, in both cases, there were small fractions of metal iodides not incorporated into the final product as well as fused quartz particles within the melt due to the sample attacking the quartz wall during the heat treatment. The Sb13.5Sn5S20 did not appear to attack the glassy carbon crucible so, for future experiments, it would be ideal to apply a coating, such as pyrolytic graphite, to the inner walls of the fused quartz vessel to prevent

  19. Adsorbates effects in H^- - Na/Cu(111) collisions

    Science.gov (United States)

    Bahrim, Bogdana; Yu, Song

    2008-03-01

    The (111) faces of Cu, Ag and Au present a band gap that extends just below the vacuum level at the γ gpoint [1]. The effect is to forbid electrons with energies in a certain range to be transferred into the metal along the surface normal. Thus, the presence of a band gap should dramatically influence various experiments in ion-surface collisions involving electron capture or loss. In recent years, this topic received a great interest [2 -- 4]. Adsorbates deposition makes the electron dynamics at such surfaces to be even more complex. We analyze some interesting adsorbates effects: (1) projectile energy levels and widths are strongly perturbed when this approaches close to an adsorbate atom; (2) scattering by adsorbates may be used to laterally confine surface state electrons; (3) adsorbates may enhance the band gap effect; (4) adsorbates tend to couple the surface states to the bulk states. Results for the H^- projectile interacting with a Na/Cu(111) surface are reported. [1] E.V. Chulkov, V.M. Silkin and P.M. Echenique 1999 Surf. Sci. 437, 330. [2] A.G. Borisov, A.K. Kazansky and J.P. Gauyacq 1999 Phys. Rev. B. 59, 10935. [3] H.S. Chakraborty, T. Niederhausen and U. Thumm 2004 Phys. Rev. A. 70, 052903. [4] B. Bahrim, B. Makarenko and J.W. Rabalais 2005 Surface Sci. 594, 62.

  20. Cryogenic adsorber design in a helium refrigeration system

    Science.gov (United States)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  1. Activity of lactoperoxidase when adsorbed on protein layers.

    Science.gov (United States)

    Haberska, Karolina; Svensson, Olof; Shleev, Sergey; Lindh, Liselott; Arnebrant, Thomas; Ruzgas, Tautgirdas

    2008-09-15

    Lactoperoxidase (LPO) is an enzyme, which is used as an antimicrobial agent in a number of applications, e.g., food technology. In the majority of applications LPO is added to a homogeneous product phase or immobilised on product surface. In the latter case, however, the measurements of LPO activity are seldom reported. In this paper we have assessed LPO enzymatic activity on bare and protein modified gold surfaces by means of electrochemistry. It was found that LPO rapidly adsorbs to bare gold surfaces resulting in an amount of LPO adsorbed of 2.9mg/m(2). A lower amount of adsorbed LPO is obtained if the gold surface is exposed to bovine serum albumin, bovine or human mucin prior to LPO adsorption. The enzymatic activity of the adsorbed enzyme is in general preserved at the experimental conditions and varies only moderately when comparing bare gold and gold surface pretreated with the selected proteins. The measurement of LPO specific activity, however, indicate that it is about 1.5 times higher if LPO is adsorbed on gold surfaces containing a small amount of preadsorbed mucin in comparison to the LPO directly adsorbed on bare gold.

  2. Satellite observations indicate substantial spatiotemporal variability in biomass burning NOx emission factors for South America

    Directory of Open Access Journals (Sweden)

    P. Castellanos

    2013-08-01

    Full Text Available Biomass burning is an important contributor to global total emissions of NOx (NO + NO2. Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome specific emission factors, defined in units of grams of NO per kilogram of dry matter consumed. Emission factors are a significant source of uncertainty in bottom-up fire emissions modeling because relatively few observations are available to characterize the large spatial and temporal variability of burning conditions. In this paper we use NO2 tropospheric column observations from the Ozone Monitoring Instrument (OMI from the year 2005 over South America to calculate monthly NOx emission factors for four fire types: deforestation, savanna/grassland, woodland, and agricultural waste burning. In general, the spatial trends in NOx emission factors calculated in this work are consistent with emission factors derived from in situ measurements from the region, but are more variable than published biome specific global average emission factors widely used in bottom up fire emissions inventories such as the Global Fire Emissions Database (GFED v3. Satellite based NOx emission factors also indicate substantial temporal variability in burning conditions. Overall, we found that deforestation fires have the lowest NOx emission factors, on average 30 % lower than the emission factors used in GFED v3. Agricultural fire NOx emission factors were the highest, on average a factor of 2 higher than GFED v3 values. For savanna, woodland, and deforestation fires early dry season NOx emission factors were a factor of ~1.5–2.0 higher than late dry season emission factors. A minimum in the NOx emission factor seasonal cycle for deforestation fires occurred in August, the time period of severe drought in South America in 2005. Our results support the hypothesis that prolonged dry spells may lead to an increase in the contribution of smoldering combustion

  3. Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations

    Directory of Open Access Journals (Sweden)

    G. C. M. Vinken

    2014-06-01

    Full Text Available Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 27 Tg N yr−1. We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI. We used a state-of-science soil NOx emission inventory (Hudman et al., 2012 as a priori in the GEOS-Chem chemistry transport model to identify 11 regions where tropospheric NO2 columns are dominated by soil NOx emissions. Strong correlations between soil NOx emissions and simulated NO2 columns indicated that spatial patterns in simulated NO2 columns in these regions indeed reflect the underlying soil NOx emissions. Subsequently, we used a mass-balance approach to constrain emissions for these 11 regions on all major continents using OMI observed and GEOS-Chem simulated tropospheric NO2 columns. We found that responses of simulated NO2 columns to changing NOx emissions were suppressed over low NOx regions, and accounted for these non-linearities in our inversion approach. In general, our approach suggests that emissions need to be increased in most regions. Our OMI top-down soil NOx inventory amounts to 10.0 Tg N for 2005 when only constraining the 11 regions, and 12.9 Tg N when extrapolating the constraints globally. Substantial regional differences exist (ranging from −40% to +90%, and globally our top-down inventory is 4–35% higher than the GEOS-Chem a priori (9.6 Tg N yr−1. We evaluated NO2 concentrations simulated with our new OMI top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA, and Europe. Although this comparison is complicated by several factors, we find an encouraging improved agreement when using the OMI top-down inventory compared to using the a priori inventory. To our knowledge, this study provides, for the first time, specific constraints

  4. Prostanoid-mediated contractions of the carotid artery become Nox2-independent with aging.

    Science.gov (United States)

    Meyer, Matthias R; Fredette, Natalie C; Barton, Matthias; Prossnitz, Eric R

    2015-08-01

    Aging is a major risk factor for carotid artery disease that may lead to stroke and dementia. Vascular effects associated with aging include increased vasomotor tone, as well as enhanced contractility to endothelial vasoconstrictor prostanoids and reduced nitric oxide (NO) bioactivity partly due to increased oxidative stress. We hypothesized that vascular NADPH oxidase (Nox)-derived superoxide may be involved in prostanoid- and NO-related functional aging. NO-mediated relaxations and prostanoid-mediated contractions to acetylcholine as well as phenylephrine-dependent contractions were investigated in the carotid artery from young (4 months) and aged mice (24 months). Gene expression of Nox subunits and endothelial NO synthase (eNOS) was determined in the carotid artery and aorta. In young mice, the thromboxane-prostanoid receptor antagonist SQ 29,548 fully blocked acetylcholine-induced contractions while reducing responses to phenylephrine by 75 %. The Nox2-targeted inhibitor Nox2ds-tat and the superoxide scavenger tempol reduced acetylcholine-stimulated, prostanoid-mediated contractions by 85 and 75 %, respectively, and phenylephrine-dependent contractions by 45 %. Unexpectedly, in aged mice, the substantial Nox2-dependent component of acetylcholine- and phenylephrine-induced, prostanoid-mediated contractions was abolished. In addition, endothelium-dependent, NO-mediated relaxations were impaired with aging. The expression of Nox subunits was greater in the aorta compared with the carotid artery, in which Nox1 was undetectable. eNOS gene expression was reduced in the aorta of aged compared to young mice. In conclusion, aging decreases prostanoid-mediated contractility in the carotid artery involving a loss of Nox2 activity and is associated with impaired endothelium-dependent, NO-mediated relaxation. These findings may contribute to a better understanding of the pathophysiology of carotid artery disease and the aging process.

  5. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  6. 40 CFR 86.1860-04 - How to comply with the Tier 2 and interim non-Tier 2 fleet average NOX standards.

    Science.gov (United States)

    2010-07-01

    ... NOX standards do not apply to a manufacturer whose U.S. LDV/T and MDPV sales are 100% Tier 2 LDV/Ts... sufficient Tier 2 NOX credits, interim non-Tier 2 LDV/LLDT NOX credits or interim non-Tier 2 HLDT/MDPV NOX...) Their Tier 2 LDV/LLDT and Tier 2 HLDT/MDPV fleet average NOX emissions for each model year through 2008...

  7. FUNDAMENTAL STUDY OF LOW-NOx COMBUSTION FLY ASH UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    ERIC M. SUUBERG; ROBERT H. HURT

    1998-10-19

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

  8. A New Approach for NOx Soft Sensors for the Aftertreatment of Diesel Engines

    Science.gov (United States)

    Ishizuka, S.; Kajiwara, I.; Sato, J.; Hanamura, Y.

    2016-09-01

    To maintain the NOX concentration at an appropriate level, traditionally an air-path control that regulates the intake and exhaust system of diesel engines aims to control the mass air flow and the manifold absolute pressure, which influence the production of NOX. To improve the control accuracy, a more recent approach takes the NOX concentration directly as a controlled output variable, but the sensors monitoring the NOX concentration are slow to respond. Consequently, a direct sensor is inappropriate as a feedback controller. Instead a mechanism called a soft sensor, which computes the NOX concentration from state quantities of diesel engines, is used. Because the prediction accuracy from the sensor model greatly affects the control performance, it is important to improve the model accuracy. However, deviations in the steady state indicate an insufficient model accuracy. This study proposes a method to construct an adaptive NOX soft sensor that corrects the parameters of the sensor model sequentially using the simultaneous perturbation stochastic approximation while comparing the values computed by the software to actual measurements as well as examines the effectiveness of the proposed method experimentally.

  9. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    Science.gov (United States)

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.

  10. Sensitivities of NOx transformation and the effects on surface ozone and nitrate

    Directory of Open Access Journals (Sweden)

    H. Lei

    2013-08-01

    Full Text Available As precursors for tropospheric ozone and nitrate aerosols, Nitrogen oxides (NOx in present atmosphere and its transformation in responding to emission and climate perturbations are studied by CAM-Chem model and air quality measurements including National Emission Inventory (NEI, Clean Air Status and Trends Network (CASTNET and Environmental Protection Agency Air Quality System (EPA AQS. It is found that not only the surface ozone formation but also the nitrate formation is associated with the relative emissions of NOx and volatile organic compounds (VOC. Due to the availability of VOC and associated NOx titration, ozone productions in industrial regions increase in warmer conditions and slightly decrease against NOx emission increase, which is converse to the response in farming region. The decrease or small increase in ozone concentrations over industrial regions result in the responded nitrate increasing rate staying above the increasing rate of NOx emissions. It is indicated that ozone concentration change is more directly affected by changes in climate and precursor emissions, while nitrate concentration change is also affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that warmer climate accelerates the decomposition of odd nitrogen (NOy during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations on the historical emission and air quality records on typical pollution areas further confirm the conclusion drawn from modeling experiments.

  11. The impact of global aviation NOx emissions on tropospheric composition changes from 2005 to 2011

    Science.gov (United States)

    Wasiuk, D. K.; Khan, M. A. H.; Shallcross, D. E.; Lowenberg, M. H.

    2016-09-01

    The impact of aviation NOx emissions from 2005 to 2011 on the chemical composition of the atmosphere has been investigated on the basis of integrations of the 3-D global chemical and transport model, STOCHEM-CRI with the novel CRIv2-R5 chemistry scheme. A base case simulation without aircraft NOx emissions and integrations with NOx emissions from aircraft are inter-compared. The sensitivity of the global atmosphere to varying the quantity and the geographical distribution of the global annual aviation NOx emissions is assessed by performing, for the first time, a series of integrations based on changing the total mass and distribution of aircraft NOx emissions derived from air traffic movements recorded between 2005 and 2011. The emissions of NOx from the global fleet based on actual records of air traffic movements between 2005 and 2011 increased the global tropospheric annual mean burden of O3 by 1.0 Tg and decreased the global tropospheric annual mean burden of CH4 by 2.5 Tg. The net NOy and O3 production increases by 0.5% and 1%, respectively between 2005 and 2011 in total. At cruise altitude, the absolute increase in the modelled O3 mixing ratios is found to be up to 0.7 ppb between 2005 and 2011 at 25°N-50°N.

  12. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors

    Science.gov (United States)

    Cifuentes-Pagano, M. Eugenia; Meijles, Daniel N.; Pagano, Patrick J.

    2016-01-01

    Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow. PMID:26510437

  13. First Measurements of the Nitrogen Isotopic Composition of NOx from Biomass Burning.

    Science.gov (United States)

    Fibiger, Dorothy L; Hastings, Meredith G

    2016-11-01

    The nitrogen isotopic composition (δ(15)N) of NOx (NO + NO2) was measured during the fourth Fire Lab at Missoula Experiment (FLAME-4). The δ(15)N-NOx produced by burning a variety of biomass types ranged from -7 to +12‰ (vs air N2). In the laboratory experiments, two types of emissions were sampled: "stack" fires where the emissions were measured within a few seconds of production from the fire and "chamber" fires where the emissions were held in a room for 1-2 h and sampled continuously. For both types of emissions sampled, the primary control on δ(15)N-NOx is the δ(15)N of the biomass burned (δ(15)N-biomass), although differences were found for δ(15)N-NOx between the two types of fires. For the stack emissions, δ(15)N-NOx = 0.41 × δ(15)N-biomass +1.0 (R(2) = 0.83, p-value biomass +1.7 (R(2) = 0.94, p-value biomass suggests that in any given environment, the δ(15)N-NOx can be predicted.

  14. Kinetic Study of Co-β-Zeolite for Selective Catalytic Reduction of NOx with Propane

    Institute of Scientific and Technical Information of China (English)

    毛树红; 王润平; 池永庆; 王艳; 张清华; 丛燕青

    2011-01-01

    The effects of grain size, space velocity, temperature and reactant concentration on the kinetics of NOx reduction with propane over Co-β-zeolite catalyst were investigated. The external mass transfer phenomenon was examined by varying the space velocity. The results show that the transfer can be negligible when the space velocity is greater than 60000 h-1 in low temperature range. However, the transfer exists at high temperatures even when the space velocity reaches a high level.Variation of the catalyst grain size from 0.05 to 0.125 mm does not change the conversion rate of NOx. The concentrations of components, NOx, C3H8 and O2, were also investigated to have a better understanding of mechanism. Based on the experimental data, the selectivity formula was proposed. The results shows that lower temperature is helpful to get higher selectivity as the activation energy of hydrocarbon oxidation, Ea,2, is greater than that of NOx reduction, Ea,1, (Ea,2>Ea,l). High NOx concentration and low C3H8 concentration are beneficial to high selectivity. However in order to maintain high activity simultaneously, the temperature and C3H8 concentration should be high enough to promote NOx reduction. 10%(φ) H2O and 75×i0-6(φ) SO2 were introduced into the reaction system, and Co-β-zeolite shows strong resistance to water and SO2.

  15. Low-Temperature Pd/Zeolite Passive NO x Adsorbers: Structure, Performance, and Adsorption Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yang [Institute for Integrated; Kovarik, Libor [Institute for Integrated; Engelhard, Mark H. [Institute for Integrated; Wang, Yilin [Institute for Integrated; Wang, Yong [Institute for Integrated; Gao, Feng [Institute for Integrated; Szanyi, János [Institute for Integrated

    2017-07-14

    Pd/zeolite passive NOx adsorber (PNA) materials were prepared with solution ion-exchange between NH4/zeolites (Beta, ZSM-5 and SSZ-13) and PdCl2 solutions. The nature of Pd (dispersion, distribution and oxidation states) in these materials was characterized with Na+ ion-exchange, TEM imaging, CO titration with FTIR and in situ XPS. The NOx trapping and release properties were tested using feeds with different compositions. It is concluded that multiple Pd species coexist in these materials: atomically dispersed Pd in the cationic sites of zeolites, and PdO2 and PdO particles on the external surfaces. While Pd is largely atomically dispersed in ZSM-5, the small pore opening for SSZ-13 inhibits Pd diffusion such that the majority of Pd stays as external surface PdO2 clusters. NOx trapping and release are not simple chemisorption and desorption events, but involve rather complex chemical reactions. In the absence of CO in the feed, cationic Pd(II) sites with oxygen ligands and PdO2 clusters are reduced by NO to Pd(I) and PdO clusters. These reduced sites are the primary NO adsorption sites. In the presence of H2O, the as-formed NO2 desorb immediately. In the presence of CO in the feed, metallic Pd, “naked” Pd2+, and Pd+ sites are responsible for NO adsorption. For Pd adsorption sites with the same oxidation states but in different zeolite frameworks, NO binding energies are not expected to vary greatly. However, NO release temperatures do vary substantially with different zeolite structures. This indicates that NO transport within these materials play an important role in determining release temperatures. Finally, some rational design principles on efficient PNA materials are suggested. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a

  16. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography.

    Science.gov (United States)

    Dods, Stewart R; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G

    2015-01-09

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5

  17. CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells

    Science.gov (United States)

    Park, Rackhyun; Li, Liqing; Jang, Minsu; Morris, Andrew J.; Huang, Cai

    2017-01-01

    Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M population. Moreover, NOX4 deficiency resulted in a dramatic decrease in invadopodium formation and the invasive activity. In addition, NOX4 deficiency also caused a decrease in focal adhesions and cell migration in HeLa cells. These results suggest that NOX4 is required for both efficient proliferation and invasion of HeLa cells. PMID:28099519

  18. BcNoxD, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea.

    Science.gov (United States)

    Siegmund, Ulrike; Marschall, Robert; Tudzynski, Paul

    2015-03-01

    NADPH oxidases (Nox) are major enzymatic producer of reactive oxygen species (ROS). In fungi these multi-enzyme complexes are involved in sexual differentiation and pathogenicity. However, in contrast to mammalian systems, the composition and recruitment of the fungal Nox complexes are unresolved. Here we introduce a new Nox component, the membrane protein NoxD in the grey mold fungus Botrytis cinerea. It has high homology to the ER protein Pro41 from Sordaria macrospora, similar functions to the catalytic Nox subunit BcNoxA in differentiation and pathogenicity, and shows similarities to phagocytic p22phox. BcNoxA and BcNoxD interact with each other. Both proteins are involved in pathogenicity, fusion of conidial anastomosis tubes (CAT) and formation of sclerotia and conidia. These data support our earlier view based on localization studies, for an ER-related function of the Nox complex. We present the first evidence that some functions of the BcNoxA complex are indeed linked to the ER, while others clearly require export from the ER. © 2014 John Wiley & Sons Ltd.

  19. CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells.

    Science.gov (United States)

    Jafari, Naser; Kim, Hyunju; Park, Rackhyun; Li, Liqing; Jang, Minsu; Morris, Andrew J; Park, Junsoo; Huang, Cai

    2017-01-01

    Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M population. Moreover, NOX4 deficiency resulted in a dramatic decrease in invadopodium formation and the invasive activity. In addition, NOX4 deficiency also caused a decrease in focal adhesions and cell migration in HeLa cells. These results suggest that NOX4 is required for both efficient proliferation and invasion of HeLa cells.

  20. Elution by Le Chatelier's principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater.

    Science.gov (United States)

    Oyola, Yatsandra; Vukovic, Sinisa; Dai, Sheng

    2016-05-28

    Amidoxime-based polymer adsorbents have attracted interest within the last decade due to their high adsorption capacities for uranium and other rare earth metals from seawater. The ocean contains an approximated 4-5 billion tons of uranium and even though amidoxime-based adsorbents have demonstrated the highest uranium adsorption capacities to date, they are still economically impractical because of their limited recyclability. Typically, the adsorbed metals are eluted with a dilute acid solution that not only damages the amidoxime groups (metal adsorption sites), but is also not strong enough to remove the strongly bound vanadium, which decreases the adsorption capacity with each cycle. We resolved this challenge by incorporating Le Chatelier's principle to recycle adsorbents indefinitely. We used a solution with a high concentration of amidoxime-like chelating agents, such as hydroxylamine, to desorb nearly a 100% of adsorbed metals, including vanadium, without damaging the metal adsorption sites and preserving the high adsorption capacity. The method takes advantage of knowing the binding mode between the amidoxime ligand and the metal and mimics it with chelating agents that then in a Le Chatelier's manner removes metals by shifting to a new chemical equilibrium. For this reason the method is applicable to any ligand-metal adsorbent and it will make an impact on other extraction technologies.

  1. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats.

    Science.gov (United States)

    Cowley, Allen W; Yang, Chun; Zheleznova, Nadezhda N; Staruschenko, Alexander; Kurth, Theresa; Rein, Lisa; Kumar, Vikash; Sadovnikov, Katherine; Dayton, Alex; Hoffman, Matthew; Ryan, Robert P; Skelton, Meredith M; Salehpour, Fahimeh; Ranji, Mahsa; Geurts, Aron

    2016-02-01

    This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4.

  2. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Oyola, Y.; Mayes, Richard T.; Janke, Chris J.; Kuo, L. -J.; Gill, G.; Wood, J. R.; Dai, S.

    2016-04-20

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked with 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.

  3. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  4. Key chemical NOx sink uncertainties and how they influence top-down emissions of nitrogen oxides

    Directory of Open Access Journals (Sweden)

    T. Stavrakou

    2013-03-01

    Full Text Available Triggered by recent developments from laboratory and field studies regarding major NOx sink pathways in the troposphere, this study evaluates the influence of chemical uncertainties in NOx sinks for global NOx distributions calculated by the IMAGESv2 chemistry-transport model, and quantifies their significance for top-down NOx emission estimates. Our study focuses on four key chemical parameters believed to be of primary importance, more specifically, the rate of the reaction of NO2 with OH radicals, the newly-identified HNO3-forming channel in the reaction of NO with HO2, the reactive uptake of N2O5 on aerosols, and the regeneration of OH in the oxidation of isoprene. Sensitivity simulations are performed to estimate the impact of each source of uncertainty. The model calculations show that, although the NO2 + OH reaction is the largest NOx sink globally accounting for 50–70% of the total sink, the reaction contributing the most to the overall uncertainty is the formation of HNO3 in NO + HO2, leading to NOx column changes reaching a~factor of two over tropical regions, and to a 35% decrease in the global tropospheric NOx lifetime. Emission inversion experiments are carried out using model settings which either miminize (MINLOSS or maximize (MAXLOSS the total NOx sink, both constrained by one year of OMI NO2 column data from the DOMINO v2 KNMI algorithm. The choice of the model setup is found to have a major impact on the top-down flux estimates, with 50% higher emissions for MAXLOSS compared to the MINLOSS inversion globally. Even larger departures are found for soil NO (factor of 2 and lightning (70%, whereas the global anthropogenic source is comparatively better constrained, especially in China. Evaluation of the emission optimization is performed against independent satellite observations from the SCIAMACHY sensor, airborne NO2 measurements, observed NOx lifetimes at megacities, as well as with two new bottom-up inventories of

  5. Design aspects of a Low-NOx burner for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zepter, Klaus

    2003-07-01

    The Stirling engine is a promising prime mover for micro-scale combined heat and power. For Stirling engines with heat supply by combustion, the external heating system is one of the most important parts. It has major influence on the overall performance. The central component of the external heating system is the burner. This thesis describes the theoretical and experimental studies in the development of a gas fired burner for the extemal heating system that have been carried out. The focus was on low emissions and high system efficiency. As a first step, a system analysis of the external heating system is presented based on fundamental considerations about the thermodynamics and practical aspects of the Stirling engine. The results of the analysis show that the expected NOx emissions are strongly determined by the system design. Without making any restrictions to the burner design, a span of the NOx emissions with a ratio of 1:800 was found. Modern design methodology is then introduced in order to analyze a large number of different low-NOx burner concepts that were found in literature. The concepts are evaluated and classified with help of the methodology in order to find possible new low-NOx concepts by favourable combinations of generic principles. Based on this, the concept of the porous inert media (PIM) burner is chosen for further development as a burner for the Stirling engine. The selection is confirmed by an experimental benchmark study in which the PIM burner shows low NOx emissions and the lowest pressure drop compared to three other low NOx burner concepts. The optimization of the design of the PIM burner is described. A favourable combination of materials was found, which enables stable operation with a turn-down ratio of 1:15 and a span of the excess-air ratio from 1.28 to 2.0 when methane is used as the fuel. Temperature and CO measurements inside the combustion region were made which enable conclusion about the stabilization of the combustion

  6. Influence of H- and OH-adsorbates on the ethanol oxidation reaction--a DEMS study.

    Science.gov (United States)

    Bach Delpeuch, Antoine; Chatenet, Marian; Rau, Maria Sol; Cremers, Carsten

    2015-04-28

    The ethanol oxidation reaction (EOR) was investigated by potentiodynamic techniques on Pt/C, Rh/C, Pt-Rh/C, Pt-SnO2/C and Pt-Rh-SnO2/C by differential electrochemical mass spectrometry (DEMS) in a flow cell system. Prior to the cyclic voltammetries, adsorption of H- and OH-species was carried out by chronoamperometry at Ead = 0.05 and 1 V vs. RHE, respectively, in order to examine their influence on the EOR on the different electrocatalysts. For the sake of comparison, another adsorption potential was chosen at Ead = 0.3 V vs. RHE, in the double layer region (i.e. in the absence of such adsorbates). For this study, 20 wt% electrocatalysts were synthesized using a modified polyol method and were physically characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD) and transmission electron microscopy (TEM). When comparing the first and second cycles of the cyclic voltammograms (CVs) on Pt/C and Pt-SnO2/C, the presence of Had on the electrocatalyst surface seems to hinder the initiation of the ethanol electrooxidation, whereas the reaction onset potential is shifted negatively with the presence of OH-adsorbates. In contrast to them, the EOR on Rh/C is enhanced when the electrocatalyst surface is covered with Had and is inhibited after adsorption at Ead = 0.3 and 1 V vs. RHE. Finally, on Pt-Rh/C and Pt-Rh-SnO2/C, neither the H- nor OH-adsorbates do impact the EOR initiation. The lowest EOR onset was recorded on Pt-SnO2/C and Pt-Rh-SnO2/C electrocatalysts. The CO2 currency efficiency (CCE) was also determined for each electrocatalyst and demonstrated higher values on Pt-Rh-SnO2/C.

  7. INF-γ Enhances Nox2 Activity by Upregulating phox Proteins When Applied to Differentiating PLB-985 Cells but Does Not Induce Nox2 Activity by Itself.

    Directory of Open Access Journals (Sweden)

    Michael A Ellison

    Full Text Available The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-Γ on NOX2 activity: To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-Γ on phox protein levels: Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferon-γ mediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox

  8. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  9. Toward a detailed characterization of oil adsorbates as "solid liquids".

    Science.gov (United States)

    Kutza, Claudia; Metz, Hendrik; Kutza, Johannes; Syrowatka, Frank; Mäder, Karsten

    2013-05-01

    Solid lipid formulation systems are used to overcome oral bioavailability problems of poorly water-soluble drugs. One promising process is the conversion of a liquid lipid system in a free flowing powder by use of adsorbing excipients. The aim of this study was the detailed characterization of solid-liquid interactions in oil adsorbed to Fujicalin and Neusilin which were manufactured by means of dual asymmetric centrifugation or conventional mortar/pestle blending. The adsorption strength of the excipients was investigated by Benchtop-NMR and ESR spectroscopy revealing the highest adsorption power for the Neusilin products. The adsorbate production methods as well as the storage of the excipients impact their adsorption properties. Environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM) show that dual asymmetric centrifugation leads to a smoothing of the particle surface, whereas the mortar/pestle blending results in an uneven surface and particle destruction. The oil distribution at the particles is inhomogeneous for both production methods. The micropolarity of the adsorbed oil was investigated by ESR spectroscopy and multispectral fluorescence imaging. The adsorbing process on Neusilin leads to an increased micropolarity of the oil component. The release of the oil component in aqueous media could be verified by Benchtop-NMR and multispectral fluorescence imaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization.

    Science.gov (United States)

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A

    2014-06-17

    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  11. Cofiring coal-water slurry fuel with pulverized coal as a NOx reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    A low solids, low viscosity coal-water slurry fuel (CWSF) was formulated and produced from impounded bituminous coal fines and burned in a utility-scale boiler to investigate NOx emissions reduction during the cofiring of CWSF with pulverized coal. Tests were conducted at the Pennsylvania Electric Company (Penelec) Seward Station, located near Seward, Pennsylvania in a Babcock and Wilcox (B and W), front-wall fired, pulverized coal boiler (34 MWe). Two B and W pulverizers feed coal to six burners (two burner levels each containing three low-NOx burners). Approximately 20% of the thermal input was provided by CWSF, the balance by pulverized coal. There was a significant reduction of NOx emissions when cofiring CWSF and pulverized coal as compared to firing 100% pulverized coal. The level of reduction was dependent upon the cofiring configuration (i.e., cofiring in the upper three, lower three, or all six burners), with NOx emissions being reduced by as much as 26.5%. The reduction in NOx emissions was not due to the tempering effect of the water in the CWSF, because a greater reduction in NOx occurred when cofiring CWSF than when injecting the same quantity of water at the same boiler firing rate. This paper discusses the tests in detail and the proposed reburn mechanism for the NOx reduction. In addition, combustion test results from the front-wall fired unit at the Seward Station will be compared to CWSF cofire tests that have been conducted at cyclone-fired units at Tennessee Valley Authority`s (TVA) Paradise Station (704 MWe), Drakesboro, Kentucky and Southern Illinois Power Cooperative`s (SIPC) Marion, Illinois Station (33 MWe).

  12. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  13. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    Science.gov (United States)

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis.

  14. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    Science.gov (United States)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  15. The effect of lightning NOx production on surface ozone in the continental United States

    Directory of Open Access Journals (Sweden)

    Y. Choi

    2008-03-01

    Full Text Available Lightning NOx emissions calculated using the U.S. National Lightning Detection Network data were found to account for 30% of the total NOx emissions for July–August 2004, a period chosen both for having higher lightning NOx production and high ozone levels, thus maximizing the likelihood that such emissions could impact peak ozone levels. Including such emissions led to modest, but sometimes significant increases in simulated surface ozone when using the Community Multi-scale Air Quality Model (CMAQ. Three model simulations were performed, two with the addition of lightning NOx emissions, and one without. Domain-wide daily maximum 8-h ozone changes due to lightning NOx were less than 2 ppbv in 71% of the cases with a maximum of 10-ppbv; whereas the difference in 1-h ozone was less than 2 ppbv in 77% of the cases with a maximum of 6 ppbv. Daily maximum 1-h and 8-h ozone for grids containing O3 monitoring stations changed slightly, with more than 43% of the cases differing less than 2 ppbv. The greatest differences were 42-ppbv for both 1-h and 8-h O3, though these tended to be on days of lower ozone. Lightning impacts on the season-wide maximum 1-h and 8-h averaged ozone decreased starting from the 1st to 4th highest values (an average of 4th highest, 8-h values is used for attainment demonstration in the U.S.. Background ozone values from the y-intercept of O3 versus NOz curve were 42.2 and 43.9 ppbv for simulations without and with lightning emissions, respectively. Results from both simulations with lightning NOx suggest that while North American lightning production of NOx can lead to significant local impacts on a few occasions, they will have a relatively small impact on typical maximum levels and determination of Policy Relevant Background levels.

  16. NOX2 amplifies acetaldehyde-mediated cardiomyocyte mitochondrial dysfunction in alcoholic cardiomyopathy

    Science.gov (United States)

    Brandt, Moritz; Garlapati, Venkata; Oelze, Matthias; Sotiriou, Efthymios; Knorr, Maike; Kröller-Schön, Swenja; Kossmann, Sabine; Schönfelder, Tanja; Morawietz, Henning; Schulz, Eberhard; Schultheiss, Heinz-Peter; Daiber, Andreas; Münzel, Thomas; Wenzel, Philip

    2016-01-01

    Alcoholic cardiomyopathy (ACM) resulting from excess alcohol consumption is an important cause of heart failure (HF). Although it is assumed that the cardiotoxicity of the ethanol (EtOH)-metabolite acetaldehyde (ACA) is central for its development and progression, the exact mechanisms remain obscure. Murine cardiomyocytes (CMs) exposed to ACA or EtOH showed increased superoxide (O2•−) levels and decreased mitochondrial polarization, both being normalized by NADPH oxidase (NOX) inhibition. C57BL/6 mice and mice deficient for the ACA-degrading enzyme mitochondrial aldehyde dehydrogenase (ALDH-2−/−) were fed a 2% EtOH diet for 5 weeks creating an ACA-overload. 2% EtOH-fed ALDH-2−/− mice exhibited a decreased cardiac function, increased heart-to-body and lung-to-body weight ratios, increased cardiac levels of the lipid peroxidation product malondialdehyde (MDA) as well as increased NOX activity and NOX2/glycoprotein 91phox (NOX2/gp91phox) subunit expression compared to 2% EtOH-fed C57BL/6 mice. Echocardiography revealed that ALDH-2−/−/gp91phox−/− mice were protected from ACA-overload-induced HF after 5 weeks of 2% EtOH-diet, demonstrating that NOX2-derived O2•− contributes to the development of ACM. Translated to human pathophysiology, we found increased gp91phox expression in endomyocardial biopsies of ACM patients. In conclusion, ACM is promoted by ACA-driven mitochondrial dysfunction and can be improved by ablation of NOX2/gp91phox. NOX2/gp91phox therefore might be a potential pharmacological target to treat ACM. PMID:27624556

  17. Effect of zinc and cerium addition on property of copper-based adsorbents for phosphine adsorption

    Institute of Scientific and Technical Information of China (English)

    宁平; 易红宏; 余琼粉; 唐晓龙; 杨丽萍; 叶智青

    2010-01-01

    A series of copper-based activated carbon (AC) adsorbents were prepared in order to investigate the effect of Zn, Ce addition on Cu-based AC adsorbent for phosphine (PH3) adsorption removal from yellow phosphorous tail gas. N2 adsorption isotherm and X-ray diffrac-tion (XRD) results suggested that the addition of Zn could increase the adsorbent ultramicropores, decrease the adsorbent supermicropores and the adsorbent average pore diameter. Therefore it enhanced the PH3 adsorption capacity. Appropriate amoun...

  18. Studies on The Adsorption Capacity for Bilirubin of The Adsorbent Chitosan-β-Cyclodextrin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The adsorbent crosslinked chitosan-β-cyclodextrin (β-CD) was prepared by the reaction of glutaraldehyde with chitosan and β-cyclodextrin. This type of adsorbent has high adsorption capacity for unconjugated bilirubin. The adsorption capacity was related to the β-CD content of the adsorbent; phosphate buffer concentration; temperature; pH value; ionic strength and the adsorbent beads. The results indicated that the chitosan-β-CD was a good adsorbent for unconjugated bilirubin with high capacity.

  19. A comparison of adsorbed and grafted fibronectin coatings under static and dynamic conditions.

    Science.gov (United States)

    Montaño-Machado, Vanessa; Hugoni, Ludivine; Díaz-Rodríguez, Sergio; Tolouei, Ranna; Chevallier, Pascale; Pauthe, Emmanuel; Mantovani, Diego

    2016-09-21

    Coatings for medical devices are expected to improve their surface biocompatibility mainly by being bioactive, i.e. stimulating healing-oriented interactions with living cells, tissues and organs. In particular, for stent applications, coatings are often designed to enhance the endothelialization process. The coating strategy will be primarily responsible for the interfacial properties between the substrate and the coating, which must show high stability. Therefore, the present work aims at comparing the stability of adsorbed and grafted fibronectin, a protein well-known to promote endothelialization. Fibronectin coatings were deposited on fluorocarbon films generated by a plasma-based process on stainless steel substrates. Then, deformation tests were performed in order to simulate the stenting procedure and stability tests were completed under static and under-flow conditions. Coatings were characterized by XPS, AFM, water contact angle, immunostaining and ToF-SIMS analyses. The results show higher stability for the grafted coatings; indeed, the integrity of the protein simply adsorbed was strongly compromised especially after under-flow tests. Both coatings exhibited similar behavior after deformation and static tests. These results clearly show the impact of the coating strategy on the overall stability of the coatings as well as the importance of under-flow investigations.

  20. NADPH oxidase NOX2 defines a new antagonistic role for reactive oxygen species and cAMP/PKA in the regulation of insulin secretion.

    Science.gov (United States)

    Li, Ning; Li, Bin; Brun, Thierry; Deffert-Delbouille, Christine; Mahiout, Zahia; Daali, Youssef; Ma, Xiao-Juan; Krause, Karl-Heinz; Maechler, Pierre

    2012-11-01

    In insulin-secreting cells, expression of NADPH oxidase (NOX), a potent source of ROS, has been reported, along with controversial findings regarding its function. Here, the role of NOXs was investigated: first by expression and cellular localization in mouse and human pancreatic islets, and then by functional studies in islets isolated from Nox isoform-specific knockout mice. Both human and mouse β-cells express NOX, in particular NOX2. With use of Nox isoform-specific knockout mice, functional analysis revealed Nox2 as the predominant isoform. In human islets, NOX2 colocalized with both insulin granules and endosome/lysosome membranes. Nox2-deficient islets stimulated with 22.8 mmol/L glucose exhibited potentiation of insulin release compared with controls, an effect confirmed with in vitro knockdown of Nox2. The enhanced secretory function in Nox2-deficient islets was associated with both lower superoxide levels and elevated cAMP concentrations. In control islets, GLP-1 and other cAMP inducers suppressed glucose-induced ROS production similarly to Nox2 deficiency. Inhibiting cAMP-dependent protein kinase reduced the secretory response in Nox2-null islets, although not in control islets. This study ascribes a new role for NOX2 in pancreatic β-cells as negative modulator of the secretory response, reducing cAMP/PKA signaling secondary to ROS generation. Results also show reciprocal inhibition between the cAMP/PKA pathway and ROS.

  1. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  2. A Review of Adsorbents Used for Storm Water Runoff Cleaning

    Directory of Open Access Journals (Sweden)

    Andrius Agintas

    2011-04-01

    Full Text Available Heavy metals, petroleum products, sediments and other pollutants get in the environment with insufficiently cleaned storm water runoff. Contaminated storm water runoff is one of the most significant sources for pollution in rivers, lakes and estuaries. Storm water runoff must be treated using not only simple methods but also using adsorption processes. Adsorbents can be natural organic, natural nonorganic and synthetic. Main adsorption characteristic, way of utilization and storm water runoff inflow rate, quantity and pollution need to be investigated when trying to use adsorbents in reasonably way. It is very important to treat storm water properly during the primary mechanical treatment otherwise adsorbents will act as mechanical filters.Article in Lithuanian

  3. Synthesis of silica adsorbent and its selective separation for flavone

    Institute of Scientific and Technical Information of China (English)

    Yuqing ZHANG; Yahui ZHANG; Zhen QIN; Zhenrong MA

    2008-01-01

    One kind of built,in silica adsorbent, which has high adsorption selectivity to rutin, was synthesized using molecular imprinting technology by the following steps:synthesis of precursor from the reaction between water soluble rutin (as template molecule) and the functional monomer chloropropyltriethoxysilane, co,hydrolysis of the precursor and tetraethoxysilane (TEOS), sol,gel aging process, and removal of template molecules. The results of adsorption experiment show that this adsorbent has a high adsorption capacity for rutin, and good adsorptionselectivity towards rutin even under the interference of a flavone with a similar structure. TEM photos suggest that nanocaves corresponding to rutin were formed inside the adsorbent while FTIR spectra indicate that new bond was generated during the recognition process.

  4. Electronic and electrochemical doping of graphene by surface adsorbates

    Directory of Open Access Journals (Sweden)

    Hugo Pinto

    2014-10-01

    Full Text Available Many potential applications of graphene require its precise and controllable doping with charge carriers. Being a two-dimensional material graphene is extremely sensitive to surface adsorbates, so its electronic properties can be effectively modified by deposition of different atoms and molecules. In this paper, we review two mechanisms of graphene doping by surface adsorbates, namely electronic and electrochemical doping. Although, electronic doping has been extensively studied and discussed in the literature, much less attention has been paid to electrochemical doping. This mechanism can, however, explain the doping of graphene by adsorbates for which no charge transfer is expected within the electronic doping model. In addition, electrochemical doping is in the origin of the hysteresis effects often observed in graphene-based field effect transistors when operating in the atmospheric environment.

  5. ADSORPTION OF DINITROPHENOLS ONTO POLYMERIC ADSORBENTS AND ITS MECHANISM

    Institute of Scientific and Technical Information of China (English)

    SHIZuoqing; XUMancai; 等

    2000-01-01

    The adsorption of 2,4-dinitrophenol and 2,6-dinitrophenol on non-polar and polar adsorbents was studied.The results showed that the equilibrium adsorption did not comply with the Langmuir equation and was not mono-layer adsorption .It is of interest to notice that the effect of pH on the adsorption of 2,4-or 2,6-dinitrophenol onto ADS-7 and ADS-21 was very small,The result is explained by hydrogen bonding interaction between 2,4-or 2,6-dinitrophenol and the adsorbent ADS-21.The large adsorption capacity of dinitrophenol onto ADS-21,which was about 500mg/g at an equilibrium concentration of 400mg/L,and the small dinitrophenol leakage in the effluent from ADS-21 column presented a good prospect for treatment of wastewater containing dinitrophenol with adsorbent ADS-21.

  6. Potential synergic effect between MOR and BEA zeolites in NOx SCR with methane: A dual bed design approach

    OpenAIRE

    Mendes, Acácio Nobre; Matynia, Alexis; Toullec, Alain; Capela, Sandra; Ribeiro, M.Filipa; Henriques, Carlos; Costa, Patrick Da

    2015-01-01

    International audience; The selective catalytic reduction of NOx with methane (NOx CH4-SCR) under lean conditions was investigated with catalysts based on two different zeolite structures (MOR and BEA) containing Pd and Ce. The catalytic performance for NO oxidation to NO2 reaction, considered an important first key step in the NOx CH4-SCR mechanism, was also assessed.Pd(0.3)Ce(2)-HBEA was found to be very active for NO oxidation but exhibits poor activity for NOx CH4-SCR. Conversely, Pd(0.3)...

  7. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells.

    Science.gov (United States)

    Chang, Kyung-Hwa; Park, Jung-Min; Lee, Chang Hoon; Kim, Bumseok; Choi, Kyung-Chul; Choi, Seong-Jin; Lee, Kyuhong; Lee, Moo-Yeol

    2017-02-01

    Smoking is a well-established risk factor for cardiovascular diseases. Oxidative stress is one of the common etiological factors, and NADPH oxidase (NOX) has been suggested as a potential mediator of oxidative stress. In this study, cigarette smoke (CS)-induced superoxide production was characterized in vascular smooth muscle cells (VSMC). CS was prepared in forms of cigarette smoke extract (CSE) and total particulate matter (TPM). Several molecular probes for reactive oxygen species were trialed, and dihydroethidium (DHE) and WST-1 were chosen for superoxide detection considering the autofluorescence, light absorbance, and peroxidase inhibitory activity of CS. Both CSE and TPM generated superoxide in a VSMC culture system by stimulating cells to produce superoxide and by directly producing superoxide in the aqueous solution. NOX, specifically NOX1 was found to be an important cellular source of superoxide through experiments with the NOX inhibitors diphenyleneiodonium (DPI) and VAS2870 as well as isoform-specific NOX knockdown. NOX inhibitors and the superoxide dismutase mimetic TEMPOL reduced the cytotoxicity of CSE, thus suggesting the contribution of NOX1-derived superoxide to cytotoxicity. Since NOX1 is known to mediate diverse pathological processes in the vascular system, NOX1 may be a critical effector of cardiovascular toxicity caused by smoking. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Antimicrobial Applications of Ambient--Air Plasmas

    Science.gov (United States)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  9. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    KAUST Repository

    Bohon, Myles

    2015-06-01

    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde

  10. Preparation of thiophilic paramagnetic adsorbent for separation of antibodies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micron-sized mierospheres with superparamagnetic property were synthesized with vinyl acetate and divinylbenzene by microsuspension polymerization. After the complete alcoholysis, these hydroxyl-functionalized microspheres were activated by divinylfone and modified with mercaptoethanol to prepare the thiophilic magnetic adsorbent, which was used to specifically isolate immunoglobulin G (IgG) from human serum. This thiophilic magnetic adsorbent performed an evident salt-dependent adsorption behavior for IgG. Due to their salt-promoted adsorption towards IgG under high salt concentration, the absorbed antibodies could be extracted in low salt concentration with high purity.

  11. AQUATIC PHOTOLYSIS OF OXY-ORGANIC COMPOUNDS ADSORBED ON GOETHITE.

    Science.gov (United States)

    Goldberg, Marvin C.

    1985-01-01

    Organic materials that will not absorb light at wavelengths longer than 295 nanometers (the solar wavelength cutoff) may nevertheless, undergo electron transfer reactions initiated by light. These reactions occur when the organic materials are adsorbed as ligand complexes to the surface of iron oxy-hydroxide (goethite). The adsorbed materials can be either inner or outer coordination sphere complexes. Goethite was chosen as the iron oxyhydroxide surface because it has the highest thermodynamic stability of any of the oxyhydroxides in water and it can be synthesized easily, with high purity.

  12. Microstructure of sepiolite and its adsorbing properties to dodecanol

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; LIANG Jin-sheng; TANG Qing-guo; MENG Jun-ping; WU Zi-zhao; LI Guo-sheng

    2006-01-01

    The acid treatment process,testing methods,microstrcture of sepiolite mineral materials and their adsorbing properties to dodecanol were studied respectively. The results show that by acid treatment to raw sepiolite thinner fibre clusters and single fibres turn up,the pore volume and the number of micropore and mesopore in sepiolite all increase,and adsorbing properties of modified sepiolite to dodecanol are improved significantly. In the combined materials of dodecanol and sepiolite prepared under the best condition,the proportion of dodecanol is 67.96%,and then it is much higher than the result calculated from traditional BET method.

  13. Grazing incidence ion erosion in the presence of adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, A; Michely, T [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany); Rosandi, Y; Urbassek, H M [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, 67663 Kaiserslautern (Germany)], E-mail: redinger@ph2.uni-koeln.de

    2009-06-15

    The effect of a background pressure of adsorbable species on sputtering and surface damage in grazing incidence ion erosion of Pt(111) is investigated by scanning tunneling microscopy and molecular dynamics simulations. The background pressure implies a partial surface coverage with adsorbates, which in turn causes an enhancement of the erosion rate by a factor of up to 40 compared to the clean case. Partial pressures of molecular oxygen and carbon monoxide were maintained during ion erosion with 5 keV Ar{sup +} for various grazing angles between 81 deg. and 87 deg. and temperatures ranging from 400 to 550 K.

  14. Hydrogen molecule on lithium adsorbed graphene: A DFT study

    Science.gov (United States)

    Kaur, Gagandeep; Gupta, Shuchi; Gaganpreet, Dharamvir, Keya

    2016-05-01

    Electronic structure calculations for the adsorption of molecular hydrogen on lithium (Li) decorated and pristine graphene have been studied systematically using SIESTA code [1] within the framework of the first-principle DFT under the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA)[2], including spin polarization. The energy of adsorption of hydrogen molecule on graphene is always enhanced by the presence of co-adsorbed lithium. The most efficient adsorption configuration is when H2 is lying parallel to lithium adsorbed graphene which is in contrast to its adsorption on pristine graphene (PG) where it prefers perpendicular orientation.

  15. Nitrogen oxides and methane treatment by non-thermal plasma

    Science.gov (United States)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  16. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats

    Science.gov (United States)

    López-Álvarez, Guadalupe S.; Wojdacz, Tomasz K.; García-Cuellar, Claudia M.; Monroy-Ramírez, Hugo C.; Rodríguez-Segura, Miguel A.; Pacheco-Rivera, Ruth A.; Valencia-Antúnez, Carlos A.; Cervantes-Anaya, Nancy; Soto-Reyes, Ernesto; Vásquez-Garzón, Verónica R.; Sánchez-Pérez, Yesennia; Villa-Treviño, Saúl

    2017-01-01

    ABSTRACT The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4) using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively) after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats. PMID:27895046

  17. A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor

    Science.gov (United States)

    Xiao, Yihong; Wang, Dongmei; Cai, Guohui; Zheng, Yong; Zhong, Fulan

    2016-11-01

    NOx is a notorious emission from motor vehicles and chemical factories as the precursor of acid rain and photochemical smog. Although zirconia-based NOx sensors have been developed and showed high sensitivity and selectivity at a high temperature of above 800 °C, they fail to show good performance, and even don’t work at the typical work temperature window of the automotive engine (type oxide Gd1‑xCaxAlO3‑δ(GCA) as the electrolyte and NiO as the sensing electrode. NOx sensing properties of the device were investigated at the temperature region of 400–500 °C. The response current value at ‑300 mV was almost linearly proportional to the NOx concentration between 300 and 500 ppm at 500 °C. At such a temperature, the optimal sensor gave the highest NO2 sensitivity of 20.15 nA/ppm, and the maximum response current value reached 5.57 μA. Furthermore, a 90% response and 90% recover time to 500 ppm NO2 were about 119 and 92 s, respectively. The excellent selectivity and stability towards NOx sensing showed the potential application of the sensor in motor vehicles.

  18. Nuclear Nox4 Role in Stemness Power of Human Amniotic Fluid Stem Cells

    Directory of Open Access Journals (Sweden)

    Tullia Maraldi

    2015-01-01

    Full Text Available Human amniotic fluid stem cells (AFSC are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expand in vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(PH oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4 depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.

  19. Air quality benefits of universal particle filter and NOx controls on diesel trucks

    Science.gov (United States)

    Tao, L.; Mcdonald, B. C.; Harley, R.

    2015-12-01

    Heavy-duty diesel trucks are a major source of black carbon/particulate matter and nitrogen oxide emissions on urban and regional scales. These emissions are relevant to both air quality and climate change. Since 2010 in the US, new engines are required to be equipped with emission control systems that greatly reduce both PM and NOx emissions, by ~98% relative to 1988 levels. To reduce emissions from the legacy fleet of older trucks that still remain on the road, regulations have been adopted in Califonia to accelerate the replacement of older trucks and thereby reduce associated emissions of PM and NOx. Use of diesel particle filters will be widespread by 2016, and universal use of catalytic converters for NOx control is required by 2023. We assess the air quality consequences of this clean-up effort in Southern California, using the Community Multiscale Air Quality model (CMAQ), and comparing three scenarios: historical (2005), present day (2016), and future year (2023). Emissions from the motor vehicle sector are mapped at high spatial resolution based on traffic count and fuel sales data. NOx emissions from diesel engines in 2023 are expected to decrease by ~80% compared to 2005, while the fraction of NOx emitted as NO2 is expected to increase from 5 to 18%. Air quality model simulations will be analyzed to quantify changes in NO2, black carbon, particulate matter, and ozone, both basin-wide and near hot spots such as ports and major highways.

  20. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non