WorldWideScience

Sample records for plasma neutrino emission

  1. Differential neutrino rates and emissivities from the plasma process in astrophysical systems

    International Nuclear Information System (INIS)

    Ratkovic, Sasa; Iyer Dutta, Sharada; Prakash, Madappa

    2003-01-01

    The differential rates and emissivities of neutrino pairs from an equilibrium plasma are calculated for the wide range of density and temperature encountered in astrophysical systems. New analytical expressions are derived for the differential emissivities which yield total emissivities in full agreement with those previously calculated. The photon and plasmon pair production and absorption kernels in the source term of the Boltzmann equation for neutrino transport are provided. The appropriate Legendre coefficients of these kernels, in forms suitable for multi-group flux-limited diffusion schemes are also computed

  2. Flipped neutrino emissivity of hot plasma in supernova core

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India))

    1994-05-15

    We calculate the energy loss due to wrong-helicity sterile neutrinos produced due to the decay of plasmons into flipped neutrino pairs at relativistic temperatures and densities in the core of a nascent neutron star and compare our results with other processes.

  3. Neutrino Emission from Supernovae

    Science.gov (United States)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  4. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    positron or electron–proton plasma in the context of early universe, stars and supernova ... proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter- .... for electron also with additional electric potential term.

  5. Astrophysical Aspects of Neutrino Dynamics in Ultradegenerate Quark Gluon Plasma

    Directory of Open Access Journals (Sweden)

    Souvik Priyam Adhya

    2017-01-01

    Full Text Available The cardinal focus of the present review is to explore the role of neutrinos originating from the ultradense core of neutron stars composed of quark gluon plasma in the astrophysical scenario. The collective excitations of the quarks involving the neutrinos through the different kinematical processes have been studied. The cooling of the neutron stars as well as pulsar kicks due to asymmetric neutrino emission has been discussed in detail. Results involving calculation of relevant physical quantities like neutrino mean free path and emissivity have been presented in the framework of non-Fermi liquid behavior as applicable to ultradegenerate plasma.

  6. Flipped neutrino emissivity from strange matter

    International Nuclear Information System (INIS)

    Goyal, A.; Dutta, S.

    1994-01-01

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [q+ν - (bar ν + )→q+ν + (bar ν - )] and the quark neutrino pair bremsstrahlung process [q+q→q+q+ν - bar ν - (ν+bar ν + )]. We determine the composition of quark matter just after core bounce and examine the effect of neutrino degeneracy on the emission rate and mean free path of the wrong helicity neutrinos

  7. Neutral currents and neutrino emission of stars

    International Nuclear Information System (INIS)

    Gershtejn, S.S.; Folomeshkin, V.N.; Khlopov, M.Yu.; Eramzhyan, R.A.

    1975-01-01

    Possible emission of ν sub(e) ν tilde sub(e) and ν sub(μ) ν tilde sub(μ) pairs in nucleon collisions or nuclear transitions has been studied. Neutrino pair emission in neutron collision turns out to be essential for cooling of neutron stars. Neutrino pair emission in nuclear transitions is effective just before the core implosion of a hot massive star and at the initial stage of implosion (till a full dissociation of nuclei into nucleons)

  8. Plasma Lens for Muon and Neutrino Beams

    Science.gov (United States)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  9. Flipped neutrino emissivity from strange matter

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, A.; Dutta, S. (Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India))

    1994-04-15

    Energy loss due to wrong helicity sterile neutrinos through spin flip processes leads to rapid cooling of nascent neutron stars. The observed cooling of neutron stars associated with SN 1987A seems to preclude the existence of Dirac neutrinos with a mass in excess of 20 keV. Assuming that nuclear matter in the core of the neutron star undergoes a phase transition to quark matter leading to a strange star or a neutron star with a strange matter core, we examine the emission of flipped Dirac neutrinos for two dominant processes: quark-neutrino scattering [[ital q]+[nu][sub [minus

  10. Plasma Lens for Muon and Neutrino Beams

    International Nuclear Information System (INIS)

    Kahn, S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-01-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented

  11. Collective neutrino-pair emission due to Cooper pairing of protons in superconducting neutron stars

    International Nuclear Information System (INIS)

    Leinson, L.B.

    2001-01-01

    The neutrino emission due to formation and breaking of Cooper pairs of protons in superconducting cores of neutron stars is considered with taking into account the electromagnetic coupling of protons to ambient electrons. It is shown that collective response of electrons to the proton quantum transition contributes coherently to the complete interaction with a neutrino field and enhances the neutrino-pair production. Our calculation shows that the contribution of the vector weak current to the ννbar emissivity of protons is much larger than that calculated by different authors without taking into account the plasma effects. Partial contribution of the pairing protons to the total neutrino radiation from the neutron star core is very sensitive to the critical temperatures for the proton and neutron pairing. We show domains of these parameters where the neutrino radiation, caused by a singlet-state pairing of protons is dominating

  12. The physics of collective neutrino-plasma interactions

    International Nuclear Information System (INIS)

    Shukla, P.K.; Silva, L.O.; Dawson, J.M.; Bethe, H.; Bingham, R.; Stenflo, L.; Mendonca, J.T.; Dalhed, S.

    1999-01-01

    A review of recent work on collective neutrino-plasma interactions is presented. The basic physical concepts of this new field as well as some possible astrophysical problems where the physics of collective neutrino-plasma interactions can have a radical impact, are discussed. (author)

  13. Plasma emission mechanisms

    International Nuclear Information System (INIS)

    Melrose, D.B.

    1985-01-01

    Only three emission processes are thought to play a role in solar radio emission: plasma emission, gyromagnetic emission and bremsstrahlung. In this chapter plasma emission is discussed and the processes involved in its production are treated, namely, the generation of Langmuir turbulence, the partial conversion into fundamental transverse radiation, production of secondary Langmuir waves and the generation of second-harmonic transverse radiation. (U.K.)

  14. Neutrino emission in inhomogeneous pion condensed quark matter

    International Nuclear Information System (INIS)

    Huang, Xuguang; Wang, Qun; Zhuang, Pengfei

    2008-01-01

    It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated. (author)

  15. Neutrino energy loss rate in a stellar plasma

    International Nuclear Information System (INIS)

    Esposito, S.; Mangano, G.; Miele, G.; Picardi, I.; Pisanti, O.

    2003-01-01

    We review the purely leptonic neutrino emission processes, contributing to the energy loss rate of the stellar plasma. We perform a complete analysis up to the first order in the electromagnetic coupling constant. In particular the radiative electromagnetic corrections, at order α, to the process e + e - →νν-bar at finite density and temperature have been computed. This process gives one of the main contributions to the cooling of stellar interior in the late stages of star evolution. As a result of the analysis we find that the corrections affect the energy loss rate, computed at tree level, by a factor (-4-1)% in the temperature and density region where the pair annihilation is the most efficient cooling mechanism

  16. Neutrino emission spectra of collapsing degenerate stellar cores - Calculations by the Monte Carlo method

    International Nuclear Information System (INIS)

    Levitan, Iu.L.; Sobol, I.M.; Khlopov, M.Iu.; Chechetkin, V.M.

    1982-01-01

    The variation of the hard part of the neutrino emission spectra of collapsing degenerate stellar cores with matter having a small optical depth to neutrinos is analyzed. The interaction of neutrinos with the degenerate matter is determined by processes of neutrino scattering on nuclei (without a change in neutrino energy) and neutrino scattering on degenerate electrons, in which the neutrino energy can only decrease. The neutrino emission spectrum of a collapsing stellar core in the initial stage of the onset of opacity is calculated by the Monte Carlo method: using a central density of 10 trillion g/cu cm and, in the stage of deep collapse, for a central density of 60 trillion g/cu cm. In the latter case the calculation of the spectrum without allowance for effects of neutrino degeneration in the central part of the collapsing stellar core corresponds to the maximum possible suppression of the hard part of the neutrino emission spectrum

  17. A model for neutrino emission from nuclear accretion disks

    Science.gov (United States)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  18. Spin-down of neutron stars by neutrino emission

    International Nuclear Information System (INIS)

    Dvornikov, Maxim; Dib, Claudio

    2010-01-01

    We study the spin-down of a neutron star during its early stages due to the neutrino emission. The mechanism we consider is the subsequent collisions of the produced neutrinos with the outer shells of the star. We find that this mechanism can indeed slow down the star rotation but only in the first tens of seconds of the core formation, which is when the appropriate conditions of flux and collision rate are met. We find that this mechanism can extract less than 1% of the star angular momentum, a result which is much less than previously estimated by other authors.

  19. A time dependent search for neutrino emission from micro-quasars with the ANTARES telescope

    International Nuclear Information System (INIS)

    Galata, S.

    2012-01-01

    The ANTARES collaboration has successfully built, deployed and is currently operating an underwater Cherenkov detector dedicated to high energy neutrino astronomy. The primary aim of the experiment is to detect cosmic sources of neutrinos in order to reveal the production sites of cosmic rays. Among the sources likely to be significant sources of neutrinos are those accelerating relativistic jets, like gamma ray bursts, active galactic nuclei and micro-quasars. Micro-quasars are binary systems formed by a compact object accreting mass from a companion star. The mass transfer causes the emission of X-rays, whereas the onset of magnetic forces in the accreting plasma can cause the acceleration of relativistic jets, which are observed by radio telescopes via their non-thermal synchrotron emission. In some systems, a correlation between X-ray and radio light curves indicates an interplay between accretion and ejection respectively. Some micro-quasars are also high energy and very high energy gamma ray emitters. In this thesis, a time dependent search for neutrino emission from micro-quasars was performed with a multi-messenger approach (photon/neutrino). The data from the X-ray monitors RXTE/ASM and SWIFT/BAT, and the gamma-ray telescope FERMI/LAT were used to select transient events in which the source was supposed to accelerate relativistic jets. The restriction of the analysis to the ejection periods allows a drastic reduction of atmospheric muon and neutrino background, and thus to increase the chances of a discovery. The search was performed with the ANTARES data taken between 2007 and 2010. Statistical analysis was carried out using an un-binned likelihood method based on a likelihood ratio test. The cuts for the event selection were optimized in order to maximize the chance of a discovery. As no neutrino signal was observed in correlation with these micro-quasars, upper limits on the neutrino fluxes of the micro-quasars under study were calculated and compared

  20. Neutrino emission from gamma-ray burst fireballs, revised.

    Science.gov (United States)

    Hümmer, Svenja; Baerwald, Philipp; Winter, Walter

    2012-06-08

    We review the neutrino flux from gamma-ray bursts, which is estimated from gamma-ray observations and used for the interpretation of recent IceCube data, from a particle physics perspective. We numerically calculate the neutrino flux for the same astrophysical assumptions as the analytical fireball neutrino model, including the dominant pion and kaon production modes, flavor mixing, and magnetic field effects on the secondary muons, pions, and kaons. We demonstrate that taking into account the full energy dependencies of all spectra, the normalization of the expected neutrino flux reduces by about one order of magnitude and the spectrum shifts to higher energies, where we can pin down the exact origin of the discrepancies by the recomputation of the analytical models. We also reproduce the IceCube-40 analysis for exactly the same bursts and same assumptions and illustrate the impact of uncertainties. We conclude that the baryonic loading of the fireballs, which is an important control parameter for the emission of cosmic rays, can be constrained significantly with the full-scale experiment after about ten years.

  1. Baryon superfluidity and neutrino emissivity of neutron stars

    International Nuclear Information System (INIS)

    Takatsuka, Tatsuyuki; Tamagaki, Ryozo

    2004-01-01

    For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the properties of neutron star matter determined under the equation of state, which is obtained by introducing a repulsive three-body force universal for all the baryons so as to assure the maximum mass of neutron stars compatible with observations. The case without a meson condensate is treated. We choose the inputs provided by nuclear physics, with a reliable allowance. Paying attention to the density dependence of the critical temperatures of the baryon superfluids, which reflect the nature of the baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in regions both with and without hyperon mixing. By comparing the calculated emissivities with respect to densities, we can conclude that at densities lower than about 4 times the nuclear density, the Cooper-pair process arising from the neutron 3 P 2 superfluid dominates, while at higher densities the hyperon direct Urca process dominates. For the hyperon direct Urca process to be a candidate responsible for rapid cooling compatible with observations, a moderately large energy gap of the Λ-particle 1 S 0 superfluid is required to suppress its large emissivity. The implications of these results are discussed in the relation to thermal evolution of neutron stars. (author)

  2. Neutrinos

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Standard Model predicts that the neutrinos are massless and do not mix. Generic extensions of the Standard Model predict that neutrinos are massive (but, very likely, much lighter than the charged fermions). Therefore, the search for neutrino masses and mixing tests the Standard Model and probes new phasics. Measurements of various features of the fluxes of atmospheric, solar and, more recently, reactor neutrinos have provided evidence for neutrino oscillations and therefore for neutrino masses and mixing. These results have significant theoretical implications: new physics exists, and its scale can be estimated. There are interesting lessons for grand unified theories and for models of extra dimensions. The measured neutrino flavor parameters pose a challenge to flavor models.

  3. Photon and neutrino emission from active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Bonn (Germany); Becker, Julia K. [Inst. for Phys., Univ. Bochum, Bochum (Germany); Caramete, Laurentiu I. [MPI for Radioastronomy, Bonn (Germany); Fraschetti, Federico [Inst. for Phys., Univ. Bochum, Bochum (Germany); Kneiske, Tanja [Inst. fuer Exp.Physik, Univ. Hamburg, Hamburg (Germany); Meli, Athina [Erlangen Center for Astroparticle Physics, University Erlangen-Nuremberg (Germany); Stanev, Todor [Bartol Research Inst., Univ. of Delaware, Newark, DE (United States)

    2011-08-15

    Supermassive black holes in the centers of galaxies are very common. They are known to rotate, accrete, spin down and eject highly relativistic jets; those jets pointed at us all seem to show a spectrum with two strong bumps, one in the TeV photon range, and one in X-rays - ordered by the emission frequency of the first bump this constitutes the blazar sequence. Here we wish to explain this sequence as primary synchrotron emission of energetic electrons and protons, and secondary emission from interactions at the first strong shockwave pattern in the relativistic jet. With two key assumptions on particle scattering, this concept predicts that the two basic maximum peak frequencies {nu}{sub syn,e,p} scale with the mass of the central black hole as {nu}{sub e,p{approx}}M{sub BH}{sup -1/2}, of {nu}{sub syn,p}/{nu}{sub syn,e}=(m{sub p}/m{sub e}){sup 3}, and the luminosities with the mass itself L{sub e,p{approx}}M{sub BH}. Due to strong losses of the leptons, the peak luminosities are generally the same, but with large variations around equality. This model predicts large fluxes in ultra high energy cosmic rays, and also large neutrino luminosities.

  4. Neutrino (antineutrino) effective charge in a magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Serbeto, A.; Rios, L.A.; Mendonca, J.T.; Shukla, P.K.

    2004-01-01

    Using dynamical techniques of the plasma physics, the neutrino (antineutrino) effective charge in a magnetized dense electron-positron plasma is determined here. It shown that its value, which is determined by the plasma collective processes, depends mainly on the propagation direction of plasma waves and neutrinos against the external magnetic field direction. The direction dependence of the effective charge occurs due to the fact that the magnetic field breaks the plasma isotropy. The present theory gives a unified picture of the problem which is valid for an external magnetic field below the Landau-Schwinger critical value. Comparison with some of the results from the quantum field theory has been made

  5. Delayed pulsar kicks from the emission of sterile neutrinos

    International Nuclear Information System (INIS)

    Kusenko, Alexander; Mandal, Bhabani Prasad; Mukherjee, Alok

    2008-01-01

    The observed velocities of pulsars suggest the possibility that sterile neutrinos with mass of several keV are emitted from a cooling neutron star. The same sterile neutrinos could constitute all or part of cosmological dark matter. The neutrino-driven kicks can exhibit delays depending on the mass and the mixing angle, which can be compared with the pulsar data. We discuss the allowed ranges of sterile neutrino parameters, consistent with the latest cosmological and x-ray bounds, which can explain the pulsar kicks for different delay times

  6. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, D.M.; Burns, K.; Campbell, L.W.; Greenfield, B.; Kos, M.S., E-mail: markskos@gmail.com; Orrell, J.L.; Schram, M.; VanDevender, B.; Wood, L.S.; Wootan, D.W.

    2015-03-11

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  7. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Baret, B. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, Paris Cedex 13, F-75205 France (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo de Correos 22085, Valencia, 46071 Spain (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, Marseille Cedex 13, 13388 France (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, Bologna, 40127 Italy (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park 105, Amsterdam, 1098XG The Netherlands (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, Roma, 00185 Italy (Italy); Caramete, L., E-mail: antares.spokesperson@in2p3.fr [Institute for Space Sciences, Bucharest, Măgurele, R-77125 Romania (Romania); and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  8. Type II successful supernovae, the anatomy of shocks: neutrino emission and the adiabatic index

    International Nuclear Information System (INIS)

    Kahana, S.; Baron, E.; Cooperstein, J.

    1983-01-01

    Hydrodynamic calculations of stellar collapse in Type II Supernova are described using a variable stiffness and compressibility for the nuclear equation of state at high density. Initial models employing a relatively small mass core with low central entropy are necessary to achieve viable shocks; near success the models are sensitive to both neutrino emission and the high density equation of state. The treatment of neutrino production and transport is sketched and recent results reported

  9. Pulsar acceleration by asymmetric emission of sterile neutrinos

    CERN Document Server

    Nardi, E; Nardi, Enrico; Zuluaga, Jorge I.

    2001-01-01

    A convincing explanation for the observed pulsar large peculiar velocities is still missing. We argue that any viable particle physics solution would most likely involve the resonant production of a non-interacting neutrino $\

  10. MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS

    International Nuclear Information System (INIS)

    Croft, S.; Kaplan, D. L.; Tingay, S. J.; Murphy, T.; Rowlinson, A.; Bell, M. E.; Adrián-Martínez, S.; Ardid, M.; Ageron, M.; Aubert, J.-J.; Albert, A.; André, M.; Anton, G.; Avgitas, T.; Baret, B.

    2016-01-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼10 37 erg s −1 for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events

  11. MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S. [University of California, Berkeley, Astronomy Department, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Tingay, S. J. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Murphy, T.; Rowlinson, A. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Bell, M. E. [CSIRO Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Adrián-Martínez, S.; Ardid, M. [Institut d’Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC)—Universitat Politècnica de València. C/ Paranimf 1, E-46730 Gandia (Spain); Ageron, M.; Aubert, J.-J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, F-13288, Marseille (France); Albert, A. [GRPHE—Université de Haute Alsace—Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Avgitas, T.; Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris (France); Collaboration: for the MWA Collaboration; for the ANTARES Collaboration; for the TAROT Collaboration; for the ROTSE Collaboration; and others

    2016-04-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼10{sup 37} erg s{sup −1} for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.

  12. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    Science.gov (United States)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  13. Supernova neutrino detection

    International Nuclear Information System (INIS)

    Selvi, M.

    2005-01-01

    Neutrinos emitted during a supernova core collapse represent a unique feature to study both stellar and neutrino properties. After discussing the details of the neutrino emission in the star and the effect of neutrino oscillations on the expected neutrino fluxes at Earth, a review of the detection techniques is presented in this paper, with particular attention to the problem of electron neutrino detection

  14. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Kiuchi, Kenta [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto, Kyoto 606-8502 (Japan)

    2017-10-10

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detection of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.

  15. Orbital angular momentum of photons, plasmons and neutrinos in a plasma

    Science.gov (United States)

    Mendonca, J. T.; Thidé, Bo; Then, H.; Ali, S.

    2009-11-01

    We study the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscatering processes [1]. Angular momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived. The characteristic features of the plasmon modes with finite angular momentum are also discussed. The potential problem is solved and the angular momentum is explicitly calculated [2]. Finally, it is shown that an electron-neutrino beam, propagating in a background plasma, can be decomposed into orbital momentum states, similar to that of photon states. Coupling between different neutrino states, in the presence of a plasma vortex, is considered. We show that plasma vorticity can be transfered to the neutrino beam, which is relevant to the understanding of the neutrino sources in astrophysics. [1] J.T. Mendonca et al., PRL 102, 185005 (2009). [2] S. Ali and J.T. Mendonca, PoP (2009) submitted. [3] J.T. Mendonca and B. Thide, Europhys. Lett. 84, 41001 (2008).

  16. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Albert, A.; Al Samarai, I.; Andre, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Classen, F.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L.; Galata, S.; Gay, P.; Geisselsoder, S.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A.; Hello, Y.; Hernandez-Rey, J.; Herold, B.; Hossl, J.; Hugon, C.; James, C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefevre, D.; Leonora, E.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.; Martini, S.; Michael, T.; Montaruli, T.; Morganti, M.; Muller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G.E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Samtleben, D.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schussler, F.; Seitz, T.; Shanidze, R.; Sieger, C.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.; Stolarczyk, T.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J.; Zuniga, J.; the ANTARES Collaboration

    2014-01-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma

  17. Limits on neutrino emission from gamma-ray bursts with the 40 string IceCube detector.

    Science.gov (United States)

    Abbasi, R; Abdou, Y; Abu-Zayyad, T; Adams, J; Aguilar, J A; Ahlers, M; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Beatty, J J; Bechet, S; Becker, J K; Becker, K-H; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Braun, J; Brown, A M; Buitink, S; Carson, M; Chirkin, D; Christy, B; Clem, J; Clevermann, F; Cohen, S; Colnard, C; Cowen, D F; D'Agostino, M V; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Demirörs, L; Depaepe, O; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dierckxsens, M; Dreyer, J; Dumm, J P; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Geisler, M; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Grant, D; Griesel, T; Gross, A; Grullon, S; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Heinen, D; Helbing, K; Herquet, P; Hickford, S; Hill, G C; Hoffman, K D; Homeier, A; Hoshina, K; Hubert, D; Huelsnitz, W; Hülss, J-P; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K-H; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kemming, N; Kenny, P; Kiryluk, J; Kislat, F; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, S; Koskinen, D J; Kowalski, M; Kowarik, T; Krasberg, M; Krings, T; Kroll, G; Kuehn, K; Kuwabara, T; Labare, M; Lafebre, S; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lehmann, R; Lünemann, J; Madsen, J; Majumdar, P; Marotta, A; Maruyama, R; Mase, K; Matis, H S; Meagher, K; Merck, M; Mészáros, P; Meures, T; Middell, E; Milke, N; Miller, J; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Nam, J W; Naumann, U; Niessen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Ono, M; Panknin, S; Paul, L; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Porrata, R; Posselt, J; Price, P B; Prikockis, M; Przybylski, G T; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Rodrigues, J P; Roth, P; Rothmaier, F; Rott, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Schmidt, T; Schoenwald, A; Schukraft, A; Schultes, A; Schulz, O; Schunck, M; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Slipak, A; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stephens, G; Stezelberger, T; Stokstad, R G; Stoyanov, S; Strahler, E A; Straszheim, T; Sullivan, G W; Swillens, Q; Taavola, H; Taboada, I; Tamburro, A; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Tosi, D; Turčan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Voigt, B; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Weaver, C; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wischnewski, R; Wissing, H; Wolf, M; Woschnagg, K; Xu, C; Xu, X W; Yodh, G; Yoshida, S; Zarzhitsky, P

    2011-04-08

    IceCube has become the first neutrino telescope with a sensitivity below the TeV neutrino flux predicted from gamma-ray bursts if gamma-ray bursts are responsible for the observed cosmic-ray flux above 10(18)  eV. Two separate analyses using the half-complete IceCube detector, one a dedicated search for neutrinos from pγ interactions in the prompt phase of the gamma-ray burst fireball and the other a generic search for any neutrino emission from these sources over a wide range of energies and emission times, produced no evidence for neutrino emission, excluding prevailing models at 90% confidence.

  18. Electron cyclotron emission from thermal plasmas

    International Nuclear Information System (INIS)

    Fidone, I.; Granata, G.

    1978-02-01

    Electron cyclotron radiation from a warm inhomogeneous plasma is investigated. A direct calculation of the emissive power of a plasma slab is performed using Rytov's method and the result is compared with the solution of the transfer equation. It is found that, for arbitrary directions of emission, the two results differ, which reflects the fact that Kirchhoff's law is not generally obeyed

  19. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A.; Albert, A.; Drouhin, D.; Racca, C.; Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Vecchi, M.; Yatkin, K.; Andre, M.; Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S.; Anvar, S.; Louis, F.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P.; Astraatmadja, T.; Bogazzi, C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E.; Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van; Barrios-Marti, J.; Bigongiari, C.; Bouwhuis, M.C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M.; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F.; Caramete, L.; Pavalas, G.E.; Popa, V.; Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G.; Cecchini, S.; Chiarusi, T.; Charvis, P.; Deschamps, A.; Hello, Y.; Circella, M.; Coniglione, R.; Lattuada, D.; Riccobene, G.; Sapienza, P.; Trovato, A.; Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C.; Donzaud, C.; Dorosti, Q.; Loehner, H.; Flaminio, V.; Giordano, V.; Haren, H. van; Hugon, C.; Sanguineti, M.; Kadler, M.; Kooijman, P.; Kreykenbohm, I.; Mueller, C.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Lo Presti, D.; Loucatos, S.; Montaruli, T.; Morganti, M.; Pradier, T.; Rostovtsev, A.; Samtleben, D.F.E.; Taiuti, M.; Tayalati, Y.; Wolf, E. de

    2014-01-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  20. Neutrino emission, equation of state and the role of strong gravity

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, O. L., E-mail: ocaballe@uoguelph.ca [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2016-07-07

    Neutron-star mergers are interesting for several reasons: they are proposed as the progenitors of short gamma-ray bursts, they have been speculated to be a site for the synthesis of heavy elements, and they emit gravitational waves possibly detectable at terrestrial facilities. The understanding of the merger process, from the pre-merger stage to the final compact object-accreting system involves detailed knowledge of numerical relativity and nuclear physics. In particular, key ingredients for the evolution of the merger are neutrino physics and the matter equation of state. We present some aspects of neutrino emission from binary neutron star mergers showing the impact that the equation of state has on neutrinos and discuss some spectral quantities relevant to their detection such as energies and luminosities far from the source.

  1. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Vecchi, M.; Yatkin, K. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Bouwhuis, M.C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [Universitat de Valencia, IFIC, Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM, Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN, Sezione di Bari, Bari (Italy); Coniglione, R.; Lattuada, D.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universit du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN, Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Hugon, C.; Sanguineti, M. [INFN, Sezione di Genova, Genoa (Italy); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN, Sezione di Genova, Genoa (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN, Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Montaruli, T. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (Switzerland); Morganti, M. [INFN, Sezione di Pisa, Pisa (Italy); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (France); Rostovtsev, A. [ITEP, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Taiuti, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Dipartimento di Fisica dell' Universita, Genoa (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (MA); Wolf, E. de [Nikhef, Science Park, Amsterdam (NL); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (NL); Collaboration: The ANTARES Collaboration

    2014-02-15

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  2. Neutrino-heated stars and broad-line emission from active galactic nuclei

    Science.gov (United States)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  3. Prompt Neutrino Emission of Gamma-ray Bursts in the Dissipative Photospheric Scenario Revisited: Possible Contributions from Cocoons

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Di; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Mészáros, Peter, E-mail: dzg@nju.edu.cn [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-07-01

    High-energy neutrinos are expected to originate from different stages in a gamma-ray burst (GRB) event. In this work, we revisit the dissipative photospheric scenario, in which the GRB prompt emission is produced around the photospheric radius. Meanwhile, possible dissipation mechanisms (e.g., internal shocks or magnetic reconnection) could accelerate cosmic-rays (CRs) to ultra-high energies and then produce neutrinos via hadronuclear and photohadronic processes, which are referred to as prompt neutrinos . In this paper, we obtain the prompt neutrino spectrum of a single GRB within a self-consistent analytical framework, in which the jet-cocoon structure and possible collimation effects are included. We investigate a possible neutrino signal from the cocoon, which has been ignored in the previous studies. We show that if a GRB event happens at a distance of the order of Mpc, there is a great chance to observe the neutrino emission from the cocoon by IceCube, which is even more promising than jet neutrinos, as the opening angle of the cocoon is much larger. We also determine the diffuse neutrino flux of GRB cocoons and find that it could be comparable with that of the jets. Our results are consistent with the latest result reported by the IceCube collaboration that no significant correlation between neutrino events and observed GRBs is seen in the new data.

  4. Searches for massive neutrino emission in 14C beta and 55Fe electron-capture decays

    International Nuclear Information System (INIS)

    Wietfeldt, F.E.

    1994-05-01

    In 1985 Simpson reported evidence for the emission of a 17 keV mass neutrino in a small fraction of tritium beta decays. An experimental controversy ensued in which a number of both positive and negative results were reported. The beta spectrum of 14 C was collected in a unique 14 C-doped planar germanium detector and a distortion was observed that initially confirmed Simpson's result. Further tests linked this distortion to a splitting of the collected charge between the central detector and the surrounding guard ring in a fraction of the events. A second 14 C measurement showed no evidence for emission of a 17 keV mass neutrino. In a related experiment, a high statistics electron-capture internal-bremsstrahlung photon spectrum of 55 Fe was collected with a coaxial germanium detector. A local search for departures from a smooth shape near the endpoint was performed, using a second-derivative technique. An upper limit of 0.65% (95% C.L.) for the mixing Of a neutrino in the mass range 5--25 keV was established. The upper limit on the mixing of a 17 keV mass neutrino was 0.14% (95% C.L.)

  5. Cosmic-ray and neutrino emission from Gamma-Ray Bursts with a nuclear cascade

    Energy Technology Data Exchange (ETDEWEB)

    Biehl, Daniel; Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-05-24

    We discuss neutrino and cosmic-ray emission from Gamma-Ray Bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photo-disintegration can fully develop in the source. One of our main objectives is to test if recent results from the IceCube and the Pierre Auger Observatory can be accommodated with the paradigm that GRBs are the sources of Ultra-High Energy Cosmic Rays (UHECRs). While our key results are obtained using an internal shock model, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. It is demonstrated that the expected neutrino flux from GRBs weakly depends on the injection composition, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced in a combined source-propagation model. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic-ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.

  6. Cosmic-ray and neutrino emission from Gamma-Ray Bursts with a nuclear cascade

    International Nuclear Information System (INIS)

    Biehl, Daniel; Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-01-01

    We discuss neutrino and cosmic-ray emission from Gamma-Ray Bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photo-disintegration can fully develop in the source. One of our main objectives is to test if recent results from the IceCube and the Pierre Auger Observatory can be accommodated with the paradigm that GRBs are the sources of Ultra-High Energy Cosmic Rays (UHECRs). While our key results are obtained using an internal shock model, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. It is demonstrated that the expected neutrino flux from GRBs weakly depends on the injection composition, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced in a combined source-propagation model. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic-ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.

  7. Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade

    Science.gov (United States)

    Biehl, D.; Boncioli, D.; Fedynitch, A.; Winter, W.

    2018-04-01

    Aim. We discuss neutrino and cosmic ray emission from gamma-ray bursts (GRBs) with the injection of nuclei, where we take into account that a nuclear cascade from photodisintegration can fully develop in the source. Our main objective is to test whether recent results from the IceCube and the Pierre Auger Observatory can be accommodated within the paradigm that GRBs are the sources of ultra-high-energy cosmic rays (UHECRs). Methods: We simulate this scenario in a combined source-propagation model. While our key results are obtained using an internal shock model of the source, we discuss how the secondary emission from a GRB shell can be interpreted in terms of other astrophysical models. Results: We demonstrate that the expected neutrino flux from GRBs weakly depends on the injection composition for the same injection spectra and luminosities, which implies that prompt neutrinos from GRBs can efficiently test the GRB-UHECR paradigm even if the UHECRs are nuclei. We show that the UHECR spectrum and composition, as measured by the Pierre Auger Observatory, can be self-consistently reproduced. In an attempt to describe the energy range including the ankle, we find tension with the IceCube bounds from the GRB stacking analyses. In an alternative scenario, where only the UHECRs beyond the ankle originate from GRBs, the requirement for a joint description of cosmic ray and neutrino observations favors lower luminosities, which does not correspond to the typical expectation from γ-ray observations.

  8. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    International Nuclear Information System (INIS)

    Masuda, Takahiko; Hara, Hideaki; Miyamoto, Yuki; Kuma, Susumu; Nakano, Itsuo; Ohae, Chiaki; Sasao, Noboru; Tanaka, Minoru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2015-01-01

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10 15 from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect

  9. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takahiko, E-mail: masuda@okayama-u.ac.jp; Hara, Hideaki; Miyamoto, Yuki [Okayama University, Research Core for Extreme Quantum World (Japan); Kuma, Susumu [Atomic, Molecular and Optical Physics Laboratory, RIKEN (Japan); Nakano, Itsuo [Okayama University, Research Core for Extreme Quantum World (Japan); Ohae, Chiaki [University of Electro-Communications, Department of Engineering Science (Japan); Sasao, Noboru [Okayama University, Research Core for Extreme Quantum World (Japan); Tanaka, Minoru [Osaka University, Department of Physics (Japan); Uetake, Satoshi [Okayama University, Research Center of Quantum Universe (Japan); Yoshimi, Akihiro; Yoshimura, Koji [Okayama University, Research Core for Extreme Quantum World (Japan); Yoshimura, Motohiko [Okayama University, Research Center of Quantum Universe (Japan)

    2015-11-15

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10{sup 15} from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect.

  10. Evidence for the emission of a massive neutrino in nuclear beta decay

    International Nuclear Information System (INIS)

    Norman, E.B.; Sur, B.; Lesko, K.T.; Larimer, R.M.; Witort, J.T.; Haller, E.E.; California Univ., Berkeley, CA

    1990-10-01

    We have studied the β-spectrum of 14 C using a germanium detector containing a crystal with 14 C dissolved in it. We find a feature in the β-spectrum 17 keV below the endpoint which can be explained by the hypothesis that there is a heavy neutrino emitted in the β-decay of 14 C with a mass of 17 ± 2 keV and an emission probability of 1.40 ± 0.45%. In addition, we have studied the inner bremsstrahlung spectrum of 55 Fe and also find indications of the emission of a ∼ 17-keV neutrino. These results are consistent with observations of similar anomalies in the β-decays of 3 H and 35 S. 29 refs., 7 figs

  11. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  12. Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Spinella, William M. [Computational Science Research Center San Diego State University, San Diego, CA (United States); San Diego State University, Department of Physics, San Diego, CA (United States); Weber, Fridolin [San Diego State University, Department of Physics, San Diego, CA (United States); University of California San Diego, Center for Astrophysics and Space Sciences, La Jolla, CA (United States); Contrera, Gustavo A. [CONICET, Buenos Aires (Argentina); CONICET - Dept. de Fisica, UNLP, IFLP, La Plata (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina); Orsaria, Milva G. [CONICET, Buenos Aires (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina)

    2016-03-15

    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (

  13. Electron cyclotron emission imaging in tokamak plasmas

    NARCIS (Netherlands)

    Munsat, T.; Domier, C.W.; Kong, X. Y.; Liang, T. R.; N C Luhmann Jr.,; Tobias, B. J.; Lee, W.; Park, H. K.; Yun, G.; Classen, I.G.J.; Donne, A. J. H.

    2010-01-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the

  14. Coherent emission mechanisms in astrophysical plasmas

    Science.gov (United States)

    Melrose, D. B.

    2017-12-01

    Three known examples of coherent emission in radio astronomical sources are reviewed: plasma emission, electron cyclotron maser emission (ECME) and pulsar radio emission. Plasma emission is a multi-stage mechanism with the first stage being generation of Langmuir waves through a streaming instability, and subsequent stages involving partial conversion of the Langmuir turbulence into escaping radiation at the fundamental (F) and second harmonic (H) of the plasma frequency. The early development and subsequent refinements of the theory, motivated by application to solar radio bursts, are reviewed. The driver of the instability is faster electrons outpacing slower electrons, resulting in a positive gradient ({d}f(v_allel )/{d}v_allel >0) at the front of the beam. Despite many successes of the theory, there is no widely accepted explanation for type I bursts and various radio continua. The earliest models for ECME were purely theoretical, and the theory was later adapted and applied to Jupiter (DAM), the Earth (AKR), solar spike bursts and flare stars. ECME strongly favors the x mode, whereas plasma emission favors the o mode. Two drivers for ECME are a ring feature (implying {d}f(v)/{d}v>0) and a loss-cone feature. Loss-cone-driven ECME was initially favored for all applications. The now favored driver for AKR is the ring-feature in a horseshoe distribution, which results from acceleration by a parallel electric on converging magnetic field lines. The driver in DAM and solar and stellar applications is uncertain. The pulsar radio emission mechanism remains an enigma. Ingredients needed in discussing possible mechanisms are reviewed: general properties of pulsars, pulsar electrodynamics, the properties of pulsar plasma and wave dispersion in such plasma. Four specific emission mechanisms (curvature emission, linear acceleration emission, relativistic plasma emission and anomalous Doppler emission) are discussed and it is argued that all encounter difficulties. Coherent

  15. Laser-heated emissive plasma probe.

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  16. Laser-heated emissive plasma probe

    International Nuclear Information System (INIS)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-01-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge

  17. Laser-heated emissive plasma probe

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808nm wavelength and an output power up to 50W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  18. Tidal pressure induced neutrino emission as an energy dissipation mechanism in binary pulsar systems

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Ignatovich, V.K.

    1995-01-01

    We briefly review possible systematic limitations to the inferred General Relativity tests in binary pulsar systems, then propose a new mechanism whereby orbital energy can drive the electron-proton vs. neutron density away from equilibrium, and the concomitant neutrino (or antineutrino) emission represents an orbital energy dissipation. Of the total orbital energy loss rate, we estimate the fractional contribution of this mechanism as 8x10 -6 , whereas the observational accuracy is at the level of 7x10 -3 , and agrees with the predicted rate of gravitational radiation. 10 refs

  19. Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I

    Science.gov (United States)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-09-01

    A search for neutrinoless decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices were searched for. No signals were found and lower limits of the order of 10 yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with Ge. A new result for the half-life of the neutrino-accompanied decay of Ge with significantly reduced uncertainties is also given, resulting in yr.

  20. X-ray emission from hot plasma

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Kato, Takako.

    1979-01-01

    X-ray emission from hot plasmas is discussed with a critical review of different theories. The results given in the present paper are complementary to those given by Kato in the sense that the present paper is introductory to the paper by Kato. The contents of the present paper are; 1. Introduction 2. Ionization and Recombination Rate Coefficients 3. Relative Abundances of Ions 4. Intensity and Spectra of Radiation 5. Comparison with Earlier Results 6. Emission and Absorption Lines (author)

  1. A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Carver, T.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Leonard, K.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lozano Mariscal, C. J.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O’Murchadha, A.; O’Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tönnis, C.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; IceCube Collaboration

    2018-04-01

    We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E ‑2 energy spectrum assumed, which is 0.0021 GeV cm‑2 per burst for emission timescales up to ∼102 s from the northern hemisphere stacking search.

  2. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    ANTARES is currently the largest neutrino telescope operating in the NorthernHemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources.Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and arethus well-suited to detect neutrinos

  3. PLASMA EMISSION BY NONLINEAR ELECTROMAGNETIC PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: laripetruzzellis@yahoo.com.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2015-06-20

    The plasma emission, or electromagnetic (EM) radiation at the plasma frequency and/or its harmonic(s), is generally accepted as the radiation mechanism responsible for solar type II and III radio bursts. Identification and characterization of these solar radio burst phenomena were done in the 1950s. Despite many decades of theoretical research since then, a rigorous demonstration of the plasma emission process based upon first principles was not available until recently, when, in a recent Letter, Ziebell et al. reported the first complete numerical solution of EM weak turbulence equations; thus, quantitatively analyzing the plasma emission process starting from the initial electron beam and the associated beam-plasma (or Langmuir wave) instability, as well as the subsequent nonlinear conversion of electrostatic Langmuir turbulence into EM radiation. In the present paper, the same problem is revisited in order to elucidate the detailed physical mechanisms that could not be reported in the brief Letter format. Findings from the present paper may be useful for interpreting observations and full-particle numerical simulations.

  4. Inclusive observables and hard gluon emission in neutrino deep inelastic scattering

    International Nuclear Information System (INIS)

    Bouchiat, C.; Meyer, P.; Mezard, M.

    1980-01-01

    We derive the predictions of perturbative QCD together with non-perturbative corrections for a set of inclusive observables connected with the angular distribution of light-cone energy in deep inelastic neutrino scattering. Our particular choice of observables has been made in order to meet important physical requirements besides the necessary condition of infrared regularity. Our inclusive observables receive their dominant contribution from the quark fragmentation region. The non-perturbative contribution is calculable in a rather model-independent way and stays at an acceptable level in realistic experimental conditions. The QCD perturbative contribution, which takes the simple form of a convolution product, exhibits a strongly decreasing behaviour as a function of the Bjorken scaling variable x, superimposed on a constant background associated with the non-perturbative terms, allowing a rather clean separation of the two effects. The perturbative term being dominated by the process of hard-gluon emission, an experimental investigation of the observables discussed here may be a good way to detect the effect of gluon emission in deep inelastic neutrino scattering. (orig.)

  5. Collective radio-emission from plasmas

    International Nuclear Information System (INIS)

    Papadopoulos, K.; Freund, H.P.

    1979-01-01

    Collective radiation processes operating in laboratory and space plasmas are reviewed with an emphasis towards astrophysical applications. Particular stress is placed on the physics involved in the various processes rather than in the detailed derivation of the formulas. Radiation processes from stable non-thermal, weakly turbulent and strongly turbulent magnetized and unmagnetized plasmas are discussed. The general theoretical ideas involved in amplification processes such as stimulated scattering are presented along with their application to free electron and plasma lasers. Direct radio-emission of electromagnetic waves by linear instabilities driven by beams or velocity anisotropies are shown to be of relevance in space applications. Finally, as an example of the computational state of the art pertaining to plasma radiation, a study of the type III solar radio bursts is presented. (orig.)

  6. Fundamental plasma emission involving ion sound waves

    International Nuclear Information System (INIS)

    Cairns, I.H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L ± S → T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived. (author)

  7. Search for a neutrino emission from the Fermi Bubbles with the ANTARES telescope

    CERN Multimedia

    BIAGI, S

    2012-01-01

    The first search for neutrinos from the Fermi Bubbles is presented using data collected by the ANTARES telescope. No evidence of a neutrino signal from the Fermi Bubbles region was found, hence upper limits were calculated for different energy cutoffs.

  8. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701, South Korea and University of Maryland, College Park, Maryland 20742 (United States); Simões, F. J. R.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil)

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  9. Prediction of impurity spectral emission in plasmas

    International Nuclear Information System (INIS)

    Gordon, H.; Summers, H.P.

    1985-01-01

    This paper summarises the development of a set of general purpose computational procedures for the prediction of spectral emission from plasmas, with emphasis on fusion plasmas. The first stage was concerned with the calculation of populations of low levels of impurity ions in a statistical balance approximation in thermal plasmas of arbitrary electron and proton temperatures and densities. This was merged with associated calculations of ionisation stage abundances in equilibrium, time dependent and spatially inhomogeneous conditions to yield spectrum line emissivities of direct relevance for comparative and diagnostic studies of observed spectra. The integrated computer program package draws upon sets or basic atomic data. In the present work the compilation of this basic data is adressed. A set of computer programs has beeen developed and used to convert systematically atomic rate data, drawn from the literature, to standard forms and parameter ranges. Regularities in this data along isoelectronic sequences are exploited to infer rates for an arbitrary ion from a set of representative data (termed the 'general Z' database). From this, the input for the spectral prediction codes above is generated. Presently data in the H, He, Li and Be isoelectronic sequences is prepared. The operation of the procedures is illustrated. (orig.)

  10. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  11. Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

    CERN Document Server

    Gaggero, Daniele; Marinelli, Antonio; Urbano, Alfredo; Valli, Mauro

    2016-01-01

    As recently shown, Fermi-LAT measurements of the diffuse gamma-ray emission from the Galaxy favor the presence of a smooth softening in the primary cosmic-ray spectrum with increasing Galactocentric distance. This result can be interpreted in terms of a spatial-dependent rigidity scaling of the diffusion coefficient. The DRAGON code was used to build a model based on such feature. That scenario correctly reproduces the latest Fermi-LAT results as well as local cosmic-ray measurements from PAMELA, AMS-02 and CREAM. Here we show that the model, if extrapolated at larger energies, grasps both the gamma-ray flux measured by MILAGRO at 15 TeV and the H.E.S.S. data from the Galactic ridge, assuming that the cosmic-ray spectral hardening found by those experiments at about 250 GeV/n is present in the whole inner Galactic plane region. Moreover, we show as that model also predicts a neutrino emission which may account for a significant fraction, as well as for the correct spectral shape, of the astrophysical flux mea...

  12. On the High-Energy Neutrino Emission from Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Emma Kun

    2018-02-01

    Full Text Available We review observational aspects of the active galactic nuclei and their jets in connection with the detection of high-energy neutrinos by the Antarctic IceCube Neutrino Observatory. We propose that a reoriented jet generated by the spin-flipping supermassive black hole in a binary merger is likely the source of such high-energy neutrinos. Hence they encode important information on the afterlife of coalescing supermassive black hole binaries. As the gravitational radiation emanating from them will be monitored by the future LISA space mission, high-energy neutrino detections could be considered a contributor to multi-messenger astronomy.

  13. Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    A highly significant excess of high-energy astrophysical neutrinos has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our

  14. Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-09-01

    Full Text Available A highly significant excess of high-energy astrophysical neutrinos has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices Γ are set. For Γ=2.4 the 90% confidence level flux upper limit at 100 TeV for one neutrino flavour corresponds to Φ01f(100 TeV=2.0⋅10−17 GeV−1cm−2s−1sr−1. Under this assumption, at most two events of the IceCube cosmic candidates can originate from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to account for IceCube High Energy Starting Events is excluded at 90% confidence level.

  15. Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events

    NARCIS (Netherlands)

    Croft, S.; van Haren, H.; MWA Collaboration; Antares Collaboration; TAROT Collaboration; ROTSE Collaboration

    2016-01-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to twocandidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014March. These events were selected by ANTARES because they are consistent, within 0°.4,

  16. Electron cyclotron emission spectroscopy on thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tubbing, B.J.D.

    1987-01-01

    Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs

  17. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A. [GRPHE—Université de Haute Alsace—Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Ardid, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Aubert, J.-J. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Avgitas, T.; Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, Paris, 75205 France (France); Barrios-Martí, J., E-mail: antares.spokesperson@in2p3.fr [IFIC—Instituto de Física Corpuscular (CSIC—Universitat de València), c/ Catedrático José Beltrán, 2, Paterna, Valencia, E-46980 Spain (Spain); and others

    2017-04-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008–2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.

  18. Plasma neutrino energy loss due to the axial-vector current at the late stages of stellar evolution

    International Nuclear Information System (INIS)

    Liu Jingjing

    2009-01-01

    Based on the Weinberg-Salam theory, the plasma neutrino energy loss rates of vector and axial-vector contributions are studied. A ratable factor of the rates from the axial-vector current relative to those of the total neutrino energy loss rates is accurately calculated. The results show that the ratable factor will reach a maximum of 0.95 or even more at relatively higher temperature and lower density (such as ρ/μ e 7 g/cm 3 ). Thus the rates of the axial-vector contribution cannot be neglected. On the other hand, the rates of the axial-vector contribution are on the order of ∼0.01% of the total vector contribution, which is in good agreement with Itoh's at relatively high density (such as ρ/μ e > 10 7 g/cm 3 ) and a temperature of T≤10 11 K. (authors)

  19. Fast Plasma Potential Measurements Using an Emissive Probe

    Science.gov (United States)

    Ready, Amanda; Clark, Michael; Endrizzi, Douglass; Forest, Cary; Peterson, Ethan

    2017-10-01

    A heated emissive probe was developed for making direct plasma potential (Vp) measurements in rapidly fluctuating plasmas. Previous experiments on the Big Red Ball (BRB) were hindered by sudden potential drops, making Langmuir measurements of the plasma potential difficult. DC heating of a tungsten filament to emission allowed for fast (4 MHz) floating potential measurements that closely matched Vp. Two BRB experiments currently use the emissive probe. The investigation of unmagnetized, collisionless shocks used plasma potential measurements to study the sub-structure of strong plasma shocks. A separate investigation of emulated magnetospheres in laboratory plasmas used the plasma potential to map the equilibria and instabilities in the electric field of such structures. Results showing electric field measurements and comparison with cold Langmuir measurements will be presented. Future plans for probe modifications and applications to other experiments on the BRB will also be shown.

  20. Ion cyclotron emission in tokamak plasmas; Emission cyclotronique ionique dans les plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fraboulet, D.

    1996-09-17

    Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.

  1. Investigation of metal ions in fusion plasmas using emission spectroscopy

    International Nuclear Information System (INIS)

    Tale, I.

    2005-01-01

    Full text: The Latvian and Portugal Associations are performing development of advanced plasma - facing system using the liquid metal limiter. The objectives of this project require study of the influence of the liquid metal limiter on the main plasma parameters, including concentration of evaporated metal atoms in plasma. The fusion plasmas are related to the dense hot plasmas. The required average ion temperature according to the ITER project (International Thermonuclear Experimental Reactor) is 8,0 keV (9,3 x 10 7 0 K), the average electron temperature - 8,9 keV (1,04 x 10 8 0 K). Plasma temperature operated in the research tokamak ISSTOK, involved in testing of liquid metal limiter concept is considerably less, being of order of 10 50 K. The ionization degree of metal atoms considerably depends on the plasma ion temperature. Density of metal vapours in plasma can be estimated using the following two spectroscopic methods: The fluorescence of the multiple ionised metal ions in steady state concentration; The charge exchange emission during ionisation of evaporated metal ions. In the first step of development of testing system of metal vapours the equipment and instrumentation for charge exchange spectroscopy of Ga and In has been elaborated taking into account the following features of plasma emission. The Ga emission lines occur on the background high temperature plasma black body emission and stray light. Radial distribution of Ga in plasma in the facing plane of Ga flux is desirable

  2. Study of aluminum emission spectra in astrophysical plasmas

    International Nuclear Information System (INIS)

    Jin Zhan; Zhang Jie

    2001-01-01

    High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer

  3. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  4. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    Science.gov (United States)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  5. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  6. Micro-column plasma emission liquid chromatograph. [Patent application

    Science.gov (United States)

    Gay, D.D.

    1982-08-12

    In a direct current plasma emission spectrometer for use in combination with a microcolumn liquid chromatograph, an improved plasma source unit is claimed. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  7. Gravitational waves and neutrino emission from the merger of binary neutron stars.

    Science.gov (United States)

    Sekiguchi, Yuichiro; Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru

    2011-07-29

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating a finite-temperature (Shen's) equation of state (EOS) and neutrino cooling for the first time. It is found that for this stiff EOS, a hypermassive neutron star (HMNS) with a long lifetime (≫10  ms) is the outcome for the total mass ≲3.0M(⊙). It is shown that the typical total neutrino luminosity of the HMNS is ∼3-8×10(53)  erg/s and the effective amplitude of gravitational waves from the HMNS is 4-6×10(-22) at f=2.1-2.5  kHz for a source distance of 100 Mpc. We also present the neutrino luminosity curve when a black hole is formed for the first time.

  8. Strongly emissive plasma-facing material under space-charge limited regime: Application to emissive probes

    Czech Academy of Sciences Publication Activity Database

    Cavalier, Jordan; Lemoine, N.; Bousselin, G.; Plihon, N.; Ledig, J.

    2017-01-01

    Roč. 24, č. 1 (2017), č. článku 013506. ISSN 1070-664X Institutional support: RVO:61389021 Keywords : plasma * tokamak * emissive probes Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016 http://dx.doi.org/10.1063/1.4973557

  9. Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope

    OpenAIRE

    Adrián-Martínez, S.; Al Samarai, Imen; Albert, A.; André, Michel; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.

    2011-01-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scal...

  10. Controlling the emission current from a plasma cathode

    International Nuclear Information System (INIS)

    Bagaev, S.P.; Gushenets, V.I.; Schanin, P.M.

    1993-01-01

    The processes determining the time and amplitude characteristics of the grid-controlled electron emission from the plasma of an arc discharge have been analyzed. It has been shown that by applying to the grid confining the plasma emission boundary of a modulated voltage it is possible to form current pulse of up to 1 kA with nanosecond risetimes and falltimes and a pulse repetitive rate of 100 kHz

  11. Resonant emission of electromagnetic waves by plasma solitons

    International Nuclear Information System (INIS)

    Mironov, V.A.; Sergeev, A.M.; Khimich, A.V.

    1988-01-01

    The ability of plasma-wave solitons to radiate electromagnetic waves at the frequency of the natural oscillations of the field is considered. It is shown that this radiation is the main energy dissipation channel for strong plasma turbulence in a magnetoactive plasma. An interpretation is proposed for the artificial radio emission produced when the ionosphere is acted upon by beams of strong electromagnetic waves. The use of this phenomenon for plasma turbulence, particularly in the outer-space plasma near the earth, is discussed

  12. Influence of flavor oscillations on neutrino beam instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: titomend@ist.utl.pt [Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo SP (Brazil); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre RS (Brazil); Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2014-09-15

    We consider the collective neutrino plasma interactions and study the electron plasma instabilities produced by a nearly mono-energetic neutrino beam in a plasma. We describe the mutual interaction between neutrino flavor oscillations and electron plasma waves. We show that the neutrino flavor oscillations are not only perturbed by electron plasmas waves but also contribute to the dispersion relation and the growth rates of neutrino beam instabilities.

  13. Emission spectroscopy on a supersonically expanding argon/silane plasma

    NARCIS (Netherlands)

    Meeusen, G.J.; Ershov-Pavlov, E.A.; Meulenbroeks, R.F.G.; Sanden, van de M.C.M.; Schram, D.C.

    1992-01-01

    Results from emission spectroscopy measurements on an Ar/SiH/sub 4/ plasma jet which is used for fast deposition of amorphous hydrogenated silicon are presented. The jet is produced by allowing a thermal cascaded arc plasma in argon (I=60 A, V=80 V, Ar flow=60 scc/s and pressure 4*10/sup 4/ Pa) to

  14. Neutrino Physics

    CERN Multimedia

    CERN. Geneva; Dydak, Friedrich

    2001-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  15. Neutrino Physics

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Starting from a review of theoretical concepts and experimental results in the early years of neutrino physics after Pauli's 1930 letter, today's double role of the neutrino as a cornerstone of the Standard Model and as a promising probe of physics beyond the Standard Model will be discussed. Topics comprise: - Conventional neutrino beams - Neutrinos as probes of the nucleon structure - Neutrinos from the universe - Dirac or Majorana neutrinos - Neutrino oscillations - MNS matrix - CP violation in the lepton sector - Neutrino factory.

  16. NEUTRINO EMISSION FROM HIGH-ENERGY COMPONENT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Becker, Julia K.; Olivo, Martino; Halzen, Francis; O Murchadha, Aongus

    2010-01-01

    Gamma-ray bursts (GRBs) have the potential to produce the particle energies (up to 10 21 eV) and energy budget (10 44 erg yr -1 Mpc -3 ) to accommodate the spectrum of the highest energy cosmic rays; on the other hand, there is no observational evidence that they accelerate hadrons. The Fermi Gamma-ray Space Telescope recently observed two bursts that exhibit a power-law high-energy extension of a typical (Band) photon spectrum that extends to ∼30 GeV. On the basis of fireball phenomenology we argue that these two bursts, along with GRB941017 observed by EGRET in 1994, show indirect evidence for considerable baryon loading. Since the detection of neutrinos is the only unambiguous way to establish that GRBs accelerate protons, we use two methods to estimate the neutrino flux produced when they interact with fireball photons to produce charged pions and neutrinos. While the number of events expected from the two Fermi bursts discussed is small, should GRBs be the sources of the observed cosmic rays, a GRB941017-like event that has a hadronic power-law tail extending to several tens of GeV will be detected by the IceCube neutrino telescope.

  17. New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.; Gaggero, D.; Grasso, D.

    2017-01-01

    The flux of very high-energy neutrinos produced in our Galaxy by the interaction of accelerated cosmic rays with the interstellar medium is not yet determined. The characterization of this flux will shed light on Galactic accelerator features, gas distribution morphology and Galactic cosmic ray

  18. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  19. Coaxial discharge plasma parameters and radiation emission

    International Nuclear Information System (INIS)

    Solimen, H.M.

    1993-01-01

    Results are reported for experiments carried out on a Mather type coaxial discharge plasma device. Experimental measurements of the electron temperature and density for the plasma propagated from the coaxial discharge are determined by using a biased double electric probe. The experimental results illustrated that , there are two groups of the plasma in the ejected plasma bulk, at 9 cm from the muzzle axis, the plasma reached the probe at 20 μsec from the start of discharge. The first group has electron temperature and density 27 eV and 3 x 10 14 cm -3 respectively,while The second group has 25 eV and 3 x 10 14 cm -3 respectively. The decay rate of the electron temperature and density of each group is presented. The plasma radiation spectrum is detected by a dielectric filter at 3500 A degree or 6100 A degree . The experimental measurements showed that, without or with dielectric filters, the visible radiation consists from two pulses with different magnitudes within the same half cycle of discharge. The time resolution of the soft x-ray is achieved by means of scintillator detector. The detected x-ray pulse during the first half cycle of discharge had a double peaks with different structures. All the experimental results present in this paper showed that the plasma bulk propagated in the expansion chamber, consists of two-groups. 6 fig

  20. Characterization of X-ray emission from laser generated plasma

    Science.gov (United States)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  1. Characterization of X-ray emission from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Cannavò Antonino

    2018-01-01

    Full Text Available X-ray emission from laser generated plasma was studied at low (1010 W/cm2 and high (1018 W/cm2 intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  2. Electron beam induced emission from carbon plasmas

    International Nuclear Information System (INIS)

    Whetstone, S.; Kammash, T.

    1989-01-01

    Plasma use as a lasing medium has many potential advantages over conventional techniques including increased power levels and greater wavelength ranges. The basic concept is to heat and then rapidly cool a plasma forcing inversion through bottleneck creation between the recombination reaction populating a given energy level and the subsequent decay processes. Much effort has been devoted to plasmas heated by lasers and pinch devices. The authors are concerned here with electron beam heated plasmas focusing on the CIV 5g-4f transition occurring at 2530 Angstroms. These studies were initiated to provide theoretical support for experiments being performed at the University of Michigan using the Michigan Electron Long-Pulse Beam Accelerator (MELBA)

  3. Gravitational waves, neutrino emissions and effects of hyperons in binary neutron star mergers

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru

    2012-01-01

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that for the nucleonic and hyperonic EOS, a hyper-massive neutron star (HMNS) with a long lifetime (t life ≥ 10 ms) is the outcome for the total mass ≅2.7M sun . For the total mass ≅3 M sun , a long-lived (short-lived with t life ≅ 3 ms) HMNS is the outcome for the nucleonic (hyperonic) EOS. It is shown that the typical total neutrino luminosity of the HMNS is ∼3-6 x 10 53 erg s -1 and the effective amplitude of gravitational waves from the HMNS is 1-4 x 10 -22 at f ≅ 2-3.2 kHz for a source of distance of 100 Mpc. During the HMNS phase, characteristic frequencies of gravitational waves shift to a higher frequency for the hyperonic EOS in contrast to the nucleonic EOS in which they remain constant approximately. Our finding suggests that the effects of hyperons are well imprinted in gravitational waves and their detection will give us a potential opportunity to explore the composition of the neutron star matter. We present the neutrino luminosity curve when a black hole is formed as well. (paper)

  4. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D.

    2013-01-01

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M ☉ . Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness (∼M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  5. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D., E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125 (United States)

    2013-01-10

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M {sub Sun }. Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness ({approx}M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  6. EUV emission from Kr and Xe capillary discharge plasmas

    International Nuclear Information System (INIS)

    Juschkin, L.; Ellwi, S.; Kunze, H-J.; Chuvatin, A.; Zakharov, S.V.

    2002-01-01

    Kr and Xe plasmas are very intensive emitters in the spectral range of 100-150 A, which is relevant for a number of applications (for example microlithography). We present investigations of the extreme utraviolet (EUV) emission from a slow capillary discharge with Kr and Xe fillings. The emission of Kr ions (Kr VIII to Kr XI) within the range of 70-150 A consists of three bands of lines of about 10 A width with maxima at 116, 103 and 86 A. Xe emission bands of about 15 A width have their maxima at 136 and 115 A (Xe IX to Xe XII). The radiation duration in this spectral range is ∼150 ns for both elements. At the optimum conditions, the Kr emission at 103 A is 2-3 times more intense than the Xe emission at 136 A. The measured spectral energy of Kr radiation is about 0.1 J sr -1 A -1 . Experimental results are compared with numerical modellings of the dynamics and emission of the capillary discharge plasma, which enables the determination of plasma parameters and the future use of the codes as additional instruments for plasma diagnostics. (author)

  7. Numerical Study of Radiation Emissions from the Plasma Focus

    International Nuclear Information System (INIS)

    Akel, M.; Salo, S.

    2013-12-01

    Ion populations of studied plasma have been calculated versus electron temperatures. The expected emission spectra (full, Bremsstrahlung, recombination, and line) of plasma focus operated with different gases (nitrogen, oxygen, neon, argon, krypton and xenon) have been studied for different conditions using POPULATE, SPECTRA, XRAYFIL and FLYCHK codes for non-local thermodynamic equilibrium model (NLTE). The suitable electron temperatures ranges for soft X-ray and extreme ultraviolet (EUV) emissions from plasma focus have been investigated. The Ratio- BPX65.F code has been written in FORTRAN 77 for studying the soft X-ray emission of plasma focus using BPX65 PIN Diode X-ray Spectrometer technique. The X-ray ratio curves for various electron temperatures with probable electron and ion densities of the studied plasma produced have been computed with the assumption of non-LTE model for the distribution of the ionic species. The calculated X-ray ratio curves have been compared with experimental results for the argon plasma focus. These ratio curves could be used for electron temperatures deduction of plasma focus (author).

  8. Neutron emission from deuterium plasma focus

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Banjanac, R.; Dragic, A.; Djordjevic, D.; Joksimovic, D.; Maric, Z.; Udovicic, V.; Vukovic, J.

    1998-01-01

    The anisotropy of emitted neutrons is investigated on a small 'Mather-type' plasma focus device (PF). This problem is of importance for determining the nature of the fusion reaction mechanisms. Mica detectors together with thick uranium foils were used for both detection and angular distribution measurements of the neutrons. Previously, the annealing of the detectors was done and measured after the irradiation with neutrons from Am-Be source. Also, annealing ability of H-plasma focus has been tested. Geometry of detectors in both experiments was the same. (authors)

  9. Collisionless emission of radiation by an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Mejerovich, B.Eh.

    1976-01-01

    Collisionless emission of radiation by an inhomogeneous plasma due to the finite motion of charges in the field of external forces and collective interaction forces is studied. The intensity of the radiation is inversely proportional to the square of the transverse dimensions of the plasma. It apparently makes the main contribution to the radiation from a vacuum spark and other relativitstic beams compressed to a small size by collective interaction forces. The intensity of the collisionless radiation is calculated by taking into account Fermi statistics of the electrons. The spectral radiance in the low frequency range increases with frequency, reaches a maximum at the frequency of the finite motion of the emitters and then decreases. Measurement of collisionless radiation emission by a plasma compressed to a small size by the pinch effect is a natural way of diagnosing the plasma

  10. Model of opacity and emissivity of non-equilibrium plasma

    International Nuclear Information System (INIS)

    Politov V Y

    2008-01-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments

  11. Investigation of uranium plasma emission from 1050 to 6000 A

    International Nuclear Information System (INIS)

    Mack, J.M. Jr.

    1977-12-01

    Absolute emission coefficient measurements on arc-generated uranium plasmas in local thermodynamic equilibrium are described for a wavelength bandwidth of 1050 to 6000A. Low- and high-pressure arcs were investigated for their emission properties, characteristic temperatures and uranium partial pressures. Temperatures from 5500 to 8000 K and uranium partial pressures from 0.001 to 0.01 atm were found at the arc centerline. The new emission data are compared with other similar experimental results and to existing theoretical calculations. The effects of cold-layer UF 6 photoabsorption on uranium plasma emission characteristics are established for UF 6 molecular densities ranging from 1.0 x 10 16 to 1.0 x 10 17 cm -3 and layer thickness from 1.0 to 5.0 cm

  12. Uranium plasma emission coefficient in the visible and near UV.

    Science.gov (United States)

    Mack, J. M., Jr.; Usher, J. L.; Schneider, R. T.; Campbell, H. D.

    1971-01-01

    Measurements of the specific emission coefficient in the near ultra-violet and visible region of a uranium arc plasma are reported. Spatial unfolding of the intensity profile is used to determine the emission coefficient in the spectral range of 2000 A to 6000 A. The uranium partial pressure is estimated to range between .001 and .01 atmosphere, and the corresponding temperature range is 5000 - 10,000 K.

  13. Plasma potential measurements in the edge region of the ISTTOK plasma, using electron emissive probes

    International Nuclear Information System (INIS)

    Ionita, C.; Balan, P.; Schrittwieser, R.; Cabral, J.A.; Fernandes, H.; Figueiredo, H. F.C.; Varandas, C.

    2001-01-01

    We have recently started to use electron-emissive probes for direct measurements of the plasma potential and its fluctuations in the edge region of the plasma ring in the tokamak ISTTOK in Lisbon, Portugal. This method is based on the fact that the electron emission current of such a probe is able to compensate electron temperature variations and electron drifts, which can occur in the edge plasma region of magnetized fusion devices, and which are making measurements with cold probes prone to errors. In this contribution we present some of the first results of our investigations in ISTTOK.(author)

  14. Plasma structures in front of a floated emissive electrode

    International Nuclear Information System (INIS)

    Ishiguro, S.; Sato, N.

    1993-01-01

    A particle simulation with plasma source is carried out on plasma structures generated by an electron emissive electrode floated in a collisionless plasma. When low-temperature, high-density thermal electrons are emitted, there appears a negative potential dip in front of the electrode, which is always accompanied by a low-frequency oscillation. On the other hand, three regimes of plasma structures appear for an electron beam injection. When a high-flux electron beam is injected, an electron sheath is generated in front of the electrode. The sheath reflects ions flowing to the electrode, providing an increase in the plasma density. When a low-flux electron beam is injected, no electron sheath is generated. When an intermediate-flux beam is injected, the electron sheath structure appears periodically in time. The lifetime of the sheath is proportional to the system length. These results of beam injection are almost consistent with those of a Q-machine experiment

  15. Cathode plasma expansion in diode with explosive emission

    International Nuclear Information System (INIS)

    Zuo Yinghong; Fan Ruyu; Wang Jianguo; Zhu Jinhui

    2012-01-01

    The evolution characteristics of the cathode plasma in a planar diode with explosive emission were analyzed. Be- sides the axial expansion which can reduce the effective anode-cathode gap, the radial expansion of the cathode plasma which can affect the effective emitting area was also taken into account. According to the Child-Langmuir law and the experimental data of current and voltage with a electron vacuum diode under four-pulse mode, the dynamics of the cathode plasma was investigated, on the assumption that the radial speeds of the cathode plasma was approximately equal to the axial speed. The results show that the radial and axial expansion speeds of the cathode plasma are 0.9-2.8 cm/μs. (authors)

  16. Spectroscopic analysis of coal plasma emission produced by laser ablation

    OpenAIRE

    Vera-Londoño, Liliana Patricia; Pérez-Taborda, Jaime Andrés; Riascos-Landázuri, Henry

    2016-01-01

    An analysis of plasma produced by laser ablation using 1,064 nm of laser radiation from a Q-switched Nd:YAG on coal mineral samples under air ambient, was performed. The emission of molecular band systems such as C2 Swan System , the First Negative System N2 (Band head at 501.53 nm) and different emission lines were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0.62 eV). The density and ...

  17. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  18. [Study on the emission spectrum of microwave plasma in liquid].

    Science.gov (United States)

    Wang, Bo; Sun, Bing; Zhu, Xiao-Mei; Yan, Zhi-Yu; Liu, Yong-Jun; Liu, Hui

    2014-05-01

    After the technology of microwave discharge in liquid is realized for the first time in China, the basic physical phenomena and characteristic of microwave discharge in liquid is studied in order to lay a theoretical foundation of research on microwave discharge in liquid. In the present paper, the active particles generated by microwave discharge in liquid were detected using the emission spectrometer, and the statistical method of spectrum data of microwave discharge in liquid was also studied. The emission spectrometer and numerically controlled camera were used to detect synchronously the process of the initial discharge and stable discharge of microwave discharge in liquid. The results show that: the emission intensity of microwave plasma in liquid has a large fluctuation, and the spectrum intensity can be calculated using the average of 10 spectrum data points. The intensity of discharge is reflected by the plasma area in a certain extent, however, the variation gradient of the intensity of discharge is different from that of the plasma area. This is mainly because that, in the process of discharging, the discharge intensity is not only reflected by the plasma area, but also reflected by the brightness of the plasma.

  19. Neutrino physics

    International Nuclear Information System (INIS)

    Gil-Botella, I.

    2011-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  20. Searches for massive neutrino emission in 14C beta and 55Fe electron-capture decays

    Energy Technology Data Exchange (ETDEWEB)

    Wietfeldt, Fred Eberhardt [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In 1985 Simpson reported evidence for the emission of a 17 keV mass neutrino in a small fraction of tritium beta decays. An experimental controversy ensued in which a number of both positive and negative results were reported. The beta spectrum of 14C was collected in a unique 14C-doped planar germanium detector and a distortion was observed that initially confirmed Simpson`s result. Further tests linked this distortion to a splitting of the collected charge between the central detector and the surrounding guard ring in a fraction of the events. A second 14C measurement showed no evidence for emission of a 17 keV mass neutrino. In a related experiment, a high statistics electron-capture internal-bremsstrahlung photon spectrum of 55Fe was collected with a coaxial germanium detector. A local search for departures from a smooth shape near the endpoint was performed, using a second-derivative technique. An upper limit of 0.65% (95% C.L.) for the mixing Of a neutrino in the mass range 5--25 keV was established. The upper limit on the mixing of a 17 keV mass neutrino was 0.14% (95% C.L.).

  1. Time correlation between plasma behaviour and soft x-ray emission in a plasma focus

    International Nuclear Information System (INIS)

    Hirano, Katsumi; Tagaya, Yutaka; Shimoda, Katsuji; Okabe, Yushiro; Yamamoto, Toshikazu

    1986-01-01

    Soft X-rays emitted from a plasma focus are investigated experimentally. In contrast to single-pulsive burst of neutron, hard X-rays, ion- and electron beams, the soft X-rays are observed from the collapse phase to the decay phase of the plasma column, and have typically three successive peaks in its signal. Each peak corresponds to the maximum compression, the disruption and the decay phase of plasma column. It is revealed that the first and the second peaks are radiated by plasma itself, whereas the third peak is caused by emission from the inner electrode face. (author)

  2. Neutrino cosmology

    International Nuclear Information System (INIS)

    Berstein, J.

    1984-01-01

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  3. Potential of an emissive cylindrical probe in plasma.

    Science.gov (United States)

    Fruchtman, A; Zoler, D; Makrinich, G

    2011-08-01

    The floating potential of an emissive cylindrical probe in a plasma is calculated for an arbitrary ratio of Debye length to probe radius and for an arbitrary ion composition. In their motion to the probe the ions are assumed to be collisionless. For a small Debye length, a two-scale analysis for the quasineutral plasma and for the sheath provides analytical expressions for the emitted and collected currents and for the potential as functions of a generalized mass ratio. For a Debye length that is not small, it is demonstrated that, as the Debye length becomes larger, the probe potential approaches the plasma potential and that the ion density near the probe is not smaller but rather is larger than it is in the plasma bulk.

  4. Plasma-induced field emission and plasma expansion of carbon nanotube cathodes

    International Nuclear Information System (INIS)

    Liao Qingliang; Zhang Yue; Qi Junjie; Huang Yunhua; Xia Liansheng; Gao Zhanjun; Gu Yousong

    2007-01-01

    High intensity electron emission cathodes based on carbon nanotube films have been successfully fabricated. An investigation of the explosive field emission properties of the carbon nanotube cathode in a double-pulse mode was presented and a high emission current density of 245 A cm -2 was obtained. The formation of the cathode plasma layer was proved and the production process of the electron beams from the cathode was explained. The time and space resolution of the electron beams flow from the cathode was investigated. The plasma expanded at a velocity of ∼8.17 cm μs -1 towards the anode and influenced on the intensity and distribution of electron beams obviously. The formation of cathode plasma had no preferential position and the local enhancement of electron beams was random. This carbon nanotube cathode appears to be suitable for high-power microwave device applications

  5. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  6. Emission of electromagnetic radiation from beam driven plasmas

    International Nuclear Information System (INIS)

    Newman, D.L.

    1985-01-01

    Two production mechanisms for electromagnetic radiation from a plasma containing electron-beam-driven weak Langmuir turbulence are studied: induced Compton conversion and two-Langmuir-wave coalescence. Induced Compton conversion in which a Langmuir wave scatters off a relativistic electron while converting into a transversely polarized electromagnetic wave is considered as a means for producing amplified electromagnetic radiation from a beam-plasma system at frequencies well above the electron plasma frequency. The induced emission growth rates of the radiation produced by a monoenergetic ultrarelativistic electron beam are determined as a function of the Langmuir turbulence spectrum in the background plasma and are numerically evaluated for a range of model Langmuir spectra. Induced Compton conversion can play a role in emission from astrophysical beam-plasma systems if the electron beam is highly relativistic and sufficiently narrow. However, it is found that the growth rates for this process are too small in all cases studied to account for the intense high-frequency radiation observed in laboratory experiments. Two-Langmuir-wave coalescence as a means of producing radiation at 2omega/sub p/ is investigated in the setting of the earth's foreshock

  7. Characteristics of extreme ultraviolet emission from high-Z plasmas

    International Nuclear Information System (INIS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-01-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics. (paper)

  8. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  9. Study of optical emission spectroscopy with inductively coupled plasma torch

    International Nuclear Information System (INIS)

    Bauer, M.

    1982-01-01

    Inductively coupled plasma optical emission spectroscopy is an excellent tool for quantitative multielement trace analysis. This paper describes the performance of a computer-controlled sequential measurement system. Chemical and ionization interferences are shown to be negligible due to the characteristics of the inductively coupled plasma, spectral interferences are eliminated by using a high-resolution monochromator and computer data handling. Good accuracy is achieved for most of the interesting elements, as is shown from both an interlaboratory test and from comparison of the results of water samples from the rivers Elbe and Weser with those achieved with neutron activation and X-ray fluorescence analysis. (orig.) [de

  10. Neutrino mass?

    International Nuclear Information System (INIS)

    Kayser, B.

    1992-01-01

    After arguing that we should be looking for evidence of neutrino mass, we illustrate the possible consequences of neutrino mass and mixing. We then turn to the question of whether neutrinos are their own antiparticles, and to the process which may answer this question: neutrinoless double beta decay. Next, we review the proposed Mikheyev-Smirnov-Wolfenstein solution to the solar neutrino problem, and discuss models which can generate neutrino electromagnetic moments large enough to play a role in the sun. Finally, we consider how the possible 17 keV neutrino, if real, would fit in with everything we know about neutrinos. (orig.)

  11. Interpretation of ion cyclotron emission from fusion and space plasmas

    International Nuclear Information System (INIS)

    Dendy, R.O.

    1994-01-01

    Superthermal ion cyclotron emission (ICE) is observed in both fusion and space plasma. Typical spectra display strong peaks at sequential multiple ion cyclotron harmonics, and distinct energetic ion populations are present in the emitting regions. In JET and TFTR, for example, ICE appears to be driven by fusion products or by injected beam ions in the outer mid plane; and in the Earth's ring current, radiation belts, and bow shock, ICE has been observed by the spacecraft OGO 3, GEOS 1 and 2 and AMPTE/IRM, often in conjunction with highly non-Maxwellian proton populations. Common emission mechanisms, arising from collective relaxation of energetic ion populations, appear to operate in both the fusion and space plasma environments. These are reviewed here, and the potential role of ICE as a diagnostic of energetic ion populations is also examined. (Author)

  12. CN emission spectroscopy study of carbon plasma in nitrogen environment

    International Nuclear Information System (INIS)

    Abdelli-Messaci, S.; Kerdja, T.; Bendib, A.; Malek, S.

    2005-01-01

    Spectroscopic emission diagnostics of a carbon plasma created by an excimer KrF laser pulse at three laser fluences (12, 25 and 32 J/cm 2 ) is performed under nitrogen ambient at pressures of 0.5 and 1 mbar. By following the time evolution of the radical CN spectral emission profiles, we notice, at a certain distance from the target surface, the existence of twin peaks for the time of flight distribution. This double structure depends on laser fluence and gas pressure parameters. The first peak moves forward in relation with the plasma expansion whereas the second peak moves backward and it is attributed to CN species undergoing oscillations or reflected shocks

  13. Neutrino masses and neutrino oscillations

    CERN Document Server

    Di Lella, L

    2000-01-01

    These lectures review direct measurements of neutrino masses and the status of neutrino oscillation searches using both natural neutrino sources (the Sun and cosmic rays interacting in the Earth atmosphere) and artificial neutrinos (produced by nuclear reactors and accelerators). Finally, future experiments and plans are presented. (68 refs).

  14. Optical emission spectra of a copper plasma produced by a metal vapour vacuum arc plasma source

    International Nuclear Information System (INIS)

    Yotsombat, B.; Poolcharuansin, P.; Vilaithong, T.; Davydov, S.; Brown, I.G.

    2001-01-01

    Optical emission spectroscopy in the range 200-800 nm was applied for investigation of the copper plasma produced by a metal vapour vacuum arc plasma source. The experiments were conducted for the cases when the plasma was guided by straight and Ω-shaped curved solenoids as well as without solenoids, and also for different vacuum conditions. It was found that, besides singly- and doubly-charged ions, a relatively high concentration of excited neutral copper atoms was present in the plasma. The relative fraction of excited atoms was much higher in the region close to the cathode surface than in the plasma column inside the solenoid. The concentration of excited neutral, singly- and doubly-ionized atoms increased proportionally when the arc current was increased to 400 A. Some weak lines were attributed to more highly ionized copper species and impurities in the cathode material. (author)

  15. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  16. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    International Nuclear Information System (INIS)

    Liu Jingle; Zhang, X.-C.

    2009-01-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  17. Electron collision effects on the bremsstrahlung emission in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-06-01

    The electron-electron collision effects on the electron-ion bemsstranhlung process are investigated in warm Lorentzian plasmas. The effective electron-ion interaction potential is obtained by including the far-field terms caused by the electron-electron collisions with the effective Debye length in Lorentzian plasmas. The bremsstranhlung radiation cross section is obtained as a function of the electron energy, photon energy, collision frequency, spectral index, and Debye length using the Born approximation for the initial and final states of the projectile electron. It is shown that the non-Maxwellian character suppresses the bremsstrahlung radiation cross section. It is also shown that the electron-electron collision effect enhances the bremsstrahlung emission spectrum. In addition, the bremsstrahlung radiation cross section decreases with an increase of the plasma temperature. (author)

  18. EMISSION SPECTRUM OF HELIUM-LIKE IONS IN PHOTOIONIZED PLASMAS

    International Nuclear Information System (INIS)

    Wang, Feilu; Salzmann, David; Zhao, Gang; Takabe, Hideaki

    2012-01-01

    The aim of the present paper is to investigate the influence of inner-shell photoionization and photoexcitation on He α and its satellite's spectra in photoionized plasmas. An analysis is carried out on the relative importance of the various atomic processes in photoionized plasmas as a function of the electron temperature and irradiation conditions. In particular, we investigate the influence of K-shell photoionization of Li-like ions on the He α spectrum and of Be-like ions on the He α satellites. It is found that in photoionized plasmas these inner-shell processes contribute significantly under low radiation temperature and/or intensity, when Li- and Be-like ions are highly abundant but highly ionized H-like ions are rare. A short discussion is presented about the parameter space in which the excited 1s2p state has statistical or non-statistical distributions, and how such distributions affect the emission spectrum.

  19. Time dependent photon and neutrino emission from Mkr 421 in the context of the one-zone leptohadronic model

    Directory of Open Access Journals (Sweden)

    Mastichiadis Apostolos

    2013-12-01

    Full Text Available We apply a recently developed time-dependent one-zone leptohadronic model to study the emission of the blazar Mrk 421. Both processes involving proton-photon interactions, i.e. photopair (Bethe-Heitler and photopion, have been modeled in great detail using the results of Monte Carlo simulations, like the SOPHIA event generator, in a self-consistent scheme that couples energy losses and secondary injection. We find that TeV gamma-rays can be attributed to synchrotron radiation either from relativistic protons or, alternatively, from secondary leptons produced via photohadronic processes. We also study the variability patterns that each scenario predicts and we find that while the former is more energetically favored, it is the latter that produces, in a more natural way, the usual quadratic behavior between X-rays and TeV gamma-rays. We also use the obtained SEDs to calculate in detail the expected neutron and neutrino fluxes that each model predicts.

  20. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  1. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  2. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  3. Clearing of ventilating emissions in low temperature environment of plasma

    Science.gov (United States)

    Mansurov, R. Sh; Rafalskaya, T. A.

    2017-11-01

    The method of high-temperature processing of streams of the ventilating air which is a subject clearing from organic pollutions is developed. Data about its efficiency, including on a number of economic parameters are obtained. Results of work are recommended for use, first of all, by development clearing plasma-thermal reactors (CPTR) for clearing air, especially from toxic substances, and also for large technological clearing installations, containing organic ventilating emissions (OVE). It is created experimental CPTR. Laws of the expiration of a plasma jet in stream of OVE limited by cylindrical walls, water-cooled channel are experimentally investigated. Dependences of a trajectory and long-range the plasma jet blown radially in stream of OVE are received. Heat exchange of stream of OVE with walls of CPTR after blowing a plasma jet is experimentally investigated; dependences of distribution of temperatures on length of a reactor and a thermal stream in a wall of channel of CPTR are received. Are investigated chemical compound of OVE after plasma-thermal clearing, some experimental data by formation of oxides of nitrogen and mono-oxide of carbon during clearing are received.

  4. Plasma control using neural network and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kim, Byungwhan; Bae, Jung Ki; Hong, Wan-Shick

    2005-01-01

    Due to high sensitivity to process parameters, plasma processes should be tightly controlled. For plasma control, a predictive model was constructed using a neural network and optical emission spectroscopy (OES). Principal component analysis (PCA) was used to reduce OES dimensionality. This approach was applied to an oxide plasma etching conducted in a CHF 3 /CF 4 magnetically enhanced reactive ion plasma. The etch process was systematically characterized by means of a statistical experimental design. Three etch outputs (etch rate, profile angle, and etch rate nonuniformity) were modeled using three different approaches, including conventional, OES, and PCA-OES models. For all etch outputs, OES models demonstrated improved predictions over the conventional or PCA-OES models. Compared to conventional models, OES models yielded an improvement of more than 25% in modeling profile angle and etch rate nonuniformtiy. More than 40% improvement over PCA-OES model was achieved in modeling etch rate and profile angle. These results demonstrate that nonreduced in situ data are more beneficial than reduced one in constructing plasma control model

  5. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  6. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  7. Neutrinos at CERN

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    CERN's long and distinguished neutrino tradition began in 1958 at the then new 500 MeV synchrocyclotron (SC) with the first observation of the decay of a charged pion into an electron and a neutrino. At that time, the first ideas on the special (vector/axial vector) structure of the weak interactions had been put forward by Feynman and Gell-Mann and by Marshak and Sudarshan, but the continual non-observation of that charged pion decay was holding up progress. This decay is only one part in ten thousand, and is masked by the dominant muon-neutrino channel. A special telescope was built to pick up the high energy electrons from the pion decay. In 1962 came another SC neutrino success, with the first measurement of the decay of a charged pion into a neutral one, with emission of an electron and a neutrino. Meanwhile the main thrust of CERN's neutrino effort was taking shape at the PS. By the close of 1960, CERN had decided to attack neutrino physics using several detectors - a 1m heavy liquid bubble chamber from Andre Lagarrigue's team in Paris, a CERN 1 m heavy liquid bubble chamber, and a hybrid chamber/counter from a group led by Helmut Faissner

  8. Variational theory of cyclotron emission from nonuniformly magnetized plasmas

    International Nuclear Information System (INIS)

    Shvets, V.F.; Swanson, D.G.

    1992-01-01

    Whereas direct calculations of emission from a source model in both homogeneous and weakly inhomogeneous media have been previously executed, there are no previous theories of the source distribution function from nonuniformly magnetized plasmas where mode conversion phenomena must be taken into account. Whenever the emitting layer is localized due to gradients of the external magnetic field, mode conversion leads to the Generalized Kirchhoff's Law (GKL) E 1 /A 1 = E 2 /A 2 = E 3 /A 3 , where A j represents the absorbed fraction on the j-th wave branch and E j is the corresponding emitted energy along j-th branch. Recently integral expressions for A j and E j in terms of arbitrary localized sink and source distributions have been obtained. The GKL relating absorption to emission along each branch of coexisting in the inhomogeneous mode conversion layer affects the shape of source distribution through a functional of the emissivity. Moreover, E j /A j ≡ I bb , where I bb is a black body radiated power. Accordingly, the distributed emission source function should be an extremal of the emissivity functional. The authors have developed the corresponding variational analysis with nontrivial GKL constraints. As a result they have discovered the correct representation of the ratio of source and sink distributions in the form of an expansion in linearly independent adjoint wave solutions of the absorption problem. Finally, unknown coefficients have been found numerically by further maximization taking account of both source boundedness and the GKL constraints. Calculations performed for a broad variety of plasma parameters will be presented

  9. Ultrahigh energy cosmic rays and neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Foundation, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)], E-mail: stanev@bartol.udel.edu

    2008-04-01

    We discuss the relation between the highest energy cosmic rays (UHECR) and UHE neutrinos. The neutrinos produced in the sources of optically thin astrophysical sources have been linked to the UHECR emissivity of the Universe. The fluxes of cosmogenic neutrinos, generated in propagation by UHECR, also reflect the acceleration of these particles, the maximum acceleration energy, and the cosmological evolution of their sources.

  10. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  11. Sterile neutrinos in the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Malaney, R.A. (Lawrence Livermore National Lab., CA (USA)); Fuller, G.M. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  12. Neutrino Physics

    CERN Document Server

    Barenboim, G.

    2014-12-10

    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.

  13. X-ray emission lines from photoionized plasmas

    International Nuclear Information System (INIS)

    Liedahl, D.A.

    1992-11-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae, which are likely to exist in the circumsource environments of compact X-ray sources. X-ray line production in a photoionized plasma is primarily the result of radiative cascades following recombination. Through the development of atomic models of several highly-charged ions, this work extends the range of applicability of discrete spectral models to plasmas dominated by recombination. Assuming that ambient plasma conditions lie in the temperature range 10 5 --10 6 K and the density range 10 11 --10 16 cm -3 , X-ray line spectra are calculated over the wavelength range 5--45 angstrom using the HULLAC atomic physics package. Most of the work focuses on the Fe L-shell ions. Line ratios of the form (3s-2p)/(3d-2p) are shown to characterize the principal mode of line excitation, thereby providing a simple signature of photoionization. At electron densities exceeding 10 12 cm -3 , metastable state populations in the ground configurations approach their LTE value, resulting in the enrichment of the Fe L-shell recombination spectrum and a set of density-sensitive X-ray line ratios. Radiative recombination continua and emission lines produced selectively by Δn = 0 dielectronic recombination are shown to provide two classes of temperature diagnostics. Because of the extreme overionization, the recombination continua are expected to be narrow (ΔE/E much-lt 1), with ΔE = kT. Dielectronic recombination selectively drives radiative transitions that originate on states with vacancies in the 2s subshell, states that are inaccessible under pure RR population kinetics

  14. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    Science.gov (United States)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  15. Los Neutrinos Los Neutrinos

    Directory of Open Access Journals (Sweden)

    Julián Félix

    2012-02-01

    Full Text Available From all the proposals to understand the structure of matter, and the way the natural world is conformed, the one about neutrinos is the most enigmatic, abstract, and foreign to immediate experience; however, this is the one that has delved more deeply over the nearly eighty years since it was formulated by Wolfgang Pauli –in 1930- as a radical proposition to understand nucleon decay, and the decay of other particles, without the violation of the principle of conservation of energy and momentum at subatomic level. This proposition has evolved through the years, and from Pauli’s original idea only the basic elements remain.This article contains the tale of the hypothesis of neutrinos, its early history, its evolution up to present day, and the efforts done nowadays to study them. In summary, this is the physics of neutrinos. De todas las propuestas para entender la estructura de la materia, y la conformación del mundo natural, los neutrinos es la más enigmática, abstracta, y ajena a la experiencia inmediata; sin embargo, es la que más hondo ha ido calando a lo largo de los ya casi ochenta años de haber sido formulada por Wolfgang Pauli –en el año 1930- como una medida radical para entender el decaimiento de los nucleones, y otras partículas, sin que se violara el principio de la conservación de la energía y del momento a nivel subatómico. La propuesta ha evolucionado a lo largo de los años, y de la idea original de Pauli ya sólo lo básico permanece. En este artículo está el relato de la hipótesis de los neutrinos, su historia primera, su evolución hasta el presente, los esfuerzos que en la actualidad se realizan para estudiarlos. En breve, ésta es la física de los neutrinos.

  16. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  17. Solar neutrinos

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1987-09-01

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37 Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  18. Sterile neutrino

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Paper deals with the information on the occurrence of the fields of the sterile neutrinos (the righthanded ones) mixed with the normal neutrinos (the lefthanded ones). Both the Max Plank Radioastronomy Institute and the Los Angeles University assumes that the occurrence of the keV mass sterile neutrinos may explain the dark matter nature, the fast rotation of the observed pulsars and the reionization processes. The issues associated with the possibility to record the sterile neutrinos were analyzed in the course of the Sterile Neutrinos in Astrophysics and Cosmology Workshop (Crans Montana, March 2006 [ru

  19. Explosive emission as a process involving a plasma flux

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1995-01-01

    Investigating the character of an intense emission in electric discharges, G.A. Mesyats has discovered in 1966 the phenomenon of explosive emission. This Phenomenon consists in heating of some cathode region under the influence of discharge currents. As a result, a plasm of a high conductivity is formed near the cathode, and the discharge current passes through this plasm during its existence. This phenomenon is studied in detail from different standpoints. Below we consider one more aspect of this phenomenon by using its analogy with a plasm which results fran irradiation of a surface. Estimates for a copper cathode will be made. A schematic character of the phenomenon under consideration is as follows. An electric field near a cathode creates an electric current. which is concentrated bi a small region of the cathode and heat it. Evaporating atoms with admixture of electrons and ions form a flux which is transformed to a fully ionized plasma under the influence of external fields. This plasm has a high conductivity and provides passing of electric currents of a high intensity. Note that for simplicity we omit different peculiarities of this phenomenon because here a plasma flux is of interest as a conductive matter

  20. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  1. Neutrinos today

    International Nuclear Information System (INIS)

    Pontecorvo, B.; Bilen'kij, S.

    1987-01-01

    After the famous 1983 discovery of intermediate W, Z 0 bosons it may be stated with certainty that W, Z 0 are entirely responsible for the production of neutrinos and for their interactions. Neutrino physics notions are presented from this point of view in the first four introductory, quite elementary, paragraphs of the paper. The following seven paragraphs are more sophisticated. They are devoted to the neutrino mass and neutrino mixing question, which is the most actual problem in today neutrino physics. Vacuum neutrino oscillations, matter neutrino oscillations and netrinoless double-decay are considered. Solar neutrino physics is discussed in some detail from the point of view of vacuum and matter neutrino oscillations. The role played by neutrinos in the Universe is briefly considered. In the last paragraph there discussed the probable observation by different groups of neutrinos connected with the Supernova 1987 A: the first observation of gravitational star collapse (at least the general rehearsal of such observation) opens up a new era in astronomy of today exerimental physics and astrophysics is presented at the end of the paper in the form of a Table

  2. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  3. Quantum degeneracy corrections to plasma line emission and to Saha equation

    International Nuclear Information System (INIS)

    Molinari, V.G.; Mostacci, D.; Rocchi, F.; Sumini, M.

    2003-01-01

    The effect of quantum degeneracy on the electron collisional excitation is investigated, and its effects on line emission evaluated for applications to spectroscopy of dense, cold plasmas. A correction to Saha equation for weakly-degenerate plasmas is also presented

  4. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  5. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Zhao, H. Y.; Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Wang, H.; Ma, B. H.; Li, X. X.; Zhu, Y. H.; Sheng, L. S.; Zhang, G. B.; Tian, Y. C.

    2008-01-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources--LECR2M and SECRAL--was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied

  6. Study of microwave emission from a dense plasma focus

    International Nuclear Information System (INIS)

    Gerdin, G.; Venneri, F.; Tanisi, M.

    1985-01-01

    Microwave emission was detected in a 12.5 kJ dense plasma focus, using microwave horns and detectors placed in various locations outside the device. The results show that the parallel plates connecting the focus to its capacitor banks act as antennas and transmission lines, rather than wave guides. Subsequent measurements were performed with a microwave detector (R-band) attached to the focus anode, directly looking into the coaxial gun region, allowing to restrict the microwave emitting region to the muzzle end of the focus. The microwave frequency spectrum, determined with a time of flight detection system, strongly suggests the lower hybrid instability as the driving mechanism of the emissions. Comparing the time sequence of the emissions with those of other observable phenomena in the focus, a model was developed, to explain the possible relationship between the generation of microwave radiation and turbulence induced resistivity in the focus pinch. According to the model, microwaves and enhanced resistivity are caused by current driven instabilities occurring in the current sheath produced at the outer boundary of the pinch during the initial compression phase. Comparisons of the model predictions with observed experimental results are presented, including time resolved measurements of the pinch resistivity

  7. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: On 10 June 1992, at the Neutrino 92 meeting in Grenada, Spain, Till Kirsten of Heidelberg's Max Planck Institute reported that neutrinos from sunshine had been seen. Most of the energy pumped out by the Sun comes from the fusion of protons into alpha particles, a process which also liberates neutrinos. While it takes about a million years for radiant energy formed in the deep interior of the Sun to fight its way to the surface, the highly penetrating neutrinos emerge almost immediately. It was in 1970 that Ray Davis and his team began taking data with a tank containing 615 tons of perchloroethylene (dry cleaning fluid) 1500 metres underground in the Homestake gold mine, South Dakota. The observed signal is consistently smaller than what is expected. This 'solar neutrino problem' was confirmed by the Kamioka mine experiment in Japan, looking at the Cherenkov light released by neutrino interactions in some 700 tons of water. However these experiments are only sensitive to a tiny high energy tail of the solar neutrino spectrum, and to understand what is going on needs measurements of the primary neutrinos from proton fusion. To get at these neutrinos, two large new detectors, using gallium and sensitive to these lower energy particles, have been built and commissioned in the past few years. The detectors are SAGE ('Soviet' American Gallium Experiment) in the Baksan Neutrino Observatory in the Caucasus, and Gallex, a team from France, Germany, Israel, Italy and the US in the Italian Gran Sasso underground Laboratory. At Grenada, Kirsten reported unmistakable signs of solar neutrinos of proton origin recorded in Gallex. SAGE and Gallex do not yet have enough data to unambiguously fix the level of primary solar neutrinos reaching the Earth, and the interpretation of the interim results tends to be subjective. However after 23 years of conditioning through watching the solar neutrinos' high energy tail, the prospect of a neutrino

  8. Theory of a spherical emissive probe in a low-density isotropic plasma

    International Nuclear Information System (INIS)

    Din, A.

    2010-01-01

    Emissive probes are widely being used by plasma experimentalists to determine plasma parameters. Here, a fairly general spherical-emissive-probe scenario based on trajectory integration of the Vlasov equation is formulated and specialized to the particular non-emissive situation considered by Bernstein and Rabinowitz (1959), which is monoenergetic isotropic ions and Boltzmann-distributed electrons originating from the plasma. Then, this formalism together with our newly developed analytic-numerical matching procedure is used for finding the potential profile in the entire plasma-probe transition (PPT) region, consisting of the 'inward' and 'outward' sheath solutions, and the quasineutral (plasma) solution. The analytically expanded outward sheath and plasma solutions, the quasineutral solution and the related matching procedure represent genuinely new results in the context of this particular non-emissive probe scenario, however with the underlying methodology also applicable to other probe scenarios in the future. For the emissive case we consider, in addition to the plasma ions and electrons of the Bernstein and Rabinowitz scenario, electrons emitted from the probe surface with zero tangential velocity and a 'waterbag' distribution with respect to the radial velocity. Using our newly developed numerical matching procedure, we calculate the entire potential profile also for this emissive case. Comparison of the potential profiles for the emissive and non-emissive cases shows visible differences, thus demonstrating the effect of electron emission from the probe. To our knowledge, the present work represents the first attempt at systematically developing a kinetic approach for spherical emissive probes. (author)

  9. Surface emission of quark gluon plasma at RHIC and LHC

    International Nuclear Information System (INIS)

    Xiang Wenchang; Wan Renzhou; Zhou Daicui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor P AALHS ∼0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC. (authors)

  10. Emission characteristics of Xe-RbBr plasma

    Science.gov (United States)

    Heneral, A. A.; Avtaeva, S. V.

    2017-12-01

    The luminescence spectra of the longitudinal pulsed-periodic discharge in Xe-RbBr gas-vapour mixtures at low pressures are experimentally studied. Conditions for obtaining strong UV radiation of XeBr* exiplex molecules in the spectral range of 200-425 nm are found. The greatest output of the XeBr* UV radiation is provided at temperature of the gas-discharge tube walls of ~1000 K. The maximum UV emission power of the whole plasma volume is 4.8 W. Formation of XeBr* exciplex molecules in the pulsed-periodic discharge in Xe-RbBr gas-vapour mixtures at low pressures is discussed.

  11. NEUTRINO MASS

    OpenAIRE

    Kayser, Boris

    1988-01-01

    This is a review article about the most recent developments on the field of neutrino mass. The first part of the review introduces the idea of neutrino masses and mixing angles, summarizes the most recent experimental data then discusses the experimental prospects and challenges in this area. The second part of the review discusses the implications of these results for particle physics and cosmology, including the origin of neutrino mass, the see-saw mechanism and sequential dominance, and la...

  12. Neutrino masses

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets

  13. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-04-15

    Postulated in the early days of quantum mechanics by Wolfgang Pauli to make energy-momentum conservation in nuclear beta decay come out right, the neutrino has never strayed far from physicists' attention. The Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics held recently in the French Alps showed that more than half a century after Pauli's prediction, the neutrino stubbornly refuses to yield up all its secrets.

  14. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  15. Neutrinos and supernova collapse

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1980-01-01

    The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur

  16. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    Science.gov (United States)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  17. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  18. Spectral analysis of K-shell X-ray emission of magnesium plasma

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the ...

  19. Eclipsed neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The total solar eclipse visible in Southern Asia on 24 October provided an opportunity for an unusual physics experiment. At face value, the levels of solar neutrinos detected on the Earth's surface are difficult to understand and suggest that perhaps the composition of solar neutrinos oscillates between different neutrino types on their journey. In this way neutrinos originating in the Sun as electrontype could convert into heavy neutrinos, which could subsequently disintegrate into an electron-neutrino and a photon. In certain neutrino scenarios, such a photon would have an energy corresponding to that of visible light, and in principle should be detectable if there are enough of them. The problem is that they would normally be swamped by the copious photons of sunlight. The 24 October solar eclipse provided a chance to check this out. A team led by François Vannucci, spokesman of the Nomad neutrino experiment at CERN, en route to the 'Rencontres du Vietnam' physics meeting in Ho Chi Minh Ville, set up a CCD-equipped telescope. To insure against cloud cover, a second telescope followed the eclipse in the desert of Rajastan, India, where the eclipse was to last only half as long, but the chance of cloud was minimal. No background solar signal was seen, or, expressed in physics terms, if solar radiation has any heavy neutrino component, then less than a millionth of it disintegrates into an electron neutrino and a visible photon before it arrives at the Earth. The negative result also has implications for candidate massive, unstable neutrinos from other sources, notably a component of the missing 'dark matter' of the Universe. The next such eclipse should be visible in North Asia in 1997, when hopefully better measurements will be made

  20. Linear conversion theory on the second harmonic emission from a plasma filament

    International Nuclear Information System (INIS)

    Tan Weihan; Gu Min

    1989-01-01

    The linear conversion theory of laser produced plasma filaments is studied. By calculations for the energy flux of the second harmonic emission on the basis of the planar wave-plasma interaction model, it has been found that there exists no 2ω 0 harmonic emission in the direction perpendicular to the incident laser, in contradiction with the experiments. A linear conversion theory is proposed on the second harmonic emission from a plasma filament and discovered the intense 2ω 0 harmonic emission in the direction perpendicular to the incident laser, which is in agreement with the experiments. (author)

  1. Neutrino Oscillations

    Indian Academy of Sciences (India)

    work of Takaaki Kajita and Arthur B McDonald clearly demon- strated the ... time belief that neutrinos are massless particles. .... SK is a second generation, 50,000 t wa- ..... values of the parameters of the PMNS matrix based on a global .... [13] Y Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino.

  2. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    International Nuclear Information System (INIS)

    Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-01

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime

  3. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tierno, S. P., E-mail: sp.tierno@upm.es; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L. [Department of Applied Physics, E.T.S.I. Aeronáutica y del Espacio. Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  4. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    Science.gov (United States)

    Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-01

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  5. Proton emission from laser-generated plasmas at different intensities

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Margarone, Daniele

    2012-01-01

    Roč. 57, č. 2 (2012), s. 237-240 ISSN 0029-5922. [International Conference on Research and Applications of Plasmas (PLASMA). Warsaw, 12.09.2011-16.09.2011] Institutional support: RVO:68378271 Keywords : laser-generated plasma * hydrogenated targets * proton acceleration Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.507, year: 2012

  6. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Basovic, Milos [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  7. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  8. Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M⊙ supernova model

    Science.gov (United States)

    Wu, Meng-Ru; Qian, Yong-Zhong; Martínez-Pinedo, Gabriel; Fischer, Tobias; Huther, Lutz

    2015-03-01

    In this paper, we explore the effects of neutrino flavor oscillations on supernova nucleosynthesis and on the neutrino signals. Our study is based on detailed information about the neutrino spectra and their time evolution from a spherically symmetric supernova model for an 18 M⊙ progenitor. We find that collective neutrino oscillations are not only sensitive to the detailed neutrino energy and angular distributions at emission, but also to the time evolution of both the neutrino spectra and the electron density profile. We apply the results of neutrino oscillations to study the impact on supernova nucleosynthesis and on the neutrino signals from a Galactic supernova. We show that in our supernova model, collective neutrino oscillations enhance the production of rare isotopes 138La and 180Ta but have little impact on the ν p -process nucleosynthesis. In addition, the adiabatic Mikheyev-Smirnov-Wolfenstein flavor transformation, which occurs in the C /O and He shells of the supernova, may affect the production of light nuclei such as 7Li and 11B. For the neutrino signals, we calculate the rate of neutrino events in the Super-Kamiokande detector and in a hypothetical liquid argon detector. Our results suggest the possibility of using the time profiles of the events in both detectors, along with the spectral information of the detected neutrinos, to infer the neutrino mass hierarchy.

  9. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  10. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  11. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  12. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  13. Emission characteristics of kerosene-air spray combustion with plasma assistance

    Directory of Open Access Journals (Sweden)

    Xingjian Liu

    2015-09-01

    Full Text Available A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  14. Results on ββ decay with emission of two neutrinos or Majorons in {sup 76}Ge from GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Csathy, J.J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Allardt, M.; Domula, A.; Lehnert, B.; Schneider, B.; Wester, T.; Wilsenach, H.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; D' Andrea, V.; Di Vacri, A.; Junker, M.; Laubenstein, M.; Macolino, C.; Zavarise, P. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Doroshkevich, E.; Fedorova, O.; Gurentsov, V.; Kazalov, V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Moseev, P.; Selivanenko, O.; Veresnikova, A.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barros, N. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA (United States); Baudis, L.; Benato, G.; Walter, M. [Physik Institut der Universitaet Zuerich, Zurich (Switzerland); Bauer, C.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Stepaniuk, M.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Liao, H.Y.; Majorovits, B.; Palioselitis, D.; Schulz, O.; Vanhoefer, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Bellotti, E. [Universita Milano Bicocca, Dipartimento di Fisica, Milan (Italy); INFN Milano Bicocca, Milan (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Medinaceli, E.; Sada, C.; Sturm, K. von [Dipartimento di Fisica e Astronomia dell' Universita di Padova, Padua (Italy); INFN Padova, Padua (Italy); Borowicz, D. [Jagiellonian University, Institute of Physics, Cracow (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C. [INFN Milano Bicocca, Milan (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C.; Schuetz, A.K. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Panas, K.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Munich (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Inzhechik, L.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); International University for Nature, Society and Man ' ' Dubna' ' , Dubna (Russian Federation); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padua (Italy); Lubashevskiy, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Pandola, L. [INFN Laboratori Nazionali del Sud, Catania (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Milano (Italy); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Collaboration: GERDA Collaboration

    2015-09-15

    A search for neutrinoless ββ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 10{sup 23} yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with {sup 76}Ge. A new result for the half-life of the neutrino-accompanied ββ decay of {sup 76}Ge with significantly reduced uncertainties is also given, resulting in T{sub 1/2}{sup 2ν} = (1.926 ± 0.094) @ x 10{sup 21} yr. (orig.)

  15. Results on ββ decay with emission of two neutrinos or Majorons in {sup 76}Ge from GERDA Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M. [Physik Department and Excellence Cluster Universe, Technische Universität München, Munich (Germany); Allardt, M. [Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden (Germany); Bakalyarov, A. M. [National Research Centre “Kurchatov Institute”, Moscow (Russian Federation); Balata, M. [INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, Assergi (Italy); Collaboration: GERDA Collaboration; and others

    2015-09-09

    A search for neutrinoless ββ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n=1,2,3,7 were searched for. No signals were found and lower limits of the order of 10{sup 23} yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with {sup 76}Ge. A new result for the half-life of the neutrino-accompanied ββ decay of {sup 76}Ge with significantly reduced uncertainties is also given, resulting in T{sub 1/2}{sup 2ν}=(1.926±0.094)×10{sup 21} yr.

  16. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  17. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    International Nuclear Information System (INIS)

    Mariotti, D.

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  18. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  19. Neutrino sunshine

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1992-09-15

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history.

  20. Supernova neutrinos

    International Nuclear Information System (INIS)

    John Beacom

    2003-01-01

    We propose that neutrino-proton elastic scattering, ν + p → ν + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T p ≅ 2E ν 2 /M p , and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from (bar ν) e + p → e + + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of ν μ , ν τ , (bar ν) μ , and (bar ν) τ . The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos

  1. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  2. Neutrino sunshine

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1992-01-01

    Most of the Sun's energy comes from the fusion of protons into deuterium. Sunshine is necessary for life, but the first evidence for the neutrinos which accompany and explain this basic process still makes science history

  3. Neutrino overview

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1994-01-01

    I discuss some of the open issues in neutrino physics, emphasizing areas of intersection with astrophysics, that occupied the participants of the Snowmass Workshop on Nuclear and Particle Astrophysics and Cosmology in the Next Millenium

  4. Neutrino masses and oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A Yu

    1996-11-01

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT`s and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs.

  5. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  6. Photoionization capable, extreme and vacuum ultraviolet emission in developing low temperature plasmas in air

    NARCIS (Netherlands)

    Stephens, J.; Fierro, A.; Beeson, S.; Laity, G.; Trienekens, D.; Joshi, R.P.; Dickens, J.; Neuber, A.

    2016-01-01

    Experimental observation of photoionization capable extreme ultraviolet and vacuum ultraviolet emission from nanosecond timescale, developing low temperature plasmas (i.e. streamer discharges) in atmospheric air is presented. Applying short high voltage pulses enabled the observation of the onset of

  7. Effects of neutrino degeneracy and of downscatter on neutrino radiation from dense stellar cores

    International Nuclear Information System (INIS)

    Lichtenstadt, I.; Ron, A.; Sack, N.; Wagschal, J.J.; Bludman, S.A.

    1978-01-01

    A simplified model is presneted for several stages in the development of a neutronization shell in the inner core of a collapsing star. Neutrino degeneracy severely reduces neutrino emission and downscatter in energy, so that for all but the thinest shell sources, surface emission of an approximately Fermi-Dirac neutrino spectrum obtains. The Neutrino spectrum departs from exact Fermi-Dirac neutrino form only because of the outstreaming of low-energy neutrinos.Downscatter by electrons is helped by neutron scatterers present, but except for reducing the peak neutrino energy by about 30%, electrons play no dramatic part. The neutrino degeneracy inhibits downscatter so that the low-energy window in the Fermi-Dirac distribution leads to little neutrino loss.A simple equilibrium radiation picture emerges in which neutrinos are LTE thermally emitted in the neutronization shell and isotropically coherently scattered by neutrons and by nuclei on the way out of the overlying mantle. The Fermi statistics limit on neutrino flux is probably reached in practice, but is, in most cases, still insufficient for mantle blow-off

  8. Femtosecond envelope of the high-harmonic emission from ablation plasmas

    International Nuclear Information System (INIS)

    Haessler, S; Gobert, O; Hergott, J-F; Lepetit, F; Perdrix, M; Carré, B; Salières, P; Bom, L B Elouga; Ozaki, T

    2012-01-01

    We characterize the temporal profile of the high-order harmonic emission from ablation plasma plumes using cross-correlations with the infrared (IR) laser beam provided by two-photon harmonic+IR ionization of rare gas atoms. We study both non-resonant plasmas (lead, gold and chrome) and resonant plasmas (indium and tin), i.e. plasmas presenting in the singly charged ions a strong radiative transition coinciding with a harmonic order. The cross-correlation traces are found to be very similar for all harmonic orders and all plasma targets. The recovered harmonic pulse durations are very similar to the driving laser, with a tendency towards being shorter, demonstrating that the emission is a directly laser-driven process even in the case of resonant harmonics. This provides a valuable input for theories describing resonant-harmonic emission and opens the perspective of a very high flux tabletop XUV source for applications. (paper)

  9. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  10. Neutrino astronomy with supernova neutrinos

    Science.gov (United States)

    Brdar, Vedran; Lindner, Manfred; Xu, Xun-Jie

    2018-04-01

    Modern neutrino facilities will be able to detect a large number of neutrinos from the next Galactic supernova. We investigate the viability of the triangulation method to locate a core-collapse supernova by employing the neutrino arrival time differences at various detectors. We perform detailed numerical fits in order to determine the uncertainties of these time differences for the cases when the core collapses into a neutron star or a black hole. We provide a global picture by combining all the relevant current and future neutrino detectors. Our findings indicate that in the scenario of a neutron star formation, supernova can be located with precision of 1.5 and 3.5 degrees in declination and right ascension, respectively. For the black hole scenario, sub-degree precision can be reached.

  11. Low-energy plasma-cathode electron gun with a perforated emission electrode

    Science.gov (United States)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  12. Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.

    Science.gov (United States)

    Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo

    2016-05-06

    We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.

  13. Emission study of alumina plasma produced by a KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, K., E-mail: kyahiaoui@cdta.dz [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Abdelli-Messaci, S.; Messaoud-Aberkane, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Kellou, H. [Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Allia, 16111 Bab-Ezzouar, Alger (Algeria)

    2014-03-01

    We report on the plasma emission formed from an α-alumina target when irradiated by laser into vacuum and through oxygen gas. Two diagnostic tools have been used: ICCD camera fast imaging and optical emission spectroscopy. The alumina plasma was induced by a KrF laser beam at a wavelength of 248 nm and pulse duration of 25 ns. The laser fluence was set to 8 J/cm{sup 2} and the oxygen pressure was varied from 0.01 to 5 mbar. By using the ICCD camera, two dimensional images of the plasma expansion were taken at different times. Depending on oxygen pressure and time delay, the expansion behavior of the plasma showed free expansion, plume splitting, shock wave formation, hydrodynamic instability and deceleration of the plume. Using optical emission spectroscopy, the plasma emission revealed the presence of neutral Al I, Al II, Al III into vacuum and under oxygen ambiance. The molecular emission of aluminum oxide (AlO) was detected only in oxygen ambiance. It should be noted that no oxygen lines were observed. Finally, the evolution of the electronic temperature along the normal axis from the target surface, into vacuum, was estimated using the Boltzmann plot method. - Highlights: • Ablated mass measurements of α-alumina target irradiated by a laser in nanosecond regime. • Optical emission spectroscopy of alumina plasma. • Fast imaging diagnostic of alumina plume using ICCD camera.

  14. Effect of plasma pretreatment on the structure and emission characteristics of carbon nanotubes

    International Nuclear Information System (INIS)

    Uh, Hyung Soo; Lee, Soo Myun; Choi, Seok Rim; Park, Sang Sik; Cho, Euo Sik; Lee, Jong Duk; Kwon, Sang Jik

    2003-01-01

    Carbon nanotubes (CNTs) were grown on Ni-coated TiN/Si substrates by using microwave plasma chemical vapor deposition with a gas mixture of H 2 /CH 4 at a low temperature of 500 .deg. C. The effect of H 2 plasma pretreatment on the diameter of grown CNTs was investigated. We found that the average diameter of CNTs could be easily controlled by using the H 2 -plasma pretreatment time before CNTs growth and varied from 36 nm to 26 nm as the pretreatment time changed from 5 min to 15 min. However, any further increase in the pretreatment time gave rise to a rapid decrease in CNTs growth. After 25 min of the plasma pretreatment, scanning electron microscopy observation exhibited the destruction of the CNTs. The impact of the plasma pretreatment time on the emission behavior of CNTs was also investigated in a diode-type electron-emission configuration. The variation of the CNT diameter due to the plasma pretreatment caused a drastic change in emission properties. The turn-on voltages of CNT emitters varied from 3.5 V/μm to 9 V/μm, depending on the hydrogen-plasma pretreatment conditions. The close relationship between the electron-emission characteristics and the pretreatment time indicates that the pretreatment condition may be a key process parameter in CNTs growth for field-emission displays and should be optimized.

  15. Solar neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D [Tokyo Univ. (Japan). Coll. of General Education

    1975-01-01

    The measurement of solar neutrino was performed by using the reaction /sup 37/cl+..nu..sub(e)..-->../sup 37/Ar+e/sup -/ by Davis et al. The argon gas produced through the above mentioned reaction in a tank containing 610 ton of C/sub 2/Cl/sub 4/ was collected and measured. The rate of production of /sup 37/Ar was 0.13+-0.20/day, and the net production rate by the solar neutrino was 0.06+-0.20/day, being corrected for background. This value corresponds to 0.5+-1.0 SNU. Theoretical calculation with the model of spherically symmetric solar development gave an expected value of 5.6 SNU, which is in contradiction with the experimental value. Reason of this discrepancy was considered. The possibility of decay of neutrino to the other particles with weak interaction is very slight. Various models of the sun were investigated, but the results were still inconsistent with the experiment. The mixing of matters in the sun may cause the reduction of neutrino. If He gas comes to the center of the sun by mixing, the reaction, /sup 3/He+/sup 3/He, progresses excessively at the center, and it produces the expansion of the core of the sun. Then, the temperature drops and the neutrino is reduced. Various models which can explain the neutrino of less than ISNU have been presented. However, other theory says that the reduction of neutrino is not expected even if the mixing is considered. A problem concerning the mixing is whether the thermal instability which causes the mixing exists. (Kato, T.).

  16. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  17. Emission Spectroscopy of OH Radical in Water-Argon Arc Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Mašláni, Alan; Sember, Viktor

    2014-01-01

    Roč. 2014, April (2014), "952138"-"952138" ISSN 2314-4920 R&D Projects: GA ČR GAP205/11/2070 Institutional support: RVO:61389021 Keywords : Emission spectroscopy * OH radical * arc plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.538, year: 2014 http://www.hindawi.com/journals/jspec/2014/952138/abs/

  18. Picosecond laser krypton plasma emission in water window spectral range.

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Müller, M.; Mann, K.; Pánek, D.; Parkman, T.

    2017-01-01

    Roč. 24, č. 12 (2017), č. článku 123301. ISSN 1070-664X R&D Projects: GA MŠk LG15013 Institutional support: RVO:61389021 Keywords : laser plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016 http://aip.scitation.org/doi/10.1063/1.4998533

  19. Experimental neutrino physics

    CERN Document Server

    Link, Jonathan M

    2018-01-01

    Neutrinos have a smaller mass than any other known particle and are the subject of intense recent studies, as well as this book. The author provides a coherent introduction to the necessary theoretical background and experimental methods used by modern neutrino physicists. It’s designed as a one-stop reference addressing what is currently known about the neutrino hypothesis, discovery of the neutrino, theory of weak interactions, solar neutrino puzzle, and neutrino oscillation. It then gives a detailed account of practical approaches for study of precision oscillations, neutrino mass and other neutrino properties, sterile neutrinos, and neutrino messengers from space and Earth’s interior.

  20. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  1. Transition probabilities of some Si II lines obtained by laser produced plasma emission

    International Nuclear Information System (INIS)

    Blanco, F.; Botho, B.; Campos, J.

    1995-01-01

    The absolute transition probabilities for 28 Si II spectral lines have been determined by measurement of emission line intensities from laser-produced plasmas of Si in Ar and Kr atmospheres. The studied plasma has a temperature of about 2 . 10 4 K and 10 17 cm -3 electron density. The local thermodynamic equilibrium conditions and plasma homogeneity have been checked. The results are compared with the available experimental and theoretical data and with present Hartree-Fock calculations in LS coupling. (orig.)

  2. Dominant role of dielectron satellites in emission spectra of laser plasma near target surface

    International Nuclear Information System (INIS)

    Rozmej, F.; Faenov, A.Ya.; Pikuz, T.A.

    1997-01-01

    It is shown that satellite structures of resonance lines may become more intensive than resonance lines themselves. The experimental and theoretical studies show that the conditions whereby the satellite structures become predominant in the plasma emission spectrum, are sufficiently easily realized in the experiment and moreover they obviously will present typical cases by studies on the plasma condensed areas in the experiments on inertial thermonuclear synthesis and by investigation of plasma, created through pico- and femtosecond laser pulses of high contrast

  3. Determination of plasma Z-pinch effect by intrinsic stimulated emission

    International Nuclear Information System (INIS)

    Lue, J.T.; Liang, J.M.

    1977-01-01

    The plasma Z-pinch behavior has been observed in a relatively small-bore diameter tube and low bank voltage discharge system. The instant of the occurrence of the laser line at 4880 A coincides with the plasma pinch time calculated by using a one-fluid snow-plow model. A determination of plasma pinch parameters by measuring the intrinsic stimulated emission of the ions is described

  4. Neutrino conversion in a neutrino flux: towards an effective theory of collective oscillations

    Science.gov (United States)

    Hansen, Rasmus S. L.; Smirnov, Alexei Yu.

    2018-04-01

    Collective oscillations of supernova neutrinos above the neutrino sphere can be completely described by the propagation of individual neutrinos in external potentials and are in this sense a linear phenomenon. An effective theory of collective oscillations can be developed based on certain assumptions about time dependence of these potentials. General conditions for strong flavor transformations are formulated and these transformations can be interpreted as parametric resonance effects induced by periodic modulations of the potentials. We study a simplified and solvable example, where a probe neutrino is propagating in a flux of collinear neutrinos, such that ν ν‑ interactions in the flux are absent. Still, this example retains the main feature—the coherent flavor exchange. Properties of the parametric resonance are studied, and it is shown that integrations over energies and emission points of the flux neutrinos suppress modulations of the potentials and therefore strong transformations. The transformations are also suppressed by changes in densities of background neutrinos and electrons.

  5. Calculation of emission from hydrogenic ions in super liquid density plasmas

    International Nuclear Information System (INIS)

    Bailey, D.S.; Valeo, E.J.

    1976-01-01

    Previous calculations of line emission were extended to higher density, lower temperature plasmas, typical of those expected in early ablative compression experiments. Emission from Ne-seeded fuel was analyzed in order to diagnose the density and temperature of the compressed core. The Stark/Doppler broadened emission profile is calculated for the H-like Ne resonance line. The observable lineshape is then obtained by time-averaging over expected density and temperature profiles and by including the effects of radiative transfer

  6. Nuclear Neutrino Spectra in Late Stellar Evolution

    Science.gov (United States)

    Misch, G. Wendell; Sun, Yang; Fuller, George

    2018-05-01

    Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 - 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.

  7. Probing colliding Calcium plasmas with emission and VUV absorption imaging

    International Nuclear Information System (INIS)

    Kavanagh, K.D.; Hirsch, J.S.; Kennedy, E.T.; Costello, T.; Poletto, L.; Nicolosi, P.

    2004-01-01

    Full text: Laser produced plasmas are formed when a short pulse and high power laser is focused onto a surface. Applications range from VUV/X-ray sources for lithography, microscopy and radiography to X-ray lasers, thin film deposition, analytical spectroscopy and electron/ion beam generation (and even acceleration). A battery of particle and optical techniques are now used to diagnose laser plasmas. One highly successful technique is gated-CCD (Charged Coupled Device) imaging of plasma plumes. It provides critical data on the early (creation) and late (expansion) phases of plasma plumes. However, this technique is limited to detecting only the excited (emitting) species in the plume. Recently, we developed a vacuum-UV (VUV) photoabsorption imaging facility called VPIF which enables one can track the evolution of dark plume matter or non-emitting plasma species residing in ground and metastable states. Although much is known about the dynamics of single laser plasma plumes expanding freely, little is known about the overlap between colliding plasma plumes. We are currently performing combined conventional gated CCD imaging and spectroscopy with VUV absorption imaging to map the evolution of the overlap volume of two colliding and interpenetrating plasma plumes. We are specifically tracking ground state singly ionized calcium in the plasmas by tuning into the inner shell 3p to 3d transition at 33.2 eV while the excited state species are tracked using transitions in the UV -NIR spectral range. The experiment may be cast as a model system for atmospheric and/or astrophysical colliding systems, e.g., when tracer elements are injected into supersonic winds at high altitude or when supernovae eject plasma into the solar wind

  8. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  9. Neutrino mass and the solar neutrino problem

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1987-01-01

    Theoretical ideas about neutrino mass based on grand-unified theories are reviewed. These give the see-saw formula in which neutrino mass is inversely proportional to a large mass scale M. For M between 10/sup 11/ and 10/sup 15/ Gev the study of solar neutrinos appears to be the best probe of neutrino masses and mixings

  10. Nonlinear Dynamics of the Cosmic Neutrino Background

    Science.gov (United States)

    Inman, Derek

    At least two of the three neutrino species are known to be massive, but their exact masses are currently unknown. Cosmic neutrinos decoupled from the rest of the primordial plasma early on when the Universe was over a billion times hotter than it is today. These relic particles, which have cooled and are now non-relativistic, constitute the Cosmic Neutrino Background and permeate the Universe. While they are not observable directly, their presence can be inferred by measuring the suppression of the matter power spectrum. This suppression is a linear effect caused by the large thermal velocities of neutrinos, which prevent them from collapsing gravitationally on small scales. Unfortunately, it is difficult to measure because of degeneracies with other cosmological parameters and biases arising from the fact that we typically observe point-like galaxies rather than a continous matter field. It is therefore important to look for new effects beyond linear suppression that may be more sensitive to neutrinos. This thesis contributes to the understanding of the nonlinear dynamics of the cosmological neutrino background in the following ways: (i) the development of a new injection scheme for neutrinos in cosmological N-body simulations which circumvents many issues associated with simulating neutrinos at large redshifts, (ii) the numerical study of the relative velocity field between cold dark matter and neutrinos including its reconstruction from density fields, (iii) the theoretical description of neutrinos as a dispersive fluid and its use in modelling the nonlinear evolution of the neutrino density power spectrum, (iv) the derivation of the dipole correlation function using linear response which allows for the Fermi-Dirac velocity distribution to be properly included, and (v) the numerical study and detection of the dipole correlation function in the TianNu simulation. In totality, this thesis is a comprehensive study of neutrino density and velocity fields that may

  11. Neutrino clouds

    International Nuclear Information System (INIS)

    Stephenson Jr, G.J.; McKellar, B.H.J.

    1997-01-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs

  12. Neutrino clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson Jr, G.J. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Physics and Astronomy; Goldman, T. [Los Alamos National Lab., NM (United States); McKellar, B.H.J. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-06-01

    We consider the possibility that neutrinos are coupled very weakly to an extremely light scalar boson. We first analyze the simple problem of one generation of neutrino and show that, for ranges of parameters that are allowed by existing data, such a system can have serious consequences for the evolution of stars and could impact precision laboratory measurements. We discuss the extension to more generations and show that the general conclusion remains viable. Finally, we note that, should such a scalar field be present, experiments give information about effective masses, not the masses that arise in unified field theories. (authors). 23 refs., 9 figs.

  13. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  14. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  15. Development of robotic plasma radiochemical assays for positron emission tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.; Shea, C.; Fowler, J.S.; Gatley, S.J.; Schlyer, D.J.

    1995-01-01

    A commercial laboratory robot system (Zymate PyTechnology II Laboratory Automation System; Zymark Corporation, Hopkinton, MA) was interfaced to standard and custom laboratory equipment and programmed to perform rapid radiochemical analyses for quantitative PET studies. A Zymark XP robot arm was used to carry out the determination of unchanged (parent) radiotracer in plasma using only solid phase extraction methods. Robotic throughput for the assay of parent radiotracer in plasma is 4--6 samples/hour depending on the radiotracer. Robotic assays of parent compound in plasma were validated for the radiotracers [ 11 C]Benztropine, [ 11 C]cocaine, [ 11 C]clorgyline, [ 11 C]deprenyl, [ 11 C]methadone, [ 11 C]methylphenidate, [ 11 C]raclorpride, and [ 11 C]SR46349B. A simple robot-assisted methods development strategy has been implemented to facilitate the automation of plasma assays of new radiotracers

  16. Latest Observations of Interstellar Plasma Waves, Radio Emissions, and Dust Impacts from the Voyager 1 Plasma Wave Instrument

    Science.gov (United States)

    Gurnett, D. A.

    2017-12-01

    Voyager 1, which is now 140 AU (Astronomical Units) from the Sun, crossed the heliopause into interstellar space in 2012 at a heliospheric radial distance of 121 AU. Since crossing the heliopause the plasma wave instrument has on several occasions detected plasma oscillations and radio emissions at or near the electron plasma frequency. The most notable of these events occurred in Oct.-Nov. 2012, April-May 2013, Feb.-Nov. 2014, and Sept.-Nov. 2015. Most recently, a very weak emission has been observed at or near the electron plasma frequency through most of 2016. These emissions are all believed to be produced by shock waves propagating into the interstellar medium from energetic solar events. The oscillation frequency of the plasma indicates that the electron density in the interstellar plasma has gradually increased from about 0.06 cm-3 near the heliopause to about 0.12 cm-3 in the most recent data. The plasma wave instrument also continues to detect impacts of what are believed to be interstellar dust grains at an impact rate of a few per year. Comparisons with Ulysses observations of similar interstellar dust near 5 AU suggest that the dust grains have sizes in the range from about 0.1 to 1 micrometer. Although the statistics are poor due to the low count rate, the dust flux observed in the outer heliosphere appears to be as much as a factor of two greater than that observed in the interstellar medium. Since the dust particles are likely to be charged, this increase in the heliosphere suggests that there may be a significant electrodynamic interaction of the dust particles with the heliospheric magnetic field.

  17. A plasma process controlled emissions off-gas demonstration

    International Nuclear Information System (INIS)

    Battleson, D.; Kujawa, S.T.; Leatherman, G.

    1995-01-01

    Thermal technologies are currently identified as playing an important role in the treatment of many DOE waste streams, and emissions from these processes will be scrutinized by the public, regulators, and stakeholders. For some time, there has been a hesitancy by the public to accept thermal treatment of radioactive contaminated waste because of the emissions from these processes. While the technology for treatment of emissions from these processes is well established, it is not possible to provide the public complete assurance that the system will be in compliance with air quality regulations 100% of the operating time in relation to allowing noncompliant emissions to exit the system. Because of the possibility of noncompliant emissions and the public's concern over thermal treatment systems, it has been decided that the concept of a completely controlled emissions off-gas system should be developed and implemented on Department of Energy (DOE) thermal treatment systems. While the law of conservation of mass precludes a completely closed cycle system, it is possible to apply the complete control concept to emissions

  18. Compact activation detectors for measuring of neutron emission on plasma focus installations

    International Nuclear Information System (INIS)

    Krokhin, O.N.; Nikulin, V.Ya.; Peregudova, E.V.; Volobuev, I.V.

    2005-01-01

    The paper presents the two compact simple systems for the measurement of the absolute neutron yield in the range 10 6 - 10 12 neutrons/pulse and higher and spatial anisotropy of neutron radiation. The systems are destined for the registration of the short duration neutron radiation of the pulsed plasma installations, such as Plasma Focus (PF), z-pinches and others plasma installations. This paper also includes the results of the neutron emission measurements on different PF installations: 'Tulip' (P.N. Lebedev Physical Institute, Moscow Russia), the PF-1000 and PF-150 installations (Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland)

  19. Measuring nuclear power plant output by neutrino detection

    International Nuclear Information System (INIS)

    Korovkin, V.A.; Kodanev, S.A.; Panashchenko, N.S.; Sokolov, D.A.; Solov'yanov, O.M.; Tverdovskii, N.D.; Yarichin, A.D.; Ketov, S.N.; Kopeikin, V.I.; Machulin, I.N.; Mikaelyan, L.A.; Sinev, V.V.

    1989-01-01

    Neutrino emission from a reactor is inseparably linked with the fission process of heavy nuclei: each fission contributes a specific amount to the overall power output and gives rise to neutrinos which are emitted by the fission fragments created. Using a detector to record the neutrino flux gives a curve for the number of nuclei undergoing fission and the reactor power output. The question of whether it is practically possible to make use of neutrino emission from reactors was first posed in the mid-70s in connection with preparations for neutrino research at the Roven nuclear power plant (RAES) and in 1986 at an IAEA symposium on the topic of guarantees. Since 1982, research has been carried on at RAES on the fundamental properties and interactions of neutrinos. Based on this research and in parallel with it, in 1983 specialists from the Kurchatov Nuclear Power Institute and RAES jointly conducted an experiment which demonstrated in principle the possibility of remotely measuring reactor power output using the neutrino emission. This experiment had extremely limited statistics and is of interest today as the first demonstration of practical usage of neutrino emission from a reactor. At present the statistics for detecting neutrino events have increased tenfold and experience in lengthy measurements has been accumulated. This allows better analysis for the possibilities of the method. This paper reviews neutrino detection, theoretical bases of the method, determining the fission scale values for converting a number of neutrinos into power output, and measuring the power output

  20. Neutrino mixing and future accelerator neutrino experiments

    International Nuclear Information System (INIS)

    Bilenky, S.M.

    1992-01-01

    No evidence for neutrino mixing has been obtained in experiments searching for oscillations with neutrinos from accelerators and reactors. The possible reason is that neutrino masses are too small to produce any sizable effects in the experiments with terrestrial neutrinos. We put forward here the point of view that the reason for that can be traced to the presence of a hierarchy of neutrino masses as well as strength of couplings between lepton families. (orig.)

  1. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (α 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device an on the Phaedrus tandem mirror

  2. A direct indication of plasma potential diagnostic with fast time response and high accuracy based on a differential emissive probe

    International Nuclear Information System (INIS)

    Yao, W.E.; Hershkowitz, N.; Intrator, T.

    1985-01-01

    The floating potential of the emissive probe has been used to directly measure the plasma potential. The authors have recently presented another method for directly indicating the plasma potential with a differential emissive probe. In this paper they describe the effects of probe size, plasma density and plasma potential fluctuation on plasma potential measurements and give methods for reducing errors. A control system with fast time response (≅ 20 μs) and high accuracy (the order of the probe temperature T/sub w//e) for maintaining a differential emissive probe at plasma potential has been developed. It can be operated in pulsed discharge plasma to measure plasma potential dynamic characteristics. A solid state optical coupler is employed to improve circuit performance. This system was tested experimentally by measuring the plasma potential in an argon plasma device and on the Phaedrus tandem mirror

  3. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  4. Neutrino Oscillations

    Indian Academy of Sciences (India)

    The 2015 Nobel Prize in Physics was awarded to two physicists-Takaaki Kajita and Arthur B McDonald, whose teams discoveredthat neutrinos, which come in three flavours, changefrom one flavour to another. This discovery is a major milestonein particle physics as it gives a clear evidence of physicsbeyond the Standard ...

  5. Solar Neutrinos

    Indian Academy of Sciences (India)

    7,81. The Chlorine experiment, located in the Homestake Gold Mine in Lead, South Dakota, was the first solar neutrino experiment to be set up. A tank of. 105 gallons of perchloroethylene in which the electron neu- trino reacts with chlorine to ...

  6. Impact of the cavitation bubble on a plasma emission following laser ablation in liquid

    Science.gov (United States)

    Gavrilović, Marijana R.

    2017-12-01

    In this work, the impact of the cavitation bubble on a plasma emission produced after the interaction of the strong focused laser radiation with the target in the liquid was studied. Several experimental techniques were applied to assess different aspects of the complex phenomena of the laser induced breakdown in the liquid media. The results of the fast photography, Schlieren and shadowgraphy techniques were compared with the results of simpler probe beam techniques, transmission and scattering. In addition, emission from the plasma was analysed using optical emission spectroscopy, with aim to relate the quality of the recorded spectral lines to the bubble properties. Bubble had proved to be more convenient surrounding than the liquid for the long lasting plasma emission, due to the high temperature and pressure state inside of it and significantly lower density, which causes less confined plasma. Changes in refractive index of the bubble were also monitored, although in the limited time interval, when the bubble was sufficiently expanded and the refractive index difference between the bubble and the water was large enough to produce glory rings and the bright spot in the bubble's centre. Reshaping of the plasma emission due to the optical properties of the bubble was detected and the need for careful optimization of the optical system was stressed. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  7. Electron emission and plasma generation in a modulator electron gun using ferroelectric cathode

    International Nuclear Information System (INIS)

    Chen Shutao; Zheng Shuxin; Zhu Ziqiu; Dong Xianlin; Tang Chuanxiang

    2006-01-01

    Strong electron emission and dense plasma generation have been observed in a modulator electron gun with a Ba 0.67 Sr 0.33 TiO 3 ferroelectric cathode. Parameter of the modulator electron gun and lifetime of the ferroelectric cathode were investigated. It was shown that electron emission from Ba 0.67 Sr 0.33 TiO 3 cathode with a positive triggering pulse is a sort of plasma emission. Electrons were emitted by the co-effect of surface plasma and non-compensated negative polarization charges at the surface of the ferroelectric. The element analyses of the graphite collector after emission process was performed to show the ingredient of the plasma consist of Ba, Ti and Cu heavy cations of the ceramic compound and electrode. It was demonstrated the validity of the Child-Langmuir law by introducing the decrease of vacuum gap and increase of emission area caused by the expansion of the surface plasma

  8. Neutrino Interactions

    International Nuclear Information System (INIS)

    Kamyshkov, Yuri; Handler, Thomas

    2016-01-01

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ_1_3 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton 'FAR' neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton 'NEAR' detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  9. Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kamyshkov, Yuri [Univ. of Tennesse, Knoxville, TN (United States); Handler, Thomas [Univ. of Tennesse, Knoxville, TN (United States)

    2016-10-24

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ13 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton "FAR" neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton "NEAR" detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  10. [Investigation on the gas temperature of a plasma jet at atmospheric pressure by emission spectrum].

    Science.gov (United States)

    Li, Xue-chen; Yuan, Ning; Jia, Peng-ying; Niu, Dong-ying

    2010-11-01

    A plasma jet of a dielectric barrier discharge in coaxial electrode was used to produce plasma plume in atmospheric pressure argon. Spatially and temporally resolved measurement was carried out by photomultiplier tubes. The light emission signals both from the dielectric barrier discharge and from the plasma plume were analyzed. Furthermore, emission spectrum from the plasma plume was collected by high-resolution optical spectrometer. The emission spectra of OH (A 2sigma + --> X2 II, 307.7-308.9 nm) and the first negative band of N2+ (B2 sigma u+ --> X2 IIg+, 390-391.6 nm) were used to estimate the rotational temperature of the plasma plume by fitting the experimental spectra to the simulated spectra. The rotational temperature obtained is about 443 K by fitting the emission spectrum from the OH, and that from the first negative band of N2+ is about 450 K. The rotational temperatures obtained by the two method are consistent within 5% error band. The gas temperature of the plasma plume at atmospheric pressure was obtained because rotational temperature equals to gas temperature approximately in gas discharge at atmospheric pressure. Results show that gas temperature increases with increasing the applied voltage.

  11. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q.J. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Chen, X. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Ostrikov, K., E-mail: kostya.ostrikov@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-22

    Highlights: > A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. > The carbon nanotubes are later treated with nitrogen plasmas. > The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. > A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 {mu}A/cm{sup 2}) achieved at a low applied field (3.50 V/{mu}m) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  12. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Wang, B.B.; Cheng, Q.J.; Chen, X.; Ostrikov, K.

    2011-01-01

    Highlights: → A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. → The carbon nanotubes are later treated with nitrogen plasmas. → The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. → A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm 2 ) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  13. Effect of secondary electron emission on the Jeans instability in a dusty plasma

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Roy, Banamali; Maity, Saumyen; Khan, Manoranjan; Gupta, M. R.

    2007-01-01

    In this paper the effect of secondary electron emission on Jeans instability in a dusty plasma has been investigated. Due to secondary electron emission, dust grains may have two stable equilibrium states out of which one is negative and the other is positive. Here both cases have been considered separately. It has been shown that secondary electron emission enhances Jeans instability when equilibrium dust charge is negative. It has also been shown that growth rate of Jeans instability reduces with increasing secondary electron emission when equilibrium dust charge is positive

  14. Investigations of GMAW plasma by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zielinska, S [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Musiol, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K [Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Valensi, F [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Izarra, Ch de [LASEP, Faculte des Sciences-Bourges, Universite d' Orleans, BP 4043, 18028 Bourges Cedex (France); Briand, F [CTAS - Air Liquide Welding, Rue des Epluches, Saint Ouen l' Aumone (France)

    2007-11-15

    We report on investigations of gas metal arc welding plasma operated in pure argon and in a mixture of argon and CO{sub 2} at a dc current of 326 A. The spatially resolved electron densities and temperatures were directly obtained by measuring the Stark widths of the Ar I 695.5 nm and Fe I 538.3 nm spectral lines. Our experimental results show a reduction of the plasma conductivity and transfer from spray arc to globular arc operation with increasing CO{sub 2} concentration. Although the electron density n{sub e} increases while approaching the core of the plasma in the spray-arc mode, a drop in the electron temperature T{sub e} is observed. Moreover, the maximum T{sub e} that we measure is about 13 000 K. Our experimental results differ from the Haidar model where T{sub e} is always maximum on the arc axis and its values exceed 20 000 K. These discrepancies can be explained as a result of underestimation of the amount of metal vapours in the plasma core and of the assumption of local thermal equilibrium plasma in the model.

  15. Coherent emission from relativistic beam-plasma interactions

    International Nuclear Information System (INIS)

    Latham, P.E.

    1986-01-01

    A theoretical model for the production of high-power, high-frequency electromagnetic radiation from unmagnetized, relativistic beam-plasma interactions is studied. Emphasis is placed on the injected-beam system, for which the dominant portion of the radiation is emitted near the point where the beam enters the plasma. In such systems, frequencies much larger than the plasma frequency and power levels many orders of magnitude above that predicted by single-particle radiation have been observed experimentally. A two-step process is proposed to explain these observations: electrostatic bunching of the beam followed by coherent radiation by the bunches. The first step, beam bunching, produces large-amplitude electrostatic waves. A Green's function analysis is employed to understand the convective growth of those waves near the plasma boundary; their saturation amplitude is found by applying conservation of energy to the beam-plasma system. An azimuthally symmetric model is used to compute the saturated spectrum analytically, and a relatively simple expression is found. The second step, the interaction of the electron beam with the electrostatic spectrum, leads to the production of high-power, high-frequency electromagnetic radiation. From a detailed analysis of the phase-space evolution of the trapped beam, an analytic expression for the electromagnetic spectrum is found as a function of angle and frequency

  16. Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators

    International Nuclear Information System (INIS)

    Corde, S; Thaury, C; Phuoc, K Ta; Lifschitz, A; Lambert, G; Lundh, O; Brijesh, P; Sebban, S; Rousse, A; Faure, J; Malka, V; Arantchuk, L

    2012-01-01

    Betatron x-ray emission in laser plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser–plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half. (paper)

  17. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  18. Spontaneous electromagnetic emission from a strongly localized plasma flow.

    Science.gov (United States)

    Tejero, E M; Amatucci, W E; Ganguli, G; Cothran, C D; Crabtree, C; Thomas, E

    2011-05-06

    Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.

  19. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dodt, Dirk Hilar

    2009-01-05

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  20. Determination of the electron energy distribution function of a low temperature plasma from optical emission spectroscopy

    International Nuclear Information System (INIS)

    Dodt, Dirk Hilar

    2009-01-01

    The experimental determination of the electron energy distribution of a low pressure glow discharge in neon from emission spectroscopic data has been demonstrated. The spectral data were obtained with a simple overview spectrometer and analyzed using a strict probabilistic, Bayesian data analysis. It is this Integrated Data Analysis (IDA) approach, which allows the significant extraction of non-thermal properties of the electron energy distribution function (EEDF). The results bear potential as a non-invasive alternative to probe measurements. This allows the investigation of spatially inhomogeneous plasmas (gradient length smaller than typical probe sheath dimensions) and plasmas with reactive constituents. The diagnostic of reactive plasmas is an important practical application, needed e.g. for the monitoring and control of process plasmas. Moreover, the experimental validation of probe theories for magnetized plasmas as a long-standing topic in plasma diagnostics could be addressed by the spectroscopic method. (orig.)

  1. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    Directory of Open Access Journals (Sweden)

    Zhang JX

    2009-01-01

    Full Text Available Abstract Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

  2. LERFCM: a computer code for spatial reconstruction of volume emission from chord measurements in plasmas

    International Nuclear Information System (INIS)

    Navarro, A.P.; Pare, V.K.; Dunlap, J.L.

    1981-01-01

    Local Emissivity Reconstruction from Chord Measurements (LERFCM) is a package of computer programs used to determine the two-dimensional spatial distribution of the emission intensity of radiation in a plasma from line integral data, which represents signals from arrays of collimated detectors looking through the plasma along different chords in a plane. The method requires data from only a few detector arrays and assumes that the emission distribution in the plane of observation has a smooth angular dependence that can be represented by a few low-order harmonics. The intended application is a reconstruction of plasma shape and MHD instabilities, using data from arrays of soft x-ray detectors on Impurity Study Experiment Tokamak

  3. Future neutrino experiments

    CERN Document Server

    Di Lella, L

    2001-01-01

    Future experiments to search for neutrino oscillations using neutrinos from the Sun, from reactors and accelerators are reviewed. Possible long-term developments based on neutrino factories are also described. (29 refs).

  4. Spectrochemical analysis of plutonium using direct current plasma emission spectrometry

    International Nuclear Information System (INIS)

    Morris, W.F.; Fadeff, S.K.; Torres, S.

    1983-01-01

    One year ago, LLNL was just completing the installation of a Direct Current Plasma (DCP) spectrometer for the analysis of Pu and Pu alloys. The installation was completed in December 1982 and has been utilized regularly for Pu analysis since then. This paper discusses the experience with the instrument and some data demonstrating its performance

  5. Emission spectroscopy of hydrogen molecules in technical and divertor plasmas

    International Nuclear Information System (INIS)

    Fantz, U.

    2002-01-01

    The paper gives an overview of the diagnostics of hydrogen molecules in technical plasmas (MW and RF discharges) and in divertor plasmas of fusion experiments (ASDEX Upgrade / Tokamak at the Max-Planck-Institut fuer Plasmaphysik in Garching near Munich, Germany). The Fulcher transition in the visible spectral range was chosen for analysis since this is the most prominent band in the spectrum of molecular hydrogen. Examples for diagnostics of molecular densities will be given, and the problems arising in the interpretation of spectra will be discussed. In divertor plasmas the diagnostics of molecular.uxes will be introduced and the contribution of molecules to the plasma recombination will be discussed. Results for vibrational populations in the ground state and the correlation to the upper Fulcher state will be given, providing an electron temperature diagnostic. Finally, the in.uence of surfaces (high-grade steel and graphite) on vibrational populations and on re.ection coe.cients of atoms will be shown. Special attention is given on a comparison of the isotopes hydrogen and deuterium. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  6. Emission spectroscopy of argon ferrocene mixture jet in a low pressure plasma reactor

    International Nuclear Information System (INIS)

    Tiwari, N.; Tak, A.K.; Chakravarthy, Y.; Shukla, A.; Meher, K.C.; Ghorui, S.; Thiyagarajan, T.K.

    2015-01-01

    Emission spectroscopy is employed to measure the plasma temperature and species identification in a reactor used for studying homogenous nucleation and growth of iron nano particle. Reactor employs segmented non transferred plasma torch mounted on water cooled cylindrical chamber. The plasma jet passes through graphite nozzle and expands in low pressure reactor. Ferrocene is fed into the nozzle where it mixes with Argon plasma jet. A high resolution spectrograph (SHAMROCK 303i, resolution 0.06 nm) has been used to record the spectra over a wide range. Identification of different emission lines has been done using NIST database. Lines from (700 to 860nm) were considered for calculation of temperature. Spectra were recorded for different axial location, pressure and power. Temperature was calculated using Maxwell Boltzman plot method. Variation in temperature with pressure and location is presented and possible reasons for different behaviour are explored. (author)

  7. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. A., E-mail: Ivanov@inp.nsk.su; Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Burdakov, A. V.; Sorokina, N. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Kurkuchekov, V. V.; Kuznetsov, S. A. [Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation)

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  8. A study of the neutrino-gravitation interaction

    International Nuclear Information System (INIS)

    Soares, I.D.

    1976-01-01

    A study of the neutrino-gravitation interaction is made in the framework of Einstein-Dirac coupled equations. Two classes of solutions are obtained, corresponding to two specific physical situations. One cosmological model with expansion is obtained, having neutrinos as the only curvature source; their properties and the parameters which can to characterize the solution as a cosmological model are studied. The second class of solutions corresponds to a naive complete model of a spherically symmetric star emitting neutrinos: the inner region is suposed to be built up of a spherically symmetric distribution of a perfect fluid, bounded in space and which emitts neutrinos; the star matter is considered transparent for neutrinos; the outer region contains only neutrinos and gravitational field. The problem of neutrino compatibility with spherically symmetric gravitational fields is examined. The local conservation laws and the function conditions of the inner and outer solutions in the fluid surface are studied and permit to characterize two kinds of solutions. In one case, the solution describes the neutrino emission phase, with consequent configuration contraction, immediately before the fluid to be completely contained in the interior of the schwarzchild radius, when the neutrino emission and the star contraction stop. The other possibility can correspond to a quasi-stationary configuration, with neutrino emission, where the relativistic equation of radiative equilibrium permits to define the equivalent of 'Radiation pressure' for neutrinos, which acts in the same sense of the gravitational pressure. (L.C.) [pt

  9. Effect of plasma formation on electron pinching and microwave emission in a virtual cathode oscillator

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Nakayama, M.; Nobuhara, S.; Young, D.; Ishihara, O.

    1996-01-01

    Time and spatial evolutions of anode and cathode plasmas in a vircator diode were observed with a streak camera. A cathode plasma appeared immediately after the rise of a beam current and was followed by an anode plasma typically after about 30 ns. Both plasmas expanded with almost the same speed of order of 104 m/s. The anode plasma was confirmed as a hydrogen plasma with an optical filter for H β line and study of anode-temperature rise. Electron beam pinching immediately followed by microwave emission was observed at the beam current less than the critical current for diode pinching in the experiment and the simulation. The electron beam current in the diode region is well characterized by the electron space-charge-limited current in bipolar flow with the expanding plasmas between the anode-cathode gap. As a result, electron bombardment produced the anode plasma, which made the electron beam strongly pinched, resulting in virtual cathode formation and microwave emission. (author). 5 figs., 5 refs

  10. Effect of plasma formation on electron pinching and microwave emission in a virtual cathode oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M; Nakayama, M; Nobuhara, S [Himeji Institute of Technology (Japan); Young, D; Ishihara, O [Texas Tech Univ., Lubbock, TX (United States)

    1997-12-31

    Time and spatial evolutions of anode and cathode plasmas in a vircator diode were observed with a streak camera. A cathode plasma appeared immediately after the rise of a beam current and was followed by an anode plasma typically after about 30 ns. Both plasmas expanded with almost the same speed of order of 104 m/s. The anode plasma was confirmed as a hydrogen plasma with an optical filter for H{sub {beta}} line and study of anode-temperature rise. Electron beam pinching immediately followed by microwave emission was observed at the beam current less than the critical current for diode pinching in the experiment and the simulation. The electron beam current in the diode region is well characterized by the electron space-charge-limited current in bipolar flow with the expanding plasmas between the anode-cathode gap. As a result, electron bombardment produced the anode plasma, which made the electron beam strongly pinched, resulting in virtual cathode formation and microwave emission. (author). 5 figs., 5 refs.

  11. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    Science.gov (United States)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  12. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  13. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  14. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  15. Characterization of extreme ultraviolet emission from tin-droplets irradiated with Nd:YAG laser plasmas

    International Nuclear Information System (INIS)

    Aota, T; Nakai, Y; Fujioka, S; Shimomura, M; Nishimura, H; Nishihara, N; Miyanaga, N; Izawa, Y; Mima, K; Fujiwara, E

    2008-01-01

    EUV emission from spherical and planer targets were precisely characterized as an experimental database for use in EUV source generation at high repetition rates. In the single-shot base experiments, conversion efficiency as high as those for the plasma geometry has been demonstrated. The integrated experiment was made with 10 Hz plasma generation, obtained conversion efficiency is low mainly due to unstable positioning of the droplets

  16. Direct isotope ratio measurement of uranium metal by emission spectrometry on a laser-produced plasma

    International Nuclear Information System (INIS)

    Pietsch, W.; Petit, A.; Briand, A.

    1995-01-01

    The method of Optical Emission Spectrometry on a Laser-Produced Plasma (OES/LPP) at reduced pressure has been studied for the determination of the uranium isotope ratio ( 235 U/ 238 U). Spectral profiles of the investigated transition U-II 424.437 nm show the possibility to obtain an isotopic spectral resolution in a laser-produced plasma under exactly defined experimental conditions. Spectroscopic data and results are presented. (author)

  17. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.

    2017-06-01

    Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in

  18. Investigation of the dynamics of HF plasma turbulence by means of artificial ionospheric radio emission

    International Nuclear Information System (INIS)

    Sergeev, E.N.; Boiko, G.N.; Frolov, V.L.

    1994-01-01

    The results of measurements of the growth and decay characteristics of artificial ionospheric radio emission and their dependence on the level of low-frequency artificial turbulence, time of day, and pump-wave frequency are presented. A time delay of the onset of the exponential nature of the decay process is detected, and its characteristics are studied. It is shown that the effect is determined by nonlinear pumping over the spectrum of high-frequency plasma turbulence. The experimental results demonstrate the possibilities of using artificial radio emission to study the properties of high-frequency plasma turbulence. Areas of future research are discussed

  19. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation

    Science.gov (United States)

    Shamim, M. M.; Scheuer, J. T.; Fetherston, R. P.; Conrad, J. R.

    1991-11-01

    An experimental procedure has been developed to measure electron emission due to energetic ion bombardment during plasma source ion implantation. Spherical targets of copper, stainless steel, graphite, titanium alloy, and aluminum alloy were biased negatively to 20, 30, and 40 kV in argon and nitrogen plasmas. A Langmuir probe was used to detect the propagating sheath edge and a Rogowski transformer was used to measure the current to the target. The measurements of electron emission coefficients compare well with those measured under similar conditions.

  20. Electron Bernstein wave emission from an overdense reversed field pinch plasma

    International Nuclear Information System (INIS)

    Chattopadhyay, P.K.; Anderson, J.K.; Biewer, T.M.; Craig, D.; Forest, C.B.; Harvey, R.W.; Smirnov, A.P.

    2002-01-01

    Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ω pe ∼3ω ce ) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point

  1. The importance of plasma effects on electron-cyclotron maser-emission from flaring loops

    Science.gov (United States)

    Sharma, R. R.; Vlahos, L.; Papadopoulos, K.

    1982-01-01

    Electron cyclotron maser instability has been suggested as the cause of the observed short (10-20 msec), intense (an approximate brightness temperature of 10 to the 15th K) and up to 100% polarized microwave solar emission. It is shown that plasma effects and thermal cyclotron damping, ignored in previous theories, play an important role in controlling the frequency range of the emission. The radio emission is suppressed for ratios of the plasma frequency to the cyclotron frequency smaller than 0.4. An examination of the cyclotron damping, reveals that the maser action is suppressed unless a large fraction (i.e., over 10%) of the accelerated electrons participates in the emission process.

  2. Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements

    Science.gov (United States)

    Jianquan, LI; Wenqi, LU; Jun, XU; Fei, GAO; Younian, WANG

    2018-02-01

    We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential. The apparatus consists of a computer controlled data acquisition card, a working circuit composed by a biasing unit and a heating unit, as well as an emissive probe. With the set parameters of the probe scanning bias, the probe heating current and the fitting range, the apparatus can automatically execute the improved inflection point method and give the measured result. The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates, showing an excellent accuracy of 0.1 V. Plasma potential was also measured, exhibiting high efficiency and convenient use of the apparatus for space potential measurements.

  3. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    International Nuclear Information System (INIS)

    Vera, L P; Pérez, J A; Riascos, H

    2014-01-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C 2 Swan System (d 3 Π g →a 3 Π u ), the First Negative System N 2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C 2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x10 18 cm −3 respectively.

  4. Neutrino induced vorticity, Alfven waves and the normal modes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Jitesh R. [Theory Division, Physical Research Laboratory, Ahmedabad (India); George, Manu [Theory Division, Physical Research Laboratory, Ahmedabad (India); Indian Institute of Technology, Department of Physics, Ahmedabad (India)

    2017-08-15

    We consider a plasma consisting of electrons and ions in the presence of a background neutrino gas and develop the magnetohydrodynamic equations for the system. We show that the electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity supports a new kind of Alfven wave whose velocity depends on both the external magnetic field and on the neutrino asymmetry. The normal mode analysis show that in the presence of neutrino background the Alfven waves can have different velocities. We also discuss our results in the context of dense astrophysical plasma such as magnetars and show that the difference in the Alfven velocities can be used to explain the observed pulsar kick. We discuss also the relativistic generalisation of the electron fluid in presence of an asymmetric neutrino background. (orig.)

  5. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  6. Emissions treatment of diesel engines by plasma outside of balance; Tratamiento de emisiones de motores diesel por plasma fuera de equilibrio

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco P, M.; Pacheco S, J.; Valdivia B, R.; Garcia R, M.; Estrada M, N. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Santana D, A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Mexico D. F. (Mexico); Lefort, B.; Le Moyne, L.; Zamilpa, C., E-mail: marquidia.pacheco@inin.gob.mx [Institut Superieur d l' Automobile et des Transports, 49 rue Madeimoiselle Bourgeois BP31, 58027 Nevers cedex (France)

    2013-07-01

    Nowadays, diesel engines are greatly developed in automobiles allowing the reduction of carbon dioxide emissions (CO{sub 2}); however high emissions of particulate matter (Mp) and nitric oxides (NO{sub x}) still remain. A technology based on non-thermal plasma to diminish toxic emissions is exposed in this work. From previous experimental and simulation results, a chemical mechanism is proposed showing a rapidly diminution of Mp and NO{sub x}, in presence of plasma. (Author)

  7. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  8. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vale, D. [Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, HR-10000 Zagreb (Croatia); Rauscher, T. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Paar, N., E-mail: dvale@phy.hr, E-mail: Thomas.Rauscher@unibas.ch, E-mail: npaar@phy.hr [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for {sup 56}Fe and {sup 208}Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(ν-bar {sub e},e{sup +})n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of ν{sub e}- and ν-bar {sub e}-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ({sup 208}Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  9. Hybrid method to resolve the neutrino mass hierarchy by supernova (anti)neutrino induced reactions

    Science.gov (United States)

    Vale, D.; Rauscher, T.; Paar, N.

    2016-02-01

    We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neutrino-nucleus cross sections for 56Fe and 208Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons p(bar nue,e+)n are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of νe- and bar nue-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.

  10. Emission reduction by means of low temperature plasma. Summary

    DEFF Research Database (Denmark)

    Bindslev, H.; Fateev, Alexander; Kusano, Yukihiro

    2006-01-01

    ammonia (NH3) and nitrogen atoms (N) generated in dielectric barrier discharges (DBDs). Hydrazine (N2H4) as a reducing agent and direct plasma treatment of the entire exhaust gas was investigated as well. Weperformed laboratory experiments on synthetic exhaust gases, modelling of the mechanisms......The work performed during the project is summarised. In the project we focused on removal of nitrogen oxides NOx (NO, NO2) and, in particular, on removal of nitrogen monoxide (NO) by injection of plasma-produced reactive agents. As reactive agents wetested ozone (O3), NH and NH2 radicals from...... and a demonstration of the technique on a test engine, a 30 kW combustion engine fuelled with natural gas. We achieved the best results with ozone injection into theexhaust gas. This technique is based on oxidation of NO to N2O5 that is subsequently removed from the exhaust gas by a scrubber. In the laboratory...

  11. Supernova neutrinos

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  12. Neutrino Oscillations within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts

    Science.gov (United States)

    Becerra, L.; Guzzo, M. M.; Rossi-Torres, F.; Rueda, J. A.; Ruffini, R.; Uribe, J. D.

    2018-01-01

    The induced gravitational collapse paradigm of long gamma-ray bursts associated with supernovae (SNe) predicts a copious neutrino–antineutrino (ν \\bar{ν }) emission owing to the hypercritical accretion process of SN ejecta onto a neutron star (NS) binary companion. The neutrino emission can reach luminosities of up to 1057 MeV s‑1, mean neutrino energies of 20 MeV, and neutrino densities of 1031 cm‑3. Along their path from the vicinity of the NS surface outward, such neutrinos experience flavor transformations dictated by the neutrino-to-electron-density ratio. We determine the neutrino and electron on the accretion zone and use them to compute the neutrino flavor evolution. For normal and inverted neutrino mass hierarchies and within the two-flavor formalism ({ν }e{ν }x), we estimate the final electronic and nonelectronic neutrino content after two oscillation processes: (1) neutrino collective effects due to neutrino self-interactions where the neutrino density dominates, and (2) the Mikheyev–Smirnov–Wolfenstein effect, where the electron density dominates. We find that the final neutrino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e., {ν }e+{\\bar{ν }}e, for the normal (inverted) neutrino mass hierarchy. The results of this work are the first step toward the characterization of a novel source of astrophysical MeV neutrinos in addition to core-collapse SNe and, as such, deserve further attention.

  13. On thermionic emission from plasma-facing components in tokamak-relevant conditions.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Ratynskaia, S.; Tolias, P.; Cavalier, Jordan; Dejarnac, Renaud; Gunn, J. P.; Podolník, Aleš

    2017-01-01

    Roč. 59, č. 9 (2017), č. článku 094002. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : thermionic * PIC * tungsten * tokamak * thermionic emission * plasma facing components * particle-in-cell Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6587/aa78c4/pdf

  14. Spatially resolved emission spectroscopic investigation of microwave-induced reactive low-power plasma jets

    International Nuclear Information System (INIS)

    Arnold, Thomas; Grabovski, Sergey; Schindler, Axel; Wagner, Hans-Erich

    2004-01-01

    A microwave-induced Ar/SF 6 plasma jet is characterized by means of optical emission spectroscopy. Rotational temperatures from unresolved N 2 bands and excitation temperatures from Fe lines as well as electron densities (H β Stark broadening) have been estimated along the plasma jet axis using a side-on configuration. The SF 6 gas flow rate and chamber pressure were varied from 10 to 250 sccm and 20 to 500 mbar, respectively. Three characteristic jet regions have been observed: the plasma ignition zone, followed by the gas mixing zone and a relaxing zone

  15. Bistable intrinsic charge fluctuations of a dust grain subject to secondary electron emission in a plasma.

    Science.gov (United States)

    Shotorban, B

    2015-10-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  16. Enhanced electromagnetic emission from plasmas containing positive dust grains and electrons

    International Nuclear Information System (INIS)

    Shukla, P.K.; Shukla, Nitin; Stenflo, L.

    2007-01-01

    Large amplitude high-frequency (HF) electromagnetic (EM) waves can scatter off dust-acoustic waves in plasmas containing positive dust grains and electrons, and can thus be responsible for HF enhanced electromagnetic emissions (EEE). An expression for the ensemble average of the squared HF-EEE vector potential is therefore derived, following the standard parametric interaction formalism and adopting the Rostoker superposition principle. The results should be useful for deducing the dust plasma parameters (e.g. the dust number density and dust charge) in situ, and HF intense EM beams can thus be used for diagnosis of positive dust-electron plasmas in space and laboratories

  17. Computation and measurement of a plasma temperature using the emission lines of copper

    International Nuclear Information System (INIS)

    Sassi, M.; Pierre, L.; Benard, J.; Cahen, C.

    1994-01-01

    The use of copper emission lines for temperature measurement in plasma environments is presented. The article features the problems encountered with such a measurement method when used in a stationary and a non-stationary plasma. In the first case, we were concerned with the temperature measurements in the jet of a 2 MW industrial plasma torche. The plasma was stationary and the measurement geometry allowed the use of the Abel inversion method to recover the temperature profiles in the plasma jet. The limitations of the measurement method on the jet boundaries as well as the cooling of the plasma by entrainement of cold air are discussed. In the second case, a non-stationary plasma in a 1.4 MW electric furnace was studied. This study allowed to feature the role of the detector dynamics as related to the dynamics of the observed medium. The obtained measurements show only a probable temperature in the immediate proximity of the arc. Finally, we conclude on the validity of copper as a tracer and the use of spontaneous emission spectroscopy, and easy method to implement, compared to other sophisticated temperature measurement methods. (orig.)

  18. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    International Nuclear Information System (INIS)

    Pushkarev, Alexander I.; Isakova, Yulia I.

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode. (15th asian conference on electrical discharge)

  19. Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity

    International Nuclear Information System (INIS)

    Iraji, D.; Furno, I.; Fasoli, A.; Theiler, C.

    2010-01-01

    In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique using a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (T e ) α (n e ) β , in which α=0.25-0.7 and β=0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 μs of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The ω-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the ω and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity

  20. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  1. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  2. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  3. Neutrino problems proliferate (Neutrino 94 conference report)

    International Nuclear Information System (INIS)

    Gordon, Fraser

    1994-01-01

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992

  4. Neutrino problems proliferate (Neutrino 94 conference report)

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Fraser

    1994-09-15

    The enigma of the neutrino continues. More than sixty years after its hesitant prediction by Pauli and forty years after its discovery by Reines and Cowan, the neutrino still refuses to give up all its secrets. The longer we travel down the neutrino road and the more we find out about these particles, the more problems we uncover en route. The present state of the neutrino mystery was highlighted at the Neutrino 94 meeting in Eilat, Israel, from 29 May to 3 June. It was a distinguished meeting, with the first morning including one session chaired by neutrino co-discoverer Fred Reines, and an introductory talk by muon-neutrino co-discoverer Leon Lederman. One figurehead neutrino personality conspicuously absent this time was Bruno Pontecorvo, who died last year and had attended the previous conference in the series, in Grenada, Spain, in 1992.

  5. Exotic x-ray emission from dense plasmas

    Czech Academy of Sciences Publication Activity Database

    Rosmej, F.B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, Michal; Renner, Oldřich

    2015-01-01

    Roč. 48, č. 22 (2015), s. 224005 ISSN 0953-4075 R&D Projects: GA MŠk ED1.1.00/02.0061 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; AVČR(CZ) M100101208 Institutional support: RVO:68378271 Keywords : hollow ions * x-ray spectroscopy * atomic physics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.833, year: 2015

  6. Intense plasma wave emissions associated with Saturn's moon Rhea

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Gurnett, D. A.; Jones, G. H.; Schippers, P.; Crary, F. J.; Leisner, J. S.; Hospodarsky, G. B.; Kurth, W. S.; Russell, C. T.; Dougherty, M. K.

    2011-01-01

    Roč. 38, - (2011), L19204/1-L19204/7 ISSN 0094-8276 R&D Projects: GA ČR GAP205/10/2279; GA MŠk(CZ) ME10001; GA MŠk(CZ) LH11122 Institutional research plan: CEZ:AV0Z30420517 Keywords : III RADIO-BURSTS * LANGMUIR-WAVES * ICY MOON * CASSINI * ELECTRONS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.792, year: 2011 http://www.agu.org/pubs/crossref/2011/2011GL049219.shtml

  7. Nonlinear effects on bremsstrahlung emission in dusty plasmas

    International Nuclear Information System (INIS)

    Kim, Young-Woo; Jung, Young-Dae

    2004-01-01

    Nonlinear effects on the bremsstrahlung process due to ion-dust grain collisions are investigated in dusty plasmas. The nonlinear screened interaction potential is applied to obtain the Fourier coefficients of the force acting on the dust grain. The classical trajectory analysis is applied to obtain the differential bremsstrahlung radiation cross section as a function of the scaled impact parameter, projectile energy, photon energy, and Debye length. The result shows that the nonlinear effects suppress the bremsstrahlung radiation cross section due to collisions of ions with positively charged dust grains. These nonlinear effects decrease with increasing Debye length and temperature, and increase with increasing radiation photon energy

  8. A theory of the coherent fundamental plasma emission in Tokamaks

    International Nuclear Information System (INIS)

    Alves, M.V.; Chian, A.C.-L.

    1987-01-01

    A theoretical model of coherent radiation near the fundamental plasma frequency in tokamaks is proposed. It is shown that, in the presence of runaway electrons, the beam-generated Langmuir waves (L) can be parametrically converted into electromagnetic waves (T) through ponderomotive coupling to ion acoustic waves (S). Two types of pumps are considered: travelling wave pump and standing wave pump. Expressions are derived for the excitation conditions and the growth rates of electromagnetic decay instabilities (L-> T + S), electromagnetic fusion instabilities (L + S -> T) and electromagnetic oscillating two-stream instabilities (L -> T+- S * , where S * is a purely growing mode). (author) [pt

  9. A theory of the coherent fundamental plasma emission in Tokamaks

    International Nuclear Information System (INIS)

    Alves, M.V.; Chian, A.C.-L.

    1987-07-01

    A theoretical model of coherent radiation near the fundamental plasma frequency in Tokamaks is proposed. It is shown that, in the presence of runaway electrons, the beam-generated Langmuir waves (L) can be paarmetrically converted into electromagnetic waves (T) through ponderomotive coupling to ion acoustic waves (S). Two types of pumps are considered: traveling wave and standing wave pump. Expressions are derived for the excitation conditions and the growth rates of electomagnetic decay instabilities (L → T + S), electromagnetic fusion instabilities (L + S → T) and electromagnetic oscillating two-stream instabilities (L → T+-S sup(*) is a purely growing mode). (author) [pt

  10. Charge and Levitation of Grains in Plasma Sheath with Dust Thermic Emission

    International Nuclear Information System (INIS)

    Wu Haicheng; Xie Baisong

    2005-01-01

    By taking into account thermic emission current from hot dust surface, the problem involved in dust charging and levitation of dust grains in plasma sheath has been researched. The results are compared to that without including thermal emission current while the system parameters are same. It is found that the thermal emission current has played a significant role on modifying the dust charging and balance levitations. Both of the charging numbers of dust and the dust radius in balance are dramatically reduced. The stability of dust levitation is also analyzed and discussed.

  11. An experimental investigation on the properties of laser-induced plasma emission spectra

    International Nuclear Information System (INIS)

    Tang Xiaoshuan; Li Chunyan; Ji Xuehan; Feng Eryin; Cui Zhifeng

    2004-01-01

    The authors have measured the time-resolved emission spectra produced by Nd: YAG laser induced Al plasma with different kinds of buffer gas (He, Ar, N 2 and Air). The dependence of emission spectra line intensity and Stark broadening on the time delay, kinds and pressure of buffer gas are studied. The results show that the atomic emission line intensity reaches maximum at 3 μs time delay, the Stark broadening increases with increasing the pressure of buffer gas, and decreases with increasing time delay. The Stark broadening in Ar buffer gas is largest among the four different kinds of buffer gas. (author)

  12. Analysis of zirconium alloys using inductively-coupled plasma emission spectrometry

    International Nuclear Information System (INIS)

    White, G.F.; Pickford, C.J.

    1982-06-01

    As part of an interlaboratory collaborative exercise, certain trace and minor elements have been determined in a proposed zircaloy reference material using inductively-coupled plasma emission spectrometry. A dissolution procedure involving hydrochloric and hydrofluoric acids was used for determination of Hf, Cr, Fe and Sn. Data have also been obtained for Ni, Cu and Mn. Use of a high resolution monochromator in a scanning mode was found necessary for measurement of the emission intensities in order to resolve the spectral lines of interest from the intense and complex emission from the zirconium matrix. (author)

  13. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  14. Fast ion emission from the plasma produced by the PALS laser system

    Czech Academy of Sciences Publication Activity Database

    Wolowski, J.; Badziak, J.; Boody, F. P.; Hora, H.; Hnatowicz, Vladimír; Jungwirth, Karel; Krása, Josef; Láska, Leoš; Parys, P.; Peřina, Vratislav; Pfeifer, Miroslav; Rohlena, Karel; Ryc, L.; Ullschmied, Jiří; Woryna, E.

    2002-01-01

    Roč. 44, - (2002), s. 1277-1283 ISSN 0741-3335 Institutional research plan: CEZ:AV0Z1048901 Keywords : emission * plasma produced * PALS laser system ? Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.121, year: 2002

  15. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  16. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    OpenAIRE

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J. -J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.

    2015-01-01

    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, ...

  17. Bremsstrahlung emission coefficient of a plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Pangborn, R.J.

    1976-01-01

    The leading (electron-ion, dipole) contribution to the bremsstrahlung spectrum of a Maxwellian plasma in a constant, uniform magnetic field is calculated. The plasma is assumed infinite and fully ionized. A simpler, more direct derivation of Kirchoff's Law for anisotropic media is presented. The plasma dispersion relation is then found using previously obtained expressions for the conductivity tensor (accurate to first order in collisional effects). From the dispersion the collisional damping, assumed small, is obtained and by means of Kirchoff's Law an expression for the bremsstrahlung emission coefficient is written. No terms of order (kappa 2 lambda 2 0 ) or higher are included. For wave frequencies large compared with the plasma and electron cyclotron frequencies (ω 2 much greater than ω 2 rho, ω 2 much greater than Ω 3 ) an expansion of the exact result is given accurate to fourth order in Ω/ω and ω rho/ω. The result is found to disagree with previous high frequency expressions. Analysis of the exact expression reveals that for certain frequencies and directions of propagation the emission spectrum exhibits a resonance quality. The results are presented in such fashion that for various magnetic field strengths the frequency of the resonant emission at arbitrary angle relative to the field is easily obtained. These phenomena arise due to the influence of the magnetic fieldon the dielectric properties of the plasma and not because of its effect on the binary collision process. A physical explanation of the results is presented

  18. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Mathur, A.; Roy, S.S.; Hazra, K.S.; Wadhwa, S.; Ray, S.C.; Mitra, S.K.; Misra, D.S.; McLaughlin, J.A.

    2012-01-01

    Highlights: ► We showed Ar/O 2 plasma can be effective for the end opening of aligned CNTs. ► The field emission property was dramatically enhanced after plasma modification. ► Microstructures were clearly understood by Raman and SEM analysis. ► Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15–20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110° to 40°. It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from ∼0.80 V μm −1 (untreated) to ∼0.60 V μm −1 (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  19. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    International Nuclear Information System (INIS)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-01-01

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented

  20. Argon plasma jet continuum emission investigation by using different spectroscopic methods

    International Nuclear Information System (INIS)

    Dgheim, J

    2007-01-01

    Radiation and temperature fields of the continuum field are determined by using different spectroscopic methods based on the spectral emission of an argon plasma jet. An interferential filter of bandwidth 2.714 nm centred at a wavelength of 633 nm is used to observe only the continuum emission and to eliminate the self-absorption phenomenon. An optical multichannel analyser (OMA) of an MOS detector is used to measure argon plasma jet volumetric emissivity under atmospheric pressure and high temperatures. An emission spectroscopic method is used to measure the Stark broadening of the hydrogen line H β and to determine the electron density. The local thermodynamic equilibrium is established and its limit is stated. The local electron temperature is determined by two methods (the continuum emission relation and the LTE relations), and the total Biberman factor is measured. The results given by the OMA are compared with those given by the imagery method. At a given wavelength, the Biberman factor, which depends on the electron temperature and the electron density, may serve as an indicator to show where the LTE prevails along the argon plasma jet core length

  1. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    2004-01-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  2. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  3. Space- and time-resolved diagnostics of soft x-ray emission from laser plasmas

    International Nuclear Information System (INIS)

    Richardson, M.C.; Jaanimagi, P.A.; Chen, H.

    1988-01-01

    The analysis of soft x-ray emission from plasmas created by intense short-wavelength laser radiation can provide much useful information on the density, temperature and ionization distribution of the plasma. Until recently, limitations of sensitivity and the availability of suitable x-ray optical elements have restricted studies of soft x-ray emission from laser plasmas. In this paper, the authors describe novel instrumentation which provides high sensitivity in the soft x-ray spectrum with spatial and temporal resolution in the micron and picosecond ranges respectively. These systems exploit advances made in soft x-ray optic and electro-optic technology. Their application in current studies of laser fusion, x-ray lasers, and high density atomic physics are discussed

  4. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    International Nuclear Information System (INIS)

    Sharma, Suresh C.; Gupta, Neha

    2015-01-01

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations

  5. Neutron and X-ray emission studies in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Zakaullah, M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Murtaza, G. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Qamar, S. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Ahmad, I. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Beg, M.M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics

    1996-03-01

    In a low energy Mather-type plasma focus energized by a single 32 {mu}F capacitor, the X-ray and neutron emission is investigated using time-integrated and time-resolved detectors. The X-ray emission profile has a width (FWHM) of 40-50 ns. The neutron emission profile is broader compared to the X-ray emission profile and also delayed by 30-40 ns. To identify different regimes of X-ray emission, an X-ray pin-hole camera along with different absorption filters is employed. While the X-ray emission is high within a narrow pressure range of 2.0-2.5 mbar, the neutron emission is intense for a wider range of 1.0-4.5 mbar. The intense X-ray emission seems to originate from the axially moving shock wave. These results also indicate rather different production mechanisms for X-ray and neutron emission. Also on comparing the X-ray images with Al(2 {mu}m), Al(5 {mu}m), Al(9 {mu}m) filters, we find that the bulk of X-rays from the focus filament have energies less than 2 keV. (orig.).

  6. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  7. Working Group Report: Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P. [et al.

    2013-10-16

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  8. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  9. Atomic data of Ti II from laser produced Ti plasmas by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Refaie, A.I.; Farrag, A.A.; El Sharkawy, H.; El Sherbini, T.M.

    2005-06-01

    In the present study, the emission spectrum of titanium produced from laser induced plasma has been measured at different distances from the target. The Titanium target is irradiated by using the high power Q-switched Nd:YAG laser (λ=1064 nm) that generates energy 750 mJ/pulse of duration rate 6 ns and repetition rate 10 Hz in vacuum and at different distances. The variation of the distance from the target affects the measured plasma parameters, i.e. the electron density, the ion temperature and the velocity distribution. The electron density increases with the increase of the distance from the target. At a distance 0.6 mm from the target it decreases to 2.28·10 16 cm -3 . The temperature increases with the distance from the get until a distance of 1 mm, after that it decreases. It is found that the plasma velocity increases with the distance then it decreases again. Then, Energy levels and transition probabilities for 3d 2 4p →(3d 2 4s + 3d 3 ) lines have been determined by measurement of emission line intensities from an optically thin laser produced plasma of Ti II in vacuum. Calculations with intermediate coupling using Hartree-Fock wave functions have been carried out in order to place the experimental data on an absolute scale and also to evaluate the lifetimes. The plasma parameters in different regions of the plasma plume have been measured and used to obtain further transition probabilities. (author)

  10. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

    International Nuclear Information System (INIS)

    Shah, M. L.; Pulhani, A. K.; Suri, B. M.; Gupta, G. P.

    2013-01-01

    Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser (532 nm wavelength) with an irradiance of ∼ 1 × 10 9 W/cm 2 on a steel sample in air at atmospheric pressure. An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions. Using time-resolved spectroscopic measurements of the plasma emissions, the temperature and electron number density of the steel plasma are determined for many times of the detector delay. The validity of the assumption by the spectroscopic methods that the laser-induced plasma (LIP) is optically thin and is also in local thermodynamic equilibrium (LTE) has been evaluated for many delay times. From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value, the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns, 900 ns and 1000 ns.

  11. Introduction to massive neutrinos

    International Nuclear Information System (INIS)

    Kayser, B.

    1984-01-01

    We discuss the theoretical ideas which make it natural to expect that neutrinos do indeed have mass. Then we focus on the physical consequences of neutrino mass, including neutrino oscillation and other phenomena whose observation would be very interesting, and would serve to demonstrate that neutrinos are indeed massive. We comment on the legitimacy of comparing results from different types of experiments. Finally, we consider the question of whether neutrinos are their own antiparticles. We explain what this question means, discuss the nature of a neutrino which is its own antiparticles, and consider how one might determine experimentally whether neutrinos are their own antiparticles or not

  12. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  13. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    Energy Technology Data Exchange (ETDEWEB)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in [Nuclear Engineering and Technology Programme, Indian Institute of Technology Kanpur, Kanpur (India); Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2016-03-15

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actual processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.

  14. Neutrinos and Einstein

    CERN Document Server

    Suzuki, Yoichiro

    2005-01-01

    A tiny neutrino mass is a clue to the physics beyond the standard model of elementary particle physics. The primary cosmic rays, mostly protons, are created and accelerated to the relativistic energy in supernova remnants. They traverse the universe and reach the earth. The incoming primary cosmic rays interact with the earth's atmosphere to produce secondary particles, which subsequently decay into neutrinos, called atmospheric neutrinos. The atmospheric neutrinos have shown the evidence of the finite neutrino masses through the phenomena called neutrino oscillations. Neutrinos are detected by large detectors underground like, for example, Super-Kamiokande, SNO and KamLAND. Those detectors use large photomultiplier tubes, which make use of the photo-electric effect to convert photons created by the interaction of neutrinos to electrons to form electric pulses. Neutrinos are therefore created and detected by "Einstein" and have step forward beyond the current physics. Neutrinos may also carry a hit to the ori...

  15. 50 years of neutrinos

    CERN Document Server

    Goldhaber, M

    1980-01-01

    On December 4 1930, Wolfgang Pauli addressed an "open letter" to Lise Meitner and others attending a physics meeting, suggesting the neutrino as a way out of the difficulties confronted in beta rays research, especially by the existence of a continuous beta spectrum. He proposed a new particle later called the neutrino. The prehistory leading up to Pauli's letter will be reviewed, as well as the later discovery of the electron-neutrino followed by the muon-neutrino. There are now believed to be three different types of neutrino and their anti-particles. Neutrinos have a spin 1/2; but only one spin component has been found in nature: neutrinos go forward as "left-handed" screws and anti-neutrinos as "right-handed" ones. A question still not convincingly resolved today is wether neutrinos have a mass different from zero and, if they do, what consequences this would have for the behaviour of neutrinos and for cosmology.

  16. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  17. Measurements and computer modeling of fast ion emission from plasma accelerators of the rod plasma injector type

    International Nuclear Information System (INIS)

    Malinowski, Karol; Sadowski, Marek J; Skladnik-Sadowska, Elzbieta

    2014-01-01

    This paper reports on the results of experimental studies and computer simulations of the emission of fast ion streams from so-called rod plasma injectors (RPI). Various RPI facilities have been used at the National Centre for Nuclear Research (NCBJ) for basic plasma studies as well as for material engineering. In fact, the RPI facilities have been studied experimentally for many years, particularly at the Institute for Nuclear Sciences (now the NCBJ), and numerous experimental data have been collected. Unfortunately, the ion emission characteristics have so far not been explained theoretically in a satisfactory way. In this paper, in order to explain these characteristics, use was made of a single-particle model. Taking into account the stochastic character of the ion emission, we applied a Monte Carlo method. The performed computer simulations of a pinhole image and energy spectrum of deuterons emitted from RPI-IBIS, which were computed on the basis of the applied model, appeared to be in reasonable agreement with the experimental data. (paper)

  18. Neutrino physics in heaven

    International Nuclear Information System (INIS)

    Raffelt, G.

    2005-01-01

    After a brief overview of the usual topics that connect astrophysics and cosmology with neutrino physics I will focus on two main themes. First, what can we learn from the neutrino signal of a future galactic supernova, in particular about the neutrino mass ordering. Second, what can we learn about neutrino properties from cosmological observables, notably about the neutrino absolute mass scale from cosmological large-scale structure observables. (author)

  19. Two lectures on neutrinos

    International Nuclear Information System (INIS)

    Ramond, P.

    1992-01-01

    These notes are based on two lectures delivered at the School. A general description of neutrinos is presented, first in purely kinematic terms, then in the context of the Standard Model, focusing on the role of the global lepton numbers. Standard Model extensions with massive neutrinos are cataloged. Several popular mass matrices for neutrinos, and their consequences are presented. They proceed to give an extended discussion of neutrino oscillations in matter, and apply the results to the solar neutrinos

  20. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  1. Workshop: Neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-05-15

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role.

  2. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  3. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  4. Second harmonic electron cyclotron emission studies of Tokapole-II plasmas

    International Nuclear Information System (INIS)

    Sengstacke, M.A.

    1984-03-01

    The electron temperature is an important parameter in plasma physics. The intensity of electron cyclotron emission (ECE) is a function of the electron temperature. This function reduces to a direct proportionality for optically thick plasmas. Thus a study of ECE can help us understand various plasma properties. The principal diagnostic used is a radiometer consisting of a microwave superheterodyne receiver operating in the K band, (26.5,40) GHz, and fed by a three inch parabolic mirror with a spot size of about 4.4 cm. The entire microwave assembly can be rotated through 90 0 about the mirror axis to facilitate polarization measurements. A ray tracing analysis of Tokapole-II shows that refraction is significant for plasmas observed in this work

  5. Characterization of microwave plasma in a multicusp using 2D emission based tomography: Bessel modes and wave absorption

    Science.gov (United States)

    Rathore, Kavita; Bhattacharjee, Sudeep; Munshi, Prabhat

    2017-06-01

    A tomographic method based on the Fourier transform is used for characterizing a microwave plasma in a multicusp (MC), in order to obtain 2D distribution of plasma emissions, plasma (electron) density (Ne) and temperature (Te). The microwave plasma in the MC is characterized as a function of microwave power, gas pressure, and axial distance. The experimentally obtained 2D emission profiles show that the plasma emissions are generated in a circular ring shape. There are usually two bright rings, one at the plasma core and another near the boundary. The experimental results are validated using a numerical code that solves Maxwell's equations inside a waveguide filled with a plasma in a magnetic field, with collisions included. It is inferred that the dark and bright circular ring patterns are a result of superposition of Bessel modes (TE11 and TE21) of the wave electric field inside the plasma filled MC, which are in reasonable agreement with the plasma emission profiles. The tomographically obtained Ne and Te profiles indicate higher densities in the plasma core (˜1010 cm-3) and enhanced electron temperature in the ECR region (˜13 eV), which are in agreement with earlier results using a Langmuir probe and optical emission spectroscopy (OES) diagnostics.

  6. INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Bruenn, Stephen W., E-mail: elentz@utk.edu [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)

    2012-11-20

    We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.

  7. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  8. High energy neutrinos from Cyg X-3

    International Nuclear Information System (INIS)

    Walker, T.P.; Kolb, E.W.; Turner, M.S.

    1985-07-01

    Assuming that the UHE air showers from Cyg X-3 are produced by photons, we calculate the expected neutrino emission from a model which produces the γ-rays in the atmosphere of the Cyg X-3 companion. We discuss the possibility of detecting such neutrinos in underground detectors and the constraints that such a signal places on the use of this model in other particle production scenarios. 16 refs., 5 figs

  9. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  10. Highly ionized copper contribution to the soft X-ray emission in a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Zoita, V; Patran, A [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    In order to discriminate between the contributions of the gas plasma and of the anode (solid or plasma) to the soft X-ray emission in a plasma focus device, a series of experiments was carried out using the following combinations of experimental conditions: various gases, different absorption filters and viewing different regions in front of the centre electrode. The experiments were performed on the IPF-2/20 plasma focus device using the following working gases: helium, neon and helium-argon mixtures. The diagnostics used: magnetic probe for current derivative, PIN diode for the minimum pinch radius detection, PIN diodes for the soft X-ray emission, scintillator-photomultiplier detector for the hard X-ray emission. From the analysis of the various diagnostics data recorded with very good time correlation, it followed that the soft K-ray signals had a strong contribution from optical transitions of the highly ionised Cu (Cu XX to XXII) emitting in the range 0.8-1.3 nm. (author). 7 figs., 9 refs.

  11. The Prospect of Neutrinos with Gravitational Waves

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    With the first detection of gravitational waves in 2015, scientists celebrated the opening of a new window to the universe. But multi-messenger astronomy astronomy based on detections of not just photons, but other signals as well was not a new idea at the time: we had already detected tiny, lightweight neutrinos emitted from astrophysical sources. Will we be able to combine observations of neutrinos and gravitational waves in the future to provide a deeper picture of astrophysical events?Signs of a MergerArtists impression of the first stage of a binary neutron star merger. [NASA, ESA, and A. Feild (STScI)]If the answer is yes, the key will probably be short gamma-ray bursts (SGRBs). Theory predicts that when a neutron star merges with another compact object (either another neutron star or a black hole), a number of signals may be observable. These include:gravitational waves as the binary spirals inward,a brief burst of gamma rays at merger (this is the SGRB),high-energy neutrino emission during the SGRB,optical and infrared emission after the merger in the form of a kilonova, andradio afterglows of the merger remnants.While weve observed the various electromagnetic components of this picture, the multi-messenger part is lacking: gravitational-wave detections havent been made in conjunction with electromagnetic counterparts thus far, and the only confirmed astrophysical sources of neutrinos are the Sun and Supernova 1987A.Pedicted neutrino fluxes during different stages of emission in an SGRB. [Kimura et al. 2017]Can we expect this to change in the future? A team of authors led by Shigeo Kimura (Pennsylvania State University) has now explored the likelihood that well be able to detect high-energy neutrinos in association with future gravitational-wave events.Detecting the SGRB NeutrinosKimura and collaborators first estimate the flux of high-energy neutrinos expected during various emission phases of an SGRB. They show that a period of late-time emission, known

  12. Investigation of plasma dynamics and x-ray emission in'ATON'plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1995-01-01

    The experimental studies on 20 kJ 'Aton' plasma focus device are presented in this paper. The plasma sheath structure has been investigated by means of the measurements of the axial and azimuthal magnetic fields along the coaxial electrodes. The operating gas was hydrogen with pressures in the range of 0.62 torr to 6 torr. The intensity of visible radiation emitted by the plasma sheath was measured as a function of axial distances along the coaxial electrodes. The results showed that the visible radiation intensity is increased with axial distances until a position near the muzzle, then it decreased and has a minimum value at the coaxial electrode muzzle. The main parameters contributing to the behavior of the distribution are the plasma sheath density and the impurities from the eroded materials of the discharge electrodes. An x-ray pulse has been detected along the coaxial electrodes and extended up to the expansion chamber. At a distance near the muzzle two x-ray pulses have been detected, the second one has intensity relative to the first one with time lag of 11μs. 8 fig

  13. Net emission coefficient for CO–H2 thermal plasmas with the consideration of molecular systems

    International Nuclear Information System (INIS)

    Billoux, T.; Cressault, Y.; Gleizes, A.

    2015-01-01

    This paper deals with the calculation of net emission coefficients (NECs) for CO–H 2 thermal plasmas. This task required the elaboration of a complete spectroscopic database including atoms and molecules formed by carbon, oxygen and hydrogen elements. We have used a systematic line by line method to calculate all the main radiative contributions which are the atomic and molecular continua, the atomic lines and the molecular (diatomic and polyatomic) lines. The main diatomic electronic systems for CO–H 2 plasmas and the triatomic molecular bands were considered. We present some variations of the net emission coefficient versus temperature, for various pressures and for two relative proportions of the components. The role of the diatomic molecules is important at temperatures lower than 5000 K whereas the net emission coefficient presents an unusual peak at temperature around 1000 K, due to the presence of the CO 2 molecule presenting a strong infrared radiation. Finally, the results show that the NEC slightly depends on the relative proportion of CO and H 2 . - highlights: • We calculate radiative losses from CO–H 2 thermal plasmas. • We use the up-to-date atomic and molecular databases. • The influence of CO 2 molecule is very important at low temperature. • The relative maximum of the net emission coefficient at low temperature is unusual

  14. A calibrated, broadband antenna for plasma RF emission measurements below 1 GHz

    International Nuclear Information System (INIS)

    Spence, P.D.; Rosenberg, D.; Roth, J.R.

    1984-01-01

    A constant impedance, constant aperture antenna can make possible broadband plasma RF emission measurements which yield relative and absolute power levels. However, good technique must be followed for the immersion of such an RF probe into plasma radiation. The authors have used a complementary conical spiral antenna to observe plasma RF emission over the frequency range 100 ≤ν≤ 1200 MHz. The RF emission was emitted by a modified Penning discharge. The RF emission from the discharge typically exhibits harmonic structure over a broad frequency range, necessitating a broadband antenna with a flat frequency response curve to allow detailed spectral analysis. The antenna consists of two metal strips of approximately uniform width wound helically on a cone made of Lexan plastic. Since the antenna is a balanced network, a balun is employed to make the transition to a 50-ohm coaxial line. The antenna feed method is critical in maintaining a uniform impedance network. Neglecting stray transmission line effects, the probe circuit for the frequency range 100 ≤ν≤ 500 MHz is 50 ohms due to the spectrum analyzer, paralleled by 291 ohms due to balun magnetization; the combination is fed by a 144 ohm probe aperture

  15. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  16. High Current Emission from Patterned Aligned Carbon Nanotubes Fabricated by Plasma-Enhanced Chemical Vapor Deposition

    Science.gov (United States)

    Cui, Linfan; Chen, Jiangtao; Yang, Bingjun; Jiao, Tifeng

    2015-12-01

    Vertically, carbon nanotube (CNT) arrays were successfully fabricated on hexagon patterned Si substrates through radio frequency plasma-enhanced chemical vapor deposition using gas mixtures of acetylene (C2H2) and hydrogen (H2) with Fe/Al2O3 catalysts. The CNTs were found to be graphitized with multi-walled structures. Different H2/C2H2 gas flow rate ratio was used to investigate the effect on CNT growth, and the field emission properties were optimized. The CNT emitters exhibited excellent field emission performance (the turn-on and threshold fields were 2.1 and 2.4 V/μm, respectively). The largest emission current could reach 70 mA/cm2. The emission current was stable, and no obvious deterioration was observed during the long-term stability test of 50 h. The results were relevant for practical applications based on CNTs.

  17. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  18. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: ANTARES Collaboration

    2015-12-01

    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.

  19. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    Science.gov (United States)

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  20. Modification of K-line emission profiles in laser-created solid-density plasmas

    International Nuclear Information System (INIS)

    Sengebusch, A.; Reinholz, H.; Roepke, G.

    2010-01-01

    Complete text of publication follows. X-ray emissions in the keV energy range have shown to be suitable radiation to investigate the properties of laser-created solid-density plasmas. We use the modifications of inner shell transitions due to the environment to characterize these plasmas. A theoretical treatment of spectral line profiles based on a self-consistent ion sphere model is applied on moderately ionized mid-Z materials, such as titanium, silicon and chlorine. We observe large contributions of satellite transitions due to M-shell ionization and excitation. To determine the composition a mixture of various excited and ionized ionic states embedded in a plasma has to be considered. Plasma polarization effects that cause shifts of the emission and ionization energies are taken into account. K-line profiles are calculated for bulk temperatures up to 100 eV and free electron densities up to 10 24 cm -3 in order to analyze recent measurements with respect to the plasma parameters of electron heated target regions. Moreover, in high-intensity laser-matter interactions, inevitable prepulses are likely to create preplasma and shocks within the target before the main pulse arrives. We investigate the influence of density gradients due to prepulses on the spectral profiles. Further, radial bulk temperature distributions as well the composition of the created warm dense matter are inferred.

  1. Radio emission from quasars and BL Lac objects by coherent plasma oscillation and stimulated Compton scattering

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1978-01-01

    The full radiation spectrum of quasars and BL Lac objects is interpreted as due to a dependent combination of a soft plasma oscillation source at 2ν/sub P/ and bremsstrahlung. Previous work of the plasma oscillation radiation is extended into the radio part of the spectrum and it is shown how the high brightness temperature observations of BL Lac objects [kT/sub b/ (100 MHz) approximate = 3 x 10 5 mc 2 ] are a reasonable consequence of a lower external plasma density and ejection as required for the observed lack of emission lines. Two extreme cases are considered, the one where the plasma oscillations are suddenly extinguished and only stimulated Compton scattering remains and a second case of a constant source of plasma oscillations but a graded surface density. The first case gives 1/100 of the required brightness temperature and the second gives 100 times too large a brightness temperature and also a x 10 too large a radius. It is believed reasonable to invoke a combination of both processes to explain the observed radio spectrum. This model circumvents the self-Compton x-ray flux difficulty of incoherent synchrotron emission

  2. Calculation of opacities and emissivities for carbon plasmas under NLTE and LTE conditions

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Martel, P.; Sauvan, P.; Minguez, E.

    2006-01-01

    We calculate different optical properties for carbon plasma in a wide range of temperatures and densities by using ATOM3R-OP code which has been recently developed. In this code we have implemented the rate equations, the Saha equation (for local thermodynamic equilibrium) and the coronal equilibrium model. We have calculated average ionizations, level populations, opacities and emissivities and we focus our study on the identification with our code of coronal equilibrium, non-local thermodynamic equilibrium and local thermodynamic equilibrium regions for this kind of plasma. Moreover, we analyse the differences in the optical properties when they are calculated in non-local thermodynamic equilibrium and local thermodynamic equilibrium. (authors)

  3. Mechanisms of dust grain charging in plasma with allowance for electron emission processes

    Energy Technology Data Exchange (ETDEWEB)

    Mol’kov, S. I.; Savin, V. N., E-mail: moped@onego.ru [Petrozavodsk State University (Russian Federation)

    2017-02-15

    The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion–atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson’s equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.

  4. Spatially resolvable optical emission spectrometer for analyzing density uniformity of semiconductor process plasma

    International Nuclear Information System (INIS)

    Oh, Changhoon; Ryoo, Hoonchul; Lee, Hyungwoo; Hahn, Jae W.; Kim, Se-Yeon; Yi, Hun-Jung

    2010-01-01

    We proposed a spatially resolved optical emission spectrometer (SROES) for analyzing the uniformity of plasma density for semiconductor processes. To enhance the spatial resolution of the SROES, we constructed a SROES system using a series of lenses, apertures, and pinholes. We calculated the spatial resolution of the SROES for the variation of pinhole size, and our calculated results were in good agreement with the measured spatial variation of the constructed SROES. The performance of the SROES was also verified by detecting the correlation between the distribution of a fluorine radical in inductively coupled plasma etch process and the etch rate of a SiO 2 film on a silicon wafer.

  5. [Optical emission analyses of N2/TMG ECR plasma for deposition of GaN film].

    Science.gov (United States)

    Fu, Si-Lie; Wang, Chun-An; Chen, Jun-Fang

    2013-04-01

    The optical emission spectroscopy of hybrid N2/trimethylgallium (TMG) plasma in an ECR-PECVD system was investigated. The results indicate that the TMG gas is strongly dissociated into Ga*, CH and H even under self-heating condition. Ga species and nitrogen molecule in metastable state are dominant in hybrid ECR plasma. The concentration of metastable nitrogen molecule increases with the microwave power. On the other hand, the concentration of excited nitrogen molecules and of nitrogen ion decreases when the microwave power is higher than 400 W.

  6. Calculation of opacities and emissivities for carbon plasmas under NLTE and LTE conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Martel, P. [Las Palmas de Gran Canaria Univ., Dept. de Fisica (Spain); Sauvan, P. [Universidad Nacional de Educacion a Distancia, Dept. de Ingenieria Energetica, Madrid (Spain); Minguez, E. [Madrid Univ. Politecnica, Instituto de Fusion Nuclear-DENIM (Spain)

    2006-06-15

    We calculate different optical properties for carbon plasma in a wide range of temperatures and densities by using ATOM3R-OP code which has been recently developed. In this code we have implemented the rate equations, the Saha equation (for local thermodynamic equilibrium) and the coronal equilibrium model. We have calculated average ionizations, level populations, opacities and emissivities and we focus our study on the identification with our code of coronal equilibrium, non-local thermodynamic equilibrium and local thermodynamic equilibrium regions for this kind of plasma. Moreover, we analyse the differences in the optical properties when they are calculated in non-local thermodynamic equilibrium and local thermodynamic equilibrium. (authors)

  7. 4d--4f emission resonances in laser-produced plasmas

    International Nuclear Information System (INIS)

    O'Sullivan, G.; Carroll, P.K.

    1981-01-01

    Using targets containing compounds of the elements cesium through lutetium, we studied the spectra of laser-produced plasmas in the grazing-incidence region from 40 to 200 A. The spectra are characterized by strong regions of resonancelike emission extending typically over 9--18 eV. With increasing Z, the spectra show certain systematic variations in character and move monotonically toward shorter wavelengths. From a collisional-radiative plasma model, the ion stages responsible for the emision are identified as VIII through XVI. The resonances are attributed to 4-4f transitions that, because Dn = 0, tend to overlap for different ion stages of the same element

  8. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    International Nuclear Information System (INIS)

    Batha, S.H.

    1998-01-01

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 microm), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities

  9. Analysis of two colliding laser-produced plasmas by emission spectroscopy and fast photography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ake, C., E-mail: citlali.sanchez@ccadet.unam.m [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Mustri-Trejo, D. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Garcia-Fernandez, T. [Universidad Autonoma de la Ciudad de Mexico, Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, Mexico DF, C.P. 09790 (Mexico); Villagran-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico)

    2010-05-15

    In this work two colliding laser-induced plasmas (LIP) on Cu and C were studied by means of time resolved emission spectroscopy and fast photography. The experiments were performed using two opposing parallel targets of Cu and C in vacuum, ablated with two synchronized ns lasers. The results showed an increased emission intensity from copper ions Cu II (368.65, 490.97, 493.16, 495.37 and 630.10 nm) and Cu III (374.47 and 379.08 nm) due to the ionization that occurs during collisions of Cu and C species. It was found that the optimum delay between pulses, which yields the maximum emission enhancement of Cu ions, depends on the sampling distance. On the other hand, the emission intensity of C lines, C II (426.70 nm), C III (406.99 and 464.74 nm) and C IV (465.83 nm), decreased and the formation of C{sub 2} molecules was observed. A comparison between the temporal evolution of the individual plasmas and their collision performed by combining imaging and the time resolved emission diagnostics, revealed an increase of the electron temperature and electron density and the splitting of the plume into slow and fast components.

  10. The physics of neutrinos

    CERN Document Server

    Barger, Vernon D; Whisnant, Kerry

    2012-01-01

    The physics of neutrinos- uncharged elementary particles that are key to helping us better understand the nature of our universe - is one of the most exciting frontiers of modern science. This book provides a comprehensive overview of neutrino physics today and explores promising new avenues of inquiry that could lead to future breakthroughs. The Physics of Neutrinos begins with a concise history of the field and a tutorial on the fundamental properties of neutrinos, and goes on to discuss how the three neutrino types interchange identities as they propagate from their sources to detectors. The book shows how studies of neutrinos produced by such phenomena as cosmic rays in the atmosphere and nuclear reactions in the solar interior provide striking evidence that neutrinos have mass, and it traces our astounding progress in deciphering the baffling experimental findings involving neutrinos. The discovery of neutrino mass offers the first indication of a new kind of physics that goes beyond the Standard Model ...

  11. Neutrino GDR meeting

    International Nuclear Information System (INIS)

    Aguilar-Saavedra, J.A.; Camilleri, L.; Mention, G.; VanElewyck, V.; Verderi, M.; Blondel, A.; Augier, C.; Bellefon, A. de; Coc, A.; Duchesneau, D.; Favier, J.; Lesgourgues, J.; Payet, J.

    2006-01-01

    The purpose of the neutrino GDR (research program coordination) is to federate the activities of French research teams devoted to studying the neutrino. The presentations have been organized on 2 days. A review of the present status of the theoretical and experimental knowledge on neutrinos on a worldwide basis has been made on the first day while the second day has been dedicated to reporting the activities of the 5 following working groups: 1) determination of neutrino parameters, 2) physics beyond the standard model, 3) neutrinos in the universe, 4) neutrino detection, and 5) common tools. During the first day the American neutrino research program has been presented through the description of the 2 neutrino detection systems: Nova and Minor. The following neutrino experiments involving nuclear reactors: Chooz (France), Daya-bay (China), Reno (Korea) and Angra (Brazil) have also been reviewed. This document is made up of the slides of the presentations

  12. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  13. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois 60510-0500 (USA) Departamento de Fisica Teorica, Universidad de Valencia, 46100 Burjassot (Valencia) (Spain)); Gandhi, R. (Department of Physics and Astronomy, University of Arizona, Tucson, AZ (USA))

    1990-04-15

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such a process can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to estimate neutrino mass limits from SN 1987A neutrino observations.

  14. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Gandhi, R.

    1989-07-03

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such processes can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to extract neutrino mass limits from SN1987A neutrino observations. 24 refs., 2 figs.

  15. Impurity line emission due to thermal charge exchange in JET edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, C F; Horton, L D; Koenig, R; Stamp, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Summers, H P [Strathclyde Univ., Glasgow (United Kingdom)

    1994-07-01

    High n-shell emission from hydrogen-like carbon (C VI, n=8-7) has been routinely observed from the plasma edge of JET. By comparing the measured spectral line intensities with the signals predicted by advanced atomic physics modelling of carbon and hydrogen radiation, integrated with modelling of the divertor and edge plasma, it is concluded that charge transfer from excited state hydrogen donors into fully stripped carbon ions can account for the observed spectral emission, but that the hydrogen distribution and to a lesser extent the carbon distribution away from the strike zone predicted by the transport model are too low. Data presented are those of three upper X-point discharges, where the target material was carbon. 5 refs., 1 fig., 3 tabs.

  16. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  17. Modeling of EUV emission from xenon and tin plasma sources for nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France)]. E-mail: michel.poirier@cea.fr; Blenski, T. [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France); Gaufridy de Dortan, F. de [Service Photons, Atomes, et Molecules, CEA Saclay, bat. 522, F91191 Gif/Yvette Cedex (France); Gilleron, F. [CEA-DAM, F91680 Bruyeres-le-Chatel (France)

    2006-05-15

    Over the last decade there has been a major effort devoted to the development of efficient extreme UV sources designed for nanolithography, operating in the 13.5-nm range. Possible sources include laser-produced plasmas and discharge-produced plasmas. This paper, devoted to the modeling of such emission, emphasizes the atomic physics effects and particularly the effects of configuration interaction. Two types of theoretical approaches are presented, one involving the detailed computation with the parametric potential code HULLAC, the other based on the superconfiguration code SCO. Computations of emission spectra in xenon and tin are presented. The possible influence of non-local thermodynamic equilibrium (NLTE) effects is investigated using populations given by the simple collisional-radiative formulas from Colombant and Tonon. Convergence to LTE is analyzed in the tin case.

  18. The neutrino mirror

    International Nuclear Information System (INIS)

    Vannucci, F.

    2003-09-01

    The neutrino is not an elementary particle like others, it is the most stunning of all: the neutrino is undetectable by itself, we have only indirect evidences of its existence, but the neutrino is essential to explain the weak interaction, to understand why matter triumphed over anti-matter just after the Big-bang, or to solve the riddle of the hidden mass of the universe. This book is a popular work dedicated to the neutrino from its discovery in beta decays to the most recent theories such as neutrino oscillations, and via the worldwide experiments dedicated to the study of the neutrinos. (A.C.)

  19. Neutrino mass, a status report

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1993-01-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing

  20. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  1. Search for atmospheric muon-neutrinos and extraterrestric neutrino point sources in the 1997 AMANDA-B10 data

    International Nuclear Information System (INIS)

    Biron von Curland, A.

    2002-07-01

    The young field of high energy neutrino astronomy can be motivated by the search for the origin of the charged cosmic rays. Large astrophysical objects like AGNs or supernova remnants are candidates to accelerate hadrons which then can interact to eventually produce high energy neutrinos. Neutrino-induced muons can be detected via their emission of Cherenkov light in large neutrino telescopes like AMANDA. More than 10 9 atmospheric muon events and approximately 5000 atmospheric neutrino events were registered by AMANDA-B10 in 1997. Out of these, 223 atmospheric neutrino candidate events have been extracted. This data set contains approximately 15 background events. It allows to confirm the expected sensitivity of the detector towards neutrino events. A second set containing 369 (approximately 270 atmospheric neutrino events and 100 atmospheric muon events) was used to search for extraterrestrial neutrino point sources. Neither a binned search, nor a cluster search, nor a search for preselected sources gave indications for the existence of a strong neutrino point source. Based on this result, flux limits were derived. Assuming E ν -2 spectra, typical flux limits for selected sources of the order of Φ μ limit ∝ 10 -14 cm -2 s -1 for muons and Φ ν limit ∝ 10 -7 cm -2 s -1 for neutrinos have been obtained. (orig.)

  2. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  3. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas

    International Nuclear Information System (INIS)

    De Giacomo, A.; Dell'Aglio, M.; Gaudiuso, R.; Amoruso, S.; De Pascale, O.

    2012-01-01

    In this paper the most important features of Laser Induced Plasma (LIP) evolution were analyzed from the fundamental point of view, in order to point out the effects of background environment on the plasma emission spectra. In particular, the main differences between air and vacuum Laser-Induced Breakdown (LIBS) are discussed, as well as those arising in high-pressure gases and in liquid environment. As can be expected, the dynamics of the plasma is strongly dependent on the environment where the plasma itself expands, which can be exploited for several different applications, ranging from chemical analysis and process diagnostics to materials science. The effect of other experimental conditions, such as the state of aggregation of the irradiated target, and the effect of laser pulse duration are also briefly reviewed. - Highlights: ► General processes involved in laser ablation and plasma generation were reported. ► Effect of number density in the plasma on the spectra features was discussed. ► LIP in gases at different pressures, in liquids and in DP techniques was discussed. ► LIBS spectra in various environments and correlated applications were discussed.

  4. Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel

    Czech Academy of Sciences Publication Activity Database

    Mrňa, Libor; Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr

    2017-01-01

    Roč. 29, č. 1 (2017), s. 1-10, č. článku 012009. ISSN 1042-346X R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser welding * plasma plume * light emissions * autocorrelation analysis * weld depth Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.492, year: 2016

  5. Study of emission process in hot, optically thin plasma: application to solar active regions

    International Nuclear Information System (INIS)

    Steenman-Clark, Lois.

    1983-06-01

    Analysis of soft X-ray got in hot and weak density plasmas, such as those in TOKAMAKS and in solar flares, needs a detailed knowledge of emission processes. In this work are presented spectroscopic diagnostics which can be deduced from such spectra analysis and results are applied to magnesium solar spectrum analysis. An important improvement is brought to collisional calculation corresponding to forbidden line populating. For this line, The relative importance of autoionizing states effect, called also resonance effect is studied [fr

  6. Ion emission from laser-produced plasmas with two electron temperatures

    International Nuclear Information System (INIS)

    Wickens, L.M.; Allen, J.E.; Rumsby, P.T.

    1978-01-01

    An analytic theory for the expansion of a laser-produced plasma with two electron temperatures is presented. It is shown that from the ion-emission velocity spectrum such relevant parameters as the hot- to -cold-electron density ratio, the absolute hot- and cold-electron temperatures, and a sensitive measure of hot- and cold-electron temperature ratio can be deduced. A comparison with experimental results is presented

  7. X-ray emission spectroscopy of well-characterised non-LTE plasmas

    International Nuclear Information System (INIS)

    Bourgaux, A C; Bastiani-Ceccotti, S; Audebert, P; Marquès, J R; Vassura, L; Vinci, T; Jacquemot, S; Dorchies, F; Leguay, P M; Chung, H K; Bowen, C; Dervieux, V; Renaudin, P; Silvert, V

    2016-01-01

    This paper will present an experimental platform developed on LULI2000 to measure x-ray emission of non-LTE plasmas in well-defined hydrodynamic conditions thanks to implementation of a whole set of diagnostics, including time-resolved electronic and ionic Thomson scattering and self-optical pyrometry. K-, L- and M-shell spectra will be presented and the methodology, that has been developed to analyze them, discussed. (paper)

  8. Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant

    International Nuclear Information System (INIS)

    Coleman, J.T.

    1986-01-01

    The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials

  9. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Roy, S.S., E-mail: sinharoy@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Hazra, K.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); Wadhwa, S. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Ray, S.C. [School of Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); Mitra, S.K. [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Misra, D.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); McLaughlin, J.A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We showed Ar/O{sub 2} plasma can be effective for the end opening of aligned CNTs. Black-Right-Pointing-Pointer The field emission property was dramatically enhanced after plasma modification. Black-Right-Pointing-Pointer Microstructures were clearly understood by Raman and SEM analysis. Black-Right-Pointing-Pointer Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15-20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110 Degree-Sign to 40 Degree-Sign . It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from {approx}0.80 V {mu}m{sup -1} (untreated) to {approx}0.60 V {mu}m{sup -1} (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  10. Thermal and nonthermal electron cyclotron emission by high-temperature tokamak plasmas

    International Nuclear Information System (INIS)

    Airoldi, A.; Ramponi, G.

    1997-01-01

    An analysis of the electron cyclotron emission (ECE) spectra emitted by a high-temperature tokamak plasma in the frequency range of the second and third harmonic of the electron cyclotron frequency is made, both in purely Maxwellian and in non-Maxwellian cases (i.e., in the presence of a current-carrying superthermal tail). The work is motivated mainly by the experimental observations made in the supershot plasmas of the Tokamak Fusion Test Reactor (TFTR), where a systematic disagreement is found between the T e measurements by second-harmonic ECE and Thomson scattering. We show that, by properly taking into account the overlap of superthermals-emitted third harmonic with second-harmonic bulk emission, the radiation temperature observed about the central frequency of the second harmonic may be enhanced up to 30%endash 40% compared to the corresponding thermal value. Moreover we show that, for parameters relevant to the International Thermonuclear Experimental Reactor (ITER) with T e (0)>7 keV, the overlap between the second and the downshifted third harmonic seriously affects the central plasma region, so that the X-mode emission at the second harmonic becomes unsuitable for local T e measurements. copyright 1997 American Institute of Physics

  11. Electron-electron collision effects on the bremsstrahlung emission in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-01-01

    Electron-electron collision effects on the electron-ion bremsstrahlung process are investigated in Lorentzian plasmas. The effective electron-ion interaction potential is obtained by including the far-field terms caused by electron-electron collisions with an effective Debye length in Lorentzian plasmas. The bremsstrahlung radiation cross section is obtained as a function of the electron energy, photon energy, collision frequency, spectral index and Debye length using the Born approximation for the initial and final states of the projectile electron. It is shown that the non-Maxwellian character suppresses the bremsstrahlung radiation cross section. It is also shown that the electron-electron collision effect enhances the bremsstrahlung emission spectrum. In addition, the bremsstrahlung radiation cross section decreases with an increase in the plasma temperature.

  12. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  13. Monitoring of Optical Emission from High Temperature Plasma Based on Chromatic Modulation

    International Nuclear Information System (INIS)

    Dimitrios, Tomtsis

    2009-01-01

    An integrated experimental approach is presented for processing the optical emission produced from electric arc plasma. The method is based on chromatic modulation techniques to provide a holistic measurement of the persistence of particle decays within the environment of high power circuit breakers. Chromaticity changes in a number of chromatic parameters are related to changes in physical electric arc plasma environment (e.g. particle concentration). The results are in the form of chromatic maps which show how the overall electric arc plasma and its environment behave and respond. Such maps show the totality of information which can be accessed about the arcing event and the level of monitoring discrimination which is achievable with the chromatic methodology in a simple and easy to understand manner. The suggested method provides easier data analysis and high levels of data compression.

  14. The Diagnosis of Plasma Parameters in Surface Alloying Technique by Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Fu Yabo; Zhang Yuefei; Chen Qiang; Zhang Guangqiu; Gao Yuan; Wang Jianzhong; Kui Xiaoyun

    2006-01-01

    Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH 4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1.71x10 15 /cm 3 to 6.64x10 15 /cm 3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma

  15. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Directory of Open Access Journals (Sweden)

    Torrisi Lorenzo

    2018-01-01

    Full Text Available The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  16. Interpretation of the electron cyclotron emission of hot ASDEX upgrade plasmas at optically thin frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Denk, Severin Sebastian; Stroth, Ulrich [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85748 Garching (Germany); Fischer, Rainer; Poli, Emanuele; Willensdorfer, Matthias; Maj, Omar; Stober, Joerg; Suttrop, Wolfgang [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    The electron cyclotron emission diagnostic (ECE) provides routinely electron temperature (T{sub e}) measurements. ''Kinetic effects'' (relativistic mass shift and Doppler shift) can cause the measured radiation temperatures (T{sub rad}) to differ from T{sub e} at cold resonance position complicating the determination of T{sub e} from the measured radiation temperature profile (T{sub rad}). For the interpretation of such ECE measurements an electron cyclotron forward model solving the radiation transport equation for given T{sub e} and electron density profiles is in use in the framework of Integrated Data Analysis at ASDEX Upgrade. While the original model lead to improved T{sub e} profiles near the plasma edge in moderately hot H-mode discharges, vacuum approximations in the model lead to inaccuracies given large T{sub e}. In hot plasmas ''wave-plasma interaction'', i.e. the dielectric effect of the background plasma onto the electron cyclotron emission, becomes important at optical thin measured frequencies. Additionally, given moderate electron densities and large T{sub e}, the refraction of the line of sight has to be considered for the interpretation of ECE measurements with low optical depth.

  17. A comparative study of carbon plasma emission in methane and argon atmospheres

    Science.gov (United States)

    Yousfi, H.; Abdelli-Messaci, S.; Ouamerali, O.; Dekhira, A.

    2018-04-01

    The interaction between laser produced plasma (LPP) and an ambient gas is largely investigated by Optical Emission Spectroscopy (OES). The analysis of carbon plasma produced by an excimer KrF laser was performed under controlled atmospheres of methane and argon. For each ambient gas, the features of produced species have been highlighted. Using the time of flight (TOF) analysis, we have observed that the C and C2 exhibit a triple and a double peaks respectively in argon atmosphere in contrast to the methane atmosphere. The evolution of the first peaks of C and C2 follows the plasma expansion, whereas the second peaks move backward, undergoing reflected shocks. It was found that the translational temperature, obtained by Shifted Maxwell Boltzmann distribution function is strongly affected by the nature of ambient gas. The dissociation of CH4 by electronic impact presents the principal approach for explaining the emission of CH radical in reactive plasma. Some chemical reactions have been proposed in order to explain the formation process of molecular species.

  18. Modelling ion cyclotron emission from KSTAR tokamak and LHD helical device plasmas

    Science.gov (United States)

    Dendy, Richard; Chapman, Ben; Reman, Bernard; Chapman, Sandra; Akiyama, Tsuyoshi; Yun, Gunsu

    2017-10-01

    New high quality measurements of ion cyclotron emission (ICE) from KSTAR and LHD greatly extend the scope and diversity of plasma conditions under which ICE is observed. Variables include the origin (fusion reactions or neutral beam injection) and energy (sub- or super-Alfvénic) of the minority energetic ions that drive ICE; the composition of the bulk plasma (hydrogen or deuterium) which supports the modes excited; plasma density in the emitting region, and the timescale on which it changes; and toroidal magnetic field geometry (tokamak or helical device). Future exploitation of ICE as a diagnostic for energetic ion populations in JET D-T plasmas and in ITER rests on quantitative understanding of the physics of the emission. This is tested and extended by current KSTAR and LHD measurements of ICE. We report progress on direct numerical simulation using full orbit ion kinetic codes that solve the Maxwell-Lorentz equations for hundreds of millions of particles. In the saturated regime, these simulations yield excited field spectra that correspond directly to the measured ICE spectra under diverse KSTAR and LHD regimes. At early times, comparison of simulation outputs with linear analytical theory confirms the magnetoacoustic cyclotron instability as the basic driver of ICE. Supported by RCUK Energy Programme Grant EP/P012450/1, NRF Korea Grant 2014M1A7A1A03029881, NIFS budget ULHH029 and Euratom.

  19. An improved microstrip plasma for optical emission spectrometry of gaseous species

    Energy Technology Data Exchange (ETDEWEB)

    Schermer, Susanne; Bings, Nicolas H.; Bilgic, Attila M.; Stonies, Robert; Voges, Edgar; Broekaert, Jose A.C. E-mail: jose.broekaert@chemie.uni-hamburg.de

    2003-09-26

    A modified compact 2.45 GHz microstrip plasma (MSP) operated with Ar as working gas at atmospheric pressure has been characterized and examined for its suitability for the determination of Hg as gaseous species by optical emission spectrometry. As a formerly described MSP the new device is provided on a sapphire substrate. The areas of plasma stability in terms of gas flow rates and microwave power for both MSPs with respect to plasma form and reflected power were investigated. Power levels of 5-40 W and Ar flow rates of 15-60 l/h were used. The modified MSP, which extends out of the channel in the sapphire substrate, was used for the recording of emission spectra for Hg vapor at different working conditions. Using optimized parameters a detection limit for Hg of less than 10 ng Hg/l Ar is obtained. The attainable excitation temperatures in the modified MSP at different microwave power were determined under the use of Fe as thermometric species and introducing ferrocene into the plasma. They were found to be at the order of 6000-7000 K for a power of 10-40 W and a gas flow of 15 l/h. It was shown that the modified MSP source can be combined with both a conventional monochromator with photomultiplier detection and a miniaturized spectrometer with CCD detection, whereby space-angle limitations are not stringent.

  20. Measurements of secondary emissions from plasma arc and laser cutting in standard experiments

    International Nuclear Information System (INIS)

    Pilot, G.; Noel, J.P.; Leautier, R.; Steiner, H.; Tarroni, G.; Waldie, B.

    1992-01-01

    As part of an inter-facility comparison of secondary emissions from plasma arc and laser-cutting techniques, standard cutting tests have been done by plasma arc underwater and in air, and by laser beam in air. The same team was commissioned to measure the secondary emissions (solid and gaseous) in each contractor's facility with the same measuring rig. 20 mm and 40 mm thick, grade 304 stainless-steel plates were cut by plasma-torch in three different facilities: Heriot Watt University of Edinburgh, Institut fuer Werkstoffkunde of Universitaet Hannover and CEA/CEN Cadarache. 10 mm and in some cases 20 mm thick, grade 304, stainless-steel plates were cut by laser beam in five different facilities: CEA-CEN Fontenay, CEA-CEN Saclay, Institut fuer Werkstoffkunde of Universitaet Hannover and ENEA/Frascati. The results obtained in the standard experiments are rather similar, and the differences that appear can be explained by the various scales of the involved facilities (semi-industrial and laboratory) and by some particularities in the cutting parameters (an additional secondary gas flow of oxygen in plasma cutting at Universitaet Hannover, for example)

  1. Measurements of secondary emissions from plasma arc and laser cutting in standard experiments

    International Nuclear Information System (INIS)

    Pilot, G.; Noel, M.; Leautier, R.; Steiner, H.; Tarroni, G.; Waldie, B.

    1990-01-01

    As part of an inter-facility comparison of secondary emissions from plasma-arc and laser cutting techniques, standard cutting tests have been done by plasma arc underwater and in air and laser beam in air. The same team, CEA/DPT/SPIN, was commissioned to measure the secondary emissions (solid and gaseous) in each contractor's facility with the same measuring rig. 20 mm and 40 mm thick grade 304 stainless steel plates were cut by plasma-torch in three different facilities: Heriot Watt University of Edinburgh, Institute fuer Werkstoffkunde of Hannover and CEA/CEN Cadarache. 10 mm and sometimes 20 mm thick grade 304 stainless steel plates were cut by laser beam in four different facilities: CEA/CEN Fontenay, CEA/CEN Saclay, Institute fuer Werkstoffkunde of Hannover and ENEA/FRASCATI. The results obtained in the standard experiments are rather similar, the differences that appear can be explained by the various scales of the facilities (semi-industrial and laboratory scale) and by some particularity in the cutting parameters (additional secondary gas flow of oxygen in plasma cutting at Hannover for example). Some supplementary experiments show the importance of some cutting parameters. (author)

  2. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    Science.gov (United States)

    Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea

    2018-01-01

    The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  3. Time- and space-resolved light emission and spectroscopic research of the flashover plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gleizer, J. Z.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Leopold, J. [Department of Applied Physics, Rafael Laboratories, Box 2250, Haifa 31021 (Israel)

    2015-02-21

    The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV, respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.

  4. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    Science.gov (United States)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  5. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  6. Inductively coupled plasma--atomic emission spectroscopy: an evaluation of the use of nitrogen--argon admixtures as plasma discharge atmospheres

    International Nuclear Information System (INIS)

    Zalewski, J.C.

    1979-01-01

    The effects of the use of nitrogen in either the plasma coolant or aerosol carrier gas flows on the physical and spectrochemical properties of the inductively coupled plasma (ICP) were examined. While the plasma operated with nitrogen in the coolant flow exhibited a stability comparable to that of the argon plasma, the use of nitrogen in the aerosol carrier gas flow resulted in a plasma that was less stable. The detection limits obtained for the three plasmas exhibited a similar trend. In addition, the use of nitrogen--argon admixtures in the plasma coolant gas flow yielded an increase in both the net analyte and the background emission intensities when the corresponding argon and nitrogen--argon plasmas were operated under various conditions. Furthermore, the effect of aluminum on the Ca II (393.4 nm) spectral line was reported for the 1000/1 Al/Ca molar ratio. At an observation height of 15 mm, the signal depressions were 4 and 14% for the nitrogen--argon and the argon plasmas, respectively. The above experimental evidence suggested that the operation of the ICP with an Ar--N 2 coolant gas might be hotter than the argon plasma currently in use in this laboratory. The demountable plasma torch designed in collaboration with K. Olson yielded detection limits for 15 elements and 19 spectral lines that were approximately within a factor of two of those obtained with the torch of fused quartz design. The design also appeared to offer a more readily initiated plasma discharge. The experimental evidence presented supports the utilization of nitrogen--argon admixtures in the plasma coolant gas flow as alternate discharge atmospheres for inductively coupled plasma--atomic emission spectroscopy. In contrast, the experimental evidence shows that there is a deterioration in both physical and spectrochemical properties of plasmas operated with a nitrogen aerosol carrier gas

  7. New technology allows closer study of neutrinos; researchers credit specialized telescope

    CERN Multimedia

    Huang, N

    2002-01-01

    With the help of a newly designed telescope, University of California-Berkeley scientists and an international team of researchers have made a recent breakthrough in the study of neutrino emissions from the sun. The turning point is the Sudbury Neutrino Observatory in Canada. This telescope is the first of its kind to be sensitive enough to detect all types of neutrinos (1 page).

  8. Effects of fibre-form nanostructures on particle emissions from a tungsten surface in plasmas

    International Nuclear Information System (INIS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2012-01-01

    The effects of fibre-form nanostructure of a tungsten surface on both electron emission and sputtering in helium/argon plasmas are represented. Generally, a nano-fibre forest, the so-called ‘fuzz’, made of tungsten with helium gas inside is found to have the tendency of suppressing the particle emission substantially. The electron emission comes from the impact of high-energy primary electrons. In addition, a deeply biased tungsten target, which inhibits the influx of even energetic primary electrons, seems to produce an electron emission, and it may be suppressed on the way to nanostructure formation on the surface of the W target. Such an emission process is discussed here. The sputtering yield of the He-damaged tungsten surface with the fibre-form nanostructure depends on the surface morphology while the sputtering itself changes the surface morphology, so that the time evolutions of sputtering yield from the W surface with an originally well-developed nanostructure are found to show a minimum in sputtering yield, which is about a half for the fresh nanostructured tungsten and roughly one-fifth of the yield for the original flat normal tungsten surface. The surface morphology at that time is, for the first time, made clear with field emission scanning electron microscopy observation. The physical mechanism for the appearance of such a minimum in sputtering yield is discussed. (paper)

  9. Multipole electromagnetic moments of neutrino in dispersive medium

    International Nuclear Information System (INIS)

    Semikov, V.B.; Smorodinskij, Ya.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1989-01-01

    Four multipole moments for a Dirac and Majorana neutrino in a dispersive medium are calculated viz., the electric monopole (charge), electric dipole, magnetic dipole and anapole dipole moment. For comparison the same quantities are presented in the case of vacuum. The neutrino does not possess an (induced) anapole moment in an isotropic medium; however, in a ferromagnetic such a moment exists and for the Majorana neutrino it is the only electromagnetic cjaracteristic. As an example the cross section for elastic scattering of a Majorana neutrino by nuclei in an isotropic plasma is calculated

  10. Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment

    International Nuclear Information System (INIS)

    Li Chun; Fang Guojia; Yuan Longyan; Liu Nishuang; Li Jun; Li Dejie; Zhao Xingzhong

    2007-01-01

    Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved after radio-frequency (rf) Ar plasma treatment. With Ar plasma treatment for 30 min, flat tops of the as-grown ZnO nanorods have been etched into sharp tips without damaging ZnO nanorod geometrical morphologies and crystallinity. After the Ar ion bombardment, the emission current density increases from 2 to 20 μA cm -2 at 9.0 V μm -1 with a decrease in turn-on voltage from 7.1 to 4.8 V μm -1 at a current density of 1 μA cm -2 , which demonstrates that the field emission of the as-grown ZnO nanorods has been efficiently enhanced. The scanning electron microscopy (SEM) results, in conjunction with the results of transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence observation, are used to investigate the mechanisms of the field emission enhancement. It is believed that the enhancements can be mainly attributed to the sharpening of rod tops, and the decrease of electrostatic screening effect

  11. Electron cyclotron emission from optically thin plasma in compact helical system

    International Nuclear Information System (INIS)

    Idei, Hiroshi; Kubo, Shin; Hosokawa, Minoru; Iguchi, Harukazu; Ohkubo, Kunizo; Sato, Teruyuki.

    1994-01-01

    A frequency spectrum of second harmonic electron cyclotron emission was observed for an optically thin plasma produced by fundamental electron cyclotron heating in a compact helical system. A radial electron temperature profile deduced from this spectrum neglecting the multiple reflections effect shows a clear difference from that measured by Thomson scattering. We relate the spectrum with the electron temperature profile by the modified emission model including the scrambling effect. The scrambling effect results from both mode conversion and change in the trajectory due to multiple reflections of the emitting ray at the vessel wall. The difference between the two temperature profiles is explained well by using the modified emission model. Reconstruction of the electron temperature profile from the spectrum using this model is also discussed. (author)

  12. Studies of the Hard X-ray Emission from the Filippov Type Plasma Focus Device, Dena

    Science.gov (United States)

    Tafreshi, M. A.; Saeedzadeh, E.

    2006-12-01

    This article is about the characteristics of the hard X-ray (HXR) emission from the Filippov type plasma focus (PF) device, Dena. The article begins with a brief presentation of Dena, and the mechanism of the HXR production in PF devices. Then using the differential absorption spectrometry, the energy resolved spectrum of the HXR emission from a 37 kJ discharge in Dena, is estimated. The energy flux density and the energy fluence of this emission have also been calculated to be 1.9 kJ cm-2 s-1 and 9.4 × 10-5 J cm-2. In the end, after presentation of radiography of sheep bones and calf ribs, the medical application of the PF devices has been discussed.

  13. A study of x-ray emission from the anode region in a plasma focus device

    International Nuclear Information System (INIS)

    Jia Wang; Tsinchi Yang

    1988-01-01

    The physical process of x-ray emission from the anode region in a plasma focus device due to the interaction of a powerful electron beam with the metal anode and with ionised metallic vapour from the anode is investigated. The influence of the magnetic field of the beam is taken into consideration. A MC-PIC model (Monte Carlo-particle in cell) is proposed for the process, in which an electron-photon collision cascade is simulated by the MC approach and the time-dependent state of metallic vapour is determined by PIC computation. The time-resolved energy spectra and angular distributions of x-ray emission from the extending anode region are calculated. The time-integrated characteristics of the x-ray emission can be compared with the results of experiments as far as they are available. (author)

  14. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  15. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  16. Ghost basis for neutrino

    International Nuclear Information System (INIS)

    Novello, M.

    1976-07-01

    A class of solutions of DIRAC'S equation in gravitational fields for ghost neutrinos is given. Comments are restricted to the neutrino cosmological model recently found by M. Novello e I.D. Soares [pt

  17. Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.

    Science.gov (United States)

    Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H

    2018-05-01

    Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .

  18. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  19. Leptogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Pluemacher, M.

    2004-01-01

    Thermal leptogenesis explains the baryon asymmetry of the universe by the out-of-equilibrium decays of heavy right-handed neutrinos. In the minimal seesaw model this leads to interesting implications for light neutrino properties. In particular, quasi-degenerate light neutrino masses are incompatible with leptogenesis. An upper bound on light neutrino masses of 0.1 eV can be derived, which will be tested by forthcoming laboratory experiments and cosmology. (author)

  20. Neutrino masses and mixings

    International Nuclear Information System (INIS)

    Wolfenstein, L.

    1991-01-01

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV ν τ , (2) a 30 ev ν τ making up the dark matter, (3) a 10 -3 ev ν μ to solve the solar neutrino problem, and (4) a three-neutrino MSW solution

  1. Geo-neutrino Observation

    International Nuclear Information System (INIS)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-01-01

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  2. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H Y

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  3. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  4. Energetic ion emission in a positive polarity nanosecond plasma opening switch

    International Nuclear Information System (INIS)

    Sarfaty, M.; Krasik, Ya.E.; Weingarten, A.; Fruchtman, A.; Maron, Y.

    1996-01-01

    The emission was studied of energetic ions from the plasma in a coaxial Plasma Opening Switch (POS) powered by a 300 kV, 15 kA, 90 ns positive polarity pulse. Fluxes lasting 2 - 3 ns of ions flowing radially onto the cathode were observed at all axial locations of the switch plasma within 5 ns of the beginning of the upstream POS current. It is suggested that the termination of this ion flux is due to the formation of a cathode plasma, which is consistent with our spectroscopic measurements. Later in the pulse, longer duration (100 ns) ion fluxes were observed radially, first appearing in the generator side of the switch plasma. Fluxes 30 - 40 ns long of ions flowing axially towards the POS load at velocities (2±1) x 10 8 cm/s were also observed. The dependences of the start time of the axial ion flow, of the ion velocities, and of the ion flux on the POS operation parameters were studied. (author). 6 figs., 5 refs

  5. Energetic ion emission in a positive polarity nanosecond plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Sarfaty, M [Univ. of Wisconsin, Madison, WI (United States); Krasik, Ya E; Weingarten, A; Fruchtman, A; Maron, Y [Weizmann Institute of Science, Rehovot (Israel). Department of Physics

    1997-12-31

    The emission was studied of energetic ions from the plasma in a coaxial Plasma Opening Switch (POS) powered by a 300 kV, 15 kA, 90 ns positive polarity pulse. Fluxes lasting 2 - 3 ns of ions flowing radially onto the cathode were observed at all axial locations of the switch plasma within 5 ns of the beginning of the upstream POS current. It is suggested that the termination of this ion flux is due to the formation of a cathode plasma, which is consistent with our spectroscopic measurements. Later in the pulse, longer duration (100 ns) ion fluxes were observed radially, first appearing in the generator side of the switch plasma. Fluxes 30 - 40 ns long of ions flowing axially towards the POS load at velocities (2{+-}1) x 10{sup 8} cm/s were also observed. The dependences of the start time of the axial ion flow, of the ion velocities, and of the ion flux on the POS operation parameters were studied. (author). 6 figs., 5 refs.

  6. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y. [Bloomington, IN; Hieftje, Gary M [Bloomington, IN

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  7. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    International Nuclear Information System (INIS)

    Montaser, A.

    1993-01-01

    In this research, new high-temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. During the period January 1993--December 1993, emphasis was placed on (a) analytical investigations of atmospheric-pressure helium inductively coupled plasma (He ICP) that are suitable for atomization, excitation, and ionization of elements possessing high excitation and ionization energies; (b) simulation and computer modeling of plasma sources to predict their structure and fundamental and analytical properties without incurring the enormous cost of experimental studies; (c) spectrosopic imaging and diagnostic studies of high-temperature plasmas; (d) fundamental studies of He ICP discharges and argon-nitrogen plasma by high-resolution Fourier transform spectrometry; and (e) fundamental and analytical investigation of new, low-cost devices as sample introduction systems for atomic spectrometry and examination of new diagnostic techniques for probing aerosols. Only the most important achievements are included in this report to illustrate progress and obstacles. Detailed descriptions of the authors' investigations are outlined in the reprints and preprints that accompany this report. The technical progress expected next year is briefly described at the end of this report

  8. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava, E-mail: roy@fzu.cz, E-mail: aroy@barc.gov.in [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed [School of Nuclear Engineering and Center for Materials Under Extreme Environment(CMUXE), Purdue University, West Lafayette, Indiana 47907 (United States); Endo, Akira; Mocek, Tomas [HiLASE Project, Department of Diode-pumped Lasers, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm, Nd:YAG laser pulses with varying pulse duration (5–15 ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ∼0.5 T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ∼5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ∼1.2 cm/μs and reduced to ∼0.75 cm/μs with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5 T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  9. Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device

    International Nuclear Information System (INIS)

    Zhang, T; Lin, X; Chandra, K A; Tan, T L; Springham, S V; Patran, A; Lee, P; Lee, S; Rawat, R S

    2005-01-01

    The insulator sleeve length is one of the major parameters that can severely affect the neon soft x-ray yield from a plasma focus. The effect of the insulation sleeve length on various characteristic timings of plasma focus discharges and hence the soft x-ray emission characteristics has been investigated using a resistive divider. The pinhole images and laser shadowgraphy are used to explain the observed variation in the average soft x-ray yield (measured using a diode x-ray spectrometer) with variation of the insulator sleeve length. We have found that for a neon filled plasma focus device the change in insulator sleeve length changes the current sheath curvature angle and thus the length of the focused plasma column. The optimized current sheath curvature angle is found to be between 39 0 and 41 0 , at the specific axial position of 6.2-9.3 cm from the cathode support plate, for our 3.3 kJ plasma focus device. A strong dependence of the neon soft x-ray yield on the current sheath curvature angle has thus been reported

  10. Mineral distribution in rice: Measurement by Microwave Plasma Atomic Emission Spectroscopy (MP-AES)

    International Nuclear Information System (INIS)

    Ramos, Nerissa C.; Ramos, R.G.A.; Quirit, L.L.; Arcilla, C.A.

    2015-01-01

    Microwave Plasma Atomic Emission Spectroscopy (MP-AES) is a new technology with comparable performance and sensitivity to Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Both instrument use plasma as the energy source that produces atomic and ionic emission lines. However, MP-AES uses nitrogen as the plasma gas instead of argon which is an additional expense for ICP-OES. Thus, MP-AES is more economical. This study quantified six essential minerals (Se, Zn, Fe, Cu, Mn and K) in rice using MP-AES. Hot plate digestion was used for sample extraction and the detection limit for each instrument was compared with respect to the requirement for routine analysis in rice. Black, red and non-pigmented rice samples were polished in various intervals to determine the concentration loss of minerals. The polishing time corresponds to the structure of the rice grains such as outer bran layer (0 to 15), inner bran layer (15 to 30), outer endosperm layer (30 to 45), and middle endosperm layer (45 to 60). Results of MP-AES analysis showed that black rice had all essential materials (except K) in high concentration at the outer bran layer. The red and non-pigmented rice samples on the other hand, contained high levels of Se, Zn, Fe, and Mn in the whole bran portion. After 25 seconds, the mineral concentrations remained constant. The concentration of Cu however, gave consistent value in all polishing intervals, hence Cu might be located in the inner endosperm layer. Results also showed that K was uniformly distributed in all samples where 5% loss was consistently observed for every polishing interval. Therefore, the concentration of K was also affected by polishing time. Thus, the new MP-AES technology with comparable performance to ICP-OES is a promising tool for routine analysis in rice. (author)

  11. Towards neutrino astronomy

    International Nuclear Information System (INIS)

    Lagage, P.O.; Spiro, M.

    1985-01-01

    Neutrino sources are numerous and varied; the sun, a supernova explosion, the cosmic radiation interaction with interstellar medium are neutrino or antineutrino sources. The aim of this article is to overview the international projects of neutrino detection while giving the preference to the experimental side of the detection [fr

  12. Neutrino disintegration of deuterium

    International Nuclear Information System (INIS)

    Ying, S.; Haxton, W.; Henley, E.M.

    1989-01-01

    We calculate the rate of both neutral- and charged-current neutrino and antineutrino disintegration of deuterium. These rates are of interest for solar 8 B and hep ( 3 He + p) spectra and supernovae neutrinos, and are relevant for the Sudbury Neutrino Observatory (SNO)

  13. Reconstructing Neutrino Mass Spectrum

    OpenAIRE

    Smirnov, A. Yu.

    1999-01-01

    Reconstruction of the neutrino mass spectrum and lepton mixing is one of the fundamental problems of particle physics. In this connection we consider two central topics: (i) the origin of large lepton mixing, (ii) possible existence of new (sterile) neutrino states. We discuss also possible relation between large mixing and existence of sterile neutrinos.

  14. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Energy spectra of neutrino sources. ASPERA. Page 4. Some unique features of neutrinos. The second most abundant particles in the universe. Cosmic microwave background photons: 400 / cm3. Cosmic background neutrinos: 330 / cm3. The lightest massive particles. A million times lighter than the electron. No direct mass ...

  15. Solar neutrinos and gravity

    International Nuclear Information System (INIS)

    Kuo, T.K.

    2001-01-01

    We review the possibility that the solar neutrino problem can be explained by neutrinos violating the equivalence principle. It is found that such a scenario can be ruled out when one takes into account data from high energy accelerator neutrino experiments

  16. CERN: Neutrino facelift

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-11-15

    With the termination this summer of the CHARM II neutrino experiment at the SPS proton synchrotron, CERN's 30- year tradition of neutrino physics came to a temporary halt. However with these enigmatic particles playing a vital role in today's Standard Model but continually reluctant to give up all their secrets, neutrino physics will continue to be in the forefront of this research.

  17. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M.

    2015-01-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases

  18. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M., E-mail: hieftje@indiana.edu

    2015-08-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases.

  19. X-ray emission from plasmas created by smoothed KrF laser irradiation

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Deniz, A.; Hardgrove, J.; Seely, J.; Brown, C.; Feldman, U.; Pawley, C.; Gerber, K.; Bodner, S.; Obenschain, S.; Lehmberg, R.; McLean, E.; Pronko, M.; Sethian, J.; Stamper, J.; Schmitt, A.; Sullivan, C.; Holland, G.; Laming, M.

    1996-01-01

    The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser [Phys. Plasmas 3, 2098 (1996) ] was characterized using imaging and spectroscopic instruments. The laser wavelength was 1/4 μm, and the beams were smoothed by induced spatial incoherence (ISI). The targets were thin foils of CH, aluminum, titanium, and cobalt and were irradiated by laser energies in the range 100 endash 1500 J. A multilayer mirror microscope operating at an energy of 95 eV recorded images of the plasma with a spatial resolution of 2 μm. The variation of the 95 eV emission across the 800 μm focal spot was 1.3% rms. Using a curved crystal imager operating in the 1 endash 2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 μm perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface. The absolute radiation flux was determined at 95 eV and in x-ray bandpasses covering the 1 endash 8 keV region. The electron temperature inferred from the slope of the x-ray flux versus energy data in the 5 endash 8 keV region was 900 eV for an incident laser energy of 200 J and an intensity of ≅10 13 W/cm 2

  20. Investigating the flow dynamics and chemistry of an expanding thermal plasma through CH(A-X) emission spectra

    NARCIS (Netherlands)

    Hansen, T. A. R.; Colsters, P. G. J.; M. C. M. van de Sanden,; Engeln, R.

    2011-01-01

    The gas flow in a linear plasma reactor and the plasma chemistry during hydrogenated amorphous carbon and graphite etching are investigated via time and spatially resolved measurements of the ion density and CH emission. A convolution of the ion and hydrocarbon density shows the importance of charge

  1. Neutrino oscillations and neutrino-electron scattering

    International Nuclear Information System (INIS)

    Kayser, B.; Rosen, S.P.

    1980-10-01

    Neutrino flavor oscillations can significantly alter the cross section for neutrino-electron scattering. As a result, such oscillations can affect the comparison between existing reactor data and theories of neutral-current processes. They may also lead to strikingly large effects in high-energy accelerator experiments

  2. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  3. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. B?hler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  4. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  5. Light neutrinos as cosmological dark matter and the next supernova

    International Nuclear Information System (INIS)

    Minakata, H.; Nunokawa, H.

    1990-01-01

    We point out that the light-neutrino hypothesis for cosmological dark matter can be tested by observing a neutrino burst from a type-II supernova. With the luck of a nearby (∼10 kpc) event watched by enlarged water Cherenkov detectors, such as the proposed super-Kamiokande, it might be possible to measure the tau- (heaviest-)neutrino mass. In such a case the statistically significant (4000--6000) bar ν e absorption events would allow the precise determination of the neutrino flux and the temperature. By using a simple model of neutrino emission based on the simulation by Mayle, Wilson, and Schramm, we show that the existence of the neutrino mixing can be signaled by 20--30 % excess of the scattering events in the water Cherenkov detector, and by factor ∼3 larger rate in Davis's 37 Cl detector. The effect on the recoil electron energy spectrum is also analyzed

  6. Frontiers in neutrino physics - Transparencies

    International Nuclear Information System (INIS)

    Akhmedov, E.; Balantekin, B.; Conrad, J.; Engel, J.; Fogli, G.; Giunti, C.; Espinoza, C.; Lasserre, T.; Lazauskas, R.; Lhuiller, D.; Lindner, M.; Martinez-Pinedo, G.; Martini, M.; McLaughlin, G.; Mirizzi, A.; Pehlivan, Y.; Petcov, S.; Qian, Y.; Serenelli, A.; Stancu, I.; Surman, R.; Vaananen, D.; Vissani, F.; Vogel, P.

    2012-01-01

    This document gathers the slides of the presentations. The purpose of the conference was to discuss the last advances in neutrino physics. The presentations dealt with: -) the measurement of the neutrino velocity, -) neutrino oscillations, -) anomaly in solar models and neutrinos, -) double beta decay, -) self refraction of neutrinos, -) cosmic neutrinos, -) antineutrino spectra from reactors, and -) some aspects of neutrino physics with radioactive ion beams. (A.C.)

  7. Atomic hydrogen determination in medium-pressure microwave discharge hydrogen plasmas via emission actinometry

    International Nuclear Information System (INIS)

    Geng Zicai; Xu Yong; Yang Xuefeng; Wang Weiguo; Zhu Aimin

    2005-01-01

    Atomic hydrogen plays an important role in the chemical vapour deposition of functional materials, plasma etching and new approaches to the chemical synthesis of hydrogen-containing compounds. This work reports experimental determinations of atomic hydrogen in microwave discharge hydrogen plasmas formed from the TM 01 microwave mode in an ASTeX-type reactor, via optical emission spectroscopy using Ar as an actinometer. The relative intensities of the H atom Balmer lines and Ar-750.4 nm emissions as functions of input power and gas pressure have been investigated. At an input microwave power density of 13.5 W cm -3 , the approximate hydrogen dissociation fractions calculated from electron-impact excitation and quenching cross sections in the literature, decreased from ∼0.08 to ∼0.03 as the gas pressure was increased from 5 to 25 Torr. The influences of the above cross sections, and the electron and gas temperatures of the plasmas on the determination of the hydrogen dissociation fraction data have been discussed

  8. Penning plasma based simultaneous light emission source of visible and VUV lights

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, G. L., E-mail: glvyas27@gmail.com [Manipal University Jaipur (India); Prakash, R.; Pal, U. N. [CSIR-Central Electronics and Engineering Research Institute, Microwave Tubes Division (India); Manchanda, R. [Institute for Plasma Research (India); Halder, N. [Manipal University Jaipur (India)

    2016-06-15

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  9. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    International Nuclear Information System (INIS)

    Janka, H.T.

    1996-01-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson's neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs

  10. Neutrinos from type-II supernovae and the neutrino-driven supernova mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    Supernova 1987A has confirmed fundamental aspects of our theoretical view of type-II supernovae: Type-II supernovae are a consequence of the collapse of the iron core of a massive evolved star and lead to the formation of a neutron star or black hole. This picture is most strongly supported by the detection of electron antineutrinos in the IMB and Kamiokande II experiments in connection with SN 1987A. However, the mechanism causing the supernova explosion is not yet satisfactorily understood. In this paper the properties of the neutrino emission from supernovae and protoneutron stars will be reviewed; analytical estimates will be derived and results of numerical simulations will be shown. It will be demonstrated that the spectral distributions of the emitted neutrinos show clear and systematic discrepancies compared with thermal (black body-type) emission. This must be taken into account when neutrino observations from supernovae are to be interpreted, or when implications of the neutrino emission on nucleosynthesis processes in mantle and envelope of the progenitor star are to be investigated. Furthermore, the influence of neutrinos on the supernova dynamics will be discussed, in particular their crucial role in causing the explosion by Wilson`s neutrino-driven delayed mechanism. Possible implications of convection inside the newly born neutron star and between surface and the supernova shock will be addressed and results of multi-dimensional simulations will be presented. (author) 7 figs., 1 tab., refs.

  11. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Project 8, Phase III Design: Placing an eV-Scale Limit on the Neutrino Mass using Cyclotron Radiation Emission Spectroscopy

    Science.gov (United States)

    Oblath, Noah; Project 8 Collaboration

    2016-09-01

    We report on the design concept for Phase III of the Project 8 experiment. In the third phase of Project 8 we aim to place a limit on the neutrino mass that is similar to the current limits set by tritium beta-decay experiments, mν radioastronomy will be employed to search for and track electron signals in the fiducial volume. This talk will present the quantitative design concept for the phased-array receiver, and illustrate how we are progressing towards the Phase IV experiment, which will have sensitivity to the neutrino mass scale allowed by the inverted mass hierarchy. This work is supported by the DOE Office of Science Early Career Research Program, and the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory.

  13. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  14. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  15. Detectability of thermal neutrinos from binary neutron-star mergers and implications for neutrino physics

    Science.gov (United States)

    Kyutoku, Koutarou; Kashiyama, Kazumi

    2018-05-01

    We propose a long-term strategy for detecting thermal neutrinos from the remnant of binary neutron-star mergers with a future M-ton water-Cherenkov detector such as Hyper-Kamiokande. Monitoring ≳2500 mergers within ≲200 Mpc , we may be able to detect a single neutrino with a human time-scale operation of ≈80 Mtyears for the merger rate of 1 Mpc-3 Myr-1 , which is slightly lower than the median value derived by the LIGO-Virgo Collaboration with GW170817. Although the number of neutrino events is minimal, contamination from other sources of neutrinos can be reduced efficiently to ≈0.03 by analyzing only ≈1 s after each merger identified with gravitational-wave detectors if gadolinium is dissolved in the water. The contamination may be reduced further to ≈0.01 if we allow the increase of waiting time by a factor of ≈1.7 . The detection of even a single neutrino can pin down the energy scale of thermal neutrino emission from binary neutron-star mergers and could strongly support or disfavor formation of remnant massive neutron stars. Because the dispersion relation of gravitational waves is now securely constrained to that of massless particles with a corresponding limit on the graviton mass of ≲10-22 eV /c2 by binary black-hole mergers, the time delay of a neutrino from gravitational waves can be used to put an upper limit of ≲O (10 ) meV /c2 on the absolute neutrino mass in the lightest eigenstate. Large neutrino detectors will enhance the detectability, and, in particular, 5 Mt Deep-TITAND and 10 Mt MICA planned in the future will allow us to detect thermal neutrinos every ≈16 and 8 years, respectively, increasing the significance.

  16. Neutrino book

    International Nuclear Information System (INIS)

    Spiro, Michel

    1995-01-01

    André Rousset's book (in French - Gargamelle et les Courants Neutres - Ecole des Mines de Paris) tells the story of Gargamelle and the discovery at CERN in 1973 of neutral currents, the cornerstone of the electroweak theory. This vital discovery helped to give credence to the Standard Model of particle physics. Rousset is both an observer and one of the key figures in the story. His book is lively and well documented; in it he uses archive material to ensure the accuracy of his information on dates, choices and decisions. After an introduction to particle physics which puts into perspective the electroweak theory unifying weak and electromagnetic interactions, Rousset comes straight to the point. From the late 1950s onwards he was involved in the construction of the first heavy liquid bubble chambers by the BP1, BP2 and BP3 teams at the Ecole Polytechnique in Paris. For Gargamelle a bigger laboratory was needed, and it was at the CEA (French Atomic Energy Commission) in Saclay that the chamber was designed by teams from the Saturne accelerator and the Ecole Polytechnique. However, the decision to build Gargamelle was taken in 1965 through the impetus of André Lagarrigue, in defiance of the normal CERN procedures. Gargamelle was then in competition with the other big bubble chamber project, BEBC; was it really necessary to build two big chambers? The decision by Francis Perrin and the CEA to contribute ''generously'' to the project was probably what swung the decision. Construction took five years, during which many problems were encountered, right up to the fault in the main part of the chamber which caused delays and, a few years later, was to prove fatal to the detector. As Rousset correctly states, Gargamelle was probably the first big detector designed to be built on industrial lines, in direct cooperation with industry. The reward: the first neutrino interaction was photographed on 28 January 1971

  17. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    Science.gov (United States)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  18. Experimental study on the optimization for neutron emission in a small fast plasma focus operated at tens of Joules

    International Nuclear Information System (INIS)

    Tarifeno-Saldivia, A; Soto, L

    2014-01-01

    This work reports results of a systematic experimental study dealing with the optimization for neutron emission of the PF-50J plasma focus. The device was operated in a repetitive mode at repetition rates of 0.1-0.5 Hz. Optimal configurations, neutron emission rates, observed anisotropy, analysis and contrast of 'good' and 'bad' shots are currently presented. Additionally, engineering aspects on the neutron emission were also studied, such as contaminants removal circuit and chamber design.

  19. Temporal feature of X-ray laser plasma observed from 3ω0/2, 2ω0 harmonic emission

    International Nuclear Information System (INIS)

    Li Wenhong; Mei Qiyong; Zhao Xuewei; Chen Yuting; Chunyu Shutai

    1995-01-01

    Temporal feature of X-ray laser plasma density was observed from 3ω 0 /2, 2ω 0 harmonic emission in the experiments. The temporal feature of 3ω 0 /2 harmonic emission of the germanium film is much different from that of the slab germanium target. The production of x-ray laser is closely related to 3ω 0 /2 harmonic emission in the slab germanium targets

  20. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  1. Sudbury neutrino observatory proposal

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1987-10-01

    This report is a proposal by the Sudbury Neutrino Observatory (SNO) collaboration to develop a world class laboratory for neutrino astrophysics. This observatory would contain a large volume heavy water detector which would have the potential to measure both the electron-neutrino flux from the sun and the total solar neutrino flux independent of neutrino type. It will therefore be possible to test models of solar energy generation and, independently, to search for neutrino oscillations with a sensitivity many orders of magnitude greater than that of terrestrial experiments. It will also be possible to search for spectral distortion produced by neutrino oscillations in the dense matter of the sun. Finally the proposed detector would be sensitive to neutrinos from a stellar collapse and would detect neutrinos of all types thus providing detailed information on the masses of muon- and tau-neutrinos. The neutrino detector would contain 1000 tons of D20 and would be located more than 2000 m below ground in the Creighton mine near Sudbury. The operation and performance of the proposed detector are described and the laboratory design is presented. Construction schedules and responsibilities and the planned program of technical studies by the SNO collaboration are outlined. Finally, the total capital cost is estimated to be $35M Canadian and the annual operating cost, after construction, would be $1.8 M Canadian, including the insurance costs of the heavy water

  2. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  3. Neutrinos (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The neutrino, the lightest and most weakly interacting particle of the Standard Model has revealed itself as the messenger of very exciting news in particle physics: there is Physics Beyond the Standard Model. All this thanks to the quantum-mechanical phenomenon of flavour oscillations which is intrinsically connected to the question of neutrino mass and which has been observed in neutrinos produced in natural sources, like the Sun and the Earth's atmosphere, as well as with human made neutrino beams at accelerator and reactors. The purpose of these lectures is to overview some aspects of the phenomenology of massive neutrinos. I will present the simplest extensions for adding neutrino masses to the SM, and then I will describe the phenomenology associated with neutrino oscillations in vacuum and in matter and its present signatures.

  4. Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, F.; Tavassoli, S. H. [Laser and Plasma Research Institute, ShahidBeheshti University, 19396 4716, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2013-01-15

    In the present study, the ablation behavior of aluminum target and its plasma radiation in noble ambient gases by a laser pulse with wavelength of 266 nm and pulse duration of 10 ns are numerically studied. A thermal model of laser ablation considering heat conduction, Euler equations, Saha-Eggert equations, Knudsen layer, mass and energy balance relations and optical shielding effects are used for calculation of plasma parameters. Effects of excitation energy on plasma expansion and its emissivity are investigated. Time and spatial-resolved plasma emission including bremsstrahlung, recombination and spectral emission at early delay times after laser irradiation is obtained. Effects of two ambient gases (He and Ar) as well as different gas pressures of 100, 300, 500, and 760 Torr on plasma expansion and its spectrum are studied. Results illustrate that at initial delay times, especially at high noble gas pressures, ionic lines have the maximum intensities, while at later times neutral lines dominate. When the pressure of ambient gas increases, a confinement of the plasma plume is predicted and the intensity of neutral lines decreases. Continuous emission increases with wavelength in both ambient gases. Spatially resolved analysis shows that an intense continuous emission is predicted next to the sample surface decreasing with distance from the latter.

  5. Resonant spin-flavour precession of neutrinos and pulsar velocities

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Lanza, A.; Sciama, D.W.

    1997-02-01

    Young pulsars are known to exhibit large space velocities, up to 10 3 km/s. We propose a new mechanism for the generation of these large velocities based on an asymmetric emission of neutrinos during the supernova explosion. The mechanism involves the resonant spin-flavour precession of neutrinos with a transition magnetic moment in the magnetic field of the supernova. The asymmetric emission of neutrinos is due the distortion of the resonance surface by matter polarization effects in the supernova magnetic field. The requisite values of the field strengths and neutrino parameters are estimated for various neutrino conversions caused by their Dirac or Majorana-type transition magnetic moments. (author). 30 refs, 1 tab

  6. Pulsar kicks from a dark-matter sterile neutrino

    International Nuclear Information System (INIS)

    Fuller, George M.; Kusenko, Alexander; Mocioiu, Irina; Pascoli, Silvia

    2003-01-01

    We show that a sterile neutrino with a mass in the 1-20 keV range and a small mixing with the electron neutrino can simultaneously explain the origin of the pulsar motions and the dark matter in the Universe. An asymmetric neutrino emission from a hot nascent neutron star can be the explanation of the observed pulsar velocities. In addition to the pulsar kick mechanism based on resonant neutrino transitions, we point out a new possibility: an asymmetric off-resonant emission of sterile neutrinos. The two cases correspond to different values of the masses and mixing angles. In both cases we identify the ranges of parameters consistent with the pulsar kick, as well as cosmological constraints

  7. [Measurement of plasma parameters in cluster hexagon pattern discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Shen, Zhong-Kai; Li, Xin-Chun; Liu, Liang; Lu, Ning; Shang, Jie

    2012-09-01

    The cluster hexagon pattern was obtained in a dielectric barrier discharge in air/argon for the first time. Three plasma parameters, i. e. the molecular vibrational temperature, the molecular rotational temperature and the average electron energy of individual cluster in cluster hexagon pattern discharge, were studied by changing the air content. The molecular vibrational temperature and the molecular rotational temperature were calculated using the second positive band system of nitrogen molecules (C 3IIu --> B 3IIg) and the first negative band system of nitrogen molecular ions (B 2Sigma(u)+ --> Chi2 Sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391. 4 nm) and nitrogen molecules emission spectrum line (337.1 nm) were analyzed for studying the variations of the electron energy. It was found that the three plasma parameters of individual cluster in cluster hexagon pattern increase with air content increasing from 16% to 24%.

  8. The Spectral Emission Characteristics of Laser Induced Plasma on Tea Samples

    International Nuclear Information System (INIS)

    Zheng Peichao; Shi Minjie; Wang Jinmei; Liu Hongdi

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) provides a useful technique for food security as well as determining nutrition contents. In this paper, optical emission studies of laser induced plasma on commercial tea samples were carried out. The spectral intensities of Mg, Mn, Ca, Al, C and CN vibration bands varying with laser energy and the detection delay time of an intensified charge coupled device were studied. In addition, the relative concentrations of six microelements, i.e., Mg, Mn, Ca, Al, Na and K, were analyzed semi-quantitatively as well as H, for four kinds of tea samples. Moreover, the plasma parameters were explored, including electron temperature and electron number density. The electron temperature and electron number density were around 11000 K and 10 17 cm −3 , respectively. The results show that it is reasonable to consider the LIBS technique as a new method for analyzing the compositions of tea leaf samples. (paper)

  9. High field terahertz emission from relativistic laser-driven plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zi-Yu, E-mail: Ziyu.Chen@uni-duesseldorf.de [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany); LSD, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany)

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  10. Atomic Emission Spectra Diagnosis and Electron Density Measurement of Semiconductor Bridge (SCB) Plasma

    International Nuclear Information System (INIS)

    Feng Hongyan; Zhu Shunguan; Zhang Lin; Wan Xiaoxia; Li Yan; Shen Ruiqi

    2010-01-01

    Emission spectra of a semiconductor bridge (SCB) plasma in a visible range was studied in air. The electron density was measured in a conventional way from the broadening of the A1 I 394.4 nm Stark width. Based on the Saha equation, a system for recording the intensity of Si I 390.5 nm and Si II 413.1 nm was designed. With this technique, the SCB plasma electron density was measured well and accurately. Moreover, the electron density distribution Vs time was acquired from one SCB discharge. The individual result from the broadening of the Al I 394.4 nm Stark width and Saha equation was all in the range of 10 15 cm -3 to 10 16 cm -3 . Finally the presumption of the local thermodynamic equilibrium (LTE) condition was validated.

  11. A fast spatial scanning combination emissive and mach probe for edge plasma diagnosis

    International Nuclear Information System (INIS)

    Lehmer, R.D.; LaBombard, B.; Conn, R.W.

    1989-04-01

    A fast spatially scanning emissive and mach probe has been developed for the measurement of plasma profiles in the PISCES facility at UCLA. A pneumatic cylinder is used to drive a multiple tip probe along a 15cm stroke in less than 400msec, giving single shot profiles while limiting power deposition to the probe. A differentially pumped sliding O-ring seal allows the probe to be moved between shots to infer two and three dimensional profiles. The probe system has been used to investigate the plasma potential, density, and parallel mach number profiles of the presheath induced by a wall surface and scrape-off-layer profile modifications in biased limiter simulation experiments. Details of the hardware, data acquisition electronics, and tests of probe reliability are discussed. 30 refs., 24 figs

  12. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    International Nuclear Information System (INIS)

    Tritz, Kevin; Finkenthal, Michael; Stutman, Dan; Bell, Ronald E; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Beiersdorfer, Peter; Clementson, Joel; Kubota, Shigeyuki

    2014-01-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. (paper)

  13. Inductively coupled plasma emission spectroscopy. Part II: applications and fundamentals. Volume 2

    International Nuclear Information System (INIS)

    Boumans, P.W.J.M.

    1987-01-01

    This is the second part of the two-volume treatise by this well-known and respected author. This volume reviews applications of inductively coupled plasma atomic emission spectroscopy (ICP-AES), summarizes fundamental studies, and compares ICP-AES methods with other methods of analysis. The first six chapters are devoted to specific fields of application, including the following: metals and other industrial materials, geology, the environment, agriculture and food, biology and clinical analysis, and organic materials. The chapter on the analysis of organic materials also covers the special instrumental considerations required when organic solvents are introduced into an inductively coupled plasma. A chapter on the direct analysis of solids completes the first part of this volume. Each of the applications chapters begins with a summary of the types of samples that are encountered in that field, and the kinds of problems that an elemental analysis can help to solve. This is followed by a tutorial approach covering applicability, advantages, and limitations of the methods. The coverage is thorough, including sample handling, storage, and preparation, acid, and fusion dissolution, avoiding contamination, methods of preconcentration, the types of interferences that can be expected and ways to reduce them, and the types of ICP plasmas that are used. The second half of the volume covers fundamental studies of ICP-AES: basic processes of aerosol generation, plasma modeling and computer simulation, spectroscopic diagnostics, excitation mechanisms, and discharge characteristics. This section introduces the experimental and modeling methods that have been used to obtain fundamental information about ICPs

  14. Displacement of emission lines from the ArII ion in a dense plasma

    International Nuclear Information System (INIS)

    Simard, P.A.

    1982-01-01

    A spectroscopic study of the emission from an argon plasma produced by a small theta-pinch is described. The electron density in the plasma is very high and the temperature relatively cool. Values obtained for these quantities are Nsub(e) approxiiately equal to 6 x 10 19 cm 3 and Tsub(e) approximately equal to 3.6 eV. Wavelengths of many ArII lines have been measured between 2700 and 5000 A. Many of these lines exhibit small shifts to the blue or to the red but others show large red shifts. Particularly significant are the multiplets 4p 4 P-4d 4 P, 4p 4 P-5s 4 P and 4p 4 S-4d 4 P where the measured shifts are about 6.0 +-0.8 cm -1 . These shifts have been interpreted as plasma polarization shifts. A plasma effect on the spin-orbit coupling in ArII has also been observed for the first time. A qqalitative analysis of these phenomena is given [fr

  15. Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.

  16. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    International Nuclear Information System (INIS)

    Yau, A.W.; Whalen, B.A.; Harris, F.R.; Gattinger, R.L.; Pongratz, M.B.; Bernhardt, P.A.

    1985-01-01

    In an ionospheric depletion experiment where chemically reactive vapors such as H 2 O and CO 2 are injected into the O + dominant F region to accelerate the plasma recombination rate and to reduce the plasma density, the ion composition in the depleted region is modified, and photometric emissions are produced. We compare in situ ion composition, density, and photometric measurements from two ionospheric depletion experiments with predictions from chemical modeling. The two injections, Waterhole I and III, were part of an auroral perturbation experiment and occurred in different ambient conditions. In both injections a core region of greater than fivefold plasma depletion was observed over roughly-equal5-km diameter within seconds of the injection, surrounded by an outer region of less drastic and slower depletion. In Waterhole I the plasma density was depleted tenfold over a 30-km diamter region after 2 min. The ambient O + density was drastically reduced, and the molecular O + 2 abundance was enhanced fivehold in the depletion region. OH airglow emission associated with the depletion was observed with a peak emission intensity of roughly-equal1 kR. In Waterhole III the ambient density was a decade lower, and the plasma depletion was less drastic, being twofold over 30 km after 2 min. The airglow emissions were also much less intense and below measurement sensitivity (30 R for the OH 306.4-nm emission; 50 R for the 630.0-nm emission)

  17. Calculation of the net emission coefficient of an air thermal plasma at very high pressure

    International Nuclear Information System (INIS)

    Billoux, T; Cressault, Y; Teulet, Ph; Gleizes, A

    2012-01-01

    The aim of this paper is to present an accurate evaluation of the phenomena appearing for high pressure air plasmas supposed to be in local thermodynamic equilibrium (LTE). In the past, we already calculated the net emission coefficient for air mixtures at atmospheric pressure and for temperatures up to 30kK (molecular contribution being restricted to 10kK). Unfortunately, the existence of high pressures does not allow us to use this database due to the non-ideality of the plasma (Viriel and Debye corrections, energy cut-off ...), and due to the significant shifts of molecular reactions towards upper temperatures. Consequently, this paper proposes an improvement of our previous works with a consideration of high pressure corrections in the composition algorithm in order to take into account the pressure effects, and with a new calculation of all the contributions of the plasma radiation (atomic lines and continuum, molecular continuum, and molecular bands) using an updated database. A particular attention is paid to calculate the contribution of all the major molecular band systems to the radiation: O 2 (Schumann–Runge), N 2 (VUV, 1st and 2nd positive), NO (IR, β, γ, δ, element of ) and N 2 + (1st negative and Meinel). The discrete atomic lines and molecular bands radiation including the overlapping are calculated by a line-by-line method up to 30kK and 100 bar. This updated database is validated in the case of optically thin plasmas and pressure of 1bar by the comparison of our integrated emission strength with the published results. Finally, this work shows the necessity to extend the molecular radiation database up to 15kK at high pressure (bands and continuum) since their corresponding contributions could not be neglected at high temperature.

  18. Formation of vascular S-nitrosothiols and plasma nitrates/nitrites following inhalation of diesel emissions.

    Science.gov (United States)

    Knuckles, Travis L; Buntz, Jennifer G; Paffett, Michael; Channell, Meghan; Harmon, Molly; Cherng, Tom; Lucas, Selita N; McDonald, Jacob D; Kanagy, Nancy L; Campen, Matthew J

    2011-01-01

    Epidemiological studies have associated traffic-related airborne pollution with adverse cardiovascular outcomes. Nitric oxide (NO) is a common component of fresh diesel and gasoline engine emissions that rapidly transforms both in the atmosphere and once inhaled. Because of this rapid transformation, limited information is available in terms of potential human exposures and adverse health effects. Young rats were exposed to whole diesel emissions (DE) adjusted to 300 μg/m(3) of particulate matter (containing 3.5 ppm NO) or 0, 3, or 10 ppm NO as a positive control. Animals were also pre-injected (ip) with either saline or N-acetylcysteine (NAC), a precursor of glutathione. Predictably, pure NO exposures led to a concentration-dependent increase in plasma nitrates compared to controls, which lasted for roughly 4 h postexposure. Whole DE exposure for 1 h also led to a doubling of plasma NOx. NAC injection increased the levels of plasma nitrates and nitrites (NOx) in the DE exposure group. Inhibition of nitric oxide symthase (NOS) by N(G)-nitro-L-arginine (L-NNA) did not block the rise in plasma NOx, demonstrating that the increase was entirely due to exogenous sources. Both DE and pure NO exposures paradoxically led to elevated eNOS expression in aortic tissue. Furthermore, coronary arterioles from NO-exposed animals exhibited greater constriction to endothelin-1 compared to controls, consistent with a derangement of the NOS system. Thus, NO may be an important contributor to traffic-related cardiovascular morbidity, although further research is necessary for proper hazard identification.

  19. Experimental evidence of state-selective charge transfer in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2004-01-01

    State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered

  20. Determination of trace amounts of cerium in paint by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Wong, K.L.

    1981-01-01

    The determination of Ce in paint by inductively coupled plasma atomic emission spectrometry (ICP-OES) is described, and the detection limit of ICP-OES of 0.0004 ppM is compared with that of other methods. The effects of the major elemental components of paint, Si, Pb, Cr, and Na on the ICP-OES determination of Ce were studied. The interference of 400 ppM of the other ions on the determination of 10 ppM Ce was small (0 to 3% error). The method is applicable to the range of 0.2 to 700 ppM Ce

  1. Investigation on the spatial evolution of the emission spectra in laser-induced Ni plasmas

    International Nuclear Information System (INIS)

    Du Chuanmei; Xu Ying; Zhang Mingxu

    2012-01-01

    In this paper, the spatial resolved emission spectrum of Ni atom in laser induced Ni plasma is measured in the wavelength region from 350 nm to 600 nm. The spatial evolution of the relative intensities and the Stark broadening of the 385.83 nm emission spectrum lines are also obtained. It is shown that Stark broadening and intensity of the spectrum lines increases firstly to its maximum and then de- creases along the direction of laser beam when the distance from the target surface is in the range from 0 to 2.5 mm. The maximum value of Stark broadening and relative intensity of the spectrum lines appear at 1.5 mm from the target surface. (authors)

  2. [Measurement of plasma parameters in slot microplasma by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Lü, Ying-Hui; Liu, Wei-Yuan; Yue, Han; Lu, Ning; Li, Xin-Chun

    2010-12-01

    Slot microplasma was generated in argon and air mixture by using dielectric barrier discharge device with two parallel water electrodes. The molecular vibrational temperature, molecular rotational temperature and average electron energy of the slot plasma were studied by optical emission spectrum. The molecular vibrational temperature was calculated using the second positive system of nitrogen molecules ( C3 pi(u) --> B3 pi(g)). The molecular rotational temperature was calculated using the first negative system of nitrogen molecular ions ( B 2sigma(u)+ --> X sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391.4 nm) and nitrogen molecules in the excitation level (337.1 nm) emission spectrum line were measured for studying the variations of electron energy. It was found that the molecular vibrational temperature, molecular rotational temperature and average electron energy decrease with gas pressure increasing.

  3. Influences on the Emissions of Bacterial Plasmas Generated through Nanosecond Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Malenfant, Dylan J.

    In the past decade, laser-induced breakdown spectroscopy has been shown to provide compositional data that can be used for discrimination between bacterial specimens at the strain level. This work demonstrates the viability of this technique in a clinical setting. Studies were conducted to investigate the impact of emissions generated by a nitrocellulose filter paper background on the classification of four species: E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa. Limits of detection were determined as 48+/-12 kCFU per ablation event for new mounting procedures using standard diagnostic laboratory techniques, and a device for centrifuge filtration was designed for sampling from low-titer bacterial suspensions. Plasma emissions from samples grown at biological levels of magnesium, zinc, and glucose were shown not to deviate from controls. A limit of detection for environmental zinc was found to be 11 ppm. Discrimination with heat-killed samples was demonstrated, providing a sterile diagnostic environment.

  4. Laser induced aluminiun plasma analysis by optical emission spectroscopy in a nitrogen background gas

    International Nuclear Information System (INIS)

    Chamorro, J C; Uzuriaga, J; Riascos, H

    2012-01-01

    We studied an Al plasma generated by a Nd:YAG laser with a laser fluence of 4 J/cm 2 , a wavelength of 1064 nm, energy pulse of 500 mJ and 10 Hz repetition rate. We studied their spectral characteristics at various ambient nitrogen pressures by optical emission spectroscopy (OES). The N 2 gas pressure was varied from 20 mTorr to 150 mTorr. In Al plume, both atomic and ionic spectra were observed. The electron temperature and electron number density of the plume as of the function ambient gas pressure were determined. The electron temperature was calculated by using the Boltzmann-plot method and the number density was calculated considering the stark effect as dominating on the emission lines.

  5. Recombination dominated hydrogenic emission from the detached plasmas in W7-AS

    International Nuclear Information System (INIS)

    Ramasubramanian, N.; Koenig, R.; Wenzel, U.; Thomsen, H.; McCormick, K.; Grigull, P.; Feng, Y.; Klinger, T.; John, A.

    2003-01-01

    Beyond a certain threshold average density in the High-Density H-Mode the island divertor plasma in the stellarator W7-AS undergoes partial detachment. The tomographic reconstruction of the radiated power density from the detached pulses show that the radiation profile in the triangular plane is also asymmetric. In the detached phase, the spectrometer viewing tangentially to the target tiles in the top divertor region manifests that the impurity radiation layer is close to the X-points. The spectral analysis also demonstrates the presence of a hydrogen radiation zone dominated by recombination emission close to the target tiles. This papers presents the emission from the deeply detached locations including the volume recombination in a stable discharge. (orig.)

  6. The effect of charge exchange with neutral deuterium on carbon emission in JET divertor plasmas

    International Nuclear Information System (INIS)

    Maggi, C.; Horton, L.; Summers, H.

    1999-11-01

    High density, low temperature divertor plasma operation in tokamaks results in large neutral deuterium concentrations in the divertor volume. In these conditions, low energy charge transfer reactions between neutral deuterium and the impurity ions can in principle enhance the impurity radiative losses and thus help to reduce the maximum heat load to the divertor target. A quantitative study of the effect of charge exchange on carbon emission is presented, applied to the JET divertor. Total and state selective effective charge exchange recombination rate coefficients were calculated in the collisional radiative picture. These coefficients were coupled to divertor and impurity transport models to study the effect of charge exchange on the measured carbon spectral emission in JET divertor discharges. The sensitivity of the effect of charge exchange to the assumptions in the impurity transport model was also investigated. A reassessment was made of fundamental charge exchange cross section data in support of this study. (author)

  7. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Science.gov (United States)

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  8. Working gas effects on the X-ray emission of a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Cengher, M; Presura, R; Zoita, V [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Experiments on the plasma focus device IPF-2/20 operating with argon, neon and mixtures of argon with deuterium were performed and some X-ray emission parameters measured. The time evolution of the X-ray emission and dependence of the X-ray yield on the working gas composition was analyzed. The softer X radiation was measured with time resolution in the energy bands from 4 to 40 keV, and the hard X-rays for energies above 200 keV. In deuterium-argon mixtures the soft X-ray yield increases both with pressure (for the same ratio of argon) and with the quantity of argon added to deuterium at the same total pressure. For argon or neon the hard X-ray yield is lower than for deuterium-heavy gas mixtures. The softer X-ray yield decreases with pressure both for neon and for argon. (author). 4 figs., 5 refs.

  9. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  10. Impact of Neutrino Flavor Oscillations on the Neutrino-driven Wind Nucleosynthesis of an Electron-capture Supernova

    Science.gov (United States)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  11. Pathlength distributions of atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    1999-01-01

    We discuss the distribution of the production heights of atmospheric neutrinos as a function of zenith angle and neutrino energy. The distributions can be used as the input for evaluation of neutrino propagation under various hypotheses for neutrino flavor oscillations. Their use may alter substantially the estimates of the oscillation parameters for almost horizontal atmospheric neutrinos.

  12. Properties of neutrinos: Recent results

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1987-01-01

    Recent progress in experimental determinations of the properties of neutrinos is summarized. In particular, the extensive work on direct kinematic measurements of neutrino mass, on neutrino counting and on neutrino oscillations is highlighted. It is concluded that there may already be sufficient information to fix the masses of the neutrinos, but the evidence is still far from convincing. 63 refs., 13 figs

  13. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators

    International Nuclear Information System (INIS)

    Kriegseis, J.; Grundmann, S.; Tropea, C.

    2011-01-01

    A new procedure of determining the time resolved capacitance of a plasma actuator during operation is introduced, representing a simple diagnostic tool that provides insight into the phenomenological behavior of plasma actuators. The procedure is demonstrated by presenting example correlations between consumed electrical energy, size of the plasma region, and the operating voltage. It is shown that the capacitance of a plasma actuator is considerably increased by the presence of the plasma; hence a system that has previously been impedance matched can be considerably de-tuned when varying the operating voltage of the actuator. Such information is fundamental for any attempts to increase the energy efficiency of plasma-actuator systems. A combined analysis of the capacitance, light emission, size of the plasma region, force production, and power consumption is presented.

  14. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C.; Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E.; Bruijn, R.; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Caramete, L.; Pavalas, G.E.; Popa, V.; Chiarusi, T.; Circella, M.; Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V.; Dekeyser, I.; Lefevre, D.; Tamburini, C.; Deschamps, A.; Hello, Y.; Donzaud, C.; Dumas, A.; Gay, P.; Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Giordano, V.; Haren, H. van; Hugon, C.; Taiuti, M.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Loucatos, S.; Marinelli, A.; Migliozzi, P.; Moussa, A.; Pradier, T.; Sanguineti, M.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vivolo, D.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  15. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE-Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM-Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Chiarusi, T. [INFN-Sezione di Bologna, Bologna (Italy); Circella, M. [INFN-Sezione di Bari, Bari (Italy); Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Dekeyser, I.; Lefevre, D.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dumas, A.; Gay, P. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M. [INFN-Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Giordano, V. [INFN-Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje, Texel (Netherlands); Hugon, C.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kouchner, A. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E. [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (France); Marinelli, A. [INFN-Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Migliozzi, P. [INFN-Sezione di Napoli, Naples (IT); Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, Oujda (MA); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Sanguineti, M. [Dipartimento di Fisica dell' Universita, Genoa (IT); Schuessler, F.; Stolarczyk, T.; Vallage, B. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Vivolo, D. [INFN-Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT)

    2017-01-15

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  16. Type II supernovae modelisation: neutrinos transport simulation

    International Nuclear Information System (INIS)

    Mellor, P.

    1988-10-01

    A modelisation of neutrino transport in type II supernovae is presented. The first part is a description of hydrodynamics and radiative processes responsible of supernovae explosions. Macroscopic aspects of these are displayed in part two. Neutrino transport theory and usual numerical methods are also developed. A new technic of coherent scattering of neutrinos on nuclei or free nucleons is proposed in the frame work of the Lorentz bifluid approximation. This method deals with all numerical artifices (flux limiting schemes, closure relationship of Eddington moments) and allows a complete and consistent determination of the time-dependent neutrino distribution function for any value of the opacity, gradient of opacity and for all (relativistic) velocity fields of the diffusive medium. Part three is dedicated to microscopic phenomena (electronic capture, chimical composition, etc) which rule neutrinos emission-absorption mechanisms. The numerical treatments of those are presented, and some applications are useful for their parametrization. Finally, an extension of the method to inelastic scattering on light particules (electrons) is described in view to study neutrinos thermalization mechanism [fr

  17. In-situ determination of cross-over point for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2008-01-01

    A novel method is described for overcoming plasma-related matrix effects in inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is based on measurement of the vertically resolved atomic emission of analyte within the plasma and therefore requires the addition of no reagents to the sample solution or to the plasma. Plasma-related matrix effects enhance analyte emission intensity low in the plasma but depress the same emission signal at higher positions. Such bipolar behavior is true for all emission lines and matrices that induce plasma-related interferences. The transition where the enhancement is balanced by the depression (the so-called cross-over point) results in a spatial region with no apparent matrix effects. Although it would be desirable always to perform determinations at this cross-over point, its location varies between analytes and from matrix to matrix, so it would have to be found separately for every analyte and for every sample. Here, a novel approach is developed for the in-situ determination of the location of this cross-over point. It was found that the location of the cross-over point is practically invariant for a particular analyte emission line when the concentration of the matrix was varied. As a result, it is possible to determine in-situ the location of the cross-over point for all analyte emission lines in a sample by means of a simple one-step sample dilution. When the original sample is diluted by a factor of 2 and the diluted sample is analyzed again, the extent of the matrix effect is identical (zero) between the original sample and the diluted sample at one and only one location - the cross-over point. This novel method was verified with several single-element matrices (0.05 M Na, Ca, Ba and La) and some mixed-element matrices (mixtures of Na-Ca, Ca-Ba, and a plant-sample digest). The inaccuracy in emission intensity due to the matrix effect could be as large as - 30% for conventional measurements in the

  18. Plasma heating in solar flares and their soft and hard X-ray emissions

    International Nuclear Information System (INIS)

    Falewicz, R.

    2014-01-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is

  19. Plasma Heating in Solar Flares and their Soft and Hard X-Ray Emissions

    Science.gov (United States)

    Falewicz, R.

    2014-07-01

    In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker-Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities' fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5-4 Å GOES range and total fluxes in the 6-12 keV, 12-25 keV, 20-25 keV, and 50-100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is

  20. Hiding an elephant: heavy sterile neutrino with large mixing angle does not contradict cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bezrukov, F. [The University of Manchester, School of Physics and Astronomy, Oxford Road, Manchester M13 9PL (United Kingdom); Chudaykin, A.; Gorbunov, D., E-mail: Fedor.Bezrukov@manchester.ac.uk, E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2017-06-01

    We study a model of a keV-scale sterile neutrino with a relatively large mixing with the Standard Model sector. Usual considerations predict active generation of such particles in the early Universe, which leads to constraints from the total Dark Matter density and absence of X-ray signal from sterile neutrino decay. These bounds together may deem any attempt of creation of the keV scale sterile neutrino in the laboratory unfeasible. We argue that for models with a hidden sector coupled to the sterile neutrino these bounds can be evaded, opening new perspectives for the direct studies at neutrino experiments such as Troitsk ν-mass and KATRIN. We estimate the generation of sterile neutrinos in scenarios with the hidden sector dynamics keeping the sterile neutrinos either massless or superheavy in the early Universe. In both cases the generation by oscillations from active neutrinos in plasma is suppressed.