WorldWideScience

Sample records for plasma melting treatment

  1. Study on plasma melting treatment of crucibles, ceramic filter elements, asbestos, and fly ash

    International Nuclear Information System (INIS)

    Hoshi, Akiko; Nakasio, Nobuyuki; Nakajima, Mikio

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) decided to adopt an advanced volume reduction program for low-level radioactive wastes. In this program, inorganic wastes are converted to stable glassy products suitable for disposal by a plasma melting system in the Waste Volume Reduction Facilities (WVRF). High melting point wastes such as refractories are excluded from the plasma melting treatment in the WVRF, and wastes difficult to handle such as asbestos are also excluded. However, it is describable to apply the plasma melting treatment to these wastes for stabilization and volume reduction from the viewpoint of disposal. In this paper, plasma melting test of crucibles, ceramic filter elements, asbestos, and simulated fly ashes were carried out as a part of technical support for WVRF. The plasma melting treatment was applicable for crucibles and asbestos because homogeneous and glassy products were obtained by controlling of waste and loading condition. It was found that SiC in ceramic filter elements was volatile with a plasma torch with inert gas, and adding reducer was ineffective against stabilizing volatile metals such as Zn, Pb in a solidified product in the melting test of simulated fly ash. (author)

  2. Plasma arc melting treatment of low level radioactive waste with centrifugal hearth

    International Nuclear Information System (INIS)

    Tsuji, Yukito

    1997-01-01

    Plasma Arc Melting technology may possible be able to treat various kinds of waste streams through volume reduction and stabilization into a disposal waste form. The ability of other melting technologies to convert inorganic material in a single step, however, varies according to the characteristics of the materials. Plasma technology also can treat organic waste by selecting the oxidation atmosphere. The Japan Atomic Power Company (JAPC) has decided to construct a low level radioactive waste treatment facility using the Plasma Arc Centrifugal Treatment (PACT) process with an 8 ft rotating hearth and 1.2 MW transferred torch developed by Retech (Ukiah, CA. USA) in the Tsuruga power station. In Japan, the plasma technology has been developed for incineration ash treatment, but the JAPC plant will be the first treatment system using plasma technology for solid waste with various characteristics and shapes. (author)

  3. Study of Raw Materials Treatment by Melting and Gasification Process in Plasma Arc Reactor

    Directory of Open Access Journals (Sweden)

    Peter KURILLA

    2010-12-01

    Full Text Available The world consumption of metals and energy has increased in last few decades and it is still increasing. Total volume production results to higher waste production. Raw material basis of majority metals and fossil fuels for energy production is more complex and current waste treatment has long term tendency. Spent power cells of different types have been unneeded and usually they are classified as dangerous waste. This important issue is the main topic of the thesis, in which author describes pyrometallurgical method for storage batteries – power cells and catalysts treatment. During the process there were tested a trial of spent NiMH, Li – ion power cells and spent copper catalysts with metal content treatment by melting and gasification process in plasma arc reactor. The synthetic gas produced from gasification process has been treated by cogenerations micro turbines units for energy recovery. The metal and slag from treatment process are produced into two separately phases and they were analyzing continually.

  4. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  5. Behavior of nuclides at plasma melting of TRU wastes

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Adachi, Kazuo

    2001-01-01

    Arc plasma heating technique can easily be formed at super high temperature, and can carry out stable heating without any effect of physical and chemical properties of the wastes. By focussing to these characteristics, this technique was experimentally investigated on behavior of TRU nuclides when applying TRU wastes forming from reprocessing process of used fuels to melting treatment by using a mimic non-radioactive nuclide. At first, according to mechanism determining the behavior of TRU nuclides, an element (mimic nuclide) to estimate the behavior was selected. And then, to zircaloy with high melting point or steel can simulated to metal and noncombustible wastes and fly ash, the mimic nuclide was added, prior to melting by using the arc plasma heating technique. As a result, on a case of either melting sample, it was elucidated that the nuclides hardly moved into their dusts. Then, the technique seems to be applicable for melting treatment of the TRU wastes. (G.K.)

  6. Development of plasma melting technology for treatment of low level radioactive waste. Pt. 9. Treatment method for combustible wastes

    International Nuclear Information System (INIS)

    Yasui, Shinji; Adachi, Kazuo; Amakawa, Masashi

    1996-01-01

    This paper describes the incineration method for the miscellaneous solid waste containing the low level radioactive combustibles (wood, PE, PVC) in a plasma furnace. The maximum weights of the respective combustibles to be fed into the plasma furnace and the incineration conditions for continuous feeding of the respective combustibles were examined experimentally. As a result, a experimental equation which expresses the maximum weights of the respective combustibles to be fed in reference to the residence time in the plasma furnace was obtained by using apparent reaction rate constants. Furthermore, a calculation method for the feeding intervals in reference to the weights of the combustibles fed each time was obtained for the continuous feeding in the plasma furnace, and the method was found to be consistent with experimental results. (author)

  7. On melting criteria for complex plasma

    International Nuclear Information System (INIS)

    Klumov, Boris A

    2011-01-01

    The present paper considers melting criteria for a plasma crystal discovered in dust plasma in 1994. Separate discussions are devoted to three-dimensional (3D) and two-dimensional (2D) systems. In the 3D case, melting criteria are derived based on the properties of local order in a system of microparticles. The order parameters are constructed from the cumulative distributions of the microparticle probability distributions as functions of various rotational invariants. The melting criteria proposed are constructed using static information on microparticle positions: a few snapshots of the system that allow for the determination of particle coordinates are enough to determine the phase state of the system. It is shown that criteria obtained in this way describe well the melting and premelting of 3D complex plasmas. In 2D systems, a system of microparticles interacting via a screened Coulomb (i.e., Debye-Hueckel or Yukawa) potential is considered as an example, using molecular dynamics simulations. A number of new order parameters characterizing the melting of 2D complex plasmas are proposed. The order parameters and melting criteria proposed for 2D and 3D complex plasmas can be applied to other systems as well. (methodological notes)

  8. Influence of Low-Temperature Plasma Treatment on The Liquid Filtration Efficiency of Melt-Blown PP Nonwovens in The Conditions of Simulated Use of Respiratory Protective Equipment

    Directory of Open Access Journals (Sweden)

    Majchrzycka Katarzyna

    2017-06-01

    Full Text Available Filtering nonwovens produced with melt-blown technology are one of the most basic materials used in the construction of respiratory protective equipment (RPE against harmful aerosols, including bio- and nanoaerosols. The improvement of their filtering properties can be achieved by the development of quasi-permanent electric charge on the fibres. Usually corona discharge method is utilized for this purpose. In the presented study, it was assumed that the low-temperature plasma treatment could be applied as an alternative method for the manufacturing of conventional electret nonwovens for the RPE construction. Low temperature plasma treatment of polypropylene nonwovens was carried out with various process gases (argon, nitrogen, oxygen or air in a wide range of process parameters (gas flow velocity, time of treatment and power supplied to the reactor electrodes. After the modification, nonwovens were evaluated in terms of filtration efficiency of paraffin oil mist. The stability of the modification results was tested after 12 months of storage and after conditioning at elevated temperature and relative humidity conditions. Moreover, scanning electron microscopy and ATR-IR spectroscopy were used to assess changes in surface topography and chemical composition of the fibres. The modification of melt-blown nonwovens with nitrogen, oxygen and air plasma did not result in a satisfactory improvement of the filtration efficiency. In case of argon plasma treatment, up to 82% increase of filtration efficiency of paraffin oil mist was observed in relation to untreated samples. This effect was stable after 12 months of storage in normal conditions and after thermal conditioning in (70 ± 3°C for 24 h. The use of low-temperature plasma treatment was proven to be a promising improvement direction of filtering properties of nonwovens used for the protection of respiratory tract against harmful aerosols.

  9. A plasma melting of noncombustible waste for vitrification

    International Nuclear Information System (INIS)

    Moon, Young Pyo; Cho, Chun Hyung; Song, Myung Jae; Han, Sang Ok

    1997-01-01

    Multi-stage experiments have been under way to develop a new technology for radioactive waste treatment to reduce volume. Korea Electric Power Research Institute(KEPRI) has been seeking various technologies in order to reduce the radioactive volume significantly and to produce very stable waste forms. Plasma melting technology which offers greater control of temperature, faster time of reaction, better control of processing, lower capital costs, greater throughput, and more efficient use of energy has caught KEPRI's attention to the noncombustible radioactive waste. For the study of plasma melting for noncombustible wastes, KEPRI leased a lab scale multi-purpose plasma furnace together with accessory facilities and performed preliminary tests. The lab scale melting experiments were carried out by using the simulated noncombustible wastes based on the field survey data from nuclear power plants. KEPRI's current study is focused to find an optimum composition ratio of various noncombustible wastes for easy melting, to investigate physical properties of molten slag, and to obtain operating parameters for continuous operations

  10. A plasma melting system for solid radioactive waste

    International Nuclear Information System (INIS)

    Higashi, Yasuo; Sugimoto, Masahiko; Fujitomi, Masashi; Noura, Tsuyoshi

    2003-01-01

    Kobe Steel has developed a plasma melting system for the volume reduction and stabilization of solid radioactive wastes such as concrete, insulation, filters, glass, sand etc. The main features of the system are as follows. (1) Non-transfer air plasma torches: 1.3 MW x 2 (2) Treatment capacity: 2 tons/batch (3) Waste feed: 200 liter drums (4) Tapping method: furnace tilting (5) Molten slag cooling: in the system's chambers. In this paper, an outline of the system and its first-run performance results are described. (author)

  11. Dynamics and Melting of Finite Plasma Crystals

    Science.gov (United States)

    Ludwig, Patrick; K"Ahlert, Hanno; Baumgartner, Henning; Thomsen, Hauke; Bonitz, Michael

    2009-11-01

    Interacting few-particle systems in external trapping potentials are of strong current interest since they allow to realize and control strong correlation and quantum effects [1]. Here, we present our recent results on the structural and thermodynamic properties of the crystal-like Wigner phase of complex plasma confined in a 3D harmonic potential. We discuss the linear response of the strongly correlated system to external excitations, which can be described in terms of normal modes [2]. By means of first-principle simulations the details of the melting phase transitions of these mesoscopic systems are systematically analysed with the melting temperatures being determined by a modified Lindemann parameter for the pair distance fluctuations [3]. The critical temperatures turn out to be utmost sensitive to finite size effects (i.e., the exact particle number), and form of the (screened) interaction potential.[4pt] [1] PhD Thesis, P. Ludwig, U Rostock (2008)[0pt] [2] C. Henning et al., J. Phys. A 42, 214023 (2009)[0pt] [3] B"oning et al., Phys. Rev. Lett. 100, 113401 (2008)

  12. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1995-01-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized modes (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed. (orig.)

  13. Erosion of melt layers developed during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, A.; Konkashbaev, I.

    1994-08-01

    Material erosion of plasma-facing components during a tokamak disruption is a serious problem that limits reactor operation and economical reactor lifetime. In particular, metallic low-Z components such as Be will be subjected to severe melting during disruptions and edge localized models (ELMs). Loss of the developed melt layer will critically shorten the lifetime of these components, severely contaminate the plasma, and seriously inhibit successful and reliable operation of the reactor. In this study mechanisms responsible for melt-layer loss during a disruption are modeled and evaluated. Implications of melt-layer loss on the performance of metallic facing components in the reactor environment are discussed

  14. Plasma carburizing with surface micro-melting

    Science.gov (United States)

    Balanovsky, A. E.; Grechneva, M. V.; Van Huy, Vu; Ponomarev, B. B.

    2018-03-01

    This paper presents carburizing the surface of 20 low carbon steel using electric arc and graphite prior. A carbon black solution was prepared with graphite powder and sodium silicate in water. A detailed analysis of the phase structure and the distribution profile of the sample hardness after plasma treatment were given. The hardened layer consists of three different zones: 1 – the cemented layer (thin white zone) on the surface, 2 – heat-affected zone (darkly etching structure), 3 – the base metal. The experimental result shows that the various microstructures and micro-hardness profiles were produced depending on the type of graphite coating (percentage of liquid glass) and processing parameters. The experiment proved that the optimum content of liquid glass in graphite coating is 50–87.5%. If the amount of liquid glass is less than 50%, adhesion to metal is insufficient. If liquid glass content is more than 87.5%, carburization of a metal surface does not occur. A mixture of the eutectic lamellar structure, martensite and austenite was obtained by using graphite prior with 67% sodium silicate and the levels of the hardness layer increased to around 1000 HV. The thickness of the cemented layer formed on the surface was around 200 μm. It is hoped that this plasma surface carburizing treatment could improve the tribological resistance properties.

  15. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  16. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  17. Plasma arc melting of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Dunn, P.; Patterson, R.A.; Haun, R.

    1994-01-01

    Los Alamos has several applications for high temperature, oxidation and liquid-metal corrosion resistant materials. Further, materials property constraints are dictated by a requirement to maintain low density; e.g., less than the density of stainless steel. Liquid metal compatibility and density requirements have driven the research toward the Ti-Ta system with an upper bound of 60 wt% Ta-40 wt% Ti. Initial melting of these materials was performed in a small button arc melter with several hundred grams of material; however, ingot quantities were soon needed. But, refractory metal alloys whose constituents possess very dissimilar densities, melting temperatures and vapor pressures pose significant difficulty and require specialized melting practices. The Ti-Ta alloys fall into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. Melting is further complicated by the high melting point of Ta(3020 C) and the relatively low boiling point of Ti(3287 C). Previous electron beam melting experience with these materials resulted, in extensive vaporization of the titanium and poor chemical homogeneity. Vacuum arc remelting(VAR) was considered as a melting candidate and discarded due to density and vapor pressure issues associated with electron beam. Plasma arc melting offered the ability to supply a cover gas to deal with vapor pressure issues as well as solidification control to help with macrosegregation in the melt and has successfully produced high quality ingots of the Ti-Ta alloys

  18. Energy Balance in DC Arc Plasma Melting Furnace

    International Nuclear Information System (INIS)

    Zhao Peng; Meng Yuedong; Yu Xinyao; Chen Longwei; Jiang Yiman; Nie Guohua; Chen Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency. (plasma technology)

  19. Stability and erosion of melt layers formed during plasma disruptions

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1989-01-01

    Melting and vaporization of metallic reactor components such as the first wall and the limiter/divertor may be expected in fusion reactors due to the high energy deposition resulting from plasma instabilities occuring during both normal and off-normal operating conditions. Off-normal operating conditions result from plasma disruptions where the plasma losses confinement and dumps its energy on parts of reactor components. High heat flux may also result during normal operating conditions due to fluctuations in plasma edge conditions. Of particular significance is the stability and erosion of the resulting melt layer which directly impacts the total expected lifetime of the reactor. The loss of the melt layer during the disruption could have a serious impact on the required safe and economic operation of the reactor. A model is developed to describe the behavior of the melt layer during the time evolution of the disruption. The analysis is done parametrically for a range of disruption times, energy densities and various acting forces

  20. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  1. DU Processing Efficiency and Reclamation: Plasma Arc Melting

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, Seth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swenson, Hunter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solis, Eunice Martinez [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    The work described here corresponds to one piece of a larger effort to increase material usage efficiency during DU processing operations. In order to achieve this goal, multiple technologies and approaches are being tested. These technologies occupy a spectrum of technology readiness levels (TRLs). Plasma arc melting (PAM) is one of the technologies being investigated. PAM utilizes a high temperature plasma to melt materials. Depending on process conditions, there are potential opportunities for recycling and material reclamation. When last routinely operational, the LANL research PAM showed extremely promising results for recycling and reclamation of DU and DU alloys. The current TRL is lower due to machine idleness for nearly two decades, which has proved difficult to restart. This report describes the existing results, promising techniques, and the process of bringing this technology back to readiness at LANL.

  2. Plasma-Gasification-Melting System (PGM) for Treatment of Low and Intermediate Level Radioactive Waste (LILRW) Generated by Nuclear Power Plants (NPP's)

    International Nuclear Information System (INIS)

    Pegaz, D.

    2004-01-01

    Solid LILRW generated by NPP's is treated by various methods of Volume Reduction and Stabilization / Immobilization before disposal at suitable Storage Sites for Radioactive Waste. PGM Technology thermally treats such solid LILRW achieving maximum volume reduction and efficient stabilization of radionuclides of the waste in a Vitrified (glassy) solid residue, slag. Since such LILRW is made of a large variety of different materials, organic and inorganic, the PGM Process gasifies and pyrolizes the organics while the inorganics are melted and vitrified

  3. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  4. Plasma treatment of onychomycosis

    Science.gov (United States)

    Xiong, Zilan; Roe, Jeff; Grammer, Tim; Him, Yeon-Ho; Graves, David B.

    2015-09-01

    Onychomycosis or fungal infection of the toenail or fingernail is a common affliction. Approximately 10% of the world's adult population is estimated to suffer from onychomycosis. Current treatment options such as topical creams, oral drugs, or laser treatments are generally limited by a variety of problems. We present results for an alternative onychomycosis treatment scheme using atmospheric pressure cold air plasmas. Using thinned cow hoof as a model nail material, we tested the ability of various plasma sources to act through the model nail to eradicate either bacteria or fungus deposited on the opposite side. Following 20 minute exposure to a surface microdischarge (SMD) device operating in room air, we observed a ~ 2 log reduction of E. coli. A similar result was obtained against T. rubrum after 45 min plasma treatment. NOx species concentration penetrating through the model nail as well as uptake into the nail were measured as a function of nail thickness. We propose that these plasma-generated species, or perhaps their reaction products, are responsible for at least part of the observed anti-microbial effect. We also explore the use of ultraviolet light acting in synergy with plasma-generated chemical species.

  5. The melting treatment of bulk scrap from decommissioning

    International Nuclear Information System (INIS)

    Deng Junxian; Deng Feng

    2014-01-01

    Large amount of radioactive scrap will come out from reactor decommissioning. The melting treatment can be used for the volume reduction, the recycle and reuse of the radioactive scrap to reduce the mass of the radioactive waste disposal and to reuse most of the metal. The melting treatment has the advantages in volume reduction, conditioning, radionuclide confinement, reduction of radioactivity concentration, easy monitoring of radioactivity; and the effective of decontamination for several radionuclide. Therefore to use the melting technology other decontamination technology should be performed ahead, the decontamination effect of the melting should be predicted, the utility of recycle and reuse should be defined, and the secondary waste should be controlled effectively. (authors)

  6. A plasma melting technology for volume reduction of noncombustible radioactive waste in Korea

    International Nuclear Information System (INIS)

    Song, Myung Jae; Moon, Young Pyo

    1998-01-01

    In Korea, there is a strong need for the development of radioactive waste volume reduction technology. Korea Electric Power Research Institute (KEPRI) has been searching for ways to reduce the radioactive volume significantly and to produce stable waste forms. In particular, plasma treatment technology has caught KEPR's attention for treating noncombustible radwaste because this technology may far surpass conventional methods. The potential for greater control of temperature, faster reaction times, better control of processing, lower capital costs, greater throughput and more efficient use of energy is there. For the plasma melting study of noncombustible waste, KEPRI has leased a lab scale multipurpose plasma furnace system and performed preliminary tests. Using simulated noncombustible waste based on field survey data from nuclear power plants, lab scale melting experiments have been carried out. The properties of molten slag vary with additives and noncombustible waste materials. KEPRI's current study is focused on finding an optimum composition ratio of various noncombustible wastes for melting, investigating physical properties of molten slag, and obtaining operating parameters for continuous operation. (author)

  7. The Melt-Dilute Treatment Technology Offgas Development Status Report

    International Nuclear Information System (INIS)

    Adams, T. M.

    1999-01-01

    The melt-dilute treatment technology is being developed to facilitate the ultimate disposition of highly enriched Al-Base DOE spent nuclear fuels in a geologic repository such as that proposed for Yucca Mountain. The melt-dilute process is a method of preparing DOE spent nuclear fuel for long term storage

  8. Temperature simulation of thermal plasma melting furnace for disposal of radioactive waste and preliminary research of vitrification formula

    International Nuclear Information System (INIS)

    Lin Peng; Lu Yonghong; Xiang Wenyuan; Chen Mingzhou; Liu Xiajie; Qin Yuxin

    2013-01-01

    Radioactive waste treatment techniques currently used in nuclear power plant increase the volume greatly and bring much pressure on final disposal; Thermal plasma treatment as a crucial technique to reduce the waste volume is introduced. How to improve the efficiency of the plasma energy is the limiting factor of concern. In this paper, the temperature field of thermal plasma melting furnace is simulated, the maximal temperature of fixed bed melting furnace is calculated (about 1445 ℃). According to the optional fire-resistant materials, the feasibility of furnace fabrication is discussed. Vitrification formulas for three typical radioactive wastes are tested with their feasibilities being analyzed then. Finally, the prospect of thermal plasma techniques of radioactive waste is discussed, and issues for future study are raised. (authors)

  9. Mobile Melt-Dilute Treatment for Russian Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Peacock, H.

    2002-01-01

    Treatment of spent Russian fuel using a Melt-Dilute (MD) process is proposed to consolidate fuel assemblies into a form that is proliferation resistant and provides critically safety under storage and disposal configurations. Russian fuel elements contain a variety of fuel meat and cladding materials. The Melt-Dilute treatment process was initially developed for aluminum-based fuels so additional development is needed for several cladding and fuel meat combinations in the Russian fuel inventory (e.g. zirconium-clad, uranium-zirconium alloy fuel). A Mobile Melt-Dilute facility (MMD) is being proposed for treatment of spent fuels at reactor site storage locations in Russia; thereby, avoiding the costs of building separate treatment facilities at each site and avoiding shipment of enriched fuel assemblies over the road. The MMD facility concept is based on laboratory tests conducted at the Savannah River Technology Center (SRTC), and modular pilot-scale facilities constructed at the Savannah River Site for treatment of US spent fuel. SRTC laboratory tests have shown the feasibility of operating a Melt-Dilute treatment process with either a closed system or a filtered off-gas system. The proposed Mobile Melt-Dilute process is presented in this paper

  10. Mathematical modeling of quartz particle melting process in plasma-chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Volokitin, Oleg, E-mail: volokitin-oleg@mail.ru; Volokitin, Gennady, E-mail: vgg-tomsk@mail.ru; Skripnikova, Nelli, E-mail: nks2003@mai.ru; Shekhovtsov, Valentin, E-mail: shehovcov2010@yandex.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Vlasov, Viktor, E-mail: rector@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Ave., 634050, Tomsk (Russian Federation)

    2016-01-15

    Among silica-based materials vitreous silica has a special place. The paper presents the melting process of a quartz particle under conditions of low-temperature plasma. A mathematical model is designed for stages of melting in the experimental plasma-chemical reactor. As calculation data show, quartz particles having the radius of 0.21≤ r{sub p} ≤0.64 mm completely melt at W = 0.65 l/s particle feed rate depending on the Nusselt number, while 0.14≤ r{sub p} ≤0.44 mm particles melt at W = 1.4 l/s. Calculation data showed that 2 mm and 0.4 mm quartz particles completely melted during and 0.1 s respectively. Thus, phase transformations occurred in silicon dioxide play the important part in its heating up to the melting temperature.

  11. Particle melting and particle/plasma interactions in DC and RF plasmas: a modeling study. (Volumes I and II)

    International Nuclear Information System (INIS)

    Wei, D.Y.C.

    1987-01-01

    Integral process models were developed to predict particle melting in both DC and RF plasmas. Specifically, a numerical model has been developed to predict the temperature history of particles injected in a low pressure DC plasma jet. The temperature and velocity fields of the plasma jet are predicted as a free jet by solving the parabolized Navier-Stokes equations using a spatial marching scheme. Correction factors were introduced to take into account non continuum effects encountered in the low pressure environment. The plasma jet profiles as well as the particle/plasma interactions under different jet pressure ratios (from underexpanded to overexpanded) were investigated. The flow and temperature fields in the RF plasma torch are calculated using the axisymmetric Navier-Stokes equations based on the primitive variables, along with pseudo two-dimensional electromagnetic field equations. Particle trajectories and heat transfer characteristics in both DC and RF plasmas are calculated using predicted plasma jet profiles. Particle melting efficiencies in both DC and RF plasmas are evaluated and compared using model alloy systems. Based on the theoretical considerations, an alternative route of plasma spraying process (hybrid plasma spraying process) is proposed. An evaluation of particle melting in hybrid plasma jets had indicated that further improvement in deposit properties could be made

  12. Melting characteristics of a plasma torch melter according to the waste feeding method

    International Nuclear Information System (INIS)

    Kim, T. W.; Choi, J. R.; Park, S. C.; Lu, C. S.; Park, J. K.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    By using a batch type plasma torch melting system, continuous feeding and melting tests of non-combustible waste were executed. Using the results, the establishment of a heat transfer model and its verification were executed; the characteristics of the molten slag, exhaust gas, fly dust, volatilization of Cs, and leaching of slag were analyzed. In order to establish the heat transfer mode, the followings were considered; the electrical energy supplied to the plasma torch, the absorbed energy to the plasma torch for generating the plasma gas, the absorbed energy to the cooling water of the plasma torch, the energy supplied to the melter from the plasma gas by radiant heat, the energy loss through the exhaust gas, the waste melting energy, and the heating energy of an inner crucible and the melter. The concrete and soil were melted for the verification of the model. The waste was fed through waste feeder by the amount of 0.5kg or 1kg that was calculated by using the model. The experiment for the verification resulted in that the model was fitted well until the melter was heated sufficiently. If the electrical energy of 128kW were supplied to the plasma torch, energy balance of the plasma melting system was calculated with the model: the absorbed energy to the plasma torch for generating the plasma gas (27kW), the absorbed energy to the cooling water of the plasma torch (0∼ 36kW), the energy loss through the exhaust gas (5 ∼ 8kW), the waste melting energy (14kW), and the heating energy of an inner crucible and the melter (82 ∼ 43kW)

  13. Melting experiment on concrete waste using a hollow type plasma torch mounted on furnace

    International Nuclear Information System (INIS)

    Moon, Y. P.; Kim, T. W.; Kim, H. S.; Shin, S. U.; Lee, M. C.

    2000-01-01

    A furnace coupled with a hollow type plasma torch was manufactured and installed in order to develop a volume reduction technology for non-combustible radioactive waste using plasma. A melting test with 10kg of concrete waste was carried out for the evaluation of melting characteristics in the non-transferred operation mode for 20 minutes with the melter. Feeded concrete was completely melted. However, the molten bath was not easily discharged because of its high viscosity. It was found that some molten slag spat from the molten bath was coated on the surface of torch which was mounted vertically inside furnace

  14. Assembly for melting and heat treatment

    International Nuclear Information System (INIS)

    Blumenfeld, M.

    1976-11-01

    Laboratory scale production of alloys having a precise alloying materials content and the exact heat treatment of metallurgical specimens are discussed. The design and assembly of two relevant instruments are described. These instruments include a laboratory vacuum induction furnace and a specially designed glass lathe, that enables even an unskilled operator to encapsulate and seal metallurgical specimens in glass capsules. (author)

  15. Modeling and simulation of melt-layer erosion during a plasma disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Belan, V.; Konkashbaev, I.; Nikandrov, L.; Safronov, V.; Zhitlukhin, A.; Litunovsky, V.

    1997-01-01

    Metallic plasma-facing components (PFCs) e.g. beryllium and tungsten, will be subjected to severe melting during plasma instabilities such as disruptions, edge-localized modes and high power excursions. Because of the greater thickness of the resulting melt layers relative to that of the surface vaporization, the potential loss of the developing melt-layer can significantly shorten PFC lifetime, severely contaminate the plasma and potentially prevent successful operation of the tokamak reactor. Mechanisms responsible for melt-layer loss during plasma instabilities are being modeled and evaluated. Of particular importance are hydrodynamic instabilities developed in the liquid layer due to various forces such as those from magnetic fields, plasma impact momentum, vapor recoil and surface tension. Another mechanism found to contribute to melt-layer splashing loss is volume bubble boiling, which can result from overheating of the liquid layer. To benchmark these models, several new experiments were designed and performed in different laboratory devices for this work; the SPLASH codes) are generally in good agreement with the experimental results. The effect of in-reactor disruption conditions, which do not exist in simulation experiments, on melt-layer erosion is discussed. (orig.)

  16. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Kim, Ki Hwan; Lee, Chong Tak; Lee, Chan Bock; Fielding, R.S.; Kennedy, J.R.

    2013-01-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y 2 O 3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y 2 O 3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y 2 O 3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y 2 O 3 coating

  17. Plasma treatment of crane rails

    Directory of Open Access Journals (Sweden)

    Владислав Олександрович Мазур

    2016-07-01

    Full Text Available Crane operation results in wear and tear of rails and crane wheels. Renovation and efficiency of these details is therefore relevant. Modern technologies of wheels and rails restoration use surfacing or high-frequency currents treatment. Surface treatment with highly concentrated streams of energy- with a laser beam, plasma jet- is a promising direction.. It is proposed to increase the efficiency of crane rails by means of surface plasma treatment. The modes of treatment have been chosen.. Modelling of plasma jet thermal impact on a solid body of complex shape has been made. Plasma hardening regimes that meet the requirements of production have been defined. Structural transformation of the material in the crane rails on plasma treatment has been investigated. It has been concluded that for carbon and low alloy crane steels the plasma exposure zone is characterized by a high degree of hardened structure dispersion and higher hardness as compared to the hardness after high-frequency quenching. As this takes place phase transformations are both shift (in the upper zone of plasma influence and fluctuation (in the lower zone of the plasma. With high-speed plasma heating granular or lamellar pearlite mainly transforms into austenite. The level of service characteristics of hardened steel, which is achieved in this case is determined by the kinetics and completeness of pearlite → austenite transformation. For carbon and low alloy rail steels plasma hardening can replace bulk hardening, hardening by high-frequency currents, or surfacing. The modes for plasma treatment which make it possible to obtain a surface layer with a certain service characteristics have been defined

  18. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating

    Science.gov (United States)

    Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A. V.

    2018-04-01

    The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

  19. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tereshin, V.I.; Wuerz, H.

    2002-01-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks

  20. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Makhlaj, V.A.; Solyakov, D.G.; Tereshin, V.I.; Wuerz, H

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  1. Plasma melting and recycling technology for decommissioning material. Removal of zinc and lead of ferrous scrap

    International Nuclear Information System (INIS)

    Ikeda, Koichi; Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    A great amount of nonradioactive waste such as concrete, metal and the like, will be generated intensively in a short period when dismantling nuclear power plants. Thus, it is very important for smooth dismantling to promote their recycling. Melting operates conditions to recycle metal easily, but degrades the quality by contamination of tramp elements. So it was performed to melt carbon steel coated with anti-corrosive paint including lead, zinc, etc. and to analyze the steel grade for study of obtaining the desired grade. On some test conditions, concentration of lead and zinc just after melting all samples lowered less than target concentration which was permissible for cast iron. About the unsatisfactory conditions when a lot of slag generated, concentration of zinc was simulated changing the sequence of plasma melting. The result showed that an efficient sequence controlled input energy to maintain molten bath after melting all samples as quickly as possible. (author)

  2. Plasma assisted heat treatment: annealing

    International Nuclear Information System (INIS)

    Brunatto, S F; Guimaraes, N V

    2009-01-01

    This work comprises a new dc plasma application in the metallurgical-mechanical field, called plasma assisted heat treatment, and it presents the first results for annealing. Annealing treatments were performed in 90% reduction cold-rolled niobium samples at 900 deg. C and 60 min, in two different heating ways: (a) in a hollow cathode discharge (HCD) configuration and (b) in a plasma oven configuration. The evolution of the samples' recrystallization was determined by means of the microstructure, microhardness and softening rate characterization. The results indicate that plasma species (ions and neutrals) bombardment in HCD plays an important role in the recrystallization process activation and could lead to technological and economical advantages considering the metallic materials' heat treatment application. (fast track communication)

  3. Plasma technology for waste treatment

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1995-01-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing (∼10,000 degrees C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300 degrees C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams

  4. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V.I.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H

    2003-03-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion.

  5. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H.

    2003-01-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion

  6. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  7. Evolution of transiently melt damaged tungsten under ITER-relevant divertor plasma heat loading

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, S., E-mail: s.bardin@differ.nl [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Morgan, T.W. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); Glad, X. [Université de Lorraine, Institut Jean Lamour, Vandoeuvre-les-Nancy (France); Pitts, R.A. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); De Temmerman, G. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Ass EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands); ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-08-15

    A high-repetition-rate ELM simulation system was used at both the Pilot-PSI and Magnum-PSI linear plasma devices to investigate the nature of W damage under multiple shallow melt events and the subsequent surface evolution under ITER relevant plasma fluence and high ELM number. First, repetitive shallow melting of two W monoblocks separated by a 0.5 mm gap was obtained by combined pulsed/steady-state hydrogen plasma loading at normal incidence in the Pilot-PSI device. Surface modifications including melting, cracking and strong net-reshaping of the surface are obtained. During the second step, the pre-damaged W sample was exposed to a high flux plasma regime in the Magnum-PSI device with a grazing angle of 35°. SEM analysis indicates no measurable change to the surface state after the exposure in Magnum-PSI. An increase in transient-induced temperature rise of 40% is however observed, indicating a degradation of thermal properties over time.

  8. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  9. A close-form solution to predict the total melting time of an ablating slab in contact with a plasma

    International Nuclear Information System (INIS)

    Yeh, F.-B.

    2007-01-01

    An exact melt-through time is derived for a one-dimensional heated slab in contact with a plasma when the melted material is immediately removed. The plasma is composed of a collisionless presheath and sheath on a slab, which partially reflects and secondarily emits ions and electrons. The energy transport from plasma to the surface accounting for the presheath and sheath is determined from the kinetic analysis. This work proposes a semi-analytical model to calculate the total melting time of a slab based on a direct integration of the unsteady heat conduction equation, and provides quantitative results applicable to control the total melting time of the slab. The total melting time as a function of plasma parameters and thermophysical properties of the slab are obtained. The predicted energy transmission factor as a function of dimensionless wall potential agrees well with the experimental data. The effects of reflectivities of the ions and electrons on the wall, electron-to-ion source temperature ratio at the presheath edge, charge number, ion-to-electron mass ratio, ionization energy, plasma flow work-to-heat conduction ratios, Stefan number, melting temperature, Biot number and bias voltage on the total melting time of the slab are quantitatively provided in this work

  10. Plasma vitrification program for radioactive waste treatment

    International Nuclear Information System (INIS)

    Hung, Tsungmin; Tzeng, Chinchin; Kuo, Pingchun

    1998-01-01

    In order to treat radioactive wastes effectively and solve storage problems, INER has developed the plasma arc technology and plasma process for various waste forms for several years. The plasma vitrification program is commenced via different developing stages through nine years. It includes (a) development of non-transferred DC plasma torch, (b) establishment of a lab-scale plasma system with home-made 100kW non-transferred DC plasma torch, (c) testing of plasma vitrification of simulated radioactive wastes, (d) establishment of a transferred DC plasma torch delivering output power more than 800 kW, (e) study of NOx reduction process for the plasma furnace, (f) development of a pilot-scale plasma melting furnace to verify the vitrification process, and (g) constructing a plasma furnace facility in INER. The final goal of the program is to establish a plasma processing plant with capacity of 250 kg/hr to treat the low-level radioactive wastes generated from INER itself and domestic institutes due to isotope applications. (author)

  11. INTERACTION STUDIES OF CERAMIC VACUUM PLASMA SPRAYING FOR THE MELTING CRUCIBLE MATERIALS

    Directory of Open Access Journals (Sweden)

    JONG HWAN KIM

    2013-10-01

    Full Text Available Candidate coating materials for re-usable metallic nuclear fuel crucibles, TaC, TiC, ZrC, ZrO2, and Y2O3, were plasma-sprayed onto a niobium substrate. The microstructure of the plasma-sprayed coatings and thermal cycling behavior were characterized, and U-Zr melt interaction studies were carried out. The TaC and Y2O3 coating layers had a uniform thickness, and high density with only a few small closed pores showing good consolidation, while the ZrC, TiC, and ZrO2 coatings were not well consolidated with a considerable amount of porosity. Thermal cycling tests showed that the adhesion of the TiC, ZrC, and ZrO2 coating layers with niobium was relatively weak compared to the TaC and Y2O3 coatings. The TaC and Y2O3 coatings had better cycling characteristics with no interconnected cracks. In the interaction studies, ZrC and ZrO2 coated rods showed significant degradations after exposure to U-10 wt.% Zr melt at 1600°C for 15 min., but TaC, TiC, and Y2O3 coatings showed good compatibility with U-Zr melt.

  12. Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ruhunusiri, W. D. Suranga; Goree, J.; Feng Yan; Liu Bin

    2011-01-01

    The polygon construction method of Glaser and Clark is used to characterize melting and crystallization in a two-dimensional (2D) strongly coupled dusty plasma. Using particle positions measured by video microscopy, bonds are identified by triangulation, and unusually long bonds are deleted. The resulting polygons have three or more sides. Geometrical defects, which are polygons with more than three sides, are found to proliferate during melting. Pentagons are found in liquids, where they tend to cluster with other pentagons. Quadrilaterals are a less severe defect, so that disorder can be characterized by the ratio of quadrilaterals to pentagons. This ratio is found to be less in a liquid than in a solid or a superheated solid. Another measure of disorder is the abundance of different kinds of vertices, according to the type of polygons that adjoin there. Unexpectedly, spikes are observed in the abundance of certain vertex types during rapid temperature changes. Hysteresis, revealed by a plot of a disorder parameter vs temperature, is examined to study sudden heating. The hysteresis diagram also reveals features suggesting a possibility of latent heat in the melting and rapid cooling processes.

  13. ELM-induced melting: assessment of shallow melt layer damage and the power handling capability of tungsten in a linear plasma device

    Czech Academy of Sciences Publication Activity Database

    Morgan, T.W.; van Eden, G.G.; de Kruif, T.M.; van den Berg, A.; Matějíček, Jiří; Chráska, Tomáš; De Temmerman, G.

    -, T159 (2014), 014022-014022 ISSN 0031-8949. [International Conference on Plasma-Facing Materials and Components for Fusion Applications/14./. Jülich, 13.05.2013-17.05.2013] Institutional support: RVO:61389021 Keywords : melting * tungsten * ELMs * divertor * ITER * DEMO Subject RIV: JG - Metallurgy Impact factor: 1.126, year: 2014 http://iopscience.iop.org/1402-4896/2014/T159/014022/pdf/1402-4896_2014_T159_014022.pdf

  14. Advancements and applications of plasma arc centrifugal treatment

    International Nuclear Information System (INIS)

    Eschenbach, R.C.; Leland, L.B.; Chen, W.M.

    1997-01-01

    A process using a transferred arc plasma to heat material charged into a spinning tube inside a sealed, water-cooled container has been applied to radioactive and hazardous waste treatment in several countries. Inorganic material in the feed is melted into a leach-resistant slag, while organic material is vaporized and reacted to form carbon dioxide and water vapor. Any acid gases formed plus particulates are removed in a gas cleanup system. Design features and their relations to design objectives are described. Current and near-future applications are reported for treating nuclear power plant wastes and for remediating contamination from past nuclear weapons activities

  15. Induced tungsten melting events in the divertor of ASDEX Upgrade and their influence on plasma performance

    International Nuclear Information System (INIS)

    Krieger, K.; Lunt, T.; Dux, R.; Janzer, A.; Kallenbach, A.; Mueller, H.W.; Neu, R.; Puetterich, T.; Rohde, V.

    2011-01-01

    Tungsten rods of 1 x 1 x 3 mm were exposed at the outer divertor plate of ASDEX Upgrade using a manipulator system. Controlled melting of the W-rod in H-mode discharges was induced by moving the outer strike point towards the W-rod position. Visible light emission of ejected W droplets was recorded by fast camera systems. The resulting increase of tungsten concentration in the confined plasma was compared to that induced by W laser ablation into the outer main chamber boundary plasma. The resulting divertor retention expressed as ratio of tungsten core penetration probability from a divertor source to that of a main chamber source is ∼100. Ejected droplets are found to move always in general direction of the plasma flow. The measured magnitude of droplet acceleration shows that droplets are mainly subject to rocket forces and friction forces. Typical initial droplet size can be inferred from the time evolution of the droplet light emission to be ≥100μm.

  16. Progress in atomizing high melting intermetallic titanium based alloys by means of a novel plasma melting induction guiding gas atomization facility (PIGA)

    Energy Technology Data Exchange (ETDEWEB)

    Gerling, R.; Schimansky, F.P.; Wagner, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1994-12-31

    For the production of intermetallic titanium based alloy powders a novel gas atomization facility has been put into operation: By means of a plasma torch the alloy is melted in a water cooled copper crucible in skull melting technique. To the tap hole of the crucible, a novel transfer system is mounted which forms a thin melt stream and guides it into the gas nozzle. This transfer system consists of a ceramic free induction heated water cooled copper funnel. Gas atomization of {gamma}-TiAl (melting temperature 1400 C) and Ti{sub 5}Si{sub 3} (2130 C) proved the possibility to produce ceramic free pre-alloyed powders with this novel facility. The TiAl powder particles are spherical; about 20 wt.% are smaller than 45 {mu}m. The oxygen and copper pick up during atomization do not exceed 250 and 35 {mu}g/g respectively. The Ti{sub 5}Si{sub 3} powder particles are almost spherical. Only about 10 wt.% are <45 {mu}m whereas the O{sub 2} and Cu contamination is also kept at a very low level (250 and 20 {mu}g/g respectively). (orig.)

  17. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy.

    Science.gov (United States)

    Li, Xin-Tao; Li, Ting-Ju; Li, Xi-Meng; Jin, Jun-Ze

    2006-02-01

    The fluctuation of the melt temperature in a tundish was measured during casting and experiments were conducted to investigate the effects of ultrasonic melt treatment on the surface quality and solidification structures of Al-1%Si ingots. The results show that the uniformity of melt temperature was enhanced with the application of ultrasonic melt treatment. When the ultrasonic power is 1,000W, the surface quality was evidently improved and grains of cast ingots were refined. Moreover, EPMA analysis was adopted to study the relationship between the ultrasonic power and boundary segregation of Si element. The result shows that boundary segregation is suppressed with the increase of ultrasonic power and the phenomenon was theoretically interpreted.

  18. Effects of plasma treatment on wounds

    NARCIS (Netherlands)

    Tipa, R.S.; Stoffels - Adamowicz, E.; Lim, C.T.; Goh, J.C.H.

    2009-01-01

    Cold plasma treatment of wounds is gaining much interest, because it will offer a non-contact, painless and harmless therapy to manage large-area lesions (burn wounds, chronic ulcerations). One of the important issues in plasma wound healing is the safety of the method. In this work we study in

  19. Treatment of radioactive metallic waste by the electro-slag melting method

    International Nuclear Information System (INIS)

    Ochiai, Atsuhiro; Nagura, Kanetake; Noura, Tsuyoshi

    1983-01-01

    The applicability of the electro-slag melting method for treating plutonuim contaminated metallic waste was studied. A 100kg test furnace was built and simulated metallic waste was melted and solidified in this furnace. Waste volume was reduced to 1/25 with a decontamination factor of 25 and the slag and the copper mold are repeatedly usable. The process is expected to be employed in the project of PWTF (Plutonium contaminated Wate Treatment Facilities). (author)

  20. Plasma treatment: A Novel Medical Application

    International Nuclear Information System (INIS)

    Boonyawan, Dheerawan

    2015-01-01

    Cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contrains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air CAPs are O 3 , OH, N x , and HNO x . Two cold atomospheric plasma devices were utiized (either in an indirect or a direct way) for the treatment of physiologically healthy volunterrs, The results show that CAP is effective againts chronic wound infections and/ or for skin treatment in clinical trials. The current developments in this field have fuelled the hope that CAP could be, and interesting new therapeutic apptoach in the treatment of cancer.

  1. Plasma technology for treatment of waste

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, D [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Fusion Center

    1997-12-31

    Meeting goals for waste cleanup will require new technology with improved environmental attractiveness and reduced cost. Plasma technology appears promising because of the high degree of controllability; capability to process waste without the adverse effects of combustion; and a very wide temperature range of operation. At the Plasma Fusion Center at the Massachusetts Institute of Technology, a range of plasma technologies are being investigated. `Hot` thermal plasmas produced by DC arc technology are being examined for treatment of solid waste. In conjunction with this activity, new diagnostics are being developed for monitoring arc furnace operating parameters and gaseous emissions. Electron-beam generated plasma technology is being investigated as a means of producing non-thermal `cold` plasmas for selective processing of dilute concentrations of gaseous waste. (author). 4 figs., 5 refs.

  2. Melt layer macroscopic erosion of tungsten and other metals under plasma heat loads simulating ITER off-normal events

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Kulik, N.V.; Landman, I.; Wuerz, H.

    2002-01-01

    This paper is focused on experimental analysis of metal layer erosion and droplet splashing of tungsten and other metals under heat loads typical for ITER FEAT off-normal events,such as disruptions and VDE's. Plasma pressure gradient action on melt layer results in erosion crater formation with mountains of displaced material at the crater edge. It is shown that macroscopic motion of melt layer and surface cracking are the main factors responsible for tungsten damage. Weight loss measurements of all exposed materials demonstrate inessential contribution of evaporation process to metals erosion

  3. Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace

    International Nuclear Information System (INIS)

    Chen Mingzhou; Meng Yuedong; Shi Jiabiao; Ni Guohua; Jiang Yiman; Yu Xinyao; Zhao Peng

    2009-01-01

    Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace. (plasma technology)

  4. Plasma treatment of polymers for improved adhesion

    International Nuclear Information System (INIS)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer sufaces for improved adhesion are reviewed: noble and reactive has treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changer are discussed, as are the mechanisms of adhersion to polymeric adhesives, particularly epoxy. Noble has plasma eching of fluoropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhsion to epoxy. Reactive has plasma also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (except for hydrogen) etching of polyolefins results in surface oxidation and imrprove adhesion via hydrogen bonding of these exygen containing groups across the interface. The introduction of amine groups to a polymer surface by ammonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical group surrounding the amine

  5. Presentation of the Vulcano installation which uses a plasma transferred arc rotary furnace for corium melting

    International Nuclear Information System (INIS)

    Cognet, G.; Laffont, G.; Jegou, C.; Pierre, J.; Journeau, C.; Sudreau, F.; Roubaud, A.

    1998-01-01

    In the case of loss coolant accident, the reactor core could melt and turn into a mixture of uranium oxides, zirconium, iron and steel called corium. A large experimental program has been launched to study corium behaviour, to qualify solutions to stabilize it and to confine it in the reactor containment. The Vulcano installation has been designed to that purpose. It is made up of: i) a plasma transferred arc rotary furnace, ii) a testing surface covered with refractory materials, iii) an induction heating system in order to simulate the residual power of corium, iv) instrumentation devices such as video cameras, thermocouples, infra-red pyrometers and flowmeters, and v) a laboratory to perform chemical analysis of corium samples. The first experimental results show that a mixture of corium and concrete spreads better than expected. It seems that a low initial height of matter can produce a great distance flowing while having a chaotic behaviour. This characteristic suggests that the mixture acts as a Bingham type threshold fluid. (A.C.)

  6. Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace

    Science.gov (United States)

    Chen, Mingzhou; Meng, Yuedong; Shi, Jiabiao; Ni, Guohua; Jiang, Yiman; Yu, Xinyao; ZHAO, Peng

    2009-10-01

    Fly ash from a municipal solid waste incinerator (MSWI) without preprocessing (original fly ash, OFA) was melted by a direct current (DC) plasma arc furnace to investigate how the feed forms governed the results. Dioxins in flue gas from stack and bag-filter ash (BFA) were detected. The distribution of heavy metals of Pb, Cd, As, and Cr along the flue gas process system was analyzed. Through a comparison of the results for dioxins and heavy metals in this study and previous work, carrying-over of fly ash particles with the flue gas stream can be deduced. Based on the magnetic induction equation and Navier-Stokes equations, a magnetohydrodynamic (MHD) model for the plasma arc was developed to describe the particle-carrying effect. The results indicate that, a. when melted, the feed forms of MSWI fly ash affect the results significantly; b. it is not preferable to melt MSWI fly ash directly, and efforts should be made to limit the mass transfer of OFA from the plasma furnace.

  7. Properties of zirconia after plasma treatment

    Science.gov (United States)

    Alekseenko, V. P.; Kulkov, S. N.

    2017-09-01

    The influence of high-frequency plasma treatment on the properties of zirconia powder is shown in the work. The powder was produced by a plasma-chemical method. The powders had a foamy form with the size of agglomerates of 5-10 μm and crystallites of 20-50 nm. The powders were treated by the pulse plasma unit with dielectric barrier discharge generator. It was shown that the plasma processing changes the acidity of water-powder suspensions from 8.1 to 4.3 pH, which signifies the powders' wettability improvement. It was revealed that more intensive mixing using ultrasound influences the acidity level, reducing it in comparison with mixing by paddle-type agitator. It was shown that these changes of surface properties have relaxation by 4% per day and extrapolation of this dependence shows that the powder will have initial properties after 400 hours storage at room conditions.

  8. Downstream microwave ammonia plasma treatment of polydimethylsiloxane

    International Nuclear Information System (INIS)

    Pruden, K.G.; Beaudoin, S.P.

    2005-01-01

    To control the interactions between surfaces and biological systems, it is common to attach polymers, proteins, and other species to the surfaces of interest. In this case, surface modification of polydimethylsiloxane (PDMS) was performed by exposing PDMS films to the effluent from a microwave ammonia plasma, with a goal of creating primary amine groups on the PDMS. These amine sites were to be used as binding sites for polymer attachment. Chemical changes to the surface of the PDMS were investigated as a function of treatment time, microwave power, and PDMS temperature during plasma treatment. Functional groups resulting from this treatment were characterized using attenuated total reflectance infrared spectroscopy. Plasma treatment resulted in the incorporation of oxygen- and nitrogen-containing groups, including primary amine groups. In general, increasing the treatment time, plasma power and substrate temperature increased the level of oxidation of the films, and led to the formation of imines and nitriles. PDMS samples treated at 100 W and 23 deg. C for 120 s were chosen for proof-of-concept dextran coating. Samples treated at this condition contained primary amine groups and few oxygen-containing groups. To test the viability of the primary amines for attachment of biopolymers, functionalized dextran was successfully attached to primary amine sites on the PDMS films

  9. Development of the Melt-Dilute Treatment Technology for Al-Based DOE Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Adams, T.M.; Iyer, N.C.

    1998-09-01

    Spent foreign and domestic research reactor fuel assemblies will be sent to Savannah River Site and prepared for interim and eventual geologic storage. Many of the fuel plates have been made with high enriched uranium, and during long term storage, the integrity of the fuel maybe effected if the canister is breached. To reduce the potential for criticality, proliferation, and reduce storage volume, a new treatment technology called melt-dilute is being developed at SRS. The technique will melt the spent fuel assemblies and will dilute the isotopic content to below 20%. The process is simple and versatile

  10. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.

    2013-07-01

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  11. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-15

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W–Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (∼0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ∼0.3 MJ m{sup −2}, while a W–Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ∼0.3 MJ m{sup −2}, although surface melting and cracks in the resolidification layer occurred at higher energy density of ∼0.9 MJ m{sup −2}. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  12. Polymerization by plasma: surface treatment and plasma simulation

    International Nuclear Information System (INIS)

    Morales C, J.

    2001-01-01

    One of the general objectives that are developed by the group of polymers semiconductors in the laboratory of polymers of the UAM-Iztapalapa is to study the surface treatment for plasma of different materials. Framed in this general objective, in this work three lines of investigation have been developed, independent one of other that converge in the general objective. The first one tries about the modeling one and evaluation of the microscopic parameters of operation of the polymerization reactor. The second are continuation of the study of conductive polymers synthesized by plasma and the third are an application of the treatment for plasma on natural fibers. In the first one it lines it is carried out the characterization and simulation of the parameters of operation of the polymerization reactor for plasma. They are determined the microscopic parameters of operation of the reactor experimentally like they are the electronic temperature, the potential of the plasma and the density average of electrons using for it an electrostatic Langmuir probe. In the simulation, starting from the Boltzmann transport equation it thinks about the flowing pattern and the electronic temperature, the ions density is obtained and of electrons. The data are compared obtained experimentally with the results of the simulation. In second line a study is presented about the influence of the temperature on the electric conductivity of thin films doped with iodine, of poly aniline (P An/I) and poly pyrrole (P Py/I). The films underwent heating-cooling cycles. The conductivity of P An/I and P Py/I in function of the temperature it is discussed based on the Arrhenius model, showing that it dominates the model of homogeneous conductivity. It is also synthesized a polymer bi-layer of these two elements and a copolymer random poly aniline-poly pyrrole, of the first one it the behavior of its conductivity discusses with the temperature and of the second, the conductivity is discussed in

  13. Plasma treatment of polymers for modifying haemocompatibility

    International Nuclear Information System (INIS)

    Wilson, D.J.

    2000-03-01

    The primary objective of this study was to investigate changes in the thrombogenicity of four materials, PTFE, PDMS, PEU and UHMW-PE induced by plasma treatments. In particular, correlations were sought between the chemical and topographical alterations to the materials surface caused by exposure to plasmas and the observed changes of blood response. Each material was treated in O 2 , Ar, N 2 and NH 3 discharges, the system pressure, treatment times, gas flow rates and plasma power ( 51 Cr labelled platelets and (ii) platelet aggregation and release of microparticles by flow cytometry, after labelling with anti-CD62 and anti-CD41 antibodies, in whole blood perfused in a cone and plate viscometer at a physiologically relevant shear rate (500 s -1 ). In addition, quasi-static evaluation was carried out by contact phase activation and assessed by PTT assays. Contact with the 'as-received' materials resulted in activation of the blood. Moreover, plasma treatment resulted in further modifications of both the surface and fluid phase responses for example, a reduction in the number of adhered platelets and a expression of p-selectin compared with the as-received surfaces attributed to changes in surface chemistry. (author)

  14. Immobilization of carbon 14 contained in spent fuel hulls through melting-solidification treatment

    International Nuclear Information System (INIS)

    Mizuno, T.; Maeda, T.; Nakayama, S.; Banba, T.

    2004-01-01

    The melting-solidification treatment of spent nuclear fuel hulls is a potential technique to improve immobilization/stabilization of carbon-14 which is mobile in the environment due to its weakly absorbing properties. Carbon-14 can be immobilized in a solid during the treatment under an inert gas atmosphere, where carbon is not oxidized to gaseous form and remains in the solid. A series of laboratory scale experiments on retention of carbon into an alloy waste form was conducted. Metallic zirconium was melted with metallic copper (Zr/Cu=8/2 in weight) at 1200 deg C under an argon atmosphere. Almost all of the carbon remained in the resulting zirconium-copper alloy. (authors)

  15. Ion beam surface treatment: A new capability for rapid melt and resolidification of surfaces

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McIntyre, D.C.; Buchheit, R.G.; Greenly, J.B.; Thompson, M.O.

    1994-01-01

    The emerging capability to produce high average power (5--250 kW) pulsed ion beams at 0.2--2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This technique uses high energy, pulsed (≤100 ns) ion beams to directly deposit energy in the top 2--20 micrometers of the surface of any material. Depth of treatment is controllable by varying the ion energy and species. Deposition of the energy with short pulses in a thin surface layer allows melting of the layer with relatively small energies and allows rapid cooling of the melted layer by thermal diffusion into the underlying substrate. Typical cooling rates of this process (10 9 10 10 K/sec) cause rapid resolidification, resulting in production of non-equilibrium microstructures (nano-crystalline and metastable phases) that have significantly improved corrosion, wear, and hardness properties. We have conducted IBEST feasibility experiments with results confirming surface hardening, nanocrystaline grain formation, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning

  16. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  18. Plasma treatment for producing electron emitters

    Science.gov (United States)

    Coates, Don Mayo; Walter, Kevin Carl

    2001-01-01

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  19. Chemical durability of slag produced by thermal plasma melting of low-level miscellaneous solid wastes. Effects of slag composition

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    Low-level radioactive miscellaneous solid wastes are generated from commercial operation of nuclear power plants and will be generated from decommissioning of nuclear power plants in future. Static leaching tests were carried out in deionized water of 10degC on slag obtained by thermal plasma melting of simulating materials of the miscellaneous solids wastes with surrogate elements of radionuclides. It is found that logarithm of normalized elemental mass loss from the slag is proportional to the basicity represented by mole fractions of main structural oxides of the slag, such as SiO 2 , Al 2 O 3 , CaO, FeO and MgO. The range of static leaching rates from the slag is determined based on the above results and the basicity range of the miscellaneous solid wastes. Then we compared the leaching rates form the slag and from high level waste glasses. On these grounds, we concluded that the slag obtained by thermal plasma melting of miscellaneous solid wastes can stabilize radio-nuclides in it by no means inferior to the high level waste glasses. (author)

  20. Optimization of cathodic arc deposition and pulsed plasma melting techniques for growing smooth superconducting Pb photoemissive films for SRF injectors

    Science.gov (United States)

    Nietubyć, Robert; Lorkiewicz, Jerzy; Sekutowicz, Jacek; Smedley, John; Kosińska, Anna

    2018-05-01

    Superconducting photoinjectors have a potential to be the optimal solution for moderate and high current cw operating free electron lasers. For this application, a superconducting lead (Pb) cathode has been proposed to simplify the cathode integration into a 1.3 GHz, TESLA-type, 1.6-cell long purely superconducting gun cavity. In the proposed design, a lead film several micrometres thick is deposited onto a niobium plug attached to the cavity back wall. Traditional lead deposition techniques usually produce very non-uniform emission surfaces and often result in a poor adhesion of the layer. A pulsed plasma melting procedure reducing the non-uniformity of the lead photocathodes is presented. In order to determine the parameters optimal for this procedure, heat transfer from plasma to the film was first modelled to evaluate melting front penetration range and liquid state duration. The obtained results were verified by surface inspection of witness samples. The optimal procedure was used to prepare a photocathode plug, which was then tested in an electron gun. The quantum efficiency and the value of cavity quality factor have been found to satisfy the requirements for an injector of the European-XFEL facility.

  1. A novel cupping-assisted plasma treatment for skin disinfection

    Science.gov (United States)

    Xiong, Zilan; Graves, David B.

    2017-02-01

    A novel plasma treatment method/plasma source called cupping-assisted plasma treatment/source for skin disinfection is introduced. The idea combines ancient Chinese ‘cupping’ technology with plasma sources to generate active plasma inside an isolated, pressure-controlled chamber attached to the skin. Advantages of lower pressure include reducing the threshold voltage for plasma ignition and improving the spatial uniformity of the plasma treatment. In addition, with reduced pressure inside the cup, skin pore permeability might be increased and it improves attachment of the plasma device to the skin. Moreover, at a given pressure, plasma-generated active species are restricted inside the cup, raising local reactive species concentration and enhancing the measured surface disinfection rate. A surface micro-discharge (SMD) device is used as an example of a working plasma source. We report discharge characteristics and disinfection efficiency as a function of pressure and applied voltage.

  2. Treatment of refractory powders by a novel, high enthalpy dc plasma

    Science.gov (United States)

    Pershin, L.; Mitrasinovic, A.; Mostaghimi, J.

    2013-06-01

    Thermophysical properties of CO2-CH4 mixtures at high temperatures are very attractive for materials processing. In comparison with argon, at the same temperature, such a mixture possesses much higher enthalpy and higher thermal conductivity. At high temperatures, CO2-CH4 mixture has a complex composition with strong presence of CO which, in the case of powder treatment, could reduce oxidation. In this work, a dc plasma torch with graphite cathode was used to study the effect of plasma gas composition on spheroidization of tungsten carbide and alumina powders. Two different gas compositions were used to generate the plasma while the torch current was kept at 300 A. Various techniques were employed to assess the average concentration of carbides and oxides and the final shape of the treated powders. Process parameters such as input power and plasma gas composition allow controlling the degree of powder oxidation and spheroidization of high melting point ceramic powders.

  3. Treatment of refractory powders by a novel, high enthalpy dc plasma

    International Nuclear Information System (INIS)

    Pershin, L; Mitrasinovic, A; Mostaghimi, J

    2013-01-01

    Thermophysical properties of CO 2 –CH 4 mixtures at high temperatures are very attractive for materials processing. In comparison with argon, at the same temperature, such a mixture possesses much higher enthalpy and higher thermal conductivity. At high temperatures, CO 2 –CH 4 mixture has a complex composition with strong presence of CO which, in the case of powder treatment, could reduce oxidation. In this work, a dc plasma torch with graphite cathode was used to study the effect of plasma gas composition on spheroidization of tungsten carbide and alumina powders. Two different gas compositions were used to generate the plasma while the torch current was kept at 300 A. Various techniques were employed to assess the average concentration of carbides and oxides and the final shape of the treated powders. Process parameters such as input power and plasma gas composition allow controlling the degree of powder oxidation and spheroidization of high melting point ceramic powders. (paper)

  4. Aluminum deoxidation equilibria and inclusion modification mechanism by calcium treatment of stainless steel melts

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Kim, Dong Sik; Kim, Yong Hwan; Lee, Sang Beom

    2005-01-01

    A thermodynamic equilibrium between aluminum and oxygen along with the inclusion morphology in Fe-16%Cr stainless steel was investigated to understand the fundamentals of aluminum deoxidation technology for ferritic stainless steels. Further, the effects of calcium addition on the changes in chemistry and morphology of inclusions were discussed. The measured results for aluminum-oxygen equilibria exhibit relatively good agreement with the calculated values, indicating that the introduction of the first- and second-order interaction parameters, recently reported, is reasonable to numerically express aluminum deoxidation equilibrium in a ferritic stainless steel. In the composition of dissolved aluminum content greater than about 60 ppm, pure alumina particles were observed, while the alumino-manganese silicates containing Cr 2 O 3 were appeared at less than 20 mass ppm of dissolved aluminum. The formation of calcium aluminate inclusions after Ca treatment could be discussed based on the thermodynamic equilibrium with calcium, aluminum, and oxygen in the steel melts. In the composition of steel melt with relatively high content of calcium and low aluminum, the log(X CaO /X Al 2 O 3 ) of inclusions linearly increases with increasing the log [a Ca /a Al 2 ·a O 2 ] with the slope close to unity. However, the slope of the line is significantly lower than the expected value in the composition of steel melt with relatively low calcium and high aluminum contents

  5. Influence of transglutaminase treatment on the physicochemical, rheological, and melting properties of ice cream prepared from goat milk

    Directory of Open Access Journals (Sweden)

    Hatice Şanlidere Aloğlu

    2018-01-01

    Full Text Available This study was conducted to evaluate the effects of the transglutaminase enzyme on the physicochemical characteristics, overrun, melting resistance, rheological and sensorial properties of ice cream made from goat’s milk. Different enzyme units (0.5, 1, 2, and 4 U/g milk protein and treatment times (20 min and 60 min were applied to determine the optimum process conditions. Treatment of the transglutaminase in the ice cream mix significantly affected the rheological and melting properties of the ice cream samples. The samples prepared with higher enzyme units and enzyme-treatment times showed higher melting resistance, consistency index, and viscoelastic modulus (G’ than the ice cream mix. The correlation coefficient between melting resistance and viscoelastic modulus was found to be high (0.76. The apparent viscosity of all samples decreased with increasing the shear rate, indicating that all samples exhibited non-Newtonian shear thinning flow behavior. The sensory, overrun, and physicochemical properties of samples were not affected by the enzyme treatment. This study showed that treatment times and enzyme units are essential factors in the processing of the transglutaminase enzyme for improving the rheological and melting properties of ice cream mixes. Another significant result was that desired melting resistance could be achieved for ice cream with lower stabilizer and fat content.

  6. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    International Nuclear Information System (INIS)

    Finucane, K.G.; Campbell, B.E.

    2006-01-01

    AMEC's GeoMelt R In-Container Vitrification (ICV) TM has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  7. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    Energy Technology Data Exchange (ETDEWEB)

    Witwer, Keith; Woosley, Steve; Campbell, Brett [Kurion, Inc., GeoMelt Division, 3015 Horn Rapids Road, Richland, Washington (United States); Wong, Martin; Hill, Joanne [AMEC Inc., Birchwood Park, 601 Faraday Street, Birchwood, Warrington, WA3 6GN (United Kingdom)

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers, plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not

  8. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  9. TREATMENT OF PRIMARY PLASMA CELL LEUKAEMIA

    Directory of Open Access Journals (Sweden)

    Peter Černelč

    2003-04-01

    Full Text Available Background. The author describes long-term survival in 3 patients with primary plasma cell leukaemia (PL after different therapeutic regimen and maintenance treatment with interferon alpha (INF.Patients and treatment. In a 52-year-old male patient, a partial remission of PL was achieved after 6 months of treatment with melphalan and prednisone. The patient did not consent to stem cell transplantation (SCT. An 86-year-old female patient with PL achieved a complete remission after 6 months of treatment with vincristine, doxorubicin and dexamethasone. A 31-year-old male patient experienced a complete remission of PL after 6 months of treatment with cyclophosphamide, vincristine, doxorubicin, methilprednisone, followed by autologous SCT. All three patients were placed on maintenance therapy with INF-2b (Intron A 3 × 106 IU given subcutaneously on two days per week. In the 52-year-old man, the remission lasted 9 months and in the woman 23 months, whereupon they developed a relapse with signs of disseminated plasmacytoma. In both patients the former chemotherapy was applied again, resulting in a slight improvement. The man died 37 months and the woman 43 months after the diagnosis of PL, while the youngest patient has been in complete remission for 82 months.Conclusions. Long remission achieved in our patients confirmed the favourable effect of INF in terms of prolongation of the remission duration in this patients. The effect of maintenance treatment with INF is usually directly dependent on the degree of remission induced by different therapeutic regimen.

  10. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  11. fabrics induced by cold plasma treatments

    Indian Academy of Sciences (India)

    Some selective cold plasma processing modify specific surface properties of ... obtain information on the chemical and physical processing involved in ... charges of suitable gases. such plasma species can give rise to several concurrent.

  12. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform......A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  13. Magnetic hysteresis properties of nanocrystalline (Nd,Ho)-(Fe,Co)-Balloy after melt spinning, severe plastic deformation and subsequentheat treatment

    Czech Academy of Sciences Publication Activity Database

    Tereshina, I. S.; Pelevin, I.A.; Tereshina, Evgeniya; Burkhanov, G.S.; Rogacki, K.; Miller, M.; Kudrevatykh, N. V.; Markin, P.E.; Volegov, A.S.; Grechishkin, R.M.; Dobatkin, S.V.; Schultz, L.

    2016-01-01

    Roč. 681, Oct (2016), s. 555-560 ISSN 0925-8388 Institutional support: RVO:68378271 Keywords : high coercive magnetic materials * multistage treatment * melt spinning * severe plastic deformation * heat treatment Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.133, year: 2016

  14. Correlation vs. Causation: The Effects of Ultrasonic Melt Treatment on Cast Metal Grain Size

    Directory of Open Access Journals (Sweden)

    J. B. Ferguson

    2014-10-01

    Full Text Available Interest in ultrasonic treatment of liquid metal has waxed and waned for nearly 80 years. A review of several experiments representative of ultrasonic cavitation treatment of Al and Mg alloys shows that the theoretical mechanisms thought to be responsible for grain refinement are (1 cavitation-induced increase in melting temperature predicted by the Clausius-Clapeyron equation and (2 cavitation-induced wetting of otherwise unwetted insoluble particles. Neither of these theoretical mechanisms can be directly confirmed by experiment, and though they remain speculative, the available literature generally assumes that one or the other or both mechanisms are active. However, grain size is known to depend on temperature of the liquid, temperature of the mold, and cooling rate of the entire system. From the reviewed experiments, it is difficult to isolate temperature and cooling rate effects on grain size from the theoretical effects. Ultrasonic treatments of Al-A356 were carried out to isolate such effects, and though it was found that ultrasound produced significant grain refinement, the treatments also significantly chilled the liquid and thereby reduced the pouring temperature. The grain sizes attained closely correlated with pouring temperature suggesting that ultrasonic grain refinement is predominantly a result of heat removal by the horn and ultrasonic stirring.

  15. Plasma treatment of mammalian vascular cells : A quantitative description

    NARCIS (Netherlands)

    Kieft, IE; Darios, D; Roks, AJM; Stoffels, E

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  16. Plasma treatment of mammalian vascular cells: a quantitative description

    NARCIS (Netherlands)

    Kieft, I.E.; Darios, D.; Roks, A.J.M.; Stoffels - Adamowicz, E.

    2005-01-01

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  17. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Tomaz [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Stockel, Jan; Varju, Jozef; Panek, Radomir [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Ze Slovankou 3, Praha 8 (Czech Republic); Balat-Pichelin, Marianne, E-mail: marianne.balat@promes.cnrs.fr [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font Romeu Odeillo (France)

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni{sub 60}Cr{sub 30}Mo{sub 10}Ni{sub 4}Nb{sub 1}) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr{sub 2}O{sub 4} compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al{sub 2}O{sub 3} crystals.

  18. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Science.gov (United States)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez; Gyergyek, Tomaz; Stockel, Jan; Varju, Jozef; Panek, Radomir; Balat-Pichelin, Marianne

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni60Cr30Mo10Ni4Nb1) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr2O4 compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al2O3 crystals.

  19. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    International Nuclear Information System (INIS)

    Chen, Shih-Cheng; Chang, Ting-Chang; Chen, Wei-Ren; Lo, Yuan-Chun; Wu, Kai-Ting; Sze, S.M.; Chen, Jason; Liao, I.H.; Yeh, Fon-Shan

    2010-01-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  20. Study of plasma-material surface interaction using Langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2009-06-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisoloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  1. Study of plasma-material surface interaction using langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2012-01-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisiloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  2. Fracture behaviour of a magnesium–aluminium alloy treated by selective laser surface melting treatment

    International Nuclear Information System (INIS)

    Taltavull, C.; López, A.J.; Torres, B.; Rams, J.

    2014-01-01

    Highlights: • β-Mg 17 Al 12 presents fragile fracture behavior decreasing the ductility of AZ91D. • SLSM treatment only modifies the β-Mg 17 Al 12 phase whilst α-Mg remains unaltered. • In-situ SEM bending test allows to observe and data record of the crack propagation. • Eutectic microestructure of modified β-phase presents ductile fracture behaviour. • Fracture toughness of laser treated specimen is 40% greater than as-received alloy. - Abstract: Fracture behaviour of AZ91D magnesium alloy is dominated by the brittle fracture of the β-Mg 17 Al 12 phase so its modification is required to improve the toughness of this alloy. The novel laser treatment named as Selective Laser Surface Melting (SLSM) is characterized by the microstructural modification of the β-Mg 17 Al 12 phase without altering the α-Mg matrix. We have studied the effect of the selected microstructural modification induced by the laser treatment in the fracture behaviour of the alloy has been studied using in situ Scanning Electron Microscopy bending test. This test configuration allows the in situ observation of the crack progression and the record of the load–displacement curve. It has been observed that the microstructural modification introduced by SLSM causes an increase of 40% of the fracture toughness of the treated specimen. This phenomenon can be related with the transition from brittle to ductile fracture behaviour of the laser modified β-phase

  3. Formal treatment of some low-temperature properties of melting solid helium-3

    International Nuclear Information System (INIS)

    Goldstein, L.

    1979-01-01

    Recent observations of the low-field-strength paramagnetic susceptibility of melting solid 3 He indicate its Curie--Weiss-type behavior at temperatures T> or approx. =5 mK. These require an identical temperature behavior of the magnetic melting-pressure shift over the same temperature range. Melting-pressure-shift measurements should thus independently confirm the observed temperature behavior of the susceptibility and yield, in addition, the curie constant of melting solid 3 He. Using the theoretical value of this constant in the low- or moderate-field-strength melting-pressure-shift formula, the calculated shifts appear to be currently accessible to measurements with acceptable accuracy at T> or approx. =5 mK. The inverse problem of determination of the paramagnetic moment or magnetization of melting solid 3 He from melting-pressure shifts may be solved on the basis of a differential magnetothermodynamic relation without significant limitations on the applied external magnetic field strength or on the temperature range. Helium-3 melting-pressure and temperature measurements in the presence of a constant and uniform magnetic field of known strength should enable, within the above formalism, the determination of the magnetic phase diagram of solid 3 He at melting down to the lowest experimentally accessible temperatures. This approach may supplement other independent methods of magnetic phase-boundary-line determinations of solid 3 He

  4. Plasma treatment of INEL soil contaminated with heavy metals

    International Nuclear Information System (INIS)

    Detering, B.A.; Batdorf, J.A.

    1992-01-01

    INEL soil spiked with inorganic salts of chromium, lead, mercury, silver, and zinc was melted in a 150 kW plasma furnace to produce a glassy slag product. This glassy slag is an environmentally safe waste form. In order to reduce the melting temperature of the soil, sodium carbonate was added to half of the test batches. Random sample from each batch of glassy slag product were analyzed by an independent laboratory for total metals concentration and leachability of metals via the Environmental Protection Agency (EPA) toxicity characterization leaching procedure (RCLP) tests. These tests showed the residual metals were very tightly bound to the slag matrix and were within EPA TCLP limits under these test conditions. Additionally, scanning electron microscopy (SEM) and emissions dispersive spectroscopy (EDS) analysis of the vitrified soil also confirmed that the added metals present in the vitrified soil were totally contained in the crystalline phase as distinct oxide crystallites

  5. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    Science.gov (United States)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  7. How does the surface treatment change the cytocompatibility of implants made by selective laser melting?

    Science.gov (United States)

    Matouskova, Lucie; Ackermann, Michal; Horakova, Jana; Capek, Lukas; Henys, Petr; Safka, Jiri

    2018-04-01

    The study investigates the potential for producing medical components via Selective Laser Melting technology (SLM). The material tested consisted of the biocompatible titanium alloy Ti6Al4V. The research involved the testing of laboratory specimens produced using SLM technology both in vitro and for surface roughness. The aim of the research was to clarify whether SLM technology affects the cytocompatibility of implants and, thus, whether SLM implants provide suitable candidates for medical use following zero or minimum post-fabrication treatment. Areas covered: The specimens were tested with an osteoblast cell line and, subsequently, two post-treatment processes were compared: non-treated (as-fabricated) and glass-blasted. Interactions with MG-63 cells were evaluated by means of metabolic MTT assay and microscope techniques (scanning electron microscopy, fluorescence microscopy). Surface roughness was observed on both the non-treated and glass-blasted SLM specimens. Expert Commentary: The research concluded that the glass-blasting of SLM Ti6Al4V significantly reduces surface roughness. The arithmetic mean roughness Ra was calculated at 3.4 µm for the glass-blasted and 13.3 µm for the non-treated surfaces. However, the results of in vitro testing revealed that the non-treated surface was better suited to cell growth.

  8. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al–Si alloys

    International Nuclear Information System (INIS)

    Samuel, A.M.; Garza-Elizondo, G.H.; Doty, H.W.; Samuel, F.H.

    2015-01-01

    Highlights: • High tensile strength applying the melt thermal treatment process. • Enhanced ductility by changing the Si particle morphology. • Control of the dissolution and precipitation of Mg 2 Si phase. • Establishment of the fracture mechanisms of Al–Si–Mg alloys. - Abstract: The present study was performed on an Al–7%Si–0.35%Mg alloy (A356 alloy) with the primary objective of improving the alloy performance through modification of the microstructure. Ultimate tensile strength (UTS) can be improved by the addition of strontium (Sr), superheating or Sr modified melt thermal treatment. The melt thermal treatment process alone has no apparent influence on the UTS. Both Sr-modified and Sr-modified melt thermal treatment can help to improve the percentage elongation of A356 alloy castings. A higher percentage elongation can be reached at a higher cooling rate. The effect of solution heat treatment on the tensile properties of various A356.2 alloy castings can be summed up as follows: (i) the yield strength of the A356.2 castings is significantly improved after 8 h solution heat treatment due to the precipitation of Mg 2 Si, (ii) the yield strength remains more or less the same with further increase in solution treatment time to 80 h, and (iii) the UTS is greatly improved within the first 8 h of solution heat treatment and continues up to 80 h, where this improvement is attributed to Mg 2 Si precipitation, dissolution of silicon within the Al-matrix and change in the Si particle morphology (spheroidization). The ductility of the A356.2 alloys can also be considerably enhanced with solution heat treatment (e.g. from ∼6% in the non-modified casting in the as-cast condition to ∼10% after 80 h solution treatment)

  9. TREATMENT OF REFRACTORY OXIDES IN HF-PLASMA REACTORS

    OpenAIRE

    Bakhvalov , A.; Dresvin , S.; Levitskaya , T.; Paskalov , G.; Philippov , A.

    1990-01-01

    Results of theoretical and experimental studies of SiO2 NaBSi, MgO, W and some other materials treatment in induction type high-frequency plasma under atmospheric pressure are presented. Key study objective - optimization of plasma installation operating modes with maximum efficiency -0.6 -0.7 ; spheroidization extent -90-99%, size of treated particles 1-500 mkm. Diagnostics of thermophysical and gasodynamical plasma reactor specifications has been presented.

  10. Improving the efficiency of plasma heat treatment of metals

    International Nuclear Information System (INIS)

    Gabdrakhmanov, Az T; Israphilov, I H; Galiakbarov, A T; Samigullin, A D; Gabdrakhmanov, Al T

    2016-01-01

    This paper proposes an effective way of the plasma hardening the surface layer at the expense combined influence of the plasma jet and a cold air flow. After that influence occurs a distinctive by plasma treatment microstructure with increased microhardness (an increase of 35%) and depth. There is proposed an improved design of the vortex tube for receiving the air flow with a temperature of 20 C to - 120C. (paper)

  11. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  12. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  13. Surface Modification of Polymeric Materials by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    E.F. Castro Vidaurre

    2002-03-01

    Full Text Available Low-temperature plasma treatment has been used in the last years as a useful tool to modify the surface properties of different materials, in special of polymers. In the present work low temperature plasma was used to treat the surface of asymmetric porous substrates of polysulfone (PSf membranes. The main purpose of this work was to study the influence of the exposure time and the power supplied to argon plasma on the permeability properties of the membranes. Three rf power levels, respectively 5, 10 and 15 W were used. Treatment time ranged from 1 to 50 min. Reduction of single gas permeability was observed with Ar plasma treatments at low energy bombardment (5 W and short exposure time (20 min. Higher power and/or higher plasma exposition time causes a degradation process begins. The chemical and structural characterization of the membranes before and after the surface modification was done by AFM, SEM and XPS.

  14. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    Science.gov (United States)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  15. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    Science.gov (United States)

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  16. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae-Gil; Lee, Sang-Hwa [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Lee, Jung-Moo, E-mail: jmoolee@kims.re.kr [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Cho, Young-Hee [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Kim, Su-Hyeon [Metal Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of); Yoon, Woon-Ha [Implementation Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508 (Korea, Republic of)

    2016-07-04

    The effects of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-12.2Si-3.3Cu-2.4Ni-0.8Mg-0.1Fe (wt%) piston alloy were systematically investigated. Rigid colonies consisting of primary Si, eutectic Si, Mg{sub 2}Si and various aluminides (ε-Al{sub 3}Ni, δ-Al{sub 3}CuNi, π-Al{sub 8}FeMg{sub 3}Si{sub 6}, γ-Al{sub 7}Cu{sub 4}Ni, Q-Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and θ-Al{sub 2}Cu) were observed in the as-cast alloys. The sizes of the secondary phases, eutectic cell and grain were significantly decreased by UST because of the enhanced nucleation of each phase under ultrasonic irradiation. The yield strength, tensile strength and elongation at 25 °C were significantly improved by UST mainly because of the refinement of the microstructures. Both tensile strength and elongation at 350 °C were also improved by UST despite the unchanged yield strength.

  17. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  18. Ambient plasma treatment of silicon wafers for surface passivation recovery

    Science.gov (United States)

    Ge, Jia; Prinz, Markus; Markert, Thomas; Aberle, Armin G.; Mueller, Thomas

    2017-08-01

    In this work, the effect of an ambient plasma treatment powered by compressed dry air on the passivation quality of silicon wafers coated with intrinsic amorphous silicon sub-oxide is investigated. While long-time storage deteriorates the effective lifetime of all samples, a short ambient plasma treatment improves their passivation qualities. By studying the influence of the plasma treatment parameters on the passivation layers, an optimized process condition was identified which even boosted the passivation quality beyond its original value obtained immediately after deposition. On the other hand, the absence of stringent requirement on gas precursors, vacuum condition and longtime processing makes the ambient plasma treatment an excellent candidate to replace conventional thermal annealing in industrial heterojunction solar cell production.

  19. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... cancer treatment is also called biotherapy or immunotherapy. Immunomodulators are a type of biologic therapy. Thalidomide , lenalidomide , and pomalidomide are immunomodulators used to treat multiple myeloma and other plasma ...

  20. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    Czech Academy of Sciences Publication Activity Database

    Prysiazhnyi, V.; Slavíček, P.; Mikmeková, Eliška; Klíma, M.

    2016-01-01

    Roč. 18, č. 4 (2016), s. 430-437 ISSN 1009-0630 Institutional support: RVO:68081731 Keywords : atmospheric pressure plasma * plasma jet * aluminium * surface treatment * surface processing * chemical precleaning Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.830, year: 2016

  1. Air plasma treatment of liquid covered tissue: long timescale chemistry

    Science.gov (United States)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

  2. Hot deformed anisotropic nanocrystalline NdFeB based magnets prepared from spark plasma sintered melt spun powders

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y.H.; Huang, Y.L. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2013-09-01

    Highlights: • Microstructure evolution and its influence on the magnetic properties were investigated. • The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. • The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. • Magnetic properties and temperature coefficient of coercivity are indeed very promising without heavy rare earth elements. -- Abstract: Anisotropic magnets were prepared by spark plasma sintering (SPS) followed by hot deformation (HD) using melt-spun powders as the starting material. Good magnetic properties with the remanence J{sub r} > 1.32 T and maximum of energy product (BH){sub max} > 303 kJ/m{sup 3} have been obtained. The microstructure evolution during HD and its influence on the magnetic properties were investigated. The fine grain zone and coarse grain zone formed in the SPS showed different deformation behaviors. The microstructure also had an important effect on the temperature coefficients of coercivity. A strong domain-wall pinning model was valid to interpret the coercivity mechanism of the HDed magnets. The increase of stray field and weakening of domain-wall pinning effects were the main reasons of the decrease of the coercivity with increasing the compression ratio. The influences of non-uniform plastic deformation on the microstructure and magnetic properties were investigated. The polarization characteristics of HDed magnets were demonstrated. It was found out that the HDed magnets had better corrosion resistance than the counterpart sintered magnet.

  3. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    International Nuclear Information System (INIS)

    Chae, Jae Ou; Knak, S P; Knak, A N; Koo, H J; Ravi, V

    2006-01-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases

  4. Oyster Shell Recycling and Bone Waste Treatment Using Plasma Pyrolysis

    Science.gov (United States)

    Jae, Ou Chae; Knak, S. P.; Knak, A. N.; Koo, H. J.; Ravi, V.

    2006-11-01

    Investigations on the recycling of oyster shells and bone waste treatment using the plasma pyrolysis technique are presented in this paper. A arc based plasma torch operated at 25 kW was employed for the experiments. Fresh oyster shells were recycled using the plasma torch to convert them to a useful product such as CaO. Bone waste was treated to remove the infectious organic part and to vitrify the inorganic part. The time required for treatment in both cases was significantly short. Significant reduction in the weight of the samples was observed in both cases.

  5. Air plasma treatment of liquid covered tissue: long timescale chemistry

    International Nuclear Information System (INIS)

    Lietz, Amanda M; Kushner, Mark J

    2016-01-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma–liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed. (paper)

  6. Inclusion Modification by Al Deoxidation and Ca Treatment in Ti Containing 18%Cr Stainless Steel Melts

    International Nuclear Information System (INIS)

    Kim, Kyung-Ho; Do, Kyung-Hyo; Choi, Won-Jin; Kim, Dong-Sic; Pak, Jong-Jin; Lee, Sang-Beum

    2013-01-01

    Titanium is added to ferritic stainless steels in the range of 0.2-0.3 wt% to improve corrosion resistance and mechanical properties. However, titanium is very reactive with oxygen in liquid steel, and it can cause an unstable Ti yield. Therefore, titanium is generally added after the aluminum deoxidation process in the ladle. However, the inclusions formed by Al-Ti deoxidation can cause nozzle clogging and various defects in final products. Calcium injection can be carried out to resolve these problems. In this study, two different deoxidation patterns of Al→Ti and Al→Ti→Ca additions were carried out in Fe-18%Cr ferritic stainless steel melt at 1873 K. The melt composition and the inclusion morphology changes during the deoxidation process were investigated. With Al→Ti addition, the Al_2O_3 inclusions changed to dual phase Al_2O_3-TiO_X inclusions with time by the reaction with Ti in the melt. The morphology of the inclusions in the melt finally changed to a polygonal type indicating that the inclusions were solid phase. The size and number of inclusions in the melt did not change with time after Ti addition. With of Al→Ti→Ca addition, Ca reacted with Al_2O_3-TiO_X inclusions to form liquid CaOAl_2O_3 inclusions embedded with solid CaTiO_3 particles. The morphology of the inclusions in the melt were observed to be spherical and polygonal. The size of inclusions in the melt increased and the number of inclusions decreased by the coalescence of liquid inclusions.

  7. Hydrogen plasma treatment of silicon dioxide for improved silane deposition.

    Science.gov (United States)

    Gupta, Vipul; Madaan, Nitesh; Jensen, David S; Kunzler, Shawn C; Linford, Matthew R

    2013-03-19

    We describe a method for plasma cleaning silicon surfaces in a commercial tool that removes adventitious organic contamination and enhances silane deposition. As shown by wetting, ellipsometry, and XPS, hydrogen, oxygen, and argon plasmas effectively clean Si/SiO2 surfaces. However, only hydrogen plasmas appear to enhance subsequent low-pressure chemical vapor deposition of silanes. Chemical differences between the surfaces were confirmed via (i) deposition of two different silanes: octyldimethylmethoxysilane and butyldimethylmethoxysilane, as evidenced by spectroscopic ellipsometry and wetting, and (ii) a principal components analysis (PCA) of TOF-SIMS data taken from the different plasma-treated surfaces. AFM shows no increase in surface roughness after H2 or O2 plasma treatment of Si/SiO2. The effects of surface treatment with H2/O2 plasmas in different gas ratios, which should allow greater control of surface chemistry, and the duration of the H2 plasma (complete surface treatment appeared to take place quickly) are also presented. We believe that this work is significant because of the importance of silanes as surface functionalization reagents, and in particular because of the increasing importance of gas phase silane deposition.

  8. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe; Grigoras, Constantin

    2011-01-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  9. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments.

    Science.gov (United States)

    Pattanayak, Deepak K; Fukuda, A; Matsushita, T; Takemoto, M; Fujibayashi, S; Sasaki, K; Nishida, N; Nakamura, T; Kokubo, T

    2011-03-01

    Selective laser melting (SLM) is a useful technique for preparing three-dimensional porous bodies with complicated internal structures directly from titanium (Ti) powders without any intermediate processing steps, with the products being expected to be useful as a bone substitute. In this study the necessary SLM processing conditions to obtain a dense product, such as the laser power, scanning speed, and hatching pattern, were investigated using a Ti powder of less than 45 μm particle size. The results show that a fully dense plate thinner than 1.8 mm was obtained when the laser power to scanning speed ratio was greater than 0.5 and the hatch spacing was less than the laser diameter, with a 30 μm thick powder layer. Porous Ti metals with structures analogous to human cancellous bone were fabricated and the compressive strength measured. The compressive strength was in the range 35-120 MPa when the porosity was in the range 75-55%. Porous Ti metals fabricated by SLM were heat-treated at 1300 °C for 1h in an argon gas atmosphere to smooth the surface. Such prepared specimens were subjected to NaOH, HCl, and heat treatment to provide bioactivity. Field emission scanning electron micrographs showed that fine networks of titanium oxide were formed over the whole surface of the porous body. These treated porous bodies formed bone-like apatite on their surfaces in a simulated body fluid within 3 days. In vivo studies showed that new bone penetrated into the pores and directly bonded to the walls within 12 weeks after implantation into the femur of Japanese white rabbits. The percentage bone affinity indices of the chemical- and heat-treated porous bodies were significantly higher than that of untreated implants. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

    Directory of Open Access Journals (Sweden)

    Gerrit M. Ter Haar

    2018-01-01

    Full Text Available Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α’/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  11. The development of mobile melt-dilute technology for the treatment of former Soviet Union research reactor fuel

    International Nuclear Information System (INIS)

    Sell, D.A.; Howden, E.A.; Allen, K.J.; Marsden, K.; Westphal, B.R.; Peacock, H.B.; Iyer, N.C.; Fisher, D.L.; Adams, T.M.; Sindelar, R.L.

    2004-01-01

    United States Government funded national security nuclear non-proliferation projects have historically focused on power reactor spent fuel assemblies that contain weapons usable materials. More recently concern and emphasis have been focused on the spent fuel located at the many research reactor facilities spread throughout the Former Soviet Union. The need exists for a mobile system that can be deployed at these research reactors for the purpose of ensuring that the nuclear materials cannot be used for weapons development. On-site application of the Mobile Melt-Dilute (MMD) process offers an economical method for converting weapons usable Former Soviet Union high enriched uranium research reactor fuel to a safe and secure low enriched uranium ingot. The process will generate little waste and will be performed in a sealed canister that will contain all off-gas products generated during the melting process, eliminating the need for an off-gas treatment system. The process is modular, reusable, and readily portable to a desired reactor site or storage location. The storage canisters containing the melted ingot can be configured for compatibility with the fuel storage technologies currently available or returned to Russia for reprocessing under the Russian Research Reactor Fuel Return Program. The objective of the MMD Project is to develop the mobile melt and dilute technology in preparation for active deployment at Russian built and fueled research reactors. The project has just completed conceptual design and is beginning proof of principle experiments and integrated prototype design of the furnace and canister. (authors)

  12. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.

    Science.gov (United States)

    Ter Haar, Gerrit M; Becker, Thorsten H

    2018-01-17

    Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed at developing post-process annealing strategies to improve tensile behaviour of selective laser melting produced Ti-6Al-4V parts. Optical and electron microscopy was used to study α grain morphology as a function of annealing temperature, hold time and cooling rate. Quasi-static uniaxial tensile tests were used to measure tensile behaviour of different annealed parts. It was found that elongated α'/α grains can be fragmented into equiaxial grains through applying a high temperature annealing strategy. It is shown that bi-modal microstructures achieve a superior tensile ductility to current heat treated selective laser melting produced Ti-6Al-4V samples.

  13. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  14. Thermocapillary convection of melts and its role in laser-plasma synthesis and laser-induced amorphism

    Science.gov (United States)

    Uglov, A. A.; Smurov, I. Iu.; Gus'kov, A. G.; Semakhin, S. A.

    1987-06-01

    The role of thermocapillary convection in mass transfer processes in melts is investigated analytically and experimentally using vacuum-arc melted Ni63-Ta37 and Cu50-Zr50 alloys. It is shown that thermocapillary convection not only leads to the transfer of alloying components to the deeper layers of the melt but also may produce, in certain cases, a significant temperature redistribution in the liquid phase. Convective transfer dominates over conduction when the product of Re and Pr is greater than 1. In the experiments, the structure of the amorphous and crystalline layers in the solidified alloys is found to be in qualitative agreement with the structure of a thermocapillary vortex.

  15. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells.

    Science.gov (United States)

    Schneider, Christin; Arndt, Stephanie; Zimmermann, Julia L; Li, Yangfang; Karrer, Sigrid; Bosserhoff, Anja-Katrin

    2018-06-01

    Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death, and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.

  16. Influence of Plasma Treatments on the Frictional Performance of Rubbers

    NARCIS (Netherlands)

    Wolthuizen, D.J.; Martinez-Martinez, D.; Pei, Y.T.; Hosson, J.Th.M. De

    The frictional performance of several rubbers after pulsed-DC plasma treatments has been examined. In all cases, the treated rubbers showed better performance than the corresponding untreated ones. Stronger treatments, in terms of longer process time and/or higher substrate bias voltage, led to

  17. Plasma Adenosine Deaminase Enzyme Reduces with Treatment of ...

    African Journals Online (AJOL)

    olayemitoyin

    Plasma Adenosine Deaminase Enzyme Reduces with Treatment of Pulmonary Tuberculosis in Nigerian Patients: Indication for. Diagnosis and Treatment Monitoring. Ige O.a, Edem V.F.b and Arinola O.G.b,*. aDepartment of Medicine, University of Ibadan, Ibadan, Nigeria b Department of Chemical Pathology,. University of ...

  18. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon....

  19. Study of Ag and PE interface after plasma treatment

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Bočan, Jiří; Švorčík, V.; Pavlík, J.; Strýhal, Z.; Sajdl, P.

    2008-01-01

    Roč. 5, č. 4 (2008), s. 964-967 ISSN 1862-6351. [9th International workshop on plasma based ion implantation and deposition. Leipzig, 02.09.2007-06.09.2007] R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : RBS and AFM study * metal-polymer interface * plasma treatment Subject RIV: JJ - Other Materials

  20. Treatment of polymer surfaces in plasma Part I. Kinetic model

    International Nuclear Information System (INIS)

    Tabaliov, N A; Svirachev, D M

    2006-01-01

    The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances

  1. Plasma treatment of diamond nanoparticles for dispersion improvement in water

    International Nuclear Information System (INIS)

    Yu Qingsong; Kim, Young Jo; Ma, Hongbin

    2006-01-01

    Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water

  2. Atmospheric pressure H20 plasma treatment of polyester cord threads

    International Nuclear Information System (INIS)

    Simor, M.; Krump, H.; Hudec, I.; Rahel, J.; Brablec, A.; Cernak, M.

    2004-01-01

    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H 2 0 plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H 2 0 plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength (Authors)

  3. Formation of metallic Si and SiC nanoparticles from SiO2 particles by plasma-induced cathodic discharge electrolysis in chloride melt

    International Nuclear Information System (INIS)

    Tokushige, M.; Tsujimura, H.; Nishikiori, T.; Ito, Y.

    2013-01-01

    Silicon nanoparticles are formed from SiO 2 particles by conducting plasma-induced cathodic discharge electrolysis. In a LiCl–KCl melt in which SiO 2 particles were suspended at 450 °C, we obtained Si nanoparticles with diameters around 20 nm. During the electrolysis period, SiO 2 particles are directly reduced by discharge electrons on the surface of the melt just under the discharge, and the deposited Si atom clusters form Si nanoparticles, which leave the surface of the original SiO 2 particle due to free spaces caused by a molar volume difference between SiO 2 and Si. We also found that SiC nanoparticles can be obtained using carbon anode. Based on Faraday's law, the current efficiency for the formation of Si nanoparticles is 70%

  4. Comparative microstructural and corrosion development of VCrNiCoFeCu equiatomic multicomponent alloy produced by induction melting and spark plasma sintering

    Science.gov (United States)

    Fazakas, É.; Heczel, A.; Molnár, D.; Varga, B.; Zadorozhnyy, V.; Vida, Á.

    2018-03-01

    The present study focuses on the corrosion behavior of a single-phase FCC high entropy alloy (VCrNiCoFeCu) casted by two different methods: induction melting and spark plasma sintering. The corrosion resistance has been evaluated using immersion tests in 3.5% NaCl solution, the potentiodynamic polarization measurements and the results are compared how is dependent the corrosion rate as a function of the production methods. Our results show that induction melted sample is stable in salty environment. On the other hand, based on the changes of polarization curves, there must be an evolution of oxide films on the SPSed sample until reaching the stable oxide layer.

  5. The PERC trademark process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment

    International Nuclear Information System (INIS)

    Blutke, A.S.; Vavruska, J.S.; Serino, J.F.

    1996-01-01

    Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC)trademark treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC trademark treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream's form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment

  6. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    Science.gov (United States)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the

  7. Optimization of magnetocaloric properties of arc-melted and spark plasma-sintered LaFe{sub 11.6}Si{sub 1.4}

    Energy Technology Data Exchange (ETDEWEB)

    Shamba, P.; Morley, N.A.; Reaney, I.M.; Rainforth, W.M. [University of Sheffield, Department of Materials Science and Engineering, Sheffield (United Kingdom); Cespedes, O. [University of Leeds, School of Physics and Astronomy, Leeds (United Kingdom)

    2016-08-15

    LaFe{sub 11.6}Si{sub 1.4} alloy has been synthesized in polycrystalline form using both arc melting and spark plasma sintering (SPS). The phase formation, hysteresis loss and magnetocaloric properties of the LaFe{sub 11.6}Si{sub 1.4} alloys synthesized using the two different techniques are compared. The annealing time required to obtain the 1:13 phase is significantly reduced from 14 days (using the arc melting technique) to 30 min (using the SPS technique). The magnetic entropy change (ΔS{sub M}) for the arc-melted LaFe{sub 11.6}Si{sub 1.4} compound, obtained for a field change of 5 - 0T (decreasing field), was estimated to be 19.6 J kg{sup -1} K{sup -1}. The effective RCP at 5T of the arc-melted LaFe{sub 11.6}Si{sub 1.4} compound was determined to be 360 J kg{sup -1} which corresponds to about 88 % of that observed in Gd. A significant reduction in the hysteretic losses in the SPS LaFe{sub 11.6}Si{sub 1.4} compound was observed. The ΔS{sub M}, obtained for a field change of 5 - 0T (decreasing field), for the SPS LaFe{sub 11.6}Si{sub 1.4} compound decreases to 7.4 J kg{sup -1} K{sup -1}. The T{sub C} also shifts from 186 (arc-melted) to 230 K (SPS) and shifts the order of phase transition from first to second order, respectively. The MCE of the SPS LaFe{sub 11.6}Si{sub 1.4} compound spreads over a larger temperature range with the RCP value at 5T reaching 288 J kg{sup -1} corresponding to about 70 % of that observed in Gd. At low fields, the effective RCP values of the arc-melted and spark plasma-sintered LaFe{sub 11.6}Si{sub 1.4} compounds are comparable, thereby clearly demonstrating the potential of SPS LaFe{sub 11.6}Si{sub 1.4} compounds in low-field magnetic refrigeration applications. (orig.)

  8. Surface modification of polymer nanofibres by plasma treatment

    International Nuclear Information System (INIS)

    Wei, Q.F.; Gao, W.D.; Hou, D.Y.; Wang, X.Q.

    2005-01-01

    Polymer nanofibres have great potential for technical applications in biomaterials, filtration, composites and electronics. The surface properties of nanofibres are of importance in these applications. In this study, cold gas plasma treatment was used to modify the surface of polyamide 6 nanofibres prepared by electrospinning. The chemical nature of the nanofibre surfaces was examined by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was employed to study the surface characteristics of the fibres. The AFM results indicate a significant change in the morphology of the fibre surface before and after plasma treatment. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behaviour of the fibres. In the ESEM, relative humidity was raised to 100% to facilitate the water condensation onto fibre surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of the polyamide 6 nanofibres

  9. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    International Nuclear Information System (INIS)

    Prysiazhnyi, Vadym; Slavicek, Pavel; Klima, Milos; Mikmekova, Eliska

    2016-01-01

    This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O 2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure. (paper)

  10. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    Science.gov (United States)

    Vadym, Prysiazhnyi; Pavel, Slavicek; Eliska, Mikmekova; Milos, Klima

    2016-04-01

    This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.

  11. Microstructure and Physical Metallurgy in Melt-Dilute Treatment Technology for Al-Based Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Adams, T.M.; Peacock, H.B.

    1998-09-01

    Major challenges associated with the direct disposal of research reactor fuel in a repository include nonproliferation and criticality control, both of which may be a concern for HEU Al-SNF. Consideration must be given to the potential desirability and/or regulatory necessity of diluting the HEU SNF to below 20 percent enrichment. The probability for a criticality event as well as the issue of proliferation are greatly decreased by reducing the enrichment. The melt-dilute technology development program is focused on the development and implementation of a treatment technology for diluting HEU Al-SNF to LEU levels and qualifying this LEU Al-SNF form for geologic repository storage. An attribute of the melt-dilute process is its applicability to various types of FRR and DRR SNF

  12. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    International Nuclear Information System (INIS)

    Kan, C W; Lam, Y L; Yuen, C W M; Luximon, A; Lau, K W; Chen, K S

    2013-01-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  13. Niacin treatment increases plasma homocyst(e)ine levels.

    Science.gov (United States)

    Garg, R; Malinow, M; Pettinger, M; Upson, B; Hunninghake, D

    1999-12-01

    Studies have reported high levels of plasma homocyst(e)ine as an independent risk factor for arterial occlusive disease. The Cholesterol Lowering Atherosclerosis Study reported an increase in plasma homocyst(e)ine levels in patients receiving both colestipol and niacin compared with placebo. Thus the objective of this study was to examine the effect of niacin treatment on plasma homocyst(e)ine levels. The Arterial Disease Multiple Intervention Trial, a multicenter randomized, placebo-controlled trial, examined the effect of niacin compared with placebo on homocyst(e)ine in a subset of 52 participants with peripheral arterial disease. During the screening phase, titration of niacin dose from 100 mg to 1000 mg daily resulted in a 17% increase in mean plasma homocyst(e)ine level from 13.1 +/- 4.4 micromol/L to 15.3 +/- 5.6 micromol/L (P ine levels in the niacin group and a 7% decrease in the placebo group (P =.0001). This difference remained statistically significant at the end of follow-up at 48 weeks. Niacin substantially increased plasma homocyst(e)ine levels, which could potentially reduce the expected benefits of niacin associated with lipoprotein modification. However, plasma homocyst(e)ine levels can be decreased by folic acid supplementation. Thus further studies are needed to determine whether B vitamin supplementation to patients undergoing long-term niacin treatment would be beneficial.

  14. Test for bacterial resistance build-up against plasma treatment

    International Nuclear Information System (INIS)

    Zimmermann, J L; Shimizu, T; Li, Y-F; Morfill, G E; Schmidt, H-U; Isbary, G

    2012-01-01

    It is well known that the evolution of resistance of microorganisms to a range of different antibiotics presents a major problem in the control of infectious diseases. Accordingly, new bactericidal ‘agents’ are in great demand. Using a cold atmospheric pressure (CAP) plasma dispenser operated with ambient air, a more than five orders of magnitude inactivation or reduction of Methicillin-resistant Staphylococcus aureus (MRSA; resistant against a large number of the tested antibiotics) was obtained in less than 10 s. This makes CAP the most promising candidate for combating nosocomial (hospital-induced) infections. To test for the occurrence and development of bacterial resistance against such plasmas, experiments with Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Enterococcus mundtii) were performed. The aim was to determine quantitative limits for primary (naturally) or secondary (acquired) resistance against the plasma treatment. Our results show that E. coli and E. mundtii possess no primary resistance against the plasma treatment. By generating four generations of bacteria for every strain, where the survivors of the plasma treatment were used for the production of the next generation, a lower limit to secondary resistance was obtained. Our results indicate that CAP technology could contribute to the control of infections in hospitals, in outpatient care and in disaster situations, providing a new, fast and efficient broad-band disinfection technology that is not constrained by bacterial resistance mechanisms. (paper)

  15. Development of MHI's induction melting system for low level radio active solid waste treatment

    International Nuclear Information System (INIS)

    Murakami, Tadashi; Hashiba, Kenji; Fukui, Hiroshi; Sato, Akio; Minemoto, Masaki

    1999-01-01

    Mitsubishi Heavy Industries, Ltd., (MHI) has developed melting facilities that reduce radioactive waste volume. The system uses a high-frequency induction to separately melt nonmetallic waste in SUS containers and metallic waste. Use of system extends refractory life. To validate system feasibility, major components were tested with the following results: (1) Two 200-liter drum cans of molten solid waste are produced per work day, (2) Radioactivity in molten solid was homogeneous with a coefficient of variation ≤10%, clarifying residue properties, (3) The radioactive decontamination factor of off-gas facilities --DF=Activity to system/Activity at the system exit --exceeded 10 7 . We confirmed system to fill the requirements for molten solid waste and have the merit of high volume-reduction and long-life refractory. (author)

  16. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Science.gov (United States)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste. Reduces volume, removes water and renders a biologically stable and safe product. The HMC compacts and reduces the trash volume as much as 90o/o greater than the current manual compaction used by the crew.The project has three primary goals or tasks. 1. Microbiological analysis of HMC hardware surfaces before and after operation. 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures. 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"

  17. Improvement of wear resistance of machine elements by plasma spraying followed by hardening in the chlorine-barium melt

    International Nuclear Information System (INIS)

    Fominykh, V.V.; Stepanov, V.V.

    1979-01-01

    Proposed is the mathematical model, allowing to choose the optimal regime of sprayed coating hardening in the BaCl 2 salt melt. The method of hardening of machine elements by spraying wear resistance coatings of the Ni-Cr-B-Si alloys is described. It is established that diffusion heating followed by coating melting in the BaCl 2 solution increases the adhesion of sprayed layer to substrate metal. The formation of intermediate intermetallic compounds of the Ni 3 Si and Ni 3 Fe types takes place as a result of diffusion of interacting material atoms and valence electron joining

  18. Process of coke less without waste treatment of direct vanadium allowing steel melting

    International Nuclear Information System (INIS)

    Lisienko, V.G.; Droujinina, O.G.; Morozova, V.A.; Ladigina, N.V.; Yusfin, Yu.S.; Parenkev, A.E.

    2003-01-01

    The development of new methods of steel production are now conducted with the purpose of energy consumption and harmful emissions reduction. The choice of technology and equipment in this case plays a marginal role. It is well known that vanadium alloying steel has increased service properties. The known classical scheme of vanadium steel melting is very power-intensive, as includes such power-intensive processes as blast furnace process and chemical processing of vanadium slag therewith sintering and by-product coke processes are accompanied by significant harmful emissions. In so doing the vanadium losses may run to 60%. In view of requests of environment protection and economical efficiency the new process of coke less without wastes processing of vanadium-bearing raw material with direct vanadium allowing of steel - LP-process is developed. Its purpose is the melting on the basis of vanadium-bearing titanomagnetite of vanadium allowing steel with increase of vanadium concentration in steel and diminution of vanadium losses without application coke and natural gas with use of any coals and carbon-bearing wastes. LP-process consists of three aggregates and corresponding processes: process of liquid-phase reduction, process of vanadium-bearing pellets metallization in the shaft furnace, and process of alloying steel melting in the arc electric furnace. The obtained results have shown, that the LP-process is more energy saving on a comparison with other methods of vanadium allowing steel production. (Original)

  19. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting

    Science.gov (United States)

    Zhang, Hu; Zhu, Haihong; Nie, Xiaojia; Qi, Ting; Hu, Zhiheng; Zeng, Xiaoyan

    2016-04-01

    The proposed paper illustrates the fabrication and heat treatment of high strength Al-Cu-Mg alloy produced by selective laser melting (SLM) process. Al-Cu-Mg alloy is one of the heat treatable aluminum alloys regarded as difficult to fusion weld. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, 3D Al-Cu-Mg parts with relative high density of 99.8% are produced by SLM from gas atomized powders. Room temperature tensile tests reveal a remarkable mechanical behavior: the samples show yield and tensile strengths of about 276 MPa and 402 MPa, respectively, along with fracture strain of 6%. The effect of solution treatment on microstructure and related tensile properties is examined and the results demonstrate that the mechanical behavior of the SLMed Al-Cu-Mg samples can be greatly enhanced through proper heat treatment. After T4 solution treatment at 540°C, under the effect of precipitation strengthening, the tensile strength and the yield strength increase to 532 MPa and 338 MPa, respectively, and the elongation increases to 13%.

  20. Toxic waste treatment with sliding centrifugal plasma reactor

    International Nuclear Information System (INIS)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S.; Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C.

    2008-01-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  1. Treatment of mixed wastes by thermal plasma discharges

    International Nuclear Information System (INIS)

    Diaz A, L.V.

    2007-01-01

    The present study has as purpose to apply the technology of thermal plasma in the destruction of certain type of waste generated in the ININ. As first instance, origin, classification and disposition of the radioactive waste generated in the ININ is identified. Once identified the waste, the waste to treat is determined based on: the easiness of treating him with plasma, classification and importance. Later on, a substance or compound settles down (sample model) that serves as indicative of the waste for its physical-chemical characteristics, this is made because in the Thermal Plasma Applications Laboratory is not had the license to work with radioactive material. The sample model and the material to form the vitreous matrix are characterized before and after the treatment in order to evaluating their degradation and vitrification. During the treatment by means of the thermal plasma, the appropriate conditions are determined for the degradation and vitrification of the waste. Also, it is carried out an energy balance in the system to know the capacity to fuse the material depending the transfer of existent heat between the plasma and the material to treat. Obtaining favorable results, it thought about to climb in the project and by this way to help to solve one of the environmental problems in Mexico, as they are it the mixed wastes. (Author)

  2. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chi-wai Kan

    2018-01-01

    Full Text Available 100% grey cotton knitted fabric contains impurities and yellowness and needs to be prepared for processing to make it suitable for coloration and finishing. Therefore, conventionally 100% grey cotton knitted fabric undergoes a process of scouring and bleaching, which involves the use of large amounts of water and chemicals, in order to remove impurities and yellowness. Due to increased environmental awareness, pursuing a reduction of water and chemicals is a current trend in textile processing. In this study, we explore the possibility of using atmospheric pressure plasma as a dry process to treat 100% grey cotton knitted fabric (single jersey and interlock before processing. Experimental results reveal that atmospheric pressure plasma treatment can effectively remove impurities from 100% grey cotton knitted fabrics and significantly improve its water absorption property. On the other hand, if 100% grey cotton knitted fabrics are pretreated with plasma and then undergo a normal scouring process, the treatment time is reduced. In addition, the surface morphological and chemical changes in plasma-treated fabrics were studied and compared with the conventionally treated fabrics using scanning electron microscope (SEM, Fourier-transform infrared spectroscopy-attenuated total reflection (FTIR-ATR and X-ray photoelectron spectroscopy (XPS. The decrease in carbon content, as shown in XPS, reveal the removal of surface impurities. The oxygen-to-carbon (O/C ratios of the plasma treated knitted fabrics reveal enhanced hydrophilicity.

  3. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R. [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstrasse 49, 52062 Aachen (Germany)

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with

  4. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-01-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10 17 m −3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond

  5. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  6. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng

    2016-01-01

    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  7. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  8. HIV diversity and drug resistance from plasma and non-plasma analytes in a large treatment programme in western Kenya.

    Science.gov (United States)

    Kantor, Rami; DeLong, Allison; Balamane, Maya; Schreier, Leeann; Lloyd, Robert M; Injera, Wilfred; Kamle, Lydia; Mambo, Fidelis; Muyonga, Sarah; Katzenstein, David; Hogan, Joseph; Buziba, Nathan; Diero, Lameck

    2014-01-01

    Antiretroviral resistance leads to treatment failure and resistance transmission. Resistance data in western Kenya are limited. Collection of non-plasma analytes may provide additional resistance information. We assessed HIV diversity using the REGA tool, transmitted resistance by the WHO mutation list and acquired resistance upon first-line failure by the IAS-USA mutation list, at the Academic Model Providing Access to Healthcare (AMPATH), a major treatment programme in western Kenya. Plasma and four non-plasma analytes, dried blood-spots (DBS), dried plasma-spots (DPS), ViveST(TM)-plasma (STP) and ViveST-blood (STB), were compared to identify diversity and evaluate sequence concordance. Among 122 patients, 62 were treatment-naïve and 60 treatment-experienced; 61% were female, median age 35 years, median CD4 182 cells/µL, median viral-load 4.6 log10 copies/mL. One hundred and ninety-six sequences were available for 107/122 (88%) patients, 58/62 (94%) treatment-naïve and 49/60 (82%) treated; 100/122 (82%) plasma, 37/78 (47%) attempted DBS, 16/45 (36%) attempted DPS, 14/44 (32%) attempted STP from fresh plasma and 23/34 (68%) from frozen plasma, and 5/42 (12%) attempted STB. Plasma and DBS genotyping success increased at higher VL and shorter shipment-to-genotyping time. Main subtypes were A (62%), D (15%) and C (6%). Transmitted resistance was found in 1.8% of plasma sequences, and 7% combining analytes. Plasma resistance mutations were identified in 91% of treated patients, 76% NRTI, 91% NNRTI; 76% dual-class; 60% with intermediate-high predicted resistance to future treatment options; with novel mutation co-occurrence patterns. Nearly 88% of plasma mutations were identified in DBS, 89% in DPS and 94% in STP. Of 23 discordant mutations, 92% in plasma and 60% in non-plasma analytes were mixtures. Mean whole-sequence discordance from frozen plasma reference was 1.1% for plasma-DBS, 1.2% plasma-DPS, 2.0% plasma-STP and 2.3% plasma-STB. Of 23 plasma

  9. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma

    Energy Technology Data Exchange (ETDEWEB)

    Averroes, A., E-mail: aulia.a.aa@m.titech.ac.jp [Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sekiguchi, H. [Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sakamoto, K. [Street Design Corporation, 6-9-30 Shimo odanaka, Kawasaki-shi, Kanagawa 211-0041 (Japan)

    2011-11-15

    Highlights: {yields} We use atmospheric microwave air plasma to treat ceramic fiber and stainless fiber as asbestos alike micro fiber particle. {yields} Spheroidization of certain type of ceramic fiber and stainless fiber particle. {yields} The evaluation of the treated particles by the fiber vanishing rate. {yields} Good fiber vanishing rate is observed for fiber particle with diameter below 10 {mu}m. {yields} The treatment of pure asbestos and a suggestion of the use of this method for the treatment airborne asbestos. - Abstract: Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica = 1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica = 7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as {eta}, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in {eta}. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment.

  10. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma

    International Nuclear Information System (INIS)

    Averroes, A.; Sekiguchi, H.; Sakamoto, K.

    2011-01-01

    Highlights: → We use atmospheric microwave air plasma to treat ceramic fiber and stainless fiber as asbestos alike micro fiber particle. → Spheroidization of certain type of ceramic fiber and stainless fiber particle. → The evaluation of the treated particles by the fiber vanishing rate. → Good fiber vanishing rate is observed for fiber particle with diameter below 10 μm. → The treatment of pure asbestos and a suggestion of the use of this method for the treatment airborne asbestos. - Abstract: Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica = 1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica = 7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment.

  11. The innovative plasma tilting furnace for treatment of radioactive and problematic chemical waste. From paper to reality

    International Nuclear Information System (INIS)

    Deckers, Jan; Gonzalez, Alicia; Cano, David

    2014-01-01

    The operation and maintenance of nuclear power plants, the nuclear fuel cycle in general, research laboratories and pharmaceutical, medical and industrial facilities generate large amounts of low-level radioactive wastes which, along with the historical radioactive wastes from past nuclear activities, needs to be treated to minimise the volume to be disposed of. Plasma technology offers a very effective way of treating this waste with a high volume reduction factor (VRF), free from organics, liquids and moisture, and meets without doubt the acceptance criteria for safe storage and disposal. By means of a plasma beam of approximately 5000 deg. C, the inorganic materials are melted into a glassy slag, containing the radioactive isotopes while the organic material is gasified and afterwards oxidized in an afterburner and purified in an off-gas cleaning system. This paper describes the principles of plasma, the different waste feed systems, off gas treatment, operational experience and future plasma plants. In particular a new full-scale plasma facility for the treatment of radioactive waste at the Kozloduy Nuclear Power Plant in Bulgaria is described. This facility is designed and now under construction by the Joint Venture Iberdrola Ingenieria y Construccion and Belgoprocess. (authors)

  12. Formation and treatment of materials with microwave plasmas

    International Nuclear Information System (INIS)

    Camps, E.; Garcia, J.L.; Romero, S.

    1996-01-01

    The plasmas technology occupies day by day a more important place in the development of new materials, with properties superior to those developed with conventional techniques. Some processes have already been established and are exploited to industrial level. These basically include the plasmas that are generated within discharges of continuous current, as well as those with alternate fields of frequency in the range of radiofrequency (13.6 MHz usually). Nevertheless, the need to increase the efficiency of the work of plasma used, has given as a result the study of plasmas generated to higher frequencies (2.45 GHz), known as m icrowave plasmas . An important development in the treatment of materials at low pressures and temperature, are those known as microwave discharges of the type of cyclotron resonances of the electrodes, that is, a discharge submerged into a magnetic field. These discharges have the advantage of not including electrodes, they can generate plasmas with higher density of ionized and excited particles, can work under low pressures (∼ 1m Torr), and have higher ionizing coefficient (∼ 1%), than other kind of discharge. With the aim to study the accuracy in work of the microwave discharges in magnetic fields, the National Institute of Nuclear Research (ININ) designed and built a gadget of this type which is actually used in the formation of thin films of the diamond type and of amorphous silicon. At the same time, experiments for nitrating steels, in order to establish the mechanisms that would allow to build samples, with surfaces stronger and resistant to corrosion, at short-time treatments, than those needed, when using other kinds of discharges. (Author)

  13. Effect of modification melt treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy

    International Nuclear Information System (INIS)

    Narayan Prabhu, K.; Ravishankar, B.N.

    2003-01-01

    For successful modelling of the solidification process, a reliable heat transfer boundary condition data is required. These boundary conditions are significantly influenced by the casting and mould parameters. In the present work, the effect of sodium modification melt treatment on casting/chill interfacial heat transfer during upward solidification of an Al-13% Si alloy against metallic chills is investigated using thermal analysis and inverse modelling techniques. In the presence of chills, modification melt treatment resulted in an increase in the cooling rate of the solidifying casting near the casting/chill interfacial region. The corresponding interfacial heat flux transients and electrical conductivities are also found to be higher. This is attributed to (i) improvement in the casting/chill interfacial thermal contact condition brought about by the decrease in the surface tension of the liquid metal on addition of sodium and (ii) increase in the electronic heat conduction in the initial solidified shell due to change in the morphology of silicon from a acicular type to a fine fibrous structure and increase in the ratio of the modification rating to the secondary dendrite arm spacing

  14. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Divya, V.D., E-mail: dv272@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Moreno, R.; Messé, O.M.D.M.; Barnard, J.S. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Baker, S.; Illston, T. [Materials Solutions, Unit 8, Great Western Business Park, McKenzie Way, Worcester WR4 9GN (United Kingdom); Stone, H.J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-04-15

    The selective laser melting of high temperature alloys is of great interest to the aerospace industry as it offers the prospect of producing more complex geometries than can be achieved with other manufacturing methods. In this study, the microstructure of the nickel-based superalloy, CM247LC, has been characterised following selective laser melting and after a post deposition heat treatment below the γ′ solvus temperature. In the as-deposited state, scanning electron microscopy with electron backscatter diffraction revealed a fine, cellular microstructure with preferential alignment of 〈001〉 along the build direction. A high dislocation density was seen at the periphery of the cells, indicating substantial localised deformation of the material. Fine primary MC carbides were also observed in the inter-cellular regions. High-resolution transmission electron microscopy identified the occurrence of very fine γ′ precipitates, approximately 5 nm in diameter, dispersed within the gamma phase. After heat treatment, the elongated cell colonies were observed to partially coalesce, accompanied by a decrease in dislocation density, producing columnar grains along the build direction. Cuboidal γ′ precipitates approximately 500 nm in diameter were observed to form in the recrystallised grains, accompanied by larger γ′ precipitates on the grain boundaries.

  15. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment

    International Nuclear Information System (INIS)

    Divya, V.D.; Muñoz-Moreno, R.; Messé, O.M.D.M.; Barnard, J.S.; Baker, S.; Illston, T.; Stone, H.J.

    2016-01-01

    The selective laser melting of high temperature alloys is of great interest to the aerospace industry as it offers the prospect of producing more complex geometries than can be achieved with other manufacturing methods. In this study, the microstructure of the nickel-based superalloy, CM247LC, has been characterised following selective laser melting and after a post deposition heat treatment below the γ′ solvus temperature. In the as-deposited state, scanning electron microscopy with electron backscatter diffraction revealed a fine, cellular microstructure with preferential alignment of 〈001〉 along the build direction. A high dislocation density was seen at the periphery of the cells, indicating substantial localised deformation of the material. Fine primary MC carbides were also observed in the inter-cellular regions. High-resolution transmission electron microscopy identified the occurrence of very fine γ′ precipitates, approximately 5 nm in diameter, dispersed within the gamma phase. After heat treatment, the elongated cell colonies were observed to partially coalesce, accompanied by a decrease in dislocation density, producing columnar grains along the build direction. Cuboidal γ′ precipitates approximately 500 nm in diameter were observed to form in the recrystallised grains, accompanied by larger γ′ precipitates on the grain boundaries.

  16. Modifications in SnS thin films by plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, H., E-mail: hm@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico); Avellaneda, D. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-02-01

    The present study shows the modifications of structural, optical and electrical characteristics that occur in tin sulfide (SnS) thin films treated in air and in nitrogen plasma at different pressure conditions. The films were obtained by the chemical bath deposition method, which results in SnS thin films with an orthorhombic crystalline structure, band gap (E{sub g}) of 1.1-1.2 eV, and electrical conductivities ({sigma}) in the order of 10{sup -6} {Omega}{sup -1}cm{sup -1}. The films treated with air plasma at pressures between 1 and 4 Torr, showed the presence of SnS{sub 2}, Sn{sub 2}S{sub 3}, and SnO{sub 2} phases, within the band gap values ranging from 0.9 to 1.5 eV. On the other hand, the films treated with nitrogen plasma presented the same phases, but showed a significant modification in the electrical conductivity, increasing from 10{sup -6} {Omega}{sup -1}cm{sup -1} (as-deposited) up to 10{sup -2}-10{sup -3} {Omega}{sup -1}cm{sup -1} (plasma treated). This result is a suitable range of conductivity for the improvement of the solar cells with SnS as an absorber material. Also, emission spectroscopy measurements were carried out in both air and nitrogen plasma treatments.

  17. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    Science.gov (United States)

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O 2 ), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10 1 -10 6 CFU/cm 2 ). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10 4 CFU/cm 2 inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO 2 mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  19. Surface improvement of EPDM rubber by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, J H [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Silva Sobrinho, A S da [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Maciel, H S [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Dutra, J C N [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Massi, M [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Mello, S A C [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Schreiner, W H [Physics Department, UFPR, Centro Politecnico, 80060-000 Curitiba, P.R. (Brazil)

    2007-12-21

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N{sub 2}/Ar and N{sub 2}/H{sub 2}/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  20. Surface improvement of EPDM rubber by plasma treatment

    International Nuclear Information System (INIS)

    Moraes, J H; Silva Sobrinho, A S da; Maciel, H S; Dutra, J C N; Massi, M; Mello, S A C; Schreiner, W H

    2007-01-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N 2 /Ar and N 2 /H 2 /Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber

  1. Surface improvement of EPDM rubber by plasma treatment

    Science.gov (United States)

    Moraes, J. H.; da Silva Sobrinho, A. S.; Maciel, H. S.; Dutra, J. C. N.; Massi, M.; Mello, S. A. C.; Schreiner, W. H.

    2007-12-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N2/Ar and N2/H2/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  2. Cathode material and pulsed plasma treatment influence on the microstructure and microhardness of high-chromium cast iron surface

    Directory of Open Access Journals (Sweden)

    Юлія Геннадіївна Чабак

    2016-11-01

    Full Text Available The article presents an analysis of the cathode material and the pulse plasma treatment mode influence on the surface microstructure and microhardness of high chrome (15% Cr cast iron. The methods of metallographic analysis and microhardness measurements were used. It has been shown that pulsed plasma treatment at 4 kV voltage with the use of the electro-axial thermal accelerator results in surface modification with high microhardness 950-1050 HV50, and in the formation of the coating due to the transfer of the electrodes material. The specific features of using different cathode materials have been systematized. It has been found that graphite electrodes are not recommended to be used due to their low strength and fracture under plasma pulses. In case of using tungsten cathode a coating of small thickness (20-30 microns and having cracks has been formed on the specimen surface. The most expedient is to apply the electrodes with low melting point (such as killed St.3, which provides a high-quality state of treated surface and formation the protective crack-free coating of 80-100 microns thick. It has been found that as a result of the plasma pulsed treatment the enrichment of coating with carbon is likely to occur that results in microhardness increase. The prospects of this technology as well as its shortcomings have been described

  3. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  4. Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment

    Science.gov (United States)

    Almansoori, Alaa; Majewski, Candice; Rodenburg, Cornelia

    2017-11-01

    Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.

  5. Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Science.gov (United States)

    Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John

    2013-01-01

    One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment

  6. A laser-treatment condition of plasma-sprayed zirconia thermal barrier coatings on nickel-base superalloy substrate

    International Nuclear Information System (INIS)

    Kondo, Yasuo; Fukaya, Kiyoshi; Miyamoto, Yoshiaki

    1987-06-01

    In order to seal the surface pores, two plasma-sprayed zirconia coatings (containing 8 wt.% CaC 2 and 8 wt.% Y 2 O 3 ) of about 200 microns thickness were partially melted with a CO 2 laser. Preliminary experiment had shown that the laser beam with a power density of 35 W/mm 2 could melt plasma-sprayed zirconia to depth of 50 to 80 microns at a scanning speed of about 300 mm/min. There was little porosity in the laser-treated region. However, straiations and mud-flat cracking of about 50 microns in depth were produced by the laser-treatment. Numerous fine particles of a few microns diameter were formed on the laser-treated surface, and microcracks were propagated between these fine particles. In the CaC 2 /ZrO 2 ceramic coating system, calcium content of the laser-treated region became less compared with that of the nontreated region. While, in the Y 2 O 3 /ZrO 2 system, yttrium distribution in the laser-treated area was more uniform than that in the nontreated area. This indicates that Y 2 O 3 /ZrO 2 system is more stable than CaC 2 /ZrO 2 system to laser treatment. (author)

  7. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  8. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  9. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Vrancken, Bey; Thijs, Lore; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2012-01-01

    Highlights: ► Responses of SLM-produced and wrought Ti6Al4V to heat treatment are compared. ► Temperature is found to be the controlling parameter for treatments in the α + β range. ► Ductility could be improved by a factor of 85%, from 7.27% to 13.59%. ► An optimal heat treatment for SLM produced Ti6Al4V is proposed. - Abstract: The present work shows that optimization of mechanical properties via heat treatment of parts produced by Selective Laser Melting (SLM) is profoundly different compared to conventionally processed Ti6Al4V. In order to obtain optimal mechanical properties, specific treatments are necessary due to the specific microstructure resulting from the SLM process. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, the effect of several heat treatments on the microstructure and mechanical properties of Ti6Al4V processed by SLM is studied. A comparison is made with the effect of these treatments on hot forged and subsequently mill annealed Ti6Al4V with an original equiaxed microstructure. For SLM produced parts, the original martensite α′ phase is converted to a lamellar mixture of α and β for heat treating temperatures below the β-transus (995 °C), but features of the original microstructure are maintained. Treated above the β-transus, extensive grain growth occurs and large β grains are formed which transform to lamellar α + β upon cooling. Post treating at 850 °C for 2 h, followed by furnace cooling increased the ductility of SLM parts to 12.84 ± 1.36%, compared to 7.36 ± 1.32% for as-built parts.

  10. Plasma treatments of wool fiber surface for microfluidic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Boo, Jin-Hyo, E-mail: jhboo@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Yun, Sang H., E-mail: shy@kth.se [Institute of Basic Science, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of)

    2015-09-15

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For this reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.

  11. Plasma and Ocular Prednisolone Disposition after Oral Treatment in Cats

    Directory of Open Access Journals (Sweden)

    María J. Del Sole

    2013-01-01

    Full Text Available Objective. To evaluate the plasma and aqueous humor disposition of prednisolone after oral administration in cats. Methods. Six cats were administered with a single oral dose of prednisolone (10 mg. Blood and aqueous humor samples were serially collected after drug administration. Prednisolone concentrations in plasma and aqueous humor were measured at 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 h after administration by a high-performance liquid chromatographic analytical method developed and validated for this purpose. Results. Mean ± standard error (SE of maximum plasma prednisolone concentration (300.8 ± 67.3 ng/mL was reached at 1 h after administration. Prednisolone was distributed to the aqueous humor reaching a mean peak concentration of 100.9 ± 25.5 ng/mL at 1.25 h after administration. The mean ± SE systemic and aqueous humor exposure (AUC was 553.3 ± 120.0 ng*h/mL and 378.8 ± 64.9 ng*h/mL, respectively. A high AUCaqueous humor/AUCplasma ratio was observed (0.68 ± 0.13. The mean half-life time of elimination in plasma and aqueous humor was 0.87 ± 0.16 h and 2.25 ± 0.44 h, respectively. Clinical Significance. The observed high ratio between aqueous humor and plasma prednisolone concentrations indicates that extensive penetration of prednisolone to the anterior segment of the eye may occur. This is the first step that contributes to the optimization of the pharmacological therapeutics for the clinical treatment of uveitis.

  12. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    International Nuclear Information System (INIS)

    Lai Jiangnan; Sunderland, Bob; Xue Jianming; Yan, Sha; Zhao Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang Yugang

    2006-01-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity

  13. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-05-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  14. Solid state alloying by plasma nitriding and diffusion annealing treatment for austenitic stainless steel

    International Nuclear Information System (INIS)

    Pinedo, C.E.; Vatavuk, J.; Oliveira, S.D. de; Tschiptschin, A.P.

    1999-01-01

    Nitrogen has been added to stainless steels to improve mechanical strength and corrosion resistance. High nitrogen steel production is limited by high gas pressure requirements and low nitrogen solubility in the melt. One way to overcome this limitation is the addition of nitrogen in solid state because of its higher solubility in austenite. However, gas and salt bath nitriding have been done at temperatures around 550 C, where nitrogen solubility in the steel is still very low. High temperature nitriding has been, thus proposed to increase nitrogen contents in the steel but the presence of oxide layers on top of the steel is a barrier to nitrogen intake. In this paper a modified plasma nitriding process is proposed. The first step of this process is a hydrogen plasma sputtering for oxide removal, exposing active steel surface improving nitrogen pickup. This is followed by a nitriding step where high nitrogen contents are introduced in the outermost layer of the steel. Diffusion annealing is then performed in order to allow nitrogen diffusion into the core. AISI 316 austenitic stainless steel was plasma nitrided and diffusion annealed at 1423K, for 6 hours, with 0.2 MPa nitrogen pressure. The nitrided steel presented ∝60 μm outermost compact layer of (Fe,Cr) 3 N and (Fe,Cr) 4 N with 11 wt.% N measured by surface depth profiling chemical analysis - GDS system. During the annealing treatment the nitride layer was dissolved and nitrogen diffused to the core of the sample leaving more even nitrogen distribution into the steel. Using this technique one-millimetre thick sample were obtained having high nitrogen content and uniform distribution through the thickness. (orig.)

  15. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    International Nuclear Information System (INIS)

    Li Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  16. NUMERICAL SIMULATION OF THE MELTING OF PARTICLES INJECTED IN A PLASMA JET SIMULACIÓN NUMÉRICA DE LA FUSIÓN DE PARTÍCULAS INYECTADAS EN UN JET DE PLASMA

    Directory of Open Access Journals (Sweden)

    Jorge Romero Rojas

    2009-12-01

    Full Text Available This work presents the numerical simulation of the melting process of a particle injected in a plasma jet. The plasma process is nowadays applied to produce thin coatings on metal mechanical components with the aim of improving the surface resistance to different phenomena such as corrosion, temperature or wear. In this work we studied the heat transfer including phase-change of a bi-layer particle composed of a metallic iron core coated with ceramic alumina, inside a plasma jet. The model accounted for the environmental conditions along the particle path. The numerical simulation of this problem was performed via a temperature-based phase-change finite element formulation. The results obtained with this methodology satisfactorily described the melting process of the particle. Particularly, the results of the present work illustrate the phase change evolution in a bi-layer particle during its motion in the plasma jet. Moreover, the numerical trends agreed with those previously reported in the literature and computed with a finite volume enthalpy based formulation.Este trabajo presenta la simulación numérica de la fusión de una partícula inyectada en un jet de plasma. Este proceso es hoy en día aplicado para producir capas o recubrimientos delgados sobre componentes mecánicos metálicos, con el objetivo de mejorar su resistencia superficial frente a diferentes fenómenos tales como corrosión, temperatura y desgaste. En este trabajo se estudió la transferencia de calor incluyendo cambio de fase, de una partícula bimaterial compuesta por un centro metálico de hierro recubierto por una capa protectora de alúmina cerámica, dentro de un jet de plasma. El modelo numérico tomó en cuenta las condiciones ambientales a lo largo de toda su trayectoria en el jet. La simulación numérica de este problema fue realizada mediante una formulación de elementos finitos con cambio de fase que retiene como variable única la temperatura. Los

  17. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Directory of Open Access Journals (Sweden)

    Suzan Bsat

    2015-04-01

    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  18. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability.

    Science.gov (United States)

    Bsat, Suzan; Yavari, Saber Amin; Munsch, Maximilian; Valstar, Edward R; Zadpoor, Amir A

    2015-04-08

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200-300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  19. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  20. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...

  1. Effect of heat treatment on mechanical properties and microstructure of selective laser melting 316L stainless steel

    Science.gov (United States)

    Kamariah, M. S. I. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, F.; Ismail, M. H.; Sharif, S.

    2017-10-01

    Selective Laser Melting (SLM) has been one of the preferred Additive Manufacturing process to fabricate parts due to its merits in terms of design freedom, lower material waste and faster production when compare to the conventional manufacturing processes. However, due to the thermal gradient experienced during the process, the parts are exposed to the residual stress that leads to parts distortion. This work presents the effect of heat treatments on the micro-hardness of 316L stainless steel parts. In current study, SLM has been employed to fabricate 316L stainless steel compacts. Different heat treatments of 650°C, 950°C, and 1100°C for 2 hours were applied on the compacts. Hardness test were performed on the as-built and heat-treated compacts. The relationship between the microstructures and micro-hardness were discussed in this paper. The results revealed that the micro-hardness of the as-built compacts is between 209.0 and 212.2 HV, which is much higher than the heattreated compacts.

  2. Emerging melt quality control solution technologies for aluminium melt

    Directory of Open Access Journals (Sweden)

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  3. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Sever, K. [Department of Mechanical Engineering, Dokuz Eylul University, 35100, Izmir (Turkey); Erden, S. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey); Guelec, H.A. [Department of Food Engineering, Yuzuncu Yil University, 65250, Van (Turkey); Seki, Y., E-mail: yoldas.seki@deu.edu.tr [Department of Chemistry, Dokuz Eylul University, 35160, Buca, Izmir (Turkey); Sarikanat, M. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey)

    2011-09-15

    Highlights: {yields} To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. {yields} LF and RF plasma systems at different plasma powers were used for treatment. {yields} In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  4. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    International Nuclear Information System (INIS)

    Sever, K.; Erden, S.; Guelec, H.A.; Seki, Y.; Sarikanat, M.

    2011-01-01

    Highlights: → To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. → LF and RF plasma systems at different plasma powers were used for treatment. → In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  5. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    Science.gov (United States)

    Prater, Tracie; Tilson, Will; Jones, Zack

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future

  6. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tucho, Wakshum M., E-mail: wakshum.m.tucho@uis.no [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Cuvillier, Priscille [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway); Sjolyst-Kverneland, Atle [Roxar/Emerson Process Management, POB 112, 4065 Stavanger (Norway); Hansen, Vidar [Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, N-4036 Stavanger (Norway)

    2017-03-24

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  7. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment

    International Nuclear Information System (INIS)

    Tucho, Wakshum M.; Cuvillier, Priscille; Sjolyst-Kverneland, Atle; Hansen, Vidar

    2017-01-01

    The microstructure of Additive Manufactured (AM) Inconel 718 in general and Selective Laser Melting (SLM), in particular is different from the material produced by conventional methods due to the rapid solidification process associated with the former. As a result, the widely adapted standard solution heat treatment temperature (<1100 °C) for conventional material is found to be not high enough for materials fabricated with SLM method in order to dissolve Laves and other microsegregated phases for releasing the ageing constituents (Nb, Ti, Al) sufficiently into the alloy matrix. In this study, sample of Inconel 718 fabricated with SLM method were solution heat-treated to 1100 °C or 1250 °C at different hold times to investigate the dissolution of macro- and micro-segregated precipitates. Investigations of microstructure and segregation in as-printed and solution heat-treated states have been studied using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM). Measurement of material hardness was performed with Vickers hardness tests. The microstructure of the as-printed parts exhibit non-columnar grains, but contain well-shaped columnar/cellular sub-grains. The intergranular boundaries are decorated with high density of dislocations and segregated particles. Tremendous stress relief and grain coarsening were observed with solution heat treatment. In particular, at 1250 °C annealing, the sub-grains, including precipitates and dislocation networks along the sub-grain boundaries, were entirely dissolved. However, the 1100/1250 °C solution heat treatment scheme could not dissolve microsegregated precipitates and carbides completely. Details of the analysis on microstructure, dissolution of precipitates and hardness are presented.

  8. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries. Copyright © 2015. Published by Elsevier Ltd.

  9. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  10. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  11. Method for Cleaning Laser-Drilled Holes on Printed Wiring Boards by Plasma Treatment

    Science.gov (United States)

    Hirogaki, Toshiki; Aoyama, Eiichi; Minagi, Ryu; Ogawa, Keiji; Katayama, Tsutao; Matsuoka, Takashi; Inoue, Hisahiro

    We propose a new method for cleaning blind via holes after laser drilling of PWBs using oxygen plasma treatment. This report dealt with three kinds of PWB materials: epoxy resin and two kinds of aramid fiber reinforced plastics (AFRP: Technora or Kevlar fiber reinforcement). We observed the drilled holes after plasma treatment using both an optical and a scanning electric microscope (SEM). It was confirmed that adequate etching took place in the drilled holes by plasma treatment. We also compared the hole wall and hole bottom after plasma treatment with ones after chemical etching. It was clear that there was no damage to the aramid fiber tip on the hole wall, and that a smooth roughness of the hole wall was obtained by means of plasma treatment. As a result, we demonstrated that the plasma treatment is effective in cleaning the laser drilled holes of PWBs.

  12. Long and short term effects of plasma treatment on meristematic plant cells

    Science.gov (United States)

    Puač, N.; Živković, S.; Selaković, N.; Milutinović, M.; Boljević, J.; Malović, G.; Petrović, Z. Lj.

    2014-05-01

    In this paper, we will present results of plasma treatments of meristematic cells of Daucus carota. Plasma needle was used as an atmospheric pressure/gas composition source of non-equilibrium plasma in all treatments. Activity of antioxidant enzymes superoxide dismutase and catalase was measured immediately after plasma treatment and after two weeks following the treatment. Superoxide dismutase activity was increased in samples immediately after the plasma treatment. On the other hand, catalase activity was much higher in treated samples when measured two weeks after plasma treatment. These results show that there is a direct proof of the triggering of signal transduction in the cells by two reactive oxygen species H2O2 and O2-, causing enzyme activity and short and long term effects even during the growth of calli, where the information is passed to newborn cells over the period of two weeks.

  13. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas; Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter

    2010-01-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log 10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  14. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  15. Effect of carvedilol treatment on plasma neuropeptides levels in patients with essential hypertension

    International Nuclear Information System (INIS)

    Li Qian; Cheng Guanghua; Yang Jian

    2008-01-01

    Objective: To study the changes of plasma neuropeptide Y(NPY) and neurotension (NT) levels in patients with essential hypertension after treatment with carvedilol. Methods: Blood pressure and plasma NPY and NT concentrations (with RIA) were measured in 56 patients with essential hypertension both before and after carvedilol therapy (5-10 mg bid) for 3 months as well as 30 controls. Results: Before treatment plasma NPY levels were significantly higher in hypertensive patients than those in controls (P<0.01), but plasma NT levels were significantly lower (P also <0.01). After carvedilol treatment, blood pressure and plasma NPY levels were reduced significantly and plasma NT levels were increased significantly. Conclusion: Treatment with carvedilol results in the correction of plasma concentrations of NPY and NT in patients with essential hypertension, the effect may be related to blood pressure decrease. (authors)

  16. Thermal plasma treatment of cell-phone waste : preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Ruj, B. [Central Mechanical Engineering Research Inst., Durgapur (India). Thermal Engineering Group; Chang, J.S.; Li, O.L. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Pietsch, G. [RWTH Aachen Univ., Aachen (Germany)

    2010-07-01

    The cell phone is an indispensable service facilitator, however, the disposal and recycling of cell phones is a major problem. While the potential life span of a mobile phone, excluding batteries, is over 10 years, most of the users upgrade their phones approximately four times during this period. Cell phone waste is significantly more hazardous than many other municipal wastes as it contains thousands of components made of toxic chemicals and metals like lead, cadmium, chromium, mercury, polyvinyl chlorides (PVC), brominated flame retardants, beryllium, antimony and phthalates. Cell phones also use many expensive rare metals. Since cell phones are made up of plastics, metals, ceramics, and trace other substances, primitive recycling or disposal of cell phone waste to landfills and incinerators creates irreversible environmental damage by polluting water and soil, and contaminating air. In order to minimize releases into the environment and threat to human health, the disposal of cell phones needs to be managed in an environmentally friendly way. This paper discussed a safer method of reducing the generation of syngas and hydrocarbons and metal recovery through the treatment of cell phone wastes by a thermal plasma. The presentation discussed the experiment, with particular reference to sample preparation; experimental set-up; and results four samples with different experimental conditions. It was concluded that the plasma treatment of cell phone waste in reduced condition generates gaseous components such as hydrogen, carbon monoxide, and hydrocarbons which are combustible. Therefore, this system is an energy recovery system that contributes to resource conservation and reduction of climate change gases. 5 refs., 2 tabs., 2 figs.

  17. Method of melting solid waste

    International Nuclear Information System (INIS)

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  18. Effects of oxygen plasma treatment on domestic aramid fiber III reinforced bismaleimide composite interfacial properties

    Science.gov (United States)

    Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze

    2017-12-01

    Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.

  19. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  20. Inducing Stable α + β Microstructures during Selective Laser Melting of Ti-6Al-4V Using Intensified Intrinsic Heat Treatments

    Directory of Open Access Journals (Sweden)

    Pere Barriobero-Vila

    2017-03-01

    Full Text Available Selective laser melting is a promising powder-bed-based additive manufacturing technique for titanium alloys: near net-shaped metallic components can be produced with high resource-efficiency and cost savings [...

  1. Inducing Stable α + β Microstructures during Selective Laser Melting of Ti-6Al-4V Using Intensified Intrinsic Heat Treatments.

    Science.gov (United States)

    Barriobero-Vila, Pere; Gussone, Joachim; Haubrich, Jan; Sandlöbes, Stefanie; Da Silva, Julio Cesar; Cloetens, Peter; Schell, Norbert; Requena, Guillermo

    2017-03-07

    Selective laser melting is a promising powder-bed-based additive manufacturing technique for titanium alloys: near net-shaped metallic components can be produced with high resource-efficiency and cost savings [...].

  2. Metallurgical plasma torches

    International Nuclear Information System (INIS)

    Shapovalov, V.A.; Latash, Yu.V.

    2000-01-01

    The technological equipment for the plasma heating of metals, plasma melting and plasma treatment of the surface is usually developed on the basis of are plasma torches using direct or alternating current. The reasons which partly restrict the industrial application of the plasma torches are the relatively short service life of the electrode (cathode) on which the arc is supported, and the contamination of the treated metal with the products of failure of the electrode. The aim of this work was to determine the reasons for the occurrence of negative phenomena observed in the process of service of plasma torches, and propose suitable approaches to the design of metallurgical plasma torches characterised by a long service life

  3. Gas plasma treatment: a new approach to surgery?

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Kieft, I.E.; Sladek, R.E.J.; Laan, van der E.P.; Slaaf, D.W.

    2004-01-01

    In this survey we analyse the status quo of gas plasma applications in medical sciences. Plasma is a partly ionized gas, which contains free charge carriers (electrons and ions), active radicals, and excited molecules. So-called nonthermal plasmas are particularly interesting, because they operate

  4. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  5. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration

    Directory of Open Access Journals (Sweden)

    Natalie R. Danna

    2015-01-01

    Full Text Available This study assessed the osseointegrative effects of atmospheric pressure plasma (APP surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti and calcium phosphate (CaP. Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total was placed in one radius of each of the seven male beagles for three weeks, and one implant from each group was placed in the contralateral radius for six weeks. After sacrifice, bone-to-implant contact (BIC and bone area fraction occupancy (BAFO were assessed. X-ray photoelectron spectroscopy showed decreased surface levels of carbon and increased Ti and oxygen, and calcium and oxygen, posttreatment for Ti and CaP surfaces, respectively. There was a significant (P<0.001 increase in BIC for APP-treated textured Ti surfaces at six weeks but not at three weeks or for CaP surfaces. There were no significant (P=0.57 differences for BAFO between treated and untreated surfaces for either material at either time point. This suggests that air-based APP surface treatment may improve osseointegration of textured Ti surfaces but not CaP surfaces. Studies optimizing APP parameters and applications are warranted.

  6. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Science.gov (United States)

    Hou, Guoliang; An, Yulong; Zhao, Xiaoqin; Zhou, Huidi; Chen, Jianmin; Li, Shuangjian; Liu, Xia; Deng, Wen

    2017-07-01

    Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al2O3 coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al2O3 generated on substrate surface after PA-HT at 200-250 °C can induce the epitaxial growth of γ-Al2O3 grains in Al2O3 coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  7. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  8. Analytical description of the effects of melting practice and heat treatment on the creep properties of a 2 1/4 Cr-1 Mo steel

    International Nuclear Information System (INIS)

    Booker, M.K.

    1977-01-01

    2 1 / 4 Cr-1 Mo steel is used worldwide as an elevated-temperature structural material, particularly in steam generation systems. Since this material is often used at service temperatures up to 600 0 C, successful design requires a consideration of its creep properties. Unfortunately, the development of an analytical description of the creep behavior of 2 1 / 4 Cr-1 Mo steel is complicated by two phenomena. First, the creep strength of this material is quite sensitive to heat treatment. Second, this material tends to exhibit nonclassical creep under some conditions. In addition, especially in nuclear applications, the material used may be air-melted, vacuum-arc remelted (VAR), or electroslag remelted (ESR). Available creep data from air-melted, VAR, and ESR material have been analyzed. Heat treatments included both annealed and isothermally annealed, with and without a subsequent ''postweld'' heat treatment. It has been found that the elevated-temperature ultimate tensile strength (UTS) is a useful indicator of creep strength for a given heat of material regardless of melting practice or heat treatment. Meanwhile, the nonclassical creep behavior has been attributed to a change in creep mechanism which has been mathematically modeled

  9. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Kim, Eungkwon [Digital Broadcasting Examination, Korean Intellectual Property Office, Daejeon, Suwon 440-746 (Korea, Republic of); Hong, Byungyou [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Jaehyoeng, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2013-12-15

    Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{sub 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.

  10. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff

    International Nuclear Information System (INIS)

    Yaman, Necla; Ozdogan, Esen; Seventekin, Necdet; Ayhan, Hakan

    2009-01-01

    The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM). PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.

  11. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment

    International Nuclear Information System (INIS)

    Hou, Yue; Jayatissa, Ahalapitiya H.

    2014-01-01

    The effect of oxygen plasma treatment on nanocrystalline ZnO thin film based gas sensor was investigated. ZnO thin films were synthesized on alkali-free glass substrates by a sol–gel process. ZnO thin films were treated with oxygen plasma to change the number of vacancies/defects in ZnO. The effect of oxygen plasma on the structural, electrical, optical and gas sensing properties was investigated as a function of plasma treatment time. The results suggest that the microstructure and the surface morphology can be tuned by oxygen plasma treatment. The optical transmission in the visible range varies after the oxygen plasma treatment. Moreover, it is found that the oxygen plasma has significant impact on the electrical properties of ZnO thin films indicating a variation of resistivity. The oxygen plasma treated ZnO thin film exhibits an enhanced sensing response towards NH 3 in comparison with that of the as-deposited ZnO sensor. When compared with the as-deposited ZnO film, the sensing response was improved by 50% for the optimum oxygen plasma treatment time of 8 min. The selectivity of 8 min plasma treated ZnO sensor was also examined for an important industrial gas mixture of H 2 , CH 4 and NH 3 .

  12. MoO3 trapping layers with CF4 plasma treatment in flash memory applications

    International Nuclear Information System (INIS)

    Kao, Chuyan Haur; Chen, Hsiang; Chen, Su-Zhien; Chen, Chian Yu; Lo, Kuang-Yu; Lin, Chun Han

    2014-01-01

    Highlights: • MoO 3 -based flash memories have been fabricated. • CF4 plasma treatment could enhance good memory performance. • Material analyses confirm that plasma treatment eliminated defects. • Fluorine atoms might fix the dangling bonds. - Abstract: In this research, we used MoO 3 with CF 4 plasma treatment as charge trapping layer in metal-oxide-high-k -oxide-Si-type memory. We analyzed material properties and electrical characteristics with multiple analyses. The plasma treatment could increase the trapping density, reduce the leakage current, expand band gap, and passivate the defect to enhance the memory performance. The MoO 3 charge trapping layer memory with suitable CF 4 plasma treatment is promising for future nonvolatile memory applications

  13. The Plasma Hearth Process demonstration project for mixed waste treatment

    International Nuclear Information System (INIS)

    Geimer, R.; Dwight, C.; McClellan, G.

    1994-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years

  14. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  15. Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber

    Science.gov (United States)

    Zhang, Ruobing; Han, Qianting; Xia, Yan; Li, Shuang

    2017-10-01

    An atmospheric-pressure plasma jet array specially designed for HTV silicone rubber treatment is reported in this paper. Stable plasma containing highly energetic active particles was uniformly generated in the plasma jet array. The discharge pattern was affected by the applied voltage. The divergence phenomenon was observed at low gas flow rate and abated when the flow rate increased. Temperature of the plasma plume is close to room temperature which makes it feasible for temperature-sensitive material treatment. Hydrophobicity of contaminated HTV silicone rubber was significantly improved after quick exposure of the plasma jet array, and the effective treatment area reached 120 mm × 50 mm (length × width). Reactive particles in the plasma accelerate accumulation of the hydrophobic molecules, namely low molecular weight silicone chains, on the contaminated surface, which result in a hydrophobicity improvement of the HTV silicone rubber.

  16. Effect of argon plasma treatment on the output performance of triboelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Guang-Gui, E-mail: ggcheng@ujs.edu.cn [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Jiang, Shi-Yu; Li, Kai [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Zhang, Zhong-Qiang [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Wang, Ying; Yuan, Ning-Yi [Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Ding, Jian-Ning, E-mail: dingjn@ujs.edu.cn [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Zhang, Wei [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China)

    2017-08-01

    Highlights: • Two different kinds of PDMS films were prepared by spin-coated. • The PDMS surface was plasma treated with different power and time. • The output performance of TENG was significantly enhanced by plasma treatment. • Plasma treatment effect has time-efficient, the output declines with store time. - Abstract: Physical and chemical properties of the polymer surface play great roles in the output performance of triboelectric nanogenerator (TENG). Specific texture on the surface of polymer can enlarge the contact area and enhance the power output performance of TENG. In this paper, polydimethylsiloxane (PDMS) films with smooth and micro pillar arrays on the surface were prepared respectively. The surfaces were treated by argon plasma before testing their output performance. By changing treatment parameters such as treating time and plasma power, surfaces with different roughness and their relationship were achieved. The electrical output performances of the assembled TENG for each specimen showed that argon plasma treatment has a significant etching effect on the PDMS surface and greatly strengthen its output performance. The average surface roughness of PDMS film increases with the etching time from 5 mins to 15 mins when the argon plasma power is 60 W. Nevertheless, the average surface roughness is inversely proportional to the treatment time for the power of 90W. When treated with 90 W and 5 mins, many uniform micro pillars appeared on the both PDMS surface, and the output performance of the TENG for plasma treated smooth surface is 2.6 times larger than that before treatment. The output voltage increases from 42 V to 72 V, and the short circuit current increases from 4.2 μA to 8.3 μA after plasma treatment of the micro pillar array surface. However, this plasma treatment has time-efficient due to the hydrophobic recovery property of Ar plasma treated PDMS surface, both output voltage and short circuit current decrease significantly after 3

  17. Layer-dependent fluorination and doping of graphene via plasma treatment

    International Nuclear Information System (INIS)

    Chen Minjiang; Zhou Haiqing; Qiu Caiyu; Yang Huaichao; Yu Fang; Sun Lianfeng

    2012-01-01

    In this work, the fluorination of n-layer graphene is systematically investigated using CHF 3 and CF 4 plasma treatments. The G and 2D Raman peaks of graphene show upshifts after each of the two kinds of plasma treatment, indicating p-doping to the graphene. Meanwhile, D, D′ and D + G peaks can be clearly observed for monolayer graphene, whereas these peaks are weaker for thicker n-layer graphene (n ≥ 2) at the same experimental conditions. The upshifts of the G and 2D peaks and the ratio of I(2D)/I(G) for CF 4 plasma treated graphene are larger than those of CHF 3 plasma treated graphene. The ratio of I(D)/I(G) of the Raman spectra is notably small in CF 4 plasma treated graphene. These facts indicate that CF 4 plasma treatment introduces more p-doping and fewer defects for graphene. Moreover, the fluorination of monolayer graphene by CF 4 plasma treatment is reversible through thermal annealing while that by CHF 3 plasma treatment is irreversible. These studies explore the information on the surface properties of graphene and provide an optimal method of fluorinating graphene through plasma techniques. (paper)

  18. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  19. Influence of plasma treatment on corn germination and early growth

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena; Špatenka, P.; Šerý, M.; Vrchotová, Naděžda; Hrušková, Iveta

    2010-01-01

    Roč. 38, č. 10 (2010), s. 2963-2968 ISSN 0093-3813 Institutional research plan: CEZ:AV0Z60870520 Keywords : air plasma * germination * microwave discharge * seed Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.070, year: 2010

  20. Effect of Heat Treatment on Microstructure and Impact Toughness of Ti-6Al-4V Manufactured by Selective Laser Melting Process

    Directory of Open Access Journals (Sweden)

    Lee K.-A.

    2017-06-01

    Full Text Available This study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs on microstructure and impact toughness of the material. Initial microstructural observation identified prior-β grain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment, α and β phase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.

  1. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lota, Grzegorz; Frackowiak, Elzbieta [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Tyczkowski, Jacek; Kapica, Ryszard [Technical University of Lodz, Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Wolczanska 213, 90-924 Lodz (Poland); Lota, Katarzyna [Institute of Non-Ferrous Metals Branch in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland)

    2010-11-15

    The carbon material was modified by RF plasma with various reactive gases: O{sub 2}, Ar and CO{sub 2}. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application. (author)

  2. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    NARCIS (Netherlands)

    Bsat, S.; Yavari, S.; Munsch, M.; Valstar, E.R.; Zadpoor, A.A.

    2015-01-01

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be

  3. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    Wen Ying; Li Ranxing; Cai Fang; Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan; Qiu Yiping

    2010-01-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  4. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    Science.gov (United States)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  5. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao

    2012-05-24

    Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 plasma-treated graphene sheets that may have potential in future graphene-based micro/nanodevices.

  6. Effect of chronic Maluoling treatment on plasma contents of ET in patients with COPD

    International Nuclear Information System (INIS)

    Qiu Ping; Cui Zhenxing; Song Jing

    2008-01-01

    Objective: To study the effect of maluoling treatment on plasma ET contents in patients with COPD. Methods: Plasma ET contents were measured with RIA at admission one year later in (1) 45 patients with COPD treated with 4 courses of maluoling and (2) 82 patients with COPD without maluoling treatment. Results: The plasma ET contents in the two groups of COPD patients were not much different at admission (80.49 ± 29.67pg/ml vs 78.28±24.38pg/ml, P>0.05). One year later, the plasma ET contents in the 45 patients with maluoling treatment were significantly lower than those in the 32 patients without maluoling treatment (64.38±24. 52pg/ml vs 77.49±30.63pg/ml, P<0.05). Conclusion: Chronic use of maluoling could markedly decrease the plasma ET contents in patients with COPD. (authors)

  7. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    International Nuclear Information System (INIS)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo; Shrestha, Shankar Prasad

    2014-01-01

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O 2 flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O 2 flow rate. Resistance changes only slightly with different O 2 flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O 2 or N 2 plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance

  8. Sterilization of Fusarium oxysporum by treatment of non-thermalequilibrium plasma in nutrient solution

    Science.gov (United States)

    Yasui, Shinji; Seki, Satoshi; Yoshida, Ryohei; Shoji, Kazuhiro; Terazoe, Hitoshi

    2016-01-01

    Fusarium wilt of spinach due to F. oxysporum infection is one of the most destructive root diseases in hydroponics in factories using the nutrient film technique. We investigated new technologies for the sterilization of microconidia of F. oxysporum by using a non-thermalequilibrium plasma treatment method in nutrient solution. Specifically, we investigated the sterilization capabilities of five types of gas (air, O2, N2, He, and Ar) used for plasma generation. The highest sterilization capability was achieved by using O2 plasma. However, ozone, which causes growth inhibition, was then generated and released into the atmosphere. The sterilization capability was lower when N2 or air plasma was used in the nutrient solution. It was confirmed that sterilization can be achieved by plasma treatment using inert gases that do not generate ozone; therefore, we determined that Ar plasma is the most preferable. In addition, we investigated the sterilization capabilities of other factors associated with Ar plasma generation, without direct plasma treatment. However, none of these other factors, which included Ar bubbling, pH reduction, increased temperature, hydrogen peroxide concentration, and UV radiation, could completely reproduce the results of direct plasma treatment. We assume that radicals such as O or OH may contribute significantly to the sterilization of microconidia of F. oxysporum in a nutrient solution.

  9. Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis

    Science.gov (United States)

    Baranov, O.; Bazaka, K.; Kersten, H.; Keidar, M.; Cvelbar, U.; Xu, S.; Levchenko, I.

    2017-12-01

    Given the vast number of strategies used to control the behavior of laboratory and industrially relevant plasmas for material processing and other state-of-the-art applications, a potential user may find themselves overwhelmed with the diversity of physical configurations used to generate and control plasmas. Apparently, a need for clearly defined, physics-based classification of the presently available spectrum of plasma technologies is pressing, and the critically summary of the individual advantages, unique benefits, and challenges against key application criteria is a vital prerequisite for the further progress. To facilitate selection of the technological solutions that provide the best match to the needs of the end user, this work systematically explores plasma setups, focusing on the most significant family of the processes—control of plasma fluxes—which determine the distribution and delivery of mass and energy to the surfaces of materials being processed and synthesized. A novel classification based on the incorporation of substrates into plasma-generating circuitry is also proposed and illustrated by its application to a wide variety of plasma reactors, where the effect of substrate incorporation on the plasma fluxes is emphasized. With the key process and material parameters, such as growth and modification rates, phase transitions, crystallinity, density of lattice defects, and others being linked to plasma and energy fluxes, this review offers direction to physicists, engineers, and materials scientists engaged in the design and development of instrumentation for plasma processing and diagnostics, where the selection of the correct tools is critical for the advancement of emerging and high-performance applications.

  10. Atmospheric cold plasma jet for plant disease treatment

    Science.gov (United States)

    Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze

    2014-01-01

    This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of plasma-generated species passing through the microns-sized stomas in a leaf can weaken the function of the oil vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.

  11. Bridge between fusion plasma and plasma processing

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Takamura, Shuichi

    2008-01-01

    In the present review, relationship between fusion plasma and processing plasma is discussed. From boundary-plasma studies in fusion devices new applications such as high-density plasma sources, erosion of graphite in a hydrogen plasma, formation of helium bubbles in high-melting-point metals and the use of toroidal plasmas for plasma processing are emerging. The authors would like to discuss a possibility of knowledge transfer from fusion plasmas to processing plasmas. (T. Ikehata)

  12. Effects of atmospheric air plasma treatment on interfacial properties of PBO fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chengshuang, E-mail: cszhang83@163.com; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong

    2013-07-01

    Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.

  13. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  14. Treatment of Streptococcus mutans bacteria by a plasma needle

    International Nuclear Information System (INIS)

    Zhang Xianhui; Huang Jun; Lv Guohua; Liu Xiaodi; Peng Lei; Guo Lihong; Chen Wei; Feng Kecheng; Yang Size

    2009-01-01

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O 2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals

  15. Treatment of Streptococcus mutans bacteria by a plasma needle

    Science.gov (United States)

    Zhang, Xianhui; Huang, Jun; Liu, Xiaodi; Peng, Lei; Guo, Lihong; Lv, Guohua; Chen, Wei; Feng, Kecheng; Yang, Si-ze

    2009-03-01

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.

  16. A new treatment of localized modes in inhomogeneous Vlasov plasma

    International Nuclear Information System (INIS)

    Watanabe, Tsuguhiro; Sanuki, Heiji; Watanabe, Masaaki.

    1978-04-01

    A new eigenmode analysis is established in plasma with arbitrary density profile. Finite Larmor effect is taken into account even if k sub(x)rho>1. Eigenfrequencies are determined through a compact ''quantization condition''. (author)

  17. Toxic waste treatment with sliding centrifugal plasma reactor; Tratamiento de residuos toxicos con reactores de plasma centrifugo deslizante (PCD)

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)

    2008-07-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  18. Removing of oxides from Fe-Ni alloys by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2007-01-01

    Plasma wall interaction is one of the key issues in fusion research for ITER application. The first-wall materials in tokamaks and in other high temperature plasma reactors are subject to and to continuous degradation due to the ion bombardment. Furthermore the release of the eroded wall material leads to their redeposition to other parts of the fusion reactor and they can be even transported into the core plasma where they cause dilution of the plasma fuel and cooling of the plasma itself. One possible solution for removal of deposits formed during operation of the fusion devices is oxygen plasma treatment. A drawback of the oxygen plasma is that it causes formation of oxides on the surface of the materials. These oxides can be reduced by further hydrogen plasma treatment. A study on reduction of an oxide layer from Fe-Ni alloys was performed. The samples were exposed to low pressure weakly ionized hydrogen plasma for different periods. A density of hydrogen plasma was 8x10 15 m -3 , an electron temperature was 6 eV, and a degree of dissociation was about 30%. After plasma treatment the samples were analyzed by Auger Electron Spectroscopy (AES). The results showed that the complete reduction of an initial oxide layer with the thickness of about 30 nm occurred after 20 s of exposure to hydrogen plasma, when AES showed no more oxygen on the surface of Fe-Ni alloy. During the exposure of the samples to the plasma their temperature was measured. The temperature first rised with time, reached the maximum value, and than dropped as soon as the layer of an oxide on the surface was reduced. (author)

  19. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs

    DEFF Research Database (Denmark)

    Tolouie, Haniye; Mohammadifar, Mohammad Amin; Ghomi, Hamid

    2018-01-01

    Wheat germ is a by-product of milling process which contains large amount of nutrients. The shelf life of wheat germ could improve by inactivation of destructive endogenous enzymes especially lipase and lipoxygenase. In this work, the impact of atmospheric cold plasma treatment on the inactivation...... of lipase and lipoxygenase enzymes of wheat germ was studied. Dielectric barrier discharge plasma was utilized to treat wheat germs. The impact of treatment time and voltage of plasma on the inactivation of lipase and lipoxygenase were investigated as well. The higher voltage and treatment time led...

  20. Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F.; Luais, E. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Thobie-Gautier, C. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Tessier, P.-Y. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France)], E-mail: mohammed.boujtita@univ-nantes.fr

    2009-04-15

    Radiofrequency argon plasma was used for screen-printed carbon electrodes (SPCE) surface treatment. The cyclic voltammetry of ferri/ferrocyanide as redox couple showed a remarkable improvement of the electrochemical reactivity of the SPCE after the plasma treatment. The effect of the plasma growth conditions on the efficiency of the treatment procedure was evaluated in term of electrochemical reactivity of the SPCE surface. The electrochemical study showed that the electrochemical reactivity of the treated electrodes was strongly dependant on radiofrequency power, treatment time and argon gas pressure. X-ray photoelectron spectroscopy (XPS) analysis showed a considerable evolution on the surface chemistry of the treated electrodes. Our results clearly showed that the argon plasma treatment induces a significant increase in the C{sub sp2}/C{sub sp3} ratio. The scanning electron micrograph (SEM) also showed a drastic change on the surface morphology of the treated SPCEs.

  1. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  2. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  3. Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

    International Nuclear Information System (INIS)

    Reznickova, Alena; Kolska, Zdenka; Hnatowicz, Vladimir; Svorcik, Vaclav

    2011-01-01

    Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.

  4. Mechanisms involved in HBr and Ar cure plasma treatments applied to 193 nm photoresists

    International Nuclear Information System (INIS)

    Pargon, E.; Menguelti, K.; Martin, M.; Bazin, A.; Joubert, O.; Chaix-Pluchery, O.; Sourd, C.; Derrough, S.; Lill, T.

    2009-01-01

    In this article, we have performed detailed investigations of the 193 nm photoresist transformations after exposure to the so-called HBr and Ar plasma cure treatments using various characterization techniques (x-ray photoelectron spectroscopy, Fourier transformed infrared, Raman analyses, and ellipsometry). By using windows with different cutoff wavelengths patched on the photoresist film, the role of the plasma vacuum ultraviolet (VUV) light on the resist modifications is clearly outlined and distinguished from the role of radicals and ions from the plasma. The analyses reveal that both plasma cure treatments induce severe surface and bulk chemical modifications of the resist films. The synergistic effects of low energetic ion bombardment and VUV plasma light lead to surface graphitization or cross-linking (on the order of 10 nm), while the plasma VUV light (110-210 nm) is clearly identified as being responsible for ester and lactone group removal from the resist bulk. As the resist modification depth depends strongly on the wavelength penetration into the material, it is found that HBr plasma cure that emits near 160-170 nm can chemically modify the photoresist through its entire thickness (240 nm), while the impact of Ar plasmas emitting near 100 nm is more limited. In the case of HBr cure treatment, Raman and ellipsometry analyses reveal the formation of sp 2 carbon atoms in the resist bulk, certainly thanks to hydrogen diffusion through the resist film assisted by the VUV plasma light.

  5. Modification of ink-jet paper by oxygen-plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, A [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Mozetic, M [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Hladnik, A [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Dolenc, J [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Zule, J [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Milosevic, S [Institute of Physics, Bijenicka 46, Zagreb 10000 (Croatia); Krstulovic, N [Institute of Physics, Bijenicka 46, Zagreb 10000 (Croatia); Klanjsek-Gunde, M [National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000 (Slovenia); Hauptmann, N [National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000 (Slovenia)

    2007-06-21

    A study on oxygen-plasma treatment of ink-jet paper is presented. Paper was exposed to a weakly ionized, highly dissociated oxygen plasma with an electron temperature of 5 eV, a positive-ion density of 8 x 10{sup 15} m{sup -3} and a density of neutral oxygen atoms of 5 x 10{sup 21} m{sup -3}. Optical emission spectroscopy (OES) was applied as a method for detection of the reaction products during the plasma treatment of the paper. OES spectra between 250 and 1000 nm were measured continuously during the plasma treatment. The wettability of the samples before and after the plasma treatment was determined by measuring the contact angle of a water drop. The appearance of the surface-functional groups was determined by using high-resolution x-ray photoelectron spectroscopy (XPS), while changes in the surface morphology were monitored with scanning electron microscopy (SEM). Already after 1 s of the plasma treatment the surface, which was originally hydrophobic, changed to hydrophilic, as indicated by a high absorption rate of a water drop into the paper. The OES showed a rapid increase of the CO and OH bands for the first few seconds of the plasma treatment, followed by a slow decrease during the next 40 s. The intensity of the O atom line showed reversed behaviour. The XPS analyses showed a gradual increase of oxygen-rich functional groups on the surface, while SEM analyses did not show significant modification of the morphology during the first 10 s of the plasma treatment. The results were explained by degradation of the alkyl ketene dimer sizing agent during the first few seconds of the oxygen-plasma treatment.

  6. Modification of ink-jet paper by oxygen-plasma treatment

    International Nuclear Information System (INIS)

    Vesel, A; Mozetic, M; Hladnik, A; Dolenc, J; Zule, J; Milosevic, S; Krstulovic, N; Klanjsek-Gunde, M; Hauptmann, N

    2007-01-01

    A study on oxygen-plasma treatment of ink-jet paper is presented. Paper was exposed to a weakly ionized, highly dissociated oxygen plasma with an electron temperature of 5 eV, a positive-ion density of 8 x 10 15 m -3 and a density of neutral oxygen atoms of 5 x 10 21 m -3 . Optical emission spectroscopy (OES) was applied as a method for detection of the reaction products during the plasma treatment of the paper. OES spectra between 250 and 1000 nm were measured continuously during the plasma treatment. The wettability of the samples before and after the plasma treatment was determined by measuring the contact angle of a water drop. The appearance of the surface-functional groups was determined by using high-resolution x-ray photoelectron spectroscopy (XPS), while changes in the surface morphology were monitored with scanning electron microscopy (SEM). Already after 1 s of the plasma treatment the surface, which was originally hydrophobic, changed to hydrophilic, as indicated by a high absorption rate of a water drop into the paper. The OES showed a rapid increase of the CO and OH bands for the first few seconds of the plasma treatment, followed by a slow decrease during the next 40 s. The intensity of the O atom line showed reversed behaviour. The XPS analyses showed a gradual increase of oxygen-rich functional groups on the surface, while SEM analyses did not show significant modification of the morphology during the first 10 s of the plasma treatment. The results were explained by degradation of the alkyl ketene dimer sizing agent during the first few seconds of the oxygen-plasma treatment

  7. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    International Nuclear Information System (INIS)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-01-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N 2 dissociated into NO under typical DBD voltage–current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases. (paper)

  8. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  9. The Effect of Ultrasonic Melt Treatment on the Microstructure and Mechanical Properties of Al-7Si-0.35Mg Casting Alloys

    International Nuclear Information System (INIS)

    Kim, Soo-Bae; Cho, Young-Hee; Lee, Jung-Moo; Jung, Jae-Gil; Lim, Su Gun

    2017-01-01

    The effect of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-7Si-0.35Mg (A356) casting alloys was investigated. The particular aim of this study was to analyze the mechanism involved in the strengthening of the A356 alloys when fabricated by UST. The UST had little effect on the sizes of the α-Al grain and eutectic Si at a melt temperature of 750 ℃, and the yield strength of the A356 alloy was increased by UST by approximately 16%. After T6 heat treatment, however, both alloys prepared with and without UST had similar levels of yield strength. These results are possibly associated with a change in the type and the volume fraction of intermetallics due to UST. UST greatly reduced the volume fractions of the intermetallics which were formed upon solidification, resulting in alloys with predominantly β-Al_5FeSi instead of π-Al_8FeMg_3Si_6. However, T6 heat treatment, especially a solid solution treatment at 530 ℃ for 8 hours, led to the dissolving of intermetallics such as Mg_2Si and π -Al_8FeMg_3Si_6 and as a result their volume fractions were further reduced to similar levels in both alloys with and without UST.

  10. The Effect of Ultrasonic Melt Treatment on the Microstructure and Mechanical Properties of Al-7Si-0.35Mg Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo-Bae; Cho, Young-Hee; Lee, Jung-Moo; Jung, Jae-Gil [Korea Institute of Materials Science, Changwon (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of)

    2017-04-15

    The effect of ultrasonic melt treatment (UST) on the microstructure and mechanical properties of Al-7Si-0.35Mg (A356) casting alloys was investigated. The particular aim of this study was to analyze the mechanism involved in the strengthening of the A356 alloys when fabricated by UST. The UST had little effect on the sizes of the α-Al grain and eutectic Si at a melt temperature of 750 ℃, and the yield strength of the A356 alloy was increased by UST by approximately 16%. After T6 heat treatment, however, both alloys prepared with and without UST had similar levels of yield strength. These results are possibly associated with a change in the type and the volume fraction of intermetallics due to UST. UST greatly reduced the volume fractions of the intermetallics which were formed upon solidification, resulting in alloys with predominantly β-Al{sub 5}FeSi instead of π-Al{sub 8}FeMg{sub 3}Si{sub 6}. However, T6 heat treatment, especially a solid solution treatment at 530 ℃ for 8 hours, led to the dissolving of intermetallics such as Mg{sub 2}Si and π -Al{sub 8}FeMg{sub 3}Si{sub 6} and as a result their volume fractions were further reduced to similar levels in both alloys with and without UST.

  11. Plasma temperature during methylene blue/light treatment influences virus inactivation capacity and product quality.

    Science.gov (United States)

    Gravemann, U; Handke, W; Sumian, C; Alvarez, I; Reichenberg, S; Müller, T H; Seltsam, A

    2018-02-27

    Photodynamic treatment using methylene blue (MB) and visible light is in routine use for pathogen inactivation of human plasma in different countries. Ambient and product temperature conditions for human plasma during production may vary between production sites. The influence of different temperature conditions on virus inactivation capacity and plasma quality of the THERAFLEX MB-Plasma procedure was investigated in this study. Plasma units equilibrated to 5 ± 2°C, room temperature (22 ± 2°C) or 30 ± 2°C were treated with MB/light and comparatively assessed for the inactivation capacity for three different viruses, concentrations of MB and its photoproducts, activity of various plasma coagulation factors and clotting time. Reduced solubility of the MB pill was observed at 5 ± 2°C. Photocatalytic degradation of MB increased with increasing temperature, and the greatest formation of photoproducts (mainly azure B) occurred at 30 ± 2°C. Inactivation of suid herpesvirus, bovine viral diarrhoea virus and vesicular stomatitis virus was significantly lower at 5 ± 2°C than at higher temperatures. MB/light treatment affected clotting times and the activity of almost all investigated plasma proteins. Factor VIII (-17·7 ± 8·3%, 22 ± 2°C) and fibrinogen (-14·4 ± 16·4%, 22 ± 2°C) showed the highest decreases in activity. Increasing plasma temperatures resulted in greater changes in clotting time and higher losses of plasma coagulation factor activity. Temperature conditions for THERAFLEX MB-Plasma treatment must be carefully controlled to assure uniform quality of pathogen-reduced plasma in routine production. Inactivation of cooled plasma is not recommended. © 2018 International Society of Blood Transfusion.

  12. Plasma etching treatment for surface modification of boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ito, Hiroyuki [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kusakabe, Kazuhide [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ohkawa, Kazuhiro [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Fujishima, Akira [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan); Kawai, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)]. E-mail: kawai@ci.kagu.tus.ac.jp

    2007-03-01

    Boron-doped diamond (BDD) thin film surfaces were modified by brief plasma treatment using various source gases such as Cl{sub 2}, CF{sub 4}, Ar and CH{sub 4}, and the electrochemical properties of the surfaces were subsequently investigated. From X-ray photoelectron spectroscopy analysis, Cl and F atoms were detected on the BDD surfaces after 3 min of Cl{sub 2} and CF{sub 4} plasma treatments, respectively. From the results of cyclic voltammetry and electrochemical AC impedance measurements, the electron-transfer rate for Fe(CN){sub 6} {sup 3-/4-} and Fe{sup 2+/3+} at the BDD electrodes was found to decrease after Cl{sub 2} and CF{sub 4} plasma treatments. However, the electron-transfer rate for Ru(NH{sub 3}){sub 6} {sup 2+/3+} showed almost no change after these treatments. This may have been related to the specific interactions of surface halogen (C-Cl and C-F) moieties with the redox species because no electrical passivation was observed after the treatments. In addition, Raman spectroscopy showed that CH{sub 4} plasma treatment of diamond surfaces formed an insulating diamond-like carbon thin layer on the surfaces. Thus, by an appropriate choice of plasma source, short-duration plasma treatments can be an effective way to functionalize diamond surfaces in various ways while maintaining a wide potential window and a low background current.

  13. Germination of Chenopodium Album in Response to Microwave Plasma Treatment

    International Nuclear Information System (INIS)

    Sera, Bozena; Stranak, Vitezslav; Sery, Michal; Spatenka, Petr; Tichy, Milan

    2008-01-01

    The seeds of Lamb's Quarters (Chenopodium album agg.) were stimulated by low-pressure discharge. The tested seeds were exposed to plasma discharge for different time durations (from 6 minutes to 48 minutes). Germination tests were performed under specified laboratory conditions during seven days in five identical and completely independent experiments. Significant differences between the control and plasma-treated seeds were observed. The treated seeds showed structural changes on the surface of the seat coat. They germinated faster and their sprout accretion on the first day of seed germination was longer. Germination rate for the untreated seeds was 15% while it increased approximately three times (max 55%) for seeds treated by plasma from 12 minutes to 48 minutes.

  14. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    Science.gov (United States)

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  15. Physical and chemical contributions of a plasma treatment in the growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.T. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, W.J. [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Yun, J. [Department of Nano Science and Engineering, Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of)

    2013-11-15

    Highlights: •ZnO nanorods were grown by hydrothermal synthesis. •Oxygen plasma was done on the surface of seed ZnO nanorods. •The ZnO nanorods with and without plasma treatment were characterized. •The results showed that the optical and structural properties of ZnO nanorods with plasma treatment were enhanced. -- Abstract: We analyzed the enhancement of optical and structural properties of ZnO nanorods by using a plasma treatment. In this study, seed ZnO nanorods were grown by hydrothermal synthesis for 1 h on a ZnO buffered Si substrate. The seed ZnO nanorods were then treated with an oxygen plasma. Next, ZnO was grown for an additional 4 h by hydrothermal synthesis. The resultant ZnO nanorods were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and photoluminescence (PL). The measurements showed that the plasma treatment of the seed ZnO nanorods increased the roughness of the buffer layer and the concentration of oxygen ions on the surfaces of the seed ZnO nanorods and the buffer layer, leading to improved optical and structural properties. In this study, we found that the plasma treatment on the seed ZnO nanorods enhanced the optical and structural properties of the ZnO nanorods.

  16. Treatment Option Overview (Plasma Cell Neoplasms Including Multiple Myeloma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends on the ... going up even though treatment is given. Treatment Option Overview Key Points There are different types of ...

  17. Modification of SrTiO3 single-crystalline surface after plasma flow treatment

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Alexandr A.; Weissbach, Torsten; Leisegang, Tilmann; Meyer, Dirk C. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 Dresden (Germany); Kulagin, Nikolay A. [Kharkiv National University for Radioelectronics, av. Shakespeare 6-48, 61045 Kharkiv (Ukraine); Langer, Enrico [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-07-01

    Surface of pure and transition metal-doped SrTiO3(STO) single crystals before and after hydrogen plasma-flow treatment (energy of 5..20 J/cm2) is investigated by wide-angle X-ray diffraction (WAXRD), fluorescence X-ray absorption near edge structure (XANES) and scanning electron microscopy (SEM) techniques. Plasma treatment results in the formation of a textured polycrystalline layer at the surface of the single-crystalline samples with different orientation. The formation of the quasi-ordered structures consisting of nanoscale-sized pyramids is observed by SEM. XANES evidences the change of the valency of the part of Ti4+ to Ti3+ due to the plasma treatment. The data obtained together with results of X-ray spectroscopy measurements gives evidences of the change of stoichiometry of the STO samples resulting in a change of their physical properties after plasma treatment.

  18. Role of Ultrasound Guided Platelet-Rich Plasma (PRP Injection in Treatment of Lateral Epicondylitis

    Directory of Open Access Journals (Sweden)

    Enass M. Khattab

    2017-06-01

    Conclusion: We concluded that US-guided platelet-rich plasma (PRP injection for treatment of lateral epicondylitis was a safe, minimally invasive and effective procedure in improving the sonographic and pathological changes of common extensor tendon (CET.

  19. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel

    Directory of Open Access Journals (Sweden)

    Aref Yadollahi

    2016-06-01

    Full Text Available Axial fully-reversed strain-controlled (R=−1 fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal and heat treatment on the fatigue behavior of 17–4 PH stainless steel (SS fabricated via Selective Laser Melting (SLM (Yadollahi et al., submitted for publication [1]. This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17–4 PH SS.

  20. Cold atmospheric plasma as a potential tool for multiple myeloma treatment

    Science.gov (United States)

    Cui, Qingjie; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Yang, Yanjie; Feng, Miaojuan; Liang, Rong; Chen, Hailan; Ye, Kai; Kong, Michael G.

    2018-01-01

    Multiple myeloma (MM) is a fatal and incurable hematological malignancy thus new therapy need to be developed. Cold atmospheric plasma, a new technology that could generate various active species, could efficiently induce various tumor cells apoptosis. More details about the interaction of plasma and tumor cells need to be addressed before the application of gas plasma in clinical cancer treatment. In this study, we demonstrate that He+O2 plasma could efficiently induce myeloma cell apoptosis through the activation of CD95 and downstream caspase cascades. Extracellular and intracellular reactive oxygen species (ROS) accumulation is essential for CD95-mediated cell apoptosis in response to plasma treatment. Furthermore, p53 is shown to be a key transcription factor in activating CD95 and caspase cascades. More importantly, we demonstrate that CD95 expression is higher in tumor cells than in normal cells in both MM cell lines and MM clinical samples, which suggests that CD95 could be a favorable target for plasma treatment as it could selectively inactivate myeloma tumor cells. Our results illustrate the molecular details of plasma induced myeloma cell apoptosis and it shows that gas plasma could be a potential tool for myeloma therapy in the future. PMID:29719586

  1. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    N L Singh1 S M Pelagade1 R S Rane2 S Mukherjee2 U P Deshpande3 V Ganeshan3 T Shripathi3. Department of Physics, M.S. University of Baroda, Vadodara 390 002, India; FCIPT, Institute for Plasma Research, Gandhinagar 382 044, India; UGC-DAE-CSR, University Campus, Khandawa Road, Indore 452 017, India ...

  2. Two theoretical treatments of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Carrington, M.E.

    1989-01-01

    The study of the quark-gluon plasma is of direct relevance to questions about the confinement properties of QCD and the validity of the standard theory of QCD in a different physical regime. Part 1 of this work contains a brief discussion of the theoretical and numerical evidence for the existence of the quark-gluon plasma. In the next two sections, two different approaches are discussed. In Part 2, the problem is presented in the general framework of kinetic theory. A definition of the Wigner distribution operator is introduced for quarks and a set of kinetic equations are derived for the momentum moments of this operator. A Wigner distribution operator is defined for gluons and the momentum of this operator are calculated and related to physical quantities. In Part 3, a calculation of linear response functions in a hot gluon plasma is presented. Problems related to gauge invariance and to the definition of a thermal ensemble in the presence of unphysical degrees of freedom are discussed. Results in different gauges and with different ensembles are compared, and the implications of the results for plasma oscillations are discussed

  3. Electrohydraulic Discharges and Nonthermal Plasma for Water Treatment

    Czech Academy of Sciences Publication Activity Database

    Locke, B.R.; Sato, M.; Hoffman, M.R.; Chang, J.S.; Šunka, Pavel

    2006-01-01

    Roč. 45, č. 1 (2006), s. 882-905 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z20430508 Keywords : Electrical discharges * water cleaning * environmental applications * liquid phase reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.518, year: 2006

  4. Microscopic electrical conductivity of nanodiamonds after thermal and plasma treatments

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan; Kozak, Halyna; Stehlík, Štěpán; Švrček, V.; Pichot, V.; Spitzer, D.; Kromka, Alexander; Rezek, Bohuslav

    2016-01-01

    Roč. 1, č. 16 (2016), s. 1105-1111 ISSN 2059-8521 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : atomic force microscopy * conductive AFM * diamond * nanoparticles * plasma Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics Association member companies.

    Science.gov (United States)

    Dichtelmüller, Herbert O; Biesert, Lothar; Fabbrizzi, Fabrizio; Gajardo, Rodrigo; Gröner, Albrecht; von Hoegen, Ilka; Jorquera, Juan I; Kempf, Christoph; Kreil, Thomas R; Pifat, Dominique; Osheroff, Wendy; Poelsler, Gerhard

    2009-09-01

    Solvent/detergent (S/D) treatment is an established virus inactivation technology that has been applied in the manufacture of medicinal products derived from human plasma for more than 20 years. Data on the inactivation of enveloped viruses by S/D treatment collected from seven Plasma Protein Therapeutics Association member companies demonstrate the robustness, reliability, and efficacy of this virus inactivation method. The results from 308 studies reflecting production conditions as well as technical variables significantly beyond the product release specification were evaluated for virus inactivation, comprising different combinations of solvent and detergent (tri(n-butyl) phosphate [TNBP]/Tween 80, TNBP/Triton X-100, TNBP/Na-cholate) and different products (Factor [F]VIII, F IX, and intravenous and intramuscular immunoglobulins). Neither product class, process temperature, protein concentration, nor pH value has a significant impact on virus inactivation. A variable that did appear to be critical was the concentration of solvent and detergent. The data presented here demonstrate the robustness of virus inactivation by S/D treatment for a broad spectrum of enveloped test viruses and process variables. Our data substantiate the fact that no transmission of viruses such as human immunodeficiency virus, hepatitis B virus, hepatitis C virus, or of other enveloped viruses was reported for licensed plasma derivatives since the introduction of S/D treatment.

  6. Clinical significance of changes of plasma ET and NPY levels after treatment in patients with AMI

    International Nuclear Information System (INIS)

    Zhou Jinbao

    2005-01-01

    Objective: To investigate the changes of plasma ET and NPY levels in patients with AMI. Methods: Plasma ET and NPY levels were dynamically determined in 36 patients with AMI right after establishment of diagnosis and 8h, 24h, 4ph, 72h, 7d, 14d later. Levels in 35 healthy individuals were taken as control. Results: Before treatment was initiated, the levels of Et and Np in patients with AMI were significantly higher than those in controls (P <0.01). After one week of treatment, the levels dropped toward normal. Conclusion: Dynamic measurement of plasma ET and NPY levels in patients with AMI is of clinical importance. (authors)

  7. Treatment of Mesh Skin Grafted Scars Using a Plasma Skin Regeneration System

    Directory of Open Access Journals (Sweden)

    Takamitsu Higashimori

    2010-01-01

    Full Text Available Objectives. Several modalities have been advocated to treat traumatic scars, including surgical techniques and laser resurfacing. Recently, a plasma skin regeneration (PSR system has been investigated. There are no reports on plasma treatment of mesh skin grafted scars. The objective of our study is to evaluate the effectiveness and complications of plasma treatment of mesh skin grafted scars in Asian patients. Materials and Methods. Four Asian patients with mesh skin grafted scars were enrolled in the study. The plasma treatments were performed at monthly intervals with PSR, using energy settings of 3 to 4 J. Improvement was determined by patient questionnaires and physician evaluation of digital photographs taken prior to treatment and at 3 months post treatment. The patients were also evaluated for any side effects from the treatment. Results. All patients showed more than 50% improvement. The average pain score on a 10-point scale was 6.9 +/− 1.2 SD and all patients tolerated the treatments. Temporary, localized hypopigmentation was observed in two patients. Hyperpigmentation and worsening of scarring were not observed. Conclusions. Plasma treatment is clinically effective and is associated with minimal complications when used to treat mesh skin grafted scars in Asian patients.

  8. Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study

    International Nuclear Information System (INIS)

    Bernard, C; Leduc, A; Barbeau, J; Saoudi, B; Yahia, L'H; Crescenzo, G De

    2006-01-01

    Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty

  9. Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study

    Science.gov (United States)

    Bernard, C.; Leduc, A.; Barbeau, J.; Saoudi, B.; Yahia, L'H.; DeCrescenzo, G.

    2006-08-01

    Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty.

  10. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  11. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q.J. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Chen, X. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Ostrikov, K., E-mail: kostya.ostrikov@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-22

    Highlights: > A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. > The carbon nanotubes are later treated with nitrogen plasmas. > The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. > A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 {mu}A/cm{sup 2}) achieved at a low applied field (3.50 V/{mu}m) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  12. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Wang, B.B.; Cheng, Q.J.; Chen, X.; Ostrikov, K.

    2011-01-01

    Highlights: → A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. → The carbon nanotubes are later treated with nitrogen plasmas. → The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. → A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm 2 ) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  13. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  14. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  15. Cold Plasma Treatment of Biodegradable films and smart packaging

    OpenAIRE

    Pankaj, Shashi

    2015-01-01

    Cold plasma is an emerging technology offering many potential applications for food packaging. While it was originally developed to increase the surface energy of polymers, enhancing their adhesion and printability, it has recently emerged as a powerful tool for surface sterilisation of both food and food packaging materials. The food packaging industry is still dominated by petroleum derived polymers but in the past few decades there has been significant interest in the development of enviro...

  16. Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1979-01-01

    The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates

  17. Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design

    Directory of Open Access Journals (Sweden)

    Mengke Wang

    2016-12-01

    Full Text Available Selective laser melting (SLM is a promising technique capable of rapidly fabricating customized implants having desired macro- and micro-structures by using computer-aided design models. However, the SLM-based products often have non-equilibrium microstructures and partial surface defects because of the steep thermal gradients and high solidification rates that occur during the laser melting. To meet clinical requirements, a heat treatment was used to tailor the physiochemical properties, homogenize the metallic microstructures, and eliminate surface defects, expecting to improve the cytocompatibility in vitro. Compared with the as-printed Ti–6Al–4V substrate, the heat-treated substrate had a more hydrophilic, rougher and more homogeneous surface, which should promote the early cell attachment, proliferation and osseointegration. More importantly, a crystalline rutile TiO2 layer formed during the heat treatment, which should greatly promote the biocompatibility and corrosion resistance of the implant. Compared to the untreated surfaces, the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs on heat-treated substrates were significantly enhanced, implying an excellent cytocompatibility after annealing. Therefore, these findings provide an alternative to biofunctionalized SLM-based Ti–6Al–4V implants with optimized physiochemical properties and biocompatibility for orthopedic and dental applications.

  18. Fungicidal Effects of Plasma and Radio-Wave Pre-treatments on Seeds of Grain Crops and Legumes

    Science.gov (United States)

    Filatova, Irina; Azharonok, Viktor; Shik, Alexander; Antoniuk, Alexandra; Terletskaya, Natalia

    An influence of RF plasma and RF electromagnetic field pre-treatments on level of fungal infection of some important agricultural plants has been studied. It is shown that pre-sowing plasma and radio-wave seeds treatments contribute to their germination enhancement and plant productivity improvement owing to stimulative and fungicidal effect of plasma and RF electromagnetic field irradiation.

  19. Treatment of chronic hemodialysis patients with low-dose fenofibrate effectively reduces plasma lipids and affects plasma redox status

    Directory of Open Access Journals (Sweden)

    Makówka Agnieszka

    2012-07-01

    Full Text Available Abstract Dyslipidemia is common in chronic hemodialysis patients and its underlying mechanism is complex. Hemodialysis causes an imbalance between antioxidants and production of reactive oxygen species, which induces the oxidative stress and thereby may lead to accelerated atherosclerosis. Statins have been found to be little effective in end-stage kidney disease and other lipid-lowering therapies have been only scarcely studied. The study aimed to assess the effect of low-dose fenofibrate therapy on plasma lipids and redox status in long-term hemodialysis patients with mild hypertriglyceridemia. Twenty seven chronic hemodialysis patients without any lipid-lowering therapy were included in a double-blind crossover, placebo-controlled study. The patients were randomized into two groups and were given a sequence of either 100 mg of fenofibrate per each hemodialysis day for 4 weeks or placebo with a week-long wash-out period between treatment periods. Plasma lipids, high sensitive C-reactive protein (CRP, urea, creatinine, electrolytes, phosphocreatine kinase (CK, GOT, GPT and plasma thiols (total and free glutathione, homocysteine, cysteine and cysteinylglycine were measured at baseline and after each of the study periods. Plasma aminothiols were measured by reversed phase HPLC with thiol derivatization with 2-chloro-1-methylquinolinium tetrafluoroborate. Fenofibrate therapy caused a significant decrease of total serum cholesterol, LDL cholesterol and triglycerides and an increase of HDL cholesterol. The treatment was well tolerated with no side-effects but there was a small but significant increase of CK not exceeding the upper limit of normal range. There were no changes of serum CRP, potassium, urea, and creatinine and liver enzymes during the treatment. Neither total nor total free cysteinylglycine and cysteine changed during the study but both total and free glutathione increased during the therapy with fenofibrate and the same was observed

  20. Plasma treatment of Seeds: effect on growth, spores and bacterial charge

    Science.gov (United States)

    Ambrico, P. F.; Simek, M.; Morano, M.; Ambrico, M.; Minafra, A.; Prukner, V.; de Miccolis Angelini, R. M.; Trotti, P.

    2016-09-01

    We report on the effect of low temperature plasma treatment on tomato, basil and tobacco commercial seeds. Seeds were treated in filtered ambient air volume, surface and plasma jet DBD at atmospheric pressure Sterile agar substrate, supplemented with a nutrient and vitamin mixture, was used to allow seeds germination in sterilized sealed plastic containers. The seeds were stored in controlled environmental condition (T = 26C, cycle of 14hrs light/10hrs dark condition). Since all the procedure was performed under sterile conditions, only bacteria and fungi carried by seeds could grow. Plasma treatment significantly reduced the presence of bacterial contamination, while some fungi could resist at shortest exposures Seeds germination was then followed by time lapse photography in sterile water on 3MM Whatman paper in a closed container. The effect of plasma treatment was a faster germination time of seeds and emergence of cotyledons, able to start photosynthesis in seedlings.The plasma treated seeds were also sow in a soil/peat moss mixture. Plants were cultivated for about 40 days, showing that plasma induced a faster growth in length and weight with respect to untreated seeds.Furthermore the effect of plasma on seeds surface was studied by SEM imaging. We acknowledge `SELGE' (Puglia) and TACR (TA03010098).

  1. Microwave plasma for materials treatment; Plasmas de microondas para tratamiento de materiales

    Energy Technology Data Exchange (ETDEWEB)

    Camps, E.; Garcia, J.L.; Muhl, S.; Alvarez F, O.; Chavez C, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The microwave discharges of the Electron Cyclotron Resonance (Ecr) type are capable to generate plasma with relatively high ionization coefficients which can vary between 1 and 10 % also they are realized in low pressures at 10 {sup -4} Torr. order generating at this time high concentrations of neutral excited chemical species which result in that the chemical processes can be realized with much greater velocity as in another systems. In this work it was studied and characterized a microwave discharge type Ecr using for this electric probes and optical emission spectroscopy. The characterization was carried out with the purpose of optimizing the plasma parameters and to establish a control over the same one doing so that the experiments have a greater reproducibility and a major work efficiency. (Author)

  2. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  3. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  4. Stability of AlGaN/GaN heterostructures after hydrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Babchenko, O., E-mail: oleg.babchenko@savba.sk [Institute of Electrical Engineering SAV, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Dzuba, J.; Lalinský, T. [Institute of Electrical Engineering SAV, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Vojs, M. [Institute of Electronics and Photonics STU, Ilkovičova 3, 812 19 Bratislava (Slovakia); Vincze, A. [International Laser Centre, Ilkovičova 3, 841 04 Bratislava (Slovakia); Ižák, T. [Institute of Physics AS CR, v.v.i., Cukrovarnicka 10, 162 53 Prague (Czech Republic); Vanko, G. [Institute of Electrical Engineering SAV, Dúbravská cesta 9, 841 04 Bratislava (Slovakia)

    2017-02-15

    Highlights: • AlGaN/GaNheterostructures with electric contacts were treated by hydrogen plasma. • No surface degradation after treatment was detected by SEM. • Hydrogen plasma caused increasing of sheet resistance up to 3.5 times after 60 min. • Incorporation of hydrogen in AlGaN sub-surface region was observed by SIMS. • Electrical measurements indicate hydrogen induced Schottky barrier lowering. - Abstract: We report on the investigation of low temperature (300 °C) hydrogen plasma treatment influence on the AlGaN/GaN heterostructures. This issue was raised in the frame of study on processes related to hybrid integration of diamond with GaN-based devices. At the same time, the capabilities of thin SiN{sub x} covering were investigated. The samples were exposed to low pressure hydrogen plasma ignited in the linear plasma system at low temperature. We analyze the surface morphology of samples by scanning electron microscopy while microstructural changes down to AlGaN/GaN interface were studied using secondary ion mass spectrometry. The sheet resistance, monitored using circular transmission line measurements, increases more than 3.5 times after 60 min treatment. The basic transport properties of the fabricated circular high electron mobility transistors after H{sub 2} plasma treatment were analyzed. The sheet resistance increasing was attributed to the decrease of effective mobility. Whilst, the observed Schottky barrier lowering indicates necessity of gate contact protection.

  5. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka, E-mail: alenka.vesel@guest.arnes.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 Rue du four solaire, 66120 Font Romeu Odeillo (France)

    2016-11-30

    Highlights: • Oxidized Inconel alloy was exposed to hydrogen at temperatures up to 1500 K. • Oxide reduction in hydrogen plasma started at approximately 1300 K. • AES depth profiling revealed complete reduction of oxides in plasma. • Oxides were not reduced, if the sample was heated just in hydrogen atmosphere. • Surface of reduced Inconel preserved the same composition as the bulk material. - Abstract: Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  6. Self-consistent treatment of transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1993-01-01

    A theory is developed for the dynamics of tokamak plasmas considering the influence of combinations of simultaneous heating processes (alpha particle, auxiliary and ohmic), thermal conduction and particle diffusion, thermal and particle pinches, thermalization of alpha particles as well as the effects of boundary conditions. The analysis is based on a generalization of the central expansion technique which transforms the partial differential equations to a set of nonlinear coupled equations in time for the dynamic variables. Oscillatory solutions are found, but only in the presence of alpha particle heating. Examples of extensive computer simulations are included which support and complete the analytic results. (26 refs.)

  7. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  8. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    Science.gov (United States)

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.

  9. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  10. Mesotherapy and platelet-rich plasma for the treatment of hair loss

    Directory of Open Access Journals (Sweden)

    Gonca Gökdemir

    2014-06-01

    Full Text Available Hair loss often significant impact on quality of life, including loss of self-confidence and self-esteem. However, treatment of hair loss is frustrating for both patients and doctors. Mesotherapy and platelet-rich plasma have recently become advertised method for the treatment of different types of alopecia. The efficacy of these methods in hair loss is controversial in view of lack of documented evidence. It was reviewed the data about the efficacy, safety and treatment protocols of mesotherapy and platelet-rich plasma in patients with hair loss.

  11. Effect of Atmospheric Pressure Plasma and Subsequent Enzymatic Treatment on Flax Fabrics

    International Nuclear Information System (INIS)

    Zhong Shaofeng; Yang Bin; Ou Qiongrong

    2015-01-01

    The objective is to investigate the effect of atmospheric pressure dielectric barrier discharge (APDBD) plasma and subsequent cellulase enzyme treatment on the properties of flax fabrics. The changes of surface morphology and structure, physico-mechanical properties, hydrophilicity, bending properties, whiteness, and dyeing properties of the treated substrate were investigated. The results indicated that atmospheric pressure dielectric barrier discharge plasma pre-treatment and subsequent cellulase enzyme treatment could diminish the hairiness of flax fabrics, endowing the flax fabrics with good bending properties, water uptake and fiber accessibility while keeping their good mechanical properties compared with those treated with cellulase enzyme alone. (paper)

  12. A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

    International Nuclear Information System (INIS)

    Park, Soo Jin; Chang, Yong Hwan; Moon, Cheol Whan; Suh, Dong Hack; Im, Seung Soon; Kim, Yeong Cheol

    2010-01-01

    In this study, the atmospheric plasma treatment with He/O 2 was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix

  13. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    Science.gov (United States)

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  14. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  15. Effect of hydrocarbons on plasma treatment of NOx

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Pitz, W.J.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Lean burn gasoline engine exhausts contain a significant amount of hydrocarbons in the form of propene. Diesel engine exhausts contain little gaseous hydrocarbon; however, they contain a significant amount of liquid-phase hydrocarbons (known as the volatile organic fraction) in the particulates. The objective of this paper is to examine the fate of NO{sub x} when an exhaust gas mixture that contains hydrocarbons is subjected to a plasma. The authors will show that the hydrocarbons promote the oxidation of NO to NO{sub 2}, but not the reduction of NO to N{sub 2}. The oxidation of NO to NO{sub 2} is strongly coupled with the hydrocarbon oxidation chemistry. This result suggests that gas-phase reactions in the plasma alone cannot lead to the chemical reduction of NO{sub x}. Any reduction of NO{sub x} to N{sub 2} can only be accomplished through heterogeneous reactions of NO{sub 2} with surfaces or particulates.

  16. Using oxygen plasma treatment to improve the performance of electrodes for capacitive water deionization

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Zou, Linda; Fabretto, Manrico; Short, Robert D.

    2013-01-01

    An oxygen plasma treatment was employed to modify the surface of carbon electrodes used in capacitive deionization (CDI). X-ray photoelectron spectroscopy analysis of samples showed that oxygen plasma is mainly attaching oxygenated groups on the PTFE binder used in these electrodes. By functionalizing the binder it can increase the hydrophilicity of the electrode surface and increase the available specific surface area. 2.5 min of plasma treatment resulted in the largest improvement of CDI performance of electrodes. Thermodynamic study of CDI performance showed that the modified electrodes followed Langmuir and Freundlich isotherms resulting from the increased interaction between the enhanced electrodes and water. The kinetic study showed that the CDI process followed a pseudo-first order adsorption kinetics. The calculated adsorption rate constants suggested that plasma modification can accelerate ion adsorption of electrodes

  17. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Gonzalez, G.; Krishnan, B.; Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K.; Shaji, S.

    2011-01-01

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  18. Population Pharmacokinetics of Meropenem in Plasma and Subcutis in Patients on Extracorporeal Membrane Oxygenation Treatment

    DEFF Research Database (Denmark)

    Hanberg, Pelle; Öbrink-Hansen, Kristina; Thorsted, Anders

    2018-01-01

    The objectives of this study were to describe meropenem pharmacokinetics (PK) in plasma and/or subcutaneous adipose tissue (SCT) in critically ill patients receiving ECMO treatment, and to develop a population PK model to simulate alternative dosing regimens and modes of administration. We...... conducted a prospective observational study. Ten patients on ECMO treatment received meropenem (1 or 2 g) intravenously over 5 min every 8 hours. Serial SCT concentrations were determined using microdialysis and compared with plasma concentrations. A population PK model of SCT and plasma data was developed...... infusion would be needed for 100%fT>MIC and 100%fT>4xMIC to be obtained. Meropenem plasma and SCT concentrations were associated with estimated creatinine-clearance (eCLCr). Simulations showed that in patients with increased eCLCr, dose increment or continuous infusion may be needed to obtain therapeutic...

  19. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, C.P 66450 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2011-08-31

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  20. Rapid plasma treatment of polyimide for improved adhesive and durable copper film deposition

    International Nuclear Information System (INIS)

    Usami, Kenji; Ishijima, Tatsuo; Toyoda, Hirotaka

    2012-01-01

    To improve adhesion at the interface between Cupper (Cu) and polyimide (PI) layers, a PI film surface was treated with a microwave-excited plasma. The Ar/N 2 plasma treatment improved the Cu adhesion force to 10 N/cm even for PI substrates with absorbed water. A dramatic improvement of the adhesion durability was achieved by depositing a thin carbon film (C) on the PI substrate as an interlayer between PI and Cu using a microwave plasma followed by treatment with the Ar/N 2 plasma prior to the Cu deposition. After a 20-h accelerated aging test, the reduction of the adhesion force for the resulting Cu/C/PI sample was only 10%, whereas that for the Cu/PI sample was 55%. To gain insight into the film properties, the interface between the Cu and PI film was investigated by X-ray photoelectron spectroscopy.

  1. Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.)

    Science.gov (United States)

    Penado, Keith Nealson M.; Mahinay, Christian Lorenz S.; Culaba, Ivan B.

    2018-01-01

    Multiple methods of improving plant development have been utilized over the past decades. Despite these improvements, there still exists a need for better planting methods due to the increasing population of a global community. Studies have reported that plasma treatment affects the growth and germination of a variety of plant species, including a multitude of grains which often takes the bulk in the diet of the average human being. This study explores the effect of atmospheric air plasma jet treatment on the seed germination of rice (Oryza sativa L.). The seeds were treated using an atmospheric air plasma jet for 1, 2, and 3 s. The effect of plasma exposure shows a reduction of trichomes on the surface of the seed. This caused a possible increase in wettability which significantly affected the seed germ length but did not affect the seed germination count after the germination period of 72 h.

  2. The line roughness improvement with plasma coating and cure treatment for 193nm lithography and beyond

    Science.gov (United States)

    Zheng, Erhu; Huang, Yi; Zhang, Haiyang

    2017-03-01

    As CMOS technology reaches 14nm node and beyond, one of the key challenges of the extension of 193nm immersion lithography is how to control the line edge and width roughness (LER/LWR). For Self-aligned Multiple Patterning (SaMP), LER becomes larger while LWR becomes smaller as the process proceeds[1]. It means plasma etch process becomes more and more dominant for LER reduction. In this work, we mainly focus on the core etch solution including an extra plasma coating process introduced before the bottom anti reflective coating (BARC) open step, and an extra plasma cure process applied right after BARC-open step. Firstly, we leveraged the optimal design experiment (ODE) to investigate the impact of plasma coating step on LER and identified the optimal condition. ODE is an appropriate method for the screening experiments of non-linear parameters in dynamic process models, especially for high-cost-intensive industry [2]. Finally, we obtained the proper plasma coating treatment condition that has been proven to achieve 32% LER improvement compared with standard process. Furthermore, the plasma cure scheme has been also optimized with ODE method to cover the LWR degradation induced by plasma coating treatment.

  3. Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens

    Science.gov (United States)

    Jiao Zhang, Jiao; Luong Huynh, Do; Chandimali, Nisansala; Kang, Tae Yoon; Kim, Nameun; Mok, Young Sun; Kwon, Taeho; Jeong, Dong Kee

    2018-05-01

    This study investigated whether plasma treatment of fertilized eggs before hatching could affect the growth and reproduction of chickens. Three point five-day-incubated fertilized eggs exposed to non-thermal dielectric barrier discharge plasma at 2.81 W of power for 2 min resulted in the highest growth in chickens. Plasma growth-promoting effect was regulated by the reactive oxygen species homeostasis and the improvement of energy metabolism via increasing serum hormones and adenosine triphosphate levels which were resulted from the regulation of genes involved in antioxidant defense, hormone biosynthesis and energetic metabolism. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Further, aspects of male reproductive system (testosterone level and sperm quality) were improved by the plasma treatment but female reproduction (estradiol and progesterone levels, egg-laying rate and egg weight) had no significant changes. Unfortunately, offspring whose parents were the optimal plasma-treated chickens did not show any difference on growth characteristics and failed to inherit excellent growth features from their parents. Our results suggest a new method to improve the growth rate and male reproductive capacity in poultry but it is only effective in the plasma direct-treated generation.

  4. Treatment of Partial Rotator Cuff Tear with Ultrasound-guided Platelet-rich Plasma

    Directory of Open Access Journals (Sweden)

    Vetrivel Chezian Sengodan

    2017-01-01

    Full Text Available Background: The treatment of symptomatic partial rotator cuff tear has presented substantial challenge to orthopaedic surgeons as it can vary from conservative to surgical repair. Researches have established the influence of platelet rich plasma in healing damaged tissue. Currently very few data are available regarding the evidence of clinical and radiological outcome of partial rotator cuff tear treated with ultrasound guided platelet rich plasma injection in English literature. Materials and Methods: 20 patients with symptomatic partial rotator cuff tears were treated with ultrasound guided platelet rich plasma injection. Before and after the injection of platelet rich plasma scoring was done with visual analogue score, Constant shoulder score, and UCLA shoulder score at 8 weeks and third month. A review ultrasound was performed 8 weeks after platelet rich plasma injection to assess the rotator cuff status. Results: Our study showed statistically significant improvements in 17 patients in VAS pain score, constant shoulder score and UCLA shoulder score. No significant changes in ROM were noted when matched to the contra-lateral side (P < 0.001 at the 3 month follow-up. The study also showed good healing on radiological evaluation with ultrasonogram 8 weeks after platelet rich plasma injection. Conclusion: Ultrasound guided platelet rich plasma injection for partial rotator cuff tears is an effective procedure that leads to significant decrease in pain, improvement in shoulder functions, much cost-effective and less problematic compared to a surgical treatment.

  5. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  6. Surface modification of Ti-_6Al-_4V titanium alloy by combined ion-plasma treatment

    International Nuclear Information System (INIS)

    Cherenda, N.N.; Shimanskij, V.I.; Laskovnev, A.P.; Basalaj, A.V.; Astashinskij, V.M.; Kuz'mitskij, A.M.

    2015-01-01

    Investigation results of phase and elemental composition, microhardness and friction coefficient of Ti-_6Al-_4V alloy samples precoated by titanium subjected to compression plasma flows treatment have been presented in this work. It has been established that the combined effect of ion-plasma flows diminishes aluminum and vanadium concentration in the surface layer, leads to the growth of its microhardness and decrease of the friction coefficient. (authors)

  7. Negative symptoms in nondeficit syndrome respond to neuroleptic treatment with changes in plasma homovanillic acid concentrations.

    OpenAIRE

    Suzuki, E; Kanba, S; Koshikawa, H; Nibuya, M; Yagi, G; Asai, M

    1996-01-01

    Deficit syndrome (DS) in schizophrenia is characterized by serious, chronic, and primary negative symptoms. We investigated differences in response to neuroleptic treatment between 8 DS patients and 6 nondeficit syndrome (NDS) patients who had the selective dopamine-D2 receptor blocker bromperidol added to their neuroleptic regimens. First, 9 mg/d was administered for 4 weeks, followed by 18 mg/d for another 4 weeks. Plasma homovanillic acid (pHVA) and plasma bromperidol concentrations were m...

  8. Design and optimization of components and processes for plasma sources in advanced material treatments

    OpenAIRE

    Rotundo, Fabio

    2012-01-01

    The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, whi...

  9. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    Science.gov (United States)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  10. Enhancing Dark Shade Pigment Dyeing of Cotton Fabric Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2017-07-01

    Full Text Available This study is intended to investigate the effect of atmospheric pressure plasma treatment on dark shade pigment dyeing of cotton fabric. Experimental results reveal that plasma-treated cotton fabric can attain better color yield, levelness, and crocking fastness in dark shade pigment dyeing, compared with normal cotton fabric (not plasma treated. SEM analysis indicates that cracks and grooves were formed on the cotton fiber surface where the pigment and the binder can get deposited and improve the color yield, levelness, and crocking fastness. It was also noticed that pigment was aggregated when deposited on the fiber surface which could affect the final color properties.

  11. [Utilization of a transferred arc-plasma rotating furnace to melt and found oxide mixtures at around 2000 degrees C (presentation of the film VULCANO)].

    Science.gov (United States)

    Cognet, G; Laffont, G; Jegou, C; Pierre, J; Journeau, C; Sudreau, F; Roubaud, A

    1999-03-01

    Unless security measures are taken, a hypothetical accident resulting from the loss of the cooling circuit in a pressurized water nuclear reactor could cause the heart of the reactor to melt forming a bath, called the corium, mainly composed of uranium, zirconium and iron oxides as well as the structural steel. This type of situation would be similar to the Three Mile Island accident in 1979. In order to limit the consequences of such an accident, the Atomic Energy Commission has implemented a large study program [1] to improve our understanding of corium behavior and determine solutions to stabilize it and avoid its propagation outside the unit. The VULCANO installation was designed in order to perform the trials using real materials which are indispensable to study all the phenomena involved. A film on the VULCANO trials was presented at the Henri Moissan commemorative session organized by the French National Academy of Pharmacy. The rotating furnace used to melt and found the mixture simulating the corium is a direct descendant of the pioneer work by Henri Moissan. An electrical arc is directed at the center of the load to melt which is maintained against the walls by centrifugal force. After six high-temperature trials performed with compositions without uranium oxide, the first trial with real corium showed that the magma spread rather well, a result which is quite favorable for cooling.

  12. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  13. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  14. A Study on the Effect of Plasma Treatment for Waste Wood Biocomposites

    Directory of Open Access Journals (Sweden)

    MiMi Kim

    2013-01-01

    Full Text Available The surface modification of wood powder by atmospheric pressure plasma treatment was investigated. The composites were manufactured using wood powder and polypropylene (wood powder: polypropylene = 55 wt% : 45 wt%. Atmospheric pressure plasma treatment was applied under the condition of 3 KV, 17±1 KHz, 2 g/min. Helium was used as the carrier gas and hexamethyl-disiloxane (HMDSO as the monomer to modify the surface property of the waste wood biocomposites by plasma polymerization. The tensile strengths of untreated waste wood powder (W3 and single species wood powder (S3 were about 18.5 MPa and 21.5 MPa while those of plasma treated waste wood powder (PW3 and plasma treated single species wood powder (PS3 were about 21.2 MPa and 23.4 MPa, respectively. Tensile strengths of W3 and S3 were improved by 14.6% and 8.8%, respectively. From the analyses of mechanical properties and morphology, we conclude that the interfacial bonding of polypropylene and wood powder can be improved by atmospheric pressure plasma treatment.

  15. Plasma Treatment to Remove Carbon from Indium UV Filters

    Science.gov (United States)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  16. Influence of heat treatments on the microstructure and tensile behaviour of selective laser melting-produced TI-6AL-4V parts

    Directory of Open Access Journals (Sweden)

    Ter Haar, Gerrit Matthys

    2016-11-01

    Full Text Available In industry, post-process heat treatments of Ti-6Al-4V are performed with the aim of improving its tensile behaviour. While heat treatments of wrought Ti6Al4V have been standardised (e.g., Aerospace Material Specification H-81200, heat treatments of selective laser melting (SLM-produced Ti-6Al-4V lacks research and understanding. Significant concern exists about SLM Ti6-Al-4V’s achievable ductility attributed to its martensitic (α’ phase. In this research, heat treatments at a range of temperatures are applied to SLM-produced Ti-6Al-4V tensile samples. Microstructural analysis (both optically and through electron backscatter diffraction was used to identify links between heat treatments and microstructure. Subsequently, uniaxial tensile tests were performed to determine the respective tensile properties of all samples. Correlations in the data show a significant loss in strength with respect to an increase in annealing temperature due to grain growth, while no noticeable trend was observed for fracture strain with regard to annealing temperatures.

  17. Optimization of the characteristics of vitreous residues coming from the treatment of radioactive wastes by plasma torch

    International Nuclear Information System (INIS)

    Richaud, Dominique

    1999-01-01

    We studied the treatment of simulated middle activity powdery nuclear wastes by the CEA1 plasma vitrification process. This process gives access to high temperature elaboration glasses due to its great thermal power. Wastes are made up with zeolites, diatomites, Ion Exchange Resins and graphite. Simulated radioelements are caesium and cobalt. The aim of the study is the definition of a glass composition which is well suited to the process and which fulfills the conditions of high radioelements incorporation rate and high alteration resistance. The glasses are aluminium silicate glasses based on five oxides: SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , Na 2 O or K 2 O. These kinds of glass have a high viscosity and so this parameter must be managed to have a good control of the process and to obtain high quality glasses. The study of glasses made with CEA1 shows that the graphite bottom of the furnace react with the melt. This causes the formation of metallic alloys by reduction of oxides contained in the wastes, as well as the creation of bubbles. The caesium integration rate is close to 70% and cobalt is distributed between glass and metallic phases. The results of alteration tests show the great resistance of the glasses produced with CEA1. Based on these studies we define a composition which fulfills the criteria defined in the beginning of the study. The target composition is 60% silica, 12% alumina and about 20% CaO. (author)

  18. Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjeev, E-mail: sanjeevdas80@gmail.com [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Barekar, N.S. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); El Fakir, Omer; Wang, Liliang [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Prasada Rao, A.K.; Patel, J.B.; Kotadia, H.R.; Bhagurkar, A. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Dear, John P. [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Fan, Z. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2015-01-03

    In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. Detailed optical microscopy studies were carried out on as-cast and homogenized TRC and MC-TRC strips. The results showed uniform, fine and equiaxed grain structure was observed for MC-TRC samples in as-cast condition. Whereas, coarse columnar grains with centreline segregation were observed in the case of as-cast TRC samples. The solidification mechanisms for TRC and MC-TRC have been found completely divergent. The homogenized TRC and MC-TRC samples were subjected to tensile test at elevated temperature (250–400 °C). At 250 °C, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. The mechanism of deformation has been explained by detailed fractures surface and sub-surface analysis carried out by scanning electron and optical microscopy. Homogenized MC-TRC samples were formed (hot stamping) into engineering component without any trace of crack on its surface. Whereas, TRC samples cracked in several places during hot stamping process.

  19. Melting of fuel element racks and their recycling as granulate

    International Nuclear Information System (INIS)

    Quade, U.; Kluth, T.; Kreh, R.

    1998-01-01

    In order to increase the storage capacity for spent fuel elements in the Spanish NPPs of Almaraz and Asco, the existing racks were replaced by compact one in 1991/1993. The 28 racks from Almaraz NPP were cut on site, packed in 200-I-drums and taken to intermediate storage. For the remaining 28 racks of Asco NPP, ENRESA preferred the melting alternative. To demonstrate the recycling path melting in Germany, a test campaign with six racks was performed in 1997. As a result of this test melt, the limits for Carla melting plant were modified to 200 Bq/g total, α, β, γ 100 Bq/g nuclear fuels, max. 3g/100 kg 2,000 Bq/g total Fe55, H 3 , C-14 and Ni63. After the test melt campaign, the German authorities licensed the import and treatment of the remaining 22 racks on the condition that the waste resulting from the melting process as well as the granules produced were taken back to Spain. The shipment from Asco via France to Germany has been carried out in F 20-ft-IPII containers in accordance with ADR. Size reduction to chargeable dimensions was carried out by a plasma burner and hydraulic shears. For melting, a 3.2 Mg medium frequency induction furnace, operated in a separate housing, was used. For granules production outside this housing, the liquid iron was cast into a 5Mg ladle and then, through a water jet, into the granulating basin. The total mass of 287,659 Kg of 28 fuel elements racks and components of the storage basin yielded 297,914 kg of iron granulate. Secondary waste from melting amounted to 9,920 kg, corresponding to 3.45% of the input mass. The granulating process produced 6,589 kg, corresponding to 2.28% of the total mass to be melted. Radiological analysis of samples taken from the melt and different waste components confirmed the main nuclides Co60, Cs134 and Cs137. Fe55 was highly overestimated by the preliminary analysis. (Author) 2 refs

  20. Influence of He/O2 atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    International Nuclear Information System (INIS)

    Li Xuming; Lin Jun; Qiu Yiping

    2012-01-01

    The influence of He/O 2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO 3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO 3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  1. UV excimer laser and low temperature plasma treatments of polyamide materials

    Science.gov (United States)

    Yip, Yiu Wan Joanne

    Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH

  2. Platelets rich plasma versus minoxidil 5% in treatment of alopecia areata: A trichoscopic evaluation.

    Science.gov (United States)

    El Taieb, Moustafa A; Ibrahim, Hassan; Nada, Essam A; Seif Al-Din, Mai

    2017-01-01

    Alopecia areata is a common cause of nonscarring alopecia that occurs in a patchy, confluent, or diffuse pattern. Dermoscopy is a noninvasive technique for the clinical diagnosis of many skin diseases. Topical minoxidil solution 5% and platelet rich plasma are important modalities used in treatment of alopecia areata. We aimed to evaluate the efficacy of PRP versus topical minoxidil 5% in the treatment of AA by clinical evaluation and trichoscopic examination. Ninety patients were allocated into three groups; the first was treated with topical minoxidil 5% solution, the second with platelets rich plasma injections, and the third with placebo. Diagnosis and follow up were done by serial digital camera photography of lesions and dermoscopic scan before and every 1 month after treatment for 3 months. Patients treated with minoxidil 5% and platelets rich plasma both have significant hair growth than placebo (p minoxidil and control (p minoxidil 5% as evaluated by clinical and trichoscopic examination. © 2016 Wiley Periodicals, Inc.

  3. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    Science.gov (United States)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  4. Photoluminescence wavelength variation of monolayer MoS2 by oxygen plasma treatment

    International Nuclear Information System (INIS)

    Kim, Min Su; Nam, Giwoong; Park, Seki; Kim, Hyun; Han, Gang Hee; Lee, Jubok; Dhakal, Krishna P.; Leem, Jae-Young; Lee, Young Hee; Kim, Jeongyong

    2015-01-01

    We performed nanoscale confocal photoluminescence (PL), Raman, and absorption spectral imaging measurements to investigate the optical and structural properties of molybdenum disulfide (MoS 2 ) monolayers synthesized by chemical vapor deposition method and subjected to oxygen plasma treatment for 10 to 120 s under high vacuum (1.3 × 10 −3 Pa). Oxygen plasma treatment induced red shifts of ~ 20 nm in the PL emission peaks corresponding to A and B excitons. Similarly, the peak positions corresponding to A and B excitons of the absorption spectra were red-shifted following oxygen plasma treatment. Based on the confocal PL, absorption, and Raman microscopy results, we suggest that the red-shifting of the A and B exciton peaks originated from shallow defect states generated by oxygen plasma treatment. - Highlights: • Effects of oxygen plasma on optical properties of monolayer MoS 2 were investigated. • Confocal photoluminescence, Raman, and absorption spectral maps are presented. • Wavelength tuning up to ~ 20 nm for the peak emission wavelength was achieved

  5. Photoluminescence wavelength variation of monolayer MoS{sub 2} by oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Su [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Nam, Giwoong [Department of Nanoscience & Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Seki; Kim, Hyun [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Gang Hee [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Jubok; Dhakal, Krishna P. [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Leem, Jae-Young [Department of Nanoscience & Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Lee, Young Hee [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Jeongyong, E-mail: j.kim@skku.edu [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-09-01

    We performed nanoscale confocal photoluminescence (PL), Raman, and absorption spectral imaging measurements to investigate the optical and structural properties of molybdenum disulfide (MoS{sub 2}) monolayers synthesized by chemical vapor deposition method and subjected to oxygen plasma treatment for 10 to 120 s under high vacuum (1.3 × 10{sup −3} Pa). Oxygen plasma treatment induced red shifts of ~ 20 nm in the PL emission peaks corresponding to A and B excitons. Similarly, the peak positions corresponding to A and B excitons of the absorption spectra were red-shifted following oxygen plasma treatment. Based on the confocal PL, absorption, and Raman microscopy results, we suggest that the red-shifting of the A and B exciton peaks originated from shallow defect states generated by oxygen plasma treatment. - Highlights: • Effects of oxygen plasma on optical properties of monolayer MoS{sub 2} were investigated. • Confocal photoluminescence, Raman, and absorption spectral maps are presented. • Wavelength tuning up to ~ 20 nm for the peak emission wavelength was achieved.

  6. Improvement of Plating Characteristics Between Nickel and PEEK by Plasma Treatment and Chemical Etching

    International Nuclear Information System (INIS)

    Lee, Hye W.; Lee, Jong K.; Park, Ki Y.

    2009-01-01

    Surface of PEEK(poly-ether-ether-ketone) was modified by chemical etching, plasma treatment and mechanical grinding to improve the plating adhesion. The plating characteristics of these samples were studied by the contact angle, plating thickness, gloss and adhesion. Chemical etching and plasma treatment increased wettability, adhesion and gloss. The contact angle of as-received PEEK was 61 .deg. . The contact angles of chemical etched, plasma treated or both were improved to the range of 15∼33 .deg. . In the case of electroless plating, the thickest layer without blister was 1.6 μm. The adhesion strengths by chemical etching, plasma treatment or both chemical etching and plasma treatment were 75 kgf/cm 2 , 102 kgf/cm 2 , 113 kgf/cm 2 , respectively, comparing to the 24 kgf/cm 2 of as-received. In the case of mechanically ground PEEKs, the adhesion strengths were higher than those unground, with the sacrifice of surface gloss. The gloss of untreated PEEK were greater than mechanically ground PEEKs. Plating thickness increased linearly with the plating times

  7. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  8. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  9. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo [Sungkyunkwan Univ., Suwon (Korea, Republic of); Shrestha, Shankar Prasad [Tribhuvan Univ., Kathmandu (Nepal)

    2014-03-15

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O{sub 2} flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O{sub 2} flow rate. Resistance changes only slightly with different O{sub 2} flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O{sub 2} or N{sub 2} plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance.

  10. Influence of heat treatment on the mechanical and electrical characteristics of Ni0.5Ti0.5 alloy prepared by electron-beam melting

    International Nuclear Information System (INIS)

    Ammar, A.H.; Al-Buhairi, M.; Farag, A.A.M.; Al-Wajeeh, N.M.M.

    2013-01-01

    Nickel titanium alloys (Ni 0.5 Ti 0.5 ) were successfully produced from elemental Ni/Ti powders by electron-beam melting method and then subjected to annealing and aging treatment. Microstructure of the alloys was examined by XRD and SEM. The mechanical properties of the alloyed surface were examined. The microhardness was studied as a function of annealing temperature and time. It was found that the microhardness decreases with increasing annealing temperature until 660 °C after which the microhardness increases. Electrical resistance measurements were carried out in order to study the transformation behavior. The electrical measurements point out the importance of temperature dependence of Ni 0.5 Ti 0.5 electrical resistance for the identification of particular transformation. The influence of aging on the development of electrical resistivity was also investigated

  11. Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning.

    Science.gov (United States)

    Grande, Silvia; Van Guyse, Joachim; Nikiforov, Anton Y; Onyshchenko, Iuliia; Asadian, Mahtab; Morent, Rino; Hoogenboom, Richard; De Geyter, Nathalie

    2017-09-27

    An atmospheric pressure plasma jet (APPJ) specifically designed for liquid treatment has been used in this work to improve the electrospinnability of a 5 w/v % solution of poly-ε-caprolactone (PCL) in a mixture of chloroform and N,N-dimethylformamide. Untreated PCL solutions were found to result in nonuniform fibers containing a large number of beads, whereas plasma-treated solutions (exposure time of 2-5 min) enabled the generation of beadless, uniform nanofibers with an average diameter of 450 nm. This enhanced electrospinnability was found to be mainly due to the highly increased conductivity of the plasma-modified PCL solutions. Consequently, more stretching of the polymer jet occurred during electrospinning, leading to the generation of bead-free fibers. Plasma treatment also results in an increased viscosity and decreased pH values. To explain these observed changes, optical emission spectroscopy (OES) has been used to examine the excited species present in the APPJ in contact with the PCL solution. This study revealed that the peaks attributed to H, CH, CH 2 , and C 2 species could be responsible for the degradation of solvent molecules and/or PCL structures during the plasma treatment. Size exclusion chromatography and X-ray photoelectron spectroscopy results showed that the molecular weight and the chemical composition of PCL were not significantly affected by the APPJ treatment. Plasma exposure mainly results in the degradation of the solvent molecules instead of modifying the PCL macromolecules, preserving the original polymer as much as possible. A hypothesis for the observed macroscopic changes in viscosity and pH values could be the generation of new chemical species such as HCl and/or HNO 3 . These species are characterized by their high conductivity, low pH values, and strong polarity and could enhance the solvent quality for PCL, leading to the expansion of the polymer coil, which could in turn explain the observed enhanced viscosity after plasma

  12. Dengue virus inactivation by minipool TnBP/Triton X-45 treatment of plasma and cryoprecipitate.

    Science.gov (United States)

    Burnouf, T; Chou, M-L; Cheng, L-H; Li, Z-R; Wu, Y-W; El-Ekiaby, M; Tsai, K-H

    2013-01-01

    A minipool solvent/detergent (S/D; 1% TnBP/1% Triton X-45; 31°C) process was developed for viral inactivation of plasma and cryoprecipitate used for transfusion. The goal of this study was to determine the rate and extent of inactivation of dengue virus (DENV) during this process. DENV-1 was propagated using C6/36 mosquito cells to an infectivity titre close to 9 log and spiked (10% v/v) into individual plasma and cryoprecipitate samples from two distinct donors. Samples were taken right after spiking and during viral inactivation treatment by 1% TnBP-1% Triton X-45 at 31°C. DENV-1 infectivity was assessed on Vero E6 cells by a focus-forming assay (FFA). Culture medium and complement-inactivated plasma were used as experimental controls. Experiments were done in duplicate. DENV-1 infectivity was 7·5 log in spiked plasma and 7·1 and 7·3 log in spiked cryoprecipitate. There was no loss of DENV-1 infectivity in the spiked materials, nor in the controls not subjected to S/D treatment. No infectivity was found in plasma and cryoprecipitate subjected to S/D treatment at the first time-point evaluated (10 min). DENV-1 was strongly inactivated in plasma and cryoprecipitate, respectively, within 10 min of 1% TnBP/1% Triton X-45 treatment at 31°C. These data provide a reassurance of the safety of such S/D-treated plasma and cryoprecipitate with regard to the risk of transmission of all DENV serotypes and other flaviviruses. © 2012 The Author(s). Vox Sanguinis © 2012 International Society of Blood Transfusion.

  13. Plasma Exchange for the Treatment of Transient Extreme Hypertriglyceridemia Associated with Diabetic Ketoacidosis and Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Davide Donelli

    2018-03-01

    Full Text Available Diabetic ketoacidosis (DKA can quite frequently present in association with acute pancreatitis (AP caused by transient severe hypertriglyceridemia (HTG. Here we report the case of a patient presenting with DKA, severe HTG and AP who received urgent plasma exchange for HTG control, and who reached adequate serum triglyceride levels only after appropriate DKA management. The treatment of patients presenting with DKA and coexistent AP associated with severe HTG should focus first on appropriate DKA management. Plasma exchange as a treatment for severe HTG in patients with DKA and AP should be evaluated carefully.

  14. Enzymatic Modification of Plasma Low Density Lipoproteins in Rabbits: A Potential Treatment for Hypercholesterolemia

    Science.gov (United States)

    Labeque, Regine; Mullon, Claudy J. P.; Ferreira, Joao Paulo M.; Lees, Robert S.; Langer, Robert

    1993-04-01

    Phospholipase A_2 (EC 3.1.1.4) hydrolyzes certain phospholipids of low density lipoprotein (LDL). Plasma clearance of phospholipase A_2-modified human LDL is up to 17 times faster than that of native human LDL in hypercholesterolemic rabbits. Modification of blood lipoproteins of hypercholesterolemic rabbits was performed by using an extracorporeal circuit containing immobilized phospholipase A_2. After 90-min treatments, nearly 30% decreases in plasma cholesterol concentrations were observed. Erythrocyte, leukocyte, and platelet counts showed no net change after treatment. This technique does not require any fluid replacement or sorbent regeneration and offers a potential approach for lowering serum cholesterol and LDL levels.

  15. Autologous Blood and Platelet-Rich Plasma Injections for Treatment of Lateral Epicondylitis.

    Science.gov (United States)

    Calandruccio, James H; Steiner, Murphy M

    2017-07-01

    Lateral epicondylitis (tennis elbow) is a frequent cause of elbow pain; most patients (80%-90%) are successfully treated with standard nonoperative methods (rest, nonsteroidal anti-inflammatory drugs, bracing, and physical therapy). Autologous blood injections and platelet-rich plasma injections are the two most frequently used orthobiologic techniques in the treatment of lateral epicondylitis. Studies of the effectiveness of autologous blood injections and platelet-rich plasma report varying outcomes, some citing significant clinical relief and others reporting no beneficial effect. More research is needed to determine how to best use orthobiologics in the treatment of lateral epicondylitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun

    2013-01-01

    Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al 2 O 3 ) on a graphene channel through nitrogen plasma treatment. The deposited Al 2 O 3 thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al 2 O 3 as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics

  17. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    Science.gov (United States)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  18. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was used to improve hydrophobicity of membranes. Hydrophilic membranes showed higher affinity to attach plasma particles compared to hydrophobic membranes.

  19. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    2013-01-09

    Jan 9, 2013 ... waste water treatment from heavy and toxic metals, low-level nuclear waste management and separation of Zr from ... solid surface permits a rapid and qualitative evaluation of the SFE of the polymer. The water contact angle ...

  20. Effect of heat treatment on the microstructure, texture and elastic anisotropy of the nickel-based superalloy CM247LC processed by selective laser melting

    International Nuclear Information System (INIS)

    Muñoz-Moreno, R.; Divya, V.D.; Driver, S.L.; Messé, O.M.D.M.; Illston, T.; Baker, S.; Carpenter, M.A.; Stone, H.J.

    2016-01-01

    Selective laser melting (SLM) of nickel-based superalloys is of great interest for the aerospace industry due to its capability for producing components with complex geometries. However, an improved understanding of the effect of SLM and subsequent post deposition heat treatments on the microstructure and mechanical properties is required to ensure that components with good structural integrity are produced. In this study, the microstructure, texture and elastic anisotropy of the nickel-based superalloy, CM247LC, in the as-SLM and heat-treated states have been analysed. The as-SLM microstructure showed fine elongated cells with a preferential alignment of <001> along the build direction and a significant intercellular misorientation. Heat treatments at temperatures below 1230 °C resulted in a progressive recovery of the microstructure, whilst heat treatments above this temperature gave rise to a recrystallised microstructure. The extent to which nucleation and growth of the γ′ precipitates and secondary particles were affected by increasing the heat treatment temperature was also characterised. The bulk elastic anisotropy of all samples was measured by resonant ultrasound spectroscopy (RUS) and was found to be consistent with the local textures obtained by electron backscatter diffraction (EBSD). It was observed that the initially strong elastic anisotropy exhibited by the as-SLM material was significantly reduced in the recrystallised samples, although some anisotropy was retained as a result of their elongated grain microstructures.

  1. Effect of heat treatment on the microstructure, texture and elastic anisotropy of the nickel-based superalloy CM247LC processed by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Moreno, R., E-mail: rociomunozmoreno@gmail.com [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Divya, V.D. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Driver, S.L. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Messé, O.M.D.M. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Illston, T.; Baker, S. [Materials Solutions, Unit 8, Great Western Business Park, McKenzie Way, Worcester WR4 9GN (United Kingdom); Carpenter, M.A. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Stone, H.J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-09-30

    Selective laser melting (SLM) of nickel-based superalloys is of great interest for the aerospace industry due to its capability for producing components with complex geometries. However, an improved understanding of the effect of SLM and subsequent post deposition heat treatments on the microstructure and mechanical properties is required to ensure that components with good structural integrity are produced. In this study, the microstructure, texture and elastic anisotropy of the nickel-based superalloy, CM247LC, in the as-SLM and heat-treated states have been analysed. The as-SLM microstructure showed fine elongated cells with a preferential alignment of <001> along the build direction and a significant intercellular misorientation. Heat treatments at temperatures below 1230 °C resulted in a progressive recovery of the microstructure, whilst heat treatments above this temperature gave rise to a recrystallised microstructure. The extent to which nucleation and growth of the γ′ precipitates and secondary particles were affected by increasing the heat treatment temperature was also characterised. The bulk elastic anisotropy of all samples was measured by resonant ultrasound spectroscopy (RUS) and was found to be consistent with the local textures obtained by electron backscatter diffraction (EBSD). It was observed that the initially strong elastic anisotropy exhibited by the as-SLM material was significantly reduced in the recrystallised samples, although some anisotropy was retained as a result of their elongated grain microstructures.

  2. Enhancing Electrochemical Performance of Graphene Fiber-Based Supercapacitors by Plasma Treatment.

    Science.gov (United States)

    Meng, Jie; Nie, Wenqi; Zhang, Kun; Xu, Fujun; Ding, Xin; Wang, Shiren; Qiu, Yiping

    2018-04-25

    Graphene fiber-based supercapacitors (GFSCs) hold high power density, fast charge-discharge rate, ultralong cycling life, exceptional mechanical/electrical properties, and safe operation conditions, making them very promising to power small wearable electronics. However, the electrochemical performance is still limited by the severe stacking of graphene sheets, hydrophobicity of graphene fibers, and complex preparation process. In this work, we develop a facile but robust strategy to easily enhance electrochemical properties of all-solid-state GFSCs by simple plasma treatment. We find that 1 min plasma treatment under an ambient condition results in 33.1% enhancement of areal specific capacitance (36.25 mF/cm 2 ) in comparison to the as-prepared GFSC. The energy density reaches 0.80 μW h/cm 2 in polyvinyl alcohol/H 2 SO 4 gel electrolyte and 18.12 μW h/cm 2 in poly(vinylidene difluoride)/ethyl-3-methylimidazolium tetrafluoroborate electrolyte, which are 22 times of that of as-prepared ones. The plasma-treated GFSCs also exhibit ultrahigh rate capability (69.13% for 40 s plasma-treated ones) and superior cycle stability (96.14% capacitance retention after 20 000 cycles for 1 min plasma-treated ones). This plasma strategy can be extended to mass-manufacture high-performance carbonaceous fiber-based supercapacitors, such as graphene and carbon nanotube-based ones.

  3. The clinical application of determination of plasma NPY levels for diagnosis and treatment of cardiovascular diseases

    International Nuclear Information System (INIS)

    Zheng Qing; Bao Yimin; Yang Yongqing

    2010-01-01

    Objective: To study the clinical usefulness of determination of plasma NPY levels for diagnosis and treatment of cardiovascular disease. Methods: Plasma levels of NPY were determined with RIA in 180 patients with heart failure from CHD, 89 patients with AMI, 58 patients with essential hypertension, 109 patients with PIH and 47 controls. Results: The plasma levels of NPY in 180 patients with heart failure were 206.37±40.1 pg/ml (I grade, P<0.05), 218.62±64.83 pg/ml (II grade, P<0.05), 269.16±56.57 pg/ml (III grade, P<0.01) and 314.82±56.73 pg/ml (IV grade, P<0.001), respectively. The plasma levels were 345.12±68.71 pg/ml and 191.46±38.92 pg/ml in patients with AMI and hypertension as a whole, respectively. All these levels were significantly higher than those in controls (P<0.05∼0.001). Among the patients, the plasma NPY levels increased along with advance of the disease process. Conclusion: Plasma NPY level was a useful marker for diagnosis and treatment of cardiovascular diseases. (authors)

  4. Fabrication of Durably Superhydrophobic Cotton Fabrics by Atmospheric Pressure Plasma Treatment with a Siloxane Precursor

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-04-01

    Full Text Available The surface treatment of fabrics in an atmospheric environment may pave the way for commercially viable plasma modifications of fibrous matters. In this paper, we demonstrate a durably superhydrophobic cotton cellulose fabric prepared in a single-step graft polymerization of hexamethyldisiloxane (HMDSO by N2 and O2 atmospheric pressure plasma. We systematically investigated effects on contact angle (CA and surface morphology of the cotton fabric under three operational parameters: precursor value; ionization gas flow rate; and plasma cycle time. Surface morphology, element composition, chemical structure and hydrophobic properties of the treated fabric were characterized by scanning electron microscope (SEM, EDS, FTIR and CA on the fabrics. The results indicated that a layer of thin film and nano-particles were evenly deposited on the cotton fibers, and graft polymerization occurred between cellulose and HMDSO. The fabric treated by O2 plasma exhibited a higher CA of 162° than that treated by N2 plasma which was about 149°. Furthermore, the CA of treated fabrics decreased only 0°~10° after storing at the ambient conditions for four months, and treated fabrics could also endure the standard textile laundering procedure in AATCC 61-2006 with minimum change. Therefore, this single-step plasma treatment method is shown to be a novel and environment-friendly way to make durable and superhydrophobic cotton fabrics.

  5. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, Y.; Furuta, E. [Ochanomizu University, Bunkyo-ku, Tokyo (Japan); Ohyama, R.I.; Yokota, S. [Tokai University, Hiratsuka-shi, Kanagawa (Japan); Kato, Y.; Yoshimura, T.; Ogiwara, K. [Hitachi Aloka Medical, Mure, Mitaka-shi, Tokyo (Japan)

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic which contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.

  6. Reduction of NOx in synthetic diesel exhaust via two-step plasma-catalysis treatment

    International Nuclear Information System (INIS)

    Tonkyn, R.G.; Barlow, S.E.; Hoard, John W.

    2003-01-01

    Significant reduction of NO x in synthetic light duty diesel exhaust has been achieved over a broad temperature window by combining atmospheric plasma with appropriate catalysts. The technique relies on the addition of hydrocarbon reductant prior to passing the simulated exhaust through a non-thermal plasma and a catalyst bed. The observed chemistry in the plasma includes conversion of NO to NO 2 as well as the partial oxidation of the hydrocarbon. The overall NO x reduction has a maximum of less than 80%, with this maximum obtained only at high-energy input into the plasma, high concentration of hydrocarbon reductant and low space velocity. We present data in this paper illustrating that a multiple-step treatment strategy, whereby two or more plasma-catalyst reactors are utilized in series, can increase the maximum NO x conversion obtainable. Alternatively, this technique can reduce the energy and/or hydrocarbon requirements for a fixed conversion efficiency. When propene is used as the reductant, the limiting reagent for the overall process is most likely acetaldehyde. The data suggest that acetaldehyde is formed in concert with NO oxidation to NO 2 in the plasma stage. The limited NO x reduction efficiency attained in a single step, even with excess energy, oxygen content and/or hydrocarbon-to-NO x ratio is well explained by this hypothesis, as is the effectiveness of the multiple-step treatment strategy. We present the data here illustrating the advantage of this approach under a wide variety of conditions

  7. Effect of oxygen plasma treatment on adhesion improvement of Au deposited on Pa-c substrates

    International Nuclear Information System (INIS)

    Lee, Jeong Hoon; Hwang, Kyo Seon; Kim, Tae Song; Seong, Jin Wook; Yoon, Ki Hyun; Ahn, Sae Young

    2004-01-01

    Adhesion of gold on parylene C (Pa-c) is a major hurdle in achieving reliable and durable performance for biosensor application due to the hydrophobicity of Pa-c. It is, therefore, imperative to put efforts to improve adhesion between Au and Pa-c. In this reseach, oxygen plasma treatment for adhesion improvement was performed on Pa-c surfaces at various plasma powers and times. To analyze the relation of surface energy and roughness to adhesion promotion, we used several techniques such as contact-angle, surface-energy, surface-roughness, and adhesion analyses. As the oxygen plasma power and time were increased, the surface roughness of Pa-c increased. Also, Au films had larger and more uniform grain sizes as the oxygen plasma power and time were increased. Untreated surfaces revealed a contact angle of 108 .deg. , but the contact angle drastically decreased in the initial stage of oxygen plasma treatment and slowly decreased with increasing power and time to values of 27.3 and 34, respectively. From the adhesion analysis, adhesion was improved as the plasma power or time was increased. The improvement of adhesion is related to an increase in roughness as well as carbonyl groups.

  8. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    Science.gov (United States)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  9. Clinical significance of determination of changes of plasma ET and serum TNF content after treatment in patients with diabetes millitus

    International Nuclear Information System (INIS)

    Zhang Jianguo; Wu Jiaming

    2006-01-01

    Objective: To investigate the clinical significance of the changes of plasma ET and serum TNF levels after treatment in patients with diabetes millitus. Methods: Plasma ET and serum TNF contents were determined with RIA in 54 patients with diabetes mellitus both before and after treatment as well as in 35 controls. Results: Before treatment, the plasma ET and serum TNF levels were significantly in the diabetics higher than those in the controls (P<0.01). After 3 months treatment, the levels remained significantly higher (P<0.05). Conclusion: Development and progression of diabetes millitus were closely related to the plasma ET and serum TNF levels. (authors)

  10. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    International Nuclear Information System (INIS)

    Chen, Po-Hsun; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui; Zheng, Hao-Xuan; Chen, Min-Chen; Sze, Simon M.

    2017-01-01

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O_2 inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O_2 plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O_2 plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O_2 plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O_2 plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O_2 plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  11. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Hsun [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chang, Kuan-Chang, E-mail: kcchang@pkusz.edu.cn [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); School of Electronic and Computer Engineering, Peking University, Shenzhen 518055 (China); Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Zheng, Hao-Xuan; Chen, Min-Chen [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Sze, Simon M. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2017-08-31

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O{sub 2} inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O{sub 2} plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O{sub 2} plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O{sub 2} plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O{sub 2} plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O{sub 2} plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  12. Negative symptoms in nondeficit syndrome respond to neuroleptic treatment with changes in plasma homovanillic acid concentrations.

    Science.gov (United States)

    Suzuki, E; Kanba, S; Koshikawa, H; Nibuya, M; Yagi, G; Asai, M

    1996-05-01

    Deficit syndrome (DS) in schizophrenia is characterized by serious, chronic, and primary negative symptoms. We investigated differences in response to neuroleptic treatment between 8 DS patients and 6 nondeficit syndrome (NDS) patients who had the selective dopamine-D2 receptor blocker bromperidol added to their neuroleptic regimens. First, 9 mg/d was administered for 4 weeks, followed by 18 mg/d for another 4 weeks. Plasma homovanillic acid (pHVA) and plasma bromperidol concentrations were measured, and psychiatric symptoms were scored. In the NDS patients, both positive and negative symptoms improved. However, only the positive symptom scores changed in the DS patients. On day 4, pHVA concentrations of the NDS patients alone were significantly elevated. Plasma bromperidol concentrations did not differ between the groups. These results suggest that bromperidol exerts different effects on negative symptoms and pHVA concentrations between NDS and DS patients, effects that are unrelated to plasma bromperidol concentrations.

  13. Treatment of mixed wastes by thermal plasma discharges; Tratamiento de desechos mixtos por descargas de plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Diaz A, L.V.; Pacheco S, J.O.; Pacheco P, M.; Monroy G, F.; Emeterio H, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: lauradiazarch@yahoo.com.mx

    2007-07-01

    The National Institute of Nuclear Research (ININ) uses an ion exchange resin: IRN 150 (copolymer styrene Divynilbencene) in the TRIGA Mark III reactor to absorb polluted particles with heavy metals and radioactive particles of low level. Once the capacity of filtrate of the resin is exceeded, it is replaced and considered with a mixed waste. This work is based on taking advantage of the advantages of the technique of the thermal plasma in a unique process: (high energy density 105W/cm{sup 3} high enthalpy, high reactivity chemical, high operation temperatures 6000-11500K and quick quenching 106K/s) for the degradation and vitrification of the resin IRN 150. The reactor of plasma is compact and it works to atmospheric pressure and reduced thermal inertia. Therefore, the main parameters involved during the degradation tests and vitrification are: plasma current, voltage, gas flow and distance among the electrodes. The used vitreous matrix, is obtained from a ceramic clay composed by an oxides mixture which are characterized by their good resistance to mechanical impacts and erosion caused by the water. The ceramic clay and the resin IRN 150 were analyzed before the treatment by Scanning Electron Microscopy (MEB), X-ray Diffraction (DRX), Thermal gravimetry (TGA) once vitrified the materials were also analyzed by MEB and DRX. It is obtained as a result that the material more appropriate to be used as vitreous matrix it is a ceramic clay formed by several oxides, being operated the plasma system with a current of 115A, voltage of 25V, flow of the argon gas of 5 l/m and a distance among electrodes of 10mm. With the development of the proposed technology and the material for the vitreous matrix, be rotted to try in a future a great variety of mixed waste. (Author)

  14. Potential applications of plasma science techniques for water treatment systems

    International Nuclear Information System (INIS)

    Pavlik, D.

    1994-01-01

    The historical evolution of water treatment techniques and their impact on man and his environment are presented. Ancient man recognized the relationship between good water and good health. However, it was not until the late 1800's that man's own contribution to the pollution of water via biological and chemical contamination of the water stream was recognized as having adverse affects on water quality. Since that time virtually every nation has adopted laws and regulations to ensure that safe sources of unpolluted water are available to its citizens. In the United States, water quality is governed by the Clean Water Act of 1972 administered at the federal level by the Environmental Protection Agency (EPA). Further, each state has established its equivalent agency which administers its own laws and regulations. Different biological and chemical biohazards present in the water system are discussed. Biological contaminants include various types of viruses, bacteria, fungii, molds, yeasts, algae, amoebas, and parasites. Chemical contaminates include elemental heavy metals and other organic and inorganic compounds which interfere with normal biological functions. Conventional water treatments for both consumption and sewage effluent commonly employ four different principals: mechanical filtration, quiescent gravity settling, biological oxidation, and chemical treatment. Although these techniques have greatly reduced the incidence of water-borne disease recent studies suggest that more effective means of eliminating biohazards are needed. Regulatory requirements for more aggressive treatment and elimination of residual contaminants present a significant opportunity for the application of various forms of electromagnetic radiation techniques. A comparison between conventional techniques and more advanced methods using various forms of electromagnetic radiation is discussed

  15. New Treatment Options for Osteosarcoma - Inactivation of Osteosarcoma Cells by Cold Atmospheric Plasma.

    Science.gov (United States)

    Gümbel, Denis; Gelbrich, Nadine; Weiss, Martin; Napp, Matthias; Daeschlein, Georg; Sckell, Axel; Ender, Stephan A; Kramer, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2016-11-01

    Cold atmospheric plasma has been shown to inhibit tumor cell growth and induce tumor cell death. The aim of the study was to investigate the effects of cold atmospheric plasma treatment on proliferation of human osteosarcoma cells and to characterize the underlying cellular mechanisms. Human osteosarcoma cells (U2-OS and MNNG/HOS) were treated with cold atmospheric plasma and seeded in culture plates. Cell proliferation, p53 and phospho-p53 protein expression and nuclear morphology were assessed. The treated human osteosarcoma cell lines exhibited attenuated proliferation rates by up to 66%. The cells revealed an induction of p53, as well as phospho-p53 expression, by 2.3-fold and 4.5-fold, respectively, compared to controls. 4',6-diamidino-2-phenylindole staining demonstrated apoptotic nuclear condensation following cold atmospheric plasma treatment. Cold atmospheric plasma treatment significantly attenuated cell proliferation in a preclinical in vitro osteosarcoma model. The resulting increase in p53 expression and phospho-activation in combination with characteristic nuclear changes indicate this was through induction of apoptosis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    Science.gov (United States)

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  17. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Chráska, Tomáš; Pala, Zdeněk; Mušálek, Radek; Medřický, Jan; Vilémová, Monika

    2015-01-01

    Roč. 24, č. 4 (2015), s. 637-643 ISSN 1059-9630 R&D Projects: GA ČR GAP107/12/1922 Institutional support: RVO:61389021 Keywords : ceramic s * heat treatment * nanostructured materials Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  18. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    Science.gov (United States)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  19. Improvement of NiMoNb to polyimide adhesion by inductively coupled nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bang, S.-H., E-mail: zxclucy@snu.ac.kr

    2016-01-01

    Graphical abstract: - Highlights: • NiMoNb was introduced as the adhesion layer for flexible Cu-clad laminate structure. • The effect of sputtering and plasma power on the peel strength was studied. • Plasma pretreatment in inductively coupled plasma greatly affects the peel strength. • FCCL with NiMoNb adhesion layer show outstanding peel strength. - Abstract: In this study, the effect of sputtering power on the peel strength of the flexible copper clad laminate (FCCL) was evaluated before and after heat treatment using 180° peel test. An increase in the sputtering powers from 200 W to 600 W increased film density and improved peel strength. To enhance peel strength much more, an inductively coupled plasma (ICP) was treated on the PI surface using N{sub 2} gas with Ar as a function of RF power. A dramatic enhancement of the peel strength, 923 N/m was achieved, especially after heat treatment by changing ICP power from 200 W to 900 W. The reduction ratio of the peel strength for the 900 W plasma-treated FCCL was only 12%, whereas that for the 200 W plasma-treated FCCL was 43%. The root mean square (RMS) surface roughness with PIs exposed to both 200 W and 900 W plasma treatments was rarely changed, while X-ray photoelectron spectroscopy (XPS) showed the substantial increase of C–N functional groups. To obtain insight the film characteristics, the NiMoNb/PI interfaces were investigated by a high resolution transmission electron microscopy (HR-TEM).

  20. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  1. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Directory of Open Access Journals (Sweden)

    M. Morales-Masis

    2014-09-01

    Full Text Available Improving the conductivity of earth-abundant transparent conductive oxides (TCOs remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H2-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H2-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  2. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

  3. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-12-01

    Full Text Available Due to their large compatibility difference, polyethylene (PE and polyoxymethylene (POM cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM, optical microscopy, and X-ray photoelectron spectroscopy (XPS. Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.

  4. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting.

    Science.gov (United States)

    Benedetti, M; Torresani, E; Leoni, M; Fontanari, V; Bandini, M; Pederzolli, C; Potrich, C

    2017-07-01

    Fatigue resistance and biocompatibility are key parameters for the successful implantation of hard-tissue prostheses, which nowadays are more and more frequently manufactured by selective laser melting (SLM). For this purpose, the present paper is aimed at investigating the effect of post-sintering treatments on the fatigue behavior and biological properties of Ti samples produced by SLM. After the building process, all samples are heat treated to achieve a complete stress relief. The remaining ones are tribofinished with the aim of reducing the surface roughness of the as-sintered condition. Part of the tribofinished samples are then subjected to one of the following post-sintering treatments: (i) shot peening, (ii) hot isostatic pressing (HIP), and (iii) electropolishing. It is found that shot peening and HIP are the most effective treatments to improve the high and the very-high cycle fatigue resistance, respectively. At the same time, they preserve the good biocompatibility ensured by the biomedical Titanium Grade 23. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    Science.gov (United States)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  6. Environmental and economic vision of plasma treatment of waste in Makkah

    Science.gov (United States)

    Galaly, Ahmed Rida; van Oost, Guido

    2017-10-01

    An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia (KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435H (2015), and is growing at a rate of 3%-5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project (PTP) encompasses the direct plasma treatment of all types of waste (from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasma-treatment process is estimated at 5000 kW (2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that: (1) the processing capacity of solid waste is 100 tons per day (2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh. (3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and (4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages: (1) study and treatment of waste streams, (2) slaughterhouse waste treatment, (3) treatment of refuse-derived fuel, (4) treatment of car tires and (5) treatment of slag (the fifth stage associated with each stage from the four previous stages).

  7. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    DEFF Research Database (Denmark)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria

    2018-01-01

    Objective The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during......, and 80% improved their lipid concentrations. Conclusion Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition...... childhood obesity treatment. Methods 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6±21.7), and median BMI SDS 2.8 (range 1.3±5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0...

  8. Efficacy of plasma rich in growth factors for the treatment of dry eye.

    Science.gov (United States)

    López-Plandolit, Silvia; Morales, María-Celia; Freire, Vanesa; Grau, Arturo E; Durán, Juan A

    2011-12-01

    To evaluate the efficacy of plasma rich in growth factors (PRGF) for the treatment of moderate/severe dry eye. PRGF treatment was administered to 16 patients who had moderate/severe dry eye diagnosed and who had not responded previously to other standard treatments. We quantified several growth factors present in the PRGF of each patient and obtained quantitative registers of the symptoms (modified score dry eye questionnaire), both before and after PRGF treatment. We also performed impression cytology to determine the degree of squamous metaplasia before and after PRGF treatment. PRGF treatment was associated with a statistically significant improvement in score dry eye questionnaire values (P PRGF, no further treatments were required, whereas in the remaining 25% other ocular treatments could be reduced. PRGF led to symptom improvement in patients with moderate/severe dry eye. Surprisingly, the symptoms recorded in the dry eye questionnaire do not always agree with the degree of squamous metaplasia measured by impression cytology.

  9. Quantitative evaluation of plasma after methylene blue and white light treatment in four Chinese blood centers.

    Science.gov (United States)

    Chunhui, Yang; Guohui, Bian; Hong, Yang; Xiaopu, Xiao; Zherong, Bai; Mingyuan, Wang; Xinsheng, Zhang; Juanjuan, Wang; Changqing, Li; Wuping, Li

    2013-12-01

    Pathogen reduction technology is an important process in the blood safety system, including solvent/detergent treatment, filtration and methylene blue-photochemical technology (MB-PCT). To investigate the quality of MB-PCT-treated plasma, plasma samples from four Chinese blood centers were analyzed over 12 months of storage to determine the recovery of activities and levels of various plasma proteins. Ten plasma units each from the Suzhou, Yancheng, Chongqing and Shandong blood centers were divided into two aliquots. One was subjected to treatment with one of two methylene blue-photochemical technology instruments and the other was used as control. The treated and untreated sample pairs were stored at -30°C. The recovery rates of coagulation factors, inhibitor proteins, total protein, immunoglobulins, and complement proteins were measured at different time points after storage. The mean recovery of most proteins exceeded 80% after MB treatment. The exceptions were factor XI and fibrinogen, of which only 71.3-74% and 69.0-92.3% were retained during storage. The two equipment types differed in terms of residual MB concentration in the plasma samples (0.18 μM and 0.29 μM, respectively). They had similar protein recovery rates at 0.5 month but differed at later time points. The four blood centers differed significantly with regard to factor II, V, VIII and fibrinogen activities. Only the samples from the Shandong blood center met the methylene blue treated fresh frozen plasma requirement. The major factor that influenced the quality of the MB-FFP samples was the time taken between blood collection and storage. Methylene blue treated plasma showed reduced coagulation factor (CF) activity and protein levels. The MB treatment-induced damage to the proteins was acceptable at the four Chinese blood centers, but the quality of the MB-treated plasma in general was not satisfactory. The main factor affecting plasma quality may be the duration of the collection and

  10. NOx reduction by ozone injection and direct plasma treatment

    DEFF Research Database (Denmark)

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration...

  11. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect

    International Nuclear Information System (INIS)

    Wang Yingjun; Yin Shiheng; Ren Li; Zhao Lianna

    2009-01-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH 2 toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  12. Continuous Plasma Treatment of Ultra-High-Molecular-Weight Polyethylene (UHMWPE) Fibres for Adhesion Improvement

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    2009-01-01

    A dielectric barrier discharge in Ar, He, He/O2, N2 or O2 at atmospheric pressure was used for the continuous plasma treatment of UHMWPE fibres. The influence of the input power of the discharge and the gas flow rate on surface modification is studied with the aim of adhesion improvement. Surface...

  13. Microwave-driven plasma gasification for biomass waste treatment at miniature scale

    NARCIS (Netherlands)

    Sturm, G.S.J.; Navarrete Muñoz, A.; Purushothaman Vellayani, A.; Stefanidis, G.

    2016-01-01

    Gasification technology may combine waste treatment with energy generation. Conventional gasification processes are bulky and inflexible. By using an external energy source, in the form of microwave-generated plasma, equipment size may be reduced and flexibility as regards to the feed composition

  14. Anti-bacterial treatment of polyethylene by cold plasma for medical purposes

    Czech Academy of Sciences Publication Activity Database

    Popelka, A.; Novák, I.; Lehocký, M.; Chodák, I.; Sedliačik, J.; Gajtanska, M.; Sedliačiková, M.; Vesel, A.; Junkar, I.; Kleinová, A.; Špírková, Milena; Bílek, F.

    2012-01-01

    Roč. 17, č. 1 (2012), s. 762-785 ISSN 1420-3049 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyethylene * grafting * plasma treatment Subject RIV: JI - Composite Materials Impact factor: 2.428, year: 2012

  15. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Czech Academy of Sciences Publication Activity Database

    Novotná, Z.; Rimpelová, S.; Juřík, P.; Veselý, M.; Kolská, Z.; Hubáček, Tomáš; Borovec, Jakub; Švorčík, V.

    2017-01-01

    Roč. 12, JUN (2017), č. článku 424. ISSN 1556-276X R&D Projects: GA MŠk LM2015075 Institutional support: RVO:60077344 Keywords : polyetheretherketone * plasma treatment * gold sputtering * atomic force microscopy Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.833, year: 2016

  16. Formation of methyl nitrite and methyl nitrate during plasma treatment of diesel exhaust

    DEFF Research Database (Denmark)

    Wallington, TJ; Hoard, JW; Andersen, Mads Peter Sulbæk

    2003-01-01

    FIR spectroscopy was used to identify CH3ONO and CH3ONO2 as products of the nonthermal plasma treatment of simulated diesel exhaust. This is the first observation of CH3ONO formation in such systems. The yield of CH3ONO relative to CH3ONO2 scaled linearly with the average [NO]/ [NO2] ratio in the...

  17. Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Karthik Nair

    2015-10-01

    Full Text Available Plasma technology has been widely used to increase the surface energy of the polymer surfaces for many industrial applications; in particular to increase in wettability. The present work was carried out to investigate how surface modification using plasma treatment modifies the surface energy of micro-injection moulded microneedles and its influence on drug delivery. Microneedles of polyether ether ketone and polycarbonate and have been manufactured using micro-injection moulding and samples from each production batch have been subsequently subjected to a range of plasma treatment. These samples were coated with bovine serum albumin to study the protein adsorption on these treated polymer surfaces. Sample surfaces structures, before and after treatment, were studied using atomic force microscope and surface energies have been obtained using contact angle measurement and calculated using the Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness of the microneedles resulting in better adsorption and release of BSA.

  18. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  19. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao; Cao, Ronggen; Cheng, Yingchun; Ding, Fei; Huang, Gaoshan; Mei, Yongfeng; Schwingenschlö gl, Udo

    2012-01-01

    of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone

  20. Antimicrobial and cold plasma treatments for inactivation of listeria monocytogenes on whole apple surface

    Science.gov (United States)

    Introduction: Produce and bacterial cell surface structure play an important role as to where and how bacteria attach to produce surfaces. The efficacy of a novel antimicrobial solution developed in our laboratory was investigated in combination with cold plasma treatments for inactivation of Liste...

  1. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  2. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  3. SEM observations of particle track membrane surfaces modificated using plasma treatment

    International Nuclear Information System (INIS)

    Sartowska, B.; Buczkowski, M.; Starosta, W.

    2003-01-01

    This work presents results of scanning electron microscopy (SEM) observations of 0.4 μm membranes after plasma treatment with different parameters. The morphology changes at the surfaces and at the pore walls were observed. The character of changes in the membrane parameters according to the process conditions was determined

  4. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer

    NARCIS (Netherlands)

    Gietema, JA; Meinardi, MT; Messerschmidt, J; Gelevert, T; Alt, F; Uges, DRA; Sleijfer, DT

    2000-01-01

    We have shown in patients cured from metastatic testicular cancer that up to 20 years after administration of cisplatin-containing chemotherapy, circulating platinum is still detectable in plasma. This finding may influence the development of long-term, treatment-related side-effects.

  5. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Kasálková-Slepičková, N.; Kolská, Z.; Macková, Anna; Bačáková, Lucie; Švorčík, V.; Malinský, Petr; Trostová, S.

    2012-01-01

    Roč. 97, č. 7 (2012), s. 1075-1082 ISSN 0141-3910 R&D Projects: GA ČR GA106/09/0125; GA ČR(CZ) GAP108/10/1106; GA ČR(CZ) GAP108/12/1168 Institutional support: RVO:61389005 ; RVO:67985823 Keywords : Polymethylpentene * Plasma treatment * Thermal treatment * Surface chemistry * Cell proliferation * Morfology Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.770, year: 2012

  6. Treatment with cinacalcet increases plasma sclerostin concentration in hemodialysis patients with secondary hyperparathyroidism.

    Science.gov (United States)

    Kuczera, Piotr; Adamczak, Marcin; Więcek, Andrzej

    2016-11-15

    Sclerostin is a paracrine acting factor, which is expressed in the osteocytes and articular chondrocytes. Sclerostin decreases the osteoblast-related bone formation through the inhibition of the Wnt/β-catenin pathway. Osteocytes also express the Calcium sensing receptor which is a target for cinacalcet. The aim of this study was to assess the influence of six-month cinacalcet treatment on plasma sclerostin concentration in hemodialysed patients with secondary hyperparathyroidism (sHPT). In 58 hemodialysed patients with sHPT (PTH > 300 pg/ml) plasma sclerostin and serum PTH, calcium and phosphate concentrations were assessed before the first dose of cinacalcet and after 3 and 6 months of treatment. Serum PTH concentration decreased after 3 and 6 month of treatment from 1138 (931-1345) pg/ml to 772 (551-992) pg/ml and to 635 (430-839) pg/ml, respectively. Mean serum calcium and phosphate concentrations remained stable. Plasma sclerostin concentration increased after 3 and 6 months of treatment from 1.66 (1.35-1.96) ng/ml, to 1.77 (1.43-2.12) ng/ml and to 1.87 (1.50-2.25) ng/ml, respectively. In 42 patients with cinacalcet induced serum PTH decrease plasma sclerostin concentration increased after 3 and 6 months of treatment from 1.51 (1.19-1.84) ng/ml to 1.59 (1.29-1.89) ng/ml and to 1.75 (1.42-2.01) ng/ml, respectively. Contrary, in the 16 patients without cinacalcet induced serum PTH decrease plasma sclerostin concentration was stable. Plasma sclerostin concentrations correlated inversely with serum PTH concentrations at the baseline and also after 6 months of treatment. 1. In hemodialysed patients with secondary hyperparathyroidism treatment with cinacalcet increases plasma sclerostin concentration 2. This effect seems to be related to decrease of serum PTH concentration.

  7. Numerical study of melted particles crush metallic substrates and the interaction between particles and a plasma beam in the thermal projection process

    International Nuclear Information System (INIS)

    Kriba, Ilhem; Djebaili, A.

    2009-01-01

    Plasma spray processes have been widely used to produce high performance coatings of a wide range of materials (metallic, non-metallic, and ceramics), offering protection from, e.g. wear, extreme temperature, chemical attack and environmental corrosion. To obtain good quality coatings, spray parameters must be carefully selected. Due to the large variety in process parameters, it is difficult to optimize the process for each specific coating and substrate combinations. Furthermore modelling the spray process allows a better understanding of the process sequences during thermal spraying. The simulation of coating formation to estimate the process parameters is an important tool to develop new coating structures with defined properties. In this work, the process of plasma sprayed coating has been analyzed by numerical simulation. Commercial code is used to predict the plasma jet characteristics, plasma-particle interaction, and coating formation. Using this model we can obtain coating microstructure and characteristics which form a foundation for further improvement of an advanced ceramic coating build up model

  8. Clinical significance of determination of changes of serum TSGF and plasma VEGF levels after treatment in patients with endometriosis

    International Nuclear Information System (INIS)

    Shi Shaohong; Tian Xiaoping

    2006-01-01

    Objective: To investigate the changes of serum TSGF and plasma VEGF levels after treatment in patients with endometriosis. Methods: Serum TSGF levels were determined with ELISA mad plasma VEGF levels with biochemistry in 31 patients with endometriosis both before and after treatment as well as in 30 controls. Results: Before treatment the serum TSGF and plasma VEGF levels in patients were significantly higher than those in the controls (P 0.05). Conclusion: Development of endometriosis were closely related to the plasma levels of VEGF and serum TSGF levels. (authors)

  9. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guoliang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Yulong, E-mail: csuayl@sohu.com [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Xiaoqin; Zhou, Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Shuangjian; Liu, Xia; Deng, Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-07-31

    Highlights: • Columnar δ-Al{sub 2}O{sub 3} induces epitaxial growth of γ-Al{sub 2}O{sub 3} grains in coating after PA-HT. • Epitaxial growth greatly enhances interfacial bonding of Al{sub 2}O{sub 3} coating on Al alloy. • Penetration of Al{sub 2}O{sub 3} droplets into Al alloy increases interfacial anchorage force. • Crystal structure of the alumina coatings can be refined after PA-HT of substrate. • Mechanical and tribological properties of the coatings are improved after PA-HT. - Abstract: Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al{sub 2}O{sub 3} coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al{sub 2}O{sub 3} generated on substrate surface after PA-HT at 200–250 °C can induce the epitaxial growth of γ-Al{sub 2}O{sub 3} grains in Al{sub 2}O{sub 3} coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  10. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    Science.gov (United States)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  11. Air–water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    International Nuclear Information System (INIS)

    Bundaleska, N; Tatarova, E; Dias, F M; Lino da Silva, M; Ferreira, C M; Amorim, J

    2014-01-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air–water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (∼2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air–water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O 2 (a  1 Δ g ) oxygen, NO 2 , nitrous acid HNO 2 and OH hydroxyl radical. (paper)

  12. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    International Nuclear Information System (INIS)

    Lu Na; Li Jie; Wu Yan; Masayuki, Sato

    2012-01-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO 2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O 2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO 2 could be induced by the pulsed discharge plasma and addition of TiO 2 aided the decoloration of Acid Orange II.

  13. Study on melting conditions of radioactive miscellaneous solid waste. Contract research

    International Nuclear Information System (INIS)

    Fukui, Toshiki; Nakashio, Nobuyuki; Isobe, Motoyasu; Otake, Atsushi; Wakui, Takuji; Nakashima, Mikio; Hirabayashi, Takakuni

    2001-02-01

    Improvement of fluidity of molten slag is one of the most important factors for plasma melting treatment of low level radioactive miscellaneous wastes generated from nuclear facilities. In general, it is considered that elevating molten slag temperature of addition of flux is of certain use in improvement of fluidity of molten slag. However, these ways are not necessarily suitable from the viewpoints of refractory erosion or reduction of waste volume. In this report, we suggested that fluidity of molten slag could be improved by controlling chemical compositions of molten slag. On the Basic of the investigation using phase diagram and viscosity data, FeO was selected as a key component for improving fluidity: Viscosity and melting point of molten slag decreased with increasing relative concentration of FeO in molten slag. Accordingly, we concluded that it is important to adjust basicity of molten slag for melting treatment of low-level radioactive miscellaneous solid wastes. (author)

  14. Treatment failure of nelfinavir-containing triple therapy can largely be explained by low nelfinavir plasma concentrations

    NARCIS (Netherlands)

    Burger, David M.; Hugen, Patricia W. H.; Aarnoutse, Rob E.; Hoetelmans, Richard M. W.; Jambroes, Marielle; Nieuwkerk, Pythia T.; Schreij, Gerrit; Schneider, Margriet M. E.; van der Ende, Marchina E.; Lange, Joep M. A.

    2003-01-01

    The relationship between plasma concentrations of nelfinavir and virologic treatment failure was investigated to determine the minimum effective concentration of nelfinavir. Plasma samples were prospectively collected from treatment-naive patients who began taking nelfinavir, 1,250 mg BID + two

  15. Radioactive Waste Treatment and Conditioning Using Plasma Technology Pilot Plant: Testing and Commissioning

    International Nuclear Information System (INIS)

    Rafizi Salihuddin; Rohyiza Baan; Norasalwa Zakaria

    2016-01-01

    Plasma pilot plant was commissioned for research and development program on radioactive waste treatment. The plant is equipped with a 50 kW direct current of non-transferred arc plasma torch which mounted vertically on top of the combustion chamber. The plant also consists of a dual function chamber, a water cooling system, a compress air supply system and a control system. This paper devoted the outcome after testing and commissioning of the plant. The problems arise was discussed in order to find the possible suggestion to overcome the issues. (author)

  16. Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water

    International Nuclear Information System (INIS)

    Chen Changlun; Ogino, Akihisa; Nagatsu, Masaaki; Wang Xiangke

    2010-01-01

    Microwave excited Ar/H 2 O surface-wave plasma was used to treat multiwall carbon nanotubes (MWCNTs) to modify their surface characteristics and thus improve their dispersion capability in water. Changes in the atom composition and structure properties of MWCNTs were analyzed using x-ray photoelectron spectroscopy and Raman spectroscopy, and the surface morphology of MWCNTs was observed by field emission scanning electron microscopy and scanning transmission electron microscopy. The results indicated that Ar/H 2 O plasma treatment greatly enhanced the content of oxygen, and modified surface microstructure properties. The integrity of nanotube patterns, however, was not damaged.

  17. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    Science.gov (United States)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  18. Treatment of carprofen overdose with therapeutic plasma exchange in a dog.

    Science.gov (United States)

    Kjaergaard, Astrid B; Davis, Jennifer L; Acierno, Mark J

    2018-06-13

    To report the use of therapeutic plasma exchange (TPE) in a dog with carprofen toxicosis. A 6-year-old female neutered Bichon Frise weighing 6.9 kg was examined after it had ingested 72 mg/kg carprofen. Mild dehydration without azotemia and with a urine specific gravity of 1.050 was noted at presentation. Treatment consisted of induction of emesis, symptomatic medical therapy, and TPE. The TPE achieved 1.5 plasma volume exchanges over 3 hours. Blood samples and effluent samples were collected every 30 minutes during TPE and additional blood samples were collected 11 and 35 hours after treatment. Carprofen concentrations in these samples were determined by high-pressure liquid chromatography. A 51% reduction in serum carprofen concentration was achieved following TPE. This report describes the successful reduction of plasma carprofen concentration in a dog using TPE. Although recent studies suggest that this particular dog may not have received a toxic dose, a 51% reduction of plasma carprofen concentration was achieved over 180 minutes, and TPE may be beneficial for treatment of dogs that have ingested higher doses. © Veterinary Emergency and Critical Care Society 2018.

  19. Investigation the effects of metallic substrate surfaces due to ion-plasma treatment

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Taran, V.S.; Timoshenko, A.I.; Gasilin, V.V.

    2011-01-01

    It has been found correlation between modification effects and duration of ion-plasma cleaning the substrate surface with titanium ions. Experiments were carried out using serial vacuum-arc equipment ''Bulat-6'' at the stationary mode in non-filtered titanium plasma, which contained considerable quantity of evaporated material droplets. The polished cylinder substrates (diameter and height 9,14,20 mm) have been treated. The substrates were manufactured of stainless steel 12X18H10T and non-oxygen copper M00b. The substrates surface roughness after ion-plasma treatment has been investigated with electron microscope JEOL JSM-840 and optic interference non-contact profilograph- profilometer ''Micron-alpha''. According obtained results the surface of copper and stainless steel substrates has been treated to intensive modification, i.e. substrate surface after treatment significantly differs from initial one. During final ion-plasma treatment a number of effects occur: purification from surface oxides is accompanied with metallic surface ''contamination'' by the cathode material macrodroplets, surface micromelting accompanied by roughness increase, the surface layer annealing with noticeable decrease of hardness.

  20. Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment

    International Nuclear Information System (INIS)

    Borghei, S. M.; Shahidi, S.; Ghoranneviss, M.; Abdolahi, Z.

    2013-01-01

    In this research the effects of mordant and plasma sputtering treatments on the crystallinity and morphological properties of wool fabrics were investigated. The felting behavior of the treated samples was also studied. We used madder as a natural dye and copper sulfate as a metal mordant. We also used copper as the electrode material in a DC magnetron plasma sputtering device. The anti-felting properties of the wool samples before and after dying was studied, and it was shown that the shrink resistance and anti-felting behavior of the wool had been significantly improved by the plasma sputtering treatment. In addition, the percentage of crystallinity and the size of the crystals were investigated using an X-ray diffractometer, and a scanning electron microscope was used for morphological analysis. The amount of copper particles on the surface of the mordanted and sputtered fabrics was studied using the energy dispersive X-ray (EDX) method, and the hydrophobic properties of the samples were examined using the water drop test. The results show that with plasma sputtering treatment, the hydrophobic properties of the surface of wool become super hydrophobic.

  1. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG Polymer Scaffolds Using Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Rok Zaplotnik

    2016-04-01

    Full Text Available Polyurethane/urea copolymers based on poly(ethylene glycol (PURPEG were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the forward power of 300 W or H-mode (above 500 W. The treatments that used H-mode caused nearly instant thermal degradation of the polymer samples. The density of the charged particles in E-mode was on the order of 1016 m−3, which prevented material destruction upon plasma treatment, but the density of neutral O-atoms in the ground state was on the order of 1021 m−3. The evolution of plasma characteristics during sample treatment in E-mode was determined by optical emission spectroscopy; surface modifications were determined by water adsorption kinetics and X-ray photoelectron spectroscopy; and etching intensity was determined by residual gas analysis. The results showed moderate surface functionalization with hydroxyl and carboxyl/ester groups, weak etching at a rate of several nm/s, rather slow activation down to a water contact angle of 30° and an ability to rapidly absorb water.

  2. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice.

    Science.gov (United States)

    Zhao, Mei; Li, Huifang; Liu, Wei; Guo, Yumei; Chu, Weiru

    2016-05-15

    A novel protein immobilization method based on plasma treatment of paper on the low-cost paper-based immunodevice was established in this work. By using a benchtop plasma cleaner, the paper microzone was treated by oxygen plasma treatment for 4 min and then the antibody can be directly immobilized on the paper surface. Aldehyde group was produced after the plasma treatment, which can be verified from the fourier transform infrared spectroscopy (FT-IR) spectra and x-ray photoelectron spectroscopy (XPS) spectra. By linked to aldehyde group, the antibody can be immobilized on the paper surface without any other pretreatment. A paper-based immunodevice was introduced here through this antibody immobilization method. With sandwich chemiluminescence (CL) immunoassay method, the paper-based immunodevice was successfully performed for carcinoembryonic antigen (CEA) detection in human serum with a linear range of 0.1-80.0 ng/mL. The detection limit was 0.03 ng/mL, which was 30 times lower than the clinical CEA level. Comparing to the other protein immobilization methods on paper-based device, this strategy was faster and simpler and had potential applications in point-of-care testing, public health and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    Science.gov (United States)

    Garifullin, A. R.; Abdullin, I. Sh; Skidchenko, E. A.; Krasina, I. V.; Shaekhov, M. F.

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products.

  4. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    International Nuclear Information System (INIS)

    Garifullin, A R; Abdullin, I Sh; Skidchenko, E A; Krasina, I V; Shaekhov, M F

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products. (paper)

  5. Effect of low temperature oxygen plasma treatment on microstructure and adhesion force of graphene

    Science.gov (United States)

    Zhu, Jun; Deng, Heijun; Xue, Wei; Wang, Quan

    2018-01-01

    Graphene has attracted strong attention due to its unique mechanical, electrical, thermal and magnetic properties. In this work, we investigate the effect of low temperature oxygen plasma treatment on microstructure and adhesion force of single-layer graphene (SLG). Low temperature oxygen plasma is used to treat SLG grown by chemical vapor deposition through varying the exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy are utilized to identify changes before and after treatment. Raman spectra of treated graphene reveal that peak intensity of the characteristic D and D' peaks increase. Meanwhile, degradation of the G and 2D peaks in X-ray photoelectron spectroscopy indicates that abundant Csbnd OH and Cdbnd O functional groups are introduced into graphene after treatment. AFM investigation shows that surface roughness and adhesion force of treated graphene increase significantly firstly and then slowly. Therefore, this work would offer a practical route to improve the performance of graphene-based devices.

  6. Influence of O2 plasma treatment on NiO x layer in perovskite solar cells

    Science.gov (United States)

    Nishihara, Yoshihiko; Chikamatsu, Masayuki; Kazaoui, Said; Miyadera, Tetsuhiko; Yoshida, Yuji

    2018-04-01

    We fabricated perovskite solar cells (PSCs) with an inverted p-i-n planar structure using a NiO x film as a hole-transporting layer. Since the surface of the NiO x film fabricated by sputtering is hydrophobic, O2 plasma treatment under various conditions was performed to improve its wettability. Water contact angles after the treatment under both normal and weak conditions on the NiO x film reached approximately 15°. After the treatment, the valence band level of the NiO x film was deeper by about 0.15 eV. The maximum efficiency of the NiO x -based device under the optimized O2 plasma condition reached 12.3%.

  7. Evolution of plasma homovanillic acid (HVA) levels during treatment in schizo-affective disorder.

    Science.gov (United States)

    Galinowski, A; Castelnau, C; Spreux-Varoquaux, O; Bourdel, M C; Olie, J P; Loo, H; Poirier, M F

    2000-11-01

    1. Plasma Homovanillic Acid (p HVA) levels were measured by HPLC (high performance liquid chromatography) in 5 schizo-affective depressed patients receiving a standardized treatment. (lithium, chlorpromazine and clomipramine) during 4 weeks. 2. Four patients were pretreated, without a washout period. 3. No significant difference was observed between patients and normal controls at baseline. Under treatment, pHVA levels increased (ppHVA levels that increase with clinical improvement, unlike schizophrenic patients whose increased pHVA concentrations decline with neuroleptic treatment.

  8. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Y.; Andersen, Tom L.; Soerensen, B.F.; Toftegaard, H.L.; Teodoru, S. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark); Hansen, Charles M. [Hoersholm (Denmark)

    2013-09-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar functional groups at the surface, and subsequently improved adhesion to the epoxy and fracture resistance of epoxy composites. Hansen solubility parameters (HSP), quantitatively describing physical interactions among molecules, were measured for the UHMWPE fibre surfaces. The result identifies two distinct types of surfaces in both the plasma treated and the untreated fibres. One type is typical of polyethylene polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. (Author)

  9. Surface treatment by the ion flow from electron beam generated plasma in the forevacuum pressure range

    Directory of Open Access Journals (Sweden)

    Klimov Aleksandr

    2018-01-01

    Full Text Available The paper presents research results of peculiarities of gas ion flows usage and their generation from large plasma formation (>50 sq.cm obtained by electron beam ionization of gas in the forevacuum pressure range. An upgraded source was used for electron beam generation, which allowed obtaining ribbon electron beam with no transmitting magnetic field. Absence of magnetic field in the area of ion flow formation enables to obtain directed ion flows without distorting their trajectories. In this case, independent control of current and ion energy is possible. The influence of electron beam parameters on the parameters of beam plasma and ion flow – current energy and density – was determined. The results of alumina ceramics treatment with a beam plasma ions flow are given.

  10. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  11. Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces

    Science.gov (United States)

    Xiaoming, ZHU; Heng, GUO; Jianfeng, ZHOU; Xiaofei, ZHANG; Jian, CHEN; Jing, LI; Heping, LI; Jianguo, TAN

    2018-04-01

    Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin-dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester. The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin-dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.

  12. Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment.

    Science.gov (United States)

    Li, Chun-Yi; Liao, Ying-Chih

    2016-05-11

    In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices.

  13. Reduced plasma taurine level in Parkinson's disease: association with motor severity and levodopa treatment.

    Science.gov (United States)

    Zhang, Li; Yuan, Yongsheng; Tong, Qing; Jiang, Siming; Xu, Qinrong; Ding, Jian; Zhang, Lian; Zhang, Rui; Zhang, Kezhong

    2016-01-01

    This study aimed to evaluate the level of taurine in plasma, and its association with the severity of motor and non-motor symptoms (NMS) and chronic levodopa treatment in Parkinson's disease (PD). Plasma taurine level was measured in treated PD (tPD), untreated PD (ntPD) and control groups. Motor symptoms and NMS were assessed using the Unified Parkinson's Disease Rating Scale, the short form of the McGill Pain Questionnaire, the Hamilton Depression Scale, the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms and the Pittsburgh Sleep Quality Index. Longtime exposure to levodopa was indicated by its approximate cumulative dosage. The plasma taurine levels of PD patients were decreased when compared with controls and negatively associated with motor severity but not NMS. Moreover, tPD patients exhibited lower levels of plasma taurine than ntPD patients. Interestingly, plasma taurine levels negatively correlated with cumulative levodopa dosage in tPD. After controlling for potential confounders, the association between taurine and levodopa remained significant. Our study supports that taurine may play important roles in the pathophysiology of PD and the disturbances caused by chronic levodopa administration.

  14. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    Science.gov (United States)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4) and positively with TG (p = 9.7*10-6). Reductions in BMI SDS were associated with reductions in total body fat percentage (pobesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve.

  15. INTRALESIONAL PLATELET RICH PLASMA vs INTRALESIONAL TRIAMCINOLONE IN THE TREATMENT OF ALOPECIA AREATA: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Shumez H, Prasad PVS, Kaviarasan PK, Deepika R

    2015-01-01

    Full Text Available Background: Alopecia areata (AA is a chronic non-scarring alopecia that involves the scalp and/or body, and is characterized by patchy areas of hair loss without any signs of clinical inflammation. Various therapies have been proposed for their treatment.But none have been shown to alter the course of the disease. Platelet Rich Plasma (PRP is a volume of autologous plasma that has a high platelet concentration. Growth factors released from platelets may act on stem cells in the bulge area of the follicles, stimulating the development of new follicles and promoting neovascularization. Aim: To evaluate and compare the efficacy of intralesional injection of autologous platelet rich plasma with intralesional injection of triamcinolone acetonide (10mg/ml in the treatment of alopecia areata. Methodology: 74 patients with alopecia areata were allocated into 2 groups and treated with triamcinolone and PRP injections. Treatment outcome was measured by taking into account extent and density of regrowth of hair and was expressed as a percentage of overall growth. Results: Forty eight patients were treated with triamcinolone injections and 26 patients were treated with PRP injections. Patients treated with PRP had an earlier response at the end of 6weeks than patients treated with triamcinolone. However, this difference was statistically insignificant. The overall improvement at the end of 9 weeks was 100% for all patients in both groups. Conclusion: PRP is a safe, simple, biocompatible and effective procedure for the treatment of alopecia areata with efficacy comparable with triamcinolone.

  16. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  17. Treatment of EDTA contained reactor coolant using water dielectric barrier discharge plasma

    International Nuclear Information System (INIS)

    Song, Sang Heon; Kwon, Daniel; Kim, Gon Ho

    2005-01-01

    EDTA (Ethylene Diamine Tetraacetic Acid) is used as a main absorbent for the metal ion in the secondary loop of the nuclear reactor. Dissolving the wasted EDTA with low cost, therefore, is important issue for the maintenance of the nuclear power reactor and the protection of environment. EDTA is not easily biodegradable, furthermore these methods could make remained another pollutant as complex chemical compounds. Compared to chemical method, the physical methods, using the energetic particles and UVs, are more favorable because they dissociate the bonds of organic compounds directly without the secondary chemical reactions during the treatment. Recently, high energy electron beam, the plasma torch, and the water breakdown by high voltage pulse are applied to treatment of the waste water contained chemicals. Here consideration is narrow down to improve the interaction between the plasma and the chemical bonds of EDTA because the energetic particles; activated radicals, and UVs, are abundant in plasmas. The new method adapted of the water DBD (dielectric barrier discharge) which plasma generates directly on the top of the water contained EDTA is proposed. The application of DBD plasmas has been extended for cleaning the organic compounds from the contaminated surface and also for removing volatile organic chemicals (VOC) such as NO x and SO x from the exhausted gases. Here, the water DBD reactor (SEMTECH, SD-DWG-04-1) is consisted that the one electrode is a ceramic insulator and another one is the water itself. Interestingly, the one electrode, the water, is not the solid dielectric electrode. In this study, therefore, the characteristics with driving frequency are considered and the feasibility of this new method for the DBD treatment of EDTA contained water is demonstrated

  18. Treatment results of combined platelet-rich plasma and fat injection in patients with velopharyngeal insufficiency

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fathi

    2013-10-01

    Full Text Available Background: Velopharyngeal insufficiency causes hypernasal vocal quality and can also result in audible nasal air emission and difficulty in producing pressure consonants. The resulting speech is often socially unacceptable and can be difficult to understand. Platelet-rich plasma is an autologous derivative of whole blood. Today, the importance of clinical use of Platelet-rich plasma in the plastic surgery is considered. This study was designed to evaluate the effectiveness of combined Platelet-rich plasma and fat injection in the treatment of velopharyngeal insufficiency. Methods: In this prospective clinicaltrial study, of 15 patients including 9 males and 6 females and aged 15-20 years with mild/ moderate velopharyngeal insufficiency who were injected with 5 mL of combined Platelet-rich plasma (1 mL and fat (4 mL in the front volume in the posterior pharyngeal wall in the pre-vertebral fascia under sedation. Speech samples were recorded by nasoendoscopy before the injection, and at 6 weeks and 6 months after the injection. Assessment of pathologic speech was done by speech therapist. Results: Velar displacement showed significantly increased at 6 weeks after the injection (P=0.049. Velopharyngeal gap disappeared in 60% of patients at 6 weeks after the injection (P=0.019. Lateral pharyngeal wall movement showed significantly increased in 73.3% of the patients at 6 months after the injection (P=0.04. After the treatment, aerodynamic assessment showed significantly decreased in nasal air escape during phonation and repeat the words (P<0.05. Assessment speech therapist showed significantly improve quality of phonation in these patients (P<0.05. Conclusion: It seems that, combined Platelet-rich plasma and fat injection lead to improve voice resonance and reduce nasal air escape in all treated cases. It can be a promising alternative to major procedures, such as velopharyngoplasties, for the treatment of mild/ moderate velopharyngeal insufficiency.

  19. DLTS Analysis and Interface Engineering of Solution Route Fabricated Zirconia Based MIS Devices Using Plasma Treatment

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Koteswara Rao, K. S. R.

    2018-02-01

    In this work, we have fabricated low-temperature sol-gel spin-coated and oxygen (O2) plasma treated ZrO2 thin film-based metal-insulator-semiconductor devices. To understand the impact of plasma treatment on the Si/ZrO2 interface, deep level transient spectroscopy measurements were performed. It is reported that the interface state density ( D it) comes down to 7.1 × 1010 eV-1 cm-2 from 4 × 1011 eV-1 cm-2, after plasma treatment. The reduction in D it is around five times and can be attributed to the passivation of oxygen vacancies near the Si/ZrO2 interface, as they try to relocate near the interface. The energy level position ( E T) of interfacial traps is estimated to be 0.36 eV below the conduction band edge. The untreated ZrO2 film displayed poor leakage behavior due to the presence of several traps within the film and at the interface; O2 plasma treated films show improved leakage current density as they have been reduced from 5.4 × 10-8 A/cm2 to 1.98 × 10-9 A/cm2 for gate injection mode and 6.4 × 10-8 A/cm2 to 6.3 × 10-10 A/cm2 for substrate injection mode at 1 V. Hence, we suggest that plasma treatment might be useful in future device fabrication technology.

  20. Effects O2 plasma surface treatment on the electrical properties of the ITO substrate

    International Nuclear Information System (INIS)

    Hong, Jin-Woong; Oh, Dong-Hoon; Shim, Sang-Min; Lee, Young-Sang; Kang, Yong-Gil; Shin, Jong-Yeol

    2012-01-01

    The indium-tin-oxide (ITO) substrate is used as a transparent electrode in organic light-emitting diodes (OLEDs) and organic photovoltaic cells. The effect of an O 2 plasma surface treatment on the electrical properties of the ITO substrate was examined. The four-point probe method, an atomic force microscope (AFM), a LCR meter, a Cole-Cole plot, and a conductive mechanism analysis were used to assess the properties of the treated ITO substrates. The four-point probe method and the AFM study revealed a lower ITO surface resistance of 17.6 Ω/sq and an average roughness of 2 nm, respectively, for a substrate treated by a plasma at 250 W for 40 s. The lower surface resistance of the ITO substrate treated at 250 W for 40 s was confirmed by using a LCR meter. An amorphous fluoropolymer (AF) was deposited on an ITO substrate treated under the optimal conditions and on a non-plasma treated ITO substrate as well. The potential barriers for charge injection in these devices were 0.25 eV and 0.15 eV, respectively, indicating a 0.1-eV decrease due to the plasma treatment.

  1. Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment

    Science.gov (United States)

    Polini, W.; Sorrentino, L.

    2003-05-01

    Aluminium alloys are heavily used to manufacture structural parts in the aeronautic industry because of its lightness and its corrosion resistance. These alloys are successfully used in other industrial fields too, such as railway, automotive and naval industries. The need to contrast the severe use conditions and the heavy stresses developing in aeronautic field implies to protect the surfaces of the structures in aluminium alloy by any deterioration. To preserve by deterioration, it is necessary to make aluminium more suitable to be coated by protective paint. In the aeronautic industry, a complex and critical process is used in order to enhance both wettability and adhesive properties of aluminium alloy surfaces. Cold plasma treatment represents an efficient, clean and economic alternative to activate aluminium surfaces. The present work deals with air cold plasma treatment of 2024 aluminium alloy surfaces. The influence of dc electrical discharge cold plasma parameters on wettability of 2024 aluminium alloy surfaces has been studied. A set of process variables (voltage, time and air flow rate) has been identified and used to conduct some experimental tests on the basis of design of experiment (DOE) techniques. The experimental results show that the proposed plasma process may considerably increase aluminium alloy wettability. These results represent the first step in trying to optimise the aluminium adhesion by means of this non-conventional manufacturing process.

  2. Effect of well-established plasma treatment technology on some physiological characteristics in maize leaves during seedling stage

    International Nuclear Information System (INIS)

    Zhao Hongxiang; Fang Xiangqian; Bian Shaofeng; Zhang Lihua; Tan Guobo; Meng Xiangmeng; Yan Weiping; Liu Yaliang; Sun Ning

    2010-01-01

    In order to provide theoretical references and technical support for application of plasma treatment technology in agriculture, the seeds of maize were treated by well-established plasma treatment technology, then the changes of physiological characteristics of maize leaves during seedling stage were studied. The results indicated that the stress resistance of maize was improved by plasma treatment. The SOD, POD and CAT activities, soluble protein content and soluble sugar content of leaves at two-leave stage, four-leave stage, six-leave stage and eight-leave stage treated by plasma were higher than that of CK, but the MDA content was lower than CK. Although NR activity in leaves at twoleave stage and four-leave stage was slightly lower than CK, but higher than CK at six-leave stage (26.81%) and eightleaves stage (26.75%). Plasma treatment enhanced the nitrogen metabolism capacity, and this tendency was increased remarkable with the growth stages processes. (authors)

  3. Magnetic and microstructural investigation of high-coercivity net-shape Nd–Fe–B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Žagar, Kristina, E-mail: kristina.zagar@ijs.si; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd–Fe–B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd{sub 2}Fe{sub 14}B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (H{sub ci}), are insufficient at automotive-relevant temperatures of 100–150 °C since the material H{sub ci} has a large temperature coefficient. In this study, we instead add a thin layer of DyF{sub 3} to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd{sub 2}Fe{sub 14}B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques. - Highlights: • We produced high coercivity magnets with drastically reduced amounts of HRE. • Microstructural analysis was conducted of the “free” and “wheel” side of Dy-treated Nd{sub 2}Fe{sub 14}B ribbons. • Dy-diffusion mechanism into ribbons depending on processing parameters is shown.

  4. Longitudinal Relationship between Plasma Reactive Oxygen Metabolites and Periodontal Condition in the Maintenance Phase of Periodontal Treatment

    Directory of Open Access Journals (Sweden)

    Tatsuya Machida

    2014-01-01

    Full Text Available Aim. The present cohort study describes the longitudinal relationship between plasma oxidative status and periodontitis progression during the maintenance phase of treatment. Materials and Methods. Forty-five patients (mean age 58.8 years were monitored from 2008 to 2013. Periodontal conditions, including probing pocket depth (PPD and clinical attachment level (CAL, were recorded. Measurements of plasma reactive oxygen metabolites (ROM and biologic antioxidant potential (BAP were performed to evaluate plasma oxidative status. The patients were assigned into 2 groups as low and high plasma ROM level using a cut-off value which was median of plasma ROM level at baseline. Results. In the subjects with low plasma ROM level at baseline, changes in mean CAL were positively correlated with changes in plasma ROM levels, bleeding on probing, and plaque control record, but not with PPD. In the subjects with high plasma ROM at baseline, changes in CAL were significantly associated with only PPD at baseline. On the other hands there were no significant associations between changes in CAL and those in plasma BAP levels. Conclusions. When plasma ROM level in periodontitis patients was low, increases in plasma ROM level were associated with those in CAL during the maintenance phase of treatment.

  5. Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD Plasma Treatment of Polypropylene Films

    Directory of Open Access Journals (Sweden)

    Lukas JW Seidelmann

    2017-03-01

    Full Text Available Atmospheric pressure plasma treatment of the surface of a polypropylene film can significantly increase its surface energy and, thereby improve the printability of the film. A laboratory-scale dielectric barrier discharge (DBD system has therefore been developed, which simulates the electrode configuration and reel-to-reel web transport mechanism used in a typical industrial-scale system. By treating the polypropylene in a nitrogen discharge, we have shown that the water contact angle could be reduced by as much as 40° compared to the untreated film, corresponding to an increase in surface energy of 14 mNm−1. Ink pull-off tests showed that the DBD plasma treatment resulted in excellent adhesion of solvent-based inks to the polypropylene film.

  6. Parametric Study of Effects of Atmospheric Pressure Plasma Treatment on the Wettability of Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2018-02-01

    Full Text Available In textiles processing, wettability of fabric plays a very important role in enhancing processes such as dyeing and printing. Although well-prepared cotton fabric has very good wettability, further enhancement of its wettability can effectively improve the subsequent dyeing and printing processes. Plasma treatment, especially atmospheric pressure plasma treatment (APPT, a continuous process, is now drawing attention of the industry. In this study, we investigated the effect of APPT under four operational parameters: (1 discharge power; (2 flow rate of oxygen; (3 jet travelling speed; and (4 jet-to-substrate distance on wettability (in terms of wickability and wetting area of cotton fabric. Experimental results revealed that the four parameters interact with each other in affecting the wettability of the cotton fabric. The results are discussed comprehensively.

  7. Clinical effect of plasma perfusion combined with plasma exchange in treatment of patients with acute-on-chronic liver failure

    Directory of Open Access Journals (Sweden)

    ZHOU Jian

    2017-04-01

    Full Text Available ObjectiveTo investigate the clinical effect of plasma perfusion (PP combined with plasma exchange (PE in the treatment of acute-on-chronic liver failure (ACLF. MethodsA total of 72 patients with ACLF who were admitted to The Second People’s Hospital of Lanzhou from January 2014 to December 2015 were enrolled. In addition to internal medication, all the patients were treated with the artificial liver support system (once every 3-4 days based on the patients’ conditions, 1-3 times on average for each patient. According to the difference in therapies, the patients were divided into combination group with 40 patients (PP combined with PE and a total of 107 case times and control group with 32 patients (PE alone and a total of 85 case times. Total bilirubin (TBil, alanine aminotransferase (ALT, and prothrombin time were recorded before treatment, after surgery, and at 72 hours after surgery. Clinical outcome was evaluated after 4 weeks of treatment. The t-test was used for comparison of continuous data between groups, and the chi-square test was used for comparison of categorical data between groups. ResultsThe overall response rate of all patients was 63.89% (46/72. At 72 hours after surgery, there was a significant difference in the level of ALT between the combination group and the control group (319.54±86.23 U/L vs 354.75±100.76 U/L, t=2.60, P<0.05. Both groups had significant reductions in TBil and ALT after surgery (combination group: t=6.69 and 15.84, P<0.05; control group: t=5.34 and 14.38, P<0.05 and at 72 hours after surgery (combination group: t=3.24 and 8.83, P<0.05; control group: t=2.40 and 4.61, P<0.05. Both groups had significant changes in prothrombin time activity after surgery (t=4.83 and 5.01, both P<0.05. There were no significant differences in the incidence rates of pruritus and rash between the two groups, while there was a significant difference in the incidence rate of perioral or limb numbness between the

  8. Effect of adjunct metformin treatment on levels of plasma lipids in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Lund, S.S.; Tarnow, L.; Astrup, A.S.

    2009-01-01

    BACKGROUND: In addition to its glucose-lowering effect, metformin treatment has been suggested to improve lipidaemia in patients with type 2 diabetes. In contrast, in patients with type 1 diabetes (T1DM), information about the effect of metformin treatment on lipidaemia is limited. In this study......, we report the effect of a 1-year treatment with metformin vs. placebo on plasma lipids in T1DM patients and persistent poor glycaemic control. METHODS: One hundred T1DM patients with haemoglobinA(1c) (HbA(1c)) > or =8.5% during the year before enrolment entered a 1-month run-in period on placebo...... treatment. Thereafter, patients were randomized (baseline) to treatment with either metformin (1000 mg twice daily) or placebo for 12 months (double masked). Patients continued ongoing insulin therapy and their usual outpatient clinical care. Outcomes were assessed at baseline and after 1 year. RESULTS...

  9. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  10. Deposition of Polymer Thin Films on ZnO Nanoparticles by a Plasma Treatment

    Science.gov (United States)

    2001-11-01

    exchange for removing metal ions frori water. If on the surface of these nanoparticles, an extremely thin layer of polyacrylic filr can be coated by a...plasma treatment. The polyacrylic film will react with metallic ions in water. As a result of the high surface-to-volume ratio of these narioparticles, the...experiments performed on a JEM 2010F. In FFIR experiment, potassium bromide(KBr) of 99%+ purity was obtained from Aldrich Chemical Company Inc

  11. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    International Nuclear Information System (INIS)

    Fu Qiang; Song Xuefeng; Gao Jingyun; Han Xiaobing; Zhao Qing; Yu Dapeng; Jin Yu; Jiang Xingyu

    2010-01-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  12. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment.

    Science.gov (United States)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-05

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  13. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.

    Science.gov (United States)

    Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua

    2018-06-21

    Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.

  14. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  15. Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon

    International Nuclear Information System (INIS)

    Ji Puhui; Qu Guangzhou; Li Jie

    2013-01-01

    The pentachlorophenol (PCP) adsorbed granular activated carbon (GAC) was treated by dielectric barrier discharge (DBD) plasma. The effects of DBD plasma on the structure of GAC and PCP decomposition were analyzed by N 2 adsorption, thermogravimetric, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and gas chromatography mass spectrometry (GC-MS). The experimental data of adsorption kinetics and thermodynamics of PCP on GAC were fitted with different kinetics and isotherm models, respectively. The results indicate that the types of N 2 adsorption isotherm of GAC are not changed by DBD plasma, while the specific surface area and pore volume increase after DBD plasma treatment. It is found that the weight loss of the saturated GAC is the highest, on the contrary, the weight loss of DBD treated GAC is the least because of reduced PCP residue on the GAC. The XPS spectra and SEM image suggest that some PCP on the GAC is removed by DBD plasma, and the surface of GAC treated by DBD plasma presents irregular and heterogeneous morphology. The GC-MS identification of by-products shows that two main dechlorination intermediate products, tetrachlorophenol and trichlorophenol, are distinguished. The fitting results of experimental data of adsorption kinetics and thermodynamics indicate that the pseudo-first-order and pseudo-second order models can be used for the prediction of the kinetics of virgin GAC and DBD treated GAC for PCP adsorption, and the Langmuir isotherm model fits better with the data of adsorption isotherm than the Freundlich isotherm in the adsorption of PCP on virgin GAC and DBD treated GAC

  16. Post-deposition treatments of plasma-sprayed YBaCuO coatings deposited on nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dube, D; Lambert, P; Arsenault, B; Champagne, B [National Research Council of Canada, Boucherville, PQ (Canada)

    1990-12-15

    As-sprayed YBaCuO coatings do not exhibit superconductivity because of the non-equilibrium solidification conditions of molten particles on the substrate and to the deposit's loss of oxygen. Therefore post-deposition treatments are required to restore the superconductivity. In this study, post-deposition treatments were carried out on thick YBaCuO coatings (200 {mu}m) deposited on cold nickel substrates to modify their microstructure, to restore the oxygen content and to improve their superconducting properties. These treatments consist in heating the coatings at various temperatures above 950deg C followed by controlled solidification cycles. The effect of these treatments on the microstructure of the coatings was assessed and the interaction between the coatings and the nickel substrate was also examined. Solidification cycles including a low cooling rate near the non-congruent melting temperature of YBa{sub 2}Cu{sub 3}O{sub x} and involving a temperature gradient were carried out to create a texture. (orig.).

  17. Melting of Dense Sodium

    International Nuclear Information System (INIS)

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  18. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  19. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  20. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  1. Melt-processing method for radioactive solid wastes

    International Nuclear Information System (INIS)

    Kobayashi, Hiroaki

    1998-01-01

    Radioactive solid wastes are charged into a water-cooled type cold crucible induction melting furnace disposed in high frequency coils, and high frequency currents are supplied to high frequency coils which surround the melting furnace to melt the solid wastes by induction-heating. In this case, heat plasmas are jetted from above the solid wastes to the solid wastes to conduct initial heating to melt a portion of the solid wastes. Then, high frequency currents are supplied to the high frequency coils to conduct induction heating. According to this method, even when waste components of various kinds of materials are mixed, a portion of the solid wastes in the induction melting furnace can be melted by the initial heating by jetting heat plasmas irrespective of the kinds and the electroconductivity of the materials of the solid wastes. With such procedures, entire solid wastes in the furnace can be formed into a molten state uniformly and rapidly. (T.M.)

  2. Comparison of the effect of plasma treatment and gamma ray irradiation on PS-Cu nanocomposite films surface

    Science.gov (United States)

    Farag, O. F.

    2018-06-01

    Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.

  3. Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors

    International Nuclear Information System (INIS)

    Pu, Haifeng; Zhou, Qianfei; Yue, Lan; Zhang, Qun

    2013-01-01

    We reported the impact of oxygen plasma treatment on solution-processed amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs). Plasma-treated devices showed higher mobility, larger on/off current ratio, but a monotonically increased SS with plasma treatment time as well. The phenomenon was mainly due to two components in oxygen plasma, atomic oxygen and O 2 + , according to the photoluminescence (PL) measurement. Atomic oxygen reacted with oxygen vacancies in channel layer resulting in an improved mobility, and O 2 + tends to aggregated at the surface acting as trapping states simultaneously. Our study suggests that moderate oxygen plasma treatment can be adopted to improve the device performance, while O 2 + should be eliminated to obtain good interfacial states.

  4. An engineering and economic analysis: Inductively coupled plasma mobile treatment of hazardous waste

    International Nuclear Information System (INIS)

    Detering, B.A.; McLlwain, M.E.

    1997-10-01

    This analysis considers the engineering and economic viability of an rf-plasma, mobile treatment process for remediation of hazardous waste located at remote sites in Alaska. A simple engineering process flowsheet is used to define the elements associated with the process and to identify major pieces of equipment. The proposed flowsheet and equipment are used to estimate capital and operational costs for four separate processing cases. These cases explore various operational situations, including moving equipment to a remote site, transporting wastes to a base site, and varying operational periods. Some cases consider variations in fuel costs known to exist across Alaska. Operational costs, capital equipment costs, and revenues are used to calculate pro-forma income statements. These income statements are used to predict economic viability. Based on the economic viability, the analysis suggests that processing of hydrocarbon-contaminated soils is more profitable when performed at remote sites as compared to at a home base. Processing of poly-chloro-biphenyl (PCB)-contaminated oil at a stationary site is more profitable as compared to remote treatment due to the cost of transporting the equipment. Over the range of fuel prices considered, higher fuel costs increase the per unit treatment price by ten percent. Based on the results of this analysis, an rf-plasma based process appears to be economically viable for remote treatment of hydrocarbon-contaminated soil, but less viable for treatment of PCB-contaminated oil

  5. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles.

    Science.gov (United States)

    Tseng, Chun-Hao; Wang, Cheng-Chien; Chen, Chuh-Yung

    2006-03-09

    A novel method for preparing poly(propylene-graft-2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester)-silver fibers (PPG-IAg fibers) by plasma-induced grafting polymerization is presented in this study. The chelating groups, -N(CH2COO-)2 (GMA-IDA), on the surface of the PPG-I fibers are the coordination sites for chelating silver ions. At these sites, Ag nanoparticles were grown first by reduction with UV light with a wavelength of 366 nm, and second, through immersion in a 24% formaldehyde solution with pH values set variously at 2, 5, 8, and 11. The characteristics of the PPG-I fibers with differing durations of plasma treatment were monitored by using a Fourier transform infrared (FT-IR) spectroscope. Scanning electronic microscopy (SEM) and elemental analysis show that the percentage of GMA-IDA grafted onto PP fiber reaches a maximum when the plasma treatment time is 3 min. Plasma treatment time beyond a certain length of time results in an abundance of free radicals and causes considerable cross-linking on the fiber surface which thus decreases the extent of grafting. Moreover, the crystalline phase of Ag nanoparticles is identified by using X-ray diffraction (XRD). When the PPG-I fibers are reduced by the UV light method, SEM and TEM microscopes reveal that the size of the Ag nanoparticles on the fiber surface decreases significantly with the increase of pH values in aqueous solutions. Notably, in the reduction of formaldehyde solution, the particle size of Ag nanoparticles reaches a minimum at the lowest pH value. The TEM observations show that Ag nanoparticles are distributed both in the exterior and interior of the grafting layer. In addition, under high pH values the distribution of the Ag nanoparticles permeate more deeply in the GMA-IDA grafting layer due to the swelling effect of the GMA-IDA polymer.

  6. Roughness transitions of diamond(100) induced by hydrogen-plasma treatment

    Science.gov (United States)

    Koslowski, B.; Strobel, S.; Wenig, M. J.; Ziemann, P.

    To investigate the influence of hydrogen-plasma treatment on diamond(100) surfaces, heavily boron (B)-doped HPHT diamond crystals were mechanically and chemo-mechanically polished, and exposed to a microwave-assisted hydrogen plasma on a time scale of several minutes. The resulting surface morphology was analyzed on macroscopic scales by stylus profilometry (PFM) and on microscopic scales by STM and AFM. The polished samples have a roughness of typically 100 pmrms (PFM), with no obvious anisotropic structures at the surface. After exposure of the B-doped diamond(100) to the H-plasma, the roughness increases dramatically, and pronounced anisotropic structures appear, these being closely aligned with the crystallographic axis' and planes. An exposure for 3 minutes to the plasma leads to an increase of the roughness to 2-4 nmrms (STM), and a `brick-wall' pattern appears, formed by weak cusps running along . Very frequently, the cusps are replaced by `negative' pyramids that are bordered by {11X} facets. After an exposure of an additional 5 minutes, the surface roughness of the B-doped samples increases further to 20-40 nmrms (STM), and frequently exhibits a regular pattern with structures at a characteristic length scale of about 100 nm. Those structures are aligned approximately with and they are faceted with faces of approximately {XX1}. These results will be discussed in terms of strain relaxation, similar to the surface roughening observed on SiGe/Si and anisotropic etching.

  7. Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye.

    Science.gov (United States)

    García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J

    2017-08-01

    The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Possibility for a self-consistent treatment of transport processes in a turbulent plasma

    International Nuclear Information System (INIS)

    Mondt, J.P.

    1985-06-01

    All commonly used models of plasma dynamics share a common flaw in their a priori validity. In particular, a solid foundation of plasma modelling on microscopic dynamics, as exists for moderately dilute gases, is obscured because of the difficulties inherent in the treatment of the potentially very important interplay between plasma waves and collisional processes. The present report briefly discusses the nature of these difficulties and presents a possible approach towards the establishment of a plasma theory founded on the microscopic particle dynamics. The essence of this approach is the realization that only discrete particle interactions can create correlations. These therefore come into being on different spatial scales depending on their cluster number, after which collective effects magnify them analogous to the growth of intial perturbations in an unstable system. Truncation of the Born-Bogolyubov-Green-Kirkwood-Yvon ('BBGKY') hierarchy thereby becomes a possibility through the introduction of a small parameter in intial conditions although the dynamical system in itself does not contain a uniformly small parameter

  9. Argon-plasma treatment in benign metastasizing leiomyoma of the lung: A case report

    Directory of Open Access Journals (Sweden)

    A. Bugalho

    2010-11-01

    Full Text Available Benign metastasizing leiomyomas of the lung are rare smooth muscle cells tumours. We report the case of a 48 year-old female who was evaluated due to persistent cough, progressive dyspnoea and constitutional symptoms. Chest computed tomography revealed a left endobronchial mass, multiple parenchyma nodules and a pleural effusion. Bronchial biopsy histological features were consistent with benign metastasizing leiomyoma. The patient was successfully treated with argon-plasma and mechanical debulking. There was no disease relapse in the last four years. Resumo: Os leiomiomas benignos metastizantes pulmonares são tumores raros de células musculares lisas. Uma doente de 48 anos foi avaliada devido a tosse persistente, dispneia progressiva e sintomas constitucionais. A tomografia computorizada do tórax revelou uma massa endobrônquica à esquerda, múltiplos nódulos do parênquima pulmonar e derrame pleural. As características histológicas da biopsia brônquica foram consistentes com o diagnóstico de leiomioma benigno metastizante. A doente foi submetida a coagulação árgon-plasma e desobstrução mecânica com eficácia terapêutica. Verificou-se estabilidade clínica nos últimos quatro anos. Keywords: Benign metastasizing leiomyoma, Lung neoplasms, Diagnosis, Bronchoscopy, Management, Argon-plasma treatment, Palavras-chave: Leiomioma benigno metastizante, Neoplasias pulmonares, Diagnóstico, Broncoscopia, Tratamento, Tratamento árgon-plasma

  10. [Plasma metabonomics of Guifu Dihuang Wan in the treatment of yang deficiency].

    Science.gov (United States)

    Xiao, Ya; Jing, Yuan; Chen, Jie-Yu; Li, Fei; Cheng, Jing-Ru; Bi, Jian-Lu; Luo, Ren; Zhao, Xiao-Shan

    2016-11-20

    To assess the effect of Guifu Dihuang Wan (GFDHW) in the treatment of yang deficiency and explore the underlying molecular mechanism. Sixty-two participants without diseases were randomized into control group (n=31) and experimental group (n=31) and were given lifestyle intervention additional GFDHW treatment for a month. NMR technology was used for metabonomics analysis. Intervention with GFDHW resulted in significantly decreased conversion scores of yang deficiency in the experimental group compared with the control group (P<0.005). The concentrations of lactate, valine, proline, arginine and 3-hydroxybutyrate were increased in the plasma of yang-deficient subjects after lifestyle intervention. GFDHW treatment with lifestyle intervention significantly increased the concentrations of lactate, valine, proline, arginine and 3-hydroxybutyrate and also the levels of alanine, glutamine, alpha glucose, isoleucine, betaine and propylene glycol. GFDHW treatment improves yang deficiency possibly by increasing the concentrations of alanine, glutamine, alpha glucose, isoleucine, betaine and propylene glycol and promoting energy metabolism of the body.

  11. Effect of near atmospheric pressure nitrogen plasma treatment on Pt/ZnO interface

    International Nuclear Information System (INIS)

    Nagata, Takahiro; Haemori, Masamitsu; Chikyow, Toyohiro; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Kobayashi, Keisuke; Uehara, Tsuyoshi

    2012-01-01

    The effect of near atmospheric pressure nitrogen plasma (NAP) treatment of platinum (Pt)/zinc oxide (ZnO) interface was investigated. NAP can nitride the ZnO surface at even room temperature. Hard x-ray photoelectron spectroscopy revealed that NAP treatment reduced the surface electron accumulation at the ZnO surface and inhibited the Zn diffusion into the Pt electrode, which are critical issues affecting the Schottky barrier height and the ideality factor of the Pt/ZnO structure. After NAP treatment, the Pt Schottky contact indicated an improvement of electrical properties. NAP treatment is effective for the surface passivation and the Schottky contact formation of ZnO.

  12. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    Science.gov (United States)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  13. Improvement of sensitizatiuon in weld metals of austenitic stainless steels by laser surface melting treatment. Report 3. Study on low temperature sensitization in weldments of austenitic stainless steels ans its improvement by laser surface melting treatment; Reza hyomen yoyu shori ni yoru sutenresu ko yosetsu kinzoku no enbinka kaizen. 3. Osutenaito kei sutenresu ko yosetsubu no teion enbinka to reza hyomen yoyu shori ni yoru sono kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, K. [Osaka Univ., Osaka (Japan). Faculty of Engineering; Mori, H. [Osaka Univ., Osaka (Japan). Graduate School; Yamamura, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1997-05-05

    Laser surface melting treatment used for the improvement of intergranular corrosion resistance of sensitized austenitic stainless steel weld metal was studied. As a result, it was revealed that as compared to untreated material, sensitization was improved widely and intergranular corrosion resistance was improved to a level of base metal when laser surface melting treatment of sensitized weld metal was carried out. Further, sensitization effect at a condition of laser traveling velocity of 0.00167m/s was slightly insufficient compared to that of laser traveling velocity above 0.00833m/s. This phenomena was caused due to the existence of {delta} ferrite that accelerates the precipitation of Cr carbides inside the laser treatment portion and together with this, the Cr carbides are precipitated in {delta}/{gamma} grain boundary due to the effect of laser heat cycle with insufficient cooling velocity and this has caused desensitization. 16 refs., 13 figs., 3 tabs.

  14. Mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment: Influence of UV radiation

    NARCIS (Netherlands)

    Lens, J.P.; Spaay, B.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1999-01-01

    The mechanism of the immobilization of the surfactant sodium 10-undecenoate (C11(:)) on poly(ethylene) (PE) by means of an argon plasma treatment has been investigated. In particular, the influence of the vacuum ultraviolet (UV) radiation emitted by the argon plasma on the immobilization was

  15. Treatment with clozapine and its effect on plasma homovanillic acid and norepinephrine concentrations in schizophrenia.

    Science.gov (United States)

    Davidson, M; Kahn, R S; Stern, R G; Hirschowitz, J; Apter, S; Knott, P; Davis, K L

    1993-02-01

    Measurement of plasma concentrations of the dopamine metabolite, homovanillic acid (pHVA), is an indirect tool to assess changes in dopamine turnover. Levels of pHVA have been reported to decrease during treatment with conventional antidopaminergic, neuroleptics, with the decrement correlating with symptomatic improvement in schizophrenic symptoms. Clozapine, an atypical neuroleptic, is the only drug proved to be effective in treatment-refractory patients. However, the mechanism mediating this unique efficacy has not been fully elucidated. This study examined the effect of clozapine on pHVA concentrations in schizophrenic patients. Since clozapine potently binds to alpha 2-adrenergic receptors, plasma norepinephrine (pNE) concentrations were also measured. Twenty-eight treatment-refractory schizophrenic patients (24 men, 4 women) were treated with clozapine (up to 600 mg/day) for 5 weeks, after a minimum 1-week drug-free period. Symptomatology and pHVA and pNE concentrations were measured at the last drug-free day and weekly for 5 weeks. Fourteen patients responded to clozapine treatment, while an equal number did not. Mean pHVA concentrations did not significantly change during treatment with clozapine. Although clozapine tended to lower pHVA concentrations in treatment responders, the effect was small and not significant. Clozapine treatment significantly raised pNE concentrations, but this did not differentiate responders from nonresponders to clozapine. These findings suggest that clozapine's effect on DA turnover is small and that clozapine may be effective in treatment-refractory schizophrenia by mechanisms other than, or in addition to, dopamine receptor blockade. However, since about one-third of NE is metabolized into HVA, the clozapine-induced increase in pNE may have overshadowed a possible lowering effect of clozapine on pHVA.

  16. Research and development on the melting test of low-level radioactive miscellaneous solid waste

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Hoshi, Akiko; Kameo, Yutaka; Nakashima, Mikio

    2007-02-01

    The Nuclear Science Research Institute of the Japan Atomic Energy Agency constructed the Advanced Volume Reduction Facilities (AVRF) in February 2003 for treatment of low-level radioactive miscellaneous solid waste (LLW). The waste volume reduction is carried out by a high-compaction process or melting processes in the AVRF. In advance of operating the melting process in the AVRF, melting tests of simulated LLW with RI tracers ( 60 Co, 137 Cs and 152 Eu) have been conducted by using the plasma melter in pilot scale. Viscosity of molten waste, chemical composition and physical properties of solidified products and distribution of the tracers in each product were investigated in various melting conditions. It was confirmed that the viscosity of molten waste was able to be controlled by adjusting chemical composition of molten waste. The RI tracer were almost uniformly distributed in the solidified products. The retention of 137 Cs depended on the basicity (CaO/SiO 2 ) of the solidified products. The solidified product possessed satisfactory compressive strength. In the case of basicity less than 0.8, the leachability of RI tracers from the solidified products was less than or equal to that of a high-level vitrified waste. In this review, experimental results of the melting tests were discussed in order to contribute to actual treatment of LLW in the AVRF. (author)

  17. Characteristics of SiOx-containing hard film prepared by low temperature plasma enhanced chemical vapor deposition using hexamethyldisilazane or vinyltrimethylsilane and post oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yi-Syuan; Liu, Wan-Yu; Wu, Hsin-Ming [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Chen, Ko-Shao, E-mail: kschen@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Cech, Vladimir [Institute of Materials Chemistry, Brno University of Technology (Czech Republic)

    2017-03-01

    This study, monomers of hexamethyldisilazane (HMDSZ) and vinyltrimethylsilane (VTMS) were respectively used to deposit on the surface of polyethylene terephthalate (PET) substrate by plasma enhanced chemical vapor deposition. Oxygen plasma treatment follows the HMDSZ and VTMS deposition to produce a hydrophilic surface film on the deposited surface. Time for HMDSZ and VTMS plasma deposition was changed to investigate its influences on water contact angle, deposited film thickness, refractive index, and friction coefficient properties. The surface morphologies of the processed samples were observed by scanning electron microscope and their chemical compositions were measured by X-ray photoelectron spectroscopy. At 550 nm wavelength, the optical transmittance of PET after the HMDSZ treatment decreases from 89% to 83%, but increases from 89% to 95% for the VTMS treatment. With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. Result revealed by XPS, SiO{sub 2} film is formed on the sample surface after the O{sub 2} plasma treatment. The film adhesion capability by the HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment was stronger than that by the HMDSZ and VTMS treatment only. The SiOx films produced by HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment can increase the film hardness and improve light transmittance. - Highlights: • With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. • The optical transmittance of PET after the VTMS treatment increases from 89% to 95%. • The SiO{sub 2} films deposited by HMDSZ+O{sub 2} and VTMS+O{sub 2} plasma can increase the film hardness and improve light transmittance. • It is expected that they can be applied to the optical transmittance protective film on plastic substrate in the future.

  18. Inactivation of Zika virus by solvent/detergent treatment of human plasma and other plasma-derived products and pasteurization of human serum albumin.

    Science.gov (United States)

    Kühnel, Denis; Müller, Sebastian; Pichotta, Alexander; Radomski, Kai Uwe; Volk, Andreas; Schmidt, Torben

    2017-03-01

    In 2016 the World Health Organization declared the mosquito-borne Zika virus (ZIKV) a "public health emergency of international concern." ZIKV is a blood-borne pathogen, which therefore causes concerns regarding the safety of human plasma-derived products due to potential contamination of the blood supply. This study investigated the effectiveness of viral inactivation steps used during the routine manufacturing of various plasma-derived products to reduce ZIKV infectivity. Human plasma and intermediates from the production of various plasma-derived products were spiked with ZIKV and subjected to virus inactivation using the identical techniques (either solvent/detergent [S/D] treatment or pasteurization) and conditions used for the actual production of the respective products. Samples were taken and the viral loads measured before and after inactivation. After S/D treatment of spiked intermediates of the plasma-derived products Octaplas(LG), Octagam, and Octanate, the viral loads were below the limit of detection in all cases. The mean log reduction factor (LRF) was at least 6.78 log for Octaplas(LG), at least 7.00 log for Octagam, and at least 6.18 log for Octanate after 60, 240, and 480 minutes of S/D treatment, respectively. For 25% human serum albumin (HSA), the mean LRF for ZIKV was at least 7.48 log after pasteurization at 60°C for 120 minutes. These results demonstrate that the commonly used virus inactivation processes utilized during the production of human plasma and plasma-derived products, namely, S/D treatment or pasteurization, are effective for inactivation of ZIKV. © 2016 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  19. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  20. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  1. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    Science.gov (United States)

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  2. Treatment of ibuprofen intoxication in a dog via therapeutic plasma exchange.

    Science.gov (United States)

    Walton, Stuart; Ryan, Kirk A; Davis, Jennifer L; Acierno, Mark

    2017-07-01

    To describe the treatment of ibuprofen intoxication with therapeutic plasma exchange in a dog (TPE). A 13-year-old male neutered mixed breed dog presented after ingesting approximately 200 mg/kg of ibuprofen. Treatment consisted of supportive medical therapy with IV fluids, gastrointestinal protectants, antiemetics and prostaglandin analogs, and TPE. A cycle of TPE was performed over 180 minutes, achieving 1.5 plasma volume exchanges. During therapy, heparinized blood and effluent samples were collected. Ibuprofen concentrations were determined in the samples by high-pressure liquid chromatography. Post TPE, the dog was continued on supportive medical therapy and was discharged 96 hours after the overdose. This report describes the use of TPE as an adjunct for ibuprofen intoxication. An 85% reduction in plasma ibuprofen concentration occurred and recovery from a potentially lethal ingestion of ibuprofen was achieved with TPE and supportive care. TPE should be considered when presented with acute ibuprofen intoxication due to the rapid and efficacious nature of therapy. © Veterinary Emergency and Critical Care Society 2017.

  3. A study on the effect of heat treatment on electrical properties of plasma sprayed YSZ

    International Nuclear Information System (INIS)

    Elshikh, S.S.M.

    2012-01-01

    Free standing samples of plasma sprayed (PS) zirconia partially stabilized with yettria (YSZ) were prepared with two machines of plasma spray deposition (Triplex gun- 100 kw, F-4 gun 64 kw) have different electrical power and spraying parameters, which produced different microstructures; contain different amounts and varieties of pores and micro-cracks.The study included heat treatment of samples at 1200 degree C for 1 h, 5 h, 10 h, 100 h and 500 h, to study the changes in macrostructure (pores and micro-cracks) which affect the electrical conductivity.The electrical properties (resistively, electrical conductivity) of plasma sprayed ZrO 2 stabilized by 8 wt. % Y 2 O 3 samples were determined by using electrical impedance spectroscopy (IS). Specimen's microstructure was examined by optical microscopy. By measuring electrical properties and connected porosity percent of the coatings obtained under various spraying conditions, it would be possible to select the optimum spraying condition to spray coatings which have high efficiency at high temperature.The results showed that the electrical conductivity of (YSZ) samples after heat treatment increased by a rate of (20%-30%) as compared to that of as sprayed.

  4. Effects of H2/O2 mixed gas plasma treatment on electrical and optical property of indium tin oxide

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Dong-Min; Kim, Jae-Kwan; Yang, Su-Hwan; Lee, Ji-Myon

    2013-01-01

    Highlights: ► The specific resistivity of ITO was enhanced by H 2 + O 2 mixed gas plasma treatment. ► The transmittance was same as that of untreated ITO after plasma treatment. ► The process was carried out at room temperature without any step of post-treatment. - Abstract: This study examined the effects of H 2 and H 2 + O 2 mixed gas plasma treatment on the properties of ITO films. The films were deposited on corning glass by RF magnetron sputtering under Ar and Ar/O 2 mixed gas ambient. After a H 2 plasma treatment, the ITO films showed an improved specific resistance due to the formation of oxygen vacancies acting as shallow donors, but showed quenched transmittance due to the formation of agglomerated metals on the surface. After an H 2 + O 2 mixed gas plasma treatment, the specific resistance of the film was improved without deteriorating transmittance. The enhanced specific resistance by mixed gas plasma treatment was attributed to the formation of free electrons by the incorporation of H in the lattice.

  5. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  6. Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    International Nuclear Information System (INIS)

    Asadian, M; Grande, S; Morent, R; Nikiforov, A; De Geyter, N; Declercq, H

    2017-01-01

    In this study, liquid plasma treatment was used to improve the morphology of Poly-ε-CaproLactone (PCL) NanoFibers (NFs), followed by performing a Dielectric Barrier Discharge (DBD) plasma surface modification to enhance the hydrophilicity of electrospun mats generated from plasma-modified PCL solutions. Cell interaction studies performed after 1 day and 7 days clearly revealed the highly increased cellular interactions on the double plasma-treated nanofibers compared to the pristine ones due to the combination of (1) a better NF morphology and (2) an increased surface hydrophilicity. (paper)

  7. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Lee, Chang-Min; Yang, Seong-Won; Jung, Sang-Chul; Kim, Byung-Hoon

    2017-04-01

    The 3D hydroxyapatite/gelatin/chitosan composite scaffolds were fabricated by 3D printing technique. The scaffolds were treated by oxygen plasma to improve the bioactivity and its surface characterization and in vitro cell culture were investigated. The scaffolds exhibited the good porosity and interconnectivity of pores. After oxygen plasma etching, roughness and wettability on the scaffolds surface are increased. Plasma treated scaffolds showed higher proliferation than that of untreated scaffolds. Oxygen plasma treatment could be used as potential tool to enhance the biocompatibility on the 3D composite scaffolds.

  8. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    Science.gov (United States)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF pressure is higher than 0.3 Torr. The water contact angle ( 149°) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  9. Mechanical strength and hydrophobicity of cotton fabric after SF{sub 6} plasma treatment