WorldWideScience

Sample records for plasma heating

  1. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  2. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  3. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  4. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  5. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2003-01-01

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows

  6. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  7. Radiofrequency plasma heating: proceedings

    International Nuclear Information System (INIS)

    Swenson, D.G.

    1985-01-01

    The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately

  8. Plasma assisted heat treatment: annealing

    International Nuclear Information System (INIS)

    Brunatto, S F; Guimaraes, N V

    2009-01-01

    This work comprises a new dc plasma application in the metallurgical-mechanical field, called plasma assisted heat treatment, and it presents the first results for annealing. Annealing treatments were performed in 90% reduction cold-rolled niobium samples at 900 deg. C and 60 min, in two different heating ways: (a) in a hollow cathode discharge (HCD) configuration and (b) in a plasma oven configuration. The evolution of the samples' recrystallization was determined by means of the microstructure, microhardness and softening rate characterization. The results indicate that plasma species (ions and neutrals) bombardment in HCD plays an important role in the recrystallization process activation and could lead to technological and economical advantages considering the metallic materials' heat treatment application. (fast track communication)

  9. Plasma heating in collisionless plasma at low plasma density

    International Nuclear Information System (INIS)

    Wulf, H.O.

    1977-01-01

    The high frequency heating of a collisionless, fully ionized low density plasma is investigated in the range: 2ωc 2 2 under pumping frequencies. A pulsed 1 MHz transmitter excites a fast standing, magneto-acoustical wave in the plasma, via the high frequency magnetic field of a Stix solenoid. The available modulation degrees are between 0.7 and 7.0%. As power consumption measurements show, there appears at all investigated pumping frequencies an effective energy transfer to the plasma that cannot be explained with the classical MHD models. Measurements with electrostatic probes and further with a miniature counter-field spectrometer yield an electron and ion temperature gain of two to three factors and 15-18, compared to the corresponding values in the initial plasma. (orig./HT) [de

  10. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya.

    1976-06-01

    In this paper, the characteristic features of the turbulent heating are reviewed, which is considered to be one of the strong candidates of the further heating method in fusion reactor systems, referring to the works in the Institute of Plasma Physics, Nagoya University. The roles of turbulence in plasma heating including toroidal plasma heating are discussed from several points of view. The relation between the heating rate of plasma particles and the thermalization (randomization) frequency is theoretically investigated and the role of plasma turbulence in the fast thermalization is shown. The experimental results on fluctuation and heating of electrons and ions in turbulently heated plasmas are presented. The influence of turbulence, which is responsible for the particle heating, on the diffusion across the confinement magnetic field is considered for the application in the toroidal plasmas. It is pointed out that the turbulent fields in the fast turbulent heating give only a minor effect to the loss of particles across the magnetic field. It can be said that the enhanced fluctuation in turbulent plasma gives its field energy to the plasma particles while it can play the role of the fast thermalization of the ordered motion of particles that is produced in the plasma by some acceleration process. (Kato, T.)

  11. Plasma heating by adiabatic compression

    International Nuclear Information System (INIS)

    Ellis, R.A. Jr.

    1972-01-01

    These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)

  12. Electron cyclotron heating (ECH) of tokamak plasmas

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1990-01-01

    Electron cyclotron heating (ECH) is one of the intense methods of plasma heating, and which utilizes the collisionless electron-cyclotron-resonance-interaction between the launched electromagnetic waves (called electron cyclotron waves) and electrons which are one of the constituents of the high temperature plasmas. Another constituent, namely the ions which are subject to nuclear fusion, are heated indirectly but strongly and instantly (in about 0.1 s) by the collisions with the ECH-heated electrons in the fusion plasmas. The recent progress on the development of high-power and high-frequency millimeter-wave-source enabled the ECH experiments in the middle size tokamaks such as JFT-2M (Japan), Doublet III (USA), T-10 (USSR) etc., and ECH has been demonstrated to be the sure and intense plasma heating method. The ECH attracts much attention for its remarkable capabilities; to produce plasmas (pre-ionization), to heat plasmas, to drive plasma current for the plasma confinement, and recently especially by the localization and the spatial controllability of its heating zone, which is beneficial for the fine controls of the profiles of plasma parameters (temperature, current density etc.), for the control of the magnetohydrodynamic instabilities, or for the optimization/improvement of the plasma confinement characteristics. Here, the present status of the ECH studies on tokamak plasmas are reviewed. (author)

  13. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya

    1976-01-01

    The relation between the heating rate of plasma particles and the thermalization frequency is established, and the important role of plasma turbulence in the fast thermalization process is underlined. This relation can be applied not only in the case of high current turbulent heating but also when turbulent phenomena occur with other heating means. The experimental results on ion and electron heating during the Mach II experiment are presented. The role of turbulence on particle losses accross the magnetic field is analyzed

  14. Electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Guest, Gareth

    2009-01-01

    As nuclear fusion becomes an increasingly important potential energy source in these times of global oil and energy crises, the development of technologies that can lead to the realization of this virtually inexhaustible source of energy takes on ever greater urgency. Over the past decade electron cyclotron heating has undergone a significant maturation and has emerged as an essential component of the major approaches to achieving controlled nuclear fusion. The gyrotron, first developed in the Soviet Union, has made it possible to employ ECH in large tokamak and stellarator fusion devices by providing megawatts of microwave power at frequencies above 100 GHz. A contemporary VGT-8110 gyrotron, for example, shown here with Kevin Felch and Pat Cahalan of Communications and Power Industries, is capable of delivering 10 second pulses of 1 MW of power at 110 GHz. The present monograph addresses the ECH physics critical to the international fusion reactor experiment, ITER, but also presents the fundamentals of ECH that are essential to its successful implementation in applications that range from active experiments in planetary magnetospheres to commercial plasma sources for the manufacture of computer chips. The book seeks to convey the physics of ECH in an orderly and coherent fashion to a professional audience by presenting the basic theoretical foundations and then using the theory to interpret a number of established experimental results. Exercises are included to aid the reader in making the theory more concrete. (orig.)

  15. Vortex formation during rf heating of plasma

    International Nuclear Information System (INIS)

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm 2 . Probe measurements reveal that within 30 μs an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column

  16. Plasma heating r and d assessment

    International Nuclear Information System (INIS)

    Jassby, D.L.; Berkner, K.H.; Colestock, P.L.; Freeman, R.L.; Haselton, H.H.; Hosea, J.C.; Rome, J.A.; Scharer, J.E.; Sheffield, J.; Stewart, L.D.

    1979-11-01

    The purpose of this report is to compare the heating requirements of INTOR with the present state-of-the-art of tokamak plasma heating technology and demonstrated heating performance, and also with the technology expected by 1983-84 according to development and testing programs in place. This comparison results in a set of recommendations for a heating technology development program for the 1980s

  17. Plasma heating in a variable magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  18. Plasma rotation study in Tore Supra radio frequency heated plasmas

    International Nuclear Information System (INIS)

    Chouli, Bilal

    2014-01-01

    Toroidal flows are found to improve the performance of the magnetic confinement devices with increase of the plasma stability and confinement. In ITER or future reactors, the torque from NBI should be less important than in present-day tokamaks. Consequently, it is of interest to study other intrinsic mechanisms that can give rise to plasma rotation in order to predict the rotation profile in experiments. Intriguing observations of plasmas rotation have been made in radio frequency (RF) heated plasmas with little or no external momentum injection. Toroidal rotation in both the direction of the plasma current (co-current) and in the opposite direction (counter-current) has been observed depending on the heating schemes and plasma performance. In Tore Supra, most observations in L-mode plasmas have been in the counter-current direction. However, in this thesis, we show that in lower hybrid current drive (LHCD), the core toroidal rotation increment is in co- or counter-current direction depending on the plasma current amplitude. At low plasma current the rotation change is in the co-current direction while at high plasma current, the change is in the counter-current direction. In both low and high plasma current cases, rotation increments are found to increase linearly with the injected LH power. Several mechanisms in competition which can induce co- or counter-current rotation in Tore Supra LHCD plasmas are investigated and typical order of magnitude are discussed in this thesis. (author) [fr

  19. Plasma heating: NBI ampersand RF, an introduction

    International Nuclear Information System (INIS)

    Koch, R.

    1996-01-01

    The additional heating and non-inductive current-drive methods are reviewed. First, the limitations of ohmic heating in tokamaks are examined and the motivations for using additional heating in tokamaks or other machines are discussed. Next we sketch the principles of heating by injection of fast neutrals - or Neutral Beam Injection (NBI). The principle of the injector is briefly outlined. Positive and negative ion based concepts are discussed. The remainder of the lecture focuses on the processes by which the beam transfers energy to the plasma: the ionisation and slowing-down processes. Next, I make a review of the different heating schemes based on the transfer of electromagnetic energy to the plasma. The different wave heating frequency ranges are listed and the propagation and damping peculiarities are sketched in each domain. Heating in the Alfven and lower hybrid wave domains are described in some more details. 21 refs., 9 figs., 1 tab

  20. Plasma edge cooling during RF heating

    International Nuclear Information System (INIS)

    Suckewer, S.; Hawryluk, R.J.

    1978-01-01

    A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using RF power to modify the edge plasma temperature profile is presented. This concept is based on spectroscopic measurements on PLT during ohmic heating and ATC during RF heating. A one dimensional impurity transport model is used to interpret the ATC results

  1. Laser-heating of hydrogen plasma

    International Nuclear Information System (INIS)

    Foeldes, I.B.; Ignacz, P.N.; Kocsis, G.

    1990-10-01

    The possibility of creating a fully ionized hydrogen plasma to investigate the capture of slow antiprotons is discussed. Laser heating of the initially discharge-created arc or Z-pinch plasma is proposed. Within the framework of a simple 1-dimensional model based on the energy balance equation alone it is shown that plasma equilibrium can be sustained for 10 μs. A simple pulsed CO 2 laser with this pulse duration and an energy of about 10-30 J is sufficient for heating. (author) 16 refs.; 3 figs

  2. Heat transfer for plasma facing components

    International Nuclear Information System (INIS)

    Boyd, R.D.; Meng, X.; Maughan, H.

    1995-01-01

    Although the high heat flux requirements for plasma-facing components have been reduced drastically from 40.0 MW/m 2 to near 10.0 MW/m 2 , there are still some refinements needed. This paper highlights: (1) recent accomplishments and pinpoints new thermal solutions and problem areas of immediate concern to the development of plasma-facing components, and (2) next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically the near-term thermal hydraulic problems entail: (1) generating an appropriate data base to insure the development of single-side heat flux correlations; and (2) adapting the existing vast uniform heat flux literature to the case of non-uniform heat flux distributions found in plasma facing components in fusion reactors. Results are presented for the latter task which includes: (a) an accurate subcooled flow boiling curve correlation for the partial nucleate boiling regime which can be adapted using previously proposed correlations relating single-side boundary heat flux to heat transfer, in uniformly heated channels, (b) the evaluation of the possibility of using the existing literature directly with redefined parameters, and (c) an estimation of circumferential variations in the heat transfer coefficient

  3. 1-MW klystron for fusion plasma heating

    International Nuclear Information System (INIS)

    Okamoto, Tadashi; Miyake, Setsuo; Ohno, Hiroaki

    1985-01-01

    A plasma test apparatus to bring about the critical plasma conditions for nuclear fusion is now under construction in Japan Atomic Energy Research Institute. Among various means of plasma heating, the most promising is the lower hybrid resonance heating (LHRF) in the 2-GHz region. Although it has so far requied 7 to 8 MW of microwave power for the plasma test apparatus, the new klystron, E3778, now constructed by Toshiba has the world's highest output power of 1 MW in the 2-GHz region. In addition to the excellent high-power operation for 10 seconds, the wide operating frequency range of 1.7 to 2.26 GHz by dint of sophisticated high-speed tuning mechanism, and the high durability to reflected power of up to 2.0 of VSWR are the high-lighted features of this klystron, which have never been achieved by conventional klystrons. (author)

  4. Heating of toroidal plasmas by neutral injection

    International Nuclear Information System (INIS)

    Stix, T.H.

    1971-08-01

    This paper presents a brief review of the physics of ion acceleration, charge exchange and ionization, trajectories for fast ions in toroidal magnetic fields, and fast-ion thermalization. The injection of fast atoms is found to be a highly competitive method both for heating present-day experimental toroidal plasmas and for bringing full-scale toroidal CTR plasmas to low-density ignition. 13 refs., 9 figs

  5. Conductivity of rf-heated plasma

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1984-05-01

    The electron velocity distribution of rf-heated plasma may be so far from Maxwellian that Spitzer conductivity no longer holds. A new conductivity for such plasmas is derived and the result can be put in a remarkably general form. The new expression should be of great practical value in examining schemes for current ramp-up in tokamaks by means of lower-hybrid or other waves

  6. Sporadic plasma heating in the lower chromosphere

    Science.gov (United States)

    Zaitsev, V. V.

    2014-12-01

    It is usually assumed that heating of the chromosphere is caused by the precipitation of energetic particles (electrons and protons) accelerated in the solar corona, namely, at flare arc tops. On the other hand, recently obtained observational data show that the chromospheric footpoints of compact magnetic loops are directly heated to ≥106 K, and hot plasma erupted from the footpoints of such loops. The plasma mechanism of the THz emission of flares may also indicate that deep chromospheric layers with densities up to n ≈ 1015 cm-3 can be heated to about 105-106 K. It has been shown that electrons can be accelerated and plasma can be heated in the lower chromosphere when the Rayleigh-Taylor instability develops at magnetic loop chromo-spheric footpoints. This instability results in the penetration of the upper chromospheric plasma into a loop and induces an electric field that effectively accelerates electrons and leads to in situ heating of the chromo-sphere.

  7. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.

    1983-01-01

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  8. Laser-heated emissive plasma probe.

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  9. Laser-heated emissive plasma probe

    International Nuclear Information System (INIS)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-01-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge

  10. Laser-heated emissive plasma probe

    Science.gov (United States)

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K.

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808nm wavelength and an output power up to 50W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge.

  11. ICRF heating analysis on ASDEX plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Fukuyama, Atsushi; Morishita, Takayuki; Steinmetz, K.; Noterdaeme, J.-M.

    1988-01-01

    ICRF (ion cyclotron range of frequencies) waves heating in an ASDEX tokamak are analyzed. The excitation, propagation and absorption are studied by using a global wave code. This analysis is combined with a Fokker-Planck code. The waveform in the plasma, the loading resistance and the reactance of the antenna are calculated for both the minority ion heating and the second harmonic resonance heating. Attention is given to the change of the antenna loading associated with the L/H transition. Optimum conditions for the loading are discussed. In the minority heating case, the tail generation and thermalization are analyzed. Spatial profiles of the tail-ion temperature and the power transferred to the bulk electrons and ions are obtained. Central as well as off-central heating cases are investigated. The effect of the reactive electric field is discussed in connection with rf losses and impurity production. (author)

  12. Electron distribution function in laser heated plasmas

    International Nuclear Information System (INIS)

    Fourkal, E.; Bychenkov, V. Yu.; Rozmus, W.; Sydora, R.; Kirkby, C.; Capjack, C. E.; Glenzer, S. H.; Baldis, H. A.

    2001-01-01

    A new electron distribution function has been found in laser heated homogeneous plasmas by an analytical solution to the kinetic equation and by particle simulations. The basic kinetic model describes inverse bremsstrahlung absorption and electron--electron collisions. The non-Maxwellian distribution function is comprised of a super-Gaussian bulk of slow electrons and a Maxwellian tail of energetic particles. The tails are heated due to electron--electron collisions and energy redistribution between superthermal particles and light absorbing slow electrons from the bulk of the distribution function. A practical fit is proposed to the new electron distribution function. Changes to the linear Landau damping of electron plasma waves are discussed. The first evidence for the existence of non-Maxwellian distribution functions has been found in the interpretation, which includes the new distribution function, of the Thomson scattering spectra in gold plasmas [Glenzer , Phys. Rev. Lett. 82, 97 (1999)

  13. Plasma auxiliary heating and current drive

    International Nuclear Information System (INIS)

    1999-01-01

    Heating and current drive systems must fulfil several roles in ITER operating scenarios: heating through the H-mode transition and to ignition; plasma burn control; current drive and current profile control in steady state scenarios; and control of MHD instabilities. They must also perform ancillary functions, such as assisting plasma start-up and wall conditioning. It is recognized that no one system can satisfy all of these requirements with the degree of flexibility that ITER will require. Four heating and current drive systems are therefore under consideration for ITER: electron cyclotron waves at a principal frequency of 170 GHz; fast waves operating in the range 40-70 MHz (ion cyclotron waves); lower hybrid waves at 5 GHz; and neutral beam injection using negative ion beam technology for operation at 1 MeV energy. It is likely that several of these systems will be employed in parallel. The systems have been chosen on the basis of the maturity of physics understanding and operating experience in current experiments and on the feasibility of applying the relevant technology to ITER. Here, the fundamental physics describing the interaction of these heating systems with the plasma is reviewed, the relevant experimental results in the exploitation of the heating and current drive capabilities of each system are discussed, key aspects of their application to ITER are outlined, and the major technological developments required in each area are summarized. (author)

  14. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  15. Turbulent current heating of dense plasma

    International Nuclear Information System (INIS)

    Suprunenko, V.A.; Sukhomlin, E.A.; Volkov, E.D.; Perepelkij, N.F.

    1976-01-01

    Based upon experimental results an attempt is made for systematizing and analysing conditions of experiments in anomalous resistance and turbulent heating of a plasma. The extensive program of such investigations aims at a direct practical study on quasistationary heating and plasma containment in magnetic traps. It has been shown that in real conditions turbulent heating turns out to be a far more complicated phenomenon than that described within the framework of theories developed so far. It has been established that the phenomenon alters in the transition through the critical values of electric and magnetic fields. This makes it possible to separate four characteristic experimental regimes. For all the regimes the stabilization of the electron current drift rate is typical. On the basis of the experimental results obtained an explanation is given of the sporadic character of the ultrathermal radiation in a quasistationary discharge

  16. Plasma Heating and Fueling Department

    International Nuclear Information System (INIS)

    Alsmiller, R.G.; Baer, M.B.; Barber, G.C.

    1976-01-01

    ORMAK neutral injection systems were studied on a test stand, and the results of these studies, coupled with the upgrading of power supplies and electrical systems and with the addition of high-power modulators, allowed increased neutral beam power for ORMAK. A conceptual design of a TFTR neutral beam system was completed, and an initial scoping of an EPR neutral injection system was performed. A test facility for the development of 60-kV, 60-A ion sources was completed and is operational. A 15-cm-diameter ion source was developed and was operated up to 30 A at 27 kV. A 20-cm version of this source, having design parameters of 60 A, 40 A, and 300 msec, was built for PLT. The continuing source evolution was aided by the development of a plasma source discharge model. A pellet fueling program was initiated with the goal of developing pellet fueling devices capable of meeting future power reactor requirements

  17. Additional heating experiments of FRC plasmas

    International Nuclear Information System (INIS)

    Okada, S.; Asai, T.; Kodera, F.; Kitano, K.; Suzuki, T.; Yamanaka, K.; Kanki, T.; Inomoto, M.; Yoshimura, S.; Okubo, M.; Sugimoto, S.; Ohi, S.; Goto, S.

    2001-01-01

    Additional heating experiments of neutral beam (NB) injection and application of low frequency wave on a plasma with extremely high averaged beta value of about 90% - a field reversed configuration (FRC) plasma - are carried out on the FRC Injection experiment (FIX) apparatus. These experiments are made possible by translating the FRC plasma produced in a formation region of a theta pinch to a confinement region in order to secure better accessibility to heating facilities and to control plasma density. By appropriate choice of injection geometry and the mirror ratio of the confinement region, the NB with the energy of 14keV and the current of 23A is enabled to be injected into the FRC in the solenoidal confining field of only 0.04-0.05T. Confinement is improved by this experiment. Ion heating is observed by the application of low frequency (80kHz ; about 1/4 of the ion gyro frequency) compressional wave. A shear wave, probably mode converted from the compressional wave, is detected to propagate axially. (author)

  18. Anisotropic instability in a laser heated plasma

    International Nuclear Information System (INIS)

    Sangam, A.; Morreeuw, J.-P.; Tikhonchuk, V. T.

    2007-01-01

    The theory of the Weibel instability induced by the inverse Bremsstrahlung absorption of a laser light in an underdense plasma is revisited. It is shown that previous analyses have strongly overestimated the effect by neglecting the stabilizing term related to the interaction of the generated quasistatic magnetic field with the laser-heated electrons. The revised model leads to a reduction of the growth rate by more than a factor of 10, to strong reduction of the domain of unstable modes and to inversion of the direction of the unstable wave vectors in the long wavelength limit. The consequences of this instability on the laser plasma interaction are also discussed

  19. Measurement of toroidal plasma current in RF heated helical plasmas

    International Nuclear Information System (INIS)

    Besshou, Sakae

    1993-01-01

    This report describes the measurement of toroidal plasma current by a semiflexible Rogowski coil in a helical vacuum chamber. A Rogowski coil measures the toroidal plasma current with a resolution of 0.1 kA, frequency range of up to 1 kHz and sensitivity of 6.5 x 10 -9 V · s/A. We measured the spontaneous toroidal plasma current (from -1.2 to +1.2 kA) under electron cyclotron resonance heating at 0.94 T toroidal field in the Heliotron-E device. We found that the measured direction of toroidal plasma current changes its sign as in the predicted behavior of a neoclassical diffusion-driven bootstrap current, depending on the horizontal position of the plasma column. We explain the observed plasma currents in terms of the compound phenomenon of an ohmic current and a neoclassical diffusion-driven current. The magnitude of the neoclassical current component is smaller than the value predicted by a collisionless neoclassical theory. (author)

  20. The heating of plasma focus electrodes

    International Nuclear Information System (INIS)

    Angeli, E; Frignani, M; Mannucci, S; Rocchi, F; Sumini, M; Tartari, A

    2006-01-01

    Plasma focus (PF) technology development today is strictly related to the possibility of a high frequency repetitive working regime. One of the more relevant obstacles to this goal is the heating of structural components due to direct interaction with plasma. In this paper, temperature decay measurements of the inner electrode of a 7 kJ Mather type PF are presented. Data from several series of shots at different bank energies are analysed and compared with theoretical and numerical models. Two possible scale laws are derived from the experimental data to correlate thermal deposition with bank energy. It is found that a fraction of about 10% of total energy is released to the inner electrode. Finally, after some considerations about the cooling and heating mechanisms, an analysis on maximum temperature sustained by materials is presented

  1. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  2. Turbulent ion heating in TCV Tokamak plasmas

    International Nuclear Information System (INIS)

    Schlatter, Ch.

    2009-08-01

    The Tokamak à configuration variable (TCV) features the highest electron cyclotron wave power density available to resonantly heat (ECRH) the electrons and to drive noninductive currents in a fusion grade plasma (ECCD). In more than 15 years of exploitation, much effort has been expended on real and velocity space engineering of the plasma electron energy distribution function and thus making electron physics a major research contribution of TCV. When a plasma was first subjected to ECCD, a surprising energisation of the ions, perpendicular to the confining magnetic field, was observed on the charge exchange spectrum measured with the vertical neutral particle analyser (VNPA). It was soon concluded that the ion acceleration was not due to power equipartition between electrons and ions, which, due to the absence of direct ion heating on TCV, has thus far been considered as the only mechanism heating the ions. However, although observed for more than ten years, little attention was paid to this phenomenon, whose cause has remained unexplained to date. The key subject of this thesis is the experimental study of this anomalous ion acceleration, the characterisation in terms of relevant parameters and the presentation of a model simulation of the potential process responsible for the appearance of fast ions. The installation of a new compact neutral particle analyser (CNPA) with an extended high energy range (≥ 50 keV) greatly improved the fast ion properties diagnosis. The CNPA was commissioned and the information derived from its measurement (ion temperature and density, isotopic plasma composition) was validated against other ion diagnostics, namely the active carbon charge exchange recombination spectroscopy system (CXRS) and a neutron counter. In ohmic plasmas, where the ion heating agrees with classical theory, the radial ion temperature profile was successfully reconstructed by vertically displacing the plasma across the horizontal CNPA line of sight. Active

  3. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  4. Combline antenna modeling for plasma heating

    International Nuclear Information System (INIS)

    Nelson, S.D.; Kamin, G.; Van Maren, R.; Poole, B.; Moeller, C.; Phelps, D.

    1996-01-01

    The combline antenna for plasma heating, as proposed by General Atomics(1), has unique potential for solving many plasma drive problems. The benefit of the combline design is the utilization of the coupling between elements that avoids a more cumbersome multidrive system. This design is being investigated using computational EM modeling codes in the 100 endash 400 MHz band using resources at General Atomics and LLNL. Preliminary experimental results, using a combline mockup, agree well with 3D modeling efforts including resonant frequency alignment and amplitudes. These efforts have been expanded into an endeavor to optimize the combline design using both time and frequency domain codes. This analysis will include plasma coupling but to date has been limited to antenna effects. The combline antenna system is modeled in 3D using a combination of computational tools in the time domain, for temporal feature isolation purposes, and in the frequency domain, for resonant structure analysis. Both time and frequency domain modeling details include the Faraday shield elements, the strap elements, and the feed structure. copyright 1996 American Institute of Physics

  5. Magnetic fields in laser heated plasmas

    International Nuclear Information System (INIS)

    Amiranoff, F.; Brackbill, J.; Colombant, D.; Grandjouan, N.

    1984-01-01

    With a fixed-ion code for the study of self-generated magentic fields in laser heated plasmas, the inhibition of thermal transport and the effect of the Nernst term are modeled for a KrF laser. For various values of the flux limiter, the response of a foil to a focused laser is calculated without a magnetic field and compared with the response calculated with a magnetic field. The results are: The Nernst term convects the magnetic field to densities above critical as found by Nishiguchi et al. (1984), but the field does not strongly inhibit transport into the foil. The field is also transported to sub-critical densities, where it inhibits thermal diffusion and enhance lateral transport by convection

  6. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  7. MHD simulation of a beat frequency heated plasma

    International Nuclear Information System (INIS)

    Milroy, R.D.; Capjack, C.E.; James, C.R.; McMullin, J.N.

    1976-01-01

    The heating of a plasma in a solenoid, with a beat frequency harmonic which is excited at a frequency near to that of a Langmuir mode in a plasma, is examined. It is shown that at high temperatures the heating rate is very insensitive to changes in plasma density. The amount of energy that can be coupled to a plasma in a solenoid with this heating scheme is investigated by using a one-dimensional computer code which incorporates an exact solution of the relevant MHD equations. The absorption of energy from a high powered laser is shown to be significantly enhanced with this process. (author)

  8. Current drive by asymmetrical heating in a toroidal plasma

    International Nuclear Information System (INIS)

    Gahl, J.M.

    1986-01-01

    This report describes the first experimental observation of current generation by asymmetrical heating of ions. A unidirectional fast Alfven wave launched by a slow-wave antenna inside the Texas Tech Tokamak, asymmetrically heated the ions. Measurements of the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column confirmed the current generation indirectly. Current generation, obtained in a one-species, hydrogen plasma, is a phenomenon which had not been predicted previously. Calculations of the dispersion relation for the fast Alfven wave near the fundamental cyclotron resonance in a one-species, hydrogen plasma, using warm plasma theory, support the experimental results

  9. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    Science.gov (United States)

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  10. Plasma heating and hot ion sustaining in mirror based hybrids

    International Nuclear Information System (INIS)

    Moiseenko, V. E.; Ågren, O.

    2012-01-01

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  11. Supplementary plasma heating studies in the Atomic Energy Commission France

    International Nuclear Information System (INIS)

    Consoli, T.

    1976-01-01

    The research on supplementary heating of toroidal plasma made in France at the Atomic Energy Commission and in the European Community are described (with special reference to the J.E.T. project) in the frame of the national programs. A non exhaustive description of the world effort in this topic is also presented: (neutral injection heating, TTMP (transit time magnetic pumping) heating, electron and ion cyclotron resonance, and lower hybrid resonance heating)

  12. Plasma heating - a comparative overview for future applications

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of D-T burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating system with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various functions of heating, which are: Plasma heating to fusion-relevant parameters and to ignition in future machines, non-inductive, steady-state current drive, plasma profile control, neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alfven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (orig.)

  13. Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.

    2007-01-01

    The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated

  14. High frequency parametric wave phenomena and plasma heating: a review

    International Nuclear Information System (INIS)

    Porkolab, M.

    1975-11-01

    A survey of parametric instabilities in plasma, and associated particle heating, is presented. A brief summary of linear theory is given. The physical mechanism of decay instability, the purely growing mode (oscillating two-stream instability) and soliton and density cavity formation is presented. Effects of density gradients are discussed. Possible nonlinear saturation mechanisms are pointed out. Experimental evidence for the existence of parametric instabilities in both unmagnetized and magnetized plasmas is reviewed in some detail. Experimental observation of plasma heating associated with the presence of parametric instabilities is demonstrated by a number of examples. Possible application of these phenomena to heating of pellets by lasers and heating of magnetically confined fusion plasmas by high power microwave sources is discussed

  15. ICRF heating on the burning plasma experiment (BPX)

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Carter, M.D.; Goulding, R.H.; Hoffman, D.J.; Jaeger, E.F.; Ryan, P.M.; Swain, D.W.; Tolliver, J.S.; Yugo, J.J.; Goldston, R.J.; Hosea, J.C.; Kaye, S.M.; Phillips, C.K.; Wilson, J.R.; Mau, T.K.

    1991-01-01

    RF power in the ion cyclotron range of frequencies (ICRF) has been chosen as the primary heating technique for BPX. This decision is based on the wide success of ICRF heating in existing experiments (JET, TFTR, JT-60), the capability of ion cyclotron waves to penetrate the high-density plasmas of BPX, the ability to concentrate ICRF power deposition near the plasma center, and the ready availability of high-power sources at the appropriate frequency. The primary task of the ICRF system is to heat the plasma to ignition. However, other important roles are envisaged; these include the stabilization of sawteeth, preheating of the plasma during current ramp-up, and possible control of the plasma current profile by means of fast-wave current drive. We give a brief overview of the RF system, describe the operating scenarios planned for BPX, and discuss some of the antenna design issues for BPX. 4 refs., 3 figs

  16. A constant heat flux plasma limiter for TEXTOR

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1980-10-01

    In future large tokamak machines heat removal from the plasma is going to play an important role. In TEXTOR the total plasma power is expected to be in the range of 0.5-2.5 MW. Typical fractions of about 50% of this power have to be removed from the plasma by limiters. The power flux from the limiter scrape-off layer to the limiter surface decays rapidly with distance into the scrape-off layer resulting in a highly space-dependent heat load on the limiter. Therefore, limiters are shaped in a way to smooth of the heat load, and the ideal limiter shape should produce a constant heat flux over the whole limiter surface. The ideally shaped limiter offers a better chance to handle the high heat loads with the preferred materials like stainless steel (or inconel 625 as in the case of TEXTOR). (orig./GG)

  17. Vacuum heating evaluation for plasmas of exponentially decreasing density profile

    International Nuclear Information System (INIS)

    Pestehe, S.J.; Mohammadnejad, M.

    2008-01-01

    Ultra-short pulse lasers have opened a regime of laser-plasma interaction where plasmas have scale lengths shorter than the laser wavelength and allow the possibility of generating near-solid density plasmas. The interaction of high-intensity laser beams with sharply bounded high-density and small scale length plasmas is considered. Absorption of the laser energy associated with the mechanism of dragging electrons out of the plasma into the vacuum and sending them back into the plasma with the electric field component along the density gradient, so called vacuum heating, is studied. An exponentially decreasing electron density profile is assumed. The vector potential of the electromagnetic field propagating through the plasma is calculated and the behaviour of the electric and magnetic components of the electromagnetic field is studied. The fraction of laser power absorbed in this process is calculated and plotted versus the laser beam incidence angle, illumination energy, and the plasma scale length

  18. Confinement and heating of a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.

    1994-03-01

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ∼20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles

  19. Direct currents produced by hf heating of plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1974-01-01

    In addition to the well-known diffusion currents, toroidal direct currents arise in h.f. heated plasmas as a result of a momentum transfer from the h.f. field to plasma particles. The estimates of steady-state conditions are given for these currents. Particularly, the possibility of stationary operation of a Tokamak device is analyzed. (author)

  20. Sawtooth stability in neutral beam heated plasmas in TEXTOR

    NARCIS (Netherlands)

    Chapman, I.T.; Pinches, S. D.; Koslowski, H. R.; Liang, Y.; Kramer-Flecken, A.; De Bock, M.

    2008-01-01

    The experimental sawtooth behaviour in neutral beam injection (NBI) heated plasmas in TEXTOR is described. It is found that the sawtooth period is minimized with a low NBI power oriented in the same direction as the plasma current. As the beam power is increased in the opposite direction to the

  1. Formation of thermal eddies during rf heating of plasma

    International Nuclear Information System (INIS)

    Motley, R.W.; Hooke, W.M.; Anania, G.

    1979-07-01

    Moderate power (approx.1 kW) excitation of lower hybrid waves in a linear plasma column is found to increase the reflectivity of the phased waveguide exciter and to change the vertical position of the resonance cone. Probing of the plasma near the mouth of the waveguide reveals that the increased reflection results from an undulation in the plasma surface. We present evidence that this surface distortion is driven by thermal eddies associated with asymmetrical electron heating

  2. Heating of underdense plasmas by intense lasers

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1972-08-01

    In this note we show that two intense driving fields with frequency much greater than the electron plasma frequency (ω/sub pe/), but with a frequency separation of nearly ω/sub pe/, will couple electron and ion plasma waves and drive them unstable. 6 refs

  3. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  4. On the parametric cyclotron heating of a toroidal plasma

    International Nuclear Information System (INIS)

    Golovanivsky, K.C.; Punithavelu, A.M.

    1976-01-01

    The possibility of heating the ionic component of a dense plasma at the parametric cyclotron resonance, using a section of the conducting toroidal chamber of a large scale Tokamak as a resonance cavity, is considered. It is suggested to use the mode TE 011 to overcome the difficulties with the penetration of HF fields into such a dense plasma. The experimental investigation of parametric cyclotron heating of electrons in a overdense plasma (n/nsub(cut off)=10 2 ) on such a model has given hopeful results

  5. RF heating of currentless plasma in Heliotron E

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Motojima, O.; Sato, M.

    1985-01-01

    Recent electron cyclotron resonance heating (ECRH) and ion cyclotron range frequency heating (ICRF) experiments performed with a current-free plasma in Heliotron E are described. Parametric studies of ECRH are in progress. For both fundamental and second-harmonic resonances, optimum heating is observed when the plasma density is near the cutoff density (for the ordinary wave, in the case of fundamental resonance and for the extraordinary wave, in the case of second-harmonic resonance) and when a resonance zone exists on the magnetic axis. The maximum heating efficiencies for the fundamental and second-harmonic resonances are 6.5 eV.kW -1 per 10 19 m -3 and 2.4 eV.kW -1 per 10 19 m -3 , respectively. The ray-tracing analysis agrees qualitatively well with the experimental results. The power dependences of the plasma parameters are also investigated. - The first ICRF experiment with fast-wave heating of a current-free plasma has been performed. The ICRF wave power and pulse length are 550 kW and 15 ms, respectively. The frequency is 26.7 MHz. Ions and electrons are heated effectively. The increase in ion temperature is only slightly changed by varying the hydrogen ratio of the gas puff. On the other hand, the electron temperature increase has a definite peak for a high proton ratio (approx. 15%). This agrees qualitatively with the mode conversion picture of minority heating. (author)

  6. Investigation of electron heating in laser-plasma interaction

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2013-03-01

    Full Text Available  In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  7. Investigation of electron heating in laser-plasma interaction

    International Nuclear Information System (INIS)

    Parvazian, A.; Haji Sharifi, K.

    2013-01-01

    In this paper, stimulated Raman scattering and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-stimulated Raman scattering and dominating initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-stimulated Raman scattering plasma waves with high phase velocities. This two-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  8. Parametric studies in ohmically heated plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Mutoh, T.; Besshou, S.; Ijiri, Y.

    1983-01-01

    Parametric studies of volume averaged electron temperature and global electron energy confinement time /tau/epsilon /SUB e/ of ohmically heated Heliotron E plasmas have been performed using a data acquisition computer system. The scaling laws α (I /SUB OH/ x B/n /SUB e/) /SUP 1/2/ and /tau/epsilon /SUB e/ α n /SUP -1/2/ /SUB e/ x B/I /SUP 3/2/ /SUB OH/ are obtained directly by a code which fits the exponents of the plasma parameters ponents of the plasma parameters to the electron temperature and confinement time. The ohmically heated plasma confinement time /tau/epsilon /SUB e/ is shown to be related to the drift parameters xi (= V /SUB De/ /V /SUB Te/). The dependences of the energy confinement time on other plasma parameters is also presented. An investigation is made of the correlation between MHD activity and the confinement

  9. Heat flow during sawtooth collapse in tokamak plasmas

    International Nuclear Information System (INIS)

    Hanada, Kazuaki

    1994-01-01

    Heat flow during sawtooth collapse was studied on the WT-3 tokamak by using temporal evolution of soft X-ray intensity profile in the poloidal cross section in a lower hybrid current driven plasma as well as an electron cyclotron heated plasma. Two phase in sawtooth collapses were observed. In the first phases, the hottest spot that is the peak of the soft X-ray distribution approaches the inversion surface and heat flows out through a narrow gate on the inversion surface. In the second phase, the hottest spot stays on the inversion surface, and heat flows out through the whole inversion surface. This suggests that magnetic reconnection as predicted by Kadomtsev's model occurs in the first phase, but in the second phase, a different mechanism dominates heat flow. (author)

  10. Selective heating and separation of isotopes in a metallic plasma

    International Nuclear Information System (INIS)

    Moffa, P.; Cheshire, D.; Flanders, B.; Myer, R.; Robinette, W.; Thompson, J.; Young, S.

    1983-01-01

    Several types of metallic plasmas have been produced at the Plasma Separation Process facility of TRW. Selective heating and separation of specific isotopes in these plasmas have been achieved. In this presentation the authors concentrate on the modeling of the selective heating and separation of the isotope Ni 58 . Two models are currently used to describe the excitation process. In both, the electromagnetic fields in the plasma produced by the ICRH antenna are calculated self-consistently using a kinetic description of the warm plasma dielectric. In the Process Model Code, both the production of the plasma and the heating are calculated using a Monte Carlo approach. Only the excitation process is treated in the second simplified model. Test particles that sample an initial parallel velocity distribution are launched into the heating region and the equations of motion including collisional damping are calculated. For both models, the perpendicular energy for a number of particles with different initial conditions and representing the different isotopes is calculated. This information is then input into a code that models the performance of our isotope separation collector. The motion of the ions of each isotope through the electrically biased collector is followed. An accounting of where each particle is deposited is kept and hence the isotope separation performance of the collector is predicted

  11. Plasma rotation and rf heating in DIII-D

    International Nuclear Information System (INIS)

    DeGrassie, J.S.; Baker, D.R.; Burrell, K.H.

    1999-05-01

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current

  12. Plasma rotation and rf heating in DIII-D

    International Nuclear Information System (INIS)

    Grassie, J. S. de; Baker, D. R.; Burrell, K. H.; Greenfield, C. M.; Lin-Liu, Y. R.; Luce, T. C.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Rice, B. W.

    1999-01-01

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current. (c) 1999 American Institute of Physics

  13. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  14. High-frequency heating of plasma with two ion species

    International Nuclear Information System (INIS)

    Klima, R.; Longinov, A.V.; Stepanov, K.N.

    1975-01-01

    The authors consider the penetration of electromagnetic waves with a frequency of the order of the ion cyclotron frequencies and with a fixed longitudinal wave number ksub(long), so that Nsub(long)=ksub(long)c/ω>>1 deep into an inhomogeneous plasma with two ion species. The propagation of two kinds of waves (fast and slow) with widely differing polarization and transverse refraction index is possible. For both types of waves there is an evanescence region at the plasma periphery. The evanescence region is narrow for slow waves and they easily penetrate the plasma. In a dense plasma they become electrostatic and can reach the ion-ion hybrid resonance region. However, the damping of these waves due to Cherenkov interaction with electrons in a high-temperature plasma is strong and therefore they are not suitable for heating plasma of large dimensions, as they are absorbed at the plasma periphery. The fast waves have a wider evanescence region and can be excited effectively only if N 2 is not too high. These waves can be completely absorbed in the plasma (due to Cherenkov interaction with electrons) if xi approximately (v 2 sub(Ti)/v 2 sub(A))Zsub(e)(ωsub(pi)a/c)exp(-Zsub(e) 2 ) > 1, where a is the plasma radius and Zsub(e) = ω/(√2 ksub(long)vsub(Te)). Fast waves can also reach the region where they are transformed into slow waves. In this region their damping increases considerably. It is shown that the transformation region in an inhomogeneous plasma with two ion species in a non-uniform magnetic field may be at the centre of the plasma. Fast waves can be used effectively for heating plasma of large dimensions. (author)

  15. Numerical simulation of plasma processes driven by transverse ion heating

    Science.gov (United States)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  16. Divertor heat flux control and plasma-material interaction

    International Nuclear Information System (INIS)

    Kikuchi, Yusuke; Nagata, Masayoshi; Sawada, Keiji; Takamura, Shuichi; Ueda, Yoshio

    2014-01-01

    Development of reliable radiative-cooling divertors is essential in DEMO reactor because it uses low-activation materials with low heat removal and the plasma heat flux exhausted from the confined region is 5 times as large as in ITER. It is important to predict precisely the heat and particle flux toward the divertor plate by simulation. In this present article, theoretical and experimental data of the reflection, secondary emission and surface recombination coefficients of the divertor plate by ion bombardment are given and their effects on the power transmission coefficient are discussed. In addition, some topics such as the erosion process of the divertor plate by ELM and the plasma disruption, the thermal shielding due to the vapor layer on the divertor plate and the formation of fuzz structure on W by helium plasma irradiation, are described. (author)

  17. Heating of plasmas in tokamaks by current-driven turbulence

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1985-10-01

    Investigations of current-driven turbulence have shown the potential to heat plasmas to elevated temperatures in relatively small cross-section devices. The fundamental processes are rather well understood theoretically. Even as it is shown to be possible to relax the technical requirements on the necessary electric field and the pulse length to acceptable values, the effect of energy generation near the plasma edge, the energy transport, the impurity influx and the variation of the current profile are still unknown for present-day large-radius tokamaks. Heating of plasmas by quasi-stationary weakly turbulent states caused by moderate increases of the resistivity due to higher loop voltages could be envisaged. Power supplies able to furnish power levels 5-10 times higher than the usual values could be used for a demonstration of those regimes. At several institutes and university laboratories the study of turbulent heating in larger tokamaks and stellarators is pursued

  18. Generation of toroidal pre-heat plasma

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    The characteristics of toroidal plasma in the initial stage of electric discharge were investigated. A small toroidal-pinch system was used for the present work. A magnetic probe was used to measure the magnetic field. The time of beginning of discharge was determined by observing the variation of the magnetic field. The initial gas pressure dependence of the induced electric field regions, in which electric discharge can be caused, was studied. It is necessary to increase the initial induced electric field for starting discharge. The delay time of large current discharge was measured, and it was about 2 microsecond. Dependences of the electric fields at the beginning of discharge on the charging voltage of capacitors, on the initial gas pressure, and on the discharge frequency were studied. The formation mechanism of plasma column was analyzed. (Kato, T.)

  19. Heating and transport in TFTR D-T plasmas

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Scott, S.D.

    1994-01-01

    The confinement and heating of supershot plasmas are significantly enhanced with tritium beam injection relative to deuterium injection in TFTR. The global energy confinement and local thermal transport are analyzed for deuterium and tritium fueled plasmas to quantify their dependence on the average mass of the hydrogenic ions. The radial profiles of the deuterium and tritium densities are determined from the DT fusion neutron emission profile

  20. Plasma heating by cluster injection: basic features and expected behaviour

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1976-08-01

    The main components of a cluster injection line intended for plasma heating is briefly discussed, that is the beam source, the cluster ionizer and the accelerating tube, as well as the behavior of clusters interacting with a plasma. Outlines of the experiment of cluster injection into TFR, in progress at Fontenay-aux-Roses, and expected results will be presented and discussed all along the paper

  1. Mode converter for electron cyclotron resonance heating of toroidal plasmas

    International Nuclear Information System (INIS)

    Motley, R.W.; Hsuan, H.; Glanz, J.

    1980-09-01

    A method is proposed for improving the efficiency of cyclotron resonance heating of a toroidal plasma by ordinary mode radiation from the outside of the torus. Radiation not absorbed in the first pass is reflected from the inside of the torus by a corrugated surface which rotates the polarization by 90 0 , so that a secondary source of extraordinary waves is created in the high field, accessible region of the plasma

  2. Nonadiabatic heating of the central plasma sheet at substorm onset

    International Nuclear Information System (INIS)

    Huang, C.Y.; Frank, L.A.; Rostoker, G.; Fennell, J.; Mitchell, D.G.

    1992-01-01

    Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 R E , the apogee of the ISEIE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 R E but may be adiabatic closer to Earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of substorm. The authors estimate lobe magnetic pressures during these events. Changes in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity

  3. Analysis of core plasma heating and ignition by relativistic electrons

    International Nuclear Information System (INIS)

    Nakao, Y.

    2002-01-01

    Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)

  4. Particle Heating in Space and Laboratory Plasmas

    Science.gov (United States)

    Scime, E. E.; Keesee, A. M.; Aquirre, E.; Good, T.

    2017-12-01

    We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ˜ 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.

  5. An RF heated tandem mirror plasma propulsion study

    Science.gov (United States)

    Yang, T. F.; Yao, X.; Peng, S.; Krueger, W. A.; Chang-Diaz, F. R.

    1989-01-01

    Experimental results on a tandem mirror hybrid plume rocket involving a three-stage system of plasma injection, heating, and subsequent injection through a magnetic nozzle are presented. In the experiments, a plasma is created by breaking down the gas with electron cyclotron resonance heating at 2 kW in the central cell, and the ion species is then heated to high temperatures with ion cyclotron resonance heating at 10 kW in the end cell. A Langmuir probe measured an electron density of 2.5 x 10 to the 16th/cu m and a temperature of 100 eV in the central cell and an ion density of 1.25 x 10 to the 17th/cu m and a temperature of 500 eV in the end cell.

  6. Two-dimensional heat conducting simulation of plasma armatures

    International Nuclear Information System (INIS)

    Huerta, M.A.; Boynton, G.

    1991-01-01

    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature

  7. Lower hybrid resonance heating of the JET plasma

    International Nuclear Information System (INIS)

    Brambilla, M.; Lallia, P.; Nguyen Trong, K.

    1975-10-01

    A preliminary proposition is presented to apply high power L.H.R. heating to the JET plasma, using a phased weveguide array (the Grill). The frequency is first choosen in order to locate the energy absorption region well within the plasma. The theory of the grill as a launching structure is then used to define the most appropriate Grill parameters compatible with the access available on the JET. Finally, a source and circuit realization capable of launching 10MW to the plasma is proposed [fr

  8. Study of density limit in JT-60 joule heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi; Shimizu, Katsuhiro; Takizuka, Tomonori; Hirayama, Toshio; Azumi, Masafumi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-11-01

    Impurities which mingle in tokamak plasmas cause dominant radiation loss in the high density regime and the energy balance of plasma is lost. This gives rise to MHD instability and results in major disruption. Density limit in joule heated plasmas has been studied by using one dimensional transport code combined with MHD instability analysis code. When the diffusion of impurity is taken into account, the numerically obtained density limit diagram or Hugill diagram quantitatively agrees well with that obtained in the experiment. It is also clarified that the corona-equilibrium model overestimates the density limit. (author).

  9. Wave trajectory and electron cyclotron heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.

    1980-01-01

    Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field

  10. Plasma density profiles and finite bandwidth effects on electron heating

    International Nuclear Information System (INIS)

    Spielman, R.B.; Mizuno, K.; DeGroot, J.S.; Bollen, W.M.; Woo, W.

    1980-01-01

    Intense, p-polarized microwaves are incident on an inhomogeneous plasma in a cylindrical waveguide. Microwaves are mainly absorbed by resonant absorption near the critical surface (where the plasma frequency, ω/sub pe/, equals the microwave frequency, ω/sub o/). The localized plasma waves strongly modify the plasma density. Step-plateau density profiles or a cavity are created depending on the plasma flow speed. Hot electron production is strongly affected by the microwave bandwidth. The hot electron temperature varies as T/sub H/ is proportional to (Δ ω/ω) -0 25 . As the hot electron temperature decreases with increasing driver bandwidth, the hot electron density increases. This increase is such that the heat flux into the overdense region (Q is proportional to eta/sub H/T/sub H/ 3 2 ) is nearly constant

  11. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost......, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (He-3)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar...... rotation profiles are seen when heating at the second harmonic cyclotron frequency of He-3 and with mode conversion at high concentrations of He-3. The magnitude of the counter-rotation is found to decrease with an increasing plasma current. The correlation of the rotation with the electron temperature...

  12. Parametric decay instabilities in ECR heated plasmas

    International Nuclear Information System (INIS)

    Porkolab, M.

    1982-01-01

    The possibility of parametric excitation of electron Bernstein waves and low frequency ion oscillations during ECR heating at omega/sub o/ approx. = l omega/sub ce/, l = 1,2 is examined. In particular, the thresholds for such instabilities are calculated. It is found that Bernstein waves and lower hybrid quasi-modes have relatively low homogeneous where T/sub e/ approx. = T/sub i/. Thus, these processes may lead to nonlinear absorption and/or scattering of the incident pump wave. The resulting Bernstein waves may lead to either more effective heating (especially during the start-up phase) or to loss of microwave energy if the decay waves propagate out of the system before their energy is absorbed by particles. While at omega/sub o/ = omega/sub UH/ the threshold is reduced due to the WKB enhancement of the pump wave, (and this instability may be important in tokamaks) in EBT's and tandem mirrors the instability at omega /sub o/ greater than or equal to 2 omega/sub ce/ may be important. The instability may persist even if omega > 2 omega/sub ce/ and this may be the case during finite beta depression of the magnetic field in which case the decay waves may be trapped in the local magnetic well so that convective losses are minimized. The excited fluctuations may lead to additional scattering of the ring electrons and the incident microwave fields. Application of these calculations to ECR heating of tokamaks, tandem mirrors, and EBT's will be examined

  13. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  14. Heat Loads On Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Chantant, M.; Beaumont, B.; Ekedahl, A.; Goniche, M.; Moreau, P.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency launchers plasma facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. Lessons are drawned both with regards to Tore Supra possible operational limits and to ITER ICRF launcher design

  15. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  16. Consequences of nonlinear heat transport laws on expected plasma profiles

    International Nuclear Information System (INIS)

    Lackner, K.

    1987-03-01

    The expected variation of plasma pressure profiles against changes in power deposition is investigated by using a simple linear heat transport law as well as a quadratic one. Applying the quadratic transport law it can be shown that the stiffening of the resulting profiles is sufficient to understand the experimentally measured phenomenon of 'profile consistence' without further assumptions of nonlocal effects. (orig.) [de

  17. Radiofrequency Waves, Heating and Current Drive in Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M; Bonoli, P T; Temkin, R J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States); Pinsker, R I; Prater, R [General Atomics, San Diego, California (United States); Wilson, J R [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2012-09-15

    The need for supplementary heating of magnetically confined plasmas to fusion relevant temperatures ({approx}20 keV) has been recognized from the beginning of modern fusion plasma research. Although in tokamaks the plasmas are formed initially by ohmic heating (P{Omega}{approx}{eta}{sub R}j, where j is the current density and {eta}{sub R} is the resistivity) its effectiveness deteriorates with increasing temperature since the resistivity decreases as T{sub e}{sup -3/2}, and losses due to bremsstrahlung radiation increase as Z{sub eff}{sup 3} T{sub e}{sup 1/2} (where Z{sub eff} is the effective ion charge), and the plasma current cannot be raised to arbitrarily large values because of MHD stability limits. In addition, energy losses due to thermal conduction P{sub loss} are typically anomalously large compared to neoclassical predictions and the dependence on temperature is not well understood. Thus, the simplest form of steady state power balance indicates that losses due to radiation and heat conduction must be balanced by auxiliary heating of some form, P{sub aux}, which may simply be stated as P{sub {Omega}} + P{sub {alpha}} - P{sub loss} P{sub aux} where P{sub {alpha}} is the power input provided by alpha particles, which does not become significant until the temperature exceeds some tens of keV, depending on confinement and density. (author)

  18. Ion Bernstein wave heating in a multi-component plasma

    International Nuclear Information System (INIS)

    Puri, S.

    1980-10-01

    Conditions for the coupling and absorption of Gross-Bernstein ion-cyclotron waves in a multi-component plasma are examined. Two cases are distinguished depending upon whether, the antenna initially launches, (i) the quasi-torsional slow electromagnetic wave with azimuthal magnetic field (TM) polarization, or (ii) the quasi-compressional fast wave with the electric field oriented azimuthally (TE). Analytic expressions for the plasma surface impedance are derived taking into account the pertinent warm plasma modifications near the vacuum-plasma interface. Antenna configurations capable of efficient coupling of the radio frequency energy to these modes are studied. A method for simulating waveguide like launching using transmission lines is pointed out. It is found that impurity concentrations exceeding a few parts in a thousand are capable of competing with the bulk ions in the energy absorption processes; this could lead to energy deposition near the plasma edge. Measures for avoiding edge heating problems by a careful choice of parameters e.g. restricting the heating frequency to the fundamental ion gyrofrequency are outlined. Equal care is to be exercised in limiting the nsub(z) spectrum to low discrete values in order to avoid the potentially dangerous problem of runaway electron heating. (orig.)

  19. Plasma Production and Heating in the Superconducting Levitron

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, O. A.; Birdsall, D. H.; Hartman, C. W.; Hooper, Jr., E. B.; Munger, R. H.; Taylor, C. E. [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1971-10-15

    Plasma production and heating in the Superconducting Levitron are described. The device has a floating superconducting ring with 40-cm major radius and 5-cm minor radius, which carries up to 600 kA current. Toroidal field is provided by a current of up to 1 MA. Six poloidal field coils are used to shape the magnetic surfaces to obtain field configurations with strong shear and with minimum average B, a local minimum -B well, or minimum {partial_derivative}B/{partial_derivative}s ({delta}B/B Less-Than-Or-Equivalent-To 0.005 - 0.05). Large area surfaces at liquid helium temperature which are not directly exposed to the plasma provide ultrahigh vacuum. Methods of production and heating of dense plasma with appreciable {beta} have been studied using a classical diffusion and thermal conduction model, which includes trapped-particle effects. Computations have been made both for heating by an initial hot electron plasma and for energetic neutral injection. The latter technique yields n Almost-Equal-To 10{sup 13} cm{sup -3}, T{sub e} Almost-Equal-To T{sub i} Almost-Equal-To 0.3 to 0.8 keV with existing sources (200 mA equivalent current at 2 keV). Production and heating by energetic electrons proceeds in two steps: First, a hot electron plasma with n Almost-Equal-To 10{sup 11} to 10{sup 13} cm{sup -3}, T{sub e}, hot Almost-Equal-To 100 to 500 keV is established by electron cyclotron resonance heating (ECRH). Second, dense plasma is formed by injection of a short pulse (50 {mu}s) of neutral gas. The inherent cutoff limit of direct ECRH is thereby overcome. Numerical computations of the subsequent in situ heating by energetic electrons predict T{sub i} = 0,14 to 2.0 keV, n = 5 x 10{sup 13} to 10{sup 14} cm{sup -3} for B{sub poloidal} = 1.5 to 6 kG. Thus, heating and ion temperatures comparable to or greater than obtained in the Tokamak T-3 device are predicted. This technique allows scaling to ignition temperature for a D-T plasma using available microwave power sources and

  20. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  1. Electron heat transport in shaped TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y; Pochelon, A; Bottino, A; Coda, S; Ryter, F; Sauter, O; Behn, R; Goodman, T P; Henderson, M A; Karpushov, A; Porte, L; Zhuang, G

    2005-01-01

    Electron heat transport experiments are performed in L-mode discharges at various plasma triangularities, using radially localized electron cyclotron heating to vary independently both the electron temperature T e and the normalized electron temperature gradient R/L T e over a large range. Local gyro-fluid (GLF23) and global collisionless gyro-kinetic (LORB5) linear simulations show that, in the present experiments, trapped electron mode (TEM) is the most unstable mode. Experimentally, the electron heat diffusivity χ e is shown to decrease with increasing collisionality, and no dependence of χ e on R/L T e is observed at high R/L T e values. These two observations are consistent with the predictions of TEM simulations, which supports the fact that TEM plays a crucial role in electron heat transport. In addition, over the broad range of positive and negative triangularities investigated, the electron heat diffusivity is observed to decrease with decreasing plasma triangularity, leading to a strong increase of plasma confinement at negative triangularity

  2. Experimental study of parametric instabilities and anomalous heating in plasma

    International Nuclear Information System (INIS)

    Batanov, G.M.; Rabinovich, M.S.

    1975-01-01

    Over the last few years the study of the dissipation of electromagnetic wave energy in a hot plasma has become perhaps one of the main problems of high-temperature plasma physics and controlled thermonuclear fusion. The focus of attention is on the processes by which electromagnetic energy is transformed into potential plasma waves and the processes involving relaxation of the latter. In this paper the authors summarize the experimental research into these processes conducted at the Lebedev Physics Institute over the 10 cm wave band. In the case of an isotropic plasma the authors recorded non-linear generation of Langmuir noise, the energy density of which was found to be comparable, in order of magnitude, with that of a pump wave. They detected the generation of fast-electron streams, the non-stationary character of the latter with respect to time, and non-linear transmissivity of the plasma layer. In the case of a magnetoactive plasma they studied the parametric excitation of oscillations at the upper hybrid frequency during its resonance with the first overtone of the pump wave. Excitation of plasma noise was found to be accompanied by a flux of fast-electrons, in the energy spectrum of which separate groups were detected. It was also found that the effective collision frequency increased by 1-3 orders, compared to the pari-collision frequency. In the region of magnetic waves close to the electron cyclotron resonance the authors observed forced Mandel'shtam-Brillouin scattering and kinetic instability of the plasma. It was found that the excitation of ionic Langmuir noise preceded ''anomalous absorption'' of waves and ''anomalous heating'' of electrons. The authors further consider the possibility of an experimental study of anomalous heating in plasma in the region of the lower hybrid frequencies, using the Institute's L-2 stellarator. (author)

  3. Stochasticity and superadiabaticity in radiofrequency plasma heating

    International Nuclear Information System (INIS)

    Stix, T.H.

    1979-04-01

    In a plasma subject to radiofrequency fields, it is only the resonant particles - comprising just a minor portion of the total velocity distribution - which are strongly affected. Under near-fusion conditions, thermalization by Coulomb collisions is slow, and noncollisional stochasticity can play an important role in reshaping f(v). It is found that the common rf interactions, including Landau, cyclotron and transit-time damping, can be fitted in a unified manner by a simple two-step one-parameter (epsilon) mapping which can display collision-free stochastic or adiabatic (also called superadiabatic) behavior, depending on the choice of epsilon. The effect on the evolution of the space averaged f (x,v,t) is reasonably well described by a pseudo-stochastic diffusion function, D/sub PS/(v,epsilon) which is the quasilinear diffusion coefficient but with appropriate widening of the delta-function spikes. Coulomb collisions, leading to D/sub Coul/(v) which may be added and directly compared to D/sub PS/(v,epsilon), are introduced by Langevin terms in the mapping equations

  4. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...... of the electron cyclotron frequency. These are injected obliquely from the outside of the tokamak near an optimal angle to the magnetic field lines. This method involves two mode conversions. The ordinary waves are converted into extraordinary waves near the plasma cut-off layer. The extraordinary waves...... are subsequently converted into electrostatic electron Bernstein waves at the upper hybrid resonance layer, and the Bernstein waves are completely absorbed close to the plasma centre. Results are presented from ray-tracinq calculations in full three-dimensional geometry using the dispersion function for a hot non...

  5. Development of a discharge-heated plasma tube

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Jin, J. T.; Nam, S. M.; Lee, S. M.; Choi, H. L.; Ko, D. K.; Kim, S. H.; Lee, Y. B.; Choi, Y. S.; Lee, J. M.; Lee, C. K.; Lee, H. G.; Lee, H. C.; Jung, S. M.; Kim, Y. J.; Choi, G. S.; Son, N. G.

    1999-12-01

    A discharge-heated type plasma tube was designed and constructed. The structure of the laser plasma tube was designed to be easy in maintenance. The inside plasma tube was made of a high purity alumina and the thermal insulator tube was made of a porous alumina. The electrode made of tungsten was chosen for the endurance of high discharge voltage. AR coated windows were used as laser windows. A proto-type laser plasma tube was tested with a pulse modulator. An average laser output power was 32 W at the discharge voltage of 28 kV, the electric input power of 4.6 kW, and the pulse repetition rates of 10 kHz. (author)

  6. Low frequency RF heating of plasmas in a toroidal stellarator

    International Nuclear Information System (INIS)

    Golovato, S.N.

    1977-01-01

    Studies of transit-time magnetic pumping and Alfven wave heating have been done in the Proto-Cleo stellarator. Both plasma heating and plasma confinement have been investigated. A traveling wave was launched around the Proto-Cleo l = 2, 6 field period stellarator to attempt transit-time magnetic pumping of a pulsed electron beam moving along the magnetic field lines. An apparent loss of the beam was seen when the transit-time magnetic pumping was applied. A random walk diffusion of the beam electrons with a step size determined by the radial EXB drift due to the poloidal electric field agrees well with the experimental results. Alfven wave heating was applied to plasmas in the Proto-Cleo l = 3, 7 field period stellarator. Global excitation of Alfven waves was accomplished by exciting an electrostatically shielded helical winding corresponding to a q = 3 rational field line with a pulsed, high-power RF source. Theoretical analysis of this helical wave launcher predicted effective energy absorption in the Proto-Cleo gun-produced plasma

  7. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Lohlec, Stefan; Jullien, Pierre; Van Ootegemd, Bruno; Couzie, Jacques; Lasserre, Jean-Pierre

    2013-01-01

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  8. Particle Acceleration and Plasma Heating in the Chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Stepanov, A. V.

    2015-12-01

    We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.

  9. Technological issues of ion cyclotron heating of fusion plasmas

    International Nuclear Information System (INIS)

    Hwang, D.Q.; Fortgang, C.M.

    1985-01-01

    With the recent promising results of plasma heating using electromagnetic waves (EM waves) in the ion cyclotron range of frequency (ICRF) on the Princeton Large Torus (PLT) tokamak the feasibility of employing ICRF heating to a reactor-like magnetic confinement device is increasing. The high power ICRF experiments funded on JET (Joint European Torus in England) and JT-60 (in Japan) will have rf source power in the range of 10-30 MW. The time scale for the duration of the RF pulse will range from seconds up to steady-state. The development of new RF components that can transmit and launch such high power, long pulse length, EM waves in a plasma environment is a major technological task. In general, the technology issues may be divided into two categories. The first category concerns the region where the plasma comes in contact with the wave launchers. The problems here are dominated by plasmamaterial interaction, heat deposition by the plasma onto the wave launcher, and erosion of the launcher material. It is necessary to minimize the heat deposition from the plasma, the losses of the RF wave energy in the structure, and to prevent sputtering of the antenna components. A solution involves a combined design using special materials and optimal shaping of the Faraday shield (the electrostatic shields which can be used both for an EM wave polarization adjustment and as a particle shield for the launcher). Recent studies by PPPL and McDonnell Douglas Corp. on the Faraday shield designs will be discussed. The second important area where technology development will be necessary is the transmission of high power RF waves through a gas/vacuum interface region. In the past, the vacuum feedthrough has been the bottle neck which prevented high power operation of the PLT antenna

  10. Introduction to wave heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2001-01-01

    The development of high-power wave heating and current drive in magnetized plasmas in the last 40 years is a major ongoing success story in plasma science. A hallmark of this area of research has been the detailed quantitative comparison of theory and experiment; the good agreement consistently found is indicative of the robustness and the predictive power of the underlying theory. This tutorial paper is a brief overview of the fundamental concepts and applications of this branch of plasma science. Most of the high-power applications have been in three frequency regimes: the ion cyclotron range of frequencies (ICRF), the lower hybrid range of frequencies (LHRF), and the electron cyclotron range of frequencies (ECRF). The basic physics of wave propagation and damping in these regimes is briefly discussed. Some of the coupling structures (antennas) used to excite the waves at the plasma boundary are described, and the high-power systems used to generate the wave energy are touched on. Representative examples of the remarkably wide range of applications of high-power wave heating and current drive in high-temperature fusion plasmas will be discussed

  11. Hydrodynamic motion of a heavy-ion-beam-heated plasma

    International Nuclear Information System (INIS)

    Jacoby, J.; Hoffmann, D.H.H.; Mueller, R.W.; Mahrt-Olt, K.; Arnold, R.C.; Schneider, V.; Maruhn, J.

    1990-01-01

    The first experimental study is reported of a plasma produced by a heavy-ion beam. Relevant parameters for heating with heavy ions are described, temperature and density of the plasma are determined, and the hydrodynamic motion in the target induced by the beam is studied. The measured temperature and the free-electron density are compared with a two-dimensional hydrodynamic-model calculation. In accordance with the model, a radial rarefaction wave reaching the center of the target was observed and the penetration velocity of the ion beam into the xenon-gas target was measured

  12. Heat loads on Tore Supra ICRF Launchers Plasma Facing Components

    International Nuclear Information System (INIS)

    Bremond, S.; Colas, L.; Beaumont, B.; Chantant, M.; Goniche, M.; Mitteau, R.

    2005-01-01

    Understanding the heat loads on Ion Cyclotron Range of Frequency (ICRF) launchers plasma-facing components is a crucial task both for operating present tokamaks and for designing ITER ICRF launchers as these loads may limit the RF power coupling capability. Tore Supra facility is particularly well suited to take this issue. Parametric studies have been performed which enables to get an overall detailed picture of the different heat loads on several areas, pointing to different mechanisms at the origin of the heat power fluxes. It is found that the most critical items for Tore-Supra operation are localized heat loads on the Faraday screen top left corner and vertical edges. Warming up close to maximum temperature limit originally set for protection of the plasma-facing components is found of high power pulses, but no erosion was observed after detailed inspection of the launcher in Tore-Supra vessel. Yet, the associated heat loads could be limiting for Tore-Supra operation in the future, and some dedicated work is under progress to improve the understanding of these power fluxes, pointing out the importance of getting a better knowledge of particle flows in the scrape of layer

  13. Electron Heating of LHCD Plasma in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Ding Yonghua; Wan Baonian; Lin Shiyao; Chen Zhongyong; Hu Xiwei; Shi Yuejiang; Hu Liqun; Kong Wei; Zhang Xiaoqing

    2006-01-01

    Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature T e0 , the volume averaged electron temperature e > and the peaking factor of the electron temperature Q Te = T e0 / e > increase with the lower hybrid wave (LHW) power. Simultaneously the electron heating efficiency and the electron temperature as the function of the central line-averaged electron density (n e ) and the plasma current (I p ) have also been investigated. The experimental results are in a good agreement with those of the classical collision theory and the LHW power deposition theory

  14. Direction of Impurity Pinch and Auxiliary Heating in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Angioni, C.; Peeters, A.G.

    2006-01-01

    A mechanism of particle pinch for trace impurities in tokamak plasmas, arising from the effect of parallel velocity fluctuations in the presence of a turbulent electrostatic potential, is identified analytically by means of a reduced fluid model and verified numerically with a gyrokinetic code for the first time. The direction of such a pinch reverses as a function of the direction of rotation of the turbulence in agreement with the impurity pinch reversal observed in some experiments when moving from dominant auxiliary ion heating to dominant auxiliary electron heating

  15. Ion heating due to rotation and collision in magnetized plasma

    International Nuclear Information System (INIS)

    Anderegg, F.; Stern, R.A.; Skiff, F.; Hammel, B.A.; Tran, M.Q.; Paris, P.J.; Kohler, P.

    1986-01-01

    The E x B rotation and associated collisional ion heating of noble-gas magnetized plasmas are investigated with high resolution by means of laser-induced fluorescence and electrical probes. Plasma rotation results from a radial potential gradient which can be controlled by biasing of the discharge electrodes. The time and space evolution of the potential, the rotation velocity v/sub t//sub h//sub e//sub t//sub a/, and the ion perpendicular temperature indicate that heating is due to the randomization of v/sub t//sub h//sub e//sub t//sub a/ by ion-neutral collisions, and leads to temperature increases as high as a factor of 50 over initial values

  16. Generation and Sustainment of Plasma Rotation by ICRF Heating

    Science.gov (United States)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  17. Wave trajectory and electron cyclotron heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.

    1977-12-01

    Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)

  18. Compound sawtooth study in ohmically heated TFTR plasmas

    International Nuclear Information System (INIS)

    Yamada, H.; McGuire, K.; Colchin, D.

    1985-09-01

    Compound sawtooth activity has been observed in ohmically heated, high current, high density TFTR plasmas. Commonly called ''double sawteeth,'' such sequences consist of a repetitive series of subordinate relaxations followed by a main relaxation with a different inversion radius. The period of such compound sawteeth can be as long as 100 msec. In other cases, however, no compound sawteeth or bursts of them can be observed in discharges with essentially the same parameters

  19. X-ray heating of laboratory photoionized plasmas at Z

    Science.gov (United States)

    Mancini, R.; Lockard, T.; Mayes, D.; Loisel, G.; Bailey, J.; Rochau, G.; Abdallah, J.; Fontes, C.; Liedahl, D.; Golovkin, I.

    2017-10-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed temperatures. DOE OFES Grant DE-SC0014451 and ZFSP.

  20. Heat loads on plasma facing components during disruptions on JET

    International Nuclear Information System (INIS)

    Arnoux, G.; Riccardo, V.; Fundamenski, W.; Loarte, A.; Huber, A.

    2009-01-01

    For the first time, fast measurements of heat loads on the main chamber plasma facing components (about 1 ms time resolution) during disruptions are taken on JET. The timescale of energy deposition during the thermal quench is estimated and compared with the timescale of the core plasma collapse measured with soft x-ray diagnostic. The energy deposition time is 3-8 times longer than the plasma energy collapse during density limit disruptions or radiative limit disruptions. This factor is rather in the range 1.5-4 for vertical displacement events. The heat load profiles measured during the thermal quench show substantial broadening of the power footprint on the upper dump plate. The scrape-off layer power width is increased by a factor of 3 for the density limit disruptions. The far scrape-off layer is characterized by a steeper gradient which could be explained by shadowing of the dump plate by other main chamber plasma facing components such as the outer limiter.

  1. Role of Magnetic Reconnection in Heating Astrophysical Plasmas

    Science.gov (United States)

    Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.

    2017-12-01

    The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.

  2. Simulations of plasma heating caused by the coalescence of multiple current loops in a proton-boron fusion plasma

    International Nuclear Information System (INIS)

    Haruki, T.; Yousefi, H. R.; Sakai, J.-I.

    2010-01-01

    Two dimensional particle-in-cell simulations of a dense plasma focus were performed to investigate a plasma heating process caused by the coalescence of multiple current loops in a proton-boron-electron plasma. Recently, it was reported that the electric field produced during the coalescence of two current loops in a proton-boron-electron plasma heats up all plasma species; proton-boron nuclear fusion may therefore be achievable using a dense plasma focus device. Based on this work, the coalescence process for four and eight current loops was investigated. It was found that the return current plays an important role in both the current pinch and the plasma heating. The coalescence of four current loops led to the breakup of the return current from the pinched plasma, resulting in plasma heating. For the coalescence of eight current loops, the plasma was confined by the pinch but the plasma heating was smaller than the two and four loop cases. Therefore the heating associated with current loop coalescence depends on the number of initial current loops. These results are useful for understanding the coalescence of multiple current loops in a proton-boron-electron plasma.

  3. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  4. The experimental investigation on the properties of the plasma heated by waves in the mirror machine

    Energy Technology Data Exchange (ETDEWEB)

    Shuyun, Duan; Shiqing, Cheng; Xuemeng, Chen; Qing, Pan; Zhigang, Yang [Southwest Inst. of Physics, Leshan, SC (China)

    1995-06-01

    The application of ICRH (Ion Cyclotron Resonance Heating) in the MM-2U simple mirror plasma which is created and heated by ECRH (Electron Cyclotron Resonance Heating) can result in the increase of plasma temperature and density. The confinement performance of plasma also can be improved. The ion and electron temperatures and the plasma density are measured in detail by using the ISP (Ion Sensitive Probe). The plasma floating potential profile are measured in both the radial and the axial direction. The experimental results show that ICRF (Ion Cyclotron Radio Field) can be used for stabilizing ECRH plasma and for improving the confinement performance of plasma.

  5. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  6. Plasma Heating in Solar Microflares: Statistics and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kirichenko, A. S.; Bogachev, S. A. [Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 (Russian Federation)

    2017-05-01

    In this paper we present the results of an analysis of 481 weak solar flares, from A0.01 class flares to the B GOES class, that were observed during the period of extremely low solar activity from 2009 April to July. For all flares we measured the temperature of the plasma in the isothermal and two-temperature approximations and tried to fit its relationship with the X-ray class using exponential and power-law functions. We found that the whole temperature distribution in the range from A0.01 to X-class cannot be fit by one exponential function. The fitting for weak flares below A1.0 is significantly steeper than that for medium and large flares. The power-law approximation seems to be more reliable: the corresponding functions were found to be in good agreement with experimental data both for microflares and for normal flares. Our study predicts that evidence of plasma heating can be found in flares starting from the A0.0002 X-ray class. Weaker events presumably cannot heat the surrounding plasma. We also estimated emission measures for all flares studied and the thermal energy for 113 events.

  7. Confinement of ohmically heated plasmas and turbulent heating in high-magnetic field tokamak TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Itoh, S; Kawai, Y; Toi, K; Nakamura, K [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1979-12-01

    TRIAM-1, the tokamak device with high toroidal magnetic field, has been constructed to establish the scaling laws of advanced tokamak devices such as Alcator, and to study the possibility of the turbulent heating as a further economical heating method of the fusion oriented plasmas. The plasma parameters obtained by ohmic heating alone are as follows; central electron temperature T sub(e0) = 640 eV, central ion temperature T sub(i0) = 280 eV and line-average electron density n average sub(e) = 2.2 x 10/sup 14/ cm/sup -3/. The empirical scaling laws are investigated concerning T sub(e0), T sub(i0) and n average sub(e). The turbulent heating has been carried out by applying the high electric field in the toroidal direction to the typical tokamak discharge with T sub(i0) asymptotically equals 200 eV. The efficient ion heating is observed and T sub(i0) attains to about 600 eV.

  8. Interferometric density measurements in the divertor and edge plasma regions for the additionally heated JT-60 plasmas

    International Nuclear Information System (INIS)

    Fukuda, T.; Yoshida, H.; Nagashima, A.; Ishida, S.; Kikuchi, M.; Yokomizo, H.

    1989-01-01

    The first divertor plasma density measurement and the interferometric edge plasma density measurement with boundary condition preserving millimeter waveguides were demonstrated to elucidate the mutual correlation among the divertor plasma, scrape-off layer plasma and the bulk plasma properties in the additionally heated JT-60 plasmas. The electron density in the divertor region exhibited a nonlinear dependence on the bulk plasma density for the joule-heated plasmas. When neutral beam heating is applied on the plasmas with the electron density above 2x10 19 /m 3 , however, the bulk plasma density is scraped off from the outer region to lead to density clamping, and the electron density in the divertor region rapidly increases over 1x10 20 /m 3 , from which we can deduce that the particle flow along the magnetic field is dominant, resulting in the apparent degradation of the particle confinement time. As for the case when neutral beam injection is applied to low-density plasmas, the bulk plasma electron density profile becomes flattened to yield a smaller density increase in the divertor region and no density clamping of the bulk plasma was observed. Simulation analysis which correlates the transport of the divertor plasma and the scrape-off layer plasma was also carried out to find the consistency with the experimental results. (orig.)

  9. Plasma heating with multi-MeV neutral atom beams

    International Nuclear Information System (INIS)

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D 0 formed from D - . The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV

  10. Edge modelling of ICFR heated plasmas on PLT

    International Nuclear Information System (INIS)

    Lehrman, I.S.

    1990-01-01

    Theoretical models are presented to explain the edge plasma-antenna interaction that occurs during ICRF heating. The periodic structure of the Faraday shield is found to result in strong ponderomotive force in the vicinity of the antenna. A fluid model, which incorporates the ponderomotive force, predicts an increase in particle transport to the Faraday shield. Kinetic modelling shows that the strong antenna near-fields act to increase the energy of deuterons that strike the shield, thereby increasing the sputtering of shield material. In addition, kinetic modelling shows that E parallel induced between adjacent shield elements acts to heat edge electron that transit close to the antenna. The predictions of the models are shown to be consistent with measurements of enhanced transport on PLT. (author). 27 refs, 17 figs

  11. On a regime of plasma heating with a constant impedance

    International Nuclear Information System (INIS)

    Gertsenshtejn, M.E.; Pogosyan, V.A.

    1977-01-01

    It is shown that as a result of the pulsed heating of the solid-state plasma in the regime of the spreading of the ionization wave its impedance is weakly changed in relation to the current source in the process of heating. Also studied are pecularities of the spreading of ionization wave at densities of the condensed state. For the existence of the ionization were its speed should exceed the speed of the breakdown wave. It is indicated that the width of the front of the ionization wave is mainly determinated by the thickness of the skin-layer. The value of the critical field is obtained for dielectrics for the pulse duration of 5-100 ns, equal to E = 10 7 V/cm. If the limit field exceeds the value of the critical field by three times the value of the energy current approximately amounts to 10 14 W/cm 2

  12. Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    International Nuclear Information System (INIS)

    Krasilnikov, A V; Amosov, V N; Kaschuck, Yu A; Van Eester, D; Lerche, E; Ongena, J; Bonheure, G; Biewer, T; Crombe, K; Ericsson, G; Giacomelli, L; Hellesen, C; Hjalmarsson, A; Esposito, B; Marocco, D; Jachmich, S; Kiptily, V; Leggate, H; Mailloux, J; Kallne, J

    2009-01-01

    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D-T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding ∼25% of heating power the fusion power was increased up to 30-50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from T i ∼ 4.0 keV and T e ∼ 4.5 keV (NBI-only phase) to T i ∼ 5.5 keV and T e ∼ 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and γ-ray spectroscopy.

  13. Resonant heating of a cluster plasma by intense laser light

    International Nuclear Information System (INIS)

    Antonsen, Thomas M. Jr.; Taguchi, Toshihiro; Gupta, Ayush; Palastro, John; Milchberg, Howard M.

    2005-01-01

    Gases of atomic clusters are interaction media for laser pulse propagation with properties useful for applications such as extreme ultraviolet (EUV) and x-ray microscopy, harmonic generation, EUV lithography, and laser plasma acceleration. To understand cluster heating and expansion, a series of two- and three-dimensional electrostatic particle in cell simulations of the explosion of argon clusters of diameter in the range 20 nm-53 nm have been preformed. The studies show that heating is dominated by a nonlinear, resonant absorption process that gives rise to a size-dependent intensity threshold for strong absorption and that controls the dielectric properties of the cluster. Electrons are first accelerated out from the cluster and then driven back into it by the combined effects of the laser field and the electrostatic field produced by the laser-driven charge separation. Above the intensity threshold for strong heating there is a dramatic increase in the production of energetic particles and harmonic radiation. The dielectric properties of a gas of clusters are determined by the ensemble average cluster polarizability. Individual electrons contribute to the polarizability differently depending on whether they are in the core of the cluster or in the outer edge. Consequently, there can be large fluctuations in polarizability during the heating of a cluster

  14. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  15. Conceptual design of NBI beamline for VEST plasma heating

    International Nuclear Information System (INIS)

    Kim, T.S.; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-01-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  16. Auxiliary plasma heating and fueling models for use in particle simulation codes

    International Nuclear Information System (INIS)

    Procassini, R.J.; Cohen, B.I.

    1989-01-01

    Computational models of a radiofrequency (RF) heating system and neutral-beam injector are presented. These physics packages, when incorporated into a particle simulation code allow one to simulate the auxiliary heating and fueling of fusion plasmas. The RF-heating package is based upon a quasilinear diffusion equation which describes the slow evolution of the heated particle distribution. The neutral-beam injector package models the charge exchange and impact ionization processes which transfer energy and particles from the beam to the background plasma. Particle simulations of an RF-heated and a neutral-beam-heated simple-mirror plasma are presented. 8 refs., 5 figs

  17. High density plasma heating in the Tokamak à configuration variable

    International Nuclear Information System (INIS)

    Curchod, L.

    2011-04-01

    The Tokamak à Configuration Variable (TCV) is a medium size magnetic confinement thermonuclear fusion experiment designed for the study of the plasma performances as a function of its shape. It is equipped with a high power and highly flexible electron cyclotron heating (ECH) and current drive (ECCD) system. Up to 3 MW of 2 nd harmonic EC power in ordinary (O 2 ) or extraordinary (X 2 ) polarization can be injected from TCV low-field side via six independently steerable launchers. In addition, up to 1.5 MW of 3 rd harmonic EC power (X 3 ) can be launched along the EC resonance from the top of TCV vacuum vessel. At high density, standard ECH and ECCD are prevented by the appearance of a cutoff layer screening the access to the EC resonance at the plasma center. As a consequence, less than 50% of TCV density operational domain is accessible to X 2 and X 3 ECH. The electron Bernstein waves (EBW) have been proposed to overcome this limitation. EBW is an electrostatic mode propagating beyond the plasma cutoff without upper density limit. Since it cannot propagate in vacuum, it has to be excited by mode conversion of EC waves in the plasma. Efficient electron Bernstein waves heating (EBH) and current drive (EBCD) were previously performed in several fusion devices, in particular in the W7-AS stellarator and in the MAST spherical tokamak. In TCV, the conditions for an efficient O-X-B mode conversion (i.e. a steep density gradient at the O 2 plasma cutoff) are met at the edge of high confinement (H-mode) plasmas characterized by the appearance of a pedestal in the electron temperature and density profiles. TCV experiments have demonstrated the first EBW coupling to overdense plasmas in a medium aspect-ratio tokamak via O-X-B mode conversion. This thesis work focuses on several aspects of ECH and EBH in low and high density plasmas. Firstly, the experimental optimum angles for the O-X-B mode conversion is successfully compared to the full-wave mode conversion calculation

  18. High power RF heating and nonthermal distributions in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, A.G.

    1994-12-13

    This thesis discusses the nonthermal effects in the electron population of a tokamak, that are generated by the inductive electric field and electron cyclotron resonant heating. The kinetic description of the plasma is given by a Boltzmann equation for the electron velocity distribution, in which the many small angle scattering Coulomb collisions that occur in the plasma are modelled by a Fokker-Planck collision term. These collisions drive the distribution towards the Maxwellian distribution of thermodynamic equilibrium. The energy absorption from the electron cyclotron waves and the acceleration by the toroidal electric field lead to deviations from the Maxwellian destribution. The interaction of the electron cyclotron waves with the plasma is treated within quasilinear theory. Resonant interaction occurs when the wave frequency matches one of the harmonics of the gyration frequency of the electrons in the static magnetic field. The waves generate a diffusion of resonant electrons in velocity space. The inductive electric field accelerates the electrons in the direction prallel to the magnetic field and leads to a convection in velocity space. The equilibrium that is reached between the driving forces of the electric field and the electron cyclotron waves and the restoring force of the collisions is studied in this thesis. The specific geometry of the tokamak is incorporated in the model through an average of the kinetic equation over the electron orbits. (orig./WL).

  19. High power RF heating and nonthermal distributions in tokamak plasmas

    International Nuclear Information System (INIS)

    Peeters, A.G.

    1994-01-01

    This thesis discusses the nonthermal effects in the electron population of a tokamak, that are generated by the inductive electric field and electron cyclotron resonant heating. The kinetic description of the plasma is given by a Boltzmann equation for the electron velocity distribution, in which the many small angle scattering Coulomb collisions that occur in the plasma are modelled by a Fokker-Planck collision term. These collisions drive the distribution towards the Maxwellian distribution of thermodynamic equilibrium. The energy absorption from the electron cyclotron waves and the acceleration by the toroidal electric field lead to deviations from the Maxwellian destribution. The interaction of the electron cyclotron waves with the plasma is treated within quasilinear theory. Resonant interaction occurs when the wave frequency matches one of the harmonics of the gyration frequency of the electrons in the static magnetic field. The waves generate a diffusion of resonant electrons in velocity space. The inductive electric field accelerates the electrons in the direction prallel to the magnetic field and leads to a convection in velocity space. The equilibrium that is reached between the driving forces of the electric field and the electron cyclotron waves and the restoring force of the collisions is studied in this thesis. The specific geometry of the tokamak is incorporated in the model through an average of the kinetic equation over the electron orbits. (orig./WL)

  20. HF heating of a plasma column at frequencies below the electron cyclotron frequency

    International Nuclear Information System (INIS)

    Datlov, J.; Kopecky, V.; Musil, J.; Zacek, F.; Novik, K.

    1978-02-01

    The dispersion of waves, excited by the helical structure in a plasma column and the heating of a tail of the electron distribution function is studied at frequencies below the electron plasma frequency and the electron cyclotron frequency. (author)

  1. Beam-plasma generators of stochastic microwave oscillations using for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations

    Energy Technology Data Exchange (ETDEWEB)

    Mitin, L A; Perevodchikov, V I; Shapiro, A L; Zavyalov, M A [All-Russian Electrotechnical Inst., Moscow (Russian Federation); Bliokh, Yu P; Fajnberg, Ya B [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The results of theoretical and experimental investigations of a generator of stochastic microwave power based on a beam-plasma inertial feedback amplifier is discussed with a view to using stochastic oscillations for plasma heating. The plasma heating efficiency in the region of low-frequency resonance in the geometry of the Tokamak is considered theoretically. It is shown that the temperature of heating is proportional to the power multiplied by the spectra width of the noiselike signal. The creation and heating of plasma by stochastic microwave power in an oversized waveguide without external magnetic field is discussed with a view to plasma-chemistry applications. It is shown that the efficiency of heating are defined by the time of phase instability of the stochastic power. (author). 3 figs., 13 refs.

  2. Plasma heating and fuelling in the Globus-M spherical tokamak

    International Nuclear Information System (INIS)

    Gusev, V.K.; Barsukov, A.G.; Belyakov, V.A.

    2005-01-01

    The results of the last two years of plasma investigations at Globus-M are presented. Described are improvements helping to achieve high performance OH plasmas, which are used as the target for auxiliary heating and fuelling experiments. Increased energy content, high beta poloidal and good confinement are reported. Experiments on NBI plasma heating with a wide range of plasma parameters were performed. Some results are presented and analyzed. Experiments on RF plasma heating in the frequency range of fundamental ion cyclotron harmonics are described. In some experiments which were performed for the first time in spherical tokamaks, promising results were achieved. Noticeable ion heating was recorded at low launched power and a high concentration of hydrogen minority in deuterium plasmas. Simulations of RF wave absorption are briefly discussed. Described also are modification of the plasma gun and test-stand experiments. Fuelling experiments performed at Globus-M are discussed. (author)

  3. Plasma heating by injection of neutral beams into TFR 600

    International Nuclear Information System (INIS)

    1981-01-01

    Experimental results from quasi-perpendicular high power (up to 1.2 MW) neutral beam injection in the TFR 600 tokamak are reported. The trapped fast ions show all the characteristics of a classical feature. This allows us to study the behaviour of a dense plasma (n approximately equal to 10 14 cm -3 ) whose electron and ion temperatures are significantly changed by fast neutrals injection (ΔTsub(e,i)>300 eV). No increase of the global energy confinement time has been observed, but at low q value a large increase of internal disruptions appears. This fact permits to partly enlighten the internal disruptions mechanism and to emphasize their importance. 1-D simulation calculations are also reported; changes in the electron and ion heat conduction, necessary to explain most of the experimental results observed during the internal disruptions will be discussed

  4. Plasma heating by cluster injection: basic features and expected behaviour

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.; CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1976-01-01

    Each main component of an injection line (beam source, cluster ionizer, accelerating tube) is briefly discussed together with the behavior of clusters interacting with a plasma. Outlines of the experiment of cluster injection into TFR, in progress at Fontenay-aux-Roses are presented and discussed all along the paper. It is shown that high current densities at rather low energy per atom can be obtained by accelerated cluster beams. In present size toroidal devices, both ion temperature and density can be increased simultaneously without heating electrons. This feature could be attractive as long as tokamak losses are dominated by electrons. The extrapolation of the ionizers under construction does not seem to present much difficulty; on the contrary, the accelerating tube could be the most serious problem to solve. (40 references)

  5. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  6. Fast-wave heating of a two-component plasma

    International Nuclear Information System (INIS)

    Stix, T.H.

    1975-02-01

    The use of the compressional hydromagnetic mode (also called the magnetosonic or, simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium. Efficient absorption of wave energy by the deuteron component is found when ω = ω/sub c/ (deuterons), with Q/sub wave/ greater than or equal to 100. The dominant behavior of the high-energy deuteron distribution function is found to be f(v) approximately exp[3/2) ∫/sup v/ dv less than Δv greater than/less than(Δv/sub perpendicular to/) 2 greater than], where [Δv] is the Chandrasekhar-Spitzer drag coefficient, and [(Δv/sub perpendicular to/) 2 sigma] is the Kennel-Englemann quasilinear diffusion coefficient for wave--particle interaction at the deuteron cyclotron frequency. An analytic solution to the one-dimensional Fokker--Planck equation, with rf-induced diffusion, is developed, and using this solution together with Duane's fit to the D-T fusion cross-section, it is found that the nuclear fusion power output from an rf-produced two-component plasma can significantly exceed the incremental (radiofrequency) power input. (auth)

  7. Fusion plasma theory: Task 3, Auxiliary heating in tokamaks

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1989-07-01

    The research that we have accomplished during the past year (1988--1989) includes the topics of ICRF fast wave waveguide coupling to H-mode profiles simulating CIT and full wave ICRF field solutions and a power conservation relation based on fundamental principles with JET and CIT heating applications. We have also published work on Fokker-Planck simulations of minority ion ICRF strong core electron sawteeth processes in JET, a publication on the effect of plasma edge density fluctuation and ponderomotive force effects on the coupling of ion Bernstein waves and a publication on the coupling of dielectric filled waveguides to plasmas in the ICRF. The analysis of ICRF H-mode coupling is crucial to the economic success of proposed ignition devices such as CIT and ITER. We have analyzed the coupling of ICRF waveguide launchers to H-mode density profiles modelled by a pedestal width and Gaussian edge variations with gradients comparable to current machines. We find that the launcher aperture spectrum, density gradients and width of the pedestal are important parameters in determining the coupling efficiency. The launcher-plasma admittance spectrum in k y -k z space is utilized to show that the H-mode launcher reflections increase when compared to the L-mode profile, but that they can be handled by launcher matching circuits and modest modifications of the H-mode profile. We plan to analyze the recent successful JET ICRF H-mode operation utilizing our formalism. We have also carried out a full wave ICRF field solution and the associated power conservation relation with expressions evaluated up to the third harmonic. We have implemented this in a computer code which utilizes invariant imbedding to solve the system of equations. 7 refs., 1 tab

  8. Plasma heating in multiple-resonance excitation of a plasma in a mirror machine

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A; Siambis, J G [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-06-01

    By applying 1 kW of microwave power at 2.45 GHz and 1 kW of r.f. power in the frequency range of 4-25 MHz at one end of a mirror machine, where neutral hydrogen gas is injected in a pulsed mode, a plasma density of 2 x 10/sup 11/cm/sup -3/ with an electron temperature of 60 eV and ion temperature of 40 eV is generated. The ion heating mechanism, is, principally, collisional thermalization of the applied r.f. power, via coupling to and excitation of the low frequency resonances of the plasma column, in agreement with the theoretical prediction for the case of high total effective collision frequency for momentum transfer for the electrons.

  9. Progress towards RF heated steady-state plasma operations on LHD by employing ICRF heating methods and improved divertor plates

    International Nuclear Information System (INIS)

    Kumazawa, R.; Mutoh, T.; Saito, K.

    2008-10-01

    A long pulse plasma discharge experiment was carried out using RF heating power in the Large Helical Device (LHD), a currentless magnetic confining system. Progress in long pulse operation is summarized since the 10th experimental campaign (2006). A scaling relation of the plasma duration time to the applied RF power has been derived from the experimental data so far collected. It indicates that there exists a critical divertor temperature and consequently a critical RF heating power P RFcrit =0.65 MW. The area on the graph of the duration time versus the RF heating power was extended over the scaling relation by replacing divertor plates with new ones with better heat conductivity. The cause of the plasma collapse at the end of the long pulse operation was found to be the penetration of metal impurities. Many thin flakes consisting of heavy metals and graphite in stratified layers were found on the divertor plates and it was thought that they were the cause of impurity metals penetrating into the plasma. In a simulation involving injecting a graphite-coated Fe pellet to the plasma it was found that 230 Eμm in the diameter of the Fe pellet sphere was the critical size which led the plasma to collapse. A mode-conversion heating method was examined in place of the minority ICRF heating which has been employed in almost all the long-pulse plasma discharges. It was found that this method was much better from the viewpoint of achieving uniformity of the plasma heat load to the divertors. It is expected that P RFcrit will be increased by using the mode-conversion heating method. (author)

  10. Experimental investigation of gas heating and dissociation in a microwave plasma torch at atmospheric pressure

    International Nuclear Information System (INIS)

    Su, Liu; Kumar, Rajneesh; Ogungbesan, Babajide; Sassi, Mohamed

    2014-01-01

    Highlights: • Atmospheric-pressure microwave plasma torch. • Gas heating and dissociation. • Parametric studies of plasma operating conditions. • Local thermal equilibrium plasma. - Abstract: Experimental investigations are made to understand gas heating and dissociation in a microwave (MW) plasma torch at atmospheric pressure. The MW induced plasma torch operates at 2.45 GHz frequency and up to 2 kW power. Three different gas mixtures are injected in the form of axial flow and swirl flow in a quartz tube plasma torch to experimentally investigate the MW plasma to gas energy transfer. Air–argon, air–air and air–nitrogen plasmas are formed and their operational ranges are determined in terms of gas flow rates and MW power. Visual observations, optical emission spectroscopy and K-type thermocouple measurements are used to characterize the plasma. The study reveals that the plasma structure is highly dependent on the carrier gas type, gas flow rate, and MW power. However, the plasma gas temperature is shown not to vary much with these parameters. Further spectral and analytical analysis show that the plasma is in thermal equilibrium and presents very good energy coupling between the microwave power and gas heating and dissociation. The MW plasma torch outlet temperature is also measured and found to be suitable for many thermal heating and chemical dissociation applications

  11. Experimental observation of current generation by asymmetrical heating of ions in a tokamak plasma

    International Nuclear Information System (INIS)

    Gahl, J.; Ishihara, O.; Wong, K.L.; Kristiansen, M.; Hagler, M.

    1986-01-01

    The first experimental observation of current generation by asymmetrical heating of ions is reported. Ions were asymmetrically heated by a unidirectional fast Alfven wave launched by a slow wave antenna inside a tokamak. Current generation was detected by measuring the asymmetry of the toroidal plasma current with probes at the top and bottom of the toroidal plasma column

  12. Abstracts of international symposium on heat and mass transfer under plasma conditions

    International Nuclear Information System (INIS)

    1994-01-01

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting

  13. Abstracts of international symposium on heat and mass transfer under plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.

  14. Minority and mode conversion heating in (He-3)-H JET plasmas

    NARCIS (Netherlands)

    Van Eester, D.; Lerche, E.; Johnson, T. J.; Hellsten, T.; Ongena, J.; Mayoral, M. L.; Frigione, D.; Sozzi, C.; Calabro, G.; Lennholm, M.; Beaumont, P.; Blackman, T.; Brennan, D.; Brett, A.; Cecconello, M.; Coffey, I.; Coyne, A.; Crombe, K.; Czarnecka, A.; Felton, R.; Johnson, M. G.; Giroud, C.; Gorini, G.; Hellesen, C.; Jacquet, P.; Kazakov, Y.; Kiptily, V.; Knipe, S.; Krasilnikov, A.; Lin, Y.; Maslov, M.; Monakhov, I.; Noble, C.; Nocente, M.; Pangioni, L.; Proverbio, I.; Stamp, M.; Studholme, W.; Tardocchi, M.; Versloot, T. W.; Vdovin, V.; Whitehurst, A.; Wooldridge, E.; Zoita, V.

    2012-01-01

    Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic

  15. Minority and mode conversion heating in (3He)–H JET plasmas

    NARCIS (Netherlands)

    Eester, van D.; Versloot, T.W.; et al, [No Value

    2012-01-01

    Radio frequency (RF) heating experiments have recently been conducted in JET (3He)–H plasmas. This type of plasmas will be used in ITER’s non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario’s at half the nominal magnetic field, this

  16. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  17. High-power heating experiment of spherical tokamaks by use of plasma merging

    International Nuclear Information System (INIS)

    Ueda, Yoshinobu; Ono, Yasushi

    1999-01-01

    High-power heating of spherical tokamaks (STs) has been investigated experimentally by use of plasma merging effect. When two STs were coaxially collided, thermal energy of a colliding ST was injected into a target ST during short reconnection time (Alfven time). Though the thermal energy increment increased with decreasing plasma q value, thermal energy loss during the following relaxation, tended to be smaller with increasing q. The produced high-β STs had hallower current profiles and weaker paramagnetic toroidal field than those of single STs. Those heating properties indicate the plasma merging to be a promising initial heating method of ST plasmas. (author)

  18. Plasma heating and confinement in toroidal magnetic bottle by means of microwave slowing-down structure

    International Nuclear Information System (INIS)

    Datlov, J.; Klima, R.; Kopecky, V.; Musil, J.; Zacek, F.

    1977-01-01

    An invention is described concerning high-frequency plasma heating and confinement in toroidal magnetic vessels. Microwave energy is applied to the plasma via one or more slowing-down structures exciting low phase velocity waves whose energy may be efficiently absorbed by plasma electrons. The wave momentum transfer results in a toroidal electrical current whose magnetic field together with an external magnetic field ensure plasma confinement. The low-frequency modulation of microwave energy may also be used for heating the ion plasma component. (J.U.)

  19. Dense strongly non-ideal plasma generation by laser isobaric heating

    International Nuclear Information System (INIS)

    Kulik, P.P.; Rozanov, E.K.; Riabii, V.A.; Titov, M.A.

    1975-01-01

    A method of generation of a dense strongly non-ideal plasma by slow isobaric heating of a small target in a high inert gas medium is discussed. The characteristic life-time of dense plasma is 10 -3 sec. Estimations show that such a plasma is homogeneous. Conditions are found for temperature uniformity. The experimental results of the isobaric heating of a thin potassium foil target by a ruby laser beam at 500 atm are described. (Auth.)

  20. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    Berg, van den M.A.; Bystrov, K.E.; Pasquet, R.; Zielinski, J.J.; De Temmerman, G.C.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m-3) and plasma composition (H2, Ar, N2) relevant for the ITER divertor plasma. The 2D surface

  1. Application of quasi-steady-state plasma streams for simulation of ITER transient heat loads

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Marchenko, A.K.; Solyakov, D.G.; Tereshin, V.I.; Trubchaninov, S.A.; Tsarenko, A.V.; Landman, I.

    2004-01-01

    The paper presents experimental investigations of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and adjustment of plasma parameters from the point of view its applicability for simulation of transient plasma heat loads expected for ITER disruptions and type I ELMs. Possibility of generation of high-power magnetized plasma streams with ion impact energy up to 0.6 keV, pulse length of 0.25 ms and heat loads varied in wide range from 0.5 to 30 MJ/m 2 has been demonstrated and some features of plasma interaction with tungsten targets in dependence on plasma heat loads are discussed. (author)

  2. Generation and sustainment of plasma rotation by ICRF heating

    International Nuclear Information System (INIS)

    Perkins, F.W.; White, R.; Bonoli, P.T.; Chan, V.S.

    2001-01-01

    A mechanism is proposed and evaluated for driving rotation in tokamak plasmas by minority ion-cyclotron heating, even though this process introduces negligible angular momentum. The mechanism has two elements: First, angular momentum transport is governed by a diffusion equation with a non-slip boundary condition at the separatrix. Second, Monte-Carlo calculations show that energized particles will provide a torque density source which has a zero volume integral but separated positive and negative regions. With such a source, a solution of the diffusion equation predicts the on-axis rotation frequency Ω to be Ω=(4q max WJ*)eBR 3 a 2 n e (2π) 2 ) -1 (τ M /τ E ) where vertical bar J* vertical bar ∼ 5-10 is a non-dimensional rotation frequency calculated by the Monte-Carlo ORBIT code. Overall, agreement with experiment is good, when the resonance is on the low-field-side of the magnetic axis. The rotation becomes more counter-current and reverses sign on the high field side for a no-slip boundary. The velocity shear layer position is controllable and of sufficient magnitude to affect microinstabilities. (author)

  3. Experimental Electron Heat Diffusion in TJ-II ECRH Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V.I.; Lopez-Bruna, D.; Herranz, J.; Castejon, F.

    2006-07-01

    Interpretative transport has been used to revisit the global scalings of TJ-II ECRH plasmas from a local perspective. Density, rotational transform and ERCH power scans were analysed based upon Thomson Scattering data (electron density and temperature) in steady state discharges. A simple formula to obtain the thermal conductivity, assuming pure diffusion and negligible convective heat fluxes was used in a set of 161 discharges. All the analysis was performed with the ASTRA transport shell. The density scan indicates that inside n=0,4 there is no significant change of e with density in the range studied (0.4 (1019m-3) 1.0), while in 0,5 <0,8 approximately, e decreases with density. In the rotational transform scan it is found that the values of e when a low order rational of the rotational transform is present locally seem to be smaller for the corresponding range, although it is apparent a general beneficial effect of the corresponding change in magnetic structure. Finally, in the ECRH power scan, e is found to have an overall increment in 0,2

  4. Experimental Electron Heat Diffusion in TJ-II ECRH Plasmas

    International Nuclear Information System (INIS)

    Vargas, V.I.; Lopez-Bruna, D.; Herranz, J.; Castejon, F.

    2006-01-01

    Interpretative transport has been used to revisit the global scalings of TJ-II ECRH plasmas from a local perspective. Density, rotational transform and ERCH power scans were analysed based upon Thomson Scattering data (electron density and temperature) in steady state discharges. A simple formula to obtain the thermal conductivity, assuming pure diffusion and negligible convective heat fluxes was used in a set of 161 discharges. All the analysis was performed with the ASTRA transport shell. The density scan indicates that inside n=0,4 there is no significant change of e with density in the range studied (0.4 (1019m-3) 1.0), while in 0,5 <0,8 approximately, e decreases with density. In the rotational transform scan it is found that the values of e when a low order rational of the rotational transform is present locally seem to be smaller for the corresponding range, although it is apparent a general beneficial effect of the corresponding change in magnetic structure. Finally, in the ECRH power scan, e is found to have an overall increment in 0,2< n0,6 when QECH increases from 200 to 400 kW, although it is less significant in the density gradient region (n 0,7). (Author) 22 refs

  5. Mode-conversion process and overdense-plasma heating in the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Nakajima, S.; Abe, H.

    1988-01-01

    Through a particle-simulation investigation, a new mode-conversion process, through which an incident fast extraordinary mode (fast X mode) is converted into an electron Bernstein mode (B mode) via a (slow extraordinary mode slow X mode), is discovered in plasmas whose maximum density exceeds the cutoff density of the slow X mode. The converted B mode is found to heat the electrons efficiently in an overdense plasma region, when the plasma has the optimum density gradient at the plasma surface

  6. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    Science.gov (United States)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  7. Microwave heating and diagnostic of suprathermal electrons in an overdense stellarator plasma

    International Nuclear Information System (INIS)

    Stange, Torsten

    2014-01-01

    The resonant coupling of microwaves into a magnetically confined plasma is one of the fundamental methods for the heating of such plasmas. Identifying and understanding the processes of the heating of overdense plasmas, in which the wave propagation is generally not possible because the wave frequency is below the plasma frequency, is becoming increasingly important for high density fusion plasmas. This work focuses on the heating of overdense plasmas in the WEGA stellarator. The excitation of electron Bernstein waves, utilizing the OXB-conversion process, provides a mechanism for the wave to reach the otherwise not accessible resonant absorption layer. In WEGA these OXB-heated plasmas exhibit a suprathermal electron component with energies up to 80 keV. The fast electrons are located in the plasma center and have a Maxwellian energy distribution function within the soft X-ray related energy range. The corresponding averaged energy is a few keV. The OXB-discharges are accompanied by a broadband microwave radiation spectrum with radiation temperatures of the order of keV. Its source was identified as a parametric decay of the heating wave and has no connection to the suprathermal electron component. For the detailed investigation of the microwave emission, a quasioptical mirror system, optimized for the OX-conversion, has been installed. Based on the measurement of the broadband microwave stray radiation of the decay process, the OX-conversion efficiency has been determined to 0.56 being in good agreement with full-wave calculations. In plasmas without an electron cyclotron resonance, corresponding to the wave frequency used, non-resonant heating mechanisms have been identified in the overdense plasma regions. Whistler waves or R-like waves are the only propagable wave types within the overdense plasmas. The analysis of the heating efficiency in dependence on the magnetic flux density leads to tunneling as the most probable coupling mechanism. For the determination

  8. High power plasma heating experiments on the Proto-MPEX facility

    Science.gov (United States)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  9. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    Science.gov (United States)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  10. Heat flux characteristics in an atmospheric double arc argon plasma jet

    International Nuclear Information System (INIS)

    Tu Xin; Yu Liang; Yan Jianhua; Cen Kefa; Cheron, Bruno

    2008-01-01

    In this study, the axial evolution of heat flux excited by a double arc argon plasma jet impinging on a flat plate is determined, while the nonstationary behavior of the heat flux is investigated by combined means of the fast Fourier transform, Wigner distribution, and short-time Fourier transform. Two frequency groups (<1 and 2-10 kHz) are identified in both the Fourier spectrum and the time-frequency distributions, which suggest that the nature of fluctuations in the heat flux is strongly associated with the dynamic behavior of the plasma arc and the engulfment of ambient air into different plasma jet regions

  11. Fueling, heating, and leaking of plasma in mirror reactors

    International Nuclear Information System (INIS)

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    The principles of mirror machine confinement are reviewed with emphasis on the physical process of neutral beam injection and plasma end leakage. The characteristics of efficient neutral beam injectors and direct energy convertors for the plasma and leakage are described

  12. Heating of field-reversed plasma rings estimated with two scaling models

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1978-05-18

    Scaling calculations are presented of the one temperature heating of a field-reversed plasma ring. Two sharp-boundary models of the ring are considered: the long thin approximation and a pinch model. Isobaric, adiabatic, and isovolumetric cases are considered, corresponding to various ways of heating the plasma in a real experiment by using neutral beams, or by raising the magnetic field. It is found that the shape of the plasma changes markedly with heating. The least sensitive shape change (as a function of temperature) is found for the isovolumetric heating case, which can be achieved by combining neutral beam heating with compression. The complications introduced by this heating problem suggest that it is desirable, if possible, to create a field reversed ring which is already quite hot, rather than cold.

  13. Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles

    International Nuclear Information System (INIS)

    Vaessen, P.H.M.

    1984-01-01

    In this thesis the author describes the energy and momentum transfer from the plasma jet to the spray particles. This is done both experimentally and theoretically. Also the internal energy process of the recombining plasma is discussed. All elastic and inelastic collisional and radiative processes, as well as transport effects within the plasma are considered. In the next section, the so called passive spectroscopy is treated. It describes the diagnostics of electron density and temperature measurement, as well as the investigation on heat content of the particles. Spatially resolved electron density and temperature profiles are presented. Next, the active spectroscopy, i.e. the laser Doppler anemometer is dealt with. With this diagnostic, axial spray-particle velocities inside the plasma jet were determined. The author also presents heat and momentum transfer modelling of the plasma, related to the plasma particle interaction. Finally, a one dimensional model verification is made, using the experimentally determined particle velocity and plasma temperature profiles. (Auth.)

  14. Acceleration of electrons and supplementary ionization during parametrical plasma heating

    International Nuclear Information System (INIS)

    Grach, S.M.; Mityakov, N.A.; Trakhtengerts, V.Yu.; AN SSSR, Gor'kij. Inst. Prikladnoj Fiziki)

    1986-01-01

    Acceleration of electrons by plasma waves in partially ionized plasma is considered with provision for the effects of turbulent scattering and formation of secondary electrons, which are produced in the process of electron shock ionization. It is shown that the avalanche density growth of electrons accelerated up to 1-2 ionization potential (instability) takes place beginning from some critical density of plasma waves. Density of fast electrons is found out along with plasma wave energy density at the stage of instability saturation. Additional concentration of a background plasma, which manifests itself due to ionization, is evaluated

  15. Optimal laser heating of plasmas confined in strong solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Vitela, J.; Akcasu, A.Z.

    1987-01-01

    Optimal Control Theory is used to analyze the laser-heating of plasmas confined in strong solenoidal magnetic fields. Heating strategies that minimize a linear combination of heating time and total energy spent by the laser system are found. A numerical example is used to illustrate the theory. Results of this example show that by an appropriate modulation of the laser intensity, significant savings in the laser energy are possible with only slight increases in the heating time. However, results may depend strongly on the initial state of the plasma and on the final ion temperature. (orig.)

  16. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E., E-mail: garkusha@ipp.kharkov.u [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-06-15

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m{sup 2}. The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  17. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Makhlaj, V.A.; Chebotarev, V.V.; Landman, I.; Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N.

    2009-01-01

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m 2 . The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  18. Dynamic behavior of detached recombining plasmas during ELM-like plasma heat pulses in the divertor plasma simulator NAGDIS-II

    International Nuclear Information System (INIS)

    Uesugi, Y.; Hattori, N.; Nishijima, D.; Ohno, N.; Takamura, S.

    2001-01-01

    It has been recognized that the ELMs associated with a good confinement at the edge, such as H-mode, must bring an enormous energy to the divertor target plate through SOL and detached plasmas. The understanding of the ELM energy transport through SOL to the divertor target is rather poor at the moment, which leads to an ambiguous estimation of the deposited heat load on the divertor target in ITER. In the present work the ELM-like plasma heat pulse is generated by rf heating in a linear divertor plasma simulator. Energetic electrons with an energy range 10-40 eV are effectively generated by rf heating in low temperature plasmas with (T e )< ∼1 eV. It is observed experimentally that the energetic electrons ionize the highly excited Rydberg atoms quickly, bringing a rapid increase of the ion particle flux to the target, and make the detached plasmas attached to the target. Detailed physical processes about the interaction between the heat pulse with conduction and convection, and detached recombining plasmas are discussed

  19. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    Science.gov (United States)

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  20. Improving the efficiency of plasma heat treatment of metals

    International Nuclear Information System (INIS)

    Gabdrakhmanov, Az T; Israphilov, I H; Galiakbarov, A T; Samigullin, A D; Gabdrakhmanov, Al T

    2016-01-01

    This paper proposes an effective way of the plasma hardening the surface layer at the expense combined influence of the plasma jet and a cold air flow. After that influence occurs a distinctive by plasma treatment microstructure with increased microhardness (an increase of 35%) and depth. There is proposed an improved design of the vortex tube for receiving the air flow with a temperature of 20 C to - 120C. (paper)

  1. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  2. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    International Nuclear Information System (INIS)

    McGrath, R.T.; Yamashina, T.

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition

  3. Plasma heating by relativistic electron beams: correlations between experiment and theory

    International Nuclear Information System (INIS)

    Thode, L.E.; Godfrey, B.B.

    1975-01-01

    The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory

  4. Critical condition for current-driven instability excited in turbulent heating of TRIAM-1 tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y; Watanabe, T; Nagao, A; Nakamura, K; Kikuchi, M; Aoki, T; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Mitarai, O

    1982-02-01

    Critical condition for current-driven instability excited in turbulently heated TRIAM-1 tokamak plasma is investigated experimentally. Resistive hump in loop voltage, plasma density fluctuation and rapid increase of electron temperature in a skin layer are simultaneously observed at the time when the electron drift velocity amounts to the critical drift velocity for low-frequency ion acoustic instability.

  5. Radiation loss driven instabilities in laser heated plasmas

    International Nuclear Information System (INIS)

    Evans, R.G.

    1985-01-01

    Any plasma in which a significant part of the power balance is due to optically thin radiative losses may be subject to a radiation cooling instability. A simple analytical model gives the dispersion relation for the instability and inclusion of a realistic radiation loss term in a two dimensional hydrodynamic simulation shows that ''jet'' like features form in moderate to high Z plasmas

  6. Electron heating via self-excited plasma series resonance in geometrically symmetric multi-frequency capacitive plasmas

    International Nuclear Information System (INIS)

    Schüngel, E; Brandt, S; Schulze, J; Donkó, Z; Korolov, I; Derzsi, A

    2015-01-01

    The self-excitation of plasma series resonance (PSR) oscillations plays an important role in the electron heating dynamics in capacitively coupled radio-frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the electrical asymmetry effect (EAE), i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge–voltage relation of the plasma sheaths deviates from a simple quadratic behavior and (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to properly describe the nonlinear series resonance circuit and reproduce the self-excitation of PSR oscillations, which are observed in the electron current density resulting from simulations of geometrically symmetric CCRF plasmas. Furthermore, the effect of PSR self-excitation on the discharge current and the plasma properties, such as the potential profile, is illustrated by applying Fourier analysis. High-frequency oscillations in the entire spectrum between the applied frequencies and the local electron plasma frequency are observed. As a consequence, the electron heating is strongly enhanced by the presence of PSR oscillations. A complex electron heating dynamics is found during the expansion phase of the sheath, which is fully collapsed, when the PSR is initially self-excited. The nonlinear electron resonance heating (NERH) associated with the PSR oscillations causes a spatial asymmetry in the electron heating. By discussing the resulting ionization

  7. Plasma heating by radio frequency in the LISA linear machine

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da.

    1985-05-01

    The characteristics of an experimental apparatus to produce helium plasma by radio frequency and to study its behavior when confined by a magnetic field with mirrors is shown. The plasma was produced by a microwave source of 2.45 GHz and 800 Watts, operating in steady and pulsed state. The plasma parameters were studied as a function of an external magnetic field, for large and small resonance regions. The axial and radial magnetic fields were mapped for each region in order to verify the spatial distribution, particle orbits, and energy confinement time according to the energy balance equation. As a consequence of the influence of the radio frequency (RF) voltage in the plasma the Bohm theory of plasma prob was modified. The diagnostic was done with plane movable electrostatic probe, Hall probe, magnetic probe, diamagnetic coil and spectrography. (Author) [pt

  8. Plasma Heating and Current Drive by Neutral Beam and Alpha Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M; Okumura, Y [Fusion Research and Development Directorate, Japan Atomic Energy Agency (Japan)

    2012-09-15

    The purpose of plasma heating is to raise the plasma temperature enough to produce a deuterium and tritium reaction (D + T {yields} {sup 4}He + n). The required plasma temperature T is in the range of 10-30 keV. Since the high temperature plasma is confined by a strong magnetic field, injection of energetic ions from outside to heat the plasma is difficult due to the Lorenz force. The most efficient way to heat the plasma by energetic particles is to inject high energy 'neutrals' which get ionized in the plasma. Neutral beam injection (NBI) with a beam energy much above the average kinetic energy of the plasma electrons or ions is used (beam energy typically {approx}40 keV - 1 MeV). This heating scheme is similar to warming up cold water by pouring in hot water. There are two types of neutral beam, called P-NBI and N-NBI (P- and N- means 'positive' and 'negative', respectively). P-NBI uses the acceleration of positively charged ions and their neutralization, while N-NBI uses the acceleration of negative ions (electrons attached to neutral atoms) and their neutralization. Details are given in NBI technology Section. The first demonstration of plasma heating by P-NBI was made in ORMAK and ATC in 1974, while that by N-NBI was made in JT-60U for the first time in 1996. ITER has also adopted the N-NBI system as the heating and current drive system with a beam energy of 1 MeV. Figure A typical bird's eye view of a tokamak with N-NBI and N-NBI (JT-60U) is shown. (author)

  9. On the challenge of plasma heating with the JET metallic wall

    NARCIS (Netherlands)

    Mayoral, M. L.; Bobkov, V.; Czarnecka, A.; Day, I.; Ekedahl, A.; Jacquet, P.; Goniche, M.; King, R.; Kirov, K.; Lerche, E.; J. Mailloux,; Van Eester, D.; Asunta, O.; Challis, C.; Ciric, D.; Coenen, J. W.; Colas, L.; Giroud, C.; Graham, M.; Jenkins, I.; Joffrin, E.; Jones, T.; King, D.; Kiptily, V.; Klepper, C. C.; Maggi, C.; Maggiora, R.; Marcotte, F.; Matthews, G.; Milanesio, D.; Monakhov, I.; Nightingale, M.; Neu, R.; Ongena, J.; T. Puetterich,; Riccardo, V.; Rimini, F.; Strachan, J.; Surrey, E.; Thompson, V.; van Rooij, G. J.

    2014-01-01

    The major aspects linked to the use of the JET auxiliary heating systems: NBI, ICRF and LHCD, in the new JET ITER-like wall are presented. We show that although there were issues related to the operation of each system, efficient and safe plasma heating was obtained with room for higher power. For

  10. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  11. The calculation for energy balance of heating plasmas by Alfven waves

    International Nuclear Information System (INIS)

    Long Yongxing; Ding Ning; He Qibing; Qu Wenxiao; Huang Lin; Qiu Xiaoming

    1992-10-01

    A numerical method for computing the energy balance of heating tokamak plasmas by Alfven waves is introduced. The results are in agreement with experiments. This method is not only simpler and more distinct but also considerably saving time in computation. It also can be used in kinetic problems with other types of radio frequency (RF) heating

  12. Efficiencies of the ICRF minority heating in the CHS and LHD plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Okamoto, M.; Nakajima, N.; Mutoh, T.

    1994-01-01

    ICRF minority heatings are investigated in the plasmas of the Compact Helical System (CHS) and the Large Helical Device (LHD) by means of the orbit following Monte Carlo simulation. It is found that the heating efficiency decreases with increase of the absorption power by minority ions and depends strongly on the magnetic field strength and the field configuration. (author)

  13. Laser plasma heating in the presence of electrostatic-magnetostatic crosses fields

    International Nuclear Information System (INIS)

    Goya, A.; Fonseca, A.L.A.; Nunes, O.A.C.

    1994-01-01

    The mechanism of plasma heating by one or two lasers in the presence of electrostatic-magnetostatic crossed fields is studied. The results show that the increasing of heating ratio is bigger due to the increment of stationary electric field. 7 refs

  14. The present state of research into plasma heating and injection methods

    International Nuclear Information System (INIS)

    1974-12-01

    The advantages and disadvantages recognized by the Advisory Group on Heating and injection for twelve plasma heating and injection methods currently under investigation in Europe are related. The heating and injection requirements of four reference reactor designs are previously defined. The problems which arise when one attempts to extrapolate existing work towards the reactor goal are emphasized. Two refuelling methods not directly linked with the heating problem are discussed. The experiments in operation or under construction in Europe in which each method is investigated are listed. Sixteen working papers which served as a basis for the Advisory Group discussion and which cover all the heating and injection methods examined are included

  15. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    International Nuclear Information System (INIS)

    Kuznetsov, E A; Poniaev, S A

    2015-01-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux. (paper)

  16. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    Science.gov (United States)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  17. Role of boundary plasma in lower-hybrid-frequency heating of a tokamak

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Yamamoto, Takumi; Fujii, Tsuneyuki

    1982-01-01

    Boundary plasma of a circular tokamak has been investigated by means of electrostatic probes during lower-hybrid heating. The reflection coefficient is affected by the density gradient in front of the launcher. An effective ion heating is performed in the main plasma region when the boundary electron temperature is relatively high enough to suppress the parametric decay instabilities. The simultaneous injection of neutral beams as well as the lower-hybrid wave brings the suppression of instabilities with increase of the electron temperature coming from the neutral beam heating. (author)

  18. Temporal evolutions of electron temperature and density of turbulently-heated tokamak plasmas in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-04-01

    The temporal evolution of the electron temperature and density are measured in a turbulent heating experiment in TRIAM-1. Skin-like profiles of the electron temperature and density are clearly observed. The anomality in the electrical resistivity of the plasma in this skin-layer is estimated, and the plasma heating in this skin-layer is regarded as being due to anomalous joule heating arising from this anomalous resistivity. The ratio of drift velocity to electron thermal velocity in the layer is also calculated, and it is shown that the conditions needed to make the current-driven ion-acoustic instability triggerable are satisfied.

  19. Minority heating scenarios in and SST-1 plasmas

    Indian Academy of Sciences (India)

    Asim Kumar Chattopadhyay

    2017-12-19

    Dec 19, 2017 ... ... it has been observed that minority ion heating is the principal heating mechanism compared to electron ..... (∂Fi/∂t)QL has a strong pitch angle, μ, dependence. ..... related to complex change in elements of dielectric ten-.

  20. Diamagnetic measurement of JFT-2 plasma heated by neutral beam injection

    International Nuclear Information System (INIS)

    Maeno, Masaki; Sengoku, Seio; Yamamoto, Shin; Suzuki, Norio; Yamauchi, Toshihiko; Kawashima, Hisato; Miura, Yukitoshi

    1984-01-01

    A neutral beam was injected into the plasma in the JFT-2 tokamak, and the poloidal beta value βsub(p) of the plasma was determined by a diamagnetic method in which the change in the magnetic flux due to the plasma was obtained by measuring the very small perturbation of the current in the tokamak's toroidal field coil. The ratio of the perturbed to unperturbed currents in the coil was found to be (2-3) x 10 -4 . The poloidal beta value βsub(pd) determined by this method agrees within experimental error with that obtained from magnetic and energy profile analyses. βsub(pd) increases linearly with the total power Psub(net) deposited by the neutral beam in the plasma when Psub(net)=1.5 MW. The heating efficiency of the beam injection heating was found to be lower than that of Joule heating. (author)

  1. Experimental investigation of thermal conduction and related phenomena in a laser heated plasma

    International Nuclear Information System (INIS)

    Gray, D.R.

    1979-02-01

    Thermal conduction in plasmas is of major importance especially in controlled nuclear fusion studies. Direct measurements are rare. When the temperature gradient in a plasma becomes large enough classical thermal conduction (Heat flux q = -kΔT) no longer applies and it is thought that q is limited to some fraction of the free streaming limit qsub(m). The main experiment is the heating of a z-pinch plasma by a fast rising, intense carbon dioxide laser pulse. Electron temperature and density in time and space are diagnosed by ruby laser scattering. The profiles obtained were consistent with a flux limited to approximately 3% of the free streaming limit. Ion acoustic turbulence is observed along the temperature gradient. It is shown that the observed turbulence level is consistent with the heat flux limitation. At electron densities > 10 17 cm -3 backscattered light is observed from the plasma whose growth rate implies that it is Brillouin scattered. (author)

  2. Heat exchange between a microparticle and plasma. Contribution of charge transfer processes

    International Nuclear Information System (INIS)

    Uglov, A.A.; Gnedovets, A.G.

    1983-01-01

    Heat- and mass-transfer in interaction of a microparticle with a dense plasma have been considered analytically. At that, calculation methods developed as applied to probe diagnostics of slightly ionized plasma are also used in the case of relatively high degrees of ionization, at which heat flows of plasma charged particles Qe and Qi become comparable with molecular ones. High efficiency of energy transfer during electron and ion collisions with a microparticle is due to the following: 1) effective cross section of ion collision with a microparticle, which acquires in a quasineutral plasma the potential phisub(f) < 0, surpasses the geometric one; the maximum contribution of electron and ion constituent is achieved when the cross section ion collisions with a microparticle is linearly connected with its potential, 2) with a charged microparticle electrons from distribution function ''tail'' collide, their energy exceeds potential barrier near the surface and, consequently, the mean heat energy; 3) besides the energy of a microparticle thermal movement during electron recombination and ion neutralization on its surface the heat Qsub(e) and Qsub(i), which considerably exceed the heat of molecular adsorption and mean heat energy of plasma particles at kT approximately 1 eV, are transmitted to the microparticle

  3. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  4. Experiments on two-step heating of a dense plasma in the GOL-3 facility

    International Nuclear Information System (INIS)

    Astrelin, V.T.; Burdakov, A.V.; Koidan, V.S.; Mekler, K.I.; Mel'nikov, P.I.; Postupaev, V.V.; Shcheglov, M.A.

    1998-01-01

    This paper presents the results of experiments on two-stage heating of a dense plasma by a relativistic electron beam in the GOL-3 facility. A dense plasma with a length of about a meter and a hydrogen density up to 10 17 cm -3 was created in the main plasma, whose density was 10 15 cm -3 . In the process of interacting with the plasma, the electron beam (1 MeV, 40 kA, 4 μs) imparts its energy to the electrons of the main plasma through collective effects. The heated electrons, as they disperse along the magnetic field lines, in turn reach the region of dense plasma and impart their energy to it by pairwise collisions. Estimates based on experimental data are given for the parameters of the flux of hot plasma electrons, the energy released in the dense plasma, and the energy balance of the beam-plasma system. The paper discusses the dynamics of the plasma, which is inhomogeneous in density and temperature, including the appearance of pressure waves

  5. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: frederic.escourbiac@cea.fr; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Merola, M.; Tivey, R. [ITER Team, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-10-15

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC.

  6. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    International Nuclear Information System (INIS)

    Escourbiac, F.; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J.; Merola, M.; Tivey, R.

    2007-01-01

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC

  7. Electron cyclotron resonance heating in a short cylindrical plasma ...

    Indian Academy of Sciences (India)

    The power mode conversion efficiency is estimated to be ... has also found application in electron cyclotron current drive (ECCD) in fusion ... (few GHz) of microwave sources, a small linear ECR plasma system can also serve ..... References.

  8. Electron cyclotron heating in weakly relativistic, finite-β plasmas

    International Nuclear Information System (INIS)

    Audenaerde, K.; Scharer, J.; Lam, N.; Beyer, J.; Wisconsin Univ., Madison

    1982-01-01

    ECRF wave launching and absorption in the plug and barrier regions of tandem mirrors are examined. The 3-D magnetic field, density and electron temperature profiles are modelled to simulate these regions. It is found that the X mode of elevated temperatures (Tsub(e) approx.= 50 keV) exhibits substantial spatial shifts from the cold plasma resonance surface. For steep plasma density profiles the X-mode bends away from the resonance zone and absorption is concentrated at the plasma surface. The O-mode exhibits a ray trajectory which more easily penetrates the plasma core and has a moderate absorption at Tsub(e) approx. 50 keV such that single pass absorption is adequate. Finally, the use of quasi-optical ECRF launchers to overcome reactor environmental problems associated with standard overmoded waveguide launchers used for gyrotron sources presented is considered. (author)

  9. Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2018-03-01

    The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.

  10. The analysis of Alfven wave current drive and plasma heating in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.

    2002-01-01

    The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)

  11. Feedback control modeling of plasma position and current during intense heating in ISX-B

    International Nuclear Information System (INIS)

    Charlton, L.A.; Swain, D.W.; Neilson, G.H.

    1979-08-01

    The ISX-B Tokamak at ORNL is designed to have 1.8 MW (and eventually 3 MW) of neutral beam power injected to heat the plasma. This power may raise the anti β of the plasma to over 5% in less than 50 msec if the plasma is MHD stable. The results of a numerical simulation of the feedback control system and poloidal coil power supplies necessary to control the resulting noncircular (D-shaped or elliptical) plasma are presented. The resulting feedback control system is shown to be straightforward, although nonlinear voltage-current dependence is assumed in the power supplies. The required power supplied to the poloidal coils in order to contain the plasma under the high heating rates is estimated

  12. Inflammatory cytokines and plasma redox status responses in hypertensive subjects after heat exposure

    Directory of Open Access Journals (Sweden)

    S.F. Fonseca

    2016-03-01

    Full Text Available Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H and 8 normotensive (N subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively. They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity. Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS levels and ferric reducing ability of plasma (FRAP. Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05, although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1 and lower TBARS (P<0.01 and FRAP (P<0.05 levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors, present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.

  13. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  14. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...

  15. Theory of neutral injection heating of toroidal plasmas

    International Nuclear Information System (INIS)

    Cordey, J.G.

    1976-01-01

    The present state of injection theory is reviewed with particular emphasis on the consequences of high power injection. The subject is divided into the following six sections: fast ion deposition; the slowing down and scattering of the fast ions; energy and momentum transfer rates; heating of the thermal ions; other perturbations; microinstabilities. The theory is compared with the experimental results. The questions that remain to be answered to establish neutral injection as a useful heating technique in reactors, are listed (26 references)

  16. Charging and Heating Dynamics of Nanoparticles in Nonthermal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kortshagen, Uwe R.

    2014-08-15

    The focus of this award was to understand the interactions of nanometer-sized particles with ionized gases, also called plasmas. Plasmas are widely used in the fabrication of electronic circuits such as microprocessors and memory devices, in plasma display panels, as well as in medical applications. Recently, these ionized gases are finding applications in the synthesis of advanced nanomaterials with novel properties, which are based on nanometer-sized particulate (nanoparticles) building blocks. As these nanoparticles grow in the plasma environment, they interact with the plasmas species such as electrons and ions which critically determines the nanoparticle properties. The University of Minnesota researchers conducting this project performed numerical simulations and developed analytical models that described the interaction of plasma-bound nanoparticles with the plasma ions. The plasma ions bombard the nanoparticle surface with substantial energy, which can result in the rearrangement of the nanoparticles’ atoms, giving them often desirable structures at the atomic scale. Being able to tune the ion energies allows to control the properties of nanoparticles produced in order to tailor their attributes for certain applications. For instance, when used in high efficiency light emitting devices, nanoparticles produced under high fluxes of highly energetic ions may show superior light emission to particles produced under low fluxes of less energetic ions. The analytical models developed by the University of Minnesota researchers enable the research community to easily determine the energy of ions bombarding the nanoparticles. The researchers extensively tested the validity of the analytical models by comparing them to sophisticated computer simulations based on stochastic particle modeling, also called Monte Carlo modeling, which simulated the motion of hundreds of thousands of ions and their interaction with the nanoparticle surfaces. Beyond the scientific

  17. Confinement studies of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Bretz, N.L.; Bell, M.G.

    1985-03-01

    Systematic scans of density in large deuterium plasmas (a = 0.83 m) at several values of plasma current and toroidal magnetic field strength indicate that the total energy confinement time, tau/sub E/, is proportional to the line-average density anti n/sub e/ and the limiter q. Confinement times of approx. 0.3 s have been observed for anti n/sub e/ = 2.8 x 10 19 m -3 . Plasma size scaling experiments with plasmas of minor radii a = 0.83, 0.69, 0.55, and 0.41 m at constant limiter q reveal a confinement dependence on minor radius. The major-radius dependence of tau/sub E/, based on a comparison between TFTR and PLT results, is consistent with R 2 scaling. From the power balance, the thermal diffusivity chi/sub e/ is found to be significantly less than the INTOR value. In the a = 0.41 m plasmas, saturation of confinement is due to neoclassical ion conduction (chi/sub i/ neoclassical >> chi/sub e/)

  18. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  19. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  20. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    Science.gov (United States)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  1. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  2. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  3. Laser heating and magnetic compression of plasma in a fast solenoid

    International Nuclear Information System (INIS)

    Hoida, H.W.; Vlases, G.C.

    1978-01-01

    A low-β plasma column a few mm in diameter by 22 cm in length is heated by an axially directed CO 2 laser to a high-β state in a fast rising solenoidal field. Successful heating depends on proper timing between the laser pulse and rising field. Typical conditions attained are a line energy density of 6 J/cm, T-barapprox. =40 eV, and n/sub e/approx. =3 x 10 17 e - /cm 3 , with conditions quite uniform along the length. The heating suppresses instabilities which appear under certain conditions in the non-laser-heated case

  4. Consideration on nuclear fusion in plasma by the magnetic confinement as a heat engine

    International Nuclear Information System (INIS)

    Tsuji, Yoshio

    1990-01-01

    In comparing nuclear fusion in plasma by the magnetic confinement with nuclear fission and chemical reactions, the power density and the function of a heat engine are discussed using a new parameter G introduced as an eigenvalue of a reaction and the value of q introduced to estimate the thermal efficiency of a heat engine. It is shown that the fusion reactor by the magnetic confinement is very difficult to be a modern heat engine because of the lack of some indispensable functions as a modern heat engine. The value of G and q have the important role in the consideration. (author)

  5. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Murakami, M.; Batchelor, D.B.; Bush, C.E.

    1994-01-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium heating of D-T supershot plasmas with tritium concentrations ranging from 6%--40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3 He /n e > 10%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation showed that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated (OH) target plasma in TFIR

  6. Antennas and waveguides for electron-cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    England, A.C.

    1981-01-01

    It is clear that currently very simple as well as very advanced concepts are under investigation for antennas for ECH in various plasma devices. Future devices may be expected to incorporate very imaginative antennas. The present designs must be checked and their usefullness determined before these advanced concepts are employed

  7. Heat transfer modelling of first walls subject to plasma disruption

    International Nuclear Information System (INIS)

    Fillo, J.A.; Makowitz, H.

    1981-01-01

    A brief description of the plasma disruption problem and potential thermal consequences to the first wall is given. Thermal models reviewed include: a) melting of a solid with melt layer in place; b) melting of a solid with complete removal of melt (ablation); c) melting/vaporization of a solid; and d) vaporization of a solid but no phase change affecting the temperature profile

  8. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    Science.gov (United States)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  9. Formation of stable, high-beta, relativistic-electron plasmas using electron cyclotron heating

    International Nuclear Information System (INIS)

    Guest, G.E.; Miller, R.L.

    1988-01-01

    A one-dimensional, steady-state, relativistic Fokker-Planck model of electron cyclotron heating (ECH) is used to analyse the heating kinetics underlying the formation of the two-component hot-electron plasmas characteristic of ECH in magnetic mirror configurations. The model is first applied to the well diagnosed plasmas obtained in SM-1 and is then used to simulate the effective generation of relativistic electrons by upper off-resonant heating (UORH), as demonstrated empirically in ELMO. The characteristics of unstable whistler modes and cyclotron maser modes are then determined for two-component hot-electron plasmas sustained by UORH. Cyclotron maser modes are shown to be strongly suppressed by the colder background electron species, while the growth rates of whistler modes are reduced by relativistic effects to levels that may render them unobservable, provided the hot-electron pressure anisotropy is below an energy dependent threshold. (author). 29 refs, 10 figs, 1 tab

  10. Application of optimal control theory to laser heating of a plasma in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Neal, R.D.

    1975-01-01

    Laser heating of a plasma column confined by a solenoidal magnetic field is studied via modern optimal control techniques. A two-temperature, constant pressure model is used for the plasma so that the temperature and density are functions of time and location along the plasma column. They are assumed to be uniform in the radial direction so that refraction of the laser beam does not occur. The laser intensity used as input to the column at one end is taken as the control variable and plasma losses are neglected. The localized behavior of the plasma heating dynamics is first studied and conventional optimal control theory applied. The distributed parameter optimal control problem is next considered with minimum time to reach a specified final ion temperature criterion as the objective. Since the laser intensity can only be directly controlled at the input end of the plasma column, a boundary control situation results. The problem is unique in that the control is the boundary value of one of the state variables. The necessary conditions are developed and the problem solved numerically for typical plasma parameters. The problem of maximizing the space-time integral of neutron production rate in the plasma is considered for a constant distributed control problem where the laser intensity is assumed fixed at maximum and the external magnetic field is taken as a control variable

  11. Heating and conduction in laser-produced plasmas

    International Nuclear Information System (INIS)

    Shay, H.D.; Zimmerman, G.B.; Nuckolls, J.H.

    1974-01-01

    A series of experiments conducted by G. McCall of LASL provides important clues concerning the electron distributions heated in the absorption of intense (less than or approximately equal to 10/sup lb/ W/cm 2 ) laser radiation and the thermal transport of energy. Presented here is a tentative interpretation of these experiments obtained from LASNEX calculations. (U.S.)

  12. Control of ITBs in Fusion Self-Heated Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul

    2015-11-01

    Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.

  13. Methods of driving current by heating a toroidal plasma

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1980-08-01

    In addition to the usual mechanism which utilizes the Ohmic transformer current, which is necessarily pulsed, there exist several steady-state mechanisms. Heating mechanisms which can lend themselves efficiently to continuous current generation include neutral beams, Alfven waves, ion-cyclotron waves, lower-hybrid waves and electron-cyclotron waves

  14. Plasma heating by radiofrequency in the electron cyclotron resonance (ECR)

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da; Aihara, S.; Universidade Estadual de Campinas

    1982-01-01

    The characteristics of the experimental set-up mounted in the Physical Institute of UFF (Brazil) to produce the gas ionization by radio-frequency are shown and its behaviour when confined by a mirror-geometry magnetic field is studied. The diagnostic is made by a langmuir probe and a prisme spectrogaph is used in order to verify the nature of the ionized helium gas and the degree of purity through its spectral lines. The argon ionization by R.f. is produced in the 'LISA' machine obtain a plasma column of approximatelly 60 cm length and with the Langmuir probe the study of the profile distribution of the plasma parameters such as: electron temperature and density and floating potencial in function of the magnetic field variation is made. The main focus is given to the fundamental electron cyclotron resonance (ECR). A new expression on the ion saturation current (I sub(is)) produced by radiofrequency is developed. (L.C.) [pt

  15. Numerical heating of electrons in particle-in-cell simulations of fully magnetized plasmas

    Czech Academy of Sciences Publication Activity Database

    Horký, Miroslav; Miloch, W. J.; Delong, V. A.

    2017-01-01

    Roč. 95, č. 4 (2017), č. článku 043302. ISSN 2470-0045 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : electric fields * electrostatics * heating * magnetoplasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.366, year: 2016

  16. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  17. Non-thermal electron populations in microwave heated plasmas investigated with X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belapure, Jaydeep Sanjay

    2013-04-15

    An investigation of the generation and dynamics of superthermal electrons in fusion plasma is carried out. A SDD+CsI(Tl) based X-ray diagnostic is constructed, characterized and installed at ASDEX Upgrade. In various plasma heating power and densities, the fraction and the energy distribution of the superthermal electrons is obtained by a bi-Maxwellian model and compared with Fokker-Planck simulations.

  18. Transitions to improved core electron heat confinement in JT-II plasmas

    International Nuclear Information System (INIS)

    Estrada, T.; Medina, F.; Ascasibar, E.; Balbin, R.; Castejon, F.; Hidalgo, C.; Lopez-Bruna, D.; Petrov, S.

    2008-01-01

    Transitions to improved core electron heat confinement are triggered by low order rational magnetic surfaces in TJ-II ECH plasmas. Transitions triggered by the rational surface n=4/m=2 show an increase in the ion temperature synchronized with the increase in the electron temperature. SXR measurements demonstrate that, under certain circumstances, the rational surface positioned inside the plasma core region precedes and provides a trigger for the transition. (author)

  19. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Schilling, G.; Stevens, J.E.; Taylor, G.; Wilson, J.R.; Bell, M.G.; Budny, R.V.; Bretz, N.L.; Darrow, D.; Fredrickson, E.

    1995-02-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium beating of D-T supershot plasmas with tritium concentrations ranging from 6%-40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Energy confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3He /n e = 15% - 30%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation indicated that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Analysis of heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated target plasma in TFTR

  20. Fluid description of particle transport in hf heated magnetized plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1980-01-01

    Particle fluxes averaged over high-frequency oscillations are analyzed. The collisional effects and the kinetic mechanisms of energy absorption are included. Spatial dependences of both the high-frequency and the (quasi-)steady electromagnetic fields are arbitrary. The equations governing the fluxes are deduced from the moments of the averaged kinetic equation. Explicit expressions for steady state fluxes are given in terms of electromagnetic field quantities. The results can also be applied to anomalous transport phenomena in weakly turbulent plasmas. (author)

  1. Plasma heating, fueling, and maintenance: a technical assessment

    International Nuclear Information System (INIS)

    Cullingford, H.S.

    1978-03-01

    The initial section of the following report describes the goals and approach; the essential results of the survey are overviewed in Section 1.4. Amplifying details are relegated to subsequent sections: certain aspects of the plasma physics and engineering questions that bear on technology requirements for fusion reactors are discussed in Section 2; particularly significant individual technology areas are discussed in Section 3; and requirements and technology considerations are combined in the assessment of Section 4

  2. Theory of free-electron-laser heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.

    1991-01-01

    The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed source has a number of technical advantages for these applications, and its use is predicted to lead to improved current-drive efficiencies and opacities in reactor-grade fusion plasmas in specific cases. The Microwave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. Although the motivation for much of this research has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativistic effects, is of general interest. Other relevant applications include ionospheric modification by radio-frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnetic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the analysis and computer simulation of the absorption and current drive produced by intense pulses, and of the possible complications that may arise, e.g., parametric instabilities, nonlinear self-focusing, trapped-particle sideband instability, and instabilities of the heated plasma

  3. W7-AS contributions to the 18th European conference on controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1991-06-01

    Optimum confinement in the Wendelstein 7-AS Stellarator - Ion heat conductivity, radial electric fields and CX-losses in the W7-AS stellarator - Thermal diffusivity from heat wave propagation in Wendelstein 7-AS - Impurity behaviour in W7-AS plasmas under different wall conditions - Particle transport and plasma edge behaviour in the W7-AS stellarator - Neutral injection experiments on W7-AS stellarator - MHD activity driven by NBI in the W7-AS stellarator - Simulation of the influence of coherent and random density fluctuations on the propagation of ECRH-beams in the W7-AS stellarator. (orig.)

  4. Conceptual study of lower hybrid frequency heating of the J.E.T. plasma

    International Nuclear Information System (INIS)

    Tonon, G.; Bernard, M.; Brambilla, M.

    1981-04-01

    The aim of this report is to bring up the conclusions of the conceptual study of the J.E.T. plasma heating by lower hybrid waves. While giving an overall view of potential use for lower hybrid heating (LHH) in the J.E.T. plasma, this study deals more specificaly with the following concerns: up-to-date status of LHH theory and experiment; the physics of LHH on J.E.T.: RF requirements and expected results from numerical computations; the J.E.T. LHH coupling structure; the 10 MW RF generator; the associated RF diagnostics; the time schedule and the cost estimates

  5. Induction-linac based free-electron laser amplifiers for plasma heating

    International Nuclear Information System (INIS)

    Jong, R.A.

    1988-01-01

    We describe an induction-linac based free-electron laser amplifier that is presently under construction at the Lawrence Livermore National Laboratory. It is designed to produce up to 2 MW of average power at a frequency of 250 GHz for plasma heating experiments in the Microwave Tokamak Experiment. In addition, we shall describe a FEL amplifier design for plasma heating of advanced tokamak fusion devices. This system is designed to produce average power levels of about 10 MW at frequencies ranging form 280 to 560 GHz. 7 refs., 1 tab

  6. Electron cyclotron heating for current profile control of non-circular plasmas

    International Nuclear Information System (INIS)

    Chan, V.S.; Davidson, R.; Guest, G.; Hacker, M.; Miller, L.

    1981-01-01

    Electron Cyclotron Heating (ECH) offers a promising approach to modifying the radial profiles of electron temperature and plasma current in tokamaks to increase the ideal MHD beta limits and permit experimental access to particular noncircular cross-section tokamaks that cannot be achieved with the peaked current profiles characteristic of ohmically heated tokamaks. We use a one-and-one-half-dimensional, time-dependent transport model that incorporates a self-consistent model of electron cyclotron power absorption to study the temporal evolution of electron temperature and plasma current profiles and the resulting noncircular equilibria. Startup scenarios for high-beta dees and doublets are investigated with this transport modeling

  7. Time behaviours of visible lines in turbulently heated TRIAM-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-08-01

    Spectroscopic studies were carried out on turbulently heated TRIAM-1 tokamak plasma. The temporal evolutions of the line radiance of visible lines were measured and two types of time behaviours of the line radiance were identified. The observed remarkable reduction of the line radiance of visible lines which have low ionization potential and are localized in the skin-layer due to the application of a pulsed electric-field for turbulent heating is attributed to the strong plasma heating in the peripherical region. Spatial profiles of neutrals and ions which are related to these lines are calculated, and the temporal variations of these profiles caused by the application of the heating pulse are discussed.

  8. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  9. A study of quasi-mode parametric excitations in lower-hybrid heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Villalon, E.; Bers, A.

    1980-01-01

    A detailed linear and non-linear analysis of quasi-mode parametric excitations relevant to experiments in supplementary heating of tokamak plasmas is presented. The linear analysis includes the full ion-cyclotron harmonic quasi-mode spectrum. The non-linear analysis, considering depletion of the pump electric field, is applied to the recent Alcator A heating experiment. Because of the very different characteristics of a tokamak plasma near the wall (in the shadow of the limiter) and inside, the quasi-mode excitations are studied independently for the plasma edge and the main bulk of the plasma, and for two typical regimes in overall density, the low (peak in density, n 0 =1.5x10 14 cm -3 ) and high (n 0 =5x10 14 cm -3 ) density regimes. At the edge of the plasma and for the low-density regime, it is found that higher nsub(z)(nsub(z)=cksub(z)/ω) than those predicted by the linear theory are strongly excited. Inside the plasma, the excitation of higher wave numbers is also significant. These results indicate that a large amount of the RF-power may not penetrate to the plasma centre, but will rather be either Landau-damped on the electrons or mode-converted into thermal modes, close to the plasma edge. Moreover, for sufficiently high peaks in density, it is found that all the RF-power is mode-converted before reaching the plasma centre. Inside the plasma, the power density of the excited sideband fields is shown to be always very small in comparison with their excitation at the plasma edge. (author)

  10. RF plasma production and heating below ion-cyclotron frequencies in Uragan torsatrons

    International Nuclear Information System (INIS)

    Moiseenko, V.E.; Berezhnyj, V.L.; Bondarenko, V.N.; Burchenko, P.Ya.; Chechkin, V.V.; Chernyshenko, V.Ya.; Dreval, M.B.; Garkusha, I.E.; Glazunov, G.P.; Grigor'eva, L.I.; Konovalov, V.G.; Kotsubanov, V.D.; Kramskoi, Ye.D.; Kulaga, A.E.; Lozin, A.V.; Castejon, F.; Hidalgo, C.; Hartmann, D.; Koch, R.; Lyssoivan, A.I.

    2011-01-01

    In the IPP-Kharkiv there are two torsatrons (stellarators) in operation, and in both of them Alfven resonance heating under high-k || conditions is used. This method of heating is advantageous for small-size devices, since in contrast to the minority and second-harmonic heating it can be realized at lower plasma densities. A series of experiments has been performed at the Uragan-3M torsatron with an aim to investigate the features of the discharge with a three-half-turn antenna. Electron temperatures in the T-bar = 0.2-0.5 keV range are achieved at plasma densities n-bar e approx. (0.5-1.5) x 10 13 cm -3 . The plasma energy content has increased by a factor of 2 with respect to the plasma produced with the frame antenna. A new four-strap shielded antenna has been manufactured and installed in the Uragan-2M. A high-frequency discharge for wall conditioning is introduced in the Uragan-2M torsatron. The discharge is sustained by a specially designed small frame antenna, and efficient hydrogen dissociation is achieved. A self-consistent model has been developed for simulation of plasma production in ICRF. The model includes a set of particle and energy-balance equations for the electrons, and the boundary problem for the Maxwell equations. The first calculation results on RF plasma production in the Uragan-2M stellarator with the frame-type antenna are presented.

  11. A Study of Electron Modes in Off-axis Heated Alcator C-Mod Plasmas

    Science.gov (United States)

    Fiore, C. L.; Ernst, D. R.; Mikkelsen, D.; Ennever, P. C.; Howard, N. T.; Gao, C.; Reinke, M. L.; Rice, J. E.; Hughes, J. W.; Walk, J. R.

    2013-10-01

    Understanding the underlying physics and stability of the peaked density internal transport barriers (ITB) that have been observed during off-axis ICRF heating of Alcator C-Mod plasmas is the goal of recent gyro-kinetic simulations. Two scenarios are examined: an ITB plasma formed with maximal (4.5 MW) off-axis heating power; also the use of off-axis heating in an I-mode plasma as a target in the hopes of establishing an ITB. In the former, it is expected that evidence of trapped electron mode instabilities could be found if a sufficiently high electron temperature is achieved in the core. Linear simulations show unstable modes are present across the plasma core from r/a = 0.2 and greater. In the latter case, despite establishing similar conditions to those in which ITBS were formed, none developed in the I-mode plasmas. Linear gyrokinetic analyses show no unstable ion modes at r/a < 0.55 in these I-mode plasmas, with both ITG and ETG modes present beyond r/a = 0.65. The details of the experimental results will be presented. Linear and non-linear simulations of both of these cases will attempt to explore the underlying role of electron and ion gradient driven instabilities to explain the observations. This work was supported by US-DoE DE-FC02-99ER54512 and DE-AC02-09CH11466.

  12. System constitution of plasma high frequency heating device and element equipment

    International Nuclear Information System (INIS)

    Nagashima, Takashi

    1988-01-01

    On the high frequency heating device used for nuclear fusion experiment, the system constitution and the main items of development for the element equipment are described. As for the high frequency heating device, large technical progress was observed in the past 10 years as the second stage heating for tokamaks and one of the main means of current drive. At present, three frequency zones are regarded as promising for plasma high frequency heating in large nuclear fusion devices, and the experiment of 10 MW class is in progress at JT-60, JET and so on. There are electron cyclotron heating, lower hybrid resonance frequency heating and ion cyclotron range of frquency heating. The basic constitution of these heating devices includes a high frequency source, a transmission system, a connection system, and a common system for control, cooling, record and others. The ECH device using gyrotrons of several tens GHz, the LHRF heating device using large power klystrons up to several GHz and the ICRF heating device up to 200 MHz are briefly explained. The main element equipments composing the high frequency heating systems of several tens MW are discussed. (Kako, I.)

  13. Plasma rotation and radial electric field with a density ramp in an ohmically heated tokamak

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-10-01

    Measurements of toroidal and poloidal rotation of the TCA plasma with Alfven Wave Heating and different levels of gas feed are reported. The temporal evolution of the rotation was inferred from intrinsic spectral lines of CV, CIII and, using injected helium gas, from HeII. The light collection optics and line intensity permitted the evolution of the plasma rotation to be measured with a time resolution of 2ms. The rotation velocities were used to deduce the radial electric field. With Alfven heating there was no observable change of this electric field that could have been responsible for the density rise which is characteristic of the RF experiments on TCA. The behaviour of the plasma rotation with different plasma density ramp rates was investigated. The toroidal rotation was observed to decrease with increasing plasma density. The poloidal rotation was observed to follow the value of the plasma density. With hard gas puffing, changes in the deduced radial electric field were found to coincide with changes in the peaking of the plasma density profile. Finally, with frozen pellet injection, the expected increase in the radial electric field due to the increased plasma density was not observed, which may explain the poorer confinement of the injected particles. Even in an ohmically heated tokamak, the measurement of the plasma rotation and the radial electric field are shown to be strongly related to the confinement. A thorough statistical analysis of the systematic errors is presented and a new and significant source of uncertainty in the experimental technique is identified. (author) 18 figs., 18 refs

  14. Transition of radial electric field by electron cyclotron heating in stellarator plasmas

    International Nuclear Information System (INIS)

    Idei, H.; Ida, K.; Sanuki, H.

    1993-06-01

    The transition of a radial electric field from a negative to a positive value is observed in Compact Helical System when the electron loss is sufficiently enhanced by the superposition of the off-axis second harmonic electron cyclotron heating on the neutral beam heated plasmas. The observed threshold for the enhanced particle flux required to cause the transition is compared with a theoretical prediction. (author)

  15. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Mantsinen, M.

    1999-01-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  16. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  17. Degradation of energy confinement or degradation of plasma-heating. What is the main definite process for Plasma transport in stellarator?

    International Nuclear Information System (INIS)

    Fedynin, O.I.; Andryuklina, E.D.

    1995-01-01

    The analysis of plasma energy balance in stellarators and tokamaks depends on the different assumptions made and may give different and even contradictory results. When assuming full power absorption by thermal plasmas, paradoxical results can be obtained: degradation of the energy confinement time with heating power as well as degradation of plasma thermal conductivity in very short times (t<< tau:E) during power modulation experiments are deduced. On the other hand, assuming that plasma transport characteristics do not change while pain plasma parameters (density and temperature, their gradients, etc.) are kept constant, leads to conclude that heating efficiency is not unity and that it depends on both, plasma parameters and heating power. In this case no contradiction is found when analyzing plasma energy balances. In this paper the results of ECRH experiments on L-2M will be presented. The experiments were aimed to try to answer this important question. Analyses of the fast processes occurring during the switch off phase of the ECR heating, modulation of the heating power, and specific plasma decay phase, have lead to the conclusion that plasma transport characteristics remaining unchanged during fast variations of the heating power is the correct assumption. 2 refs

  18. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.

  19. Characterization studies of lithium vapour generated in heat pipe oven for the Plasma Wakefield Accelerator Experiment

    International Nuclear Information System (INIS)

    Mohandas, K.K.; Mahavar, Kanchan; Ajai Kumar; Kumar, Ravi A.V.

    2013-01-01

    Characterization and optimization studies of lithium vapor by white light as well as UV laser absorption were carried out as part of generation of photo ionized Li plasma for the Plasma Wake Field Acceleration Experiment. Temperature and buffer gas pressure dependency of the neutral density of lithium vapor was studied in detail. The line integrated neutral density of Li(n o L) was found to be of the order of 10 17 -10 18 cm -2 at heat pipe oven temperatures in the range from 600-800℃ which is sufficient to obtain the required 1013-1014 cm -3 plasma densities by photo ionization. (author)

  20. Recombining processes in a cooling plasma by mixing of initially heated gas

    International Nuclear Information System (INIS)

    Furukane, Utaro; Sato, Kuninori; Takiyama, Ken; Oda, Toshiatsu.

    1992-03-01

    A numerical investigation of recombining process in a high temperature plasma in a quasi-steady state is made in a gas contact cooling, in which the initial temperature effect of contact gas heated up by the hot plasma is considered as well as the gas cooling due to the surrounding neutral particles freely coming into the plasma. The calculation has shown that the electron temperature relaxes in accord with experimental results and that the occurrence of recombining region and the inverted populations almost agree with the experimental ones. (author)

  1. Evaporation and vapor shielding of CFC targets exposed to plasma heat fluxes relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Landman, I.S.; Pestchanyi, S.E.; Toporkov, D.A.; Zhitlukhin, A.M.

    2009-01-01

    Carbon fibre composite NB31 was tested at plasma gun facility MK-200UG by plasma heat fluxes relevant to Edge Localised Modes in ITER. The paper reports the results obtained on the evaporation threshold of carbon fibre composite, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state. First experimental results on investigation of the vapor shield onset conditions are presented also. The obtained experimental data are compared with the results of numerical modeling.

  2. Hydrogen and deuterium pellet injection into ohmically and additionally ECR-heated TFR plasmas

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1987-01-01

    The ablation clouds of hydrogen and deuterium pellets injected into ohmically and electron cyclotron resonance heated (ECRH) plasmas of the Fontenay-aux-Roses tokamak TFR have been photographed, their emission has been measured photoelectrically. Without ECRH the pellets penetrate deeply into the plasma, the clouds are striated. Injection during ECRH leads to ablation in the outer plasma region. The position of the ECR layer has no influence on the penetration depth which is only a few centimeters. The ablation clouds show no particular structure when ECRH is applied

  3. Confinement of Stellarator plasmas with neutral beam and RF heating in W VII-A

    International Nuclear Information System (INIS)

    Grieger, G.; Cattanei, G.; Dorst, D.

    1986-01-01

    WENDELSTEIN VII-A has been operated for ten years. It is a low-shear, high-aspect-ratio device. The confinement properties have been thoroughly studied for both ohmically heated and net-current free plasmas. For the latter case, NBI- and ECF-maintained plasmas were of particular importance. It was found that under optimized conditions the core of high-pressure, net-current free plasmas is mainly governed by collisional effects. The experiment will now be shut down for upgrading it into the Advanced Stellarator WEDNDELSTEIN VII-AS. (author)

  4. Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Krucker, Säm; Christe, Steven; Buitrago-Casas, Juan Camilo; Narukage, Noriyuki; Vievering, Juliana

    2017-11-01

    The processes that heat the solar and stellar coronae to several million kelvins, compared with the much cooler photosphere (5,800 K for the Sun), are still not well known1. One proposed mechanism is heating via a large number of small, unresolved, impulsive heating events called nanoflares2. Each event would heat and cool quickly, and the average effect would be a broad range of temperatures including a small amount of extremely hot plasma. However, detecting these faint, hot traces in the presence of brighter, cooler emission is observationally challenging. Here we present hard X-ray data from the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the hot plasma strongly constrains the coronal heating models.

  5. Calorimetric measurement of heat load in full non-inductive LHCD plasmas on TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Shinoda, N.; Sugata, T.; Sasaki, K.; Zushi, H.; Nakamura, K.; Sato, K.N.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.

    2007-01-01

    Calorimetric measurements using the temperature increment of cooling-water were carried out to estimate the heat load distribution on the plasma facing components (PFCs) in the limiter discharges on TRIAM-1M. Line averaged electron density, n e , and LH power, P LH , dependences of the heat load on PFCs were measured. The heat load on the limiters was proportional to n e 1.5 in the range of n e =0.2-1.0x10 19 m -3 and P LH 1 in the range of P LH =0.005-0.09MW. For P LH >0.1MW, the plasma transition to an enhanced current drive (ECD) mode appeared and the n e dependences on the heat load on the limiter moderated. This indicates that the heat flux to scrape-off layer (SOL) region was reduced due to the improvement of the plasma confinement. The up-down asymmetry of the heat load on the vacuum vessel was enhanced in the ECD mode, which may be caused by the increasing of the direct loss of energetic electrons

  6. Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.

    1998-01-01

    An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)

  7. Studies of visible impurity radiation from JET plasmas during heating and fuelling experiments

    International Nuclear Information System (INIS)

    Morgan, P.D.; Hellermann, M. von; Mandl, W.; Stamp, M.F.; Summers, H.P.; Weisen, H.; Forrest, M.J.; Horton, L.; Zinoviev, A.

    1989-01-01

    At JET extensive use is made of visible spectroscopy in the study of plasma impurities. Measurements of absolute line intensities from such species as O II, C III and D I are used to deduce the influxes of light impurities as well as deuterium at the plasma periphery. The absolute continuum emission at 523.5 nm, measured using a 15-telescope poloidal array, is used to determine Z eff (r) and its temporal evolution. Charge-exchange recombination spectroscopy (CXRS) has proved to be a powerful technique during NBI to measure, amongst other parameters, the density of C and O at up to 15 separate points on the plasma minor radius. The combination of these diagnostic techniques permits the global impurity behaviour in the plasma to be followed. In this paper, results are reported pertaining to studies of plasmas heated by NBI and ICRF, and fuelled by the injection of D 2 pellets. (author) 5 refs., 4 figs

  8. NIFS joint research meeting on plasma facing components, PSI, and heat/particle control

    International Nuclear Information System (INIS)

    Yamashina, T.

    1997-10-01

    The LHD collaboration has been started in 1996. Particle and heat control is one of the categories for the collaboration, and a few programs have been nominated in these two years. A joint research meeting on PFC, PSI, heat and particle meeting was held at NIFS on June 27, 1997, in which present status of these programs were reported. This is a collection of the notes and view graphs presented in this meeting. Brief reviews and research plan of each program are included in relation to divertor erosion and sputtering, impurity generation, hydrogen recycling, edge plasma structure, edge transport and its control, heat removal, particle exhaust, wall conditioning etc. (author)

  9. Mechanism for heating of nitrogen plasmas in an electrodeless rf capacitive discharge at medium pressures

    International Nuclear Information System (INIS)

    Berdichevskii, M.G.; Marusin, V.V.

    1979-01-01

    The possible contributions of several processes to the experimentally observed heating of nitrogen plasmas in an electarodeless rf capacitive discharge at pressures of p=2.7-67 kPa are discussed. These processes are electron-rotational, vibrational--translational (V--T), and nonresonance vibrational--vibrational (V--V) energy exchange and effects due to O 2 , H 2 O, and NO impurities in the gas. It is shown that as the pressure is decreased the heating mechanism changes from quasiequilibrium to nonequilibrium V--T heating caused by overpopulation of high vibrational levels in the ground state of the nitrogen molecule

  10. Charge-fluctuation-induced heating of dust particles in a plasma.

    Science.gov (United States)

    Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F

    1999-11-01

    Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.

  11. ASDEX contributions to the 17th European conference on controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-09-01

    The 'ASDEX contributions to the 17th European conference on controlled fusion and plasma heating' (Amsterdam, June 25-29, 1990) hold one invited paper (Physics of enhanced confinement with peaked and board density profiles) and 12 chapters containing 44 contributed papers dealing with the following topics: Lower hybrid current drive and heating; Ion cyclotron heating; General confinement studies; Fluctuation studies; Direct measurement of transport coefficients; H-mode studies; Pellet studies; Divertor and SOL-studies; Impurity and impurity transport studies; Density limit studies; MHD studies; Diagnostic development. (orig./AH)

  12. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field

    International Nuclear Information System (INIS)

    Choe, W.; Ono, M.; Chang, C.S.

    1994-11-01

    The temperature anisotropy generated by cyclotron resonance heating of tokamak plasmas is calculated and the poloidal equilibrium electric field due to the anisotropy is studied. For the calculation of anisotropic temperatures, bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function of heated particles is solved, assuming a moderate wave power and a constant quasilinear cyclotron resonance diffusion coefficient. The poloidal electrostatic potential variation is found to be proportional to the particle density and the degree of temperature anisotropy of warm species created by cyclotron resonance heating

  13. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    International Nuclear Information System (INIS)

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data

  14. Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak

    Science.gov (United States)

    Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.

    2018-01-01

    In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.

  15. Characterization of a segmented plasma torch assisted High Heat Flux (HHF) system for performance evaluation of plasma facing components in fusion devices

    International Nuclear Information System (INIS)

    Ngangom, Aomoa; Sarmah, Trinayan; Sah, Puspa; Kakati, Mayur; Ghosh, Joydeep

    2015-01-01

    A wide variety of high heat and particle flux test facilities are being used by the fusion community to evaluate the thermal performance of plasma facing materials/components, which includes electron beam, ion beam, neutral beam and thermal plasma assisted sources. In addition to simulate heat loads, plasma sources have the additional advantage of reproducing exact fusion plasma like conditions, in terms of plasma density, temperature and particle flux. At CPP-IPR, Assam, we have developed a high heat and particle flux facility using a DC, non-transferred, segmented thermal plasma torch system, which can produce a constricted, stabilized plasma jet with high ion density. In this system, the plasma torch exhausts into a low pressure chamber containing the materials to be irradiated, which produces an expanded plasma jet with more uniform profiles, compared to plasma torches operated at atmospheric pressure. The heat flux of the plasma beam was studied by using circular calorimeters of different diameters (2 and 3 cm) for different input power (5-55 kW). The effect of the change in gas (argon) flow rate and mixing of gases (argon + hydrogen) was also studied. The heat profile of the plasma beam was also studied by using a pipe calorimeter. From this, the radial heat flux was calculated by using Abel inversion. It is seen that the required heat flux of 10 MW/m 2 is achievable in our system for pure argon plasma as well as for plasma with gas mixtures. The plasma parameters like the temperature, density and the beam velocity were studied by using optical emission spectroscopy. For this, a McPherson made 1.33 meter focal length spectrometer; model number 209, was used. A plane grating with 1800 g/mm was used which gave a spectral resolution of 0.007 nm. A detailed characterization with respect to these plasma parameters for different gas (argon) flow rate and mixing of gases (argon+hydrogen) for different input power will be presented in this paper. The plasma

  16. Microwave free-electron laser applications for electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Thomassen, K.

    1990-01-01

    Millimeter wave power may be the ideal source of heat for the plasma, but advances in technology are needed to meet requirements of next generation fusion devices. Free electron lasers (FEL) are one candidate for such sources, and this paper reviews the progress, issues of physics and technology, and potential benefits for fusion from these devices

  17. On a mechanism of antenna phasing effect on impurity production during ICRF plasma heating

    International Nuclear Information System (INIS)

    Chechkin, V.V.; Grigor'eva, L.I.

    1990-01-01

    An appreciable reduction of the metal impurity in flux and a decrease in SOL plasma parameter disturbance occure during ICRP heating in some tokamaks when toroidally adjacent antennae are driven in anti-phase. Also cancelled are low-frequency electric field fluctuations arising in the sheaths and the associated charged particle flux fluctuations. 24 refs.; 7 figs

  18. An improved routine for the fast estimate of ion cyclotron heating efficiency in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1992-02-01

    The subroutine ICEVAL for the rapid simulation of Ion Cyclotron Heating in tokamak plasmas is based on analytic estimates of the wave behaviour near resonances, and on drastic but reasonable simplifications of the real geometry. The subroutine has been rewritten to improve the model and to facilitate its use as input in transport codes. In the new version the influence of quasilinear minority heating on the damping efficiency is taken into account using the well-known Stix analytic approximation. Among other improvements are: a) the possibility of considering plasmas with more than two ion species; b) inclusion of Landau, Transit Time and collisional damping on the electrons non localised at resonances; c) better models for the antenna spectrum and for the construction of the power deposition profiles. The results of ICEVAL are compared in detail with those of the full-wave code FELICE for the case of Hydrogen minority heating in a Deuterium plasma; except for details which depend on the excitation of global eigenmodes, agreement is excellent. ICEVAL is also used to investigate the enhancement of the absorption efficiency due to quasilinear heating of the minority ions. The effect is a strongly non-linear function of the available power, and decreases rapidly with increasing concentration. For parameters typical of Asdex Upgrade plasmas, about 4 MW are required to produce a significant increase of the single-pass absorption at concentrations between 10 and 20%. (orig.)

  19. Microwave free-electron laser applications for electron cyclotron heating of plasmas

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1990-01-01

    Millimeter wave power may be the ideal source of heat for a plasma, but advances in technology are needed to meet requirements of next generation fusion devices. Free electron lasers (FEL) are one candidate for such sources, and this paper reviews the progress, issues of physics and technology, and potential benefits for fusion from these devices. 15 refs., 13 figs

  20. Modification of boundary plasma behavior by Ion Bernstein Wave heating on HT-7 tokamak

    International Nuclear Information System (INIS)

    Xu Guoshen

    2002-01-01

    Cooperated with Fusion Research Center, the University of Texas at Austin, U.S.A. The boundary plasma behavior during Ion Bernstein Wave (IBW) heating was investigated using Langmuir probe arrays on HT-7 tokamak. The particle confinement improvement of over a factor of 2 was observed in 30 MHz IBW heated plasma with RF power > 120 kW. The strong de-correlation effect of fluctuations resulted in that the turbulent particle flux dropped more than an order of magnitude. In IBW heated plasma, an additional inward E r and associated poloidal ExB flows were produced, which could account for the additional poloidal velocity in the electron diamagnetic direction in the scrape-of layer (SOL). Three-wave nonlinear phase coupling increased evidently and low frequency fluctuations (about 5 kHz) were generated, which dominated the boundary turbulence during IBW heating. The 5/2-D resonant layer was located in the plasma edge region, which is found to be the mechanism underlying these phenomena. (author)

  1. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-01-01

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  2. FISIC - a full-wave code to model ion cyclotron resonance heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Kruecken, T.

    1988-08-01

    We present a user manual for the FISIC code which solves the integrodifferential wave equation in the finite Larmor radius approximation in fully toroidal geometry to simulate ICRF heating experiments. The code models the electromagnetic wave field as well as antenna coupling and power deposition profiles in axisymmetric plasmas. (orig.)

  3. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    Science.gov (United States)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  4. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    International Nuclear Information System (INIS)

    Srivastava, Vishnu

    2012-01-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  5. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    Science.gov (United States)

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  6. Ion heating at the cyclotron resonance in plasmas magnetically confined in a toroidal octupole field

    International Nuclear Information System (INIS)

    Barter, J.D.

    1976-01-01

    Ion temperatures as high as 600 eV have been produced using rf wave heating at the ion cyclotron resonance frequency in a toroidal octupole magnetic field. Rf is coupled to the plasma with an externally driven ''fifth'' hoop which forms the inductive leg of an oscillator tank circuit. Power levels up to 1 MW at 1 to 3 MHz have been applied for periods up to 2 msec. Plasmas produced either by ECRH or by gun injection are simulated with a computer program in which known particle and energy production and loss mechanisms are used to predict the spatially averaged time behaviour of the plasma in the presence of the applied ion heating. The program can be used to calculate the consequences of the heating model in the presence of many cooling mechanisms which may each have a separate dependence on instantaneous plasma parameters. Experimental quantities compared to computer predictions include density, ion temperature, and loading of the hoop by the plasma, both resistive and reactive, and neutral reflux from the wall by electron and ion impact. Wave penetration to the resonance zone is good up to the highest densities available (6 x 10 12 cm -3 by gun injection) in good agreement with theory. Neutral reflux from the walls and the large charge exchange cooling which results is the dominant loss mechanism at the higher hoop voltages

  7. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of

  8. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    International Nuclear Information System (INIS)

    Peters, M.

    1996-01-01

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity χ to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.)

  9. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zare, S.; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir; Anvari, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Yazdani, E. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  10. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  11. A practical nonlocal model for heat transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.

    2006-01-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case

  12. A practical nonlocal model for heat transport in magnetized laser plasmas

    Science.gov (United States)

    Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.

    2006-03-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.

  13. 8 GHz, high power, microwave system for heating of thermonuclear plasmas

    International Nuclear Information System (INIS)

    Di Giovenale, S.; Fortunato, T.; Mirizzi, F.; Roccon, M.; Sassi, M.; Tuccillo, A.A.; Maffia, G.; Baldi, L.

    1993-01-01

    The Frascati Tokamak Upgrade (FTU) is a machine included in the European Thermonuclear Fusion Program aimed at investigating high density plasmas in the presence of powerful additional RF heating systems. The Lower Hybrid Resonant Heating (LHRH) system, based on 9 independent modules, works at 8 GHz, and will generate, at full performances, a total amount of 9 MW, in the pulsed regime (pulse length = 1 s, duty cycle = 1/600). The microwave power source is a gyrotron oscillator, developed by Thomson Tubes Electroniques (France) for this specific application, and capable of producing up to 1 MW. An overmoded, low loss, circular waveguide transmits the RF power toward the plasma; an array of 12x4 rectangular waveguides (the 'grill') launches this power into the plasma. The paper describes the LHRH system for FTU and analyses both its main performances and experimental results

  14. Energy confinement and MHD activity in shaped TCV plasmas with localised electron cyclotron heating

    International Nuclear Information System (INIS)

    Pochelon, A.; Alberti, S.; Angioni, C.

    2001-01-01

    Confinement in TCV (Tokamak a Configuration Variable) EC heated discharges is studied as a function of plasma shape, i.e. as a function of elongation 1.1<κ<2.15 and triangularity -0.65≤δ≤0.5. The electron energy confinement time is found to increase with elongation, in part due to the increase of plasma current with elongation. The beneficial effect of negative triangularities is most effective at low power and tends to reduce at the higher powers used. The large variety of sawtooth types observed in TCV for different power deposition locations from on axis to the q=1 region can be simulated with a model including a local power deposition, a growing m/n=1 island (convection and reconnection), plasma rotation and finite heat diffusivity across flux surfaces. (author)

  15. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  16. The influence of multiple ion species on Alfven wave dispersion and Alfven wave plasma heating

    International Nuclear Information System (INIS)

    Elfimov, A.G.; Tataronis, J.A.; Hershkowitz, N.

    1994-01-01

    In this paper, the effects of light impurities, such as deuterium, helium, or carbon, on Alfven wave dispersion characteristics are explored. It is shown that a small population of light impurities in a hydrogen plasma modify the dispersion of the global Alfven waves and the Alfven continuum in such a way that the wave frequency depends weakly on the toroidal wave number. It is also shown that the global Alfven wave enters into the Alfven continuum. Under these conditions, it is possible to heat plasma efficiently by employing an antenna with a broad toroidal wavelength spectrum. The relationship between impurity concentration and the efficiency of Alfven wave heating is explored. Under appropriate conditions, the results indicate that in the presence of impurities, Alfven waves can heat electrons predominantly in the central part of the plasma. This effect is explored via a series of numerical calculations of the heating specifically for the Phaedrus-T Alfven wave heating experiment [Phys. Fluids B 5, 2506 (1993)

  17. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  18. FEM-DBEM approach to analyse crack scenarios in a baffle cooling pipe undergoing heat flux from the plasma

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2017-02-01

    Full Text Available Wendelstein 7-X is the world’s largest nuclear fusion experiment of stellarator type, in which a hydrogen plasma is confined by a magnet field generated with external superconducting coils, allowing the plasma to be heated up to the fusion temperature. The water-cooled Plasma Facing Components (PFC protect the Plasma Vessel (PV against radiative and convective heat from the plasma. After the assembly process of heat shields and baffles, several cracks were found in the braze and cooling pipes. Due to heat load cycles occurring during each Operational Phase (OP, thermal stresses are generated in the heat sinks, braze root and cooling pipes, capable to drive fatigue crack-growth and, possibly, a water leak through the pipe thickness. The aim of this study is to assess the most dangerous initial crack configurations in one of the most critical baffles by using numerical models based on a FEM-DBEM approach.

  19. Characteristic performance of radio-frequency(RF) plasma heating using inverter RF power supplies

    International Nuclear Information System (INIS)

    Imai, Takahiro; Uesugi, Yoshihiko; Takamura, Shuichi; Sawada, Hiroyuki; Hattori, Norifumi

    2000-01-01

    High heat flux plasma are produced by high powe (∼14 kW) ICRF heating using inverter power supplies in the linear divertor simulator NAGDIS-II. The power flow of radiated rf power is investigated by a calorimetric method. Conventional power calculation using antenna voltage and current gives that about 70% of the rf power is radiated into the plasma. But increase of the heat load at the target and anode is about 10% of the rf power. Through this experiment, we find that about half of the rf power is lost at the antenna surface through the formation of rf induced sheath. And about 30% of the power is lost into the vacuum vessel through the charge exchange and elastic collision of ions with neutrals. (author)

  20. MM-wave cyclotron auto-resonance maser for plasma heating

    Science.gov (United States)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  1. Heating of a dense plasma with an intense relativistic electron beam: initial observations

    International Nuclear Information System (INIS)

    Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Sheffield, R.L.

    1981-01-01

    A dense (approx. 10 17 cm -3 ) plasma has been heated via the relativistic two-stream instability using a 3 MeV, intense (5 x 10 5 A/cm 2 ) electron beam. Evidence for heating has been obtained with diamagnetic loops, thin-foil witness plates, and a 2-channel, broad-band soft x-ray detector. Measurements of energy loss from the beam using calorimetry techniques have been attempted. The measured strong dependence of heating on beam transverse temperature and the very short interaction length ( 100 ns after the beam pulse are consistent with a plasma temperature <150 eV and line emission near 80 to 90 eV

  2. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  3. First-wall heat-flux measurements during ELMing H-mode plasma

    International Nuclear Information System (INIS)

    Lasnier, C.J.; Allen, S.L.; Hill, D.N.; Leonard, A.W.; Petrie, T.W.

    1994-01-01

    In this report we present measurements of the diverter heat flux in DIII-D for ELMing H-mode and radiative diverter conditions. In previous work we have examined heat flux profiles in lower single-null diverted plasmas and measured the scaling of the peak heat flux with plasma current and beam power. One problem with those results was our lack of good power accounting. This situation has been improved to better than 80--90% accountability with the installation of new bolometer arrays, and the operation of the entire complement of 5 Infrared (IR) TV cameras using the DAPS (Digitizing Automated Processing System) video processing system for rapid inter-shot data analysis. We also have expanded the scope of our measurements to include a wider variety of plasma shapes (e.g., double-null diverters (DND), long and short single-null diverters (SND), and inside-limited plasmas), as well as more diverse discharge conditions. Double-null discharges are of particular interest because that shape has proven to yield the highest confinement (VH-mode) and beta of all DIII-D plasmas, so any future diverter modifications for DIII-D will have to support DND operation. In addition, the proposed TPX tokamak is being designed for double-null operation, and information on the magnitude and distribution of diverter heat flux is needed to support the engineering effort on that project. So far, we have measured the DND power sharing at the target plates and made preliminary tests of heat flux reduction by gas injection

  4. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V., E-mail: vsizyuk@purdue.edu; Hassanein, A., E-mail: hassanein@purdue.edu [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  5. Rapid further heating of tokamak plasma by fast-rising magnetic pulse

    International Nuclear Information System (INIS)

    Inoue, N.; Nihei, H.; Yamazaki, K.; Ichimura, M.; Morikawa, J.; Hoshino, K.; Uchida, T.

    1977-01-01

    The object of the experiment was to study the rapid further heating of a tokamak plasma and its influence on confinement. For this purpose, a high-voltage theta-pinch pulse was applied to a tokamak plasma and production of a high-temperature (keV) plasma was ensured within a microsecond. The magnetic pulse is applied at the plasma current maximum parallel or antiparallel to the study toroidal field. In either case, the pulsed field quickly penetrates the plasma and the plasma resistivity estimated from the penetration time is about 100 times larger than the classical. A burst of energetic neutrals of approximately 1 μs duration was observed and the energy distribution had two components of the order of 1 keV and 0.1 keV in the antiparallel case. Doppler broadening measurement shows heating of ions to a temperature higher than 200 eV; however, the line profile is not always Maxwellian distribution. The X-rays disappear at the moment of applying the magnetic pulse and reappear about 100 μs later with an intensive burst, while both energy levels are the same (approximately 100 keV). (author)

  6. Investigation of plasma heating by magnetic pumping with nonaxisymmetric alternating fields

    International Nuclear Information System (INIS)

    Lapshin, V.I.; Stepanov, K.N.

    1975-01-01

    Non-collisional heating is studied of an inhomogeneous plasma cylinder with the aid of magnetic pumping with axial nonsymmetric variable fields running along a constant field at the phase velocity ω/ksub(ax) which is around an ion thermal velocity or an ion sound velocity. The axial wave-number ksub(ax) is assumed to be greater that I/R, where R is the major radius of the torus. The heating rate at ksub(ax)a approximately 1 (a is the plasma radius) is found to be equal to that in the axial symmetric case. In the event of an ion-acoustic resonance (ω approximately ksub(ax) vsub(s) the energy absorption rate increases by (Tsub(e)/Tsub(i)) >> 1 times, if the resonance occurs in a narrow resonance layer, and by (Tsub(e)/Tsub(i))sup(3/2) times if it does in the entire plasma volume (vsub(s) is the sound velocity). If the pumping frequency is of the same order as the frequency of drift oscillations of inhomogeneous plasma, the pumping field may lead to plasma cooling. This effect is linked with a severe non-equilibrium and instability of an inhomogeneous plasma in this frequency range

  7. Modification of boundary plasma behavior by Ion Bernstein Wave heating on the HT-7 tokamak

    International Nuclear Information System (INIS)

    Xu, G.S.; Wan, B.N.; Song, M.; Ling, B.L.; Li, C.F.; Li, J.

    2003-01-01

    The boundary plasma behavior during Ion Bernstein Wave heating was investigated using Langmuir probe arrays on the HT-7 tokamak. A distinct weak turbulence regime was reproducibly observed in the 30 MHz IBW heated plasmas with RF power larger than 120 kW, which resulted in a particle confinement improvement of a factor of 2. The strong suppression and decorrelation effect of fluctuations resulted in the turbulent particle flux dropping by more than an order of magnitude in the plasma boundary region. An additional inward radial electric field and associated poloidal ExB flows were produced, which could account for the additional poloidal velocity in the electron diamagnetic direction at some radial locations of the boundary plasma. The electrostatic fluctuations were nearly completely decorrelated in the high frequency region and only low frequency fluctuations remained. The poloidal correlation was considerably reduced in the high poloidal wave number region and only the fluctuations with long poloidal wavelength remained. Three-wave nonlinear phase coupling between the whole frequency domain and the very low frequency region increased significantly in both the plasma edge and the SOL. Quite low frequency fluctuations (about 5 kHz) were generated, which dominated the boundary turbulence during IBW heating. Detailed analyses suggested that, when an IBW with a frequency of 30 MHz was launched into a plasma with the toroidal magnetic field between 1.75 T and 2.0 T, the ion cyclotron resonant layer of 5/2.D was located in the plasma edge region. The poloidal ExB sheared flows generated by IBW near this layer due to a ponderomotive interaction were found to be the mechanism underlying these phenomena. (author)

  8. Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15

    Bulk ion acceleration and particle heating during magnetic reconnection are studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). The plasma is in the two-fluid regime, where the motion of the ions is decoupled from that of the electrons within the ion diffusion region. The reconnection process studied here is quasi-symmetric since plasma parameters such as the magnitude of the reconnecting magnetic field, the plasma density, and temperature are compatible on each side of the current sheet. Our experimental data show that the in-plane (Hall) electric field plays a key role in ion heating and acceleration. The electrostatic potential that produces the in-plane electric field is established by electrons that are accelerated near the electron diffusion region. The in-plane profile of this electrostatic potential shows a “well” structure along the direction normal to the reconnection current sheet. This well becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. Since the in-plane electric field is 3–4 times larger than the out-of-plane reconnection electric field, it is the primary source of energy for the unmagnetized ions. With regard to ion acceleration, the Hall electric field causes ions near separatrices to be ballistically accelerated toward the outflow direction. Ion heating occurs as the accelerated ions travel into the high pressure downstream region. This downstream ion heating cannot be explained by classical, unmagnetized transport theory; instead, we conclude that ions are heated by re-magnetization of ions in the reconnection exhaust and collisions. Two-dimensional (2-D) simulations with the global geometry similar to MRX demonstrate downstream ion thermalization by the above mechanisms. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the

  9. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  10. Convective mechanism for inhibition of heat conduction in laser produced plasmas

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Willi, O.; Trainor, R.J.

    1984-01-01

    In laser-produced plasmas, the laser energy is absorbed only below and up to the critical density. For laser fusion applications, this energy must be transported beyond the corona via electron thermal conduction towards colder, higher density regions of the target to heat up material and cause ablation, which in turn generates an inward pressure to compress the fusion fuel. If the heat conduction is inhibited, the consequences will be a weaker ablation and therefore a weaker implosion. For many years now, the inhibition of heat conduction, i.e., the reduction of heat conduction relative to classical conduction, in laser-produced plasmas at relevant irradiances has been apparent from the large body of experimental evidence. Many mechanisms, such as dc magnetic fields, ion acoustic turbulence, and Weibel instabilities, have been proposed to be the cause of inhibition of heat conduction. Even improved calculations of the classical heat flux have been carried out to solve this problem. Nevertheless, no single one of the above mentioned mechanisms can explain the large inhibition observed in the experiments

  11. Development of neutral beams for fusion plasma heating

    International Nuclear Information System (INIS)

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies

  12. Development of neutral beams for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies.

  13. Evolution of the electron temperature profile of ohmically heated plasmas in TFTR

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Arunasalam, V.

    1985-08-01

    Blackbody electron cyclotron emission was used to ascertain and study the evolution and behavior of the electron temperature profile in ohmically heated plasmas in the Tokamak Fusion Test Reactor (TFTR). The emission was measured with absolutely calibrated millimeter wavelength radiometers. The temperature profile normalized to the central temperature and minor radius is observed to broaden substantially with decreasing limiter safety factor q/sub a/, and is insensitive to the plasma minor radius. Sawtooth activity was seen in the core of most TFTR discharges and appeared to be associated with a flattening of the electron temperature profile within the plasma core where q less than or equal to 1. Two types of sawtooth behavior were identified in large TFTR plasmas (minor radius, a less than or equal to 0.8 m) : a typically 35 to 40 msec period ''normal'' sawtooth, and a ''compound'' sawtooth with 70 to 80 msec period

  14. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  15. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Directory of Open Access Journals (Sweden)

    Vilémová Monika

    2015-06-01

    Full Text Available Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS and by water stabilized plasma spraying (WSP technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns. Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.

  16. Evaporation and Vapor Shielding of CFC Targets Exposed to Plasma Heat Fluxes Relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.I.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.

    2007-01-01

    Full text of publication follows: Carbon-fibre composite (CFC) is foreseen presently as armour material for the divertor target in ITER. During the transient processes such as instabilities of Edge Localized Modes (ELMs) the target as anticipated will be exposed to the plasma heat loads of a few MJ/m 2 on the time scale of a fraction of ms, which causes an intense evaporation at the target surface and contaminates tokamak plasma by evaporated carbon. The ITER transient loads are not achievable at existing tokamaks therefore for testing divertor armour materials other facilities, in particular plasma guns are employed. In the present work the CFC targets have been tested for ITER at the plasma gun facility MK- 200 UG in Troitsk by ELM relevant heat fluxes. The targets in the applied magnetic field up to 2 T were irradiated by hydrogen plasma streams of diameter 6 - 8 cm, impact ion energy 2 - 3 keV, pulse duration 0.05 ms and energy density varying in the range 0.05 - 1 MJ/m 2 . Primary attention has been focused on the measurement of evaporation threshold and investigation of carbon vapor properties. Fast infrared pyrometer, optical and VUV spectrometers, framing cameras and plasma calorimeters were applied as diagnostics. The paper reports the results obtained on the evaporation threshold of CFC, the evaporation rate of the carbon fibers oriented parallel and perpendicular to the exposed target surface, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state measured up to the distance 15 cm at varying plasma load. First experimental results on investigation of the vapor shield onset conditions are presented also. (authors)

  17. Acceleration/heating of plasma on auroral field lines: preliminary results from the Viking satellite

    International Nuclear Information System (INIS)

    Lundin, R.

    1988-01-01

    In this report, a review of the first results obtained from the particle experiment on board the Viking spacecraft will be given. During the first part of the Viking mission, the orbit was suitable for high-altitude measurements (up to ∼ 13500 km) in the dayside oval and the cusp/cleft region. Thus, some emphasis will be put on processes occurring in the dayside auroral region. On the basis of more than 100 Viking traversals of the cusp and cleft it is suggested that these regions can be identified by some regular characteristics in the particle data. The cusp has a continuous presence of solar wind plasma, affected mainly by convection and containing modest plasma energization. Conversely, the cleft is characterized by extensive plasma energization, and strong field aligned current sheets. Temporal injections of solar wind plasma are frequently observed in the cleft. A distinguishing characteristic of the Viking charged particle experiment is the energy and angular resolution. Thus, the fine-structure of narrow particle beams and conical distributions of both electrons and ions can be determined. This enables very detailed studies of the plasma acceleration processes along auroral field lines. Some examples of accelerated plasma populations and their related energy and angular distribution will be presented. The observations are compared with existing theories of auroral plasma heating and acceleration processes

  18. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  19. Design of TFTR movable limiter blades for ohmic and neutral-beam-heated plasmas

    International Nuclear Information System (INIS)

    Doll, D.W.; Ulrickson, M.A.; Cecchi, J.L.; Citrolo, J.C.; Weissenburger, D.; Bialek, J.

    1981-10-01

    A new set of movable limiter blades has been designed for TFTR that will meet both the requirements of the 4 MW ohmic heated and the 33 MW neutral beam heated plasmas. This is accomplished with three limiter blades each having and elliptical shape along the toroidal direction. Heat flux levels are acceptable for both ohmic heated and pre-strong compression plasmas. The construction consists of graphite tiles attached to cooled backing plates. The tiles have an average thickness of approx. 4.7 cm and are drawn against the backing plate with spring loaded fasteners that are keyed into the graphite. The cooled backing plate provides the structure for resisting disruption and fault induced loads. A set of rollers attached to the top and bottom blades allow them to be expanded and closed in order to vary the plasma surface for scaling experiments. Water cooling lines penetrate only the mid-plane port cover/support plate in such a way as to avoid bolted water connections inside the vacuum boundary and at the same time allow blade movement. Both the upper and lower blades are attached to the mid-plane limiter blade through pivots. Pivot connections are protected against arcing with an alumina coating and a shunt bar strap. Remote handling is considered throughout the design

  20. Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A; Greuner, H; Fuchs, J C; Marne, P de; Neu, R

    2009-01-01

    ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N 2 -seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.

  1. PLASMA SLOSHING IN PULSE-HEATED SOLAR AND STELLAR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F., E-mail: fabio.reale@unipa.it [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (∼20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  2. RF-heating and plasma confinement studies in HANBIT mirror device

    International Nuclear Information System (INIS)

    Kwon, M.; Bak, J.G.; Choh, K.K.

    2003-01-01

    HANBIT is a magnetic mirror confinement device. Recently, with almost finishing the first campaign for the basic system development, it started the second campaign for the high-temperature plasma confinement physics study in mirror configuration. Here, we introduce briefly the HANBIT device and report initial physics experiments results on RF-plasma heating and confinement in the simple mirror configuration. It appears that the discharge characteristics of HANBIT are quite different from those in other mirror devices, and an explanation is presented to clarify the difference. (author)

  3. Nonlocal electron heat relaxation in a plasma shock at arbitrary ionization number

    International Nuclear Information System (INIS)

    Ramirez, J.; Sanmartin, J.R.; Fernandez-Feria, R.

    1993-01-01

    A recently obtained nonlocal expression for the electron heat flux valid for arbitrary ionization numbers Z is used to study the structure of a plane shock wave in a fully ionized plasma. Nonlocal effects are only important in the foot of the electronic preheating region, where the electron temperature gradient is the steepest. The results are quantified as a function of a characteristic Knudsen number of that region. This work also generalizes to arbitrary values of Z previous results on plasma shock wave structure

  4. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  5. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  6. A study on the NB heating and current drive in fusion plasmas

    International Nuclear Information System (INIS)

    Jeong, Seung Ho; In, S. R.; Lee, K. W.; Oh, B. H.; Jin, J. T.; Chang, D. H.; Chang, D. S.; Kim, T. S.; Song, W. S.

    2013-03-01

    Final destination of the project is to establish the research basis of heating and current drive for large tokamak, such as KSTAR, or next generation fusion reactor through the neutral beam injection (NBI). On the 1 st -stage to achieve the objectives: 1) Required capability of an ion source(with an output power of 2 MW neutral beam, a beam energy of 100 keV) which is a main component of KSTAR NBI-1 system was proven by the design, manufacturing, and performance test during the past three years. 2) Until the development of new ion source, the NB heating experiments were performed to achieve the NB heating of KSTAR plasma with more than 1.0 MW for the 2 nd -year and more than 1.5 MW for the 3 rd -year by using a prototype ion source upgraded for the 1 st -year. From these experiments, the heating power above the H-mode threshold was supplied to the H-mode operation of KSTAR plasma and contributed to the NB diagnostics, such as CES and MSE, by using the NB. Finally, the basis of NB heating and current drive for the KSTAR was prepared by the 1 st -stage research

  7. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control to suppress heavy impurity accumulation. (author)

  8. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density control to suppress heavy impurity accumulation. (author)

  9. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  10. Tungsten erosion under plasma heat loads typical for ITER type I Elms and disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Marchenko, A.K. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Trubchaninov, S.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tsarenko, A.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)

    2005-03-01

    The behavior of pure sintered tungsten under repetitive plasma heat loads of {approx}1 MJ/m{sup 2} (which is relevant to ITER ELMs) and 25 MJ/m{sup 2} (ITER disruptions) is studied with the quasi-steady-state plasma accelerator QSPA Kh-50. The ELM relevant heat loads have resulted in formation of two kinds of crack networks, with typical sizes of 10-20 {mu}m and {approx}1 mm, at the surface. Tungsten preheating to 600 deg. C indicates that fine intergranular cracks are probably caused by thermal stresses during fast resolidification of the melt, whereas large cracks are the result of ductile-to-brittle transition. For several hundreds of ELM-like exposures, causing surface melting, the melt motion does not dominate the profile of the melt spot. The disruption relevant experiments demonstrated that melt motion became the main factor of tungsten damage.

  11. Full melting of a two-dimensional complex plasma crystal triggered by localized pulsed laser heating

    Science.gov (United States)

    Couëdel, L.; Nosenko, V.; Rubin-Zuzic, M.; Zhdanov, S.; Elskens, Y.; Hall, T.; Ivlev, A. V.

    2018-04-01

    The full melting of a two-dimensional plasma crystal was induced in a principally stable monolayer by localized laser stimulation. Two distinct behaviors of the crystal after laser stimulation were observed depending on the amount of injected energy: (i) below a well-defined threshold, the laser melted area recrystallized; (ii) above the threshold, it expanded outwards in a similar fashion to mode-coupling instability-induced melting, rapidly destroying the crystalline order of the whole complex plasma monolayer. The reported experimental observations are due to the fluid mode-coupling instability, which can pump energy into the particle monolayer at a rate surpassing the heat transport and damping rates in the energetic localized melted spot, resulting in its further growth. This behavior exhibits remarkable similarities with impulsive spot heating in ordinary reactive matter.

  12. Fusion Plasma Theory Grant: Task 3, Auxiliary Radiofrequency Heating of Tokamaks

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1993-06-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues. We have made progress in developing a ''3-D'' cavity backed antenna array code to examine ICRF coupling to general plasma edge profiles. The effects of the finite antenna length and feeders as well as Faraday shield blade angle are being examined. We are also developing an analysis to examine large k perpendicular ρ gyroradius interaction between alpha or beam particles and ICRF waves. This topic has important applications in the areas of ICRF heating for deuterium-tritium fusion plasmas, TAE modes, ash removal and minority ion current drive. Research progress, publications, and conference and workshop presentations are summarized in this report

  13. Thermal shock fracture of graphite armor plate under the heat load of plasma disruption

    International Nuclear Information System (INIS)

    Horie, Tomoyoshi; Seki, Masahiro; Ohmori, Junji

    1989-01-01

    Experiments on the thermal shock brittle fracture of graphite plates were performed. Thermal loading which simulated a plasma disruption was produced by an electron beam facility. Pre-cracks produced on the surface propagated to the inside of the specimen even if the thermal stress on the surface was compressive. Two mechanisms are possible to produce tensile stress around the crack tip under thermal shock conditions. Temperature, thermal stress, and the stress intensity factor for the specimen were analyzed based on the finite element method for various heating conditions. The trend of experimental results under the asymmetric heating agrees qualitatively with the analytical results. This phenomenon is important for the design of plasma facing components made of graphite. Establishment of a lifetime prediction procedure including fatigue, fatigue crack growth, and brittle fracture is needed for graphite armors. (orig.)

  14. Propagation of a surface electromagnetic wave in a plasma with allowance for electron heating

    International Nuclear Information System (INIS)

    Boev, A.G.; Prokopov, A.V.

    1978-01-01

    Considered is propagation of a surface high-frequency wave in a semibounded plasma, which electron component is heated within the wave field. Dissipative effects are considered small, that is possible if wave frequency is much higher than the collision frequency and phase velocity of wave considerably exceeds electron heat velocity. Under conditions of anomalous skin-effect the distributions of electron temperature and wave damping have been found. It is established, that higher electron temperature on the boundary results in a higher decrease of temperature inside a plasma, far from the boundary temperature decreases exponentially; damping coefficient under anomalous skin-effect conditions is characterized by a stronger dependence not only on the wave amplitude, but as well as on gas pressure and wave frequency in comparison with normal conditions

  15. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    Science.gov (United States)

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    International Nuclear Information System (INIS)

    Manini, A.

    2002-07-01

    The main goal in the research of nuclear fusion, and therefore in tokamak research as well, is the development of a high power, steady-state power plant. To obtain the high power required for igniting the plasma, the size of the device must be very large. The performance of the tokamak plasma depends in particular on the plasma shape and on the internal plasma profiles. These profiles include those of the current density and the pressure, two quantities that can be modified by means of auxiliary heating methods such as Electron Cyclotron Heating (ECH). ECH is a very important tool due to its capability of injecting highly localised and intense power. Off-axis ECH and Electron Cyclotron Current Drive (ECCD) modify both current density and electron temperature profiles, leading to modification of confinement and stability properties. in particular, complete stabilisation of magnetohydrodynamic modes using ECCD is feasible. Furthermore, ECH is crucial as a mean of increasing the bootstrap current fraction through the formation of internal transport barriers, so that confinement is also improved. Finally, it is also noted that modulated ECH (MECH) is a very effective tool for perturbative energy transport experiments in many different regimes. Experiments performed in the TCV and the ASDEX Upgrade tokamaks are presented. The role of TCV is very important due to its flexibility of varying the plasma shape, its versatile high power ECH system at both the second and third electron cyclotron harmonics, and due to the numerous diagnostics installed, e.g. the two soft X-ray (SXR) diagnostics which simultaneously allow high temporal and spatial resolutions. The importance of ASDEX Upgrade is related to its large size, which makes it a reactor-relevant experimental facility, and to the Neutral Beam Injection (NBI) and ECH heating facilities, which allow a study of heat and particle transport in either mostly ion-heated or mostly electron-heated regimes. Moreover, for the

  17. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  18. Plasma production and heating by a laser TEA-CO2

    International Nuclear Information System (INIS)

    Goes, L.C.S.; Sudano, J.P.; Rodrigues, N.A.S.

    1987-01-01

    Preliminary experiments of plasma production and heating by laser irradiation of gases and solid targets have been performed with a laser TEA-CO 2 (1 MW, 80 ns, monomode), developed and built at the IEAv/Laser Laboratory. The laser beam was focused in the interior of a vacuum chamber (100 1) with a base pressure of 10 1 torr, and recolimated by a system of confocal lenses. The breakdown theresholds for nitrogen gas was investigated by varying the laser power, the neutral gas density and the focal lenght of the lenses. Plasma breakdown observed in the range of pressures between 100-720 torr was in good agreement with calculations of cascade ionization theory and classical absorption by inverse-Bremsstrahlung. The laser absorption was inferred by measuring the power transmitted in the presence and absence of plasma. The light emitted by the plasma was detected by a fast photo-diode, indicating that the plasma expansion phase lasted for several microseconds. These investigations have been applied in the development of plasma shutters for laser pulse compression. (author) [pt

  19. Ion cyclotron heating of JET D-D and D-T optimised shear plasmas

    International Nuclear Information System (INIS)

    Cottrell, G.; Baranov, Y.; Bartlett, D.

    1998-12-01

    This paper discusses the unique roles played by Ion Cyclotron Resonance Heating (ICRH) in the preparation, formation and sustainment of internal transport barriers (ITBs) in high fusion performance JET optimised shear experiments using the Mk. H poloidal divertor. Together with Lower Hybrid Current Drive (LHCD), low power ICRH is applied during the early ramp-up phase of the plasma current, 'freezing in' a hollow or flat current density profile with q(0)>1. In combination with up to ∼ 20 MW of Neutral Beam Injection (NBI), the ICRH power is stepped up to ∼ 6 MW during the main low confinement (L-mode) heating phase. An ITB forms promptly after the power step, revealed by a region of reduced central energy transport and peaked profiles, with the ion thermal diffusivity falling to values close to the standard neo-classical level near the centre of both D-D and D-T plasmas. At the critical time of ITB formation, the plasma contains an energetic ICRF hydrogen minority ion population, contributing ∼ 50% to the total plasma pressure and heating mainly electrons. As both the NBI population and the thermal ion pressure develop, a substantial part of the ICRF power is damped resonantly on core ions (ω = 2 ω cD = 3 ω cT ) contributing to the ion heating. In NBI step-down experiments, high performance has been sustained by maintaining central ICRH heating; analysis shows the efficiency of central ICRH ion heating to be comparable with that of NBI. The highest D-D fusion neutron rates (R NT = 5.6 x 10 16 s -1 ) yet achieved in JET plasmas have been produced by combining a low magnetic shear core with a high confinement (H-mode) edge. In D-T, a fusion triple product n i T i τ E = (1.2 ± 0.2) x 10 21 m -3 keVs was achieved with 7.2 MW of fusion power obtained in the L-mode and up to 8.2 MW of fusion power in the H-mode phase. (author)

  20. RF-heating of plasma in the frequency domain of the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Hahnekamp, H.G.; Stampa, A.; Tuczek, H.; Laeuter, R.; Wulf, H.O.

    1976-01-01

    Experiments on rf-heating of plasmas in the frequency domain of the ion cyclotron harmonics are reported. The rf-power is coupled to the magneto-acoustic wave for frequencies between ωsub(ci) and 5ωsub(ci). The measurements indicate that the damping of the pump wave is mainly due to the excitation of turbulence, whereas direct resonance at 2ωsub(ci) seems to be of minor importance

  1. Non-linear effects and plasma heating by lower-hybrid waves in the Petula tokamak

    International Nuclear Information System (INIS)

    Briand, P.; Dupas, L.; Golovato, S.N.; Singh, C.M.; Melin, G.; Grelot, P.; Legardeur, R.; Zymanski, S.

    1979-01-01

    Lower hybrid waves were excited by a two-waveguide 'grill' (nsub(parallel) approximately 1-10, Esub(grill) approximately 3kVcm -1 , Psub(grill) approximately 5kWcm -2 ) at 1.25GHz, 3ms, 600kW. Plasma heating was observed separately as due to non-linear effects alone as well as to a combination of linear and non-linear mechanisms. (author)

  2. Design of a tunable 4-MW Free Electron Maser for heating fusion plasmas

    International Nuclear Information System (INIS)

    Caplan, M.; Kamin, G.; Shang, C.C.; Lindquist, W.

    1993-09-01

    There is an ongoing program at the FOM institute, The Netherlands, to develop a 1-MW, long-pulse, 200-Ghz Free Electron Maser (FEM) using a DC accelerator system with depressed collector. We present an extrapolation of this design to more than 4MW of output microwave power in order to reduce the cost per kW and increase the power per module in a plasma heating system

  3. Design of a tunable 4-MW free electron maser for heating fusion plasmas

    International Nuclear Information System (INIS)

    Caplan, M.; Kamin, G.; Shang, C.C.; Lindquist, W.

    1993-01-01

    There is an ongoing program at the FOM institute, The Netherlands, to develop a 1 -MW, long-pulse, 200-GHz Free Electron Maser (FEM) using a DC accelerator system with depressed collector. The authors present an extrapolation of this design to more than 4 MW of output microwave power in order to reduce the cost per kW and increase the power per module in a plasma heating system

  4. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Naito, F. [J-PARC Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Nishida, K.; Mochizuki, S.; Hatayama, A. [Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Mattei, S.; Lettry, J. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  5. Study of selective heating at ion cyclotron resonance for the plasma separation process

    Science.gov (United States)

    Compant La Fontaine, A.; Pashkovsky, V. G.

    1995-12-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucléaires de Saclay and Cité Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number kz is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the kz spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge-Kutta method. The influence of ion-ion collisions, inhomogeneity of the static magnetic field B0, and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44Ca heating measurements, made with an energy analyzer.

  6. Study of selective heating at ion cyclotron resonance for the plasma separation process

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Pashkovsky, V.G.

    1995-01-01

    The plasma separation process by ion cyclotron resonance heating (ICRH) is studied both theoretically and experimentally on two devices: the first one called ERIC (Ion Cyclotron Resonance Experiment) at Saclay (France) [P. Louvet, Proceedings of the 2nd Workshop on Separation Phenomena in Liquids and Gases, Versailles, France, 1989, edited by P. Louvet, P. Noe, and Soubbaramayer (Centre d'Etudes Nucleaires de Saclay and Cite Scientifique Parcs et Technopoles, Ile de France Sud, France, 1989), Vol. 1, p. 5] and the other one named SIRENA at the Kurchatov Institute, Moscow, Russia [A. I. Karchevskii et al., Plasma Phys. Rep. 19, 214 (1993)]. The radio frequency (RF) transversal magnetic field is measured by a magnetic probe both in plasma and vacuum and its Fourier spectrum versus the axial wave number k z is obtained. These results are in agreement with the electromagnetic (EM) field calculation model based on resolution of Maxwell equations by a time-harmonic scheme studied here. Various axial boundary conditions models used to compute the EM field are considered. The RF magnetic field is weakly influenced by the plasma while the electric field components are strongly disturbed due to space-charge effects. In the plasma the transversal electric field is enhanced and the k z spectrum is narrower than in vacuum. The calculation of the resonant isotope heating is made by the Runge--Kutta method. The influence of ion--ion collisions, inhomogeneity of the static magnetic field B 0 , and the RF transversal magnetic field component on the ion acceleration is examined. These results are successfully compared with experiments of a minor isotope 44 Ca heating measurements, made with an energy analyzer. copyright 1995 American Institute of Physics

  7. Numerical simulation of heat transfer and fluid flow of an impinging round jet of plasma into confined walls

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Shimizu, Akihiko; Kunugi, Tomoaki.

    1995-01-01

    Numerical simulations are presented on the flow and heat transfer characteristics of an impinging round jet of argon plasma with atmospheric pressure. The target slab with finite thickness upon which plasma jet impinges is assumed to be as SiC which is a candidate material for plasma facing material of fusion reactor. The plasma jet is treated by use of a magnetohydrodynamics model that takes its two-temperature non-equilibrium state into account. The rear side of the target slab is assumed to be cooled by a gas-solid suspension impinging round jet. The result shows that the plasma is in non-equilibrium state in which the electron temperature is higher than the heavy particle in the outer region of plasma jet core and that the heat flux to the target slab is over 8 MW/m 2 in the region of the plasma jet core contacts. (author)

  8. Structure of slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Tsai, R.H.; Wu, B.H.; Lee, L.C.

    2002-01-01

    The structure of slow shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. In this study, a pair of slow shocks is formed through the evolution of a current sheet initiated by the presence of a normal magnetic field. It is found that the slow shock consists of two parts: The isothermal main shock and foreshock. Significant jumps in plasma density, velocity and magnetic field occur across the main shock, but the temperature is found to be continuous across the main shock. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. It is shown that the jumps in plasma density, pressure, velocity, and magnetic field across the main shock are determined by the set of modified isothermal Rankine-Hugoniot conditions. It is also found that a jump in the temperature gradient is present across the main shock in order to satisfy the energy conservation. The present results can be applied to the heating in the solar corona and solar wind

  9. Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas

    Science.gov (United States)

    Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang

    2012-10-01

    Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.

  10. Anti-alias filter in AORSA for modeling ICRF heating of DT plasmas in ITER

    Science.gov (United States)

    Berry, L. A.; Batchelor, D. B.; Jaeger, E. F.; RF SciDAC Team

    2011-10-01

    The spectral wave solver AORSA has been used extensively to model full-field, ICRF heating scenarios for DT plasmas in ITER. In these scenarios, the tritium (T) second harmonic cyclotron resonance is positioned near the magnetic axis, where fast magnetosonic waves are efficiently absorbed by tritium ions. In some cases, a fundamental deuterium (D) cyclotron layer can also be located within the plasma, but close to the high field boundary. In this case, the existence of multiple ion cyclotron resonances presents a serious challenge for numerical simulation because short-wavelength, mode-converted waves can be excited close to the plasma edge at the ion-ion hybrid layer. Although the left hand circularly polarized component of the wave field is partially shielded from the fundamental D resonance, some power penetrates, and a small fraction (typically LLC.

  11. Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas

    International Nuclear Information System (INIS)

    Ding Siye; Wan Baonian; Ti Ang; Zhang Xinjun; Liu Zixi; Qian Jinping; Zhong Guoqiang; Duan Yanmin; Wang Lu

    2014-01-01

    Inward energy transport (pinch phenomenon) in the electron channel is observed in HT-7 plasmas using off-axis ion cyclotron resonance frequency (ICRF) heating. Experimental results and power balance transport analysis by TRANSP code are presented in this article. With the aids of GLF23 and Chang-Hinton transport models, which predict energy diffusivity in experimental conditions, the estimated electron pinch velocity is obtained by experimental data and is found reasonably comparable to the results in the previous study, such as Song on Tore Supra. Density scanning shows that the energy convective velocity in the electron channel has a close relation to density scale length, which is qualitatively in agreement with Wang's theoretical prediction. The parametric dependence of electron energy convective velocity on plasma current is still ambiguous and is worthy of future research on EAST. (magnetically confined plasma)

  12. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tokuzawa, T.

    2006-10-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma. (author)

  13. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tanaka, K.; Michael, C.; Tokuzawa, T.; Shimozuma, T.; Kubo, S.; Sakamoto, R.; Ida, K.; Itoh, K.; Kalinina, D.; Sudo, S.; Nagayama, Y.; Kawahata, K.; Komori, A.

    2007-01-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the large helical device (LHD) show a significant rise in core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport dominates. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay in the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase both in the collisionality in the core plasma and the electron temperature gradient scale length in the outer region of the plasma

  14. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Mantica, P.; Coffey, I.; Dux, R.

    2003-01-01

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  15. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  16. Some estimates of mirror plasma startup by neutral beam heating of pellet and gas cloud targets

    International Nuclear Information System (INIS)

    Shearer, J.W.; Willmann, P.A.

    1978-01-01

    Hot plasma buildup by neutral beam injection into an initially cold solid or gaseous target is found to be conceivable in large mirror machine experiments such as 2XIIB or MFTF. A simple analysis shows that existing neutral beam intensities are sufficient to ablate suitable targets to form a gas or vapor cloud. An approximate rate equation model is used to follow the subsequent processes of ionization, heating, and hot plasma formation. Solutions of these rate equations are obtained by means of the ''GEAR'' techniques for solving ''stiff'' systems of differential equations. These solutions are in rough agreement with the 2XIIB stream plasma buildup experiment. They also predict that buildup on a suitable nitrogen-like target will occur in the MFTF geometry. In 2XIIB the solutions are marginal; buildup may be possible, but is not certain

  17. Application of Electron Bernstein Wave heating and current drive to high beta plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.

    2002-01-01

    Electron Bernstein Waves (EBW) can potentially heat and drive current in high-beta plasmas. Electromagnetic waves can convert to EBW via two paths. O-mode heating, demonstrated on W-7AS, requires waves be launched within a narrow k-parallel range. Alternately, in high-beta plasmas, the X-mode cutoff and EBW conversion layers are millimeters apart, so the fast X-mode can tunnel to the EBW branch. We are studying the conversion of EBW to the X-mode by measuring the radiation temperature of the cyclotron emission and comparing it to the electron temperature. In addition, mode conversion has been studied with an approximate kinetic full-wave code. We have enhanced EBW mode conversion to ∼ 100% by encircling the antenna with a limiter that shortens the density scale length at the conversion layer in the scrape off of the CDX-U spherical torus (ST) plasma. Consequently, a limiter in front of a launch antenna achieves efficient X-mode coupling to EBW. Ray tracing and Fokker-Planck codes have been used to develop current drive scenarios in NSTX high-beta (∼ 40%) ST plasmas and a relativistic code will examine the potential synergy of EBW current drive with the bootstrap current. (author)

  18. Gyrokinetic analyses of core heat transport in JT-60U plasmas with different toroidal rotation direction

    International Nuclear Information System (INIS)

    Narita, Emi; Fukuda, Takeshi; Honda, Mitsuru; Hayashi, Nobuhiko; Urano, Hajime; Ide, Shunsuke

    2015-01-01

    Tokamak plasmas with an internal transport barrier (ITB) are capable of maintaining improved confinement performance. The ITBs formed in plasmas with the weak magnetic shear and the weak radial electric field shear are often observed to be modest. In these ITB plasmas, it has been found that the electron temperature ITB is steeper when toroidal rotation is in a co-direction with respect to the plasma current than when toroidal rotation is in a counter-direction. To clarify the relationship between the direction of toroidal rotation and heat transport in the ITB region, we examine dominant instabilities using the flux-tube gyrokinetic code GS2. The linear calculations show a difference in the real frequencies; the counter-rotation case has a more trapped electron mode than the co-rotation case. In addition, the nonlinear calculations show that with this difference, the ratio of the electron heat diffusivity χ_e to the ion's χ_i is higher for the counter-rotation case than for the co-rotation case. The difference in χ_e /χ_i agrees with the experiment. We also find that the effect of the difference in the flow shear between the two cases due to the toroidal rotation direction on the linear growth rate is not significant. (author)

  19. X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas

    Science.gov (United States)

    Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.

    2018-06-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  20. Power absorption and confinement studies of ICRF-heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Ogawa, Y.; Toi, K.

    1988-08-01

    The energy confinement characteristics of ICRF-heated tokamak plasmas are studied at high input power density ∼ 2 MWm -3 volume averaged, on the JIPP T-IIU device(R = 0.91 m/a = 0.23 m). High electron and ion temperatures (T e ∼ 2.5 keV, T i ∼ 2.0 keV, at each maximum) have been achieved by the operation at a plasma current I P of 280 kA, plasma line-averaged electron density n-bar e of 7 x 10 13 cm -3 and input power of 2 MW, with a suppression of total radiation loss (30 to 40 % of the total input power) by a carbon coating on the vacuum vessel. The fraction of ICRF power absorbed by the plasma, α, is determined experimentally from the decay of the stored plasma energy just after the ICRF pulse is terminated. The value of α increases slightly with increasing electron density and decreases from 90 to 70 % as the ICRF power is increased from 1 MWm -3 to 2 MWm -3 volume averaged. The global energy confinement time τ E , defined by W P /(P OH + αP rf ), decreases by a factor of 2 ∼ 3 from that in ohmic plasmas as the heating power increases up to 2 MW. It is found that the energy confinement time has a strong line-averaged electron density dependence as τ E ∝n-bar e 0.6 , which is obtained by the use of the measured absorbed power, while the Kaye-Goldston scaling predicts τ E ∝n-bar e 0.26 . (author)

  1. The temporal behaviour of MHD waves in a partially ionized prominence-like plasma: Effect of heating and cooling

    Science.gov (United States)

    Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.

    2018-01-01

    Context. During heating or cooling processes in prominences, the plasma microscopic parameters are modified due to the change of temperature and ionization degree. Furthermore, if waves are excited on this non-stationary plasma, the changing physical conditions of the plasma also affect wave dynamics. Aims: Our aim is to study how temporal variation of temperature and microscopic plasma parameters modify the behaviour of magnetohydrodynamic (MHD) waves excited in a prominence-like hydrogen plasma. Methods: Assuming optically thin radiation, a constant external heating, the full expression of specific internal energy, and a suitable energy equation, we have derived the profiles for the temporal variation of the background temperature. We have computed the variation of the ionization degree using a Saha equation, and have linearized the single-fluid MHD equations to study the temporal behaviour of MHD waves. Results: For all the MHD waves considered, the period and damping time become time dependent. In the case of Alfvén waves, the cut-off wavenumbers also become time dependent and the attenuation rate is completely different in a cooling or heating process. In the case of slow waves, while it is difficult to distinguish the slow wave properties in a cooling partially ionized plasma from those in an almost fully ionized plasma, the period and damping time of these waves in both plasmas are completely different when the plasma is heated. The temporal behaviour of the Alfvén and fast wave is very similar in the cooling case, but in the heating case, an important difference appears that is related with the time damping. Conclusions: Our results point out important differences in the behaviour of MHD waves when the plasma is heated or cooled, and show that a correct interpretation of the observed prominence oscillations is very important in order to put accurate constraints on the physical situation of the prominence plasma under study, that is, to perform prominence

  2. Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes

    International Nuclear Information System (INIS)

    Deconinck, T.; Mahadevan, S.; Raja, L.L.

    2009-01-01

    The fluid (continuum) approach is commonly used for simulation of plasma phenomena in electrical discharges at moderate to high pressures (>10's mTorr). The description comprises governing equations for charged and neutral species transport and energy equations for electrons and the heavy species, coupled to equations for the electromagnetic fields. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species (ion) energy equations. Proper numerical discretization of this term is necessary for accurate description of discharge energetics; however, discretization of this term poses a special problem in the case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each cell. We propose a method for the numerical discretization of the Joule heating term using a cell-centered finite volume approach on unstructured meshes with closed convex cells. The Joule heating term is computed by evaluating both the electric field and the species flux at the cell center. The dot product of these two vector quantities is computed to obtain the Joule heating source term. We compare two methods to evaluate the species flux at the cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at the face centers. The other recomputes the flux at the cell center using the common drift-diffusion approximation. The reconstructed flux scheme is the most stable method and yields reasonably accurate results on coarse meshes.

  3. Predictive simulations of radio frequency heated plasmas of Tore Supra using the Multi-Mode model

    International Nuclear Information System (INIS)

    Voitsekhovitch, Irina; Bateman, Glenn; Kritz, Arnold H.; Pankin, Alexei

    2002-01-01

    Multichannel integrated predictive simulations using the Multi-Mode transport model are carried out for radio frequency heated Tore Supra tokamak discharges in which helium is the primary ion component. Lower hybrid heated discharges in which the total current is driven noninductively [X. Litaudon et al., Plasma Phys. Controlled Fusion 43, 677 (2001)] and a discharge with ion cyclotron radio frequency heating of the hydrogen minority ions [G. T. Hoang et al., Nucl. Fusion 38, 117 (1998)] are simulated. The simulations of these discharges represent the first test of the Multi-Mode model in helium plasmas with dominant electron heating. Also for the first time, the particle transport in Tore Supra discharges is computed and the density profiles are predicted self-consistently with other transport channels. It is found in these simulations that the anomalous transport driven by trapped electron mode turbulence is dominant compared to the transport driven by the ion temperature gradient turbulence. The feature of the Multi-Mode model to calculate the impurity transport self-consistently with other transport channels is used in this study to predict the influence of carbon impurity influx on the discharge evolution

  4. Characteristics of confining ohm-heated plasma in TRIAM-IM

    International Nuclear Information System (INIS)

    Hatae, Takaki; Yamagajyo, Takashi; Kawasaki, Shoji; Jotaki, Eriko; Fujita, Takaaki; Nakamura, Kazuo; Nakamura, Yukio; Ito, Satoshi

    1994-01-01

    In the initial experiment after the increase of the power of ohm heating power source for the superconducting strong magnetic field tokamak, TRIAM-IM, the measurement of the electron temperature distribution, ion temperature distribution and beam average electron density of ohm-heated plasma was carried out. By analyzing the experimental results, the dependence of the accumulated energy obtained from the temperature distribution and the time of energy confinement of beam average electron density became clear. Especially the time of energy confinement increased in proportion to the increase of beam average electron density when it is 6.5 x 10 12 /m 2 , and it was found that the time of energy confinement conforms to the Neo-Alcator proportional law. Moreover, by solving the heat transport equation for ions, the radial distribution of thermal diffusion coefficient for ions was calculated, and compared with that obtained by the new classic theory. As the result, it was found that the TRIAM-IM has ion confinement characteristics equivalent to those of other medium tokamaks. The experiment of producing ohm-heated plasma, the fitting of electron temperature and ion temperature, the density dependence of temperature, accumulated energy and the time of energy confinement, the time of energy confinement and the Neo-Alcator proportional law, the energy balance of ions and so on are reported. (K.I.)

  5. Feedback control of plasma density and heating power for steady state operation in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, Shuji, E-mail: kamio@nifs.ac.jp; Kasahara, Hiroshi; Seki, Tetsuo; Saito, Kenji; Seki, Ryosuke; Nomura, Goro; Mutoh, Takashi

    2015-12-15

    Highlights: • We upgraded a control system for steady state operation in LHD. • This system contains gas fueling system and ICRF power control system. • Automatic power boost system is also attached for stable operation. • As a result, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. - Abstract: For steady state operation, the feedback control of plasma density and heating power system was developed in the Large Helical Device (LHD). In order to achieve a record of the long pulse discharge, stable plasma density and heating power are needed. This system contains the radio frequency (RF) heating power control, interlocks, gas fueling, automatic RF phase control, ion cyclotron range of frequency (ICRF) antenna position control, and graphical user interface (GUI). Using the density control system, the electron density was controlled to the target density and using the RF heating power control system, the RF power injection could be stable. As a result of using this system, we achieved the long pulse up to 48 min in the electron density of more than 1 × 10{sup 19} m{sup −3}. Further, the ICRF hardware experienced no critical accidents during the 17th LHD experiment campaign in 2013.

  6. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  7. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  8. Flash pyrolysis of agricultural residues using a plasma heated laminar entrained flow reactor

    International Nuclear Information System (INIS)

    Xiu Shuangning; Yi Weiming; Li Baoming

    2005-01-01

    In order to study the volatilization characteristics of biomass particles at flash heating rates, a plasma heated laminar entrained flow reactor (PHLEFR) was designed and built in our lab. Two agricultural residues, wheat straw and corn stalk, were chosen as feedstock for pyrolysis which were conducted on the PHLEFR with the aim of determining the extent of thermal decomposition at high heating rate (more than 10 4o Cs -1 ). Based on the experimental data, a first order kinetic model was introduced and the relevant kinetic parameters (apparent active energy and apparent frequency factor) were determined for the two straws: E=31.51kJmol -1 , A=1028s -1 (wheat straw) and E=33.74kJmol -1 , A=1013s -1 (corn stalk). The predicted conversion of the fitted model to the experimental data provided general agreements when one considered the experimental errors

  9. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop.

    Science.gov (United States)

    Anitua, E; Muruzabal, F; De la Fuente, M; Merayo-Lloves, J; Orive, G

    2014-02-01

    We have developed and characterized a new type of plasma rich in growth factors (PRGF) derived eye-drop therapy for patients suffering from autoimmune diseases. To determine the concentration of several growth factors, proteins, immunoglobulins and complement activity of the heat-inactivated eye-drop and to study its biological effects on cell proliferation and migration of different ocular surface cells, blood from healthy donors was collected, centrifuged and PRGF was prepared avoiding the buffy coat. The half volume of the obtained plasma supernatant from each donor was heat-inactivated at 56 °C for 1 h (heat-inactivated PRGF). The concentration of several proteins involved on corneal wound healing, immunoglubolins G, M and E and functional integrity of the complement system assayed by CH50 test were determined. The proliferative and migratory potential of inactivated and non-inactivated PRGF eye drops were assayed on corneal epithelial cells (HCE), keratocytes (HK) and conjunctival fibroblasts (HConF). Heat-inactivated PRGF preserves the content of most of the proteins and morphogens involved in its wound healing effects while reduces drastically the content of IgE and complement activity. Heat-inactivated PRGF eye drops increased proliferation and migration potential of ocular surface cells with regard to PRGF showing significant differences on proliferation and migration rate of HCE and HConF respectively. In summary, heat-inactivation of PRGF eye drops completely reduced complement activity and deceased significantly the presence of IgE, maintaining the biological activity of PRGF on ocular surface cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  11. Heating of a dense plasma by an ultrashort laser pulse in the anomalous skin-effect regime

    International Nuclear Information System (INIS)

    Andreev, A.A.; Gamalii, E.G.; Novikov, V.N.; Semakhin, A.N.; Tikhonchuk, V.T.

    1992-01-01

    The absorption of laser light in an overdense plasma with a sharp boundary and the heating of the plasma under conditions corresponding to the anomalous skin effect are studied. Heat transfer from the absorption region near the surface into the interior of the plasma is studied in the kinetic approximation. At high intensities of the laser pulse, the electron distribution function is deformed, and the plasma is heated at a rate tens of times that predicted by classical heat-transfer theory, because of the severe limitation on thermal conductivity. The anisotropy of the electron distribution function in the skin layer leads to an increase in the absorption coefficient. The angular distribution and the polarization dependence of the absorption coefficient are discussed

  12. W7-AS/W7-X contributions to the 20th European conference on controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1993-08-01

    This report contains the 23 contributions of the Max-Planck-Institut fuer Plasmaphysik to the above mentioned conference. The contributions deal with plasma heating problems in the Wendelstein stellarators. (WL)

  13. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  14. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  15. Proceeding of JSPS-CAS Core University Program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2011-02-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Guilin Bravo Hotel, Guilin, China, 1-4 November 2010. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. Two special talks and 46 oral talks were presented in the seminar including 36 Chinese, 18 Japanese and 4 Korean attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results in the field of fusion experiments obtained through CUP activities during recent two years were summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in both countries. (author)

  16. Proceeding of JSPS-CAS core university program seminar on production and control of high performance plasmas with advanced plasma heating and diagnostic systems

    International Nuclear Information System (INIS)

    Gao Xiang; Morita, Shigeru

    2009-01-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and control of high performance plasmas with advanced plasma heating and diagnostic systems' took place in Shiner hotel, Lijiang, China, 4-7 November 2008. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. One special talk and 34 oral talks were presented in the seminar including 16 Japanese attendees. Production and control of high performance plasmas is a crucial issue for realizing an advanced nuclear fusion reactor in addition to developments of advanced plasma heating and diagnostics. This seminar was motivated along the issues. Results obtained from CUP activities during recent four years were summarized. Several crucial issues to be resolved near future were also extracted in this seminar. The 31 of the papers are indexed individually. (J.P.N.)

  17. Main-ion temperature and plasma rotation measurements based on scattering of electron cyclotron heating waves in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Rasmussen, Jesper; Nielsen, Stefan Kragh

    2017-01-01

    We demonstrate measurements of spectra of O-mode electron cyclotron resonance heating (ECRH) waves scattered collectively from microscopic plasma fluctuations in ASDEX Upgrade discharges with an ITER-like ECRH scenario. The measured spectra are shown to allow determination of the main ion...... temperature and plasma rotation velocity. This demonstrates that ECRH systems can be exploited for diagnostic purposes alongside their primary heating purpose in a reactor relevant scenario....

  18. Stochastic plasma heating by electrostatic waves: a comparison between a particle-in-cell simulation and a laboratory experiment

    International Nuclear Information System (INIS)

    Fivaz, M.; Fasoli, A.; Appert, K.; Trans, T.M.; Tran, M.Q.; Skiff, F.

    1993-08-01

    Dynamical chaos is produced by the interaction between plasma particles and two electrostatic waves. Experiments performed in a linear magnetized plasma and a 1D particle-in-cell simulation agree qualitatively: above a threshold wave amplitude, ion stochastic diffusion and heating occur on a fast time scale. Self-consistency appears to limit the extent of the heating process. (author) 5 figs., 18 refs

  19. High-power microwave transmission and launching systems for fusion plasma heating systems

    International Nuclear Information System (INIS)

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE 0,2 ) or a whispering-gallery mode (such as TE 15,2 ), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE 0,1 mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs

  20. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  1. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    International Nuclear Information System (INIS)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-01-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10 9 cm -3 at an operating gas pressure in the vacuum chamber of less than 2x10 -2 Pa. The device features high power efficiency, design simplicity, and compactness.

  2. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    International Nuclear Information System (INIS)

    Toi, Kazuo; Hiraki, Naoji; Nakamura, Kazuo; Mitarai, Osamu; Kawai, Yoshinobu

    1980-01-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence. (author)

  3. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence.

  4. Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater.

    Science.gov (United States)

    Ohkubo, Yuji; Ishihara, Kento; Shibahara, Masafumi; Nagatani, Asahiro; Honda, Koji; Endo, Katsuyoshi; Yamamura, Kazuya

    2017-08-25

    The heating effect on the adhesion property of plasma-treated polytetrafluoroethylene (PTFE) was examined. For this purpose, a PTFE sheet was plasma-treated at atmospheric pressure while heating using a halogen heater. When plasma-treated at 8.3 W/cm 2 without using the heater (Low-P), the surface temperature of Low-P was about 95 °C. In contrast, when plasma-treated at 8.3 W/cm 2 while using the heater (Low-P+Heater), the surface temperature of Low-P+Heater was controlled to about 260 °C. Thermal compression of the plasma-treated PTFE with or without heating and isobutylene-isoprene rubber (IIR) was performed, and the adhesion strength of the IIR/PTFE assembly was measured via the T-peel test. The adhesion strengths of Low-P and Low-P+Heater were 0.12 and 2.3 N/mm, respectively. Cohesion failure of IIR occurred during the T-peel test because of its extremely high adhesion property. The surfaces of the plasma-treated PTFE with or without heating were investigated by the measurements of electron spin resonance, X-ray photoelectron spectroscopy, nanoindentation, scanning electron microscopy, and scanning probe microscopy. These results indicated that heating during plasma treatment promotes the etching of the weak boundary layer (WBL) of PTFE, resulting in a sharp increase in the adhesion property of PTFE.

  5. Calculated experiment results on the study of possibility of power-effective high-frequency plasma heating

    International Nuclear Information System (INIS)

    Kokhanenko, I.K.; Zajtsev, A.A.

    1993-01-01

    A method for plasma anomalous heating by SHF radiation with variable power characteristics is considered. On the base of automodel system theory it is shown a possibility of providing for controlled plasma burning in a mode with 'sharpening'. Anomalous phenomena, appeared in experimental investigations of the SHF discharge, are explained

  6. Electron cyclotron heating and current drive approach for low-temperature startup plasmas using O-X-EBW mode conversion

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Bigelow, T.S.

    1997-01-01

    A mechanism for heating and driving currents in very overdense plasmas is considered based on a double-mode conversion: Ordinary mode to Extraordinary mode to electron Bernstein wave. The possibility of using this mechanism for plasma buildup and current ramp in the National Spherical Torus Experiment is investigated

  7. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    International Nuclear Information System (INIS)

    Kelly, Seán; Golda, Judith; Schulz-von der Gathen, Volker; Turner, Miles M

    2015-01-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration. (paper)

  8. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    Science.gov (United States)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  9. Blood Biochemistry and Plasma Corticosterone Concentration in Broiler Chickens Under Heat Stress

    Directory of Open Access Journals (Sweden)

    Elvis Alexander Díaz López

    2014-07-01

    Full Text Available High ambient temperatures cause susceptibility to heat stress in broiler chickens, generating metabolic changes. This paper seeks to determine the changes in blood biochemistry and plasma corticosterone concentration, as well as in glucose, total protein, albumin, globulin, sodium, chlorine, potassium, magnesium, phosphorus, and calcium in broiler chickens under chronic heat stress and at ambient temperature conditions at the Colombian Amazonian piedmont. 21-days-old male chickens of two lines were studied, distributed in an unrestricted random design, in a two-factor scheme, with four treatments. Five repetitions per treatment were performed, and 25 animals per experimental unit examined. Broilers were fed a basic diet of corn and soybean meal with 3,100 kcal ME and 19.5% protein until they reached 42 days of age. The line factor had no effect on the evaluated variables (p ≥ 0.05. However, there was statistically significant difference (p ≤ 0.05 in all variables when concentrations of metabolites in broilers under chronic heat stress were compared to those of chickens exposed to ambient temperatures at the Colombian Amazon piedmont. In conclusion, blood biochemistry suffered significant changes under both experimental temperatures, with more physiological detriment in broilers under chronic heat stress. Concentration of corticosterone became the most sensitive and consistent indicator of the physiological condition of chronic heat stress.

  10. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Alexander, E-mail: A.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Arakcheev, Aleksey; Burdakov, Aleksander [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Shoshin, Andrey [Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); Terra, Alexis; Unterberg, Bernhard [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany)

    2015-10-15

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ{sub target} = 2.5–4.0 × 10{sup 21} m{sup −2} s{sup −1}, ion energy on surface E{sub ion} = 60 eV, T{sub e} ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m{sup 2}, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m{sup 2}. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  11. Combined impact of transient heat loads and steady-state plasma exposure on tungsten

    International Nuclear Information System (INIS)

    Huber, Alexander; Wirtz, Marius; Sergienko, Gennady; Steudel, Isabel; Arakcheev, Aleksey; Burdakov, Aleksander; Esser, Hans Guenter; Freisinger, Michaele; Kreter, Arkadi; Linke, Jochen; Linsmeier, Christian; Mertens, Philippe; Möller, Sören; Philipps, Volker; Pintsuk, Gerald; Reinhart, Michael; Schweer, Bernd; Shoshin, Andrey; Terra, Alexis; Unterberg, Bernhard

    2015-01-01

    Highlights: • W-samples under combined loading conditions show a lower damage threshold. • The pre-loaded W-samples show a lower damage threshold due to the D- embrittlement. • Pronounced increase of the D retention has been observed during the combined loads. • Enhanced blister formation has been observed under combined loading conditions. - Abstract: Cracking thresholds and crack patterns in tungsten targets have been studied in recent experiments after repetitive ITER-like ELM heat pulses in combination with plasma exposure in PSI-2 (Γ_t_a_r_g_e_t = 2.5–4.0 × 10"2"1 m"−"2 s"−"1, ion energy on surface E_i_o_n = 60 eV, T_e ≈ 10 eV). The heat pulses were simulated by laser irradiation. A Nd:YAG laser with energy per pulse of up to 32 J and a duration of 1 ms at the fundamental wavelength (λ = 1064 nm, repetition rate 0.5 Hz) was used to irradiate ITER-grade W samples with repetitive heat loads. In contrast to pure thermal exposure with a laser beam where the damage threshold under pure heat loads for ITER-grade W lies between 0.38 and 0.76 GW/m"2, the experiments with pre-loaded W-samples as well as under combined loading conditions show a lower damage threshold of 0.3 GW/m"2. This is probably due to deuterium embrittlement and/or a higher defect concentration in a region close to the surface due to supersaturation with deuterium. A pronounced increase in the D retention (more than a factor of five) has been observed during the combined transient heat loads and plasma exposure. Enhanced blister formation has been observed under these combined loading conditions.

  12. Fusion performances and alpha heating in future JET D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Balet, B; Cordey, J G; Gibson, A; Lomas, P; Stubberfield, P M; Thomas, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The new pump divertor installed at JET should allow high performance pulses of a few seconds duration by both preventing the impurity influx and controlling the density evolution. The TRANSP code has been used in a predictive mode to assess the possible fusion performance of such plasmas fuelled with a 50:50 mixture of D and T, and the effect of alpha particles heating on Te and Ti. Several cases are considered: 50:50 D-T mix; 50:50 D-T mix, no C bloom; 50:50 D-T mix, VH phase, density control; 50:50 D-T mix, VH phase, density control, 6 Ma. The predictions show that if the the bloom and MHD instabilities can be controlled at higher plasma currents using a higher toroidal field to keep a reasonable beta value, then a higher fusion performance steady state plasma with Q{sub DT} superior to 2.5 should be possible. The alpha heating power of 4.9 MW would lead to a 74% increase in Te. 4 refs., 4 figs., 1 tab.

  13. A quiver kinetic formulation of radio frequency heating and confinement in collisional edge plasmas

    International Nuclear Information System (INIS)

    Catto, P.J.; Myra, J.R.

    1989-01-01

    The near fields in the collisional edge plasma of a radio frequency heated tokamak can cause one or more charged species to oscillate in the applied field with a quiver (or jitter) speed comparable to its thermal speed. By assuming the quiver motion dominates over drifts and gyromotion a completely new kinetic description of the flows in an edge plasma is formulated which retains Coulomb collisions and the relevant atomic processes. Moment equations are employed to obtain a description in which only a lowest order quiver kinetic equation need be solved to evaluate the slow time particle fluxes and current induced by the applied fields. The electron heating by collisional randomization of their quiver motion (inverse bremsstrahlung) is balanced by impact excitation losses since equilibration with the ions is too weak. A model plasma of electrons, neutrals, and a single cold ion species is considered to illustrate the utility of the quiver kinetic formulation. The model predicts local electrostatic potential changes and a local /rvec E//times//rvec B/ convective flux that is of the same magnitude and scaling as would be predicted by Bohm diffusion. 30 refs

  14. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  15. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    International Nuclear Information System (INIS)

    Park, Hyeon, K.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks

  16. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Hassanein, A.

    2002-01-01

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices

  17. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    2001-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 =53 cm, a l =22 cm - circular limiter configuration, B t ≤0.7T, I p ≤175 kA, ≤6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r=0.5a and r=0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0 % and β N of 2 were achieved. The β N limit achieved is 'soft' (nondisruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  18. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    1999-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 = 53 cm, a l = 22 cm - circular limiter configuration, B t ≤ 0.7 T, I p ≤ 175 kA, ≤ 6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r = 0.5a and r = 0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0% and β N of 2 were achieved. The β N limit achieved is 'soft' (non-disruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  19. Effect of Ponderomotive Terms on Heat Flux in Laser-Produced Plasmas

    Science.gov (United States)

    Li, G.

    2005-10-01

    A laser electromagnetic field introduces ponderomotive termsootnotetextV. N. Goncharov and G. Li, Phys. Plasmas 11, 5680 (2004). in the heat flux in a plasma. To account for the nonlocal effects in the ponderomotive terms, first, the kinetic equation coupled with the Maxwell equations is numerically solved for the isotropic part of the electron distribution function. Such an equation includes self-consistent electromagnetic fields and laser absorption through the inverse bremsstrahlung. Then, the anisotropic part is found by solving a simplified Fokker--Planck equation. Using the distribution function, the electric current and heat flux are obtained and substituted into the hydrocode LILAC to simulate ICF implosions. The simulation results are compared against the existing nonlocal electron conduction modelsootnotetextG. P. Schurtz, P. D. Nicola"i, and M. Busquet, Phys. Plasmas 9, 4238 (2000). and Fokker--Planck simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  20. Numerical and experimental study of heat transfers in an arc plasma. Application to TIG arc welding

    International Nuclear Information System (INIS)

    Borel, Damien

    2013-01-01

    The arc welding is used for many industrial applications, especially GTA welding. Given the excellent quality of the produced welds, GTA welding is used for the majority of the interventions (repairs, joined sealing) on the French nuclear park. This work is part of a project carried out by EDF R and D which aims to simulate the whole process and builds a tool able to predict the welds quality. In this study, we focus on the development of a predictive model of the exchanged heat flux at the arc - work piece interface, responsible of the work piece fusion. The modeling of the arc plasma using the electric module of the hydrodynamics software Code Saturne R developed by EDF R and D is required. Two types of experimental tests are jointly carried out to validate this numerical model: i) on density and temperature measurements of plasma by atomic emission spectroscopy and ii) on the evaluation of the heat transfers on the work piece surface. This work also aims at demonstrate that the usual method of using an equivalent thermal source to model the welding process, can be replaced by our plasma model, without the numerous trials inherent to the usual method. (author)

  1. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  2. Research program for plasma confinement and heating in ELMO bumpy torus devices

    International Nuclear Information System (INIS)

    Dandl, R.A.; Dory, R.A.; Eason, H.O.

    1975-06-01

    A sequence of experimental devices and related research activities which leads progressively toward an attractive full-scale reactor is described. The implementation of the steps in this sequence hinges on the development of microwave power sources, with high specific power levels, at millimeter wavelengths. Two proposed steps in this sequence are described. The first step proposed here, denoted EBT-S, requires increasing the EBT magnetic field to permit microwave heating at 18 and 28 GHz, as compared to the present 10.6 and 18-GHz configuration. A three-fold increase in plasma density, some increase in the temperatures, and an opportunity to test the validity of the transport models presently used to predict the plasma parameters are anticipated. This step will provide important operating experience with the 28-GHz power supplies, which are prototype tubes for millimeter sources at 120 GHz In the second step a new superconducting bumpy torus, EBT-II, would be fabricated to permit microwave heating at 90 and 120 GHz. This device would be designed to produce plasma densities and temperatures comparable to those of present-day tokamaks. This report reviews the experimental and theoretical research on EBT that has been carried out to date or formulated for the near future, and provides a status report as well as a research program plan. (U.S.)

  3. A study on the effect of heat treatment on electrical properties of plasma sprayed YSZ

    International Nuclear Information System (INIS)

    Elshikh, S.S.M.

    2012-01-01

    Free standing samples of plasma sprayed (PS) zirconia partially stabilized with yettria (YSZ) were prepared with two machines of plasma spray deposition (Triplex gun- 100 kw, F-4 gun 64 kw) have different electrical power and spraying parameters, which produced different microstructures; contain different amounts and varieties of pores and micro-cracks.The study included heat treatment of samples at 1200 degree C for 1 h, 5 h, 10 h, 100 h and 500 h, to study the changes in macrostructure (pores and micro-cracks) which affect the electrical conductivity.The electrical properties (resistively, electrical conductivity) of plasma sprayed ZrO 2 stabilized by 8 wt. % Y 2 O 3 samples were determined by using electrical impedance spectroscopy (IS). Specimen's microstructure was examined by optical microscopy. By measuring electrical properties and connected porosity percent of the coatings obtained under various spraying conditions, it would be possible to select the optimum spraying condition to spray coatings which have high efficiency at high temperature.The results showed that the electrical conductivity of (YSZ) samples after heat treatment increased by a rate of (20%-30%) as compared to that of as sprayed.

  4. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  5. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  6. The rate of plasma heating by harmonic ion cyclotron waves in tokamaks

    International Nuclear Information System (INIS)

    Moslehi-Fard, M.; Sobhanian, S.; Solati-Kia, F.

    2002-01-01

    In tokamaks, the toroidal magnetic field, B φ , is due to the current in coils around plasma, and the poloidal magnetic field B p results from the plasma itself. Usually B φ p , and the combination of these two fields forms a nested set of toroidal magnetic surfaces. The equilibrium Grad-Shafranov equation is investigated and it is shown that the particle products of fusion with different pitch angles on these surfaces have different orbital shapes. In the JET tokamak, the α particles with pitch angle θ smaller than 54.8 deg are passing, those with θ between 54.8 deg and 65.1 deg have trapping-passing orbits but for θ greater than 65.1 deg the orbit has a banana form. Other tokamaks such as Alcator and ITER are also considered. The passing, trapping-passing and banana orbits in these tokamaks are traced. The results obtained from this calculation are analyzed. The wave damping has been investigated produced from interaction with particles, particularly α particles, and the rate of heating for l = 1 to 8 harmonics is plotted. The results of calculation show that heating at the fourth harmonic reaches a maximum. For higher harmonics, the heating does not change much from the fourth harmonic. (author)

  7. Long-time tails of the heat-conductivity time correlation functions for a magnetized plasma - a kinetic theory approach

    NARCIS (Netherlands)

    Schoolderman, A.J.; Suttorp, L.G.

    1989-01-01

    The long-time behaviour of the longitudinal and the transverse heat conductivity time correlation functions for a magnetized one-component plasma is studied by means of kinetic theory. To that end these correlation functions, which are defined as the inverse Laplace transforms of the dynamic heat

  8. C.A.P. plasma physics summer school, Banff, June 1975. I. Experiments on laser-heated solenoids and pinches

    International Nuclear Information System (INIS)

    Vlases, G.C.

    1975-01-01

    A review is given of experimental progress on the use of long wavelength lasers (CO 2 or CO) to heat long, magnetically confined plasma columns to thermonuclear temperatures. Theoretical studies of the feasibility of the concept for controlled fusion power are reviewed. The laser-heated solenoid concept is reviewed in particular

  9. Analysis of plasma dynamic response to modulated electron cyclotron heating in TCV tokamak

    International Nuclear Information System (INIS)

    Pavlov, I.

    2008-01-01

    The need of durable, economically acceptable and safe energy sources continues to stimulate studies in the field of thermonuclear fusion. The most successful solution for controlled magnetic fusion is the tokamak. The improvement of tokamak performance depends on the optimization of pressure and current density spatial distributions which can be modified by means of an auxiliary heating and a current drive. In particular, electron cyclotron heating (ECH) is a very important tool for the study and control of basic physical processes governing plasma confinement and stability, particularly because it allows the injection of highly localized intense power. ECH power deposition location plays a crucial role in sawtooth control and suppression, it is also important for tearing mode stabilization, and for implementation of closed loop systems for automatic control/suppression of magnetohydrodynamic activity. A part of the ECH power can be modulated (MECH), and used to identify where the ECH power has been deposited, and can also be useful in the experimental analysis of the electron transport in general. Nevertheless, despite the goal of MECH being a diagnostic and analysis tool, MECH can couple to plasma oscillations, such as sawteeth. MECH-sawtooth phase coupling adds significant complications in ECH deposition location and transport analysis, in some cases making the interpretations of results misleading. This is why it is important to get an insight into the phenomenon of MECH-sawtooth interaction, and to establish the boundaries where conventional types of modulation analysis can be successfully implemented. This thesis presents the analysis and interpretation of perturbative MECH experiments performed in the TCV tokamak with particular attention paid to the non-linear phase coupling of heat waves. TCV is equipped with a very flexible and high power ECH system. Two independent ECH systems permit MECH to be deposited at two different spatial locations, with two

  10. Scaling of energy confinement with minor radius, current and density in Doublet III Ohmically heated plasmas

    International Nuclear Information System (INIS)

    Ejima, S.; Petrie, T.W.; Riviere, A.C.

    1982-01-01

    The dependence of plasma energy confinement on minor radius, density and plasma current is described for Ohmically heated near-circular plasmas in Doublet III. A wide range of parameters is used for the study of scaling laws; the plasma minor radius defined by the flux surface in contact with limiter is varied by a factor of 2 (a = 44, 32, and 23 cm), the line average plasma density, nsub(e)-bar, is varied by a factor of 20 from 0.5 to 10 x 10 13 cm -3 (nsub(e)-bar R 0 /Bsub(T) = 0.3 to 6 x 10 14 cm -2 .kG -1 ) and the plasma current, I, is varied by a factor of 6 from 120 to 718 kA. The range of the limiter safety factor, qsub(L), is from 2 to 12. - For plasmas with a = 23 and 32 cm, the scaling law at low nsub(e)-bar for the gross electron energy confinement time can be written as (s, cm) tausub(Ee)sup(G) approx.= 3.6 x 10 -19 nsub(e)-bar a 2 qsub(c)sup(3/4), where qsub(c) = 2πa 2 Bsub(T)/μ 0 IR 0 . For the 44-cm plasmas, tausub(Ee)sup(G) is about 1.8 times less than predicted by this scaling, possibly owing to the change in limiter configuration and small plasma-wall separation and/or the aspect ratio change. At high nsub(e)-bar, tausub(Ee)sup(G) saturates and in many cases decreases with nsub(e)-bar but increases with I in a classical-like manner. The dependence of tausub(Ee)sup(G) on a is considerably weakened. The confinement behaviour can be explained by taking an ion thermal conductivity 2 to 7 times that given by Hinton-Hazeltine's neoclassical theory with a lumped-Zsub(eff) impurity model. Within this range the enhancement factor increases with a or a/R 0 . The electron thermal conductivity evaluated at half-temperature radius where most of the thermal insulation occurs sharply increases with average current density within that radius, but does not depend on a within the uncertainties of the measurements. (author)

  11. Variable eigenmode excitation in the beach heating of two-ion-species mirror plasmas

    International Nuclear Information System (INIS)

    Roberts, D.R.

    1990-01-01

    Variable eigenmode excitation scans of the ion species ratio of hydrogen-helium and hydrogen-deuterium plasmas has been examined in the bench-heating configuration of the Phaedrus-B central cell. m = -1 fields were selectively excited by a ''rotating-field'' antenna array at ω/Ω H = 0.8. The coupled wave energy propagates through a steep axial magnetic gradient into a region of strong ion-cyclotron resonance absorption which is located triangle z = 50cm from the antenna. Evidence of varied fast- and slow-wave eigenmode excitation and absorption, including variations in the radial profiles of waves magnetic field and plasma parameters, was observed during the scans. Optimal peak parameters in the plasma core, n e = 1.0 x 10 13 cm -3 , T eparallel = 20eV, T iparallel = 140eV, T iperpendicular = 450eV, and β = 0.2, were obtained for moderate helium or deuterium ion fractions (puffed n He /n e = n D /n e ∼ 0.25). These parameters exceed those obtained under the same conditions with ''pure'' hydrogen plasmas: n e = 7.0 x 10 12 cm -3 , T eparallel = 25eV, T iparallel = 80eV, T iperpendicular = 300eV, and β = 0.1. These variations are in agreement with those expected from antenna-eigenmode coupling considerations

  12. Equilibrium, stability and heating of plasmas in linear and toroidal Extrap pinches

    International Nuclear Information System (INIS)

    Bonnevier, B.; Drake, J.R.; Dalhed, H.E.

    1983-01-01

    The Extrap scheme consists of a Z-pinch immersed in an octupole field. The total magnetic field has no component along the pinch axis. Globally stable Z-pinch equilibria with a distributed plasma current density and a duration of about 100 Alfven transit times have been observed in linear and toroidal sector experiments. Theoretical studies indicate that this stability can be the result of constraints introduced by the octupole field and the resulting separatrix of the total field, in combination with finite-Larmor-radius effects. A scheme for ICRF heating of the plasma in configurations with a magnetic neutral line, being applicable to Extrap and FRC, is analysed. Wave propagation arises owing to the Hall effect. Particle resonances are responsible for the absorption, owing to a high parallel wavenumber and a weak magnetic field. (author)

  13. Nonlinear parametric phenomena in plasma during radio frequency heating in the ion cyclotron frequency range

    International Nuclear Information System (INIS)

    Stepanov, K.N.

    1996-01-01

    Parametric phenomena in plasma which occur due to varying electric fields with the ion cyclotron frequency are reviewed. Beam-like lower hybrid instability emerges in strong pumping fields provided that the transverse relative velocity of particles is larger than the ion thermal speed (υ Ti ). The resulting turbulence and the following numerous manifestations observed experimentally are addressed. The turbulence may prove important for experiments aimed at plasma production or radio frequency (RF) cleaning of metallic surfaces of vacuum chambers in stellarators, tokamaks and helicon devices. In contrast, for a weak field (U Ti ) the kinetic parametric instabilities of ion cyclotron oscillations arise due to electrons. The issues of the turbulence, mathematical modelling, its role in turbulent heating observed on the torsatron Uragan-3M, decay instabilities associated with ion cyclotron oscillations and the triggering of ion quasimodes are considered. (author)

  14. Plasma experiments on staged theta pinch, implosion heating experiment and Scyllac feedback-sector experiment

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Buchenauer, C.J.; Cantrell, E.L.

    1977-01-01

    Results of the Los Alamos theta-pinch program in three areas of investigation are summarized: 1) In the Staged Theta Pinch, results are reported on the effects of magnetic field amplitude and time history of plasma formation. 2) In the Implosion Heating Experiment, density, internal-magnetic field and neutron measurements yield a consistent picture of the implosion which agrees with kinetic computations and with a simple dynamic model of the ions and magnetic piston. 3) In the Scyllac Feedback-Sector Experiment, the l=1, 0 equilibrium plasma parameters have been adjusted to accommodate the feedback stabilization system. With a uniform toroidal discharge tube the m=1 instability is feedback-stabilized in the vertical direction, and confinement in the toroidal direction is extended by feedback control. Results with a helical discharge tube are also reported. (author)

  15. Characteristics of plasma in uranium atomic beam produced by electron-beam heating

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    The electron temperature of plasma and the ion flux ratio in the uranium atomic beam produced by electron-beam heating were characterized with Langmuir probes. The electron temperature was 0.13 eV, which was lower than the evaporation surface temperature. The ion flux ratio to atomic beam flux was more than 3% at higher evaporation rates. The ion flux ratio has increased with decreasing acceleration energy of the electron-beam under constant electron-beam power. This is because of an increase of electron-beam current and a large ionization cross-section of uranium by electron-impact. It was confined that the plasma is produced by electron-impact ionization of the evaporated atoms at the evaporation source. (author)

  16. Magnetic field profiles during turbulent heating in a toroidal hydrogen plasma

    International Nuclear Information System (INIS)

    Kalfsbeek, H.W.

    1978-12-01

    A description is given of the measurements of both poloidal and toroidal magnetic field components as functions of radius and time in a small turbulently heated tokamak. These measurements have been carried out with an array of miniature pick-up coils, enclosed in a quartz tube which is inserted into the plasma. The electric fields inside the plasma, as well as the parallel resistivity profiles are deduced from the measured magnetic fields. The ohmically dissipated energy is determined from the field distributions and compared with the total input energy. The experimental results are compared with the outcome of a numerical model. The consistency with information obtained from other diagnostic measurements is checked. (Auth.)

  17. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  18. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma

    International Nuclear Information System (INIS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2014-01-01

    The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω e τ e effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω e τ e as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics

  19. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.

    2017-07-01

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV  ⩽  650 eV, which is in contrast to T i,OV  ⩽  70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.

  20. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Conroy, S W; Hone, M; Sadler, G J; Van Belle, P [Commission of the European Communities, Luxembourg (Luxembourg)

    1994-07-01

    {sup 3} He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the JET tokamak. The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3} He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (authors). 5 refs., 6 figs.

  1. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  2. Radio frequency plasma heating in large tokamak systems near the lower hybrid resonance

    International Nuclear Information System (INIS)

    Deitz, A.; Hooke, W.M.

    1975-01-01

    The frequency range, power, efficiency, and pulse length of a high power rf system are discussed as they might be applied to the TFTR Tokamak facility as well as on a full scale reactor. Comparisons are made of the size, power output, and costs to obtain microwave power sufficient to satisfy the physics requirements. A new microwave feed concept is discussed which will improve the coupling of the microwave energy into the plasma. The unique advantages of waveguide feed systems is apparent when one considers the practical problems associated with coupling supplementary heating energy into a reactor

  3. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    Chin, O.H.; Jayapalan, K.K.; Wong, C.S.

    2014-01-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  4. Charging and heat collection by a positively charged dust grain in a plasma.

    Science.gov (United States)

    Delzanno, Gian Luca; Tang, Xian-Zhu

    2014-07-18

    Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.

  5. 15-MeV proton emission from ICRF-heated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O.N.; Conroy, S.W.; Hone, M.; Sadler, G.J.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    {sup 3}He-d fusion reaction protons emitted from ICRF-heated discharges were recorded with a silicon diode detector installed in the Joint European Torus (JET). The detection rates demonstrated that sawtooth crashes eject fast particles from the inner region of the plasma. The energy spectra of the fusion product protons using H minority provided evidence for the second harmonic acceleration of deuterons at sub-MW levels of RF power and those with {sup 3}He minority did not possess the expected twin-lobed shape predicted by kinematics calculations. (author) 5 refs., 6 figs.

  6. A model for the numerical simulations of ion cyclotron heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1986-05-01

    We present a complete set of equations for the numerical simulation of ion cyclotron heating of tokamak plasmas. The model includes the full geometry of the tokamak equilibrium, full parallel dispersion, and perpendicular dispersion to second order in the Larmor radius. It is therefore capable of describing correctly ion cyclotron damping at the fundamental and first harmonic, as well as mode conversion to the ion Bernstein wave and/or the shear Alfven wave, depending on the heating scenario. It includes also electron magnitude pumping and Landau damping, the latter to lowest order in msub(e)/msub(i). Relying on the knowledge gained from slab and ray tracing analysis, we also situate with respect to this standard model some of the further approximations which are commonly encountered in the literature. Finally, two procedures for the numerical solution of the standard model are proposed. (orig.)

  7. Experimental simulation and analysis of off-normal heat loads accompanying plasma disruptions

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Bakker, J.; Stad, R.C.L. van der; Klippel, H.T.

    1990-12-01

    The plasma disruption heat load is simulated experimentally using a pulsed laser beam with high energy density and short pulse duration (0.2-20 mm) covering a certain range of ITER design values. The present status of the laser heat flux test facility and new experimental tools are described. Spatial and time resolved profiles of the laser beam are given. Experimental results are presented including the variation of angle of incidence of the laser beam relative to the material surface. The nature and effects of the induced vapour plume are discussed. Materials studied are relevant to the ITER design. Experimental results are compared with numerical calculations. Some implications for the design of First Wall and Divertor of ITER are addressed. (author). 13 refs.; 5 figs

  8. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  9. Radio-frequency heating and neutral atom transport in a fluid-magnetohydrodynamic treatment of burning tokamak plasmas

    International Nuclear Information System (INIS)

    Conn, R.W.; Mau, T.K.; Prinja, A.K.

    1983-01-01

    A physical model for the space and time evolution of the primary parameters of ordinary and burning tokamak plasmas is described by employing a fluid plasma treatment coupled to a magnetohydrodynamic equilibrium description, the solution to the appropriate Maxwell equations, and the solution of the linear transport equation describing neutral atom transport in plasmas. The specific problems of plasma heating by ion cyclotron radiofrequency (ICRF) waves and neutral atom transport in the plasma edge and in complicated geometrical components such as divertor channels or pumped limiter structures are analyzed. A theoretical, onedimensional slab model of ICRF heating at ω = 2ω/SUB cD/ is developed and applied to determine the space-time response of tokamak plasmas. Generally, strong single-pass absorption is found for high-density, high (β) plasmas using a low k 11 spectrum (0.05 to 0.1 cm -1 ) although for (β > 1%, electron Landau damping becomes important. Deterministic and Monte Carlo methods to solve the neutral atom transport problem are described. Specific application to determine the spectrum of neutral atoms emerging from the duct of a pump limiter shows it to be hard (mean energy > 20 eV), indicating very incomplete energy thermalization. Uncertainties are identified in the overall problem of dynamic burning plasma analysis caused by the complexity of the problem itself and by uncertainties in fundamental areas such as plasma transport coefficients, stability, and plasma edge physics

  10. INFERENCE OF HEATING PROPERTIES FROM “HOT” NON-FLARING PLASMAS IN ACTIVE REGION CORES. I. SINGLE NANOFLARES

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, W. T.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77251-1892 (United States); Cargill, P. J., E-mail: will.t.barnes@rice.edu [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2016-09-20

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 10{sup 6.6} and 10{sup 7} K. Signatures of the actual heating may be detectable in some instances.

  11. Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

    Science.gov (United States)

    Polito, V.; Testa, P.; Allred, J.; De Pontieu, B.; Carlsson, M.; Pereira, T. M. D.; Gošić, Milan; Reale, Fabio

    2018-04-01

    We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff ({E}{{C}}) deposit energy in the lower TR and chromosphere, causing blueshifts (up to ∼20 km s‑1) in the IRIS Si IV lines, which thermal conduction cannot reproduce. The {E}{{C}} threshold value for the blueshifts depends on the total energy of the events (≈5 keV for 1024 erg, up to 15 keV for 1025 erg). The observed footpoint emission intensity and flows, combined with the simulations, can provide constraints on both the energy of the heating event and {E}{{C}}. The response of the loop plasma to nanoflares depends crucially on the electron density: significant Si IV intensity enhancements and flows are observed only for initially low-density loops (<109 cm‑3). This provides a possible explanation of the relative scarcity of observations of significant moss variability. While the TR response to single heating episodes can be clearly observed, the predicted coronal emission (AIA 94 Å) for single strands is below current detectability and can only be observed when several strands are heated closely in time. Finally, we show that the analysis of the IRIS Mg II chromospheric lines can help further constrain the properties of the heating mechanisms.

  12. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.

    2004-01-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m 2 of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m 2 TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  13. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m{sup 2} of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m{sup 2} TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  14. Oligonol supplementation modulates plasma volume and osmolality and sweating after heat load in humans.

    Science.gov (United States)

    Lee, JeongBeom; Shin, YoungOh; Murota, Hiroyuki

    2015-05-01

    Oligonol is a low-molecular-weight polyphenol that possesses antioxidant and anti-inflammatory properties. This study investigated the effects of Oligonol supplementation on sweating response, plasma volume (PV), and osmolality (Osm) after heat load in human volunteers. We conducted a placebo-controlled crossover trial. Participants took a daily dose of 200 mg Oligonol or placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. As a heat load, half-body immersion into hot water (42°C±0.5°C for 30 min) was performed in an automated climate chamber. Tympanic and mean body temperature (Tty, mTb) and whole-body sweat loss volume (WBSLV) were measured. Changes in PV, Osm, and serum levels of aldosterone and sodium were analyzed. Oligonol intake attenuated increases in Tty, mTb, and WBSLV after heat load compared with the placebo (Pbody temperature and excessive sweating under heat load in healthy humans, but interpretation of the results requires caution due to the potent diuretic effect of Oligonol.

  15. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-01-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called hollow atoms must be taken into account for adequate description of plasma radiation

  16. PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Wang, Chi; Zhang, Lingqian [State Key Laboratory of Space Weather, National Space Science Center, CAS, Beijing, 100190 (China); He, Jiansen [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Richardson, John D.; Belcher, John W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA (United States); Tu, Cui, E-mail: hli@spaceweather.ac.cn [Laboratory of Near Space Environment, National Space Science Center, CAS, Beijing, 100190 (China)

    2016-11-10

    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar “W”-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs.

  17. Radiation and Heat Stress Impact on Plasma Levels of Thyroid Hormones, Lipid Fractions, Glucose and Liver Glycogen in rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.

    2003-01-01

    Since Egypt is classified as a hot country, the present work has been directed to study the combined effect of heat stress and gamma radiation exposure on blood thyroid hormonal levels and some other parameters. Four groups of rats were served as: control, whole-body gamma irradiated (6Gy), exposed to ambient heat stress (38 C-40 C) and a group exposed to heat stress and irradiation. Four time intervals 1, 3, 5 and 7 days were determined for heat stress or exposure to heat followed by irradiation. Blood samples and liver specimens were taken at the end of each time interval in the third group and after one hour of irradiation in the second and fourth groups. To detect the radiation effects after the different periods of heat stress, plasma levels of thyroid hormones (T3 and T4), lipid fractions (triglycerides, total cholesterol, HDL- and LDL-cholesterol), glucose and liver glycogen content were determined. The results revealed that exposure to heat and ionizing radiation leads to a decrease in the levels of thyroid hormones, which was mostly pronounced in the T3 levels. Plasma glucose levels showed significant elevations in both, the heat-stressed group and the heat-treated then irradiated group. While, liver glycogen content exhibited similar elevations only during the 1st, 3 rd and 5 th days of heating followed by irradiation treatment as compared to the heat stressed group. Yet, it showed significant declines in comparison with both control and irradiated groups. Enormous increments in all determined plasma lipid fractions were induced by heat stress and / or gamma radiation

  18. An Exploration of Heating Mechanisms in a Supra-arcade Plasma Sheet Formed after a Coronal Mass Ejection

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 58, Cambridge, MA 02138 (United States); Freed, Michael S.; McKenzie, David E. [Montana State University, Bozeman, MT 59717 (United States); Savage, Sabrina L., E-mail: kreeves@cfa.harvard.edu [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2017-02-10

    We perform a detailed analysis of the thermal structure of the region above the post-eruption arcade for a flare that occurred on 2011 October 22. During this event, a sheet of hot plasma is visible above the flare loops in the 131 Å bandpass of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . Supra-arcade downflows (SADs) are observed traveling sunward through the post-eruption plasma sheet. We calculate differential emission measures using the AIA data and derive an emission measure weighted average temperature in the supra-arcade region. In areas where many SADs occur, the temperature of the supra-arcade plasma tends to increase, while in areas where no SADs are observed, the temperature tends to decrease. We calculate the plane-of-sky velocities in the supra-arcade plasma and use them to determine the potential heating due to adiabatic compression and viscous heating. Of the 13 SADs studied, 10 have noticeable signatures in both the adiabatic and the viscous terms. The adiabatic heating due to compression of plasma in front of the SADs is on the order of 0.1–0.2 MK/s, which is similar in magnitude to the estimated conductive cooling rate. This result supports the notion that SADs contribute locally to the heating of plasma in the supra-arcade region. We also find that in the region without SADs, the plasma cools at a rate that is slower than the estimated conductive cooling, indicating that additional heating mechanisms may act globally to keep the plasma temperature high.

  19. An Exploration of Heating Mechanisms in a Supra-arcade Plasma Sheet Formed after a Coronal Mass Ejection

    International Nuclear Information System (INIS)

    Reeves, Katharine K.; Freed, Michael S.; McKenzie, David E.; Savage, Sabrina L.

    2017-01-01

    We perform a detailed analysis of the thermal structure of the region above the post-eruption arcade for a flare that occurred on 2011 October 22. During this event, a sheet of hot plasma is visible above the flare loops in the 131 Å bandpass of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . Supra-arcade downflows (SADs) are observed traveling sunward through the post-eruption plasma sheet. We calculate differential emission measures using the AIA data and derive an emission measure weighted average temperature in the supra-arcade region. In areas where many SADs occur, the temperature of the supra-arcade plasma tends to increase, while in areas where no SADs are observed, the temperature tends to decrease. We calculate the plane-of-sky velocities in the supra-arcade plasma and use them to determine the potential heating due to adiabatic compression and viscous heating. Of the 13 SADs studied, 10 have noticeable signatures in both the adiabatic and the viscous terms. The adiabatic heating due to compression of plasma in front of the SADs is on the order of 0.1–0.2 MK/s, which is similar in magnitude to the estimated conductive cooling rate. This result supports the notion that SADs contribute locally to the heating of plasma in the supra-arcade region. We also find that in the region without SADs, the plasma cools at a rate that is slower than the estimated conductive cooling, indicating that additional heating mechanisms may act globally to keep the plasma temperature high.

  20. Heating of polymer substrate by discharge plasma in radiofrequency magnetron sputtering deposition

    International Nuclear Information System (INIS)

    Sirghi, Lucel; Popa, Gheorghe; Hatanaka, Yoshinori

    2006-01-01

    The substrate used for the thin film deposition in a radiofrequency magnetron sputtering deposition system is heated by the deposition plasma. This may change drastically the surface properties of the polymer substrates. Deposition of titanium dioxide thin films on polymethyl methacrylate and polycarbonate substrates resulted in buckling of the substrate surfaces. This effect was evaluated by analysis of atomic force microscopy topography images of the deposited films. The amount of energy received by the substrate surface during the film deposition was determined by a thermal probe. Then, the results of the thermal probe measurements were used to compute the surface temperature of the polymer substrate. The computation revealed that the substrate surface temperature depends on the substrate thickness, discharge power and substrate holder temperature. For the case of the TiO 2 film depositions in the radiofrequency magnetron plasma, the computation indicated substrate surface temperature values under the polymer melting temperature. Therefore, the buckling of polymer substrate surface in the deposition plasma may not be regarded as a temperature driven surface instability, but more as an effect of argon ion bombardment

  1. Simulation of tokamak armour erosion and plasma contamination at intense transient heat fluxes in ITER

    Science.gov (United States)

    Landman, I. S.; Bazylev, B. N.; Garkusha, I. E.; Loarte, A.; Pestchanyi, S. E.; Safronov, V. M.

    2005-03-01

    For ITER, the potential material damage of plasma facing tungsten-, CFC-, or beryllium components during transient processes such as ELMs or mitigated disruptions are simulated numerically using the MHD code FOREV-2D and the melt motion code MEMOS-1.5D for a heat deposition in the range of 0.5-3 MJ/m 2 on the time scale of 0.1-1 ms. Such loads can cause significant evaporation at the target surface and a contamination of the SOL by the ions of evaporated material. Results are presented on carbon plasma dynamics in toroidal geometry and on radiation fluxes from the SOL carbon ions obtained with FOREV-2D. The validation of MEMOS-1.5D against the plasma gun tokamak simulators MK-200UG and QSPA-Kh50, based on the tungsten melting threshold, is described. Simulations with MEMOS-1.5D for a beryllium first wall that provide important details about the melt motion dynamics and typical features of the damage are reported.

  2. Plasma column development in the CO2 laser-heated solenoid

    International Nuclear Information System (INIS)

    Tighe, W.; Offenberger, A.A.; Capjack, C.E.

    1987-01-01

    Axial and radial plasma dynamics in the CO 2 laser-heated solenoid have been studied experimentally and numerically. The axial behavior is found to be well described by a self-regulated bleaching wave model. The radial expansion is found to be strongly dependent on the focusing ratio of the input laser beam. With a fast focus ( f/5), the early radial expansion rate is twice that found with a slower focusing arrangement ( f/15). The faster focusing ratio also results in a significantly wider plasma column. On the other hand, no significant dependence of f/number on the axial propagation was found. A finite ionization time and the rapid formation of a density minimum on axis are observed and verify earlier experimental results. Detailed comparisons are made with a 2-D magnetohydrodynamic (MHD) and laser propagation code. The axial and radial plasma behavior and, in particular, the dependence of the radial behavior on the focal ratio of the laser are reasonably well supported by the simulation results. Computational results are also in good agreement with experimental measurements of temperature and density using stimulated scattering (Brillouin, Raman) and interferometry diagnostic techniques

  3. Nonlinear error-field penetration in low density ohmically heated tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R

    2012-01-01

    A theory is developed to predict the error-field penetration threshold in low density, ohmically heated, tokamak plasmas. The novel feature of the theory is that the response of the plasma in the vicinity of the resonant surface to the applied error-field is calculated from nonlinear drift-MHD (magnetohydrodynamical) magnetic island theory, rather than linear layer theory. Error-field penetration, and subsequent locked mode formation, is triggered once the destabilizing effect of the resonant harmonic of the error-field overcomes the stabilizing effect of the ion polarization current (caused by the propagation of the error-field-induced island chain in the local ion fluid frame). The predicted scaling of the error-field penetration threshold with engineering parameters is (b r /B T ) crit ∼n e B T -1.8 R 0 -0.25 , where b r is the resonant harmonic of the vacuum radial error-field at the resonant surface, B T the toroidal magnetic field-strength, n e the electron number density at the resonant surface and R 0 the major radius of the plasma. This scaling—in particular, the linear dependence of the threshold with density—is consistent with experimental observations. When the scaling is used to extrapolate from JET to ITER, the predicted ITER error-field penetration threshold is (b r /B T ) crit ∼ 5 × 10 −5 , which just lies within the expected capabilities of the ITER error-field correction system. (paper)

  4. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    Science.gov (United States)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.

    2018-05-01

    The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.

  5. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  6. Innovative Divertor Development to Solve the Plasma Heat-Flux Problem

    International Nuclear Information System (INIS)

    Rognlien, T.; Ryutov, D.; Makowski, M.; Soukhanovskii, V.; Umansky, M.; Cohen, R.; Hill, D.; Joseph, I.

    2009-01-01

    Large, localized plasma heat exhaust continues to be one of the critical problems for the development of tokamak fusion reactors. Excessive heat flux erodes and possibly melts plasma-facing materials, thereby dramatically shortening their lifetime and increasing the impurity contamination of the core plasma. A detailed assessment by the ITER team for their divertor has revealed substantial limitations on the operational space imposed by the divertor performance. For a fusion reactor, the problem becomes worse in that the divertor must accommodate 20% of the total fusion power (less any broadly radiated loss), while not allowing excess buildup of tritium in the walls nor excessive impurity production. This is an extremely challenging set of problems that must be solved for fusion to succeed as a power source; it deserves a substantial research investment. Material heat-flux constraints: Results from present-day tokamaks show that there are two major limitations of peak plasma heat exhaust. The first is the continuous flow of power to the divertor plates and nearby surfaces that, for present technology, is limited to 10-20 MW/m 2 . The second is the transient peak heat-flux that can be tolerated in a short time, τ m , before substantial ablation and melting of the surface occurs; such common large transient events are Edge Localized Mode (ELMs) and disruptions. The material limits imposed by these events give a peak energy/τ m 1/2 parameter of ∼ 40 MJ/m 2 s 1/2 (1). Both the continuous and transient limits can be approached by input powers in the largest present-day devices, and future devices are expected to substantially exceed the limits unless a solution can be found. Since the early 90's LLNL has developed the analytic and computational foundation for analyzing divertor plasmas, and also suggested and studied a number of solid and liquid material concepts for improving divertor/wall performance, with the most recent being the Snowflake divertor concept (2

  7. Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma

    Science.gov (United States)

    Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.

    2017-12-01

    Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).

  8. Electrostatic wave heating and possible formation of self-generated high electric fields in a magnetized plasma

    Science.gov (United States)

    Mascali, D.; Celona, L.; Gammino, S.; Miracoli, R.; Castro, G.; Gambino, N.; Ciavola, G.

    2011-10-01

    A plasma reactor operates at the Laboratori Nazionali del Sud of INFN, Catania, and it has been used as a test-bench for the investigation of innovative mechanisms of plasma ignition based on electrostatic waves (ES-W), obtained via the inner plasma EM-to-ES wave conversion. Evidences of Bernstein wave (BW) generation will be shown. The Langmuir probe measurements have revealed a strong increase of the ion saturation current, where the BW are generated or absorbed, this being a signature of possible high energy ion flows. The results are interpreted through the Bernstein wave heating theory, which predicts the formation of high speed rotating layers of the plasma (a dense plasma ring is in fact observed). High intensity inner plasma self-generated electric fields (on the order of several tens of kV/cm) come out by our calculations.

  9. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    Directory of Open Access Journals (Sweden)

    Gallart Dani

    2017-01-01

    Full Text Available During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ∼7.0 MW in D-T.

  10. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won; Cho, Seungyon

    2014-01-01

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity

  11. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  12. Development of advanced high heat flux and plasma-facing materials

    Science.gov (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  13. Heating power at the substrate, electron temperature, and electron density in 2.45 GHz low-pressure microwave plasma

    Science.gov (United States)

    Kais, A.; Lo, J.; Thérèse, L.; Guillot, Ph.

    2018-01-01

    To control the temperature during a plasma treatment, an understanding of the link between the plasma parameters and the fundamental process responsible for the heating is required. In this work, the power supplied by the plasma onto the surface of a glass substrate is measured using the calorimetric method. It has been shown that the powers deposited by ions and electrons, and their recombination at the surface are the main contributions to the heating power. Each contribution is estimated according to the theory commonly used in the literature. Using the corona balance, the Modified Boltzmann Plot (MBP) is employed to determine the electron temperature. A correlation between the power deposited by the plasma and the results of the MBP has been established. This correlation has been used to estimate the electron number density independent of the Langmuir probe in considered conditions.

  14. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    International Nuclear Information System (INIS)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-01

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO 3 or LiNbO 3 as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm 2 10 kW/cm 2 and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor

  15. Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS

    Science.gov (United States)

    Dejarnac, R.; Corre, Y.; Vondracek, P.; Gaspar, J.; Gauthier, E.; Gunn, J. P.; Komm, M.; Gardarein, J.-L.; Horacek, J.; Hron, M.; Matejicek, J.; Pitts, R. A.; Panek, R.

    2018-06-01

    Dedicated experiments have been performed in the COMPASS tokamak to thoroughly study the power deposition processes occurring on poloidal and toroidal edges of castellated plasma-facing components in tokamaks during steady-state L-mode conditions. Surface temperatures measured by a high resolution infra-red camera are compared with reconstructed synthetic data from a 2D thermal model using heat flux profiles derived from both the optical approximation and 2D particle-in-cell (PIC) simulations. In the case of poloidal leading edges, when the contribution from local radiation is taken into account, the parallel heat flux deduced from unperturbed, upstream measurements is fully consistent with the observed temperature increase at the leading edges of various heights, respecting power balance assuming simple projection of the parallel flux density. Smoothing of the heat flux deposition profile due to finite ion Larmor radius predicted by the PIC simulations is found to be weak and the power deposition on misaligned poloidal edges is better described by the optical approximation. This is consistent with an electron-dominated regime associated with a non-ambipolar parallel current flow. In the case of toroidal gap edges, the different contributions of the total incoming flux along the gap have been observed experimentally for the first time. They confirm the results of recent numerical studies performed for ITER showing that in specific cases the heat deposition does not necessarily follow the optical approximation. Indeed, ions can spiral onto the magnetically shadowed toroidal edge. Particle-in-cell simulations emphasize again the role played by local non-ambipolarity in the deposition pattern.

  16. Confinement and βsub(p)-studies in neutral injection heated ASDEX plasmas

    International Nuclear Information System (INIS)

    Wagner, F.; Becker, G.; Behringer, K.; Campbell, D.; Eberhagen, A.; Engelhardt, W.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. von; Haas, G.; Huang, M.; Karger, F.; Keilhacker, M.; Klueber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; Lister, G.G.; Mayer, H.M.; Meisel, D.; Mueller, E.R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Roehr, H; Schneider, F.; Siller, G.; Speth, E.; Staebler, A.; Steuer, K.H.; Succi, S.; Venus, G.; Vollmer, O.

    1983-03-01

    Neutral injection experiments into limiter and divertor discharges in ASDEX are described with hydrogen and deuterium as working gas. Two operational regimes have been observed in neutral injection heated divertor discharges. One regime is characterized by deteriorated energy and particle confinement. The global energy confinement times are comparable to those of neutral injection heated limited discharges. Tthe other regime has particle and energy confinement times comparable to those of ohmic discharges with tausub(E) = 40 - 60 msec at beam powers up to 3.1 MW. This regime is further characterized by high βsub(p)-values comparable to the aspect ratio A (βsub(p) proportional 0.65 A), by good electron heating (etasub(e) proportional 2.5 x 10 13 eV cm -3 kW -1 ) and ion heating (etasub(i) proportional 4.2 x 10 13 eV cm -3 kW -1 ). In both regimes, tausub(E) increases with plasma current but there is hardly any variation with density. The differences in confinement and scaling to ohmic discharges seem to be caused by modifications of the electron loss channel. The high βsub(p)-regime develops at an injection power >=1.8 MW, anti nsub(e) >= 3 x 10 13 cm -3 and q >= 2.45, and is so far only observed in divertor discharges. There are indications that this may be due to the broad profiles with high edge temperatures which can develop in divertor discharges. An indication of broad current density profiles is given by the lack of sawtooth activity in these discharges. (orig.)

  17. Restricting dietary sodium reduces plasma sodium response to exercise in the heat.

    Science.gov (United States)

    Koenders, E E; Franken, C P G; Cotter, J D; Thornton, S N; Rehrer, N J

    2017-11-01

    Exercise-associated hyponatremia can be life-threatening. Excessive hypotonic fluid ingestion is the primary etiological factor but does not explain all variability. Possible effects of chronic sodium intake are unknown. The aim of this study was to determine whether dietary sodium affects plasma sodium concentration [Na + ] during exercise in the heat, when water intake nearly matches mass loss. Endurance-trained men (n = 9) participated in this crossover experiment. Each followed a low-sodium (lowNa) or high-sodium (highNa) diet for 9 days with 24-h fluid intakes and urine outputs measured before experimental trials (day 10). The trials were ≥2 week apart. Trials comprised 3 h (or if not possible to complete, to exhaustion) cycling (55% VO 2max ; 34 °C, 65% RH) with water intake approximating mass loss. Plasma [Na + ], hematocrit, sweat and urine [Na + ], heart rate, core temperature, and subjective perceptions were monitored. Urine [Na + ] was lower on lowNa 24 h prior to (31 ± 24, 76 ± 30 mmol/L, P = 0.027) and during trials (10 ± 10, 52 ± 32 mmol/L, P = 0.004). Body mass was lower on lowNa (79.6 ± 8.5, 80.5 ± 8.9, P = 0.03). Plasma [Na + ] was lower on lowNa before (137 ± 2, 140 ± 3, P = 0.007) and throughout exercise (P = 0.001). Sweat [Na + ] was unaffected by diet (54.5 ± 40, 54.5 ± 23 mmol/L, P = 0.99). Heart rate and core temperature were higher on lowNa (P ≤ 0.001). Despite decreased urinary sodium losses, plasma sodium was lower on lowNa, with decreased mass indicating (extracellular) water may have been less, explaining greater heart rate and core temperature. General population health recommendations to lower salt intake may not be appropriate for endurance athletes, particularly those training in the heat. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Influence of impurities on the transition from minority to mode conversion heating in ({sup 3}He)-H)- plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Ye. O. [LPP-ERM/KMS, Association EURATOM-Belgian State, Trilateral Euregio Cluster Partner, Brussels (Belgium); Fülöp, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Göteborg (Sweden); Van Eester, D. [LPP-ERM/KMS, Association ' EURATOM-Belgian State' , Trilateral Euregio Cluster Partner, Brussels (Belgium)

    2014-02-12

    Ion cyclotron resonance heating (ICRH) is one of the main auxiliary heating systems used in present-day tokamaks and is planned to be installed in ITER. In the initial full-field phase of ITER operating with hydrogen majority plasmas, fundamental resonance heating of helium-3 ions is one of a few ICRH schemes available. Past JET experiments with the carbon wall revealed a significant impact of impurities on the ICRH performance in ({sup 3}He)-H plasmas. A significant reduction of the helium-3 concentration, at which the transition from minority ion to mode conversion heating occurs, was found to be due to a high plasma contamination with carbon ions. In this paper we discuss the effect of Be and another impurity species present at JET after the installation of a new ITER-like wall on the transition helium-3 concentration in ({sup 3}He)-H plasmas. We suggest a potential method for controlling helium-3 level needed for a specific ICRH regime by puffing an extra helium-4 gas to the plasma.

  19. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  20. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    Science.gov (United States)

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  1. Influence of low-order rational magnetic surfaces on heat transport in TJ-II heliac ECRH plasmas

    International Nuclear Information System (INIS)

    Castejon, F.; Lopez-Bruna, D.; Estrada, T.; Ascasibar, E.; Zurro, B.; Baciero, A.

    2004-01-01

    We study the effect of low-order rational surfaces on electron heat transport in plasmas confined in the TJ-II stellarator (Alejaldre et al 1990 Fusion Technol. 17 131) and heated by electron cyclotron waves. Enhancement of core electron heat confinement is observed when the rational surface is placed in the vicinity of the power deposition zone, either by performing a magnetic configuration scan or by inducing Ohmic current in a single discharge. The key to improving heat confinement seems to be a locally strong positive radial electric field, which is made possible by a synergistic effect between enhanced electron heat fluxes through radial positions around low-order rationals and pump out mechanisms in the heat deposition zone. (author)

  2. Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, R C [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM/FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Baranov, Y [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Garbet, X [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Hawkes, N [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Peeters, A G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Challis, C [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Baar, M de [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Giroud, C [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Joffrin, E [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association-EURATOM Tekes, FIN-02015 HUT (Finland); Mazon, D [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Meister, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Zastrow, K-D [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-09-01

    In ASDEX Upgrade and JET, the ion temperature profiles can be described by R/L{sub Ti} which exhibits only little variations, both locally, when comparing different discharges, and radially over a wide range of the poloidal cross-section. Considering a change of the local ion heat flux of more than a factor of two, this behaviour indicates some degree of profile stiffness. In JET, covering a large ion temperature range from 1 to 25 keV, the normalized ion temperature gradient, R/L{sub Ti}, shows a dependence on the electron to ion temperature ratio or toroidal rotational shear. In particular, in hot ion plasmas, produced predominantly by neutral beam heating at low densities, in which large T{sub i}/T{sub e} is coupled to strong toroidal rotation, the effect of the two quantities cannot be distinguished. Both in ASDEX Upgrade and JET, plasmas with internal transport barriers (ITBs), including the PEP mode in JET, are characterized by a significant increase of R/L{sub Ti} above the value of L- and H-mode plasmas. In agreement with previous ASDEX Upgrade results, no increase of the ion heat transport in reversed magnetic shear ITB plasmas is found in JET when raising the electron heating. Evidence is presented that magnetic shear directly influences R/L{sub Ti}, namely decreasing the ion heat transport when going from weakly positive to negative magnetic shear.

  3. Confinement improvement in high-ion temperature plasmas heated with high-energy negative-NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Ikeda, K.

    2006-10-01

    The increase in the ion temperature due to transport improvement has been observed in plasmas heated with high-energy negative-NBI, in which electrons are dominantly heated, in Large Helical Device (LHD). When the centrally focused ECRH is superposed on the NBI plasma, the ion temperature is observed to rise, accompanied by formation of the electron-ITB. This is ascribed to the ion transport improvement with the transition to the neoclassical electron root with a positive radial electric field. In high-Z plasmas, the ion temperature is increased with an increase in the ion heating power, and reaches 13.5keV. The central ion temperature increases with an increase in a gradient of the electron temperature in an outer plasma region of ρ=0.8, suggesting the ion transport improvement in the outer plasma region induced by the neoclassical electron root. These results indicate the effectiveness of the electron-root scenario for obtaining high-ion temperature plasmas in helical systems. (author)

  4. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  5. Task III: auxillary heating in tokamaks and tandem mirrors. Progress report on fusion plasma theory

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1986-06-01

    The research we have accomplished with this grant has focused on ICRF coupling, wave propagation, heating and breakeven studies for tokamaks such as JET. The highlights include fundamental work on a differential equation for wave fields incorporating equilibrium gradients, strong absorption and mode conversion and a new wave power absorption and conservation relation for ICRF in inhomogeneous plasmas. We have also formulated and developed a code which solves differential equation for ICRF waveguide coupling in tokamak edge density regions. We are also examining the excitation of ion Bernstein waves from fast magnetosonic waves occurring in density gradients. Our current efforts involve the explanation of current JET ICRF results such as the large electron sawteeth in the core region in terms of hot, non-Maxwellian ICRF theory

  6. Theoretical studies of the heating of toroidal plasmas with radio frequency electromagnetic radiation. Final report

    International Nuclear Information System (INIS)

    Glasser, A.H.; Swanson, D.G.; Wersinger, J.M.

    1982-01-01

    The continuation of a program of theoretical studies of the heating of toroidal plasmas with radio frequency (RF) electromagnetic radiation is proposed. Funding for this project first began on September 3, 1981, and will expire on April 2, 1982. A summary of the principal accomplishments of the first five months of the project is presented. These include the acquisition of computer terminals and modems, the implementation of existing codes on the MFECC C Cray Computer, the extension of the LHTOR lower hybrid toroidal ray tracing code to the full electromagnetic dispersion relation, the implementation of graphic output from the code, the beginning of extensive parameter studies, the beginning of an analytical treatment of the mode conversion layer associated with singular harmonic absorption, and the introduction of a graduate student into the program

  7. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  8. Computational Fluid Dynamics Analysis of Cold Plasma Plume Mixing with Blood Using Level Set Method Coupled with Heat Transfer

    Directory of Open Access Journals (Sweden)

    Mehrdad Shahmohammadi Beni

    2017-06-01

    Full Text Available Cold plasmas were proposed for treatment of leukemia. In the present work, conceptual designs of mixing chambers that increased the contact between the two fluids (plasma and blood through addition of obstacles within rectangular-block-shaped chambers were proposed and the dynamic mixing between the plasma and blood were studied using the level set method coupled with heat transfer. Enhancement of mixing between blood and plasma in the presence of obstacles was demonstrated. Continuous tracking of fluid mixing with determination of temperature distributions was enabled by the present model, which would be a useful tool for future development of cold plasma devices for treatment of blood-related diseases such as leukemia.

  9. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  10. Properties of nonstationary modes of Joule heating of a low-temperature plasma

    International Nuclear Information System (INIS)

    Rutkevich, I.M.; Sinkevich, O.A.

    1980-01-01

    The qualitative properties are investigated of the one-dimensional temperature distributions and voltage-current characteristics of a low-temperature plasma under conditions of steady-state Joule heating. The analysis is carried out for arbitrary temperature dependences of the electric conductivity sigma(T) and thermal conductivity kappa(T) (for a planar geometry). Sufficient conditions are established for uniqueness of the solution of a nonlinear boundary-value problem. The effect is studied of the relative orientation of the electric current and heat flux vectors on the properties of the solutions. Examples are constructed of N-shaped, S-shaped, and more complex voltage-current characteristics for which the uniqueness conditions are violated. The relation is studied between the temperature dependences of the true and effective electric conductivities. A qualitative difference is observed in the behavior of these quantities for a function sigma (T) having a minimum. The inverse problem is considered of determining the functions sigma(T) and kappa(T) from data of electrical measurements. The role is discussed of the finite value of the thermal resistance of the walls in the generation of nonmonotone voltage-current characteristics

  11. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    Science.gov (United States)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  12. Modeling of sawtooth destabilization during radio-frequency heating experiments in tokamak plasmas

    International Nuclear Information System (INIS)

    McClements, K.G.; Dendy, R.O.; Hastie, R.J.; Martin, T.J.

    1996-01-01

    Sawtooth oscillations in tokamaks have been stabilized using ion cyclotron resonance heating (ICRH), but often reappear while ICRH continues. It is shown that the reappearance of sawteeth during one particular ICRH discharge in the Joint European Torus (JET) [Campbell et al., Phys. Rev. Lett. 60, 2148 (1988)] was correlated with a change of sign in the energy δW associated with m=1 internal kink displacements. To compute δW, a new analytical model is used for the distribution function of heated minority ions, which is consistent with Fokker endash Planck simulations of ICRH. Minority ions have a stabilizing influence, arising from third adiabatic invariant conservation, but also contribute to a destabilizing shift of magnetic flux surfaces. As the minor radius of the q=1 surface rises, the stabilizing influence of minority ions diminishes, and the shape of the plasma cross section becomes increasingly important. It is shown that an increase in ICRH power can destabilize the kink mode: this is consistent with observations of sawteeth in JET discharges with varying levels of ICRH. It is suggested that the sawtooth-free period could be prolonged by minimizing the vertical extent of the ICRH power deposition profile.1996 American Institute of Physics

  13. Electron temperature profiles in high power neutral-beam-heated TFTR [Tokamak Fusion Test Reactor] plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Grek, B.; Stauffer, F.J.; Goldston, R.J.; Fredrickson, E.D.; Wieland, R.M.; Zarnstorff, M.C.

    1987-09-01

    In 1986, the maximum neutral beam injection (NBI) power in the Tokamak Fusion Test Reactor (TFTR) was increased to 20 MW, with three beams co-parallel and one counter-parallel to I/sub p/. TFTR was operated over a wide range of plasma parameters; 2.5 19 19 m -3 . Data bases have been constructed with over 600 measured electron temperature profiles from multipoint TV Thomson scattering which span much of this parameter space. We have also examined electron temperature profile shapes from electron cyclotron emission at the fundamental ordinary mode and second harmonic extraordinary mode for a subset of these discharges. In the light of recent work on ''profile consistency'' we have analyzed these temperature profiles in the range 0.3 < (r/a) < 0.9 to determine if a profile shape exists which is insensitive to q/sub cyl/ and beam-heating profile. Data from both sides of the temperature profile [T/sub e/(R)] were mapped to magnetic flux surfaces [T/sub e/(r/a)]. Although T/sub e/(r/a), in the region where 0.3 < r/a < 0.9 was found to be slightly broader at lower q/sub cyl/, it was found to be remarkably insensitive to β/sub p/, to the fraction of NBI power injected co-parallel to I/sub p/, and to the heating profile going from peaked on axis, to hollow. 10 refs., 8 figs

  14. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  15. Observation of the low-frequency ion acoustic instability in the turbulently heated TRIAM-1 tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O; Watanabe, T; Nakamura, Y; Nakamura, K; Hiraki, N; Toi, K; Kawai, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-12-01

    Density fluctuations in the frequency range of several MHz are observed in the turbulently heated TRIAM-1 tokamak plasma by means of a 4 mm microwave scattering method. It is found from the measurement of the dispersion relation that this instability is considered to be the low-frequency ion acoustic instability propagating nearly perpendicular to the toroidal magnetic field.

  16. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    NARCIS (Netherlands)

    Lindsay, A.; Anderson, C.; Slikboer, E.T.; Shannon, S.; Graves, D.

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge;

  17. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  18. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  19. First plasma experiments in Tore Supra with a new generation of high heat flux limiters for RF antennas

    International Nuclear Information System (INIS)

    Agarici, G.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Bucalossi, J.; Colas, L.; Durocher, A.; Gargiulo, L.; Ladurelle, L.; Lombard, G.; Martin, G.; Mollard, P.

    2000-01-01

    During the 1997 and 1998 Tore Supra shutdown, a first set of new antenna guard limiters was installed on one of the three ion cyclotron resonance heating (ICRH) antennas of Tore Supra. This limiter, which was one of the main technological studies of the 1998 campaign, was widely experimented in real plasma conditions, thus allowing the validation in situ, for the first time, of the technology of active metal casting (AMC) for plasma facing components. The huge improvement in the thermal response of the new limiter generation, compared to the old one, is shown on plasma pulses made identical in terms of antenna position and injected RF power profile. By using the infrared cameras installed inside Tore Supra and viewing the antennas front, the power density fluxes received by the carbon fibre composite (CFC) surface of the limiter were evaluated by correlation with the heat load tests made on the electrons beam facility of CEA/Framatome

  20. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    International Nuclear Information System (INIS)

    Wilson, K.L.

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well

  1. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    Science.gov (United States)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  2. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    International Nuclear Information System (INIS)

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-01

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He ++ - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating

  3. Analysis of surface roughness and surface heat affected zone of steel S355J0 after plasma arc cutting

    International Nuclear Information System (INIS)

    Hatala, Michal; Chep, Robert; Pandilov, Zoran

    2010-01-01

    This paper deals with thermal cutting technology of materials with plasma arc. In the first part of this paper the theoretical knowledge of the principles of plasma arc cutting and current use of this technology in industry are presented. The cut of products with this technology is perpendicular and accurate, but the use of this technology affects micro-structural changes and depth of the heat affected zone (HAZ). This article deals with the experimental evaluation of plasma arc cutting technological process. The influence of technological factors on the roughness parameter Ra of the steel surface EN S355J0 has been evaluated by using planned experiments. By using the factor experiment, the significance of the four process factors such as plasma burner feed speed, plasma gas pressure, nozzle diameter, distance between nozzle mouth and material has been analyzed. Regression models obtained by multiple linear regression indicate the quality level of observed factors function. The heat from plasma arc cutting affects the micro-structural changes of the material, too.

  4. Lower hybrid resonance plasma heating in the LISA machine. Aquecimento do plasma na ressonancia hibrida inferior na maquina LISA

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J C.X. da; Cunha Rapozo, C da [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1988-10-01

    Plasma of helium was obtained using microwave source of f[sub RF] = 2.45 GHz and P[sub RF] = 800 W. Temperature and electron density were investigated for plasma excited by radiofrequency of f = 30 MHz and P[sub RF] = 0.1 kw. (M.C.K.).

  5. Boundary plasma heat flux width measurements for poloidal magnetic fields above 1 Tesla in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Alcator C-Mod Team

    2017-10-01

    The boundary heat flux width, along with the total power flowing into the boundary, sets the power exhaust challenge for tokamaks. A multi-machine boundary heat flux width database found that the heat flux width in H-modes scaled inversely with poloidal magnetic field (Bp) and was independent of machine size. The maximum Bp in the database was 0.8 T, whereas the ITER 15 MA, Q =10 scenario will be 1.2 T. New measurements of the boundary heat flux width in Alcator C-Mod extend the international database to plasmas with Bp up to 1.3 T. C-Mod was the only experiment able to operate at ITER-level Bp. These new measurements are from over 300 plasma shots in L-, I-, and EDA H-modes spanning essentially the whole operating space in C-Mod. We find that the inverse-Bp dependence of the heat flux width in H-modes continues to ITER-level Bp, further reinforcing the empirical projection of 500 μm heat flux width for ITER. We find 50% scatter around the inverse-Bp scaling and are searching for the `hidden variables' causing this scatter. Supported by USDoE award DE-FC02-99ER54512.

  6. Stochastic heating of dust particles in complex plasmas as an energetic instability of a harmonic oscillator with random frequency

    Energy Technology Data Exchange (ETDEWEB)

    Marmolino, Ciro [Dipartimento di Scienze e Tecnologie dell' Ambiente e del Territorio-DiSTAT, Universita del Molise, Contrada Fonte Lappone, I-86090 Pesche (Italy)

    2011-10-15

    The paper describes the occurrence of stochastic heating of dust particles in dusty plasmas as an energy instability due to the correlations between dust grain charge and electric field fluctuations. The possibility that the mean energy (''temperature'') of dust particles can grow in time has been found both from the self-consistent kinetic description of dusty plasmas taking into account charge fluctuations [U. de Angelis, A. V. Ivlev, V. N. Tsytovich, and G. E. Morfill, Phys. Plasmas 12(5), 052301 (2005)] and from a Fokker-Planck approach to systems with variable charge [A. V. Ivlev, S. K. Zhdanov, B. A. Klumov, and G. E. Morfill, Phys. Plasmas 12(9), 092104 (2005)]. Here, a different derivation is given by using the mathematical techniques of the so called multiplicative stochastic differential equations. Both cases of ''fast'' and ''slow'' fluctuations are discussed.

  7. Analysis of heat transfer and erosion effects on ITER divertor plasma facing components induced by slow high-power transients

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.; Chiocchio, S.; Esser, B.; Dietz, J.; Igitkhanov, Y.; Janeschitz, G.

    1995-01-01

    This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC's) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m 2 ) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM's) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects the target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC's clad with different PFM's are discussed

  8. The heating and acceleration actions of the solar plasma wave by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    solar plasma will left-right separate by Lorentz force and by the feedback mechanism of Lorentz force the positive - negative charge will left-right vibrate. The plasma on the move will accompany with up-down and left-right vibrating and become the wave. Though the frequent of the plasma wave is not high, but its heating and acceleration actions will be not less then that of the microwave and laser because of its mass and energy far large then that of the microwave and laser.

  9. Parallel transport of long mean-free-path plasma along open magnetic field lines: Parallel heat flux

    International Nuclear Information System (INIS)

    Guo Zehua; Tang Xianzhu

    2012-01-01

    In a long mean-free-path plasma where temperature anisotropy can be sustained, the parallel heat flux has two components with one associated with the parallel thermal energy and the other the perpendicular thermal energy. Due to the large deviation of the distribution function from local Maxwellian in an open field line plasma with low collisionality, the conventional perturbative calculation of the parallel heat flux closure in its local or non-local form is no longer applicable. Here, a non-perturbative calculation is presented for a collisionless plasma in a two-dimensional flux expander bounded by absorbing walls. Specifically, closures of previously unfamiliar form are obtained for ions and electrons, which relate two distinct components of the species parallel heat flux to the lower order fluid moments such as density, parallel flow, parallel and perpendicular temperatures, and the field quantities such as the magnetic field strength and the electrostatic potential. The plasma source and boundary condition at the absorbing wall enter explicitly in the closure calculation. Although the closure calculation does not take into account wave-particle interactions, the results based on passing orbits from steady-state collisionless drift-kinetic equation show remarkable agreement with fully kinetic-Maxwell simulations. As an example of the physical implications of the theory, the parallel heat flux closures are found to predict a surprising observation in the kinetic-Maxwell simulation of the 2D magnetic flux expander problem, where the parallel heat flux of the parallel thermal energy flows from low to high parallel temperature region.

  10. Experimental study of the evaporation and expansion of a solid pellet in a plasma heated by an electron beam

    International Nuclear Information System (INIS)

    Akent'ev, R.Yu.; Arzhannikov, A.V.; Astrelin, V.T.; Burdakov, A.V.; Ivanov, I.A.; Kojdan, V.S.; Mekler, K.I.; Polosatkin, S.V.; Postupaev, V.V.; Rovenskikh, A.F.; Sinitskij, S.L.

    2004-01-01

    The results of experiments on the solid pellets injection into the plasma, heated by an electron beam at the GOL-3 facility, are presented. The polyethylene pellets with the mass of 0.1-1 mg and lithium deuteride pellets with the mass of 0.02-0.5 mg were used. The dense plasma bunch, scattering at first spherically, is formed during several microseconds after the beginning of the electron beam injection into the plasma. Thereafter the bunch periphery is heated and becomes magnetized. Further there takes place the expansion of the dense plasma along the magnetic field on the order of 300 km/s. Comparison of the observed values with the calculations by the hydrodynamic model indicates, that for explaining such a rate of the bunch expansion the density of the total energy, falling on the pellet, should be ∼1 kJ/cm 2 . This value exceeds the corresponding value for the main plasma, i.e. there is observed the energy concentration across the magnetic field into the dense bunch of the evaporated macroparticle [ru

  11. Plasma characteristics of long-pulse discharges heated by neutral beam injection in the Large Helical Device

    Science.gov (United States)

    Takeiri, Y.; Nakamura, Y.; Noda, N.; Osakabe, M.; Kawahata, K.; Oka, Y.; Kaneko, O.; Tsumori, K.; Sato, M.; Mutoh, T.; Shimozuma, T.; Goto, M.; Ida, K.; Inagaki, S.; Kado, S.; Masuzaki, S.; Morita, S.; Nagayama, Y.; Narihara, K.; Peterson, B. J.; Sakakibara, S.; Sato, K.; Shoji, M.; Tanaka, K.; de Vries, P. C.; Sudo, S.; Ohyabu, N.; Motojima, O.

    2000-02-01

    Long-pulse neutral beam injection heating has been achieved in the large helical device (LHD). Two different confinement states are observed for different averaged densities in the long-pulse plasmas. A quasi-steady-state plasma was sustained for 21 s with an injection power of 0.6 MW, where the central plasma temperature was around 1 keV with a line-averaged electron density of 0.3 × 1019 m-3 . The discharge duration can be so extended as to keep the plasma properties in the short-pulse discharge. The energy confinement time is nearly the same as that of the short-pulse discharge, which is 1.3 times as long as the international stellarator scaling ISS95. At higher densities, a relaxation oscillation phenomenon, observed as if the plasma would breathe, lasted for 20 s with a period of 1-2 s. The phenomenon is characterized with profile expansion and contraction of the electron temperature. The density oscillation is out of phase with the temperature oscillation and is related to the density clamping phenomenon. The observed plasma properties are shown in detail for the `breathing' oscillation phenomenon. Possible mechanisms for the breathing oscillation are also discussed, with a view of the screening effect near the last closed magnetic surface and the power balance between the heating and the radiation powers. The long-pulse heating results indicate unique characteristics of the LHD where no special feedback stabilization is required due to absence of disruption and no need for current drive.

  12. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Science.gov (United States)

    Klimov, N. S.; Putrik, A. B.; Linke, J.; Pitts, R. A.; Zhitlukhin, A. M.; Kuprianov, I. B.; Spitsyn, A. V.; Ogorodnikova, O. V.; Podkovyrov, V. L.; Muzichenko, A. D.; Ivanov, B. V.; Sergeecheva, Ya. V.; Lesina, I. G.; Kovalenko, D. V.; Barsuk, V. A.; Danilina, N. A.; Bazylev, B. N.; Giniyatulin, R. N.

    2015-08-01

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic-martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, "corrugated" surface, with hills and valleys spaced by 0.2-2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  13. Science Court on ICRH [ion cyclotron resonance heating] modeling of tokamak plasmas

    International Nuclear Information System (INIS)

    Hively, L.M.; Sadowski, W.L.

    1987-10-01

    The Applied Plasma Physics (APP) Theory program in the Office of Fusion Energy is charged with supporting the development of advanced physics models for fusion research. One such effort is ion cyclotron resonance heating (ICRH), which has seen substantial progress recently. However, due to serious questions about the adequacy of present models for CIT (Compact Ignition Tokamak), a Science Court was formed to assess ICRH models, including: validity of theoretical and computational approximations; underlying physics assumptions and corresponding limits on the results; self-consistency; any subsidiary issues needing resolution (e.g., new computer tools); adequacy of the models in simulating experiments (especially CIT); and new or improved experiments to validate and refine the models. The Court did not review work by specific individuals, institutions, or programs, thereby avoiding any biases along these lines. Rather, the Science Court was carefully structured as a technical review of ICRH theory and modeling in the US. This paper discusses the Science Court process, findings, and conclusions

  14. Response of a core coherent density oscillation on electron cyclotron resonance heating in Heliotron J plasma

    Science.gov (United States)

    Kobayashi, T.; Kobayashi, S.; Lu, X. X.; Kenmochi, N.; Ida, K.; Ohshima, S.; Yamamoto, S.; Kado, S.; Kokubu, D.; Nagasaki, K.; Okada, H.; Minami, T.; Otani, Y.; Mizuuchi, T.

    2018-01-01

    We report properties of a coherent density oscillation observed in the core region and its response to electron cyclotron resonance heating (ECH) in Heliotron J plasma. The measurement was performed using a multi-channel beam emission spectroscopy system. The density oscillation is observed in a radial region between the core and the half radius. The poloidal mode number is found to be 1 (or 2). By modulating the ECH power with 100 Hz, repetition of formation and deformation of a strong electron temperature gradient, which is likely ascribed to be an electron internal transport barrier, is realized. Amplitude and rotation frequency of the coherent density oscillation sitting at the strong electron temperature gradient location are modulated by the ECH, while the poloidal mode structure remains almost unchanged. The change in the rotation velocity in the laboratory frame is derived. Assuming that the change of the rotation velocity is given by the background E × B velocity, a possible time evolution of the radial electric field was deduced.

  15. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, N.S., E-mail: klimov@triniti.ru [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Putrik, A.B. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Linke, J. [Forschungszentrum Jülich GmbH, EURATOM Association, Jülich D-52425 (Germany); Pitts, R.A. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Zhitlukhin, A.M. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Kuprianov, I.B. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Spitsyn, A.V. [NRC «Kurchatov Institute», Akademika Kurchatova pl., 1, Moscow 123182 (Russian Federation); Ogorodnikova, O.V. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Ivanov, B.V.; Sergeecheva, Ya.V.; Lesina, I.G. [Bochvar Institute, ul. Rogova, 5a, Moscow 123098 (Russian Federation); Kovalenko, D.V.; Barsuk, V.A.; Danilina, N.A. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, Moscow 142190 (Russian Federation); Bazylev, B.N. [Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021 (Germany); Giniyatulin, R.N. [Efremov Institute, Doroga na Metallostroy, 3 bld., Metallostroy, Saint-Petersburg 196641 (Russian Federation)

    2015-08-15

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic–martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, “corrugated” surface, with hills and valleys spaced by 0.2–2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  16. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  17. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-01-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  18. On the influence of electron heat transport on generation of the third harmonic of laser radiation in a dense plasma skin layer

    International Nuclear Information System (INIS)

    Isakov, Vladimir A; Kanavin, Andrey P; Uryupin, Sergey A

    2005-01-01

    The flux density is determined for radiation emitted by a plasma at the tripled frequency of an ultrashort laser pulse, which produces weak high-frequency modulations of the electron temperature in the plasma skin layer. It is shown that heat removal from the skin layer can reduce high-frequency temperature modulations and decrease the nonlinear plasma response. The optimum conditions for the third harmonic generation are found. (interaction of laser radiation with matter. laser plasma)

  19. Heat treatment and aging effect on the structural and optical properties of plasma polymerized 2,6-diethylaniline thin films

    International Nuclear Information System (INIS)

    Matin, Rummana; Bhuiyan, A.H.

    2012-01-01

    The monomer, 2,6-diethylaniline has been used to deposit plasma polymerized 2,6-diethylaniline (PPDEA) thin films at room temperature on to glass substrates by a capacitively coupled parallel plate glow discharge reactor. A comparative analysis on the changes of morphological, structural and optical properties of as-deposited, heat treated and aged PPDEA thin films is ascertained. Scanning electron microscopy shows uniform and pinhole free surface of PPDEA thin films and no significant difference in the surface morphology is observed due to heat treatment. Electron dispersive X-ray and Fourier transform infrared spectroscopic investigations indicate some structural rearrangement in PPDEA thin films due to heat treatment. Differential thermal analysis, thermogravimetric analysis and differential thermogravimetric analysis suggest that the PPDEA is thermally stable up to about 580 K. The study on the optical absorption spectra of as-deposited, heat treated and aged PPDEA thin films of different thicknesses lead to the determination of the allowed direct and indirect transition energies ranging from 3.63 to 2.73 and 2.38 to 1.26 eV respectively. Urbach energy, steepness parameter and extinction coefficient are also assessed. It is observed that the optical parameters of as-deposited PPDEA thin films change due to heat treatment and do not change appreciably due to aging. - Highlights: ► Heat treatment and aging effect of plasma polymerized 2,6-diethylaniline thin films. ► The surface morphology of PPDEA is found uniform for all types of sample. ► Heat treatment introduces some elemental and structural rearrangement. ► The thermal stability is found up to about 580 K. ► Optical parameters were changed for heat treatment but not markedly for aging.

  20. Ion temperature measurements of turbulently heated TRIAM-1 plasmas by the Doppler-broadening of visible lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Toi, K; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-07-01

    The ion temperature of the turbulently heated TRIAM-1 plasma is obtained from the Doppler-broadening of visible lines. The radial profiles of the volume emission of visible lines are measured beforehand to examine whether the volume emissions are localized at a specified position of the minor cross-section of the plasma or not. The ion temperature of the specified position is determined from these profiles. The time behaviour of thus obtained Doppler ion temperature shows a good agreement with that of the one derived from the Neutral Energy Analyzer.