WorldWideScience

Sample records for plasma facing components

  1. Damage modelling in plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)], E-mail: martin@lcts.u-bordeaux1.fr; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France); Schlosser, J.; Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, St. Paul Lez Durance (France)

    2009-04-30

    The plasma facing components of controlled fusion devices are submitted to high heat fluxes in operating conditions (from 10 to 20 MW/m{sup 2}). These components are made of a carbon/carbon composite tile bonded to a copper alloy heat sink. Due to the thermal expansion mismatch between the composite and the copper alloy, significant stresses may develop during fabrication and under heat load inducing damage in the composite material as well as at the copper/composite interface. The present study describes a modelling approach aimed at predicting damage development in plasma facing components. For this purpose, damage laws related to the non-linear behaviour of both the composite material and the copper/composite joint have been identified. These constitutive laws were then introduced in a numerical model representative of a plasma facing component. Results show the development of damage within the assembly submitted to a heat load.

  2. A new vision of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Nygren, Richard E., E-mail: renygre@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States); Youchison, Dennis L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States); Snead, Lance L.

    2016-11-01

    Highlights: • New approach recommended to develop refractory fusion plasma facing components. • Need to develop engineered materials architecture with nano-features. • Need to develop PFCs with gas jet cooling with very fine scale for jet arrays. • Emphasis on role of additive manufacturing as needed method for fabrication. - Abstract: This paper advances a vision for plasma facing components (PFCs) that includes the following points. The solution for plasma facing materials likely consists of engineered structures in which the layer of plasma facing material (PFM) is integrated with an engineered structure that cools the PFM and may also transition with graded composition. The key to achieving this PFC architecture will likely lie in advanced manufacturing methods, e.g., additive manufacturing, that can produce layers with controlled porosity and features such as micro-fibers and/or nano-particles that can collect He and transmutation products, limit tritium retention, and do all this in a way that maintains adequate robustness for a satisfactory lifetime. This vision has significant implications for how we structure a development program.

  3. Damage modelling in Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Camus, G. [Bordeaux-1 Univ. des Sciences et Technologies-3, LCTS, Lab. des Composites Thermostructuraux, CNRS-UMR 5801, 33 - Pessac, (France); Schlosser, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2007-07-01

    Full text of publication follows: The plasma facing components (PFC) of controlled fusion devices are submitted to high heat fluxes in operating conditions (10 MW/m2 for Tore Supra and up to 20 MW/m{sup 2} for ITER, Cadarache, France). Active cooling is required to maintain a reasonable surface temperature and to avoid critical heat flux and melting of the components. The PFC developed for Tore Supra are made of a carbon/carbon (C/C) composite flat tile bonded to a copper alloy heat sink. Under operating conditions, because of the thermal expansion mismatch existing between the C/C composite and the copper alloy, these components withstand significant stresses which induce damage in the C/C material as well as at the copper/composite interface. Design tools are thus required in order to analyse the initiation and the propagation of damage in thermally loaded PFC. The present study describes a modelling approach aimed at predicting damage in actively cooled PFC. For this purpose, dedicated experimental procedures have been developed and sound constitutive laws taking into account the damage related non linear behaviour of both the C/C material and the Cu-C/C joint have been established. Various tests have first been performed on C/C samples in tension and compression, within the fibre axis and off-axis, as well as in shear using a Iosipescu type device, in order to carefully analyse the non-linear mechanical behaviour of this material. A constitutive law able to handle complex multiaxial loadings, established within a classical thermodynamical framework and using scalar damage variables, was then identified. Tensile and shear tests were also performed on C/C-Cu samples in order to identify a cohesive zone model representative of the damageable behaviour of the joint. These constitutive laws were then introduced in a numerical model representative of a PFC. Obtained results have evidenced the progressive development of damage which takes place in the assembly when

  4. Free surface stability of liquid metal plasma facing components

    Science.gov (United States)

    Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.

    2016-10-01

    An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.

  5. Tungsten-microdiamond composites for plasma facing components

    Science.gov (United States)

    Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-09-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  6. Collaborative Research and Development on Liquid Metal Plasma Facing Components

    Science.gov (United States)

    Jaworski, M. A.; Abrams, T.; Ellis, R.; Khodak, A.; Leblanc, B.; Menard, J.; Ono, M.; Skinner, C. H.; Stotler, D. P.; Detemmerman, G.; Gleeson, M. A.; Lof, A. R.; Scholten, J.; van den Berg, M. A.; van den Meiden, H. J.; Gray, T. K.; Sabbagh, S. A.; Soukhanovskii, V. A.; Hu, J.; Wang, L.; Zuo, G.

    2012-10-01

    Liquid metal plasma facing components (PFCs) provide the potential to avoid component replacement by continually replenishing the plasma-facing surface. Data during the NSTX liquid lithium divertor (LLD) campaign indicate that impurity accumulation on the static lithium resulted in a mixed-material surface. However, no lithium ejection nor substrate influx was observed during normal operation. This motivates research on flowing systems for near-term machines. Experiments on the Magnum-PSI linear test-stand and EAST tokamak have begun to explore issues related to near-surface lithium transport, surface evolution and coating lifetime for exposures of 5-10s. Technology development for a fully-flowing liquid lithium PFC is being conducted including construction of a liquid lithium flow loop and thermal-hydraulic studies of novel, capillary-restrained lithium PFCs for possible use on EAST and NSTX-U.

  7. Power Deposition on Tokamak Plasma-Facing Components

    CERN Document Server

    Arter, Wayne; Fishpool, Geoff

    2014-01-01

    The SMARDDA software library is used to model plasma interaction with complex engineered surfaces. A simple flux-tube model of power deposition necessitates the following of magnetic fieldlines until they meet geometry taken from a CAD (Computer Aided Design) database. Application is made to 1) models of ITER tokamak limiter geometry and 2) MASTU tokamak divertor designs, illustrating the accuracy and effectiveness of SMARDDA, even in the presence of significant nonaxisymmetric ripple field. SMARDDA's ability to exchange data with CAD databases and its speed of execution also give it the potential for use directly in the design of tokamak plasma facing components.

  8. Candidate plasma-facing materials for EUV lithography source components

    Science.gov (United States)

    Hassanein, Ahmed; Burtseva, Tatiana; Brooks, Jeff N.; Konkashbaev, Isak K.; Rice, Bryan J.

    2003-06-01

    Material selection and lifetime issues for extreme ultraviolet (EUV) lithography are of critical importance to the success of this technology for commercial applications. This paper reviews current trends in production and use of plasma-facing electrodes, insulators, and wall materials for EUV type sources. Ideal candidate materials should be able to: withstand high thermal shock from the short pulsed plasma; withstand high thermal loads without structural failure; reduce debris generation during discharge; and be machined accurately. We reviewed the literature on current and proposed fusion plasma-facing materials as well as current experience with plasma gun and other simulation devices. Both fusion and EUV source materials involve issues of surface erosion by particle sputtering and heat-induced evaporation/melting. These materials are either bare structural materials or surface coatings. EUV materials can be divided into four categories: wall, electrode, optical, and insulator materials. For electric discharge sources, all four types are required, whereas laser-produced plasma EUV sources do not require electrode and insulator materials. Several types of candidate alloy and other materials and methods of manufacture are recommended for each component of EUV lithography light sources.

  9. Carbon fiber composites application in ITER plasma facing components

    Science.gov (United States)

    Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.

    1998-10-01

    Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.

  10. Mixed-material coating formation on plasma-facing components

    Science.gov (United States)

    Doerner, R. P.; Grossman, A. A.; Luckhardt, S.; Seraydarian, R.; Sze, F. C.; Whyte, D. G.

    When any plasma confinement device is fabricated from more than a single material which can come into contact with either particle or heat flux, there is the potential for migration of one of these materials to the locations of other materials. This combination of materials, or mixed materials, can have substantially different properties than either of the original materials. The PISCES-B linear plasma device is examining the formation conditions and properties of mixed-material surface layers which can form on plasma-facing components. The PISCES-B device has been modified to incorporate an impurity gas (CD 4, CO, O 2, etc.) puffing system in the target interaction region. It is, therefore, possible to control the fraction of impurities in the incident plasma and to perform systematic tests on the conditions necessary to form mixed-materials surface layers. The concentration of the species in the plasma column is measured spectroscopically, as well as by a residual gas monitor on the vacuum chamber. Measurements of the rate of growth of the thickness of the mixed material layer are performed. A simple erosion model can adequately describe the growth rate of the mixed-material layer and may allow for growth rate predictions in other plasma environments. It is also important to investigate the role of redeposition of metallic impurities in the formation of mixed material layers. A beryllium evaporator has been independently installed upstream of the target-interaction region to allow seeding of the incident plasma with beryllium. The presence of beryllium on the sample surface is observed to reduce the chemical erosion of the graphite by more than the reduction of the surface carbon concentration. And finally, the hydrogen isotope retention properties of carbon-containing layers on beryllium could have serious implications for tritium accumulation in ITER.

  11. Graphene as a Coating for Plasma Facing Components

    Science.gov (United States)

    Navarro, Marcos; Rojas, Richard; Kulcisnki, Gerald; Lagally, Max; Santarius, John

    2016-10-01

    Graphene has been a source of interest for multiple applications because of its unusual electronic and mechanical properties. A number of experimental studies have established that defect-free graphene is an excellent chemical-barrier material, but there have been no reports of graphene proposed as a protective coating against ion and/or neutral interactions with material surfaces. In the presence of such irradiation, plasma facing components (PFC's) tend to develop ``fuzz/grass'' structures that lead to the sputtering of wall material, diminishing the lifetime of the PFC's and plasma performance. We have shown that graphene can reduce or eliminate changes on surface morphology due to energetic helium. In the case of graphene-covered tungsten, our results show that, compared to the uncovered W, graphene suppresses these morphologies that form on the surface of hot W. Using Raman spectroscopy as a diagnostic, the graphene coating shows little sign of damage after being irradiated, indicating that there is little to no sputtering of carbon impurities from the surface. We have also determined that the mass losses in W have been reduced significantly. Both decreases in impurities can lead to an improved plasma performance and longer lifetimes for PFC's. This work has been supported by GERS and TEAM-Science at the UW-Madison.

  12. Preparation to manufacturing of ITER plasma facing components in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Mazul, I.V., E-mail: mazuliv@niiefa.spb.su [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Belyakov, V.A.; Giniatulin, R.N.; Gervash, A.A.; Kuznetsov, V.E.; Makhankov, A.N. [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Sizenev, V.S. [Corporation ' Kompozit' , Korolev, 141070 (Russian Federation)

    2011-10-15

    The preparation of the procurement activities for the ITER plasma-facing-components (PFC) is currently well underway. Three ITER procurement packages associated with PFCs are currently allocated to the Russian Federation (RF): delivery of the central assembly of the divertor (dome and reflector plates assemblies), delivery of 40% of the first-wall (FW) panels and high heat flux testing of divertor components during the qualification and subsequent manufacturing phases. The results of the qualification process for these tasks undertaken by RF industry are presented. Qualification mockups of the dome divertor structure were successfully manufactured in accordance with the ITER specifications and tested at heat fluxes exceeding operational ones. The maturity and reliability of the proposed design and manufacturing technologies, proposed by RF industry, was therefore demonstrated. To confirm the manufacturing readiness of technologies proposed for the fabrication of the ITER first wall, three qualification mockups were fabricated. Two were heat flux tested in two facilities abroad. In addition to launching the qualification process, the PFC team at Efremov Institute is preparing the industrial facilities for serial production of above mentioned components. A brief description of such facilities is presented in this paper, together with the manufacturing technologies to be used. Two electron beam facilities (Tsefey and IDTF) for various high heat flux testing of PFC components are also described.

  13. Towards intelligent video understanding applied to plasma facing component monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.; Bremond, F. [INRIA, Pulsa team-project, Sophia Antipolis (France); Travere, J.M. [CEA IRFM, Saint Paul-lez-Durance (France); Moncada, V.; Dunand, G. [Sophia Conseil Company, Sophia Antipolis (France)

    2011-07-01

    Infrared thermography has become a routine diagnostic in many magnetic fusion devices to monitor the heat loads on the plasma facing components (PFCs) for both physics studies and machine protection. The good results of the developed systems obtained so far motivate the use of imaging diagnostics for control, especially during long pulse tokamak operation (e.g. lasting several minutes). In this paper, we promote intelligent monitoring for both real-time purposes (machine protection issues) and post event analysis purposes (PWI understanding). We propose a vision-based system able to automatically detect and classify into different pre-defined categories phenomena as localized hot spots, transient thermal events (e.g. electrical arcing), and unidentified flying objects (UFOs) as dusts from infrared imaging data of PFCs. This original vision system is made intelligent by endowing it with high-level reasoning (i.e. integration of a priori knowledge of thermal event spatial and temporal properties to guide the recognition), self-adaptability to varying conditions (e.g. different plasma scenarios), and learning capabilities (e.g. statistical modelling of thermal event behaviour based on training samples). This approach has been already successfully applied to the recognition of one critical thermal event at Tore Supra. We present here latest results of its extension for the recognition of others thermal events (e.g., B{sub 4}C flakes, impact of fast particles, UFOs) and show how extracted information can be used during plasma operation at Tore Supra to improve the real time control system, and for further analysis of PFC aging. This document is composed of an abstract followed by the slides of the presentation. (authors)

  14. Comprehensive simulation of vertical plasma instability events and their serious damage to ITER plasma facing components

    Science.gov (United States)

    Hassanein, A.; Sizyuk, T.

    2008-11-01

    Safe and reliable operation is still one of the major challenges in the development of the new generation of ITER-like fusion reactors. The deposited plasma energy during major disruptions, edge-localized modes (ELMs) and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure and frequent plasma contamination. While plasma disruptions and ELM will have no significant thermal effects on the structural materials or coolant channels because of their short deposition time, VDEs having longer-duration time could have a destructive impact on these components. Therefore, modelling the response of structural materials to VDE has to integrate detailed energy deposition processes, surface vaporization, phase change and melting, heat conduction to coolant channels and critical heat flux criteria at the coolant channels. The HEIGHTS 3D upgraded computer package considers all the above processes to specifically study VDE in detail. Results of benchmarking with several known laboratory experiments prove the validity of HEIGHTS implemented models. Beryllium and tungsten are both considered surface coating materials along with copper structure and coolant channels using both smooth tubes with swirl tape insert. The design requirements and implications of plasma facing components are discussed along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  15. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    Science.gov (United States)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  16. Beryllium assessment and recommendation for application in ITER plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, V.; Tanaka, S.; Matera, R. [ITER Joint Central Team, Muenchen (Germany)

    1998-01-01

    The design status of the ITER Plasma Facing Components (PFC) is presented. The operational conditions of the armour material for the different components are summarized. Beryllium is the reference armour material for the Primary Wall, Baffle and Limiter and the back-up material for the Divertor Dome. The activities on the selection of the Be grades and the joining technologies are reviewed. (author)

  17. Development of the plasma facing components in Japan for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Satoshi, E-mail: suzuki.satoshi90@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Ezato, Koichiro; Seki, Yohji; Mohri, Kensuke; Yokoyama, Kenji; Enoeda, Mikio [Japan Atomic Energy Agency, Naka, Ibaraki (Japan)

    2012-08-15

    After the successful completion of the prequalification activity for ITER divertor procurement, Japanese Domestic Agency (JADA) and ITER Organization (IO) have entered into the procurement arrangement of divertor Outer Vertical Target (OVT) in June 2009. In accordance with the arrangement, JADA is going to fully procure the outer target components which correspond to 60 divertor cassettes. JADA has started to manufacture an OVT full-scale prototype in order to pick out/solve technical and quality issues and to establish a rational manufacturing process toward the start of the series of production of the OVT components to be installed in ITER. This paper presents the overview of JADA's manufacturing activity and the procurement schedule on the divertor outer target procurement.

  18. Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion

    Energy Technology Data Exchange (ETDEWEB)

    ThomasJr., C. E. [Third Dimension Technologies, LLC, Knoxville, TN; Granstedt, E. M. [Tri-Alpha Energy; Biewer, Theodore M [ORNL; Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Meitner, Steven J [ORNL; Hillis, Donald Lee [ORNL; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL)

    2014-01-01

    In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

  19. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Chungnam National University Graduate School, Taejeon (Korea); Im, K.H.; Cho, S.Y. [Korea Basic Science Institute, Taejeon (Korea); Kim, J.B. [Hyundai Heavy Industries Co., Ltd. (Korea); Woo, H.K. [Chungnam National University, Taejeon (Korea)

    2000-11-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6} {approx} 10{sup -7} Pa, to produce clean plasma with low impurity containments. for this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 deg.C, 350 deg.C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses. (author). 9 refs., 11 figs., 1 tab.

  20. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Woo, H. K. [Chungnam National Univ., Taejon (Korea, Republic of); Im, K. H.; Cho, S. Y. [korea Basic Science Institute, Taejon (Korea, Republic of); Kim, J. B. [Hyundai Heavy Industries Co., Ltd., Ulsan (Korea, Republic of)

    2000-07-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6}{approx}10{sup -7}Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  1. Evaluation of runaway-electron effects on plasma-facing components for NET

    Science.gov (United States)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  2. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  3. MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiujie; XU Zengyu; PAN Chuanjie

    2008-01-01

    Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)

  4. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  5. Beryllium plasma-facing components for the ITER-like wall project at JET

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M J; Sundelin, P [Alfven Laboratory, Royal Institute of Technology, Association Euratom-VR (Sweden); Bailescu, V [Nuclear Fuel Plant, Pitesti (Romania); Coad, J P; Matthews, G F; Pedrick, L; Riccardo, V; Villedieu, E [Culham Science Centre, Euratom-UKAEA Fusion Association, Abingdon (United Kingdom); Hirai, T; Linke, J [IEF-2, Forschungszentrum Juelich, Association Euratom-FZJ, Juelich (Germany); Likonen, J [VTT, Association Euratom-Tekes, 02044 VTT (Finland); Lungu, C P [NILPRP, Association Euratom-MEdC, Bucharest (Romania)], E-mail: rubel@kth.se

    2008-03-15

    ITER-Like Wall Project has been launched at the JET tokamak in order to study a tokamak operation with beryllium components on the main chamber wall and tungsten in the divertor. To perform this first comprehensive test of both materials in a thermonuclear fusion environment, a broad program has been undertaken to develop plasma-facing components and assess their performance under high power loads. The paper provides a concise report on scientific and technical issues in the development of a beryllium first wall at JET.

  6. Analysis of the thermal response of plasma facing components during a runaway electron impact

    Science.gov (United States)

    Ward, Robert Cameron

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10--300 MeV, and may potentially cause extensive damage to plasma facing components through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of plasma facing components to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts which control the operation of an electron-photon monte carlo code to calculate the interaction of the runaway electrons with the plasma facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials using the modified heat conduction equation; a code to process, scale, transform, and convert the electron monte carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and post-processing of the data. The electron-photon monte carlo code used was the Electron-Gamma-Shower (EGS) code, developed and maintained by the National Research Center of Canada. The other codes were written in C++ for this study. The thermal code, called QTTN, solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system was validated using a series of analytical solutions and simulations of experiments. QTTN and EPQ was verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully. EPQ was then employed in a parametric study to simulate a typical runaway electron disruption impact on the FIRE design's plasma facing components. The results of the FIRE parametric study

  7. Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, M., E-mail: mlucia@pppl.gov [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States); Bedoya, F.; Allain, J.P. [University of Illinois at Urbana-Champaign (UIUC), Urbana, IL 61801 (United States); Abrams, T.; Bell, R.E.; Boyle, D.P.; Jaworski, M.A.; Schmitt, J.C. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States)

    2015-08-15

    The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li{sub 2}O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.

  8. Tracer techniques for the assessment of material migration and surface modification of plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M., E-mail: rubel@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Weckmann, A.; Ström, P.; Petersson, P.; Garcia-Carrasco, A. [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Brezinsek, S.; Coenen, J.; Kreter, A.; Möller, S.; Wienhold, P. [Institute of Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Wauters, T. [LPP-ERM/KMS, Association EURATOM-Belgian State, 1000 Brussels (Belgium); Fortuna-Zaleśna, E. [Faculty of Materials Science, Warsaw University of Technology, 02-507 Warsaw (Poland)

    2015-08-15

    Highlights: • Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the retention of species used for plasma edge cooling or wall cleaning under different operation conditions. • Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). • The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. • The deposition and retention was studied on plasma-facing components, collector probes and test limiters. • Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and surface composition modification. - Abstract: Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the deposition of species used for plasma edge cooling or wall conditioning under different types of operation conditions. Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. The deposition and retention was studied on plasma-facing components, collector probes and test limiters. Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and the modification of surface composition. Molybdenum and light isotopes were detected on all types of limiters and short-term probes retrieved from the vessel showing that both helium and nitrogen are trapped following wall conditioning and edge cooling. Only small amounts below 1 × 10{sup 19} m{sup −2} of {sup 18}O were detected on surfaces treated by oxygen-assisted ICWC.

  9. Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak

    Science.gov (United States)

    Labate, C.; Di Gironimo, G.; Renno, F.

    2015-09-01

    Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.

  10. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems

    Science.gov (United States)

    Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.

    2017-01-01

    The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.

  11. Proceedings of the 4th International Workshop on Tritium Effects in Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Causey

    1999-02-01

    The 4th International Workshop on Tritium Effects in Plasma Facing Components was held in Santa Fe, New Mexico on May 14-15, 1998. This workshop occurs every two years, and has previously been held in Livermore/California, Nagoya/Japan, and the JRC-Ispra Site in Italy. The purpose of the workshop is to gather researchers involved in the topic of tritium migration, retention, and recycling in materials used to line magnetic fusion reactor walls and provide a forum for presentation and discussions in this area. This document provides an overall summary of the workshop, the workshop agenda, a summary of the presentations, and a list of attendees.

  12. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  13. Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E., E-mail: eric.gauthier@cea.fr [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Languille, P. [PIIM, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille, Cedex 20 (France); Courtois, X.; Lallier, Y. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Salami, M. [AVANTIS CONCEPT, 75 Rue Marcelin Berthelot, 13858 Aix en Provence (France)

    2013-07-15

    A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002–2007.

  14. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Branca, V. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Marco, M. Di [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (Albania) (Italy); Federici, A. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Grattarola, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)]. E-mail: grattarola@ansaldo.it; Gualco, G. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Guarnone, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Luconi, U. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Merola, M. [EFDA, Boltzmanstr. 2, D-85748 Garching (Germany); Ozzano, C. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Pasquale, G. [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (AL) (Italy); Poggi, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Rizzo, S. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Varone, F. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)

    2005-11-15

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions.

  15. Development of laser lock-in thermography for plasma facing component surface characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: xavier.courtois@cea.fr [CEA, IRFM, Cadarache F-13108 Saint-Paul-Lez-Durance (France); Sortais, C.; Melyukov, D. [CEA, DEN, Saclay F-91191 Gif-sur-Yvette (France); Gardarein, J.L. [IUSTI UMR-CNRS 65-95, Universite de Provence, Marseille (France); Semerok, A. [CEA, DEN, Saclay F-91191 Gif-sur-Yvette (France); Grisolia, Ch. [CEA, IRFM, Cadarache F-13108 Saint-Paul-Lez-Durance (France)

    2011-10-15

    Infrared (IR) photothermal techniques are candidates for in situ characterisation of tokamak plasma facing components (PFC) surfaces, by means of an external thermal excitation coupled with an IR temperature measurement. Among these techniques, the laser lock-in thermography (LLIT) uses a modulated laser excitation which gives 2 major advantages: enhancement of signal to noise ratio and emissivity independence, which is a plus when the components have various and unpredictable surface quality. With this method, it is possible to develop a process, which could be used remotely, either mounted onto an in situ inspection device (articulated arm) or in a PFC test bed. This paper presents the results obtained with a continuous modulated laser heat source on particular samples (W coating on CFC substrate, C layer on graphite substrate). The identification of the experimental data with a theoretical model allows a quantitative characterisation of the layers.

  16. Characterization of laser-irradiated co-deposited layers on plasma facing components from a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gasior, P.; Badziak, J.; Czarnecka, A.; Parys, P.; Wolowski, J.; Rosinski, M. [Andrzej Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland); Rubel, Marek [Royal Inst. of Technology, Stockholm (Sweden). Alfven Laboratory; Philipps, V. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    An experimental setup and ion diagnostic method for laser-induced fuel removal and decomposition of co-deposited layers on plasma facing components from tokamaks are described. Nd:YAG 3.5 ns pulse laser with a repetition rate of 10 Hz and single-pulse energy of up to 0.8 J at 1.06 {mu}m has been used for irradiation of a graphite limiter tile from the TEXTOR tokamak. Comparative studies have been performed for a pure graphite plate as a reference target. Energy of emitted ions has been measured using a time-of-flight method. Early results show that laser pulses efficiently ablate the co-deposit removing both fuel species and heavy components such as Si, Ni, Cr, Fe and W present in the layers. Surface topography of the irradiated targets is also presented.

  17. 2D surface temperature measurement of plasma facing components with modulated active pyrometry.

    Science.gov (United States)

    Amiel, S; Loarer, T; Pocheau, C; Roche, H; Gauthier, E; Aumeunier, M-H; Le Niliot, C; Rigollet, F; Courtois, X; Jouve, M; Balorin, C; Moncada, V

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ɛ ∼ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ɛ ∼ 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  18. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    Science.gov (United States)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  19. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    Science.gov (United States)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  20. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  1. Simulation of damage to tokamaks plasma facing components during intense abnormal power deposition

    Energy Technology Data Exchange (ETDEWEB)

    Genco, F., E-mail: fgenco@purdue.edu; Hassanein, A., E-mail: hassanein@purdue.edu

    2014-04-15

    Highlights: • HEIGHTS-PIC a new technique based on particle in cell method to study disruptions events, ELMS and VDE is benchmarked in this paper with the use of the MK-200 experiments. • Disruptions simulations results for erosion and erosion rate are proposed showing good agreement with published experimental available data for such conditions. • Results are also compared with other published results produced by FOREV1/FOREV2 computer package and the original HEIGHTS computer package. • Accuracy of the simulations results is proposed with specific aim to address the use of number of super particles adopted versus computational time. - Abstract: Intense power deposition on plasma facing components (PFC) is expected in tokamaks during loss of confinement events such as disruptions, vertical displacement events (VDE), runaway electrons (RE), or during normal operating conditions such as edge-localized modes (ELM). These highly energetic events are damaging enough to hinder long term operation and may not be easily mitigated without loss of structural or functional performance of the PFC. Surface erosion, melted/ablated-vaporized material splashing, and material transport into the bulk plasma are reliability-threatening for the machine and system performance. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to obtain a global view of the plasma evolution upon energy impingement. This newly developed PIC technique is benchmarked against plasma gun experimental data, the original HEIGHTS computer package, and laser experiments. Benchmarking results are shown in this paper for various relevant reactor and experimental devices. The evolution of the plasma vapor cloud is followed temporally and results are explained and commented as a function of the computational time needed and the accuracy of the calculation.

  2. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  3. Electromagnetic and structural analyses of the vacuum vessel and plasma facing components for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei, E-mail: wwxu@ipp.ac.cn; Liu, Xufeng; Song, Yuntao; Li, Jun; Lu, Mingxuan

    2013-10-15

    Highlights: • The electromagnetic and structural responses of VV and PFCs for EAST are analyzed. • A detailed finite element model of the VV including PFCs is established. • The two most dangerous scenarios, major disruptions and downward VDEs are considered. • The distribution patterns of eddy currents, EMFs and torques on PFCs are analyzed. -- Abstract: During plasma disruptions, time-varying eddy currents are induced in the vacuum vessel (VV) and Plasma Facing Components (PFCs) of EAST. Additionally, halo currents flow partly through these structures during the vertical displacement events (VDEs). Under the high magnetic field circumstances, the resulting electromagnetic forces (EMFs) and torques are large. In this paper, eddy currents and EMFs on EAST VV, PFCs and their supports are calculated by analytical and numerical methods. ANSYS software is employed to evaluate eddy currents on VV, PFCs and their structural responses. To learn the electromagnetic and structural response of the whole structure more accurately, a detailed finite element model is established. The two most dangerous scenarios, major disruptions and downward VDEs, are examined. It is found that distribution patterns of eddy currents for various PFCs differ greatly, therefore resulting in different EMFs and torques. It can be seen that for certain PFCs the transient reaction force are severe. Results obtained here may set up a preliminary foundation for the future dynamic response research of EAST VV and PFCs which will provide a theoretical basis for the future engineering design of tokamak devices.

  4. LIBS for tokamak plasma facing components characterisation: Perspectives on in situ tritium cartography

    Energy Technology Data Exchange (ETDEWEB)

    Semerok, A., E-mail: alexandre.semerok@cea.fr [CEA, DEN, DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Grisolia, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2013-08-21

    Feasibility of in situ LIBS remote measurements with the plasma facing components (PFCs) from the European tokamaks (TORE SUPRA, CEA Cadarache, France and TEXTOR, Julich, Germany) has been studied in laboratory using Q-switched nanosecond Nd–YAG lasers. LIBS particular properties and optimal parameters were determined for in-depth PFCs characterisation. The LIBS method was in situ tested on the Joint European Torus (JET) in the UK with the EDGE LIDAR Laser System (Ruby laser, 3 J, 690 nm wavelength, 300 ps pulse duration, intensity up to 70 GW/cm{sup 2}). Several analytical spectral lines of H, CII, CrI, and BeII in plasma were observed and identified in 400–600 nm spectral range with the optimised LIBS and detection system. The LIBS in-depth cartography is in agreement with the surface properties of the tile under analysis, thus confirming feasibility of in situ LIBS. Further LIBS technique improvements required to provide tritium concentration measurements more accurately are discussed.

  5. Tritium inventory control during ITER operation under carbon plasma-facing components by nitrogen-based plasma chemistry: a review

    Science.gov (United States)

    Tabarés, F. L.

    2013-06-01

    In spite of being highly suited for advanced plasma performance operation of tokamaks, as demonstrated over at least two decades of fusion plasma research, carbon is not currently considered as an integrating element of the plasma-facing components (PFCs) for the active phase of ITER. The main reason preventing its use under the very challenging scenarios foreseen in this phase, with edge-localized modes delivering several tens of MW m-2 to the divertor target every second or less, is the existing concern about reaching the tritium inventory value of 1000 g used in safety assessments in a time shorter than the projected lifetime of the divertor materials eroded by the plasma, set at 3000 shots. Although several mechanisms of tritium trapping in carbon components have been identified, co-deposition of the carbon radicals arising from chemically eroded chlorofluorocarbons in remote areas appears to play a dominant role. Several possible ways to keep control of the tritium build-up during the full operation of ITER have been put forward, mostly based on the periodic removal of the co-deposits by chemical (thermo-oxidation, plasma chemistry) or physical (laser, flash lamps) methods. In this work, we review the techniques for the inhibition and removal of tritium-rich co-deposits based on the strong chemical reactivity of some N-bearing molecules with carbon. The integration of these techniques into a possible scheme for tritium inventory control in the active phase of ITER under carbon-based PFCs with minimum down-time is discussed and the existing caveats are addressed.

  6. Overview of decade-long development of plasma-facing components at ASIPP

    Science.gov (United States)

    Luo, G.-N.; Liu, G. H.; Li, Q.; Qin, S. G.; Wang, W. J.; Shi, Y. L.; Xie, C. Y.; Chen, Z. M.; Missirlian, M.; Guilhem, D.; Richou, M.; Hirai, T.; Escourbiac, F.; Yao, D. M.; Chen, J. L.; Wang, T. J.; Bucalossi, J.; Merola, M.; Li, J. G.; EAST Team

    2017-06-01

    The first EAST (Experimental Advanced Superconducting Tokamak) plasma ignited in 2006 with non-actively cooled steel plates as the plasma-facing materials and components (PFMCs) which were then upgraded into full graphite tiles bolted onto water-cooled copper heat sinks in 2008. The first wall was changed further into molybdenum alloy in 2012, while keeping the graphite for both the upper and lower divertors. With the rapid increase in heating and current driving power in EAST, the W/Cu divertor project was launched around the end of 2012, aiming at achieving actively cooled full W/Cu-PFCs for the upper divertor, with heat removal capability up to 10 MW m-2. The W/Cu upper divertor was finished in the spring of 2014, consisting of 80 cassette bodies toroidally assembled. Commissioning of the EAST upper W/Cu divertor in 2014 was unsatisfactory and then several practical measures were implemented to improve the design, welding quality and reliability, which helped us achieve successful commissioning in the 2015 Spring Campaign. In collaboration with the IO and CEA teams, we have demonstrated our technological capability to remove heat loads of 5000 cycles at 10 MW m-2 and 1000 cycles at 20 MW m-2 for the small scale monoblock mockups, and surprisingly over 300 cycles at 20 MW m-2 for the flat-tile ones. The experience and lessons we learned from batch production and commissioning are undoubtedly valuable for ITER (International Thermonuclear Experimental Reactor) engineering validation and tungsten-related plasma physics.

  7. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m{sup 2} of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m{sup 2} TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  8. Data merging of infrared and ultrasonic images for plasma facing components inspection

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)], E-mail: marianne.richou@cea.fr; Durocher, A. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Medrano, M. [Association EURATOM - CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Martinez-Ona, R. [Tecnatom, 28703 S. Sebastian de los Reyes, Madrid (Spain); Moysan, J. [LCND, Universite de la Mediterranee, F-13625 Aix-en-Provence (France); Riccardi, B. [Fusion For Energy, 08019 Barcelona (Spain)

    2009-06-15

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  9. CFC/Cu bond damage in actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France); Martin, E [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Pessac (France); Henninger, C [LMM, CNRS UMR 7607, Universite P. et M. Curie, Paris (France); Boscary, J [IPP-Euratom Association, Garching (Germany); Camus, G [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Pessac (France); Escourbiac, F [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France); Leguillon, D [LMM, CNRS UMR 7607, Universite P. et M. Curie, Paris (France); Missirlian, M [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France); Mitteau, R [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-03-15

    Carbon fibre composite (CFC) armours have been successfully used for actively cooled plasma facing components (PFCs) of the Tore Supra (TS) tokamak. They were also selected for the divertor of the stellarator W7-X under construction and for the vertical target of the ITER divertor. In TS and W7-X a flat tile design for heat fluxes of 10 MW m{sup -2} has been chosen. To predict the lifetime of such PFCs, it is necessary to analyse the damage mechanisms and to model the damage propagation when the component is exposed to thermal cycling loads. Work has been performed to identify a constitutive law for the CFC and parameters to model crack propagation from the edge singularity. The aim is to predict damage rates and to propose geometric or material improvements to increase the strength and the lifetime of the interfacial bond. For ITER a tube-in-tile concept (monoblock), designed to sustain heat fluxes up to 20 MW m{sup -2}, has been developed. The optimization of the CFC/Cu bond, proposed for flat tiles, could be adopted for the monoblock concept.

  10. Heat flux limits on the plasma-facing components for a commercial fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.R.; Tillack, M.S. [Univ. of California, San Diego, La Jolla, CA (United States); Sze, D.K. [Argonne National Lab., IL (United States); Wong, C.P.C. [General Atomics, San Diego, CA (United States)

    1995-12-31

    In this work, the heat flux limits of conventional plasma-facing components (PFC) were examined. The limits are based on maximum allowable temperature and stress levels in the structures. The substrate materials considered were V, SiC composite and HT-9. The use of Cu also was considered. However, low temperature limits, activation and very limited radiation damage life time, make the using of Cu in a commercial power plant unattractive. With selected heat transfer enhancement, the heat flux allowable is about 5.3 MW/m{sup 2} for lithium-cooled V-alloy, 2.7 MW/m{sup 2} for helium-cooled SiC composite, and 2.7 MW/m{sup 2} for helium/water-cooled HT-9. Compared with the maximum heat flux attainable with Cu and cold water (13.4 MW/m{sup 2}), acceptable power plant materials place severe restrictions on heat removal. The thermal conductivity of SiC composite at 1,000 C and after irradiation is a factor of several lowered than the value the authors used. This indicates a need to examine the heat transfer problems associated with PFC, in terms of material development and enhancement in heat transfer. Physics regimes which can provide low peak and average heat flux should be pursued.

  11. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  12. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Maddaluno, G. E-mail: maddaluno@frascati.enea.it; Maruccia, G.; Merola, M.; Rollet, S

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m{sup 2} and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  13. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  14. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  15. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  16. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Science.gov (United States)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  17. An operational non destructive examination for ITER divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Escourbiac, F.; Farjon, J.L.; Vignal, N.; Cismondi, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [ITER International Team, Cadarache, 13 - St Paul Lez Durance (France); Riccardi, B. [CEFDA CSU-Garching, Garching bei Munchen (Germany)

    2007-07-01

    Full text of publication follows: To meet the power exhaust - heat flux of 20 MW/m{sup 2} - requirements of Plasma Facing Components (PFCs) during plasma operation requires control of their thermal and mechanical integrity. As heat exhaust capability and lifetime of PFCs during in-situ operation are linked to the manufacturing quality, it is an absolute requirement to develop reliable nondestructive examination methods, in particular of the CFC-CuCrZr joint, throughout the manufacturing process. Within the framework of Tokamak Tore Supra upgrade, a pioneering activity has been developed to evaluate the capability of the PFC to be efficiently cooled. In 1998 a test bed - so called SATIR - based on the heat transient method was developed by the CEA and is used today as an inspection tool in order to guarantee the PFCs performances. The technical procurement plan of ITER Divertor targets stated that all Cu cast layers on CFC armour should be subjected to 100% thermographic examination. Each ITER Party should demonstrate its technical capability to carry out the PFC with the required cooling efficiently. The ITER Divertor PFCs pose new challenges especially for the mono-block CFC thickness, and the number of full scale units to be tested which is higher than on any existing or under construction fusion machine. The SATIR method as functional inspection has been identified as the basis test to decide upon the final acceptance of the Divertor PFCs. In order to increase the detection sensitivity of SATIR test bed, several possibilities have been assessed i) the increase of the convective heat transfer coefficient, which improved in a significant way the sensitivity of SATIR diagnostic on ITER components. ii) the installation of a digital infrared camera and the improvement of the thermal signal processing, has led to a considerable increase of performances iii) an innovative process based on spatial image autocorrelation will allow to localize the interlayer defect

  18. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  19. Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Neu, R., E-mail: Rudolf.Neu@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Fakultät für Maschinenbau, Technische Universität München, D-85748 Garching (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Coenen, J.W. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Brinkmann, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Calvo, A. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Elgeti, S. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); García-Rosales, C. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Greuner, H.; Hoeschen, T.; Holzner, G. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Klein, F. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Koch, F. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); and others

    2016-11-01

    Highlights: • Development of W-fibre enhanced W-composites incorporating extrinsic toughening mechanisms. • Production of a large sample (more than 2000 long fibres) for mechanical and thermal testing. • Even in a fully embrittled state, toughening mechanisms are still effective. • Emissions of volatile W-oxides can be suppressed by alloying W with elements forming stable oxides. • WCr10Ti2 has been successfully tested under accidental conditions and high heat fluxes. - Abstract: Tungsten is the major candidate material for the armour of plasma facing components in future fusion devices. To overcome the intrinsic brittleness of tungsten, which strongly limits its operational window, a W-fibre enhanced W-composite material (W{sub f}/W) has been developed incorporating extrinsic toughening mechanisms. Small W{sub f}/W samples show a large increase in toughness. Recently, a large sample (50 mm × 50 mm × 3 mm) with more than 2000 long fibres has been successfully produced allowing further mechanical and thermal testing. It could be shown that even in a fully embrittled state, toughening mechanisms as crack bridging by intact fibres, as well as the energy dissipation by fibre-matrix interface debonding and crack deflection are still effective. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO{sub 3} compounds and their potential release under accidental conditions. It has been shown that the oxidation of W can be strongly suppressed by alloying with elements forming stable oxides. WCr10Ti2 alloy has been produced on a technical scale and has been successfully tested in the high heat flux test facility GLADIS. Recently, W-Cr-Y alloys have been produced on a lab-scale. They seem to have even improved properties compared to the previously investigated W alloys.

  20. Design and operation results of nitrogen gas baking system for KSTAR plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Tae [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Young-Jin, E-mail: k43689@nfri.re.kr [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Joung, Nam-Yong; Im, Dong-Seok; Kim, Kang-Pyo; Kim, Kyung-Min; Bang, Eun-Nam; Kim, Yaung-Soo [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Yoo, Seong-Yeon [Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2013-11-15

    Highlights: • Vacuum pressure in a vacuum vessel arrived at 7.24 × 10{sup −8} mbar. • PFC temperature was reached maximum 250 °C by gas temperature at 300 °C. • PFC inlet gas temperature was changed 5 °C per hour during rising and falling. • PFC gas balancing was made temperature difference among them below 8.3 °C. • System has a pre-cooler and a three-way valve to save operation energy. -- Abstract: A baking system for the Korea Superconducting Tokamak Advanced Research (KSTAR) plasma facing components (PFCs) is designed and operated to achieve vacuum pressure below 5 × 10{sup −7} mbar in vacuum vessel with removing impurities. The purpose of this research is to prevent the fracture of PFC because of thermal stress during baking the PFC, and to accomplish stable operation of the baking system with the minimum life cycle cost. The uniformity of PFC temperature in each sector was investigated, when the supply gas temperature was varied by 5 °C per hour using a heater and the three-way valve at the outlet of a compressor. The alternative of the pipe expansion owing to hot gas and the cage configuration of the three-way valve were also studied. During the fourth campaign of the KSTAR in 2011, nitrogen gas temperature rose up to 300 °C, PFC temperature reached at 250 °C, the temperature difference among PFCs was maintained at below 8.3 °C, and vacuum pressure of up to 7.24 × 10{sup −8} mbar was achieved inside the vacuum vessel.

  1. Engineering solutions for components facing the plasma in experimental fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Farfaletti-Casali, F.

    1986-07-01

    An analysis is made of the engineering problems related to the structures facing the plasma in experimental tokamak-type reactors. Attention is focused on the so-called ''current first wall'', i.e. the wall side of the blanket segments facing the plasma, and on the collector plates of the impurity control system. The design of a first wall, developed at the JRC-Ispra for INTOR/NET and based on the idea of conceiving it as one of the sides, of a box which envelopes a blanket segment, is described. The progress in the structural analysis of the first wall box under operating and abnormal (plasma disruption) conditions is presented and discussed. The design of the collector plates of the single-null divertor of INTOR/NET, as developed at the JRC-Ispra, is described. This design is based on a W-Re protective layer and a water-cooled heat sink, including cooling channels iun Cu-alloys and a Cu-matrix for bonding. The results of the elastic and elasto-plastic evaluations are discussed, together with a layout of the experimental activity in progress. It is concluded that, even if the uncertainties related to the plasma-wall interaction are still relevant, the engineering solutions identified look manageable, although they require a large research and development effort.

  2. Heat loads on JET plasma facing components from ICRF and LH wave absorption in the SOL

    Science.gov (United States)

    Jacquet, P.; Colas, L.; Mayoral, M.-L.; Arnoux, G.; Bobkov, V.; Brix, M.; Coad, P.; Czarnecka, A.; Dodt, D.; Durodie, F.; Ekedahl, A.; Frigione, D.; Fursdon, M.; Gauthier, E.; Goniche, M.; Graham, M.; Joffrin, E.; Korotkov, A.; Lerche, E.; Mailloux, J.; Monakhov, I.; Noble, C.; Ongena, J.; Petrzilka, V.; Portafaix, C.; Rimini, F.; Sirinelli, A.; Riccardo, V.; Vizvary, Z.; Widdowson, A.; Zastrow, K.-D.; EFDA Contributors, JET

    2011-10-01

    In JET, lower hybrid (LH) and ion cyclotron resonance frequency (ICRF) wave absorption in the scrape-off layer can lead to enhanced heat fluxes on some plasma facing components (PFCs). Experiments have been carried out to characterize these heat loads in order to: (i) prepare JET operation with the Be wall which has a reduced power handling capability as compared with the carbon wall and (ii) better understand the physics driving these wave absorption phenomena and propose solutions for next generation systems to reduce them. When using ICRF, hot spots are observed on the antenna structures and on limiters close to the powered antennas and are explained by acceleration of ions in RF-rectified sheath potentials. High temperatures up to 800 °C can be reached on locations where a deposit has built up on tile surfaces. Modelling which takes into account the fast thermal response of surface layers can reproduce well the surface temperature measurements via infrared (IR) imaging, and allow evaluation of the heat fluxes local to active ICRF antennas. The flux scales linearly with the density at the antenna radius and with the antenna voltage. Strap phasing corresponding to wave spectra with lower kpar values can lead to a significant increase in hot spot intensity in agreement with antenna modelling that predicts, in that case, an increase in RF sheath rectification. LH absorption in front of the antenna through electron Landau damping of the wave with high Npar components generates hot spots precisely located on PFCs magnetically connected to the launcher. Analysis of the LH hot spot surface temperature from IR measurements allows a quantification of the power flux along the field lines: in the worst case scenario it is in the range 15-30 MW m-2. The main driving parameter is the LH power density along the horizontal rows of the launcher, the heat fluxes scaling roughly with the square of the LH power density. The local electron density in front of the grill increases

  3. Qualification Program of Korea Heat Load Test Facility KoHLT-EB for ITER Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Park, Seoung Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The qualification tests were performed to evaluate the high heat flux test facility for the PFCs and fusion reactor materials. For the thermal fatigue test, two types of tungsten mock-ups were fabricated. The cooling performance was tested under the similar operation condition of ITER and fusion reactor. After the completion of the preliminary mockup test and facility qualification, the high heat flux test facility will assess the performance test for the various plasma facing components in fusion reactor materials. Preliminary thermo-hydraulic and performance tests were conducted using various test mockups for the plasma facing components in the high heat flux test facilities of the world. The previous heat flux tests were performed by using the graphite heater facilities in Korea. Several facilities which equipped with an electron beam as the uniform heat source were fabricated for the tokamak PFCs in the EU, Russia and US. These heat flux test facilities are utilized for a cyclic heat flux test of the PFCs. Each facility working for their own purpose in EU FZJ, US SNL, and Russia Efremov institute. For this purpose, KoHLTEB was constructed and this facility will be used for ITER TBM performance test with the small-scale and large-scale mockups, and prototype. Also, it has been used for other fusion application for developing plasma facing component (PFC) for ITER FW, tungsten divertor, and heat transfer experiment and so on under the domestic R and D program. Korea heat load test facility by using electron beam KoHLT-EB was constructed for the high heat flux test to verify the plasma facing components, including ITER TBM first wall.

  4. Proceedings of 2nd Internaitonal workshop on tritium effects in plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Kenji [Nagoya Univ. (Japan). School of Engineering; Noda, Nobuaki [eds.

    1994-08-01

    This workshop was held at Nagoya University on May 19 and 20, 1994. Approximately 1/3 of the lectures discussed the migration and retention of tritium in graphite and the other forms of carbon. As to this topic, most of the different aspects of the tritium reactions with carbon were generally agreed on. At the temperature lower than 800 K, tritium plasma interacts with graphite by forming a saturated layer on the surface, by forming a codeposited layer of sputtered carbon and tritium, and by allowing tritium diffusion through Pores. At the temperature higher than 800 K, the principal reaction of tritium with carbon is intergranular diffusion with high energy trapping. Because beryllium is the reference plasma-facing material for the ITER, several presentations on the reactions of tritium with beryllium were made. Also the tritium permeation through other metals was the topics. The results of TFTR D-T experiment were reported in the first talk. In this book, the gists of these lectures are collected. (K.I.).

  5. Processing and characterization of B4C/Cu graded composite as plasma facing component for fusion reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% was successfully fabricated. Plasma relevant performances ofsintered B4C/Cu composite were preliminarily characterized, it is found that its chemical sputtering yield is 70% lower than that of SMF800 nuclear graphite under 2.7 keV D+ irradiation, and almost no damages after 66 shots of in situ plasma discharge in HL-1 Tokamak facility, which indicates B4C/Cu plasma facing component has a good physical and chemical sputtering resistance performance compared with nuclear graphite.

  6. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  7. Beryllium processing technology review for applications in plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  8. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Thomas R., E-mail: tom.barrett@ukaea.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Ellwood, G.; Pérez, G.; Kovari, M.; Fursdon, M.; Domptail, F.; Kirk, S.; McIntosh, S.C.; Roberts, S.; Zheng, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boccaccini, L.V. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); You, J.-H. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Bachmann, C. [EUROfusion, PPPT, Boltzmann Str. 2, 85748 Garching (Germany); Reiser, J.; Rieth, M. [KIT, IAM, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Visca, E.; Mazzone, G. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Arbeiter, F. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Domalapally, P.K. [Research Center Rez, Hlavní 130, 250 68 Husinec – Řež (Czech Republic)

    2016-11-01

    Highlights: • The engineering of the plasma facing components for DEMO is an extreme challenge. • PFC overall requirements, methods for assessment and designs status are described. • Viable divertor concepts for 10 MW/m{sup 2} surface heat flux appear to be within reach. • The first wall PFC concept will need to vary poloidally around the wall. • First wall coolant, structural material and PFC topology are open design choices. - Abstract: The European DEMO power reactor is currently under conceptual design within the EUROfusion Consortium. One of the most critical activities is the engineering of the plasma-facing components (PFCs) covering the plasma chamber wall, which must operate reliably in an extreme environment of neutron irradiation and surface heat and particle flux, while also allowing sufficient neutron transmission to the tritium breeding blankets. A systems approach using advanced numerical analysis is vital to realising viable solutions for these first wall and divertor PFCs. Here, we present the system requirements and describe bespoke thermo-mechanical and thermo-hydraulic assessment procedures which have been used as tools for design. The current first wall and divertor designs are overviewed along with supporting analyses. The PFC solutions employed will necessarily vary around the wall, depending on local conditions, and must be designed in an integrated manner by analysis and physical testing.

  9. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    Science.gov (United States)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  10. Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP)

    Science.gov (United States)

    Bedoya, F.; Allain, J. P.; Kaita, R.; Skinner, C. H.; Buzi, L.; Koel, B. E.

    2016-11-01

    A novel Plasma Facing Components (PFCs) diagnostic, the Materials Analysis Particle Probe (MAPP), has been recently commissioned in the National Spherical Torus Experiment Upgrade (NSTX-U). MAPP is currently monitoring the chemical evolution of the PFCs in the NSTX-U lower divertor at 107 cm from the tokamak axis on a day-to-day basis. In this work, we summarize the methodology that was adopted to obtain qualitative and quantitative descriptions of the samples chemistry. Using this methodology, we were able to describe all the features in all our spectra to within a standard deviation of ±0.22 eV in position and ±248 s-1 eV in area. Additionally, we provide an example of this methodology with data of boronized ATJ graphite exposed to NSTX-U plasmas.

  11. Modelling of Kelvin-Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact

    Science.gov (United States)

    Miloshevsky, G. V.; Hassanein, A.

    2010-11-01

    Plasma-facing components (PFCs) in tokamaks are exposed to high-heat loads during abnormal events such as plasma disruptions and edge-localized modes. The most significant erosion and plasma contamination problem is macroscopic melt splashes and losses from metallic divertor plates and wall materials into core plasma. The classical linear stability analysis is used to assess the initial conditions for development and growth of surface waves at the plasma-liquid metal interface. The maximum velocity difference and critical wavelengths are predicted. The effects of plasma density, surface tension and magnetic field on the stability of plasma-liquid tungsten flows are analytically investigated. The numerical modelling predicts that macroscopic motion and melt-layer losses involve the onset of disturbances on the surface of the tungsten melt layer with relatively long wavelengths compared with the melt thickness, the formation of liquid tungsten ligaments at wave crests and their elongation by the plasma stream with splitting of the bulk of the melt, and the development of extremely long, thin threads that eventually break into liquid droplets. Ejection of these droplets in the form of fine spray can lead to significant plasma contamination and enhanced erosion of PFCs. The numerical results advance the current understanding of the physics involved in the mechanism of melt-layer breakdown and droplet generation processes. These findings may also have implications for free surface liquid metal flows considered as the first wall in the design of several types of future fusion reactors.

  12. Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, Antti, E-mail: antti.hakola@vtt.fi [VTT Technical Research Centre of Finland, VTT (Finland); Likonen, Jari [VTT Technical Research Centre of Finland, VTT (Finland); Karhunen, Juuso; Korhonen, Juuso T. [Department of Applied Physics, Aalto University (Finland); Aints, Märt; Laan, Matti; Paris, Peeter [Department of Physics, University of Tartu (Estonia); Kolehmainen, Jukka; Koskinen, Mika; Tervakangas, Sanna [DIARC-Technology Oy, Espoo (Finland)

    2015-10-15

    Highlights: • Feasibility of the arc-discharge and plasma-sputtering techniques in removing deposited layers from ITER-relevant samples demonstrated. • Samples with the size of an A4 paper can be cleaned from 1-μm thick deposited layers in 10–20 minutes by the arc-discharge method. • The plasma-sputtering method is 5–10 times slower but the resulting surfaces are very smooth. • Arc-discharge method could be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER, plasma sputtering is preferred for diagnostics mirrors. - Abstract: We have studied the feasibility of arc-discharge and plasma-sputtering methods in removing deposited layers from ITER-relevant test samples. Prototype devices have been designed and constructed for the experiments and the cleaning process is monitored by a spectral detection system. The present version of the arc-discharge device is capable of removing 1-μm thick layers from 350-mm{sup 2} areas in 4–8 s, but due to the increased roughness of the cleaned surfaces and signs of local melting, mirror-like surfaces cannot be treated by this technique. The plasma-sputtering approach, for its part, is some 5–10 times slower in removing the deposited layers but no changes in surface roughness or morphology of the samples could be observed after the cleaning phase. The arc-discharge technique could therefore be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER while in the case of diagnostics mirrors plasma sputtering is preferred.

  13. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    Science.gov (United States)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving

  14. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    Science.gov (United States)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our

  15. On thermionic emission from plasma-facing components in tokamak-relevant conditions

    Science.gov (United States)

    Komm, M.; Ratynskaia, S.; Tolias, P.; Cavalier, J.; Dejarnac, R.; Gunn, J. P.; Podolnik, A.

    2017-09-01

    The first results of particle-in-cell simulations of the electrostatic sheath and magnetic pre-sheath of thermionically emitting planar tungsten surfaces in fusion plasmas are presented. Plasma conditions during edge localized modes (ELMs) and during inter-ELM periods have been considered for various inclinations of the magnetic field and for selected surface temperatures. All runs have been performed under two assumptions for the sheath potential drop; fixed or floating. The primary focus lies on the evaluation of the escaping thermionic current and the quantification of the suppression due to the combined effects of space-charge and Larmor gyration. When applicable, the results are compared with the predictions of analytical models. The heat balance in the presence of thermionic emission as well as the contribution of the escaping thermionic current to surface cooling are also investigated. Regimes are identified where emission needs to be considered in the energy budget.

  16. NIFS joint research meeting on plasma facing components, PSI, and heat/particle control

    Energy Technology Data Exchange (ETDEWEB)

    Yamashina, T. [Hokkaido Univ., Sapporo (Japan)

    1997-10-01

    The LHD collaboration has been started in 1996. Particle and heat control is one of the categories for the collaboration, and a few programs have been nominated in these two years. A joint research meeting on PFC, PSI, heat and particle meeting was held at NIFS on June 27, 1997, in which present status of these programs were reported. This is a collection of the notes and view graphs presented in this meeting. Brief reviews and research plan of each program are included in relation to divertor erosion and sputtering, impurity generation, hydrogen recycling, edge plasma structure, edge transport and its control, heat removal, particle exhaust, wall conditioning etc. (author)

  17. Evaluation of energy and particle impact on the plasma facing components in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yuri, E-mail: juri.gitkhanov@ihm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, Boris [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany)

    2012-08-15

    -state operation heat transfer into the coolant must remain below the critical heat flux (CHF) to avoid the possible severe degradation of the coolant heat removal capability. From the plasma side it is particularly demanding to keep the bulk plasma contamination during the reactor long operational discharges below the fatal level. The possible damage of the FW materials due to the plasma sputtering erosion is estimated. The minimum thickness of the tungsten amour about 3 mm for W/EUROFER sandwich structure will keep the maximum EUROFER temperature below the critical limit for EUROFER steel under steady-state operation and ITER like cooling conditions.

  18. New design aspects of cooling scheme for SST-1 plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Paravastu, Yuvakiran, E-mail: pyuva@ipr.res.in; Khan, Ziauddin; Pradhan, Subrata

    2015-10-15

    Highlights: • SST-1 Tokamak PFCs were fabricated using graphite tiles embedded on CuCrZr and CuZr back plates. • PFC cooling is designed considering maximum heat load up to 0.6 MW/m{sup 2}. • Cooling scheme is such that the nucleate boiling will not occur. • The required mass flow rate and velocity for cooling water in each sub-connection are found to be 0.43 kg/s and 5.5 m/s for efficient heat extraction. • The header distribution scheme is modeled using AFT fathom which is in agreement to the required parameters with maximum 5% of deviation. - Abstract: PFC of SST-1 comprising of baffles, divertors and passive stabilizers have been designed and fabricated for a maximum heat load up to 1.0 MW/m{sup 2}. In operational condition, SST-1 divertors and passive stabilizers are expected to operate with a heat load of 0.6 and 0.25 MW/m{sup 2}, respectively. During plasma operation, the heat loads on PFC are required to be removed promptly and efficiently. Thereby the design of an efficient cooling scheme becomes extremely important for an efficient operation of PFC. PFCs are also baked up to 350 °C in order to remove absorbed moistures and other gases. 3D thermal analysis of PFC using ANSYS has been carried out to ensure its thermal stability. The cooling parameters have been calculated according to average incident flux on divertors and passive stabilizers. Engineering design demonstrated the required mass flow rate and velocity for cooling water in each sub-connection are optimized to be 0.43 kg/s and 5.5 m/s for efficient heat extraction under steady state heat load. Maximum temperature which PFC could be maintained is 355 °C and is well within threshold limits of material property degradation. The header distribution, modeled using AFT fathom, resulted for required parameters within maximum 5% of deviation.

  19. Development of an original active thermography method adapted to ITER plasma facing components control

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Vignal, N.; Escourbiac, F.; Farjon, J.L.; Schlosser, J. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Cismondi, F. [Toulon Univ., 83 - La Garde (France)

    2004-07-01

    Among all Non-Destructive Examinations (NDE), active infrared thermography is becoming recognised as a technique available today for improving quality control of many materials and structures involved in heat transfer. The infrared thermography allows to characterise the bond between two materials having different thermal physical properties. In order to increase the defect detection limit of the SATIR test bed, several possibilities have been evaluated to improve the infrared thermography inspection. The implementation in 2003 of a micro-bolometer camera and the improving of the thermo-signal process allowed to increase considerably the detection sensitivity of the SATIR facility. The quality, the spatial stability of infrared image and the detection of edge defect have been also improved. The coupling on the same test bed of SATIR method with a lock-in thermography will be evaluated in this paper. An improvement of the global reliability is expected by data merging produced by the two thermal excitation sources. A new enhanced facility named SATIRPACA has been designed for the full Non Destructive Examination of the High Heat Flux ITER components taking into account these main improvements. These systematic acceptance tests obviously need tools for quality control of critical parts. (authors)

  20. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    Science.gov (United States)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  1. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, N., E-mail: nicolas.vignal@cea.fr; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-10-15

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m{sup −2}, advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material.

  2. Thermal analysis on the EAST tungsten plasma facing components with shaping structure counteracting the misalignment issues

    Science.gov (United States)

    Baoguo, Wang; Dahuan, Zhu; Rui, Ding; Junling, Chen

    2017-02-01

    Tungsten monoblock type tiles with ITER dimensions along with supporting cassette components were installed at EAST’s upper diverter during 2014 and EAST’s lower diverter will also be upgraded in the future. These cassette structures pose critical issues on the high cumulative incident heat flux due to the leading edges and misalignments (0 ˜ 1.5 mm), which may result in the destruction or even melting of the tungsten tile. The present work summarizes the thermal analysis using ANSYS multiphysics software 15.0 performed on the actively cooled W tiles to evaluate the shaping effect on surface temperature. In the current heat flux conditions (Q|| ˜ 100 MW m-2), the adopted chamfer shaping (1 × 1 mm) can only reduce the maximum temperature by about 14%, but it also has a melting risk at the maximum misalignment of 1.5 mm. The candidate shaping solutions elliptical (round) edge, dome and fish-scale are analyzed for comparison and are identified not as good as the dual chamfer structure. A relatively good dual chamfer (2 × 13 mm) shaping forming a symmetrical sloping roof structure can effectively counteract the 1.5 mm misalignment, reducing the maximum temperature by up to 50%. However, in the future heat flux conditions (Q|| ˜ 287 MW m-2), it may only endure about 0.5 mm misalignment. Moreover, no proper shaping solution has been found that can avoid melting at the maximum misalignment of 1.5 mm. Thus, the engineering misalignment has to be limited to an acceptable level. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003) and National Natural Science Foundation of China (No. 11405209).

  3. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    Science.gov (United States)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  4. Damage prediction of carbon fibre composite armoured actively cooled plasma-facing components under cycling heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Herb, V; Martin, E; Camus, G [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Pessac (France); Braccini, M [SIMaP, CNRS UMR 5266, Grenoble (France)], E-mail: gaelle.chevet@cea.fr

    2009-12-15

    In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.

  5. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  6. Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Autissier, E., E-mail: manu.autissier@orange.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Richou, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Minier, L. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France); Gardarein, J.-L. [Aix Marseille Univ, IUSTI, UMR CNRS 7343, F-13453 Marseille (France); Bernard, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2015-10-15

    Highlights: • Different W-Cu powders were sintered by Spark Plasma Sintering. • The relative density increase with the temperature and Cu concentration. • Thermal conductivity of W-Cu samples has been measured in function of density. • Assembly of a three-layer W-Cu between a W block and a CuCrZr block was realized. • 40 min is the minimum time to complete bonding between W and W{sub 80}Cu{sub 20}. - Abstract: The assembly of W block with a CuCrZr block has been produced by adding compliant W-Cu layers. Firstly, three W-Cu powders (W{sub 80}Cu{sub 20}, W{sub 60}Cu{sub 40} and W{sub 40}Cu{sub 60}) were sintered by spark plasma sintering (SPS) to investigate the influences of sintering temperature and pressure on relative density and microstructure. The experimental results indicated that the relative density increases with temperature and Cu concentration, achieving a value of 94.1% for the W{sub 40}Cu{sub 60} sample sintered at 1000 °C and a value of 83.1% for the W{sub 80}Cu{sub 20} sample sintered at the same temperature. Then, a three-layer W-Cu assembly between a W block and a CuCrZr block was fabricated using similar sintering conditions to the W-Cu powders. The sintering temperature was limited at 1000 °C due to the CuCrZr melting temperature (1083 °C). The experimental results indicated that loading time, when the right sintering temperature and pressure are applied, is the most important parameter.

  7. Surface temperature measurement of the plasma facing components with the multi-spectral infrared thermography diagnostics in tokamaks

    Science.gov (United States)

    Zhang, C.; Gauthier, E.; Pocheau, C.; Balorin, C.; Pascal, J. Y.; Jouve, M.; Aumeunier, M. H.; Courtois, X.; Loarer, Th.; Houry, M.

    2017-03-01

    For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement. In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good

  8. Main Directions and Recent Test Modeling Results of Lithium Capillary-Pore Systems as Plasma Facing Components

    Institute of Scientific and Technical Information of China (English)

    V.A. Evtikhin; V. M. Korzhavin; I.E. Lyublinski; A.V. Vertkov; E.A. Azizov; S.V. Mirnov; V. B. Lazarev; S. M. Sotnikov; V. M. Safronov; A. S. Prokhorov

    2004-01-01

    At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing materials. A solid CPS filled with liquid lithium will have a high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stressinduced cracking in steady state and during plasma transitions to provide the normal operation of divertor target plates and first-wall protecting elements. These materials will not be the sources of impurities inducing an increase of Zeff and they will not be collected as dust in the divertor area and in ducts.Experiments with lithium CPS under simulating conditions of plasma disruption on a hydrogenplasma accelerator MK-200 [~ (10 - 15) MJ/m2, ~ 50 μs] have been performed. The formation of a shielding layer of lithium plasma and the high stability of these systems have been shown.The new lithium limiter tests on an up-graded T-11M tokamak (plasma current up to 100 kA,pulse length ~0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, deposited power of the limiter are investigated in these experiments. The first results of experiments are presented.

  9. Heat Transfer Analysis of Two Kinds of Mechanically Jointed GBST1308/CuCrZr Plasma Facing Components of EAST

    Institute of Scientific and Technical Information of China (English)

    CHONG Fali; CHEN Junling; LI Jiangang; ZHENG Xuebin; EAST team

    2008-01-01

    Doped graphite GBST1308,mechanically jointed to CuCrZr alloys,will be applied on EAST superconducting as plasma facing material (PFM).Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility.The experimental results showed that the temperature differences of two joints were not significant,and the maximum surface temperature was about 1055℃ at a load of 4 MW/m2,which had a good agreement with the simulated results by ANSYS code.The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m2 except at the screw-fastened region,and joint-2 could be more suitable to higher heat flux region such as divertor target.But under the higher heat flux,both joints are unacceptable,an advanced PFM and its integration with the heat sink have to be developed,for example,vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.

  10. Evaluation of observable phase space by fast ion loss detector by calculating particle orbits in consideration of plasma facing components and three dimensional magnetic field

    Science.gov (United States)

    Shinohara, Kouji; Kim, Junghee; Kim, Jun Young; Rhee, Tongnyeol

    2016-11-01

    The orbits of lost ions can be calculated from the information obtained by a fast ion loss detector (FILD). The orbits suggest a source of the lost fast ions in a phase space. However, it is not obvious whether an observable set of orbits, or phase space, of a FILD appropriately covers the region of interest to be investigated since the observable phase space can be affected by plasma facing components (PFCs) and a magnetic configuration. A tool has been developed to evaluate the observable phase space of FILD diagnostic by calculating particle orbits by taking the PFCs and 3D magnetic field into account.

  11. Laser-induced removal of co-deposits from graphitic plasma-facing components: Characterization of irradiated surfaces and dust particles

    Science.gov (United States)

    Gąsior, P.; Irrek, F.; Petersson, P.; Penkalla, H. J.; Rubel, M.; Schweer, B.; Sundelin, P.; Wessel, E.; Linke, J.; Philipps, V.; Emmoth, B.; Wolowski, J.; Hirai, T.

    2009-06-01

    Laser-induced fuel desorption and ablation of co-deposited layers on limiter plates from the TEXTOR tokamak have been studied. Gas phase composition was monitored in situ, whereas the ex situ studies have been focused on the examination of irradiated surfaces and broad analysis of dust generated by ablation of co-deposits. The size of the dust grains is in the range of few nanometers to hundreds of micrometers. These are fuel-rich dust particles, as determined by nuclear reaction analysis. The presence of deuterium in dust indicates that not all fuel species are transferred to the gas phase during irradiation. This also suggests that photonic removal of fuel and the ablation of co-deposit from plasma-facing components may lead to the redistribution of fuel-containing dust to surrounding areas.

  12. Estimates of RF-Induced Erosion at Antenna-Connected Beryllium Plasma-Facing Components in JET

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, D. [Association EURATOM-FZJ, Julich, Germany; Groth, M. [Aalto University, Finland; Airila, M. [VTT Technical Research Centre, Finland; Colas, L. [French Atomic Energy Commission (CEA); Jacquet, P. [EURATOM / UKAEA, Abingdon, UK; Kirschner, A. [Forschungszentrum Julich, Germany; Lasa, A. [Oak Ridge National Laboratory (ORNL)

    2016-01-01

    During high-power, ion cyclotron resonance heating (ICRH), RF sheath rectification and RF induced plasma-wall interactions (RF-PWI) can potentially limit long-pulse operation. With toroidally-spaced ICRH antennas, in an ITER-like wall (ILW) environment, JET provides an ideal environment for ITER-relevant, RF-PWI studies. JET pulses combining sequential toggling of the antennas with q95 (edge safety factor) sweeping were recently used to localize RF-enhanced Be I and Be II spectral line emission at outboard poloidal (beryllium) limiters. These measurements were carried out in the early stages of JET-ILW and in ICRF-only, L-mode discharges. The appearance of enhanced emission spots was explained by their magnetic connection to regions of ICRH antennas associated with higher RF-sheath rectification [1]. The measured emission lines were the same as those already qualified in ERO modelling of inboard limiter beryllium erosion in JET limiter plasmas [2]. In the present work, we revisit this spectroscopic study with the focus on obtaining estimates of the impact of these RF-PWI on sputtering and on net erosion of the affected limiter regions. To do this, the ERO erosion and re-deposition code [2] is deployed with the detailed geometry of a JET outboard limiter. The effect of RF-PWI on sputtering is represented by varying the surface negative biasing, which affects the incidence energy and the resulting sputtering yield. The observed variations in line emission, from [1], for JET pulse 81173 of about factor 3 can be reproduced with ~ 100 200 V bias. ERO simulations show that the influence of the respective E-field on the local Be transport is localized near the surface and relatively small. Still, the distribution of the 3D plasma parameters, shadowing and other geometrical effects are quite important. The plasma parameter simulated by Edge2D-EIRENE [3] are extrapolated towards the surface and mapped in 3D. These initial modelling results are consistent with the range of

  13. 钨/铜第一壁复合材料界面行为研究%Investigation on Interface Characteristic of W/Cu Plasma Facing Component

    Institute of Scientific and Technical Information of China (English)

    种法力

    2011-01-01

    通过等离子喷涂技术在铜合金基体上制备具有不同适配层的钨涂层第一壁复合材料,并对其界面行为进行研究.结果表明,Wu/Cu、NiCrAl和Ti适配层均能明显降低W/Cu界面热应力,但其界面仍是第一壁复合材料最可能失效的位置;W/Cu适配层能有效提高此复合材料界面的结合强度,增幅高达30%.%Tungsten coating was fabricated on copper ahoy by plasma spraying and its interface characteristic was investigated The results show that the compliant layers (W/Cu, NiCrAl and Ti) are heltpful to reduce W/Cu interface thermal stress, but the most possibility failure position of W / Cu plasma facing component is still in the interface. W / Cu adaptation layer can effectively enhance the bonding strength between tungsten coating and copper substrate by 30%.

  14. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  15. Leak tightness tests on actively cooled plasma facing components: Lessons learned from Tore Supra experience and perspectives for the new fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr; Lambert, R.; Gargiulo, L.; Hatchressian, J.-C.; Guilhem, D.; Samaille, F.; Soler, B.

    2015-10-15

    Highlights: • Test procedures for the qualification of the tightness of actively cooled plasma facing components were defined. • The test is performed after the component manufacturing and before its set-up in the vacuum vessel. • It allows improving the fusion machine availability. • The lessons of tests over 20 years at Tore Supra are presented. - Abstract: The fusion machines under development or construction (ITER, W7X) use several hundreds of actively cooled plasma facing components (ACPFC). They are submitted to leak tightness requirements in order to get an appropriate vacuum level in the vessel to create the plasma. During the ACPFC manufacturing and before their installation in the machine, their leak tightness performance must be measured to check that they fulfill the vacuum requirements. A relevant procedure is needed which allows to segregate potential defects. It must also be optimized in terms of test duration and costs. Tore Supra, as an actively cooled Tokamak, experienced several leaks on ACPFCs during the commissioning and during the operation of the machine. A test procedure was then defined and several test facilities were set-up. Since 1990 the tightness of all the new ACPFCs is systematically tested before their installation in Tore Supra. During the qualification test, the component is set up in a vacuum test tank, and its cooling circuits are pressurized with helium. It is submitted to 3 temperature cycles from room temperature up to the baking temperature level in Tore Supra (200 °C) and two pressurization tests are performed (6 MPa at room temperature and 4 MPa at 200 °C) at each stage. At the end of the last cycle when the ACPFC is at room temperature and pressurized with helium at 6 MPa, the measured leak rate must be lower than 5 × 10{sup −11} Pa m{sup 3} s{sup −1}, the pressure in the test tank being <5 × 10{sup −5} Pa. A large experience has been gained on ACPFCs with carbon parts on stainless steel and Cu

  16. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F.; Missirlian, M.; Schlosser, J. [Association EURATOM-CEA Cadarache, Departement de Recherches sur la Fusion Controlee, 13 - Saint Paul lez Durance (France); Bobin-Vastra, I. [AREVA Centre Technique de Framatome, 71 - Le Creusot (France); Kuznetsov, V. [Efremov Institute, Doroga na Metallostroy, St. Petersburg (Russian Federation); Schedler, B. [Plansee AG, Reutte (Austria)

    2004-07-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m{sup 2} with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m{sup 2}. These results highlight the high potential of this technology for ITER divertor application.

  17. Results of high heat flux testing of W/CuCrZr multilayer composites with percolating microstructure for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Greuner, Henri, E-mail: henri.greuner@ipp.mpg.de; Zivelonghi, Alessandro; Böswirth, Bernd; You, Jeong-Ha

    2015-10-15

    Highlights: • Improvement of the performance of plasma-facing components made of W and CuCrZr. • Functionally graded composite at the interface of W and CuCrZr to mitigate the CTE. • A three-layer composite system (W volume fraction: 70/50/30%) was developed. • Design of water-cooled divertor components up to 20 MW/m{sup 2} heat load for e.g. DEMO. • HHF tests up to 20 MW/m{sup 2} were successfully performed. - Abstract: Reliable joining of tungsten to copper is a major issue in the design of water-cooled divertor components for future fusion reactors. One of the suggested advanced engineering solutions is to use functionally graded composite interlayers. Recently, the authors have developed a novel processing route for fabricating multi-layer graded W/CuCrZr composites. Previous characterization confirmed that the composite materials possess enhanced strength compared to the matrix alloy and shows reasonable ductility up to 300 °C indicating large potential to extend the operation temperature limit. Furthermore, a three-layer composite system (W volume fraction: 70/50/30%) was developed as a graded interlayer between the W armour and CuCrZr heat sink. In this study, we investigated the structural performance of the graded joint. Three water-cooled mock-ups of a flat tile type component were fabricated using electron beam welding and thermally loaded at the hydrogen neutral beam test facility GLADIS. Cycling tests at 10 MW/m{sup 2} and screening tests up to 20 MW/m{sup 2} were successfully performed and confirmed the expected thermal performance of the compound. The measured temperature values were in good agreement with the prediction of finite element analysis. Microscopic investigation confirmed the structural integrity of the newly developed functionally graded composite after these tests.

  18. Study of laser-induced removal of co-deposits from tokamak plasma-facing components using ion diagnostics and optical spectroscopy

    Science.gov (United States)

    Wolowski, J.; Gasior, P.; Hoffman, J.; Kubkowska, M.; Rosinski, M.; Szymanski, Z.

    2010-10-01

    The paper presents studies of the application of ion diagnostics and optical spectroscopy for on-line measurement of the amount and characteristics of co-deposits from the laser-ablated surface of the plasma-facing components (e.g. graphite tiles). For removal of the co-deposit layer a repetitive Nd:YAG laser was used. Determination of the characteristics of ions emitted from the laser-illuminated targets was performed using ion collectors (on the basis of a time-of-flight method) and an optical spectrometer. The main ion stream parameters and spectral lines of deuterium and carbon or tungsten ions were measured depending on laser pulse parameters. The research proved that optical spectroscopy could be a convenient method for on-line observation of the co-deposited layer removal by means of laser ablation. In combination with the investigation of collected co-deposit dust, the performed study made it possible to state that laser-induced breakdown spectroscopy can be useful as a diagnostic method for the ablative co-deposited layer removal and the wall conditioning. The properties of modified surfaces of samples and collected dust (evaporated co-deposit) were determined using different measuring methods.

  19. Be/W and W/Be bilayers deposited on Si substrates with hydrogenated Fe-Cr and Fe-Cr-Al interlayers for plasma facing components

    Science.gov (United States)

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Kuncser, V.

    2016-12-01

    Be/W and W/Be bilayers, of interest in regard to the specific behavior of plasma facing components (PFCs) were deposited on Si substrates by thermionic vacuum arc, with Fe, Fe-Cr and Fe-Cr-Al interlayers. The interlayers, with compositions approaching the one of the reduced activation steels used in supporting PFCs, were subsequently annealed in hydrogen atmosphere. The multilayers were characterized with respect to morphologic, structural, diffusional and atomic intermixing aspects via XRD, XRR, X-ray photoemission spectroscopy and Mössbauer spectroscopy. All as-prepared samples present partially amorphous structures. A main α-Fe phase is observed, as well as (superparamagnetic) secondary Fe oxides, metallic Fe with Si, Cr, W and Be neighbors, Be-rich Fe-Be and Fe-Si phases. High amounts of tungsten and tungsten oxides were also evidenced in the Fe layer. The strong atomic intermixing of W and Be layers was indirectly supported by the unusual densities of W and Be layers and 57Fe Mössbauer spectroscopy results.

  20. Component-Based Cartoon Face Generation

    Directory of Open Access Journals (Sweden)

    Saman Sepehri Nejad

    2016-11-01

    Full Text Available In this paper, we present a cartoon face generation method that stands on a component-based facial feature extraction approach. Given a frontal face image as an input, our proposed system has the following stages. First, face features are extracted using an extended Active Shape Model. Outlines of the components are locally modified using edge detection, template matching and Hermit interpolation. This modification enhances the diversity of output and accuracy of the component matching required for cartoon generation. Second, to bring cartoon-specific features such as shadows, highlights and, especially, stylish drawing, an array of various face photographs and corresponding hand-drawn cartoon faces are collected. These cartoon templates are automatically decomposed into cartoon components using our proposed method for parameterizing cartoon samples, which is fast and simple. Then, using shape matching methods, the appropriate cartoon component is selected and deformed to fit the input face. Finally, a cartoon face is rendered in a vector format using the rendering rules of the selected template. Experimental results demonstrate effectiveness of our approach in generating life-like cartoon faces.

  1. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    Science.gov (United States)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  2. Discriminant Phase Component for Face Recognition

    Directory of Open Access Journals (Sweden)

    Naser Zaeri

    2012-01-01

    Full Text Available Numerous face recognition techniques have been developed owing to the growing number of real-world applications. Most of current algorithms for face recognition involve considerable amount of computations and hence they cannot be used on devices constrained with limited speed and memory. In this paper, we propose a novel solution for efficient face recognition problem for systems that utilize small memory capacities and demand fast performance. The new technique divides the face images into components and finds the discriminant phases of the Fourier transform of these components automatically using the sequential floating forward search method. A thorough study and comprehensive experiments relating time consumption versus system performance are applied to benchmark face image databases. Finally, the proposed technique is compared with other known methods and evaluated through the recognition rate and the computational time, where we achieve a recognition rate of 98.5% with computational time of 6.4 minutes for a database consisting of 2360 images.

  3. Decoding of faces and face components in face-sensitive human visual cortex

    Directory of Open Access Journals (Sweden)

    David F Nichols

    2010-07-01

    Full Text Available A great challenge to the field of visual neuroscience is to understand how faces are encoded and represented within the human brain. Here we show evidence from functional magnetic resonance imaging (fMRI for spatially distributed processing of the whole face and its components in face-sensitive human visual cortex. We used multi-class linear pattern classifiers constructed with a leave-one-scan-out verification procedure to discriminate brain activation patterns elicited by whole faces, the internal features alone, and the external head outline alone. Furthermore, our results suggest that whole faces are represented disproportionately in the fusiform cortex (FFA whereas the building blocks of faces are represented disproportionately in occipitotemporal cortex (OFA. Faces and face components may therefore be organized with functional clustering within both the FFA and OFA, but with specialization for face components in the OFA and the whole face in the FFA.

  4. AN EVEN COMPONENT BASED FACE RECOGNITION METHOD

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper presents a novel face recognition algorithm. To provide additional variations to training data set, even-odd decomposition is adopted, and only the even components (half-even face images) are used for further processing. To tackle with shift-variant problem,Fourier transform is applied to half-even face images. To reduce the dimension of an image,PCA (Principle Component Analysis) features are extracted from the amplitude spectrum of half-even face images. Finally, nearest neighbor classifier is employed for the task of classification. Experimental results on ORL database show that the proposed method outperforms in terms of accuracy the conventional eigenface method which applies PCA on original images and the eigenface method which uses both the original images and their mirror images as training set.

  5. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  6. Face Recognition Based on Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Ali Javed

    2013-02-01

    Full Text Available The purpose of the proposed research work is to develop a computer system that can recognize a person by comparing the characteristics of face to those of known individuals. The main focus is on frontal two dimensional images that are taken in a controlled environment i.e. the illumination and the background will be constant. All the other methods of person’s identification and verification like iris scan or finger print scan require high quality and costly equipment’s but in face recognition we only require a normal camera giving us a 2-D frontal image of the person that will be used for the process of the person’s recognition. Principal Component Analysis technique has been used in the proposed system of face recognition. The purpose is to compare the results of the technique under the different conditions and to find the most efficient approach for developing a facial recognition system

  7. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  8. Baseline high heat flux and plasma facing materials for fusion

    Science.gov (United States)

    Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.

    2017-09-01

    In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).

  9. 适配层对钨铜第一壁材料热负荷性能的影响%Effects of Different Compliant Layers on the Heat Performance of W/Cu PFC (Plasma Facing Component)

    Institute of Scientific and Technical Information of China (English)

    种法力

    2010-01-01

    介绍了W/Cu PFC(Plasma Facing Components)材料制备过程,并对不同适配层第一壁材料热负荷性能进行了研究.其结果显示,虽然W-Cu混合材料、Ti和NiCrAl适配层的应用均抬高了第一壁材料的表面温度,但是承受10 MW/m2热负荷时无任何损伤,而无适配层的材料在7.5 MW/m2时表面出现微裂纹损伤,由此判断适配层的应用能够增强W/Cu PFC的热负荷性能.

  10. Understanding plasma facing surfaces in magnetic fusion devices

    Science.gov (United States)

    Skinner, C. H.; Capece, A. M.; Koel, B. E.; Roszell, J. P.

    2013-09-01

    The plasma-material interface is recognized to be the most critical challenge in the realization of fusion energy. Liquid metals offer a self-healing, renewable interface that bypasses present issues with solid, neutron-damaged materials such as tungsten. Lithium in particular has dramatically improved plasma performance in many tokamaks through a reduction of hydrogen recycling. However the detailed chemical composition and properties of the top few nm that interact with the plasma are often obscure. Surface analysis has proven to be a key tool in semiconductor processing and a new laboratory has been established at PPPL to apply surface science techniques to plasma facing materials. We have shown that lithiated PFC surfaces in tokamaks will likely be oxidized during the intershot interval. Present work is focused on deuterium uptake of solid and liquid metals for plasma density control and sub-micron scale wetting of liquid metals on their substrates. The long-term goal is to provide a material database for designing liquid metal plasma facing components for tokamaks such as National Spherical Torus Experiment-Upgrade (NSTX-U) and Fusion Nuclear Science Facility-ST (FNSF-ST). Support was provided through DOE-PPPL Contract Number is DE-AC02-09CH11466.

  11. Processing of W-Cu functionally graded materials (FGM) through the powder metallurgy route: application as plasma facing components for ITER-like thermonuclear fusion reactor; Elaboration de materiaux W-Cu a gradient de proprietes fonctionnelles (FGM) par metallurgie des poudres: application en tant que composants face au plasma de machines de fusion thermonucleaire de type Iter

    Energy Technology Data Exchange (ETDEWEB)

    Raharijaona, J.J.

    2009-11-15

    The aim of this study was to study and optimize the sintering of W-Cu graded composition materials, for first wall of ITER-like thermonuclear reactor application. The graded composition in the material generates graded functional properties (Functionally Graded Materials - FGM). Rough thermomechanical calculations have shown the interest of W-Cu FGM to improve the lifetime of Plasma Facing Components (PFC). To process W-Cu FGM, powder metallurgy route was analyzed and optimized from W-CuO powder mixtures. The influence of oxide reduction on the sintering of powder mixtures was highlighted. An optimal heating treatment under He/H{sub 2} atmosphere was determined. The sintering mechanisms were deduced from the analysis of the effect of the Cu-content. Sintering of W-Cu materials with a graded composition and grain size has revealed two liquid migration steps: i) capillary migration, after the Cu-melting and, ii) expulsion of liquid, at the end of sintering, from the dense part to the porous part, due to the continuation of W-skeleton sintering. These two steps were confirmed by a model based on capillary pressure calculation. In addition, thermal conductivity measurements were conducted on sintered parts and showed values which gradually increase with the Cu-content. Hardness tests on a polished cross-section in the bulk are consistent with the composition profiles obtained and the differential grain size. (author)

  12. 3D face recognition algorithm based on detecting reliable components

    Institute of Scientific and Technical Information of China (English)

    Huang Wenjun; Zhou Xuebing; Niu Xiamu

    2007-01-01

    Fisherfaces algorithm is a popular method for face recognition. However, there exist some unstable components that degrade recognition performance. In this paper, we propose a method based on detecting reliable components to overcome the problem and introduce it to 3D face recognition. The reliable components are detected within the binary feature vector, which is generated from the Fisherfaces feature vector based on statistical properties, and is used for 3D face recognition as the final feature vector. Experimental results show that the reliable components feature vector is much more effective than the Fisherfaces feature vector for face recognition.

  13. On "bubbly" structures in plasma facing components

    Science.gov (United States)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2013-07-01

    The theoretical model of "fuzz" growth describing the main features observed in experiments is discussed. This model is based on the assumption of enhancement of plasticity of tungsten containing significant fraction of helium atoms and clusters. The results of molecular dynamics (MD) simulations support this idea and demonstrate strong reduction of the yield strength for all temperature range. The MD simulations also show that the "flow" of tungsten strongly facilitates coagulation of helium clusters, which otherwise practically immobile, and the formation of nano-bubbles.

  14. Non-destructive testing of high heat flux components of fusion devices by infrared thermography: modeling and signal processing; Controle non destructif par thermographie infrarouge des composants face au plasma des machines de fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Cismondi, F

    2007-07-01

    In Plasma Facing Components (PFCs) the joint of the CFC armour material onto the metallic CuCrZr heat sink needs to be significant defects free. Detection of material flaws is a major issue of the PFCs acceptance protocol. A Non-Destructive Technique (NDT) based upon active infrared thermography allows testing PFCs on SATIR tests bed in Cadarache. Up to now defect detection was based on the comparison of the surface temperature evolution of the inspected component with that of a supposed 'defect-free' one (used as a reference element). This work deals with improvement of thermal signal processing coming from SATIR. In particular the contributions of the thermal modelling and statistical signal processing converge in this work. As for thermal modelling, the identification of a sensitive parameter to defect presence allows improving the quantitative estimation of defect Otherwise Finite Element (FE) modeling of SATIR allows calculating the so called deterministic numerical tile. Statistical approach via the Monte Carlo technique extends the numerical tile concept to the numerical population concept. As for signal processing, traditional statistical treatments allow a better localization of the bond defect processing thermo-signal by itself, without utilising a reference signal. Moreover the problem of detection and classification of random signals can be solved by maximizing the signal-to-noise ratio. Two filters maximizing the signal-to-noise ratio are optimized: the stochastic matched filter aims at detects detection and the constrained stochastic matched filter aims at defects classification. Performances are quantified and methods are compared via the ROC curves. (author)

  15. Radiation damage in ceramic plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Morita, Kenji

    1988-07-01

    The present status of the studies of radiation damage of plasma-facing materials is reviewed. Emphasis is placed on the extent of the understanding in terms of the critical issues for materials in use as plasma interactive components. Understanding of the basic problems of radiation effects, which are important for long term development of fusion reactors, is also emphasized. It is pointed out that for low-Z materials radiation damage by fission neutrons is a good measure of the effects of radiation damage by fusion neutrons. The understanding of the fission neutron damage of major candidate materials is surveyed. Existing data on the effects of transmuted helium gas in beryllium are inferred and the data needs for the He effects on graphite are stressed. For radiation damage by plasma particles, the importance of understanding of the dynamic behaviors of the materials which are composite because of redeposition and hydrogen implantation. Some of the features of such composite materials under radiation are presented.

  16. Optimization of mechanically jointed doped graphite/copper plasma facing components%核聚变掺杂石墨第一壁材料连接优化分析

    Institute of Scientific and Technical Information of China (English)

    种法力

    2012-01-01

    Two kinds of mechanically jointed graphite/copper structures were introduced, and their heat transfer performances were evaluated by means of electron beam facility and ANSYS finite element analysis. The results show that the temperature differences of two joints are not significant, and the maximum surface temperature is about 1 05S ℃ at 4 MW/m2, which has a good agreement with the numerical simulation results by ANSYS. Due to its poor heal transfer, the screw-fastened region appears the higher temperature, especially for Joint_l, it reachs about 2 000 ℃. It's indicated that Joint_2 could be more suitable to the heat flux region of less than 4 MW/nr. But under the higher heat flux, both of them are un-acceptable, an advanced plasma facing component has to be developed.%介绍核聚变实验装置掺杂石墨第一壁材料的两种机械连接方法,通过电子束热负荷实验及ANSYS有限元分析评价两种连接方式传热效果的差异.结果表明,两种连接方式传热效果相当,在4MW/m2功率密度下表面最高温度约为1055℃.ANSYS分析结果与实验结果有较高的一致性,但是由于螺钉固定区域散热较差,此处温度最高达到2000℃.对于功率密度低于4MW/m2的区域,掺杂石墨第一壁材料采用第二种方式连接较为合适;对于较高热负荷功率密度沉积的区域或者聚变实验装置,发展先进第一壁材料及连接方法十分必要.

  17. Independent component analysis of edge information for face recognition

    CERN Document Server

    Karande, Kailash Jagannath

    2013-01-01

    The book presents research work on face recognition using edge information as features for face recognition with ICA algorithms. The independent components are extracted from edge information. These independent components are used with classifiers to match the facial images for recognition purpose. In their study, authors have explored Canny and LOG edge detectors as standard edge detection methods. Oriented Laplacian of Gaussian (OLOG) method is explored to extract the edge information with different orientations of Laplacian pyramid. Multiscale wavelet model for edge detection is also propos

  18. Study of heat fluxes on plasma facing components in a tokamak from measurements of temperature by infrared thermography; Etude des champs de flux thermique sur les composants faisant face au plasma dans un tokamak a partir de mesures de temperature par thermographie infrarouge

    Energy Technology Data Exchange (ETDEWEB)

    Daviot, R.

    2010-05-15

    The goal of this thesis is the development of a method of computation of those heat loads from measurements of temperature by infrared thermography. The research was conducted on three issues arising in current tokamaks but also future ones like ITER: the measurement of temperature on reflecting walls, the determination of thermal properties for deposits observed on the surface of tokamak components and the development of a three-dimensional, non-linear computation of heat loads. A comparison of several means of pyrometry, monochromatic, bi-chromatic and photothermal, is performed on an experiment of temperature measurement. We show that this measurement is sensitive to temperature gradients on the observed area. Layers resulting from carbon deposition by the plasma on the surface of components are modeled through a field of equivalent thermal resistance, without thermal inertia. The field of this resistance is determined, for each measurement points, from a comparison of surface temperature from infrared thermographs with the result of a simulation, which is based on a mono-dimensional linear model of components. The spatial distribution of the deposit on the component surface is obtained. Finally, a three-dimensional and non-linear computation of fields of heat fluxes, based on a finite element method, is developed here. Exact geometries of the component are used. The sensitivity of the computed heat fluxes is discussed regarding the accuracy of the temperature measurements. This computation is applied to two-dimensional temperature measurements of the JET tokamak. Several components of this tokamak are modeled, such as tiles of the divertor, upper limiter and inner and outer poloidal limiters. The distribution of heat fluxes on the surface of these components is computed and studied along the two main tokamak directions, poloidal and toroidal. Toroidal symmetry of the heat loads from one tile to another is shown. The influence of measurements spatial resolution

  19. Beyond survival: Challenges facing South African automotive component exporters

    Directory of Open Access Journals (Sweden)

    M. J. Naude

    2006-12-01

    Full Text Available Purpose and Objective: The South African automotive component industry faces huge challenges in a very competitive global market. The primary focus of this research article is to determine the challenges facing exporters within this industry with special reference to selected sub-sectors. The challenges are approached from a supply chain perspective only. Problem Investigated: The research problem of this study was to identify these unique challenges and ascertain whether the implementation of a 'philosophy of continuous improvement' could be used as a strategic tool to address the challenges they face in the market. Methodology: This study included a combination of literature review, interviews with managers in the selected sub-groups and questionnaires sent out to determine the challenges facing automotive component exporters. In order to test the content validity and the reliability of the questionnaire, a pilot study was conducted at two organisations that are the main suppliers of automotive filters for passenger vehicles. The non-probability convenience sample technique was used to select the sample and consisted of selected sub-sectors that contribute 64,1% of the total value of automotive component exports in South Africa. Out of twenty-seven questionnaires sent out, twenty (74% response rate were duly completed by the respondents and returned to the researcher. Findings: South Africa faces unique challenges and these are listed and ranked according to priority from most to least important as follows: 1. The reduction of production costs; 2. R/US$ exchange rate effect on the respondent's export sales and profit margin; 3. Exchange rate fluctuations; 4. Threats to the local automotive component market; and 5. Increased competition by way of manufactured imports being sold in the South African market. Value of Research: The study provides recommendations that can be used within the automotive component industry.

  20. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Science.gov (United States)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  1. New electron beam facility for irradiated plasma facing materials testing in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N.; Kawamura, H. [Oarai Research Establishment, Ibaraki-ken (Japan); Akiba, M. [Naka Research Establishment, Ibaraki-ken (Japan)

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  2. Face Detection Using Adaboosted SVM-Based Component Classifier

    CERN Document Server

    Valiollahzadeh, Seyyed Majid; Nazari, Mohammad

    2008-01-01

    Recently, Adaboost has been widely used to improve the accuracy of any given learning algorithm. In this paper we focus on designing an algorithm to employ combination of Adaboost with Support Vector Machine as weak component classifiers to be used in Face Detection Task. To obtain a set of effective SVM-weaklearner Classifier, this algorithm adaptively adjusts the kernel parameter in SVM instead of using a fixed one. Proposed combination outperforms in generalization in comparison with SVM on imbalanced classification problem. The proposed here method is compared, in terms of classification accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on CMU+MIT face database. Results indicate that the performance of the proposed method is overall superior to previous Adaboost approaches.

  3. Interaction of candidate plasma facing materials with tokamak plasma in COMPASS

    Science.gov (United States)

    Matějíček, Jiří; Weinzettl, Vladimír; Macková, Anna; Malinský, Petr; Havránek, Vladimír; Naydenkova, Diana; Klevarová, Veronika; Petersson, Per; Gasior, Pawel; Hakola, Antti; Rubel, Marek; Fortuna, Elzbieta; Kolehmainen, Jukka; Tervakangas, Sanna

    2017-09-01

    The interaction of tokamak plasma with several materials considered for the plasma facing components of future fusion devices was studied in a small-size COMPASS tokamak. These included mainly tungsten as the prime candidate and chromium steel as an alternative whose suitability was to be assessed. For the experiments, thin coatings of tungsten, P92 steel and nickel on graphite substrates were prepared by arc-discharge sputtering. The samples were exposed to hydrogen and deuterium plasma discharges in the COMPASS tokamak in two modes: a) short exposure (several discharges) on a manipulator in the proximity of the separatrix, close to the central column, and b) long exposure (several months) at the central column, aligned with the other graphite tiles. During the discharges, standard plasma diagnostics were used and a local emission of spectral lines in the visible near ultraviolet regions, corresponding to the material erosion, was monitored. Before and after the plasma exposures, the sample surfaces were observed using scanning electron microscopy, the coatings thickness was measured using Rutherford backscattering spectroscopy, and the concentration profiles of hydrogen and deuterium were measured by elastic recoil detection analysis. The uniformity of the coatings and their thickness was verified before the exposure. After the exposure, no reduction of the thickness was observed, indicating the absence of 'global' erosion. Erosion was observed only in isolated spots, and attributed to unipolar arcing. Slightly larger erosion was found on the steel coatings compared to the tungsten ones. Incorporation of deuterium in a thin surface layer was observed, in dependence on the exposure mode. Additionally, boron enrichment of the long-exposure samples was observed, as a result of the tokamak chamber boronization.

  4. Component Structure of Individual Differences in True and False Recognition of Faces

    Science.gov (United States)

    Bartlett, James C.; Shastri, Kalyan K.; Abdi, Herve; Neville-Smith, Marsha

    2009-01-01

    Principal-component analyses of 4 face-recognition studies uncovered 2 independent components. The first component was strongly related to false-alarm errors with new faces as well as to facial "conjunctions" that recombine features of previously studied faces. The second component was strongly related to hits as well as to the conjunction/new…

  5. Face-to-face interaction of multisolitons in spin-1/2 quantum plasma

    Science.gov (United States)

    Roy, Kaushik; Choudhury, Sourav; Chatterjee, Prasanta; Wong, C. S.

    2017-01-01

    We investigate the face-to-face collision between multisolitons in spin-1/2 quantum plasma. It is studied in the framework of the model proposed by Marklund et al in Phys. Rev. E 76, 067401 (2007). This study is done with the help of the extended Poincare-Lighthill-Kno (PLK) method. The extended PLK method is also used to obtain two Korteweg-de Vries (KdV) equations and the phase shifts and trajectories during the head-on collision of multisolitons. The collision-induced phase shifts (trajectory changes) are also obtained. The effects of the Zeeman energy, total mass density of the charged plasma particles, speed of the wave and the ratio of the sound speed to Alfvén speed on the phase shifts are studied. It is observed that the phase shifts are significantly affected by all these parameters.

  6. Face-to-face interaction of multisolitons in spin-1/2 quantum plasma

    Indian Academy of Sciences (India)

    KAUSHIK ROY; SOURAV CHOUDHURY; PRASANTA CHATTERJEE; C S C S WONG

    2017-01-01

    We investigate the face-to-face collision between multisolitons in spin-1/2 quantum plasma. It is studied in the framework of the model proposed by Marklund et al in {\\it Phys. Rev.} E 76, 067401 (2007). This studyis done with the help of the extended Poincare–Lighthill–Kno (PLK) method. The extended PLK method is also used to obtain two Korteweg–de Vries (KdV) equations and the phase shifts and trajectories during the head-oncollision of multisolitons. The collision-induced phase shifts (trajectory changes) are also obtained. The effects of the Zeeman energy, total mass density of the charged plasma particles, speed of the wave and the ratio of the sound speed to Alfvén speed on the phase shifts are studied. It is observed that the phase shifts are significantly affected by all these parameters.

  7. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Directory of Open Access Journals (Sweden)

    Kuroda Yusuke

    2013-11-01

    Full Text Available A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  8. FPGA Based Assembling of Facial Components for Human Face Construction

    CERN Document Server

    Halder, Santanu; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    This paper aims at VLSI realization for generation of a new face from textual description. The FASY (FAce SYnthesis) System is a Face Database Retrieval and new Face generation System that is under development. One of its main features is the generation of the requested face when it is not found in the existing database. The new face generation system works in three steps - searching phase, assembling phase and tuning phase. In this paper the tuning phase using hardware description language and its implementation in a Field Programmable Gate Array (FPGA) device is presented.

  9. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    朱大焕; 王坤; 王先平; 陈俊凌; 方前锋

    2012-01-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  10. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Science.gov (United States)

    Zhu, Dahuan; Wang, Kun; Wang, Xianping; Chen, Junling; Fang, Qianfeng

    2012-07-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  11. Isolating the Special Component of Face Recognition: Peripheral Identification and a Mooney Face

    Science.gov (United States)

    McKone, Elinor

    2004-01-01

    A previous finding argues that, for faces, configural (holistic) processing can operate even in the complete absence of part-based contributions to recognition. Here, this result is confirmed using 2 methods. In both, recognition of inverted faces (parts only) was removed altogether (chance identification of faces in the periphery; no perception…

  12. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany)

    2010-07-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO{sub 2}-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm{sup -2}, meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm{sup -2} for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs

  13. 49 CFR 587.14 - Deformable face component dimensions and material specifications.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Deformable face component dimensions and material... BARRIERS Offset Deformable Barrier § 587.14 Deformable face component dimensions and material... and materials of the individual components are listed separately below. All dimensions allow a...

  14. Recent Advances on Hydrogenic Retention in ITER's Plasma-Facing Materials: BE, C, W.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C H; Alimov, Kh; Bekris, N; Causey, R A; Clark, R.E.H.; Coad, J P; Davis, J W; Doerner, R P; Mayer, M; Pisarev, A; Roth, J

    2008-03-29

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory in fusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER's plasma-facing materials, Be, C, W, and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this article together with recommendations for ITER. Basic parameters of diffusivity, solubility and trapping in Be, C and W are reviewed. For Be, the development of open porosity can account for transient hydrogenic pumping but long term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be and C containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak and these can also retain significant amounts of hydrogen isotopes. Oxidative and photon-based techniques for detritiation of plasma-facing components are described.

  15. Investigation of tin-lithium eutectic as a liquid plasma facing material

    Science.gov (United States)

    Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar

    2016-10-01

    Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.

  16. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  17. Magnetic component of gluon plasma and its viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Verschelde, H. [Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2010-10-15

    We discuss the role of the magnetic degrees of freedom of the gluon plasma in its viscosity. The main assumption is that motions of the magnetic component and of the rest of the plasma can be considered as independent. The magnetic component in the deconfined phase is described by a three-dimensional (Euclidean) field theory. The parameters of the theory can be estimated phenomenologically. It is not ruled out that the magnetic component is superfluid.

  18. Local plasma deposition on polymer components

    NARCIS (Netherlands)

    Bolt, P.J.; Theelen, M.J.; Habets, D.; Winands, G.J.J.; Staemmler, L.

    2011-01-01

    For the modification of the surface energy of polymers, organosilicon coatings provide good optical and mechanical properties and are excellent candidates for the modification of the surface energy of polymers. These coatings can be deposited by plasma polymerization of hexamethyldisiloxane (HMDSO)

  19. On “bubbly” structures in plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I., E-mail: skrash@mae.ucsd.edu [University of California at San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California at San Diego, La Jolla, CA 92093 (United States)

    2013-07-15

    The theoretical model of “fuzz” growth describing the main features observed in experiments is discussed. This model is based on the assumption of enhancement of plasticity of tungsten containing significant fraction of helium atoms and clusters. The results of molecular dynamics (MD) simulations support this idea and demonstrate strong reduction of the yield strength for all temperature range. The MD simulations also show that the “flow” of tungsten strongly facilitates coagulation of helium clusters, which otherwise practically immobile, and the formation of nano-bubbles.

  20. Hydrogen in tungsten as plasma-facing material

    Science.gov (United States)

    Roth, Joachim; Schmid, Klaus

    2011-12-01

    Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in

  1. Principal component analysis of image gradient orientations for face recognition

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    We introduce the notion of Principal Component Analysis (PCA) of image gradient orientations. As image data is typically noisy, but noise is substantially different from Gaussian, traditional PCA of pixel intensities very often fails to estimate reliably the low-dimensional subspace of a given data

  2. Development of advanced high heat flux and plasma-facing materials

    Science.gov (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  3. Irradiation effects on plasma diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo [ed.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Iida, Toshiyuki; Ikeda, Yujiro [and others

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m{sup 2} and 1 MWa/m{sup 2}, respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  4. An Own-Race Advantage for Components as Well as Configurations in Face Recognition

    Science.gov (United States)

    Hayward, William G.; Rhodes, Gillian; Schwaninger, Adrian

    2008-01-01

    The own-race advantage in face recognition has been hypothesized as being due to a superiority in the processing of configural information for own-race faces. Here we examined the contributions of both configural and component processing to the own-race advantage. We recruited 48 Caucasian participants in Australia and 48 Chinese participants in…

  5. Effects of Low Energy and High Flux Helium/Hydrogen Plasma Irradiation on Tungsten as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    Ye Minyou

    2005-01-01

    The High-Z material tungsten (W) has been considered as a plasma facing material in the divertor region of ITER (International Thermonuclear Experimental Reactor). In ITER, the divertor is expected to operate under high particle fluxes (> 1023 m-2s-1) from the plasma as well as from intrinsic impurities with a very low energy (< 200 eV). During the past dacade, the effects of plasma irradiation on tungsten have been studied extensively as functions of the ion energy,fluence and surface temperature in the burning plasma conditions. In this paper, recent results concerning blister and bubble formations on the tungsten surface under low energy (< 100 eV) and high flux (> 1021 m-2s-1) He/H plasma irradiation are reviewed to gain a better understanding of the performance of tungsten as a plasma facing material under the burning plasma conditions.

  6. 77 FR 6463 - Revisions to Labeling Requirements for Blood and Blood Components, Including Source Plasma...

    Science.gov (United States)

    2012-02-08

    ... Requirements for Blood and Blood Components, Including Source Plasma; Correction AGENCY: Food and Drug... Blood Components, Including Source Plasma,'' which provided incorrect publication information...

  7. Efficient Discriminate Component Analysis using Support Vector Machine Classifier on Invariant Pose and Illumination Face Images

    Directory of Open Access Journals (Sweden)

    R. Rajalakshmi

    2015-03-01

    Full Text Available Face recognition is the process of categorizing a person in an image by evaluating with a known face image library. The pose and illumination variations are two main practical confronts for an automatic face recognition system. This study proposes a novel face recognition algorithm known as Efficient Discriminant Component Analysis (EDCA for face recognition under varying poses and illumination conditions. This EDCA algorithm overcomes the high dimensionality problem in the feature space by extracting features from the low dimensional frequency band of the image. It combines the features of both LDA and PCA algorithms and these features are used in the training set and is classified using Support Vector Machine classifier. The experiments were performed on the CMU-PIE datasets. The experimental results show that the proposed algorithm produces a higher recognition rate than the existing LDA and PCA based face recognition techniques.

  8. MULTI-VIEW FACE DETECTION BASED ON KERNEL PRINCIPAL COMPONENT ANALYSIS AND KERNEL SUPPORT VECTOR TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Muzhir Shaban Al-Ani

    2011-05-01

    Full Text Available Detecting faces across multiple views is more challenging than in a frontal view. To address this problem,an efficient approach is presented in this paper using a kernel machine based approach for learning suchnonlinear mappings to provide effective view-based representation for multi-view face detection. In thispaper Kernel Principal Component Analysis (KPCA is used to project data into the view-subspaces thencomputed as view-based features. Multi-view face detection is performed by classifying each input imageinto face or non-face class, by using a two class Kernel Support Vector Classifier (KSVC. Experimentalresults demonstrate successful face detection over a wide range of facial variation in color, illuminationconditions, position, scale, orientation, 3D pose, and expression in images from several photo collections.

  9. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    Science.gov (United States)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  10. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER

    Science.gov (United States)

    Peruzzo, S.; Cervaro, V.; Dalla Palma, M.; Delogu, R.; De Muri, M.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Pimazzoni, A.; Rizzolo, A.; Tollin, M.; Zampieri, L.; Serianni, G.

    2016-02-01

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.

  11. Castellated tiles as the beam-facing components for the diagnostic calorimeter of the negative ion source SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzo, S., E-mail: simone.peruzzo@igi.cnr.it; Cervaro, V.; Dalla Palma, M.; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Rizzolo, A.; Tollin, M.; Serianni, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); De Muri, M. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, v.le dell’Università 2, I-35020 Legnaro, PD (Italy); Pimazzoni, A. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Università degli Studi di Padova, Via 8 Febbraio 2, I-35122 Padova (Italy); Zampieri, L. [Università degli Studi di Padova, Via 8 Febbraio 2, I-35122 Padova (Italy)

    2016-02-15

    This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.

  12. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  13. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  14. Selection of materials for tokamak plasma facing elements based on a liquid tin capillary pore system

    Science.gov (United States)

    Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu; Sevryukov, O. N.; Dzhumaev, P. S.; Shumskiy, V. A.; Ivannikov, A. A.

    2016-09-01

    Capillary-Pore Systems (CPS) filled by liquid metals are considered as an alternative solution of materials choice for plasma facing component of tokamak reactor. Tin is viewed as one of the candidates for CPS because it has lower corrosiveness than gallium and lower saturated vapour pressure compared to lithium. The corrosion resistance of Mo, Nb and W in pure liquid tin was investigated. The corrosion tests were carried out in the static isothermal conditions at a temperature up to 1050°C. As a result of the corrosion study, it was found that Mo does not corrode in liquid Sn, as opposed to Nb and is compatible with liquid tin in temperatures of up to approx. 1000°C. This allows considering Mo as an alloy base material of the in-vessel tokamak elements based on liquid tin capillary pore systems.

  15. A novel BCI based on ERP components sensitive to configural processing of human faces

    Science.gov (United States)

    Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  16. Wavelet decomposition based principal component analysis for face recognition using MATLAB

    Science.gov (United States)

    Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish

    2016-03-01

    For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.

  17. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    Science.gov (United States)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data

  18. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.

  19. Simulations of Galaxy Cluster Collisions with a Dark Plasma Component

    CERN Document Server

    Sepp, Tiit; Heikinheimo, Matti; Hektor, Andi; Raidal, Martti; Spethmann, Christian; Tempel, Elmo; Veermäe, Hardi

    2016-01-01

    We present the results of N-body/smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 20 percent mass fraction of dark plasma. Dark plasma is an intriguing form of interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. We find that by choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet Cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. In particular, it is found that dark plasma forms an isolated mass clump in the Abell 520 system which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations.

  20. Pressure and compressibility in a quantum one-component plasma

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1994-01-01

    With the help of scaling methods, a general relation is established between the thermodynamic pressure and the mechanical pressure tensor of an equilibrium one-component plasma in a magnetic field. The mechanical pressure tenser is shown to be anisotropic. A general proof of the compressibility sum

  1. Use of plasma: clinical indications and types of plasma components in Sweden.

    Science.gov (United States)

    Norda, R; Tynell, E

    2007-12-01

    The use of plasma in Sweden is relatively high compared to other countries in the European Union. An analysis of all transfusion recipients in Orebro county during the whole year 2000 was performed. There were 3159 transfusion recipients of whom 96% had a registered diagnosis and 50% had undergone a "true" operation. Seven hundred and eleven patients (23%) had received plasma. Significantly more operated than nonoperated and more men than women received plasma. The typical plasma recipient was a man undergoing cardiovascular surgery. In Sweden there are two main types of plasma components: fresh frozen (FFP) and nonfrozen liquid plasma stored for up to 14 days, both considered to be clinically equal for most indications. The quality of these components as well as stored thawed FFP has been studied. The major storage effect was cold-induced contact activation and thereby consumption of C1 esterase inhibitor (C1INH) by day 14 in 22%. The citrate content in plasma sustained the overall coagulation function over 14 days. Other studies have shown that the levels of FV and ADAMTS 13 after 14 days remain at 70% or more compared to those for FFP. Since it is immediately available, liquid, nonfrozen or thawed, plasma is of great value in emergencies. Quality criteria for plasma components need to be assessed against evidence based indications and published in guidelines.

  2. No electrostatic supersolitons in two-component plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lakhina, Gurbax S., E-mail: lakhina@iigm.iigs.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2014-06-15

    The concept of acoustic supersolitons was introduced for a very specific plasma with five constituents, and discussed only for a single set of plasma parameters. Supersolitons are characterized by having subsidiary extrema on the sides of a typical bipolar electric field signature, or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It was subsequently found that supersolitons could exist in several plasma models having three constituent species, rather than four or five. In the present paper, it is proved that standard two-component plasma models cannot generate supersolitons, by recalling and extending results already in the literature, and by establishing the necessary properties of a more recent model.

  3. Parallel TREE code for two-component ultracold plasma analysis

    Science.gov (United States)

    Jeon, Byoungseon; Kress, Joel D.; Collins, Lee A.; Grønbech-Jensen, Niels

    2008-02-01

    The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies.

  4. Plasma-Facing Materials Research For Fusion Reactors At FOM Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G. J.; van Emmichoven, P. A. Zeijlma; Kleyn, A. W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  5. Plasma-facing materials research for fusion reactors at Fom Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G.J.; Zeijlmans van Emmichoven, P.A.; Kleijn, A.W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  6. Plasma-Facing Materials Research For Fusion Reactors At FOM Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G. J.; van Emmichoven, P. A. Zeijlma; Kleyn, A. W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  7. Plasma-facing materials research for fusion reactors at Fom Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G.J.; Zeijlmans van Emmichoven, P.A.; Kleijn, A.W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  8. Electrostatic twisted modes in multi-component dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ikram, M. [Department of Physics, Hazara University, Mansehra 21300 (Pakistan)

    2016-01-15

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular mode numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.

  9. The face-specific N170 component is modulated by emotional facial expression

    Directory of Open Access Journals (Sweden)

    Tottenham Nim

    2007-01-01

    Full Text Available Abstract Background According to the traditional two-stage model of face processing, the face-specific N170 event-related potential (ERP is linked to structural encoding of face stimuli, whereas later ERP components are thought to reflect processing of facial affect. This view has recently been challenged by reports of N170 modulations by emotional facial expression. This study examines the time-course and topography of the influence of emotional expression on the N170 response to faces. Methods Dense-array ERPs were recorded in response to a set (n = 16 of fear and neutral faces. Stimuli were normalized on dimensions of shape, size and luminance contrast distribution. To minimize task effects related to facial or emotional processing, facial stimuli were irrelevant to a primary task of learning associative pairings between a subsequently presented visual character and a spoken word. Results N170 to faces showed a strong modulation by emotional facial expression. A split half analysis demonstrates that this effect was significant both early and late in the experiment and was therefore not associated with only the initial exposures of these stimuli, demonstrating a form of robustness against habituation. The effect of emotional modulation of the N170 to faces did not show significant interaction with the gender of the face stimulus, or hemisphere of recording sites. Subtracting the fear versus neutral topography provided a topography that itself was highly similar to the face N170. Conclusion The face N170 response can be influenced by emotional expressions contained within facial stimuli. The topography of this effect is consistent with the notion that fear stimuli exaggerates the N170 response itself. This finding stands in contrast to previous models suggesting that N170 processes linked to structural analysis of faces precede analysis of emotional expression, and instead may reflect early top-down modulation from neural systems involved in

  10. [Decrease in N170 evoked potential component latency during repeated presentation of face images].

    Science.gov (United States)

    Verkhliutov, V M; Ushakov, V L; Strelets, V B

    2009-01-01

    The 15 healthy volunteers EEG from 28 channels was recorded during the presentation of visual stimuli in the form of face and building images. The stimuli were presented in two series. The first series consisted of 60 face and 60 building images presented in random order. The second series consisted of 30 face and 30 building images. The second series began 1.5-2 min after the end of the first ore. No instruction was given to the participants. P1, N170 and VPP EP components were identified for both stimuli categories. These components were located in the medial parietal area (Brodmann area 40). P1 and N170 components were recorded in the superior temporal fissure (Brodmann area 21, STS region), the first component had the latency 120 ms, the second one--155 ms. VPP was recorded with the latency 190 ms (Brodmann area 19). Dynamic mapping of EP components with the latency from 97 to 242 ms revealed the removal of positive maximums from occipital to frontal areas through temporal ones and their subsequent returning to occipital areas through the central ones. During the comparison of EP components to face and building images the amplitude differences were revealed in the following areas: P1--in frontal, central and anterior temporal areas, N170--in frontal, central, temporal and parietal areas, VPP--in all areas. It was also revealed that N170 latency was 12 ms shorter for face than for building images. It was proposed that the above mentioned N170 latency decrease for face in comparison with building images is connected with the different space location of the fusiform area responsible for face and building images recognition. Priming--the effect that is revealed during the repetitive face images presentation is interpreted as the manifestation of functional heterogeneity of the fusiform area responsible for the face images recognition. The hypothesis is put forward that the parts of extrastriate cortex which are located closer to the central retinotopical

  11. plasmatis Center for Innovation Competence: Controlling reactive component output of atmospheric pressure plasmas in plasma medicine

    Science.gov (United States)

    Reuter, Stephan

    2012-10-01

    The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.

  12. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  13. Microscopic theory of electron absorption by plasma-facing surfaces

    Science.gov (United States)

    Bronold, F. X.; Fehske, H.

    2017-01-01

    We describe a method for calculating the probability with which the wall of a plasma absorbs an electron at low energy. The method, based on an invariant embedding principle, expresses the electron absorption probability as the probability for transmission through the wall’s long-range surface potential times the probability to stay inside the wall despite of internal backscattering. To illustrate the approach we apply it to a SiO2 surface. Besides emission of optical phonons inside the wall we take elastic scattering at imperfections of the plasma-wall interface into account and obtain absorption probabilities significantly less than unity in accordance with available electron-beam scattering data but in disagreement with the widely used perfect absorber model.

  14. Microscopic theory of electron absorption by plasma-facing surfaces

    CERN Document Server

    Bronold, Franz X

    2016-01-01

    We describe a method for calculating the probability with which the wall of a plasma absorbs an electron at low energy. The method, based on an invariant embedding principle, expresses the electron absorption probability as the probability for transmission through the wall's long-range surface potential times the probability to stay inside the wall despite of internal backscattering. To illustrate the approach we apply it to a \\SiOTwo\\ surface. Besides emission of optical phonons inside the wall we take elastic scattering at imperfections of the plasma-wall interface into account and obtain absorption probabilities significantly less than unity in accordance with available electron-beam scattering data but in disagreement with the widely used perfect absorber model.

  15. Face Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Map

    Directory of Open Access Journals (Sweden)

    J. Pavlovicova

    2007-04-01

    Full Text Available In this contribution, human face as biometric is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron and PCA (principal component analysis. This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and RBF (radial basis function networks, and to a system using MLP as a feature extractor and MLP and RBF networks in the role of classifier. Also a two-stage method for face recognition is presented, in which Kohonen self-organizing map is used as a feature extractor. MLP and RBF network are used as classifiers. In order to obtain deeper insight into presented methods, also visualizations of internal representation of input data obtained by neural networks are presented.

  16. Plasma-wall interactions data compendium-1. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan)

    2002-05-01

    A summary on the recent activities of the plasma-wall interactions database task group at the National Institute for Fusion Science is presented in this report. These activities are focused on the compilation of literature data on the key parameters related to wall recycling characteristics that affect dynamic particle balance during plasma discharges and also on-site tritium inventory. More specifically, in this task group a universal fitting formula has been proposed and successfully applied to help compile hydrogen implantation-induced retention data. Also, presented here are the data on hydrogen diffusion and surface recombination coefficients, both critical in modeling dynamic wall recycling behavior. Data compilation has been conducted on beryllium, carbon, tungsten and molybdenum, all currently used for plasma-facing components in magnetic fusion experiments. (author)

  17. Counter-facing plasma focus system as an efficient and long-pulse EUV light source

    Science.gov (United States)

    Kuwabara, H.; Hayashi, K.; Kuroda, Y.; Nose, H.; Hotozuka, K.; Nakajima, M.; Horioka, K.

    2011-04-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and efficient EUV light source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrode. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time duration in at least ten microseconds for Xe plasma. Also, we confirmed operations of our system for Li plasma. We estimated the highest EUV energy in Li plasma operation at 93mJ/4π sr per 2% bandwidth per pulse.

  18. Oblique solitary waves in a five component plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sijo, S.; Manesh, M.; Sreekala, G.; Venugopal, C., E-mail: cvgmgphys@yahoo.co.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560 Kerala (India); Neethu, T. W. [Department of Physics, CMS College, Mahatma Gandhi University, Kottayam, 686 001 Kerala (India); Renuka, G. [Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, 695 004 Kerala (India)

    2015-12-15

    We investigate the influence of a second electron component on oblique dust ion acoustic solitary waves in a five component plasma consisting of positively and negatively charged dust, hydrogen ions, and hotter and colder electrons. Of these, the heavier dust and colder photo-electrons are of cometary origin while the other two are of solar origin; electron components are described by kappa distributions. The K-dV equation is derived, and different attributes of the soliton such as amplitude and width are plotted for parameters relevant to comet Halley. We find that the second electron component has a profound influence on the solitary wave, decreasing both its amplitude and width. The normalized hydrogen density strongly influences the solitary wave by decreasing its width; the amplitude of the solitary wave, however, increases with increasing solar electron temperatures.

  19. Fluid description of multi-component solar partially ionized plasma

    CERN Document Server

    Khomenko, Elena; Diaz, Antonio; Vitas, Nikola

    2014-01-01

    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed we particularize to some frequently considered cases as for the interaction of matter and radiation.

  20. Fluid description of multi-component solar partially ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, E., E-mail: khomenko@iac.es; Collados, M.; Vitas, N. [Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain); Díaz, A. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-09-15

    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed, we particularize to some frequently considered cases as for the interaction of matter and radiation.

  1. Onset of negative dispersion in one-component-plasma revisited

    CERN Document Server

    Khrapak, Sergey

    2016-01-01

    A simple approach to describe the long-wavelength dispersion of the longitudinal (plasmon) mode of the classical one-component-plasma (OCP), with the main objective to correctly capture the onset of negative dispersion, is proposed. The approach is applicable to both three-dimensional and two-dimensional OCP. The predicted onset of negative dispersion compares well with the available results from numerical simulations and more sophisticated theoretical models.

  2. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  3. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  4. Normal perception of Mooney faces in developmental prosopagnosia: Evidence from the N170 component and rapid neural adaptation.

    Science.gov (United States)

    Towler, John; Gosling, Angela; Duchaine, Bradley; Eimer, Martin

    2016-03-01

    Individuals with developmental prosopagnosia (DP) have a severe difficulty recognizing the faces of known individuals in the absence of any history of neurological damage. These recognition problems may be linked to selective deficits in the holistic/configural processing of faces. We used two-tone Mooney images to study the processing of faces versus non-face objects in DP when it is based on holistic information (or the facial gestalt) in the absence of obvious local cues about facial features. A rapid adaptation procedure was employed for a group of 16 DPs. Naturalistic photographs of upright faces were preceded by upright or inverted Mooney faces or by Mooney houses. DPs showed face-sensitive N170 components in response to Mooney faces versus houses, and N170 amplitude reductions for inverted as compared to upright Mooney faces. They also showed the typical pattern of N170 adaptation effects, with reduced N170 components when upright naturalistic test faces were preceded by upright Mooney faces, demonstrating that the perception of Mooney and naturalistic faces recruits shared neural populations. Our findings demonstrate that individuals with DP can utilize global information about face configurations for categorical discriminations between faces and non-face objects, and suggest that face processing deficits emerge primarily at more fine-grained higher level stages of face perception.

  5. Sub-component modeling for face image reconstruction in video communications

    Science.gov (United States)

    Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.

    2008-08-01

    Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.

  6. How do neural responses to eyes contribute to face-sensitive ERP components in young infants? A rapid repetition study.

    Science.gov (United States)

    Hoehl, Stefanie

    2015-04-01

    Several face-sensitive components of the event-related potential (ERP) have been identified in infants, such as the posterior N290 and P400 components. The contribution of eye-sensitive neurons to these components is still unclear, however. A rapid repetition ERP paradigm was used to test 4-month-olds' responses to faces with and without eyes (preceded by houses, i.e., unprimed) and faces with eyes that were preceded by faces with or without eyes (i.e., primed). N290 latency was reduced and P400 amplitude was increased for unprimed faces without eyes compared to intact faces. In addition, N290 latency was reduced for faces preceded by intact faces compared to faces preceded by faces without eyes. Thus, processing speed at the level of the N290 and amplitude of the P400 are affected by the absence of eyes in a face supporting the notion that eye-sensitive neurons contribute to these components in infancy. Findings are discussed in relation to the early development of face processing and infant and adult ERP responses to faces and eyes.

  7. Low-Frequency Waves in Cold Three-Component Plasmas

    Science.gov (United States)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  8. Exact solutions for the 2d one component plasma

    CERN Document Server

    Andersen, Timothy D

    2011-01-01

    The 2d one component gas of pointlike charges in a uniform neutralizing background interacting with a logarithmic potential is a common model for plasmas. In its classical equilibrium statistics at fixed temperature (canonical ensemble) it is formally related to certain types of random matrices with Gaussian distribution and complex eigenvalues. In this paper, I present an exact integration of this ensemble for $N$ such particles (or alternatively $N\\times N$ matrices) for all complex temperatures, a significant open problem in statistical physics for several decades.

  9. Multiple scales combined principle component analysis deep learning network for face recognition

    Science.gov (United States)

    Tian, Lei; Fan, Chunxiao; Ming, Yue

    2016-03-01

    It is well known that higher level features can represent the abstract semantics of original data. We propose a multiple scales combined deep learning network to learn a set of high-level feature representations through each stage of convolutional neural network for face recognition, which is named as multiscaled principle component analysis (PCA) Network (MS-PCANet). There are two main differences between our model and the traditional deep learning network. On the one hand, we get the prefixed filter kernels by learning the principal component of images' patches using PCA, nonlinearly process the convolutional results by using simple binary hashing, and pool them using spatial pyramid pooling method. On the other hand, in our model, the output features of several stages are fed to the classifier. The purpose of combining feature representations from multiple stages is to provide multiscaled features to the classifier, since the features in the latter stage are more global and invariant than those in the early stage. Therefore, our MS-PCANet feature compactly encodes both holistic abstract information and local specific information. Extensive experimental results show our MS-PCANet model can efficiently extract high-level feature presentations and outperform state-of-the-art face/expression recognition methods on multiple modalities benchmark face-related datasets.

  10. The right place at the right time: priming facial expressions with emotional face components in developmental visual agnosia.

    Science.gov (United States)

    Aviezer, Hillel; Hassin, Ran R; Perry, Anat; Dudarev, Veronica; Bentin, Shlomo

    2012-04-01

    The current study examined the nature of deficits in emotion recognition from facial expressions in case LG, an individual with a rare form of developmental visual agnosia (DVA). LG presents with profoundly impaired recognition of facial expressions, yet the underlying nature of his deficit remains unknown. During typical face processing, normal sighted individuals extract information about expressed emotions from face regions with activity diagnostic for specific emotion categories. Given LG's impairment, we sought to shed light on his emotion perception by examining if priming facial expressions with diagnostic emotional face components would facilitate his recognition of the emotion expressed by the face. LG and control participants matched isolated face components with components appearing in a subsequently presented full-face and then categorized the face's emotion. Critically, the matched components were from regions which were diagnostic or non-diagnostic of the emotion portrayed by the full face. In experiment 1, when the full faces were briefly presented (150 ms), LG's performance was strongly influenced by the diagnosticity of the components: his emotion recognition was boosted within normal limits when diagnostic components were used and was obliterated when non-diagnostic components were used. By contrast, in experiment 2, when the face-exposure duration was extended (2000 ms), the beneficial effect of the diagnostic matching was diminished as was the detrimental effect of the non-diagnostic matching. These data highlight the impact of diagnostic facial features in normal expression recognition and suggest that impaired emotion recognition in DVA results from deficient visual integration across diagnostic face components.

  11. Unified Concept of Effective One Component Plasma for Hot Dense Plasmas.

    Science.gov (United States)

    Clérouin, Jean; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A

    2016-03-18

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

  12. A unified concept of effective one component plasma for hot dense plasmas

    CERN Document Server

    Clérouin, Jean; Ticknor, Christopher; Kress, Joel D; Collins, Lee A

    2016-01-01

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (eOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wavenumber but merges with the OCP at high wavenumber. Additionally, the eOCP reproduces the overall relaxation timescales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of eOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

  13. Vacuum Plasma Spray (VPS) Material Applications for Thruster Components

    Science.gov (United States)

    Elam, Sandra; Holmes, Richard; Hickman, Robert

    2006-01-01

    A variety of vacuum plasma spray (VPS) material systems have been successfully applied to injector and thrust chamber components. VPS offers a versatile fabrication process with relatively low costs to produce near net shape parts. The materials available with VPS increase operating margins and improve component life by providing superior thermal and oxidation protection in specific engine environments. Functional gradient materials (FGM) formed with VPS allow thrust chamber liners to be fabricated with GRCop-84 (an alloy of copper, chrome, and niobium) and a protective layer of NiCrAlY on the hot wall. A variety of thrust chamber liner designs have been fabricated to demonstrate the versatility of the process. Hot-fire test results have confined the improved durability and high temperature performance of the material systems for thrust chamber liners. Similar FGM s have been applied to provide superior thermal protection on injector faceplates with NiCrAlY and zirconia coatings. The durability of the applied materials has been demonstrated with hot-fire cycle testing on injector faceplates in high temperature environments. The material systems can benefit the components used in booster and main engine propulsion systems. More recent VPS efforts are focused on producing rhenium based material systems for high temperature applications to benefit in-space engines like reaction control system (RCS) thrusters.

  14. Detection of orange juice frauds using front-face fluorescence spectroscopy and Independent Components Analysis.

    Science.gov (United States)

    Ammari, Faten; Redjdal, Lamia; Rutledge, Douglas N

    2015-02-01

    The aim of this study was to find simple objective analytical methods to assess the adulteration of orange juice by grapefruit juice. The adulterations by addition of grapefruit juice were studied by 3D-front-face fluorescence spectroscopy followed by Independent Components Analysis (ICA) and by classical methods such as free radical scavenging activity and total flavonoid content. The results of this study clearly indicate that frauds by adding grapefruit juice to orange juice can be detected at percentages as low as 1%.

  15. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  16. Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials

    Science.gov (United States)

    Philipps, V.; Neu, R.; Rapp, J.; Samm, U.; Tokar, M.; Tanabe, T.; Rubel, M.

    2000-12-01

    Graphite wall materials are used in present day fusion devices in order to optimize plasma core performance and to enable access to a large operational space. A large physics database exists for operation with these plasma facing materials, which also indicate their use in future devices with extended burn times. The radiation from carbon impurities in the edge and divertor regions strongly helps to reduce the peak power loads on the strike areas, but carbon radiation also supports the formation of MARFE instabilities which can hinder access to high densities. The main concerns with graphite are associated with its strong chemical affinity to hydrogen, which leads to chemical erosion and to the formation of hydrogen-rich carbon layers. These layers can store a significant fraction of the total tritium fuel, which might prevent the use of these materials in future tritium devices. High-Z plasma facing materials are much more advantageous in this sense, but these advantages compete with the strong poisoning of the plasma if they enter the plasma core. New promising experiences have been obtained with high-Z wall materials in several devices, about which a survey is given in this paper and which also addresses open questions for future research and development work.

  17. Hamiltonian of a homogeneous two-component plasma.

    Science.gov (United States)

    Essén, Hanno; Nordmark, A

    2004-03-01

    The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the length scale of the magnetic interaction energy. In the past a screening length lambda=1/square root of r(e)n], with n number density and r(e) classical electron radius, has been derived. We address the question whether the corresponding longer screening range obtained from the classical proton radius is physically relevant and the answer is affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macroscopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.

  18. Cold atmospheric plasma - A new technology for spacecraft component decontamination

    Science.gov (United States)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

    2014-01-01

    Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

  19. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    OpenAIRE

    Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...

  20. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-08-15

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  1. Operational experience with a variety of plasma facing tile assemblies at JET

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, P. E-mail: paul.edwards@jet.uk; Altmann, H.; Loving, A.; Pedrick, L.; Tait, J.; Way, M

    2001-10-01

    During the June 1999 JET shutdown, 3000 plasma facing Tile Assemblies were found to be loose and had to be re-torqued remotely using the Mascot force reflecting manipulator. Whilst the integrity of these Tile Assemblies has been monitored during previous man access shutdowns, with the introduction of tritium to the machine in May 1996, the majority had not been checked since March 1996. This paper reviews typical plasma facing Tile Assembly designs within the JET torus and summarises the experience gained for use in future machine applications. This includes loosening processes/mechanisms and their prevention, applications of surface coatings to avoid seizing of un-lubricated assemblies, and the use of vibration resistant thread profiles. The design of attachments to minimise combined mechanical and thermal stresses in the tiles, material selection and other engineering aspects are also discussed.

  2. 77 FR 7 - Revisions to Labeling Requirements for Blood and Blood Components, Including Source Plasma

    Science.gov (United States)

    2012-01-03

    ...) Revisions to Labeling Requirements for Blood and Blood Components, Including Source Plasma AGENCY: Food and... requirements for blood and blood components, including Source Plasma, into one section of the Code of Federal..., and Source Plasma,'' which amended Sec. 606.121(d)(2) by adding ``or in solid black,''...

  3. Molecular dynamics simulations of interactions between energetic dust and plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian, E-mail: niugj@ipp.ac.cn [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Hefei Center Physical Science and Technology, Hefei (China); Luo, Guang-nan [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-11-15

    The interactions between dust and plasma-facing material (PFM) relate to the lifetime of PFM and impurity production. Series results have been obtained theoretically and experimentally but more detailed studies are needed. In present research, we investigate the evolution of kinetic, potential and total energy of plasma-facing material (PFM) in order to understand the dust/PFM interaction process. Three typical impacting energy are selected, i.e., 1, 10 and 100 keV/dust for low-, high- and hyper-energy impacting cases. For low impacting energy, dust particles stick on PFM surface without damaging it. Two typical time points exist and the temperature of PFM grows all the time but PFM structure experience a modifying process. Under high energy case, three typical points appear. The temperature curve fluctuates in the whole interaction process which indicates there are dust/PFM and kinetic/potential energy exchanges. In the hyper-energy case in present simulation, the violence dust/PFM interactions cause sputtering and crater investigating on energy evolution curves. We further propose the statistics of energy distribution. Results show that about half of impacting energy consumes on heating plasma-facing material meanwhile the other half on PFM structure deformation. Only a small proportion becomes kinetic energy of interstitial or sputtering atoms.

  4. POD analysis of flow over a backward-facing step forced by right-angle-shaped plasma actuator.

    Science.gov (United States)

    Wang, Bin; Li, Huaxing

    2016-01-01

    This study aims to present flow control over the backward-facing step with specially designed right-angle-shaped plasma actuator and analyzed the influence of various scales of flow structures on the Reynolds stress through snapshot proper orthogonal decomposition (POD). 2D particle image velocimetry measurements were conducted on region (x/h = 0-2.25) and reattachment zone in the x-y plane over the backward-facing step at a Reynolds number of Re h  = 27,766 (based on step height [Formula: see text] and free stream velocity [Formula: see text]. The separated shear layer was excited by specially designed right-angle-shaped plasma actuator under the normalized excitation frequency St h  ≈ 0.345 along the 45° direction. The spatial distribution of each Reynolds stress component was reconstructed using an increasing number of POD modes. The POD analysis indicated that the flow dynamic downstream of the step was dominated by large-scale flow structures, which contributed to streamwise Reynolds stress and Reynolds shear stress. The intense Reynolds stress localized to a narrow strip within the shear layer was mainly affected by small-scale flow structures, which were responsible for the recovery of the Reynolds stress peak. With plasma excitation, a significant increase was obtained in the vertical Reynolds stress peak. Under the dimensionless frequencies St h  ≈ 0.345 and [Formula: see text] which are based on the step height and momentum thickness, the effectiveness of the flow control forced by the plasma actuator along the 45° direction was ordinary. Only the vertical Reynolds stress was significantly affected.

  5. Optimal Feature Extraction Using Greedy Approach for Random Image Components and Subspace Approach in Face Recognition

    Institute of Scientific and Technical Information of China (English)

    Mathu Soothana S.Kumar Retna Swami; Muneeswaran Karuppiah

    2013-01-01

    An innovative and uniform framework based on a combination of Gabor wavelets with principal component analysis (PCA) and multiple discriminant analysis (MDA) is presented in this paper.In this framework,features are extracted from the optimal random image components using greedy approach.These feature vectors are then projected to subspaces for dimensionality reduction which is used for solving linear problems.The design of Gabor filters,PCA and MDA are crucial processes used for facial feature extraction.The FERET,ORL and YALE face databases are used to generate the results.Experiments show that optimal random image component selection (ORICS) plus MDA outperforms ORICS and subspace projection approach such as ORICS plus PCA.Our method achieves 96.25%,99.44% and 100% recognition accuracy on the FERET,ORL and YALE databases for 30% training respectively.This is a considerably improved performance compared with other standard methodologies described in the literature.

  6. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  7. Nonlinear Topological Component Analysis: Application to Age-Invariant Face Recognition.

    Science.gov (United States)

    Bouchaffra, Djamel

    2015-07-01

    We introduce a novel formalism that performs dimensionality reduction and captures topological features (such as the shape of the observed data) to conduct pattern classification. This mission is achieved by: 1) reducing the dimension of the observed variables through a kernelized radial basis function technique and expressing the latent variables probability distribution in terms of the observed variables; 2) disclosing the data manifold as a 3-D polyhedron via the α -shape constructor and extracting topological features; and 3) classifying a data set using a mixture of multinomial distributions. We have applied our methodology to the problem of age-invariant face recognition. Experimental results obtained demonstrate the efficiency of the proposed methodology named nonlinear topological component analysis when compared with some state-of-the-art approaches.

  8. Experimental measurements of surface damage and residual stresses in micro-engineered plasma facing materials

    Science.gov (United States)

    Rivera, David; Wirz, Richard E.; Ghoniem, Nasr M.

    2017-04-01

    The thermomechanical damage and residual stresses in plasma-facing materials operating at high heat flux are experimentally investigated. Materials with micro-surfaces are found to be more resilient, when exposed to cyclic high heat flux generated by an arc-jet plasma. An experimental facility, dedicated to High Energy Flux Testing (HEFTY), is developed for testing cyclic heat flux in excess of 10 MW/m2. We show that plastic deformation and subsequent fracture of the surface can be controlled by sample cooling. We demonstrate that W surfaces with micro-pillar type surface architecture have significantly reduced residual thermal stresses after plasma exposure, as compared to those with flat surfaces. X-ray diffraction (XRD) spectra of the W-(110) peak reveal that broadening of the Full Width at Half Maximum (FWHM) for micro-engineered samples is substantially smaller than corresponding flat surfaces. Spectral shifts of XRD signals indicate that residual stresses due to plasma exposure of micro-engineered surfaces build up in the first few cycles of exposure. Subsequent cyclic plasma heat loading is shown to anneal out most of the built-up residual stresses in micro-engineered surfaces. These findings are consistent with relaxation of residual thermal stresses in surfaces with micro-engineered features. The initial residual stress state of highly polished flat W samples is compressive (≈ -1.3 GPa). After exposure to 50 plasma cycles, the surface stress relaxes to -1.0 GPa. Micro-engineered samples exposed to the same thermal cycling show that the initial residual stress state is compressive at (- 250 MPa), and remains largely unchanged after plasma exposure.

  9. Theory of sheath in a collisional multi-component plasma

    Indian Academy of Sciences (India)

    M K Mahanta; K S Goswami

    2001-04-01

    The aim of this brief report is to study the behaviour of sheath structure in a multicomponent plasma with dust-neutral collisions. The plasma consists of electrons, ions, micron size negatively charged dust particles and neutrals. The sheath-edge potential and sheath width are calculated for collisionally dominated sheath. Comparison of collisionless and collisionally dominated sheath are made.

  10. High power, fast, microwave components based on beam generated plasmas

    Science.gov (United States)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.

    1998-10-01

    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  11. Interfacial microstructures and hardness distributions of vacuum plasma spraying W-coated ODS ferritic steels for fusion plasma facing applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Nagasaka, Takuya [National Institute for Fusion Science, Toki, Gifu (Japan); Sokolov, Mikhail A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-04-15

    In the present study, interfacial microstructures and hardness distributions of W-coated ODS steels as plasma facing structural materials were investigated. A vacuum plasma spraying (VPS) technique was employed to fabricate a W layer on the surface of the ODS ferritic steel substrates. The microstructural observations revealed that the VPS-W has very fine grains aligned toward the spraying direction, and a favorable interface between W and ODS ferritic steels by a mechanical inter-locking without an intermetallic layer. However, crack-type defects were found in VPS-W. Because a brittle inter-diffused layer does not exist at the joint interface, the hardness was gradually distributed in the joint region. After neutron irradiation, irradiation hardening significantly occurred in the VPS-W. However, the hardening of VPS-W was less than that of bulk W irradiated at 773 K. Thus, the VPS is considered to be one of the promising ways to join dissimilar materials between W and ODS steels, which can avoid the formation of an interfacial intermetallic layer and create favorable irradiation hardening resistance on the W coated layer.

  12. Students’ perspectives on online and face-to-face components of a blended course design in Health and Kinesiology at a South Western Public University in the USA

    Directory of Open Access Journals (Sweden)

    Wycliffe W. Njororai Simiyu

    2016-01-01

    Full Text Available Introduction: The current higher education environment in the United States of America (USA and worldwide is focused on providing people an opportunity to access a quality education at a competitive price and one that is flexible enough to meet the needs of a diverse student demographic. It is therefore necessary for course delivery methods to accommodate these diverse needs without sacrificing rigor necessary for accreditation due to the diverse backgrounds, occupations, and time constraints of students in today’s environment Purpose: The purpose of this study was to establish the students’ perception of the online and face-to-face components of a blended course design at a South Western Public University in the USA. Methods and material: The sample of this study consisted of 200 students drawn from four different blended courses in the Department of health and Kinesiology at a medium sized public university in South West of USA. A modified questionnaire from Sitter et al., (2009 with 19 questions was used to collect responses from students. The survey instrument employed a 5-point Likert scale ranging from strongly agree (5, to strongly disagree (1.  Results: Majority of the students have a positive view of the blended learning including the online and face-to-face components. A consistent minority of the students expressed disagreement especially pertaining to technology-based communication, preferred mode of delivery, online discussion participation and grade scores. Discussion: Although the majority of students perceived blended learning and its components positively, there is need for instructors to address the communication, technology, and online learning facilitation challenges if all learners are to learn effectively. Conclusions and recommendations: It is clear that the majority of students are ready and have accepted blended learning course designs at this medium sized public university in south west of the United States of

  13. The N170 component is sensitive to face-like stimuli: a study of Chinese Peking opera makeup.

    Science.gov (United States)

    Liu, Tiantian; Mu, Shoukuan; He, Huamin; Zhang, Lingcong; Fan, Cong; Ren, Jie; Zhang, Mingming; He, Weiqi; Luo, Wenbo

    2016-12-01

    The N170 component is considered a neural marker of face-sensitive processing. In the present study, the face-sensitive N170 component of event-related potentials (ERPs) was investigated with a modified oddball paradigm using a natural face (the standard stimulus), human- and animal-like makeup stimuli, scrambled control images that mixed human- and animal-like makeup pieces, and a grey control image. Nineteen participants were instructed to respond within 1000 ms by pressing the 'F' or 'J' key in response to the standard or deviant stimuli, respectively. We simultaneously recorded ERPs, response accuracy, and reaction times. The behavioral results showed that the main effect of stimulus type was significant for reaction time, whereas there were no significant differences in response accuracies among stimulus types. In relation to the ERPs, N170 amplitudes elicited by human-like makeup stimuli, animal-like makeup stimuli, scrambled control images, and a grey control image progressively decreased. A right hemisphere advantage was observed in the N170 amplitudes for human-like makeup stimuli, animal-like makeup stimuli, and scrambled control images but not for grey control image. These results indicate that the N170 component is sensitive to face-like stimuli and reflect configural processing in face recognition.

  14. Dynamic outgassing of deuterium, helium and nitrogen from plasma-facing materials under DEMO relevant conditions

    Science.gov (United States)

    Möller, S.; Matveev, D.; Martynova, Y.; Unterberg, B.; Rasinski, M.; Wegener, T.; Kreter, A.; Linsmeier, Ch.

    2017-01-01

    In confined plasma magnetic fusion devices significant amounts of the hydrogen isotopes used for the fusion reaction can be stored in the plasma-facing materials by implantation. The desorption of this retained hydrogen was seen to follow a t α law with α  ≈  -0.7 in tokamaks. For a pulsed fusion reactor this outgassing can define the inter-pulse waiting time. This work presents new experimental data on the dynamic outgassing in ITER grade tungsten exposed under the well-defined conditions of PSI-2 to pure and mixed D2 plasmas. A peak ion flux of 1022 D+ m-2 s is applied for up to 6 h at sample temperatures of up to 900 K. Pure D2 and mixed D2  +  He, D2  +  N2 and D2  +  He  +  N2 plasmas are applied to the sample at 68 V bias. The D2, He, N outgassing at 293 K and 580 k are observed via in-vacuo quadrupole mass spectrometry covering the range of 40 s-200 000 s after exposure. The outgassing decay follows a single power law with exponents α  =  -0.7  to  -1.1 at 293 K, but at 580 K a drop from α  =  -0.25 to  -2.35 is found. For DEMO a pump-down time to 0.5 mPa in the order of 1-5 h can be expected. The outgassing is in all cases dominated by D2.

  15. The Nonlinear Langmuir Waves in a Multi-ion-Component Plasma

    Institute of Scientific and Technical Information of China (English)

    CHEN Yin-Hua; LU Wei; WANG Wen-Hao

    2001-01-01

    We investigated the nonlinear Langmuir waves in a multi-ion-component low-temperature plasma. Beginning with the fluid theory of plasma, and taking fully nonlinear response of the low-frequency ion motion into account, we derived a set of equations governing the nonlinear coupling of the amplitude of the Langmuir wave and the Iow-frequency perturbation density. Using the Sagdeev potential method, we analyzed the characteristics of solitary wave. In the limit of small amplitude, the envelope soliton was found. Our investigation demonstrates that the properties of soliton in a multi-ion-component plasma are different from those of soliton in an electron-ion plasma.

  16. Negative “gossip” stimuli modulate left-lateralized P1 component while viewing neutral faces

    DEFF Research Database (Denmark)

    Weed, Ethan; Allen, Micah Galen; Gramm, Daniel

    Language allows us to operate more efficiently in the world. By hearing about others’ experiences, we are able to orient toward things that could be beneficial to us, and avoid hazards. This sharing of experiences is particularly prominent in the social realm. Using a binocular rivalry paradigm......, Anderson et al. (2011) showed that short “gossip” phrases modulated the length of time faces remained perceptually dominant. However, binocular rivalry is measured by self-report. We used EEG to investigate the timing of gossip’s early effect on face perception. Gossip stimuli were those used by Anderson...... et al. (2011), translated to Danish. Neutral faces were taken from the PUT database (Kasiński et al., 2008). Participants (n=30) viewed each face together with the gossip stimuli a total of six times. Following this encoding period, 32 channels of EEG were recorded while participants viewed the faces...

  17. Design of Face Recognition System by Using Neural Network with Discrete Cosine Transform and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Rohit Jain, Rajshree Taparia

    2012-12-01

    Full Text Available This research paper deals with the implementation of face recognition system using neural network Importance of face recognition system has speed up in the last few decades. A face recognition system is one of the biometric information processing. The developed algorithm for the face recognition system formulates an image-based approach, which uses the Two-Dimensional Discrete Cosine Transform (2D-DCT for image compression and the Self- Organizing Map (SOM Neural Network for recognition purpose, simulated in MATLAB. By using 2D-DCT we extract image vectors and these vectors becomes the input to neural network classifier, which uses self-organizing map, algorithm to recognize familiar faces (trained and faces with variations in expressions, illumination changes, tilt of 5 to 10 degrees. Again face Recognition system is developed with principal component analysis (PCA instead of Two Dimensional Discrete Cosine Transform (2D-DCT and self-Organizing Map (SOM Neural Network for recognition purpose. The crux of proposed algorithm is its beauty to use unsupervised single neural network as classifier.

  18. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.; Varela, P. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2016-11-15

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  19. Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry

    Science.gov (United States)

    Quental, P. B.; Policarpo, H.; Luís, R.; Varela, P.

    2016-11-01

    The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.

  20. Active flow control over a backward-facing step using plasma actuation

    Science.gov (United States)

    Ruisi, R.; Zare-Behtash, H.; Kontis, K.; Erfani, R.

    2016-09-01

    Due to the more stringent aviation regulations on fuel consumption and noise reduction, the interest for smaller and mechanically less complex devices for flow separation control has increased. Plasma actuators are currently among the most studied typology of devices for active flow control purposes due to their small size and lightweight. In this study, a single dielectric barrier discharge (SDBD) actuator is used on a backward-facing step to assess its effects on the separated turbulent shear layer and its reattachment location. A range of actuating modulation frequencies, related to the natural frequencies of shear layer instability (flapping) and vortex shedding instability, are examined. The particle image velocimetry technique is used to analyse the flow over the step and the reattachment location. The bulk-flow experiments show negligible effects both on the shear layer and on the reattachment location for every frequency considered, and the actuator is not able to induce a sufficient velocity increase at the step separation point.

  1. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Science.gov (United States)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  2. Kinetic theory of self-diffusion in a moderately dense one-component plasma

    NARCIS (Netherlands)

    Suttorp, L.G.

    1980-01-01

    A microscopic description of self-diffusion in a moderately dense classical one-component plasma is given on the basis of renormalized kinetic theory. The effects of close binary collisions and of collective interactions in the plasma are taken into account through the use of a composite memory kern

  3. Nano powders, components and coatings by plasma technique

    Science.gov (United States)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  4. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    CERN Document Server

    Provornikova, E A; Lallement, R

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutr...

  5. Transport formulas for multi-component plasmas within the effective potential theory framework

    CERN Document Server

    Kagan, Grigory

    2016-01-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] allows evaluating transport in coupled plasmas with the well-developed formalisms for systems with binary collisions. To facilitate practical implementation of this concept in fluid models of multi-component plasmas, compact expressions for the transport coefficients in terms the generalized Coulomb logarithms are summarized from existing prescriptions. For weakly coupled plasmas, characterized by Debye-shielded Coulomb interaction potential, expressions become fully analytical. In coupled plasmas the generalized Coulomb logarithms need to be evaluated numerically. Routines implementing the described formalisms are included as supplemental material.

  6. Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet

    Directory of Open Access Journals (Sweden)

    M. N. Nishino

    2007-03-01

    Full Text Available In search for clues towards the understanding of the cold plasma sheet formation under northward IMF, we study the temperature anisotropy of the two-component protons in the plasma sheet near the dusk low-latitude boundary observed by the Geotail spacecraft. The two-component protons result from mixing of the cold component from the solar wind and the hot component of the magnetospheric origin, and may be the most eloquent evidence for the transport process across the magnetopause. The cold component occasionally has a strong anisotropy in the dusk flank, and the sense of the anisotropy depends on the observed locations: the parallel temperature is enhanced in the tail flank while the perpendicular temperature is enhanced on the dayside. The hot component is nearly isotropic in the tail while the perpendicular temperature is enhanced on the dayside. We discuss possible mechanism that can lead to the observed temperature anisotropies.

  7. Manufacturing and characterization of PIM-W materials as plasma facing materials

    Science.gov (United States)

    Pintsuk, G.; Antusch, S.; Rieth, M.; Wirtz, M.

    2016-02-01

    Powder injection molding (PIM) was used to produce pure and particle reinforced W materials to be qualified for the use as plasma facing material. As alloying elements La2O3, Y2O3, TiC, and TaC were chosen with a particle size between 50 nm and 2.5 μm, depending on the alloying element. The fabrication of alloyed materials was done for different compositions using powder mixtures. Final sintering was performed in H2 atmosphere at 2400 °C resulting in plates of 55 × 22 × 4 mm3 with ˜98% theoretical density. The qualification of the materials was done via high heat flux testing in the electron beam facility JUDITH-1. Thereby, ELM-like 1000 thermal shock loads of 0.38 GW m-2 for 1 ms and 100 disruption like loads of 1.13 GW m-2 for 1 ms at a base temperature of 1000 °C were applied. The obtained damage characteristics, i.e. surface roughening and crack formation, were qualified versus an industrially manufactured pure reference tungsten material and linked to the material’s microstructure and mechanical properties.

  8. Correlation between plasma component levels of cultured fish and resistance to bacterial infection

    Science.gov (United States)

    Maita, M.; Satoh, K.-I.; Fukuda, Y.; Lee, H.-K.; Winton, J.R.; Okamoto, N.

    1998-01-01

    Mortalities of yellowtail Seriola quinqueradiata artificially infected with Lactococcus garvieae and of rainbow trout Oncorhynchus mykiss artificially infected with Vibrio anguillarum were compared with the levels of plasma components measured prior to challenge. The levels of plasma total cholesterol, free cholesterol and phospholipid of fish surviving infection were significantly higher in both yellowtail and rainbow trout than those of fish which died during the challenge test. Mortality of yellowtail with plasma total cholesterol levels lower than 250 mg/100 ml was significantly higher than that of fish which had cholesterol levels higher than 275 mg/100 ml (p < 0.05). Rainbow trout whose cholesterol was lower than 520 mg/100 ml suffered a significantly higher mortality due to vibriosis than fish having cholesterol levels higher than 560 mg/100 ml (p < 0.005). These results indicate that low levels of plasma lipid components may be an indicator of lowered disease resistance in cultured fish.

  9. Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component

    Institute of Scientific and Technical Information of China (English)

    宋慧敏; 张乔根; 李应红; 贾敏; 吴云; 梁华

    2012-01-01

    A type of electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A three-electrode plasma sheet actuator driven by repetitive nanosecond pulses with a negative DC component was used to generate sliding discharge, which can be called nanosecond-pulse sliding discharge. The phenomenology and behaviour of the plasma sheet actuator were investigated experimentally. Discharge morphology shows that the formation of nanosecond-pulse sliding discharge is dependent on the peak value of the repetitive nanosecond pulses and negative DC component applied on the plasma sheet actuator. Compared to dielectric barrier discharge (DBD), the extension of plasma in nanosecond-pulse sliding discharge is quasi-diffusive, stable, longer and more intensive. Test results of particle image velocimetry demonstrate that the negative DC component applied to a third electrode could significantly modify the topology of the flow induced by nanosecond-pulse DBD. Body force induced by the nanosecond-pulse sliding discharge can be approximately in the order of mN. Both the maximum velocity and the body force induced by sliding discharge increase significantly as compared to single DBD. Therefore, nanosecond-pulse sliding discharge is a preferable plasma aerodynamic actuation generation mode, which is very promising in the field of aerodynamics.

  10. Physics of Phase Space Matching for Staging Plasma and Traditional Accelerator Components Using Longitudinally Tailored Plasma Profiles.

    Science.gov (United States)

    Xu, X L; Hua, J F; Wu, Y P; Zhang, C J; Li, F; Wan, Y; Pai, C-H; Lu, W; An, W; Yu, P; Hogan, M J; Joshi, C; Mori, W B

    2016-03-25

    Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA and a traditional accelerator component is a critical issue for emittance preservation. The drastic differences of the transverse focusing strengths as the beam propagates between stages and components may lead to a catastrophic emittance growth even when there is a small energy spread. We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma density profiles to control phase space matching between sections with negligible emittance growth. Several profiles are considered and theoretical analysis and particle-in-cell simulations show how these structures may work in four different scenarios. Good agreement between theory and simulation is obtained, and it is found that the adiabatic approximation misses important physics even for long profiles.

  11. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    Science.gov (United States)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  12. SIRHEX—A new experimental facility for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, André, E-mail: andre.kunze@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Ghidersa, Bradut-Eugen [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Bonelli, Flavia [Politecnico di Torino, Dipartimento Energia (Italy)

    2015-10-15

    Highlights: • Commercial infrared heaters have been qualified for future First Wall experiments. • In first tests surface heat flux densities up to 470 kW/m were achieved. • The homogeneity of the heat distribution stayed within ±5% of the nominal value. • With the heaters a typical ITER pulse can be reproduced. • An adequate testing strategy will be required to improve heater lifetime. - Abstract: SIRHEX (“Surface Infrared Radiation Heating Experiment”) is a small-scale experimental facility at KIT, which has been built for testing and qualifying high heat flux radiation heaters for blanket specific conditions using an instrumented water cooled target. This paper describes the SIRHEX facility and the experimental set-up for the heater tests. The results of a series of tests focused on reproducing homogeneous surface heat flux densities up to 500 kW/m{sup 2} will be presented and the impact of the heater performance on the design of the First Wall test rig will be discussed.

  13. Arc erosion of full metal plasma facing components at the inner baffle region of ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    V. Rohde

    2016-12-01

    Full Text Available At the inner baffle of the AUG divertor massive polished inserts of tungsten and P92 steel were installed to measure the erosion by arcing. For tungsten most of the traces are less than 0.4µm deep and a similar amount of tungsten is deposited close to the traces. Few craters up to 4µm resulting in an average erosion rate of 2×1013 at cm−2s−1 are observed. The behaviour for P92 steel is quite different: most of the traces are 4µm deep, up to 80µm were observed. An average erosion rate of 400×1013 at cm−2s−1, i.e. more than a factor of hundred higher compared to tungsten, is found. Therefore, erosion by arcing has to be taken into account to determine the optimal material mix for future fusion devices.

  14. Demonstrating universal scaling for dynamics of Yukawa one-component plasmas after an interaction quench

    Science.gov (United States)

    Langin, T. K.; Strickler, T.; Maksimovic, N.; McQuillen, P.; Pohl, T.; Vrinceanu, D.; Killian, T. C.

    2016-02-01

    The Yukawa one-component plasma (OCP) model is a paradigm for describing plasmas that contain one component of interest and one or more other components that can be treated as a neutralizing, screening background. In appropriately scaled units, interactions are characterized entirely by a screening parameter, κ . As a result, systems of similar κ show the same dynamics, regardless of the underlying parameters (e.g., density and temperature). We demonstrate this behavior using ultracold neutral plasmas (UNPs) created by photoionizing a cold (T ≤10 mK) gas. The ions in UNP systems are well described by the Yukawa model, with the electrons providing the screening. Creation of the plasma through photoionization can be thought of as a rapid quench of the interaction potential from κ =∞ to a final κ value set by the electron density and temperature. We demonstrate experimentally that the postquench dynamics are universal in κ over a factor of 30 in density and an order of magnitude in temperature. Results are compared with molecular-dynamics simulations. We also demonstrate that features of the postquench kinetic energy evolution, such as disorder-induced heating and kinetic-energy oscillations, can be used to determine the plasma density and the electron temperature.

  15. Simulation of cold atmospheric plasma component composition and particle densities in air

    Science.gov (United States)

    Kirsanov, Gennady; Chirtsov, Alexander; Kudryavtsev, Anatoliy

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was divided into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  16. Development and Study of Hard-Facing Materials on the Base of Heat-Resisting High-Hardness Steels for Plasma-Jet Hard- Facing in Shielding-Doping Nitrogen Atmosphere

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop hard-facing materials on the base of heat-resisting highhardness steels for plasma-jet hard-facing in nitrogen atmosphere for manufacturing parts of mining and metallurgic equipment which significantly simplify the production process and effect a saving when producing bimetallic parts and tools.

  17. Self-esteem Modulates the P3 Component in Response to the Self-face Processing after Priming with Emotional Faces

    Directory of Open Access Journals (Sweden)

    Lili Guan

    2017-08-01

    Full Text Available The self-face processing advantage (SPA refers to the research finding that individuals generally recognize their own face faster than another’s face; self-face also elicits an enhanced P3 amplitude compared to another’s face. It has been suggested that social evaluation threats could weaken the SPA and that self-esteem could be regarded as a threat buffer. However, little research has directly investigated the neural evidence of how self-esteem modulates the social evaluation threat to the SPA. In the current event-related potential study, 27 healthy Chinese undergraduate students were primed with emotional faces (angry, happy, or neutral and were asked to judge whether the target face (self, friend, and stranger was familiar or unfamiliar. Electrophysiological results showed that after priming with emotional faces (angry and happy, self-face elicited similar P3 amplitudes to friend-face in individuals with low self-esteem, but not in individuals with high self-esteem. The results suggest that as low self-esteem raises fears of social rejection and exclusion, priming with emotional faces (angry and happy can weaken the SPA in low self-esteem individuals but not in high self-esteem individuals.

  18. Self-esteem Modulates the P3 Component in Response to the Self-face Processing after Priming with Emotional Faces.

    Science.gov (United States)

    Guan, Lili; Zhao, Yufang; Wang, Yige; Chen, Yujie; Yang, Juan

    2017-01-01

    The self-face processing advantage (SPA) refers to the research finding that individuals generally recognize their own face faster than another's face; self-face also elicits an enhanced P3 amplitude compared to another's face. It has been suggested that social evaluation threats could weaken the SPA and that self-esteem could be regarded as a threat buffer. However, little research has directly investigated the neural evidence of how self-esteem modulates the social evaluation threat to the SPA. In the current event-related potential study, 27 healthy Chinese undergraduate students were primed with emotional faces (angry, happy, or neutral) and were asked to judge whether the target face (self, friend, and stranger) was familiar or unfamiliar. Electrophysiological results showed that after priming with emotional faces (angry and happy), self-face elicited similar P3 amplitudes to friend-face in individuals with low self-esteem, but not in individuals with high self-esteem. The results suggest that as low self-esteem raises fears of social rejection and exclusion, priming with emotional faces (angry and happy) can weaken the SPA in low self-esteem individuals but not in high self-esteem individuals.

  19. Collective modes of the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive the collective modes of a quantum one-component plasma in a magnetic field by using a projection operator technique. With the help of these modes the long-time behaviour of the time correlation functions for the charge density, the current density and the energy density is

  20. Equilibrium fluctuations formulas for the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive a complete set of equilibrium fluctuation formulae for the charge density, the current density and the energy density of the quantum one-component plasma in a magnetic field. The derivation is based on the use of imaginary-time-dependent Green functions and their Kubo transforms.

  1. Equilibrium fluctuations formulas for the quantum one-component plasma in a magnetic field

    NARCIS (Netherlands)

    John, P.; Suttorp, L.G.

    1993-01-01

    The authors derive a complete set of equilibrium fluctuation formulae for the charge density, the current density and the energy density of the quantum one-component plasma in a magnetic field. The derivation is based on the use of imaginary-time-dependent Green functions and their Kubo transforms.

  2. Simulation experiment of interaction of plasma facing materials and transient heat loads in ITER divertor by use of magnetized coaxial plasma gun

    Science.gov (United States)

    Nakatsuka, M.; Ando, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    Interaction of plasma facing materials and transient head loads such as type I ELMs is one of the critical issues in ITER divertor. The heat load to the ITER divertor during type I ELMs is estimated to be 0.5-3 MJ/m^2 with a pulse length of 0.1-0.5 ms. We have developed a magnetized coaxial plasma gun (MCPG) for the simulation experiment of transient heat load during type I ELMs in ITER divertor. The MCPG has inner and outer electrodes made of stainless steel 304. In addition, the inner electrode is covered with molybdenum so as to suppress the release of impurities from the electrode during the discharge. The diameters of inner and outer electrodes are 0.06 m and 0.14 m, respectively. The power supply for the MCPG is a capacitor bank (7 kV, 1 mF, 25 kJ). The plasma velocity estimated by the time of flight measurement of the magnetic fields was about 50 km/s, corresponding to the ion energy of 15 eV (H) or 30 eV (D). The absorbed energy density of the plasma stream was measured a calorimeter made of graphite. It was found that the absorbed energy density was 0.9 MJ/m^2 with a pulse width of 0.5 ms at the distance of 100 mm from the inner electrode. In the conference, experimental results of plasma exposure on the plasma facing materials in ITER divertor will be shown.

  3. Evaluation of W-Si-C thick coating as a plasma facing material

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Hyun Kwang [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)], E-mail: drstone@kist.re.kr; Jung, Kyung Ho; Kim, Yu Chan; Shim, Jae-Hyeok; Kim, Dong-Ik; Han, Seung-Hee [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Baik, Kyeong Ho [ChungNam National University, Deajeon 305-764 (Korea, Republic of); Cha, Pil-Ryung [School of Advanced Materials Engineering, Kooknin University, Seoul 136-702 (Korea, Republic of)

    2009-04-30

    We present tungsten alloy coating of 150-200 {mu}m thickness with improved plasma erosion resistance fabricated by plasma spraying of granular W-SiC composite powders. During increasing the SiC concentration to 8 wt%, we observed the increase in the hardness of the coating from 250 to 440 Hv. The plasma erosion depth of the coating decreased by 10 times compared with pure tungsten in the same erosion environment.

  4. Demonstrating Universal Scaling in Quench Dynamics of a Yukawa One-Component Plasma

    CERN Document Server

    Langin, T K; Maksimovic, N; McQuillen, P; Pohl, T; Vrinceanu, D; Killian, T C

    2015-01-01

    The Yukawa one-component plasma (OCP) is a paradigm model for describing plasmas that contain one component of interest and one or more other components that can be treated as a neutralizing, screening background. In appropriately scaled units, interactions are characterized entirely by a screening parameter, $\\kappa$. As a result, systems of similar $\\kappa$ show the same dynamics, regardless of the underlying parameters (e.g., density and temperature). We demonstrate this behavior using ultracold neutral plasmas (UNP) created by photoionizing a cold ($T\\le10$ mK) gas. The ions in UNP systems are well described by the Yukawa model, with the electrons providing the screening. Creation of the plasma through photoionization can be thought of as a rapid quench from $\\kappa_{0}=\\infty$ to a final $\\kappa$ value set by the electron density and temperature. We demonstrate experimentally that the post-quench dynamics are universal in $\\kappa$ over a factor of 30 in density and an order of magnitude in temperature. R...

  5. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method

    Science.gov (United States)

    Cui, Shuang; Simmonds, Michael; Qin, Wenjing; Ren, Feng; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2017-04-01

    The near-surface region of plasma facing material (PFM) plays an important role in thermal management of fusion reactors. In this work, we measured thermal conductivity of tungsten (W) surface layers damaged by He plasma in PISCES at UCSD. We studied the damage effect on both bulk, and thin film, W. We observed that the surface morphology of both bulk and thin film was altered after exposure to He plasma with the fluence of 1 × 1026 m-2 (bulk) and 2 × 1024 m-2 (thin film). Transmission electron microscopy (TEM) analysis reveals that the depth of the irradiation damaged layer was approximately 20 nm on the bulk W exposed to He plasma at 773 K for 2000 s. In order to measure the thermal conductivity of this exceedingly thin damaged layer in the bulk W, we adopted the well-established '3-omega' method and employed novel nanofabrication techniques to improve the measurement sensitivity. For the damaged W thin film sample, we measured the reduction in electrical conductivity and used the Wiedemann-Franz (W-F) law to extract the thermal conductivity. Results from both measurements show that thermal conductivity in the damaged layers was reduced by at least ∼80% compared to that of undamaged W. This large reduction in thermal conductivity can be attributed to the scattering of electrons, the dominant heat carriers in W, caused by defects introduced by He plasma irradiation.

  6. [Effect of water on silica gel adsorption of blood plasma components].

    Science.gov (United States)

    Gall', L N; Malakhova, M Ia; Melenevskaia, E Iu; Podosenova, N G; Sharonova, L V

    2011-01-01

    In this work, the study of properties of silica gel as an adsorbent for plasmasorption has been performed. Investigations have been realized of the effect of silica gel preliminary treatment conditions and a period of plasma with silica gel contact on plasmasorption characteristics of human blood plasma components, such as protein, triglycerides, cholesterol (high-density and low-density one). The results obtained can be used for variation of silica gel adsorption properties, in situ at the adsorbent preparation process. For explanation of the experimental concentration and kinetic (temporal) characteristics of plasmasorption, the model of silica gel grains charging at the hydration was used.

  7. Linear electrostatic waves in a three-component electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mugemana, A., E-mail: mugemanaa@gmail.com; Moolla, S. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lazarus, I. J. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Durban 4000 (South Africa)

    2014-12-15

    Analytical linear electrostatic waves in a magnetized three-component electron-positron-ion plasma are studied in the low-frequency limit. By using the continuity and momentum equations with Poisson's equation, the dispersion relation for the electron-positron-ion plasma consisting of cool ions, and hot Boltzmann electrons and positrons is derived. In the linear regime, the propagation of two possible modes and their evolution are studied. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. The present investigation contributes to nonlinear propagation of electrostatic waves in space and the laboratory.

  8. Electrostatic envelope modes in multi-component non-thermal plasmas

    Science.gov (United States)

    Saiful Islam, Md; Sultana, Sharmin; Mamun, A. A.

    2016-07-01

    A theoretical study of envelope type solitary structures and their modulational instability has been made in a multi-component unmagnetized non-thermal plasma (consisting of negatively charged immobile heavy ions, inertial light ions and non-thermal electrons of two distinct temperatures). The cubic nonlinear Schrödinger equation (which describes the evolution of a slowly varying wave envelope with space and time) is derived by adopting the multiple scale (in space and time) perturbation technique. It is found that the plasma system under consideration supports two types (bright and dark) envelope solitons. It is also seen that the dark (bright) envelope solitons are modulationally stable (unstable). The variation of the growth rate of the unstable bright envelope solitons with various plasma parameters (e.g. wave number, temperature of plasma non-thermality, etc.) are found to be significant. The modulational instability criterions of the envelope modes are also seen to be influenced due to the variation of the intrinsic plasma parameters. This theoretical study may be useful in understanding the basic features of localized electrostatic structures in some space plasma systems (viz. Saturn's magnetosphere) where high energetic particles are available.

  9. Electrostatic instabilities in unmagnetized and magnetized multi-component plasma with non-Maxwellian distribution function

    Science.gov (United States)

    Sehar, Sumbul; Nouman Sarwar, Qureshi Muhammad

    2016-04-01

    In many physical situations such as space or laboratory plasmas a hot low-density electron populations can be generated superimposed on the bulk cold population, resulting in a particle distribution function consisting of a dense cold part and hot superthermal tail. Space observations show that electron distributions are often observed with flat top at low energies and high energy tails. The appropriate distribution to model such non-Maxwellian features is the generalized (r,q) distribution function which in limiting forms can be reduced to kappa and Maxwellian distribution functions. In this study, Kinetic model is employed to study the electron-acoustic and ion-ion acoustic instabilities in four component plasma with generalized (r,q) distribution function for both magnetized and unmagnetized plasmas. Departure of plasma from Maxwellian distributions significantly alters the growth rates as compared to the Maxwellian plasma. Significant growth observed for highly non-Maxwellian distributions as well as plasmas with higher dense and hot electron population. Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian. These results may be applied in both experimental and space physics regimes.

  10. Low-frequency electrostatic shock excitations in a multi-component dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ferdousi, M.; Miah, M.R.; Sultana, S.; Mamun, A.A., E-mail: mariyaferdousi@gmail.com [Department of Physics, Jahangirnagar University, Savar (Bangladesh)

    2015-10-01

    Dust-acoustic shock waves are investigated in a four-component plasma consisting of arbitrarily charged inertial dusts, Boltzmann distributed negatively charged heavy ions, positively charged light ions, and electrons. The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers-type equation. The properties of dust-acoustic shock waves are analysed via the solution of Burgers equation. It is observed that the basic features of dust-acoustic shock waves are significantly modified due to the influence of arbitrarily charged dusts, Maxwellian electrons, number density and temperatures of heavier and lighter ions, and dust kinematic viscosity. Both polarity (positive and negative potential) shock waves are also found to exists in the plasma under consideration in this manuscript. The findings of this investigation may be used in understanding the dust-acoustic wave properties in both laboratory and space plasmas. (author)

  11. Plasma adiponectin levels correlate positively with an increasing number of components of frailty in male elders.

    Directory of Open Access Journals (Sweden)

    Jaw-Shiun Tsai

    Full Text Available OBJECTIVE: Frailty is an important geriatric syndrome. Adiponectin is an important adipokine that regulates energy homeostasis. The aim of this study is to investigate the relationship between plasma adiponectin levels and frailty in elders. METHODS: The demographic data, body weight, metabolic and inflammatory parameters, including plasma glucose, total cholesterol, triglyceride, tumor necrosis factor alpha (TNF-α, c-reactive protein (CRP and adiponectin levels, were assessed. The frailty score was assessed using the Fried Frailty Index (FFI. RESULTS: The mean (SD age of the 168 participants [83 (49.4% men and 85 (50.6% women] was 76.86 (6.10 years. Judged by the FFI score, 42 (25% elders were robust, 92 (54.7% were pre-frail, and 34 (20.3% were frail. The mean body mass index was 25.19 (3.42 kg/m(2. The log-transformed mean (SD plasma adiponectin (µg/mL level was 1.00 (0.26. The log-transformed mean plasma adiponectin (µg/mL levels were 0.93 (0.23 in the robust elders, 1.00 (0.27 in the pre-frail elders, and 1.10 (0.22 in the frail elders, and the differences between these values were statistically significant (p  = 0.012. Further analysis showed that plasma adiponectin levels rose progressively with an increasing number of components of frailty in all participants as a whole (p for trend  = 0.024 and males (p for trend  = 0.037, but not in females (p for trend  = 0.223. CONCLUSION: Plasma adiponectin levels correlate positively with an increasing number of components of frailty in male elders. The difference between the sexes suggests that certain sex-specific mechanisms may exist to affect the association between adiponectin levels and frailty.

  12. One-component plasma of point charges and of charged rods.

    Science.gov (United States)

    Hatlo, Marius M; Karatrantos, Argyrios; Lue, Leo

    2009-12-01

    An approximate theory is developed to describe the properties of mobile particles with extended charge distributions in the presence of a neutralizing fixed background charge. Long-wavelength fluctuations of the electric potential are handled within a variational perturbation approximation, and the short-wavelength fluctuations are handled within a cumulant (fugacity) expansion. The distinct treatment of these two contributions to the free energy enables the theory to provide quantitative predictions for the properties of these systems from the weak- to the strong-coupling regimes. With this theory, we study three different variations in the classical one-component plasma model: a plasma of point charges, a plasma of particles consisting of 8 linearly bonded point charges (8-mer), and a plasma of line charges. The theory was found to agree well with the available computer simulation data for the electrostatic interaction energy of these systems for all values of the plasma coupling parameter examined ( Gamma=0 to 400). In addition, we find that both the 8-mer rod and the line charge systems form a strongly ordered nematic phase, which is entirely driven by electrostatic interactions. The nematic phase only exists within a finite range of lengths of the charged particles. If the particles are too short or too long, the nematic phase does not appear. Finally, we find that the nematic phase is stable over a broader range of conditions for the line charge system than for the 8-mer rod system; consequently, the phase behavior of the one-component plasma is sensitive to the manner in which the charge is distributed on the particles.

  13. Electron-acoustic solitary pulses and double layers in multi-component plasmas

    CERN Document Server

    Mannan, A; Shukla, P K

    2013-01-01

    We consider the nonlinear propagation of fi?nite amplitude electron-acoustic waves (EAWs) in multi-component plasmas composed of two distinct groups of electrons (cold and hot components), and non-isothermal ions. We use the continuity and momentum equations for cold inertial electrons, Boltzmann law for inertialess hot electrons, non-isothermal density distribution for hot ions, and Poisson's equation to derive an energy integral with a modi?ed Sagdeev potential (MSP) for nonlinear EAWs. The MSP is analyzed to demonstrate the existence of arbitrary amplitude EA solitary pulses (EASPs) and EA double layers (EA-DLs). Small amplitude limits have also been considered and analytical results for EASPs and EA-DLs are presented. The implication of our results to space and laboratory plasmas is briely discussed.

  14. Accurate Determination of the Shear Viscosity of the One-Component Plasma

    CERN Document Server

    Daligault, Jerome; Baalrud, Scott D

    2014-01-01

    The shear viscosity coefficient of the one-component plasma is calculated with unprecedented accuracy using equilibrium molecular dynamics simulations and the Green-Kubo relation. Numerical and statistical uncertainties and their mitigation for improving accuracy are analyzed. In the weakly coupled regime, our the results agree with the Landau-Spitzer prediction. In the moderately and strongly coupled regimes, our results are found in good agreement with recent results obtained for the Yukawa one-component plasma using non-equilibrium molecular dynamics. A practical formula is provided for evaluating the viscosity coefficient across coupling regimes, from the weakly-coupled regime up to solidification threshold. The results are used to test theoretical predictions of the viscosity coefficients found in the literature.

  15. Coupled dust drift acoustic shock and soliton in collisional four component magnetized dusty plasmas

    Science.gov (United States)

    Farooq, M.; Ahmad, Mushtaq; Jan, Qasim

    2017-09-01

    Low frequency electrostatic coupled dust drift dust acoustic waves are studied in an inhomogeneous, collisional four component dust magnetoplasma composed of dust components of opposite polarity, along with Boltzmannian ions and electrons. The nonlinear evolution equation in the form of an ordinary differential equation and its limiting cases are derived and solved using the Tanh-method. The numerical analysis of the obtained solutions is studied for both laboratory and cosmic plasma systems. It is observed that, depending on the values of the plasma parameters like ion and electron temperatures, and charge number, both rarefactive and compressive shock and solitary waves may exist. It is shown that the concepts of a critical ion and electron temperatures/density in the nonlinear equations treatment, and of a changeover from compressive to rarefactive shock and soliton characters, correspond to the formation of rarefactive regimes, at which the electric stresses maximize and density minimizes.

  16. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  17. Evidence for a Nest Defense Pheromone in Bald-Faced Hornets, Dolichovespula Maculata, and Identification of Components.

    Science.gov (United States)

    Jimenez, Sebastian Ibarra; Gries, Regine; Zhai, Huimin; Derstine, Nathan; McCann, Sean; Gries, Gerhard

    2016-05-01

    In eusocial insects like Bald-faced hornets, Dolichovespula maculata, nest defense is essential because nests contain a large number of protein-rich larvae and pupae, and thus are attractive to nest predators. Our objectives were to investigate whether D. maculata exhibit pheromone-mediated nest defense, and to identify and field test any pheromone components. We tested for pheromone-mediated nest defense behavior of D. maculata by placing a paired box-apparatus near the entrance of D. maculata nests, and treating both boxes with a solvent control, or one of the two boxes with a solvent control and the other with either venom sac extract, the putative source of nest defense pheromone, or synthetic pheromone. The sound impulses caused by nest mates attempting to sting or strike the boxes were recorded for 3 min. Compared to the double-control treatment, the number of strikes increased 27-fold when one of the two boxes was treated with venom sac extract, providing evidence for an alarm response. The box treated with venom sac extract also induced a significantly greater proportion of strikes than the corresponding control box, providing evidence for a target-oriented response. Analyzing venom sac extract by gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometry resulted in the identification of seven candidate pheromone components: (a) dimethylaminoethanol, (b) dimethylamino ethyl acetate, (c) 2,5-dimethylpyrazine, (d) N-3-methylbutylacetamide, (e) 2-heptadecanone, (f) (Z)-8-heptadecen-2-one, and (g) (Z)-10-nonadecen-2-one. Testing in paired-box bioassays blends of the nitrogen-containing volatile components a-d, the less volatile ketones e-g, or both (a-g), indicated that a-d primarily have an alarm function. The ketones e-g, in contrast, induced target-oriented responses, possibly marking the box, or potential nest predators, for guided and concerted attacks, or enhancing the alarm-inducing effect of the volatile pheromone components

  18. Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature

    Science.gov (United States)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Das, A. K.; Mathe, V. L.

    2014-10-01

    Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125-1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

  19. In vitro combinations of red blood cell, plasma and platelet components evaluated by thromboelastography.

    Science.gov (United States)

    Agren, Anna; Edgren, Gustaf; Kardell, Malin; Ostlund, Anders; Wikman, Agneta Taune

    2014-10-01

    Thromboelastography is increasingly used to evaluate coagulation in massively bleeding patients. The aim of this study was to investigate how different combinations of blood components affect in vitro whole blood clotting measured by thromboelastography. Packed red blood cells, plasma and platelets from fresh and old blood components were mixed in vitro, in proportions of 4:4:1, 5:5:2, 8:4:1 and 2:1:0, and analysed with thromboelastography. For the ratio 4:4:1 the experiment was done at both 37 °C and 32 °C. Thromboelastography curves were within normal reference values for the blood component proportions of 4:4:1 and 5:5:2. For 8:4:1, the angle and maximal amplitude were reduced below normal values, indicating low levels of fibrinogen and/or platelets. For the 2:1:0 proportion, all parameters were affected resulting in severely impaired in vitro clot formation. The reaction-time, reflecting the coagulation factor-dependent, initial clot formation, was slightly increased at a low temperature. Prolonged storage of the components did not affect the curve. With the introduction of guidelines on the management of massive bleeding it is important to have tools for the assessment of the new protocols. In vitro evaluation of mixtures of packed red blood cells, plasma and platelets by thromboelastography may be relevant in the prediction of in vivo clot formation and haemostasis.

  20. Relationship between plasma resistin concentrations, inflammatory chemokines, and components of the metabolic syndrome in adults.

    Science.gov (United States)

    Aquilante, Christina L; Kosmiski, Lisa A; Knutsen, Shannon D; Zineh, Issam

    2008-04-01

    Recent data suggest that resistin, an adipocyte-derived cytokine, has a putative role in inflammatory processes and metabolic derangements. In vitro data suggest that resistin stimulates the production of inflammatory chemokines, yet the relationship in vivo is largely unknown. The purpose of this study was to determine if a relationship exists between plasma resistin concentrations, plasma inflammatory chemokine aged concentrations (ie, monocyte chemoattractant protein 1 [MCP-1] and epithelial neutrophil activator 78 [ENA-78]), and components of the metabolic syndrome in nondiabetic subjects without known cardiovascular disease (CVD). Plasma samples were obtained from nondiabetic subjects (N = 123) aged 18 to 55 years without known CVD or CVD risk equivalents. The presence of the metabolic syndrome was assessed using consensus guidelines. Fasting plasma resistin, MCP-1, ENA-78, and high-sensitivity C-reactive protein (hs-CRP) concentrations were analyzed. The study population consisted of 67.5% women and 68.3% Caucasians (mean age = 44 +/- 7 years and mean body mass index = 33.3 +/- 6 kg/m(2)). The metabolic syndrome was present in 46.3% of study participants. Resistin concentrations were significantly correlated with white blood cell count (r = 0.326, P metabolic syndrome compared with those without the metabolic syndrome (P = .003). In stepwise regression analysis, white blood cell count (P metabolic syndrome, and high-density lipoprotein cholesterol. Data from our cross-sectional study demonstrate that plasma resistin concentrations are associated with circulating chemokine markers of inflammation, namely, MCP-1, and white blood cell count in nondiabetic adults without CVD. Future studies examining the causal relationship between plasma resistin concentrations, chemokine markers of inflammation, CVD, and diabetes are warranted.

  1. PLASMA IMMERSION ION IMPLANTER FOR THE MODIFICATION OF INDUSTRIAL AEROSPACE COMPONENTS

    Institute of Scientific and Technical Information of China (English)

    TONG Hong-hui; CHEN Qin-chuan; HUO Yan-feng; WANG Ke; FENG Tan-min; MU Li-lan; ZHAO Jun; Paul K Chu

    2003-01-01

    A commercial plasma immersion ion implanter has been designed and constructed to enhance the surface properties of parts and components used in aerospace applications. The implanter consists of a vacuum chamber, pumping and gas inlet system, custom sample chuek, four sets of hot-filaments, three-filtered vacuum arc plasma sources, special high voltage modulator, as well as monitoring and control systems. Special attention has been paid to improve the uniformity of plasma in the chamber. The power modulator operates in both the pulse bunching and single pulse modes. The maximum pulse voltage output is 80kV, maximum pulse current is 60A, and repetition frequency is 50 ~ 500Hz. The target chuck has been specially designed for uniform implantation into multiple aerospace components with irregular geometries as well as effective sample cooling. An in situ temperature monitoring device comprising dual thermocouples has been developed. The instrument was installed in an aerospace company and has been operating reliably for a year. In addition to reporting some of the hardware innovations, data on the improvement of the lifetime of an aircraft hydraulic pump disk using a dual nitrogen treatment process [60 ~ 70kV & (1 - 6) × 1017 cm-2; 30 ~ 45kV & (1 - 4) × 1017cm-2] are presented. This treatment protocol has been adopted as a standard production procedure in the factory.

  2. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    Science.gov (United States)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2016-07-01

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg-deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  3. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S. A.; Ferdousi, M.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

    2015-04-15

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas.

  4. Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications

    Science.gov (United States)

    Tiron, Vasile; Velicu, Ioana-Laura; Porosnicu, Corneliu; Burducea, Ion; Dinca, Paul; Malinský, Petr

    2017-09-01

    In this work, tungsten nitride coatings with nitrogen content in the range of 19-50 at% were prepared by reactive multi-pulse high power impulse magnetron sputtering as a function of the argon and nitrogen mixture and further exposed to a deuterium plasma jet. The elemental composition, morphological properties and physical structure of the samples were investigated by Rutherford backscattering spectrometry, atomic force microscopy and X-ray diffraction. Deuterium implantation was performed using a deuterium plasma jet and its retention in nitrogen containing tungsten films was investigated using thermal desorption spectrometry. Deuterium retention and release behaviour strongly depend on the nitrogen content in the coatings and the films microstructure. All nitride coatings have a polycrystalline structure and retain a lower deuterium level than the pure tungsten sample. Nitrogen content in the films acts as a diffusion barrier for deuterium and leads to a higher desorption temperature, therefore to a higher binding energy.

  5. Dynamic form factor of two-component plasmas beyond the static local field approximation

    CERN Document Server

    Daligault, J

    2003-01-01

    The spectrum of ion density fluctuations in a strongly coupled plasma is described both within the static G(k, 0) and high-frequency G(k, infinity) local field approximation. By a direct comparison with molecular dynamics data, we find that for large coupling, G(k, 0) is inadequate. Based on this result, we employ the Zwanzig-Mori memory function approach to model the Thomson scattering cross section, i.e. the electron dynamic form factor S sub e sub e (k, omega) of a dense two-component plasma. We show the sensitivity of S sub e sub e (k, omega) to three approximations for G(k, omega).

  6. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca(2+) concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  7. Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Das, A. K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-10-28

    Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125–1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

  8. Fast plasma sintering delivers functional graded materials components with macroporous structures and osseointegration properties.

    Science.gov (United States)

    Godoy, R F; Coathup, M J; Blunn, G W; Alves, A L; Robotti, P; Goodship, A E

    2016-04-13

    We explored the osseointegration potential of two macroporous titanium surfaces obtained using fast plasma sintering (FPS): Ti macroporous structures with 400-600 µmØ pores (TiMac400) and 850-1000 µmØ pores (TiMac850). They were compared against two surfaces currently in clinical use: Ti-Growth® and air plasma spray (Ti-Y367). Each surface was tested, once placed over a Ti-alloy and once onto a CoCr bulk substrate. Implants were placed in medial femoral condyles in 24 sheep. Samples were explanted at four and eight weeks after surgery. Push-out loads were measured using a material-testing system. Bone contact and ingrowth were assessed by histomorphometry and SEM and EDX analyses. Histology showed early osseointegration for all the surfaces tested. At 8 weeks, TiMac400, TiMac850 and Ti-Growth® showed deep bone ingrowth and extended colonisation with newly formed bone. The mechanical push-out force was equal in all tested surfaces. Plasma spray surfaces showed greater bone-implant contact and higher level of pores colonisation with new bone than FPS produced surfaces. However, the void pore area in FPS specimens was significantly higher, yet the FPS porous surfaces allowed a deeper osseointegration of bone to implant. FPS manufactured specimens showed similar osseointegration potential to the plasma spray surfaces for orthopaedic implants. FPS is a useful technology for manufacturing macroporous titanium surfaces. Furthermore, its capability to combine two implantable materials, using bulk CoCr with macroporous titanium surfaces, could be of interest as it enables designers to conceive and manufacture innovative components. FPS delivers functional graded materials components with macroporous structures optimised for osseointegration.

  9. Lipid domain structure of the plasma membrane revealed by patching of membrane components.

    Science.gov (United States)

    Harder, T; Scheiffele, P; Verkade, P; Simons, K

    1998-05-18

    Lateral assemblies of glycolipids and cholesterol, "rafts," have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T-lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.

  10. Density Fluctuations in the Yukawa One Component Plasma: An accurate model for the dynamical structure factor

    CERN Document Server

    Mithen, James P; Crowley, Basil J B; Gregori, Gianluca

    2011-01-01

    Using numerical simulations, we investigate the equilibrium dynamics of a single component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, the model has significant applicability for both analyzing and interpreting the results of x-ray scattering data from high power lasers and fourth generation light sources.

  11. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma; Etude du comportament de l`hydrogene dans des materiaux amorphes hydrogenes de type a - C:H et a - SiC:H devant faire face au plasma des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-04-10

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author) 176 refs.

  12. Plasma selenium status in a group of Australian blood donors and fresh blood components.

    Science.gov (United States)

    McDonald, Charles; Colebourne, Kathryn; Faddy, Helen M; Flower, Robert; Fraser, John F

    2013-10-01

    The purpose of this study was to assess plasma selenium levels in an Australian blood donor population and measure extra-cellular selenium levels in fresh manufactured blood components. Selenium levels were measured using graphite furnace atomic absorption spectrometry with Zeeman background correction. The mean plasma selenium level in healthy plasmapharesis donors was 85.6±0.5 μg/L and a regional difference was observed between donors in South East Queensland and Far North Queensland. Although participants had selenium levels within the normal range (55.3-110.5 μg/L), 88.5% had levels below 100 μg/L, a level that has been associated with sub-optimal activity of the antioxidant enzyme glutathione peroxidase (GPx). Extra-cellular selenium levels in clinical fresh frozen plasma (cFFP) and apheresis-derived platelets (APH Plt) were within the normal range. Packed red blood cells (PRBC) and pooled buffy coat-derived platelets (BC Plt) had levels at the lower limit of detection, which may have clinical implications to the massively transfused patient.

  13. Plasma concentrations of retinol in obese children and adolescents: relationship to metabolic syndrome components

    Directory of Open Access Journals (Sweden)

    Marcia Teske

    2014-03-01

    Full Text Available Objective: To evaluate obese children and adolescents' retinol plasma levels and to correlate them with metabolic syndrome components. Methods: Cross-sectional study with 61 obese children and adolescents (body mass index Z score - ZBMI>+2. Pubertal development, arterial blood pressure, body weight and height for nutritional classification and waist circumference were obtained. A 15mL blood sample was collected (after a 12-hour fasting in a low luminosity room for retinol determination (cut-off inadequate if <30µg/dL, lipid profile (HDL-c, LDL-c, and triglycerides, oral glucose tolerance test (fasting and 120 minutes and for high sensitivity C-reactive protein. Spearman correlation and multiple linear regression were used in the statistical analysis. Results: Mean age was 10.7±2.7 years. There was a predominance of male gender 38/61 (62% and pre-pubertal 35/61 (57% subjects. The average plasmatic retinol was 48.5±18.6ug/dL. Retinol deficiency and severe obesity were observed in 6/61 (10% and 36/61 (59%, respectively. Glucose level at 120 minutes was the independent and predictive variable of plasma retinol levels [β=-0.286 (95%CI -0.013 - -0.001]. Conclusions: An independent and inverse association between plasma retinol levels and glucose tolerance was observed, suggesting an important contribution of this vitamin in the morbidities associated to obesity in children and adolescents.

  14. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    Science.gov (United States)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  15. Face Image Analysis Based on Multiple Separated Component Sparse Coding%基于多分离部件稀疏编码的人脸图像分析

    Institute of Scientific and Technical Information of China (English)

    刘伟锋; 刘红丽; 王延江

    2013-01-01

    Considering the different contributions of different facial components to face analysis, e. g. eyes, mouth etc. , a face analysis based on multi-component sparse coding is proposed. Firstly, some facial components which play important role to face analysis are selected. Then, the dictionaries of multiple components are learnt by using multi-view sparse coding algorithm, and the sparse codes of each face image are computed based on the dictionary. The final decision is made through pooling the sparse codes into support vector machines and least squares classifiers. Face analysis experiments include face recognition, facial expression recognition, face recognition with occlusion, and facial expression recognition with occlusion. The experimental results show that the proposed method based on multi-component sparse coding learns optimal weights of different facial components and outperforms single facial component method and simple multi-component fusion method.%考虑到不同部件(眼睛,嘴等)对人脸分析的贡献差别,提出基于多部件稀疏编码的人脸图像分析方法。首先,选取对人脸(表情)分析影响较大的几个人脸部件,然后,利用多视角稀疏编码方法学习各部件的字典,并计算相应的稀疏编码,最后,将稀疏编码输入分类器(支持向量机和最小均方误差)进行判决。分别在数据库JAFFE和Yale上进行人脸(表情)识别及有遮挡的人脸(表情)识别实验。实验结果表明,基于多部件稀疏编码的人脸分析能较好地调节各部件的权重,优于各单一部件和简单的多部件融合方法的性能。

  16. 3D-front-face fluorescence spectroscopy and independent components analysis: A new way to monitor bread dough development.

    Science.gov (United States)

    Garcia, Rebeca; Boussard, Aline; Rakotozafy, Lalatiana; Nicolas, Jacques; Potus, Jacques; Rutledge, Douglas N; Cordella, Christophe B Y

    2016-01-15

    Following bread dough development can be a hard task as no reliable method exists to give the optimal mixing time. Dough development is linked to the evolution of gluten proteins, carbohydrates and lipids which can result in modifications in the spectral properties of the various fluorophores naturally present in the system. In this paper, we propose to use 3-D-front-face-fluorescence (3D-FFF) spectroscopy in the 250-550nm domain to follow the dough development as influenced by formulation (addition or not of glucose, glucose oxidase and ferulic acid in the dough recipe) and mixing time (2, 4, 6 and 8min). In all the 32 dough samples as well as in flour, three regions of maximum fluorescence intensities have been observed at 320nm after excitation at 295nm (Region 1), at 420nm after excitation at 360nm (Region 2) and 450nm after excitation at 390nm (Region 3). The principal components analysis (PCA) of the evolution of these maxima shows that the formulations with and without ferulic acid are clearly separated since the presence of ferulic acid induces a decrease of fluorescence in Region 1 and an increase in Regions 2 and 3. In addition, a kinetic effect of the mixing time can be observed (decrease of fluorescence in the Regions 1 and 2) mainly in the absence of ferulic acid. The analysis of variance (ANOVA) on these maximum values statistically confirms these observations. Independent components analysis (ICA) is also applied to the complete 3-D-FFF spectra in order to extract interpretable signals from spectral data which reflect the complex contribution of several fluorophores as influenced by their environment. In all cases, 3 signals can be clearly separated matching the 3 regions of maximal fluorescence. The signals corresponding to regions 1 and 2 can be ascribed to proteins and ferulic acid respectively, whereas the fluorophores associated with the 3rd signal (corresponding to region 3) remain unidentified. Good correlations are obtained between the IC

  17. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them

    Energy Technology Data Exchange (ETDEWEB)

    Putrik, A. B., E-mail: putrik@triniti.ru; Klimov, N. S. [State Research Center of the Russian Federation Troitsk Institute for Innovation & Fusion Research (Russian Federation); Gasparyan, Yu. M., E-mail: yura@plasma.mephi.ru; Efimov, V. S. [National Research Nuclear University Moscow Engineering Physics Institute (Russian Federation); Barsuk, V. A.; Podkovyrov, V. L., E-mail: podk@triniti.ru; Zhitlukhin, A. M., E-mail: zhitlukh@triniti.ru; Yarochevskaya, A. D.; Kovalenko, D. V., E-mail: kovalenko@triniti.ru [State Research Center of the Russian Federation Troitsk Institute for Innovation & Fusion Research (Russian Federation)

    2015-12-15

    Erosion of the plasma-facing materials in particular evaporation of the materials in a fusion reactor under intense transient events is one of the problems of the ITER. The current experimental data are insufficient to predict the properties of the erosion products, a significant part of which will be formed during transient events (edge-localized modes (ELMs) and disruptions). The paper concerns the experimental investigation of the graphite and tungsten erosion products deposited under pulsed plasma load at the QSPA-T: heat load on the target was 2.6 MJ/m{sup 2} with 0.5 ms pulse duration. The designed diagnostics for measuring the deposition rate made it possible to determine that the deposition of eroded material occurs during discharge, and the deposition rate is in the range (0.1–100) × 10{sup 19} at/(cm{sup 2} s), which is much higher than that for stationary processes. It is found that the relative atomic concentrations D/C and D/(W + C) in the erosion products deposited during the pulse process are on the same level as for the stationary processes. An exposure of erosion products to photonic energy densities typical of those expected at mitigated disruptions in the ITER (pulse duration of 0.5–1 ms, integral energy density of radiation of 0.1–0.5 MJ/m2) significantly decreases the concentration of trapped deuterium.

  18. Statistical Analysis of EMIC Waves in Multiple Component Plasma Including Heavy Ions

    Science.gov (United States)

    Matsuda, S.; Kasahara, Y.; Goto, Y.

    2013-12-01

    It is well known that Earth's radiation belts are located around geomagnetic equator, where wide ranges of energetic particles from several hundred keV to several tens MeV are contained. According to the recent study, it is suggested that ELF/VLF waves such as EMIC waves and chorus emissions deeply contribute to the generation and loss mechanism of relativistic electrons in the radiation belt. The ERG mission[1] is expected to provide important clues for solving plasma dynamics in the Earth's radiation belts by means of integrated observation of wide energy range of plasma particles and high resolution plasma waves. On the other hand, long-term observation data which covers over 2 cycles of solar activity obtained by the Akebono satellite is very valuable to work out the strategy of the ERG mission. The ELF receiver, which is a sub-system of the VLF instruments onboard Akebono, measures waveforms below 50 Hz for one component of electric field and three components of magnetic field, or waveforms below 100 Hz for one component of electric and magnetic field, respectively. It was reported that ion cyclotron waves were observed near magnetic equator by the receiver[2]. In our previous study[3], we introduced four events of characteristic EMIC waves observed by Akebono in April, 1989. These waves have sudden decrease of intensity just above half of proton cyclotron frequency changing along the trajectories of Akebono. Comparing the observed data with the dispersion relation in multiple species of ions under cold plasma approximation, we demonstrate that a few percent of 'M / Z = 2 ions (M = mass of ions, Z = charge of ions)' such as alpha particles (He++) or deuterons (D+) cause such characteristic attenuation of EMIC at lower hybrid frequency. In the present study, we performed polarization analysis and direction finding of the waves. It was found that these EMIC waves were left-handed polarized in the higher frequency part, while the polarization gradually changes to

  19. Efficacy of identifying neural components in the face and emotion processing system in schizophrenia using a dynamic functional localizer.

    Science.gov (United States)

    Arnold, Aiden E G F; Iaria, Giuseppe; Goghari, Vina M

    2016-02-28

    Schizophrenia is associated with deficits in face perception and emotion recognition. Despite consistent behavioural results, the neural mechanisms underlying these cognitive abilities have been difficult to isolate, in part due to differences in neuroimaging methods used between studies for identifying regions in the face processing system. Given this problem, we aimed to validate a recently developed fMRI-based dynamic functional localizer task for use in studies of psychiatric populations and specifically schizophrenia. Previously, this functional localizer successfully identified each of the core face processing regions (i.e. fusiform face area, occipital face area, superior temporal sulcus), and regions within an extended system (e.g. amygdala) in healthy individuals. In this study, we tested the functional localizer success rate in 27 schizophrenia patients and in 24 community controls. Overall, the core face processing regions were localized equally between both the schizophrenia and control group. Additionally, the amygdala, a candidate brain region from the extended system, was identified in nearly half the participants from both groups. These results indicate the effectiveness of a dynamic functional localizer at identifying regions of interest associated with face perception and emotion recognition in schizophrenia. The use of dynamic functional localizers may help standardize the investigation of the facial and emotion processing system in this and other clinical populations.

  20. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material

    Science.gov (United States)

    Luo, Laima; Shi, Jing; Lin, Jinshan; Zan, Xiang; Zhu, Xiaoyong; Xu, Qiu; Wu, Yucheng

    2016-09-01

    Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He+ and D+ ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance.

  1. Differential Influence of Components Resulting from Atmospheric-Pressure Plasma on Integrin Expression of Human HaCaT Keratinocytes

    Directory of Open Access Journals (Sweden)

    Beate Haertel

    2013-01-01

    Full Text Available Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon, ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.

  2. Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes.

    Science.gov (United States)

    Haertel, Beate; Straßenburg, Susanne; Oehmigen, Katrin; Wende, Kristian; von Woedtke, Thomas; Lindequist, Ulrike

    2013-01-01

    Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon), ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.

  3. Axisymmetric Alfvén resonances in a multi-component plasma at finite ion gyrofrequency

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-05-01

    Full Text Available This paper deals with the spatial structure of zero azimuthal wave number ULF oscillations in a 1-D inhomogeneous multi-component plasma when a finite ion gyrofrequency is taken into account. Such oscillations may occur in the terrestrial magnetosphere as Pc1-3 waves or in the magnetosphere of the planet Mercury. The wave field was found to have a sharp peak on some magnetic surfaces, an analogy of the Alfvén (field line resonance in one-fluid MHD theory. The resonance can only take place for waves with frequencies in the intervals ω<ωch or Ω0<ω< ωcp, where ωch and ωcp are heavy and light ions gyrofrequencies, and Ω0 is a kind of hybrid frequency. Contrary to ordinary Alfvén resonance, the wave resonance under consideration takes place even at the zero azimuthal wave number. The radial component of the wave electric field has a pole-type singularity, while the azimuthal component is finite but has a branching point singularity on the resonance surface. The later singularity can disappear at some frequencies. In the region adjacent to the resonant surface the mode is standing across the magnetic shells.

  4. Parsing the recognition memory components of the WMS-III face memory subtest: normative data and clinical findings in dementia groups.

    Science.gov (United States)

    Holdnack, James A; Delis, Dean C

    2004-06-01

    The WMS-III face memory subtest was developed as a quick, reliable, measure of non-verbal recognition memory. While the face memory subtest has demonstrated clinical sensitivity, the test has been criticized for low correlation with other WMS-III visual memory subtests and for failing to differentiate performance between clinical groups. One possible reason for these findings may be due to the impact of response bias associated with recognition memory tests. Four studies were conducted to evaluate the utility of applying signal detection measures to the face memory subtests. The first two studies used the WMS-III standardization data set to determine age and education effects and to present normative and reliability data for hits, false positives, discriminability and response bias. The third study tested the hypothesis that using response components and signal detection measures would enhance the correlation between face memory and the other WMS-III visual memory subtests. The fourth study compared performance of patients with Alzheimer's disease, Huntington's disease, Korsakoff's syndrome and demographically matched controls on the new face memory scores. The new measures did not have higher correlation with other WMS-III visual memory measures than the standard scoring of the test. Analysis of the clinical samples indicated that the discriminability index best differentiated patients from controls. The response components, particularly delayed false positives, differentiated performance among the clinical groups. Normative and reliability data are presented.

  5. Design and optimization of the WEST ICRH antenna front face components based on thermal and hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi, E-mail: chenzx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Vulliez, Karl [Laboratoire d’étanchéité, DEN/DTEC/SDTC, Commissariat à l’énergie atomique et aux énergies alternatives, 2 rue James Watt, 26700 Pierrelatte (France); Ferlay, Fabien; Martinez, André; Mollard, Patrick; Hillairet, Julien; Doceul, Louis; Bernard, Jean-Michel; Larroque, Sébastien; Helou, Walid [CEA, IRFM, F-13108, Saint-Paul-Lez-Durance (France); Song, Yuntao; Yang, Qingxi; Wang, Yongsheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-05-15

    Highlights: • Three ICRH antennas are designed to realize continuous-wave operation. • Fully active cooling structure is designed which takes the balance of structure safety and cooling performance. • High cooling efficiency is achieved for the current cooling circuit design based on the thermal-hydraulic simulation. - Abstract: The WEST (Tungsten (W) Environment in Steady-state Tokamak) is an upgrade of Tore-Supra (TS) which aims it into an X-point magnetic configuration tokamak equipped with an actively cooled tungsten divertor. To be a platform of ITER technologies of high heat flux components testing, three sets of Ion Cyclotron Resonant Heating (ICRH) antennas have been designed to inject 9 MW during 30 s or 3 MW during 1000 s. The antenna design is based on a load resilient prototype successfully tested in Tore Supra in 2007. In order to allow continuous-wave (CW) operations, the mechanical design of the WEST ICRH antenna is emphasized on its cooling performances by designing fully active cooling structure. Two kinds of cooling water loops are used, with temperature and pressure of 70 °C/30 bar and 25 °C/5.2 bar, respectively. The hot water loop is used for the Faraday screen (FS) and the housing box (HB), while the cold water loop is used for the straps, the matching capacitors and the impedance transformer. To enhance the heat removal ability and control the pressure drop, the cooling channels in the FS and HB are drilled directly and parallel connected as much as possible. By performing the hydraulic–thermal analysis, the lack of cooling efficiency was found in the front face of lateral collector where 1 MW/m{sup 2} is imposed and fluid dead zones were found in some of the bars. After optimization, the cooling performance of the cooling circuit increased significantly. With a mass flow rate of 2.5 kg/s, the total pressure drop is 3.1 bar, and the peak temperatures on the FS and HB are 500 °C and 261 °C, respectively. Besides, no cavitation is

  6. A study on the fusion reactor - Development of electrical insulation coating processes for vacuum vessel components of KT-2 tokamak by plasma spray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Choi, Byung Yong; Ahn, Hyun; Ju, Won Tae; Eom, You Sub [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    For the fabrication of insulation coatings with good vacuum tightness, mechanical and electrical properties needed for voltage breaker and plasma facing components of tokamak vacuum vessel, a plasma spraying system equipped= with an improved power supply and a precision powder feeder is employed for the development of the optimum processes for ceramic insulation coatings. The material properties of the ceramic coatings for tokamak vacuum vessel components are evaluated by material tests and analyses to determine optimum processing parameters for insulation coatings. As a result of material evaluation for Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} ceramic insulation coatings fabricated, Al{sub 2}O{sub 3}-3%TiO{sub 2} ceramic turn out to be the best insulation coating for tokamak use in respect of electrical and mechanical properties. Al{sub 2}O{sub 3} coating with dielectric strength values of more than 26 kV/mm can also be applicable to tokamak vacuum vessel components for electric insulation by improving its low adhesive strength. 23 refs., 9 tabs., 14 figs. (author)

  7. Additive Manufacture (3D Printing) of Plasma Diagnostic Components and Assemblies for Fusion Experiments

    Science.gov (United States)

    Quinley, Morgan; Chun, Katherine; Melnik, Paul; Sieck, Paul; Smith, Trevor; Stuber, James; Woodruff, Simon; Romero-Talamas, Carlos; Rivera, William; Card, Alexander

    2016-10-01

    We are investigating the potential impact of additive manufacturing (3D printing) on the cost and complexity of plasma diagnostics. We present a survey of the current state-of-the-art in additive manufacture of metals, as well as the design of diagnostic components that have been optimized for and take advantage of these processes. Included among these is a set of retarding field analyzer probe heads that have been printed in tungsten with internal heat sinks and cooling channels. Finite element analysis of these probe heads shows the potential for a 750K reduction in peak temperature, allowing the probe to take data twice as often without melting. Results of the evaluation of these probe heads for mechanical strength and outgassing, as well as their use on Alcator C-Mod will be presented. Supported by DOE SBIR Grant DE-SC0011858.

  8. Numerical study of the Transverse Diffusion coefficient for a one component model of a plasma

    CERN Document Server

    Valvo, Lorenzo

    2016-01-01

    We report the results of MD numerical simulations for a one component model of a plasma in the weakly coupled regime, at different values of temperature $T$ and applied magnetic field $\\vec B$, in which the diffusion coefficient $D_{\\perp}$ transverse to the field is estimated. We find that there exists a threshold in temperature, at which an inversion occurs, namely, for $T$ above the threshold the diffusion coefficient $D_{\\perp}$ starts decreasing as $T$ increases. This is at variance with the behavior predicted by the Bohm law $D_{\\perp}\\sim T/B$, which actually holds below the threshold. In addition we find that, for temperatures above such a threshold, another transition occurs, now with respect to the values of the magnetic field: for weak magnetic fields the diffusion coefficients scales as $1/B^2$, in agreement with the predictions of the standard kinetics theory, while it apparently saturates when the field strength is sufficiently increased.

  9. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  10. Fabrication and electrochemical performance of solid oxide fuel cell components by atmospheric and suspension plasma spray

    Institute of Scientific and Technical Information of China (English)

    XIA Wei-sheng; YANG Yun-zhen; ZHANG Hai-ou; WANG Gui-lan

    2009-01-01

    The theory of functionally graded material (FGM) was applied in the fabrication process of PEN (Positive- Electrolyte-Negative),the core component of solid oxide fuel cell (SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray (APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process,suspension plasma spray (SPS) was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.

  11. Pulsed Plasma Thruster (PPT) Technology: Earth Observing-1 PPT Operational and Advanced Components Being Developed

    Science.gov (United States)

    Pencil, Eric J.; Benson, Scott W.; Arrington, Lynn A.; Frus, John; Hoskins, W. Andrew; Burton, Rodney

    2003-01-01

    In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.

  12. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  13. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  14. FACE RECOGNITION FROM FRONT-VIEW FACE

    Institute of Scientific and Technical Information of China (English)

    WuLifang; ShenLansun

    2003-01-01

    This letter presents a face normalization algorithm based on 2-D face model to rec-ognize faces with variant postures from front-view face.A 2-D face mesh model can be extracted from faces with rotation to left or right and the corresponding front-view mesh model can be estimated according to facial symmetry.Then based on the relationship between the two mesh models,the nrmalized front-view face is formed by gray level mapping.Finally,the face recognition will be finished based on Principal Component Analysis(PCA).Experiments show that better face recognition performance is achieved in this way.

  15. FACE RECOGNITION FROM FRONT-VIEW FACE

    Institute of Scientific and Technical Information of China (English)

    Wu Lifang; Shen Lansun

    2003-01-01

    This letter presents a face normalization algorithm based on 2-D face model to recognize faces with variant postures from front-view face. A 2-D face mesh model can be extracted from faces with rotation to left or right and the corresponding front-view mesh model can be estimated according to the facial symmetry. Then based on the inner relationship between the two mesh models, the normalized front-view face is formed by gray level mapping. Finally, the face recognition will be finished based on Principal Component Analysis (PCA). Experiments show that better face recognition performance is achieved in this way.

  16. Component

    Directory of Open Access Journals (Sweden)

    Tibor Tot

    2011-01-01

    Full Text Available A unique case of metaplastic breast carcinoma with an epithelial component showing tumoral necrosis and neuroectodermal stromal component is described. The tumor grew rapidly and measured 9 cm at the time of diagnosis. No lymph node metastases were present. The disease progressed rapidly and the patient died two years after the diagnosis from a hemorrhage caused by brain metastases. The morphology and phenotype of the tumor are described in detail and the differential diagnostic options are discussed.

  17. Effect of surface segregation and mobility on erosion of plasma-facing materials in magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2015-03-15

    Highlights: • We integrated collisional and thermal processes to study tungsten erosion by carbon ions. • We analyzed effects of radiation enhanced diffusion and surface segregation. • Self-consistent simulations allowed explaining experimental results. • Difference in tungsten erosion at various temperatures was explained. - Abstract: The present work studies the combined effects of collisional sputtering and mixing processes of carbon impurities in tungsten plasma-facing material integrated with thermal processes including surface segregation and diffusion. We used our ITMC-DYN package, which includes description of all collisional and thermal processes, for the analysis of recent experimental results of tungsten erosion and carbon implantation at various target temperatures. Self-consistent integrated modeling predicted thermal processes effects on erosion/deposition dynamics and defined decisive parameters range and their importance. Critical parameters were estimated based on available experimental data. The integrated simulation reproduced the experimental results and predicted the transition from enhanced tungsten erosion to significant carbon coverage on the tungsten surface. These effects for wider range of system conditions with C/H ions irradiation and for reactor conditions can be predicted by including detailed modeling of chemical erosion processes in a self-consistent manner.

  18. A cultural setting where the other-race effect on face recognition has no social-motivational component and derives entirely from lifetime perceptual experience.

    Science.gov (United States)

    Wan, Lulu; Crookes, Kate; Reynolds, Katherine J; Irons, Jessica L; McKone, Elinor

    2015-11-01

    Competing approaches to the other-race effect (ORE) see its primary cause as either a lack of motivation to individuate social outgroup members, or a lack of perceptual experience with other-race faces. Here, we argue that the evidence supporting the social-motivational approach derives from a particular cultural setting: a high socio-economic status group (typically US Whites) looking at the faces of a lower status group (US Blacks) with whom observers typically have at least moderate perceptual experience. In contrast, we test motivation-to-individuate instructions across five studies covering an extremely wide range of perceptual experience, in a cultural setting of more equal socio-economic status, namely Asian and Caucasian participants (N = 480) tested on Asian and Caucasian faces. We find no social-motivational component at all to the ORE, specifically: no reduction in the ORE with motivation instructions, including for novel images of the faces, and at all experience levels; no increase in correlation between own- and other-race face recognition, implying no increase in shared processes; and greater (not the predicted less) effort applied to distinguishing other-race faces than own-race faces under normal ("no instructions") conditions. Instead, the ORE was predicted by level of contact with the other-race. Our results reject both pure social-motivational theories and also the recent Categorization-Individuation model of Hugenberg, Young, Bernstein, and Sacco (2010). We propose a new dual-route approach to the ORE, in which there are two causes of the ORE-lack of motivation, and lack of experience--that contribute differently across varying world locations and cultural settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Science.gov (United States)

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  20. Numerical solution of the quantum Lenard-Balescu equation for a one-component plasma

    CERN Document Server

    Scullard, Christian R; Fennell, Susan C; Janković, Marija R; Ng, Nathan; Serna, Susana; Graziani, Frank R

    2016-01-01

    We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation and a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomo...

  1. Nonlinear propagation of positron-acoustic waves in a four component space plasma

    Science.gov (United States)

    Shah, M. G.; Hossen, M. R.; Mamun, A. A.

    2015-10-01

    > The nonlinear propagation of positron-acoustic waves (PAWs) in an unmagnetized, collisionless, four component, dense plasma system (containing non-relativistic inertial cold positrons, relativistic degenerate electron and hot positron fluids as well as positively charged immobile ions) has been investigated theoretically. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV) and further mK-dV (fmK-dV) equations have been derived by using reductive perturbation technique. Their solitary wave solutions have been numerically analysed in order to understand the localized electrostatic disturbances. It is observed that the relativistic effect plays a pivotal role on the propagation of positron-acoustic solitary waves (PASW). It is also observed that the effects of degenerate pressure and the number density of inertial cold positrons, hot positrons, electrons and positively charged static ions significantly modify the fundamental features of PASW. The basic features and the underlying physics of PASW, which are relevant to some astrophysical compact objects (such as white dwarfs, neutron stars etc.), are concisely discussed.

  2. Damages of Biological Components in Bacteria and Bacteriophages Exposed to Atmospheric Non-thermal Plasma

    Science.gov (United States)

    Mizuno, Akira; Yasuda, Hachiro

    Mechanism of inactivation of bio-particles exposed to dielectric barrier discharge, DBD, has been studied using E. coli and bacteriophages. States of different biological components were monitored during the course of inactivation. Analysis of green fluorescent protein, GFP, introduced into E.coli cells proved that Non-thermal Plasma, NTP causes a prominent protein damages without cutting peptide bonds. We have developed a biological assay which evaluates in vitro DNA damage of the bacteriophages. Bacteriophage λ having double stranded DNA was exposed to DBD, then DNA was purified and subjected to in vitro DNA packaging reactions. The re-packaged phages consist of the DNA from discharged phages and brand-new coat proteins. Survival curves of the re-packaged phages showed extremely large D value (D = 25 s) compared to the previous D value (D = 3 s) from the discharged phages. The results indicate that DNA damage hardly contributed to the inactivation, and the damage in coat proteins is responsible for inactivation of the phages. M13 phages having single stranded DNA were also examined with the same manner. In this case, damage to DNA was as severe as that of the coat proteins.

  3. Kinetic theory of time correlation functions for a dense one-component plasma in a magnetic field

    NARCIS (Netherlands)

    Schoolderman, A.J.; Suttorp, L.G.

    1988-01-01

    The time-dependent correlations of a one-component plasma in a uniform magnetic field are studied with the help of kinetic theory. The time correlation functions of the particle density, the momentum density, and the kinetic energy density are evaluated for large time intervals. In the collision-dom

  4. Asymptotic behavior of correlation functions for electric potential and field fluctuations in a classical one-component plasma

    NARCIS (Netherlands)

    Suttorp, L.G.

    1992-01-01

    The correlations of the electric potential fluctuations in a classical one-component plasma are studied for large distances between the observation points. The two-point correlation function for these fluctuations is known to decay slowly for large distances, even if exponential clustering holds for

  5. Hemolytic plate assay for quantification of active human complement component C3 using methylamine-treated plasma as complement source

    DEFF Research Database (Denmark)

    Ploug, M; Jessen, T E; Welinder, K. G.

    1985-01-01

    A hemolytic plate assay specific for active human complement component C3 is described. The method is well suited for tracing active C3 during preparative purification or for screening of plasma samples. The assay is based on activation of the alternative pathway of complement by unmodified rabbi...

  6. 10 CFR Appendix G to Part 110 - Illustrative List of Plasma Separation Enrichment Plant Equipment and Components Under NRC Export...

    Science.gov (United States)

    2010-01-01

    ... Equipment and Components Under NRC Export Licensing Authority G Appendix G to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. G Appendix G to Part 110—Illustrative List of Plasma Separation Enrichment Plant Equipment and...

  7. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.; Torrisi, G.; Neri, L.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Maimone, F.; Maeder, J.; Tinschert, K.; Spaedtke, K. P.; Rossbach, J.; Lang, R. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Romano, F. P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Musumarra, A.; Altana, C.; Caliri, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, – Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  8. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  9. Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns

    KAUST Repository

    Li, Huibin

    2014-06-01

    In the theory of differential geometry, surface normal, as a first order surface differential quantity, determines the orientation of a surface at each point and contains informative local surface shape information. To fully exploit this kind of information for 3D face recognition (FR), this paper proposes a novel highly discriminative facial shape descriptor, namely multi-scale and multi-component local normal patterns (MSMC-LNP). Given a normalized facial range image, three components of normal vectors are first estimated, leading to three normal component images. Then, each normal component image is encoded locally to local normal patterns (LNP) on different scales. To utilize spatial information of facial shape, each normal component image is divided into several patches, and their LNP histograms are computed and concatenated according to the facial configuration. Finally, each original facial surface is represented by a set of LNP histograms including both global and local cues. Moreover, to make the proposed solution robust to the variations of facial expressions, we propose to learn the weight of each local patch on a given encoding scale and normal component image. Based on the learned weights and the weighted LNP histograms, we formulate a weighted sparse representation-based classifier (W-SRC). In contrast to the overwhelming majority of 3D FR approaches which were only benchmarked on the FRGC v2.0 database, we carried out extensive experiments on the FRGC v2.0, Bosphorus, BU-3DFE and 3D-TEC databases, thus including 3D face data captured in different scenarios through various sensors and depicting in particular different challenges with respect to facial expressions. The experimental results show that the proposed approach consistently achieves competitive rank-one recognition rates on these databases despite their heterogeneous nature, and thereby demonstrates its effectiveness and its generalizability. © 2014 Elsevier B.V.

  10. Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

    2009-08-01

    The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

  11. Robust Principal Component Analysis for Face Subspace Recovery%基于鲁棒主成分分析的人脸子空间重构方法

    Institute of Scientific and Technical Information of China (English)

    江明阳; 封举富

    2012-01-01

    Subspace method is one of the classical methods in face recognition, which assumes that face images lie in a low-rank subspace. However, due to illumination variation, shadows, occlusion, specularities and corruption, real face images seldom reveal such low-rank structure. We propose a face subspace recovery method based on the Robust Principal Component Analysis. The face image matrix is modeled as the sum of a low-rank matrix and a deviation matrix, in which the low-rank matrix reveals the ideal subspace structure and the deviation matrix accounts for the illumination variation, shadows, occlusion, specularities and corruption. By using the robust principal component analysis, the low-rank matrix and deviation matrix can be recovered efficiently. The experimental results show that this method is efficient in recovering the low-rank face subspaces.%子空间方法是人脸识别中的经典方法,其基本假设是人脸图像处于高维图像空间的低维子空间中.但是,由于光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的影响,使得子空间假设难以满足.为此,提出一种基于鲁棒主成分分析的人脸子空间重构方法.该方法将人脸图像数据矩阵表示为满足子空间假设的低秩矩阵和表征光照变化、阴影、遮挡、局部镜面反射、图像噪声等因素的误差矩阵之和,利用鲁棒主成分分析法求解低秩矩阵和误差矩阵.实验结果表明,文中方法能够有效地重构人脸图像的低维子空间.

  12. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field

    Energy Technology Data Exchange (ETDEWEB)

    Hong Qin and Ronald C. Davidson

    2011-07-19

    In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio- frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.

  13. Comparative merits of the memory function and dynamic local field correction of the classical one-component plasma

    CERN Document Server

    Mithen, James P; Gregori, G

    2011-01-01

    The complementarity of the liquid and plasma descriptions of the classical one-component plasma (OCP) is explored by studying wavevector and frequency dependent dynamical quantities: the dynamical structure factor (DSF), and the dynamic local field correction (LFC). Accurate Molecular Dynamics (MD) simulations are used to validate/test models of the DSF and LFC. Our simulations, which span the entire fluid regime ($\\Gamma = 0.1 - 175$), show that the DSF is very well represented by a simple and well known memory function model of generalized hydrodynamics. On the other hand, the LFC, which we have computed using MD for the first time, is not well described by existing models.

  14. [Deep frozen fresh plasma in blood component therapy: preparation--quality control--indications].

    Science.gov (United States)

    Koerner, K; Stampe, D; Kubanek, B

    1981-10-01

    Fresh frozen plasma is prepared within 6 hrs after collection in a double bag system. A second centrifugation at 4600 x g is necessary to obtain a platelet poor plasma. A special bag freezing system fitted to a conventional cryostat and cooled with ethanol to -50 degrees C was developed to reach the required cooling rate. It is possible to freeze 25 plasma bags simultaneously within 30 min in this new apparatus. Fresh frozen plasma prepared in this manner contains all coagulation factors and inhibitors with almost normal activities. Freezing at -40 degrees C in the air, prolonged storage of the starting material, or insufficient cooling of the frozen product deteriorate its quality. The influence of these variables with the discussed in detail. Indications of fresh frozen plasma, especially for dilution- and posttraumatic consumption coagulopathy as well as liver disease, are presented.

  15. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    C.N. Taylor; J. P. Allain; P. S. Krstic; J. Dadras; C. H. Skinner; K. E. Luitjohan

    2013-11-01

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to approximately 16% and then bombarded with deuterium. XPS showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  16. Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer's mice.

    Science.gov (United States)

    Cao, Chuanhai; Wang, Li; Lin, Xiaoyang; Mamcarz, Malgorzata; Zhang, Chi; Bai, Ge; Nong, Jasson; Sussman, Sam; Arendash, Gary

    2011-01-01

    Retrospective and prospective epidemiologic studies suggest that enhanced coffee/caffeine intake during aging reduces risk of Alzheimer's disease (AD). Underscoring this premise, our studies in AD transgenic mice show that long-term caffeine administration protects against cognitive impairment and reduces brain amyloid-β levels/deposition through suppression of both β- and γ-secretase. Because coffee contains many constituents in addition to caffeine that may provide cognitive benefits against AD, we examined effects of caffeinated and decaffeinated coffee on plasma cytokines, comparing their effects to caffeine alone. In both AβPPsw+PS1 transgenic mice and non-transgenic littermates, acute i.p. treatment with caffeinated coffee greatly and specifically increased plasma levels of granulocyte-colony stimulating factor (GCSF), IL-10, and IL-6. Neither caffeine solution alone (which provided high plasma caffeine levels) or decaffeinated coffee provided this effect, indicating that caffeine synergized with some as yet unidentified component of coffee to selectively elevate these three plasma cytokines. The increase in GCSF is particularly important because long-term treatment with coffee (but not decaffeinated coffee) enhanced working memory in a fashion that was associated only with increased plasma GCSF levels among all cytokines. Since we have previously reported that long-term GCSF treatment enhances cognitive performance in AD mice through three possible mechanisms (e.g., recruitment of microglia from bone marrow, synaptogenesis, and neurogenesis), the same mechanisms could be complimentary to caffeine's established ability to suppress Aβ production. We conclude that coffee may be the best source of caffeine to protect against AD because of a component in coffee that synergizes with caffeine to enhance plasma GCSF levels, resulting in multiple therapeutic actions against AD.

  17. Dynamic analysis of 10 components of the Chinese herbal compound Wuzhuyu-tang absorbed into rat plasma

    Institute of Scientific and Technical Information of China (English)

    Muxin Gong; Yaxun Wang; Jian Sun; Qiwei Zhang; Zhimin Wang

    2011-01-01

    To clarify the active components of Wuzhuyu-tang, this study analyzed dynamic changes of 10 ingredients of Wuzhuyu-tang in plasma using combination high performance liquid chromatography-mass spectrometry after oral administration in rats. The results showed that seven ingredients were detected in portal vein plasma after oral administration of 16.3 or 8.15 g/kg equivalent of raw material of Wuzhuyu-tang extract. The absorption rate of limonin, evodiamine, gingerol (6-Gi), and ginsenoside-Rg1 was greater than that of isorhamnetin-3-O-β-D-glucosyl (6″→1″′)-α-L-rhamnoside, ginsenoside-Rb1 (Rb1), and ginsenoside-Re (Re). The time most elements were absorbed into the blood was 30 to 60 minutes after administration. Re, 6-Gi and Rb1 were metabolized faster. The results suggest that the seven ingredients described above are the active components for treating migraines.

  18. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    Science.gov (United States)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  19. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    Science.gov (United States)

    Soloshenko, I. A.; Tsiolko, V. V.; Pogulay, S. S.; Terent'yeva, A. G.; Bazhenov, V. Yu; Shchedrin, A. I.; Ryabtsev, A. V.; Kuzmichev, A. I.

    2007-02-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O3, HNO3, HNO2, N2 O5 and NO3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm-3. It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O3, HNO3, HNO2, N2O5 and NO3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values.

  20. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  1. Trifolium pallidum and Trifolium scabrum extracts in the protection of human plasma components.

    Science.gov (United States)

    Kolodziejczyk-Czepas, Joanna; Olas, Beata; Malinowska, Joanna; Wachowicz, Barbara; Moniuszko-Szajwaj, Barbara; Kowalska, Iwona; Oleszek, Wieslaw; Stochmal, Anna

    2013-02-01

    Clovers (genus: Trifolium) have been used in traditional medicine by many cultures, but the biological activity of the most of these plants still remains unknown. The aim of our in vitro study was to assess the antioxidative action of phenolic extracts from aerial parts of Trifolium scabrum and Trifolium pallidum in human blood plasma, exposed to oxidative stress. In the present study we also demonstrate, for the first time the effects of the tested extracts on coagulative properties and fibrinolytic activity of blood plasma. The protective properties of the examined extracts (0.5-50 μg/ml) against peroxynitrite-induced oxidative stress were estimated by the measurements of 3-nitrotyrosine, thiol groups and the thiobarbituric acid-reactive substances levels. The extracts considerably prevented the oxidative and nitrative damage to plasma proteins. Even the lowest doses of the Trifolium extracts (0.5 μg/ml) were able to markedly reduce 3-nitrotyrosine formation (by about 50%) and to increase the level of -SH groups (by about 30%), in comparison to the plasma exposed to ONOO(-) in the absence of the extracts. The protective action of all the used concentrations of the Trifolium extracts in the prevention of lipid peroxidation was also found. The tested extracts influenced neither the coagulative properties nor fibrinolytic activity of plasma. Moreover, the extracts were able to significantly reduce the inhibitory effect of ONOO(-) on fibrinolytic activity of plasma (assessed with the use of a chromogenic substrate for plasmin).

  2. Ovulation-inducing factor: a protein component of llama seminal plasma

    Directory of Open Access Journals (Sweden)

    Huanca Wilfredo

    2010-05-01

    Full Text Available Abstract Background Previously, we documented the presence of ovulation-inducing factor (OIF in the seminal plasma of llamas and alpacas. The purpose of the study was to define the biochemical characteristics of the molecule(s in seminal plasma responsible for inducing ovulation. Methods In Experiment 1, llama seminal plasma was centrifuged using filtration devices with nominal molecular mass cut-offs of 30, 10 and 5 kDa. Female llamas (n = 9 per group were treated i.m. with whole seminal plasma (positive control, phosphate-buffered saline (negative control, or the fraction of seminal plasma equal or higher than 30 kDa, 10 to 30 kDa, 5 to 10 kDa, or Results In Experiment 1, all llamas in the equal or higher than 30 kDa and positive control groups ovulated (9/9 in each, but none ovulated in the other groups (P Conclusions We conclude that ovulation-inducing factor (OIF in llama seminal plasma is a protein molecule that is resistant to heat and enzymatic digestion with proteinase K, and has a molecular mass of approximately equal or higher than 30 kDa.

  3. Determination of components of the plasma proteolytic enzyme systems gives information of prognostic value in patients with multiple trauma.

    Science.gov (United States)

    Aasen, A O; Kierulf, P; Vaage, J; Godal, H C; Aune, S

    1983-01-01

    Components of the plasma proteolytic enzyme systems were studied in 15 multiple trauma patients. There were 9 survivors and 6 fatal cases. All fatal cases had sepsis and/or post traumatic adult respiratory distress syndrome. Within the first day after trauma significantly reduced values were found for plasma prekallikrein (PKK), Hageman factor (HF) and Antithrombin III (AT III). In the survivors these parameters were normalized within the first five days after the injury. In the fatal cases, however, the same parameters remained reduced or declined during the observation period. The fatal cases also revealed a high frequency of positive ethanol gelation tests (EGT), elevated serum fibrin - fibrinogen degradation products (FDP) values and persisting low platelet counts. Analyses of plasma samples from both survivors and fatal cases, fractions by Sephadex G-150 gel filtration, demonstrated alpha 2-macroglobulin - plasma kallikrein complexes. These findings demonstrate activation of the kallikrein-kinin system as a part of pathological plasma proteolysis in multiple trauma patients. Persistent reductions of PKK, HF and AT III combined with positive EGT, elevated FDP values and reduced platelet counts indicate a poor prognosis.

  4. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study.

    Science.gov (United States)

    Edengeiser, Eugen; Lackmann, Jan-Wilm; Bründermann, Erik; Schneider, Simon; Benedikt, Jan; Bandow, Julia E; Havenith, Martina

    2015-11-01

    Cold atmospheric-pressure plasmas have become of increasing importance in sterilization processes especially with the growing prevalence of multi-resistant bacteria. Albeit the potential for technological application is obvious, much less is known about the molecular mechanisms underlying bacterial inactivation. X-jet technology separates plasma-generated reactive particles and photons, thus allowing the investigation of their individual and joint effects on DNA. Raman spectroscopy shows that particles and photons cause different modifications in DNA single and double strands. The treatment with the combination of particles and photons does not only result in cumulative, but in synergistic effects. Profilometry confirms that etching is a minor contributor to the observed DNA damage in vitro. Schematics of DNA oligomer treatment with cold atmospheric-pressure plasma.

  5. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  6. Unraveling the interactions between cold atmospheric plasma and skin-components with vibrational microspectroscopy.

    Science.gov (United States)

    Kartaschew, Konstantin; Mischo, Meike; Baldus, Sabrina; Bründermann, Erik; Awakowicz, Peter; Havenith, Martina

    2015-01-01

    Using infrared and Raman microspectroscopy, the authors examined the interaction of cold atmospheric plasma with the skin's built-in protective cushion, the outermost skin layer stratum corneum. Following a spectroscopic analysis, the authors could identify four prominent chemical alterations caused by plasma treatment: (1) oxidation of disulfide bonds in keratin leading to a generation of cysteic acid; (2) formation of organic nitrates as well as (3) of new carbonyl groups like ketones, aldehydes and acids; and (4) reduction of double bonds in the lipid matter lanolin, which resembles human sebum. The authors suggest that these generated acidic and NO-containing functional groups are the source of an antibacterial and regenerative environment at the treatment location of the stratum corneum. Based upon the author's results, the authors propose a mechanistic view of how cold atmospheric plasmas could modulate the skin chemistry to produce positive long-term effects on wound healing: briefly, cold atmospheric plasmas have the potential to transform the skin itself into a therapeutic resource.

  7. Independent components analysis coupled with 3D-front-face fluorescence spectroscopy to study the interaction between plastic food packaging and olive oil.

    Science.gov (United States)

    Kassouf, Amine; El Rakwe, Maria; Chebib, Hanna; Ducruet, Violette; Rutledge, Douglas N; Maalouly, Jacqueline

    2014-08-11

    Olive oil is one of the most valued sources of fats in the Mediterranean diet. Its storage was generally done using glass or metallic packaging materials. Nowadays, plastic packaging has gained worldwide spread for the storage of olive oil. However, plastics are not inert and interaction phenomena may occur between packaging materials and olive oil. In this study, extra virgin olive oil samples were submitted to accelerated interaction conditions, in contact with polypropylene (PP) and polylactide (PLA) plastic packaging materials. 3D-front-face fluorescence spectroscopy, being a simple, fast and non destructive analytical technique, was used to study this interaction. Independent components analysis (ICA) was used to analyze raw 3D-front-face fluorescence spectra of olive oil. ICA was able to highlight a probable effect of a migration of substances with antioxidant activity. The signals extracted by ICA corresponded to natural olive oil fluorophores (tocopherols and polyphenols) as well as newly formed ones which were tentatively identified as fluorescent oxidation products. Based on the extracted fluorescent signals, olive oil in contact with plastics had slower aging rates in comparison with reference oils. Peroxide and free acidity values validated the results obtained by ICA, related to olive oil oxidation rates. Sorbed olive oil in plastic was also quantified given that this sorption could induce a swelling of the polymer thus promoting migration.

  8. Protective action of proanthocyanidin fraction from Medemia argun nuts against oxidative/nitrative damages of blood platelet and plasma components.

    Science.gov (United States)

    Morel, Agnieszka; Hamed, Arafa I; Oleszek, Wieslaw; Stochmal, Anna; Głowacki, Rafał; Olas, Beata

    2014-01-01

    The oxidative/nitrative stress induced by different factors plays an important role in the pathogenesis of various disorders, including cardiovascular diseases and cancer. Proanthocyanidins have antioxidative properties and may protect biomolecules (lipids, DNA, and proteins) exposed to reactive oxygen and nitrogen species, including peroxynitrite (ONOO(-)). The effects of proanthocyanidin fraction from Medemia argun nuts on oxidative/nitrative protein damages (determined by such parameters as level of thiol groups, carbonyl groups, and nitrotyrosine residues) and on the amount of glutathione (as an important component of redox status; using HPLC) in human blood platelets and plasma after treatment with peroxynitrite were studied in vitro. The preincubation of blood platelets and plasma with proanthocyanidin fraction from M. argun nuts (0.5-50 µg/ml) reduced the formation of 3-nitrotyrosine, diminished oxidation of thiol groups, and decreased the level of carbonyl groups in proteins caused by 100 µM peroxynitrite. An action of tested plant fraction and ONOO(-) evoked a significant increase of GSH in platelets and plasma in comparison with platelets and plasma treated with ONOO(-) only. The proanthocyanidin fraction from M. argun nuts can be useful as a protecting factor against oxidative/nitrative stress associated with different diseases (cancer, cardiovascular, and neurodegenerative diseases) and proanthocyanidins of M. argun nuts may be promising antioxidants.

  9. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

    Science.gov (United States)

    Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.

    2014-09-01

    The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH4OH treatment and an in-situ elevated temperature NH3 plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ˜1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO2, Al2O3, and SiO2) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N2 ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO2, Al2O3, and SiO2 with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.

  10. Parametrization of pair correlation function and static structure factor of the one component plasma across coupling regimes

    CERN Document Server

    Desbiens, Nicolas; Clérouin, Jean

    2016-01-01

    We present a parametrization of the pair correlation function and the static structure factor of the Coulomb one component plasma (OCP) from the weakly coupled regime to the strongly coupled regime. Recent experiments strongly suggest that the OCP model can play the role of a reference system for warm dense matter. It can provide the ionic static structure factor that is necessary to interpret the x-ray Thomson scattering measurements, for instance. We illustrate this with the interpretation of a x-ray diffraction spectrum recently measured, using a Bayesian method that requires many evaluations of the static structure factor to automatically calibrate the parameters. For strongly coupled dusty plasmas, the proposed parametrization of the Coulomb OCP pair correlation function can be related to the Yukawa one, including screening. Further prospects to parametrize the static structure of Yukawa systems are also discussed.

  11. Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids

    Science.gov (United States)

    Melenevskaya, E. Yu.; Mokeev, M. V.; Nasonova, K. V.; Podosenova, N. G.; Sharonova, L. V.; Gribanov, A. V.

    2012-10-01

    The results from studying the adsorption of blood plasma components (e.g., protein, triglycerides, cholesterol, and lipoproteins of low and high density) using silica gels modified with fullerene molecules (in the form of C60 or the hydroxylated form of C60(OH) x ) and subjected to hydration (or, alternatively, dehydration) are presented. The conditions for preparing adsorbents that allow us to control the adsorption capacity of silica gel and the selectivity of adsorption toward the components of blood plasma, are revealed. The nature and strength of the interactions of the introduced components (fullerene molecules and water) with functional groups on the silica surface are studied by means of solid state NMR spectroscopy (NMR-SS). Conclusions regarding the nature of the centers that control adsorption are drawn on the basis of NMR-SS spectra in combination with direct measurements of adsorption. The interaction of the oxygen of the hydroxyl group of silica gel with fullerene, leading to the formation of electron-donor complexes of C60-H, C60-OH, or C60-OSi type, is demonstrated by the observed changes in the NMR-SS spectra of silica gels in the presence of fullerene.

  12. Determination of electron temperature temporal evolution in laser-induced plasmas through Independent Component Analysis and 3D Boltzmann plot

    Science.gov (United States)

    Bredice, F.; Pacheco Martinez, P.; Sarmiento Mercado, R.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Sirven, J. B.; El Rakwe, M.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.

    2017-09-01

    In this paper we present the application of Independent Component Analysis to a set of time-resolved LIBS spectra, acquired on a brass sample at different delay times. The decomposition of the LIBS spectra in few Independent Components with a given temporal evolution is then exploited for obtaining the temporal evolution of the plasma electron temperature, through the application of the three-dimensional Boltzmann plot method recently proposed by the authors. This method allows the determination of the electron temperature temporal evolution without any knowledge of the spectral parameters (transition probability, degeneracy of the levels, etc.…) of the emitting lines. Only the knowledge of the energy of the upper level of the transition is required. The reduction of the LIBS spectral dataset to few Independent Components and associated proportions, further simplifies the determination of the plasma electron temperature temporal evolution, since the intensity of the emission lines does not need to be calculated. The results obtained are compared with the ones obtained using classical two-dimensional Boltzmann plot approach.

  13. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    Science.gov (United States)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  14. Slowly moving test charge in two-electron component non-Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. [National Centre for Physics (NCP), Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Eliasson, B. [SUPA, Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)

    2015-08-15

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  15. Slowly moving test charge in two-electron component non-Maxwellian plasma

    Science.gov (United States)

    Ali, S.; Eliasson, B.

    2015-08-01

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed.

  16. Revisions to labeling requirements for blood and blood components, including source plasma. Final rule.

    Science.gov (United States)

    2012-01-03

    The Food and Drug Administration (FDA) is revising the labeling requirements for blood and blood components intended for use in transfusion or for further manufacture by combining, simplifying, and updating specific regulations applicable to labeling and circulars of information. These requirements will facilitate the use of a labeling system using machine-readable information that would be acceptable as a replacement for the ``ABC Codabar'' system for the labeling of blood and blood components. FDA is taking this action as a part of its efforts to comprehensively review and, as necessary, revise its regulations, policies, guidances, and procedures related to the regulation of blood and blood components. This final rule is intended to help ensure the continued safety of the blood supply and facilitate consistency in labeling.

  17. Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma

    CERN Document Server

    Malama, Y G; Chalov, S V; Malama, Yury G.; Izmodenov, Vlad V.; Chalov, Sergey V.

    2005-01-01

    We present a new model of the heliospheric interface - the region of the solar wind interaction with the local interstellar medium. This new model performs a multi-component treatment of charged particles in the heliosphere. All charged particles are divided into several co-moving types. The coldest type, with parameters typical of original solar wind protons, is considered in the framework of fluid approximation. The hot pickup proton components created from interstellar H atoms and heliospheric ENAs by charge exchange, electron impact ionization and photoionization are treated kinetically. The charged components are considered self-consistently with interstellar H atoms, which are described kinetically as well. To solve the kinetic equation for H atoms we use the Monte Carlo method with splitting of trajectories, which allows us 1) to reduce statistical uncertainties allowing correct interpretation of observational data, 2) to separate all H atoms in the heliosphere into several populations depending on the...

  18. The Serum Amyloid p Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels

    DEFF Research Database (Denmark)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria

    2017-01-01

    containing the physiological Ca2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins of which 24 were direct or indirect integration partners not previously reported. The SAP...... involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to binding to the generic structure of amyloid deposits and possibly to protect these against proteolysis. In this study, we have characterized the SAP interactome in human plasma...

  19. Increased plasma concentration of serum amyloid P component in centenarians with impaired cognitive performance

    DEFF Research Database (Denmark)

    Nybo, M; Olsen, H; Jeune, B;

    1998-01-01

    these to the cognitive performance evaluated by Mini Mental State Examination (MMSE). We observed a significantly (p ... higher SAP concentration (60.2 microg/ml), while the subgroup of cognitive intact centenarians (MMSE score >24) showed a normal SAP concentration (38.4+/-9.3 microg/ml). No dehydration or hepatic dysfunction was demonstrable in the centenarians. We conclude that the centenarians with impaired cognitive...... performance had significantly increased plasma concentrations of SAP, while the values for cognitive intact centenarians were within the normal range....

  20. Crystal orientation effects on implantation of low-energy hydrogen, helium and hydrogen/helium mixtures in plasma-facing tungsten surfaces

    Science.gov (United States)

    Linn, Brian C.

    The development of plasma-facing materials (PFM) is one of the major challenges in. realizing fusion reactors. Materials deployed in PFMs must be capable of withstanding the high-flux of low-energy hydrogen and helium ions omitted from the plasma. while not hindering the plasma. Tungsten is considered a promising candidate material due to desirable material properties including its high melting temperature, good thermal conductivity and relatively low physical and chemical sputtering yields. This thesis uses molecular dynamic simulations to investigate helium and hydrogen bombardment of tungsten and the underlying physical effects (e.g. sputtering, erosion, blistering). Non-cumulative and cumulative bombardment simulations of helium, hydrogen, and hydrogen/helium bombardment of tungsten were modeled using the molecular dynamics code LAMMPS. Two orientations of monocrystalline bcc tungsten surfaces were considered, (001) and (111). Simulations were performed for temperatures ranging from 600K up to 1500K and helium / hydrogen incident energies of 20eV to 100eV . The results of these simulations showed the effect of temperature and incident particle energy on retention rates and implantation/deposition profiles in tungsten.

  1. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components.

    Science.gov (United States)

    Nodzyński, Tomasz; Vanneste, Steffen; Zwiewka, Marta; Pernisová, Markéta; Hejátko, Jan; Friml, Jiří

    2016-11-07

    Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants.

  2. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    Science.gov (United States)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M.

    2017-03-01

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture.

  3. Direct MD simulation of liquid-solid phase equilibria for two-component plasmas

    CERN Document Server

    Schneider, A S; Horowitz, C J; Berry, D K

    2011-01-01

    We determine the liquid-solid phase diagram for carbon-oxygen plasma mixtures using two-phase MD simulations. We identified liquid, solid, and interface regions using a bond angle metric. To study finite size effects, we perform 55296 ion simulations and compare to earlier 27648 ion results. To help monitor non-equilibrium effects, we calculate diffusion constants $D_i$. We find that $D_O$ for oxygen ions in the solid is much smaller than $D_C$ for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite size and non-equilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known.

  4. Understanding narrow SOL power flux component in COMPASS limiter plasmas by use of Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Dejarnac, R., E-mail: dejarnac@ipp.cas.cz [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic); Stangeby, P.C. [University of Toronto, Institute for Aerospace Studies, 4925 Dufferin St., Toronto M3H 5T6 (Canada); Goldston, R.J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Gauthier, E. [CEA, IRFM, F-13108 St Paul-lez-Durance (France); Horacek, J.; Hron, M. [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic); Kocan, M. [ITER Organisation, Route de Vinon-sur-Verdon, CS 90 046, F-13067 St Paul-lez-Durance cedex (France); Komm, M.; Panek, R. [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic); Pitts, R.A. [ITER Organisation, Route de Vinon-sur-Verdon, CS 90 046, F-13067 St Paul-lez-Durance cedex (France); Vondracek, P. [Institute of Plasma Physics, ASCR, Za Slovankou 3, 182 00 Prague (Czech Republic)

    2015-08-15

    The narrow scrape-off layer power component observed in COMPASS inner wall limiter circular discharges by means of IR thermography is investigated by Langmuir probes embedded in the limiter. The power flux profiles are in good agreement with IR observations and can be described by a double-exponential decay with a short decay length (<5 mm) just outside the separatrix and a longer one (∼50 mm) for the rest of the profile in the main scrape-off layer. Non-ambipolar currents measured at the limiter apex play a relatively modest role in the formation of the narrow component. The fraction of the deposited power due to non-ambipolarity varies between 2% and 45%. On the other hand, the measured power widths are roughly consistent in magnitude with a model that takes into account drift effects, suggesting these effects may be dominant.

  5. Clinical implications of basic science discoveries: janus resurrected--two faces of B cell and plasma cell biology.

    Science.gov (United States)

    Woodle, E S; Rothstein, D M

    2015-01-01

    B cells play a complex role in the immune response. In addition to giving rise to plasma cells (PCs) and promoting T cell responses via antigen presentation, they perform immunoregulatory functions. This knowledge has created concerns regarding nonspecific B cell depletional therapy because of the potential to paradoxically augment immune responses. Recent studies now indicate that PCs have immune functions beyond immunoglobulin synthesis. Evidence for a new role for PCs as potent regulatory cells (via IL-10 and IL-35 production) is discussed including the implications for PC-targeted therapies currently being developed for clinical transplantation.

  6. Developing Structural, High-heat flux and Plasma Facing Materials for a near-term DEMO Fusion Power Plant: the EU Assessment

    CERN Document Server

    Stork, D; Boutard, J-L; Buckthorpe, D; Diegele, E; Dudarev, S L; English, C; Federici, G; Gilbert, M R; Gonzalez, S; Ibarra, A; Linsmeier, Ch; Puma, A Li; Marbach, G; Morris, P F; Packer, L W; Raj, B; Rieth, M; Tran, M Q; Ward, D J; Zinkle, S J

    2014-01-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials.

  7. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    Science.gov (United States)

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K

    2012-12-01

    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  8. Direct MD simulation of liquid-solid phase equilibria for three-component plasma

    CERN Document Server

    Hughto, J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K

    2012-01-01

    The neutron rich isotope 22Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of 22Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semi analytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two component carbon and oxygen systems. This suggests that small amounts of 22Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Gamma) in our MD simulations compared to the semi analytic ...

  9. Ion-acoustic double layers in a five component cometary plasma with kappa described electrons and ions

    Science.gov (United States)

    Michael, Manesh; Venugopal, C.; Sreekala, G.; Willington, Neethu Theresa; Sebastian, Sijo

    2016-07-01

    We investigate the propagation characteristics of Ion-acoustic solitons and double layers in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdV and modified KdV equations are derived for the system and its solution is plotted for different kappa values and negatively charged oxygen ion densities. It is found that the strength of double layer increases with increasing spectral indices. It, however, decreases with increasing negatively charged oxygen ion densities. The parameter for the transition from compressive to rarefactive soliton is also specified. The presence of negatively charged oxygen ions can significantly affect the nonlinearity coefficients (both quadratic and cubic) of a double layer.

  10. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics

    Science.gov (United States)

    Alves, D.; Coelho, R.; JET-EFDA Contributors

    2013-08-01

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  11. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that the quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.

  12. Enhancement of Gas Sensing Characteristics of Multiwalled Carbon Nanotubes by CF4 Plasma Treatment for SF6 Decomposition Component Detection

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2015-01-01

    Full Text Available H2S and SO2 are important gas components of decomposed SF6 of partial discharge generated by insulation defects in gas-insulated switchgear (GIS. Therefore, H2S and SO2 detection is important in the state evaluation and fault diagnosis of GIS. In this study, dielectric barrier discharge was used to generate CF4 plasma and modify multiwalled carbon nanotubes (MWNTs. The nanotubes were plasma-treated at optimum discharge conditions under different treatment times (0.5, 1, 2, 5, 8, 10, and 12 min. Pristine and treated MWNTs were used as gas sensors to detect H2S and SO2. The effects of treatment time on gas sensitivity were analyzed. Results showed that the sensitivity, response, and recovery time of modified MWNTs to H2S were improved, but the recovery time of SO2 was almost unchanged. At 10 min treatment time, the MWNTs showed good stability and reproducibility with better gas sensing properties compared with the other nanotubes.

  13. Assessment of W7-X plasma vessel pressurisation in case of LOCA taking into account in-vessel components

    Energy Technology Data Exchange (ETDEWEB)

    Urbonavičius, E., E-mail: Egidijus.Urbonavicius@lei.lt; Povilaitis, M., E-mail: Mantas.Povilaitis@lei.lt; Kontautas, A., E-mail: Aurimas.Kontautas@lei.lt

    2015-11-15

    Highlights: • Analysis of the vacuum vessel response to the LOCA in W7-X was performed using lumped-parameter codes COCOSYS and ASTEC. • Benchmarking of the results received with two codes provides more confidence in results and helps in identification of possible important differences in the modelling. • The performed analysis answered the questions set in the installed plasma vessel venting system during overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. • Differences in time until opening the burst disk observed in ASTEC and COCOSYS results are caused by differences in heat transfer modelling. - Abstract: This paper presents the analysis of W7-X vacuum vessel response taking into account in-vessel components. A detailed analysis of the vacuum vessel response to the loss of coolant accident was performed using lumped-parameter codes COCOSYS and ASTEC. The performed analysis showed that the installed plasma vessel venting system prevents overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. The performed analysis revealed differences in heat transfer modelling implemented in ASTEC and COCOSYS computer codes, which require further investigation to justify the correct approach for application to fusion facilities.

  14. Bayesian inference of x-ray diffraction spectra from warm dense matter with the one-component-plasma model

    Science.gov (United States)

    Clérouin, Jean; Desbiens, Nicolas; Dubois, Vincent; Arnault, Philippe

    2016-12-01

    We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015), 10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.

  15. Urethral glands of the male mouse contain secretory component and immunoglobulin A plasma cells and are targets of testosterone.

    Science.gov (United States)

    Parr, M B; Ren, H P; Russell, L D; Prins, G S; Parr, E L

    1992-12-01

    The occurrence and possible functions of mucosal immunity in the male urogenital tract have not been extensively investigated. In this study we used immunolabeling to localize secretory component (SC) and immunoglobulin (Ig) A in the urogenital tract of the male mouse. SC was located in the ventral prostate, while SC and IgA plasma cells were both detected in the urethral glands in the pelvic and bulbous portions of the urethra. SC and IgA were not observed elsewhere in the urogenital tract. We also examined the ventral prostate and urethral glands of sham-castrated, oil-treated castrated, and testosterone-treated castrated mice. There was a striking reduction in the size of the ventral prostate and urethral glands in oil-treated castrates compared to the other two groups, based on gross and histological morphology. Morphometric analysis showed that the cell and nuclear sizes of the urethral gland acinar cells were reduced after castration and restored to normal size by testosterone treatment. Androgen receptors (AR) were localized in the nuclei of urethral gland cells by immunocytochemistry using anti-AR antibodies. Labeling of SC and IgA plasma cells was similar in the urethral glands and ventral prostates of sham- and testosterone-treated castrates, but was reduced or absent at these sites in oil-treated castrates. These studies show that the ventral prostate and urethral glands may be sites for secretory immunity in the male murine urogenital tract, and that the urethral glands are targets for testosterone.

  16. Correlation between atherogenic index of plasma level and metabolism components in adult growth hormone deficiency patients

    Directory of Open Access Journals (Sweden)

    Jia-jia XIA

    2015-01-01

    Full Text Available Objective To investigate the correlation of atherogenic index of plasma (AIP levels with anthropometrics, glycolipid metabolism markers and high-sensitivity C-reactive protein (hs-CRP, interleukin-6 (IL-6 in adult growth hormone deficiency (AGHD patients. Methods Retrospective analysis were carried out in 40 AGHD patients (AGHD group, admitted to First Affiliated Hospital of Chongqing Medical University and 40 healthy adults from physical examination centre (control group during June 2009 to September 2012. The general anthropometries and blood biochemical indexes were collected and compared between two groups. AIP, homeostasis model assessment-insulin resistance (HOMA-IR, homeostasis model assessment β-cell function (HOMA-β, LDL-C/HDL-C, TC/HDL-C, and TG/LDL-C were calculated and compared between two groups. The correlation between AIP and these indexes was analyzed using Pearson correlation. Results Compared with control group, body mass index (BMI, waist circumference (WC, waist-hip ratio (WHR, fasting insulin (FINS, HOMA-β, HOMA-IR, total cholesterol (TC, triglyceride (TG, LDL-C/HDL-C, TC/HDL-C, hs-CPR, IL-6, AIP were significant higher, but HDL-C levels were lower in AGHD group (P0.05. There was a positive association between AIP and all the WC, WHR, FINS, HOMA-β, HOMA-IR, TC, LDL-C/HDL-C, TC/HDL-C, TG/LDL-C, hs-CRP and IL-6 (r=0.349, 0.314, 0.347, 0.335, 0.297, 0.256, 0.576, 0.749, 0.702, 0.477, 0.226, respectively, P<0.05. Multiple linear regression analysis revealed that hs-CRP and IL-6 were independent risk factors of AIP. Conclusion AIP is significantly higher in AGHD patients than healthy people, and it shows a strong correlation with many risk factors for cardiovascular diseases. DOI: 10.11855/j.issn.0577-7402.2014.12.10

  17. Experiments and Computational Theory for Electrical Breakdown in Critical Components: THz Imaging of Electronic Plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hjalmarson, Harold P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bigman, Verle Howard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Richard Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the development of ultra-short pulse laser (USPL) induced terahertz (THz) radiation to image electronic plasmas during electrical breakdown. The technique uses three pulses from two USPLs to (1) trigger the breakdown, (2) create a 2 picosecond (ps, 10 -12 s), THz pulse to illuminate the breakdown, and (3) record the THz image of the breakdown. During this three year internal research program, sub-picosecond jitter timing for the lasers, THz generation, high bandwidth (BW) diagnostics, and THz image acquisition was demonstrated. High intensity THz radiation was optically-induced in a pulse-charged gallium arsenide photoconductive switch. The radiation was collected, transported, concentrated, and co-propagated through an electro-optic crystal with an 800 nm USPL pulse whose polarization was rotated due to the spatially varying electric field of the THz image. The polarization modulated USPL pulse was then passed through a polarizer and the resulting spatially varying intensity was detected in a high resolution digital camera. Single shot images had a signal to noise of %7E3:1. Signal to noise was improved to %7E30:1 with several experimental techniques and by averaging the THz images from %7E4000 laser pulses internally and externally with the camera and the acquisition system (40 pulses per readout). THz shadows of metallic films and objects were also recorded with this system to demonstrate free-carrier absorption of the THz radiation and improve image contrast and resolution. These 2 ps THz pulses were created and resolved with 100 femtosecond (fs, 10 -15 s) long USPL pulses. Thus this technology has the capability to time-resolve extremely fast repetitive or single shot phenomena, such as those that occur during the initiation of electrical breakdown. The goal of imaging electrical breakdown was not reached during this three year project. However, plans to achieve this goal as part of a follow-on project are described in this document

  18. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  19. The increase in human plasma antioxidant capacity after acute coffee intake is not associated with endogenous non-enzymatic antioxidant components.

    Science.gov (United States)

    Moura-Nunes, Nathália; Perrone, Daniel; Farah, Adriana; Donangelo, Carmen M

    2009-01-01

    This study evaluated the association between the main plasma endogenous non-enzymatic antioxidant components and the increase in human antioxidant capacity (AC) after acute coffee intake. Ten adults were tested before and 90 min after consumption of coffee or water, in a crossover design, with a 7-day interval between tests. AC (FRAP and TRAP), ascorbic acid, α-tocopherol and γ-tocopherol, albumin, bilirubin and uric acid were analyzed in plasma/serum. After coffee consumption FRAP and TRAP increased 2.6% and 7.6% (P0.75; P coffee intake did not correlate with endogenous components, which remained unchanged. These results suggest that coffee components spare endogenous antioxidants or are themselves the main contributors to plasma AC increase after coffee intake.

  20. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions.

  1. Specific components of face perception in the human fusiform gyrus studied by tomographic estimates of magnetoencephalographic signals: a tool for the evaluation of non-verbal communication in psychosomatic paradigms.

    Science.gov (United States)

    Okazaki, Yuka; Ioannides, Andreas A

    2007-12-04

    The aim of this study was to determine the specific spatiotemporal activation patterns of face perception in the fusiform gyrus (FG). The FG is a key area in the specialized brain system that makes possible the recognition of face with ease and speed in our daily life. Characterization of FG response provides a quantitative method for evaluating the fundamental functions that contribute to non-verbal communication in various psychosomatic paradigms. The MEG signal was recorded during passive visual stimulus presentation with three stimulus types - Faces, Hands and Shoes. The stimuli were presented separately to the central and peripheral visual fields. We performed statistical parametric mapping (SPM) analysis of tomographic estimates of activity to compare activity between a pre- and post-stimulus period in the same object (baseline test), and activity between objects (active test). The time course of regional activation curves was analyzed for each stimulus condition. The SPM baseline test revealed a response to each stimulus type, which was very compact at the initial segment of main M(FG)170. For hands and shoes the area of significant change remains compact. For faces the area expanded widely within a few milliseconds and its boundaries engulfed the other object areas. The active test demonstrated that activity for faces was significantly larger than the activity for hands. The same face specific compact area as in the baseline test was identified, and then again expanded widely. For each stimulus type and presentation in each one of the visual fields locations, the analysis of the time course of FG activity identified three components in the FG: M(FG)100, M(FG)170, and M(FG)200 - all showed preference for faces. Early compact face-specific activity in the FG expands widely along the occipito-ventral brain within a few milliseconds. The significant difference between faces and the other object stimuli in M(FG)100 shows that processing of faces is already

  2. Specific components of face perception in the human fusiform gyrus studied by tomographic estimates of magnetoencephalographic signals: a tool for the evaluation of non-verbal communication in psychosomatic paradigms

    Directory of Open Access Journals (Sweden)

    Ioannides Andreas A

    2007-12-01

    Full Text Available Abstract Aims The aim of this study was to determine the specific spatiotemporal activation patterns of face perception in the fusiform gyrus (FG. The FG is a key area in the specialized brain system that makes possible the recognition of face with ease and speed in our daily life. Characterization of FG response provides a quantitative method for evaluating the fundamental functions that contribute to non-verbal communication in various psychosomatic paradigms. Methods The MEG signal was recorded during passive visual stimulus presentation with three stimulus types – Faces, Hands and Shoes. The stimuli were presented separately to the central and peripheral visual fields. We performed statistical parametric mapping (SPM analysis of tomographic estimates of activity to compare activity between a pre- and post-stimulus period in the same object (baseline test, and activity between objects (active test. The time course of regional activation curves was analyzed for each stimulus condition. Results The SPM baseline test revealed a response to each stimulus type, which was very compact at the initial segment of main MFG170. For hands and shoes the area of significant change remains compact. For faces the area expanded widely within a few milliseconds and its boundaries engulfed the other object areas. The active test demonstrated that activity for faces was significantly larger than the activity for hands. The same face specific compact area as in the baseline test was identified, and then again expanded widely. For each stimulus type and presentation in each one of the visual fields locations, the analysis of the time course of FG activity identified three components in the FG: MFG100, MFG170, and MFG200 – all showed preference for faces. Conclusion Early compact face-specific activity in the FG expands widely along the occipito-ventral brain within a few milliseconds. The significant difference between faces and the other object stimuli in MFG

  3. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Butlitsky, M. A.; Zelener, B. V. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Zelener, B. B. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Moscow Engineering Physics Institute, 115409, Russia, Moscow, Kashirskoe sh. 31 (Russian Federation)

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.

  4. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  5. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Science.gov (United States)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-05-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  6. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  7. Note on one-fluid modeling of low-frequency Alfvénic fluctuations in a solar wind plasma with multi-ion components

    Energy Technology Data Exchange (ETDEWEB)

    Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Umeda, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Suzuki, T. K. [Department of Physics, Nagoya University, Furo-cho, Nagoya, Aichi 464-8602 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan)

    2015-12-15

    A simple point of view that non-zero Alfvén ratio (residual energy) appears as a consequence of one-fluid modeling of uni-directional Alfvén waves in a solar wind plasma is presented. Since relative speeds among ions are incorporated into the one-fluid model as a pressure anisotropy, the Alfvén ratio can be finite due to the decrease in the phase velocity. It is shown that a proton beam component typically found in the solar wind plasma can contribute to generating non-zero Alfvén ratio observed in the solar wind plasma. Local equilibrium velocity distribution functions of each ion component are also discussed by using maximum entropy principle.

  8. Interference effects in the long-time tail of the velocity auto-correlation function for a dense one-component plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.; Schoolderman, A.J.

    1987-01-01

    The long-time behaviour of the velocity autocorrelation function that describes the motion of a tagged particle through a one-component plasma in a uniform magnetic field has been determined with the use of mode-coupling theory. The long-time tail depends on the orientation of the velocity with resp

  9. Effects of fresh frozen plasma, Ringer's acetate and albumin on plasma volume and on circulating glycocalyx components following haemorrhagic shock in rats

    DEFF Research Database (Denmark)

    Nelson, Axel; Statkevicius, Svajunas; Schött, Ulf;

    2016-01-01

    and syndecan-1. Hemodynamic effects of resuscitation were evaluated by measuring lactate and mean arterial pressure (MAP). RESULTS: Resuscitation with FFP or albumin resulted in plasma volume expansion equalling the blood loss (to 55 ± 5 ml/kg and 54 ± 4 ml/kg (mean ± S.D.), respectively), whereas plasma...

  10. Oracle ADF Faces cookbook

    CERN Document Server

    Gawish, Amr

    2014-01-01

    This is a cookbook that covers more than 80 different recipes to teach you about different aspects of Oracle ADF Faces. It follows a practical approach and covers how to build your components for reuse in different applications. This book will also help you in tuning the performance of your ADF Faces application. If you are an ADF developer who wants to harness the power of Oracle ADF Faces to create exceptional user interfaces and reactive applications, this book will provide you with the recipes needed to do just that. You will not need to be familiar with Oracle ADF Faces, but you should be

  11. Study of a dual frequency capacitively coupled rf discharge in the background of multi-component plasma and its validation by a simple analytical sheath model

    Science.gov (United States)

    Bhuyan, Heman; Saikia, Partha; Favre, Mario; Wyndham, Edmundo; Veloso, Felipe

    2016-10-01

    The behavior of a phase-locked dual frequency capacitively coupled rf discharges (2f-CCRF) in the background of multi-component plasma is experimentally studied by rf current-voltage measurements and optical emission spectroscopy (OES). The multi-component plasma is produced by adding hydrogen to the argon CCRF discharge. Variation of experimental parameters, like working pressure, low frequency (LF) and high frequency (HF) rf power indicate significant changes in the electron density and temperature as well as the DC self-bias developed on the power electrode. It is observed that the electron density decreases as the percentage of hydrogen increases in the argon plasma while the electron temperature follows opposite trend. An analytical sheath model for the 2f-CCRF discharge in the background of multi-component plasma is developed and its prediction on the observed variation of DC self-bias is well agreed with the experimental observations. Authors acknowledge Proyecto Puente No P1611 and FONDECYT 3160179.

  12. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cossement, Damien, E-mail: damien.cossement@materianova.be [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Renaux, Fabian [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Thiry, Damien; Ligot, Sylvie [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Francq, Rémy; Snyders, Rony [Materia Nova Research Center, Parc Initialis, 1, Avenue Nicolas Copernic, B-7000 Mons (Belgium); Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium)

    2015-11-15

    Graphical abstract: - Highlights: • Plasma polymer films have a chemical selectivity and a cross-linking degree which are known to vary in opposite trends. • Three plasma polymers families were used as model organic layers for cross-linking evaluation by ToF-SIMS and principal component analysis. • The data were cross-checked with related functional properties that are known to depend on the cross-linking degree (stability in solvent, mechanical properties, …). • The suggested cross-linking evaluation method was validated for different families of plasma polymers demonstrating that it can be seen as a “general” method. - Abstract: It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH{sub 2}-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (P{sub RF}), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high P{sub RF}. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with P{sub RF} excepted for the SH-PPF. These results have

  13. Face pain

    Science.gov (United States)

    ... begin in other places in the body. Abscessed tooth (ongoing throbbing pain on one side of the lower face that ... face, and aggravated by eating. Call a dentist. Pain is persistent, ... by other unexplained symptoms. Call your primary provider.

  14. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    Science.gov (United States)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-11-01

    It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.

  15. Components of Goutengsan in Rat Plasma by Microdialysis Sampling and Its Protection on Aβ1–42-Induced PC12 Cells Injury

    Directory of Open Access Journals (Sweden)

    Hou-Cai Huang

    2017-01-01

    Full Text Available Goutengsan, a Chinese herbal formula, potential protection on Alzheimer’s disease (AD has been less reported. In current study, we investigated the protection of Goutengsan on Aβ1–42-induced pheochromocytoma-derived cells (PC12. Furthermore, the components from Goutengsan in rat plasma were identified by microdialysis (MD for in vivo sampling. Meanwhile, the protection of components identified was also verified. At last, we found that Goutengsan has a potential protective effect on Aβ1–42-induced PC12 cells via reducing cells damage and increasing cells vitality as well as six components (pachymic acid, liquiritin, rhynchophylline, isorhynchophylline, corynoxeine, and isocorynoxeine which may be effective components. This study helps to understand the treatment of Goutengsan for AD and would facilitate the clinical and further studies for this formula.

  16. PIC simulations of a three component plasma described by Kappa distribution functions as observed in Saturn's magnetosphere

    Science.gov (United States)

    Barbosa, Marcos; Alves, Maria Virginia; Simões Junior, Fernando

    2016-04-01

    In plasmas out of thermodynamic equilibrium the particle velocity distribution can be described by the so called Kappa distribution. These velocity distribution functions are a generalization of the Maxwellian distribution. Since 1960, Kappa velocity distributions were observed in several regions of interplanetary space and astrophysical plasmas. Using KEMPO1 particle simulation code, modified to introduce Kappa distribution functions as initial conditions for particle velocities, the normal modes of propagation were analyzed in a plasma containing two species of electrons with different temperatures and densities and ions as a third specie.This type of plasma is usually found in magnetospheres such as in Saturn. Numerical solutions for the dispersion relation for such a plasma predict the presence of an electron-acoustic mode, besides the Langmuir and ion-acoustic modes. In the presence of an ambient magnetic field, the perpendicular propagation (Bernstein mode) also changes, as compared to a Maxwellian plasma, due to the Kappa distribution function. Here results for simulations with and without external magnetic field are presented. The parameters for the initial conditions in the simulations were obtained from the Cassini spacecraft data. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  17. Plasma and tissue levels of proangiotensin-12 and components of the renin-angiotensin system (RAS) following low- or high-salt feeding in rats.

    Science.gov (United States)

    Nagata, Sayaka; Kato, Johji; Kuwasako, Kenji; Kitamura, Kazuo

    2010-05-01

    The renin-angiotensin system (RAS) is an essential regulator of the blood pressure and body fluid balance, but the processing cascade or role of the tissue RAS remains obscure. Proangiotensin-12 (proang-12), a novel angiotensin peptide recently discovered in rat tissues, is assumed to function as a factor of the tissue RAS. To investigate the tissue production of proang-12, we measured the circulating and tissue components of the RAS including proang-12 following low-, normal-, or high-salt feeding in rats. Twelve-week-old male Wistar rats were fed a low-salt 0.3% NaCl or high-salt 8% NaCl diet for 7 days and compared with those fed a normal-salt diet of 0.7% NaCl. Low-salt feeding elevated the plasma renin activity and aldosterone concentration, resulting in significant increases in Ang I and Ang II levels in the plasma or kidney tissue, as compared with the normal- or high-salt group. Despite the increases in plasma renin activity, Ang I, and Ang II, the proang-12 levels in plasma and various tissues including the kidneys, small intestine, cardiac ventricles, and brain remained unchanged following low-salt feeding. These results suggest that peptide levels of proang-12 in rat plasma and tissues are regulated in a manner independent of the circulating RAS.

  18. Early phase components of the kallikrein kinin system in hemorrhagic ascitic fluid and plasma in the rat with induced acute pancreatitis.

    Science.gov (United States)

    Seung, W P; Feldman, B F

    1985-09-01

    Acute hemorrhagic pancreatitis (AHP) was induced in 43 anesthetized rats by retrograde injection of sodium taurodeoxycholic acid into the common pancreatic biliary duct. At postinjection hours 1, 3, 6, 12, and 18, samples of plasma and hemorrhagic ascitic fluid (HAF) were obtained from rats in which AHP was induced and from rats that were sham operated. Early phase components of the kallikrein kinin system, including kallikrein-like (KK) activity and prekallikrein (PKK) and kallikrein inhibitor (KKI) concentrations, were measured in plasma and HAF samples. In the rats with induced AHP, PKK concentrations were decreased significantly in 18-hour plasma samples (P less than 0.05) and in all HAF samples (P less than 0.001) from 1 to 18 hours after induction of AHP. The KK activity was significantly increased (P less than 0.001) in the 6- and 12-hour plasma samples. In the 1-hour HAF samples, KK activity was increased greater than 10 times over that in the plasma pool of rats and remained increased for 18 hours. The KKI concentrations were markedly decreased in all HAF samples. In the sham-operated group, no significant change was observed. Histopathologic changes included edema, extensive hemorrhage, focal necrosis of many acinar cells around the head of the pancreas, slight inflammatory cell infiltration, vascular thrombosis, and partial lysis of pancreatic ducts. The extent of the changes of PKK, KK, and KKI values in HAF was greater than the extent of those in plasma. Increasing KK activity in plasma and HAF is indicative of bradykinin generation and the participation of this system in local and systemic pathologic change.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study.

    Science.gov (United States)

    Blaskó, Ágnes; Gazdag, Zoltán; Gróf, Pál; Máté, Gábor; Sárosi, Szilvia; Krisch, Judit; Vágvölgyi, Csaba; Makszin, Lilla; Pesti, Miklós

    2017-02-01

    The effects of clary sage (Salvia sclarea L.) oil (CS-oil), and its two main components, linalool (Lol) and linalyl acetate (LA), on cells of the eukaryotic human pathogen yeast Candida albicans were studied. Dynamic and thermodynamic properties of the plasma membrane were investigated by electron paramagnetic resonance (EPR) spectroscopy, with 5-doxylstearic acid (5-SASL) and 16-SASL as spin labels. The monitoring of the head group regions with 5-SASL revealed break-point frequency decrease in a temperature dependent manner of the plasma membrane between 9.55 and 13.15 °C in untreated, in CS-oil-, Lol- and LA-treated membranes. The results suggest a significant increase in fluidity of the treated plasma membranes close to the head groups. Comparison of the results observed with the two spin labels demonstrated that CS-oil and LA induced an increased level of fluidization at both depths of the plasma membrane. Whereas Lol treatment induced a less (1 %) ordered bilayer organization in the superficial regions and an increased (10 %) order of the membrane leaflet in deeper layers. Acute toxicity tests and EPR results indicated that both the apoptotic and the effects exerted on the plasma membrane fluidity depended on the composition and chemical structure of the examined materials. In comparison with the control, treatment with CS-oil, Lol or LA induced 13.0, 12.3 and 26.4 % loss respectively, of the metabolites absorbing at 260 nm, as a biological consequence of the plasma membrane fluidizing effects. Our results confirmed that clary sage oil causes plasma membrane perturbations which leads to cell apoptosis process.

  20. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2016-01-01

    Full Text Available Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Results: Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15 or 4 months after the second (P = 0.23. In addition, adverse effects (erythema and edema on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Limitations: Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. Conclusion: This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects

  1. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    Science.gov (United States)

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  2. Specific, sensitive, precise, and rapid functional chromogenic assay of activated first complement component (C1) in plasma

    DEFF Research Database (Denmark)

    Munkvad, S; Jespersen, J; Sidelmann, Johannes Jakobsen;

    1990-01-01

    by using an amidolytic rate assay with a chromogenic substrate. We have optimized the assay conditions with respect to incubation time, concentration of antiserum to C1-inh, ionic strength, and pH. Our method determines specifically the concentration in plasma of free activated C1, not complexes...

  3. The Construction of Strong Classifier Algorithm for Face Detection Based on the Principal Component Analysis%基于主元分析构造强分类器的人脸检测算法

    Institute of Scientific and Technical Information of China (English)

    郭东峰

    2013-01-01

    This paper studies the feature based face detection algorithm, According to the characteristics of weak classifi-cation ability, based on the principal component analysis feature vector space is extracted to construct weak classifier, combined with AdaBoost algorithm to construct the strong classifier, an algorithm for face detection is presented. The performance of the algorithm is tested based on MIT+CMU face database, the results show that the algorithm in the run-ning time and detection accuracy is significantly better than the algorithm based on neural network and support vector machine algorithm.%本文研究了基于特征脸的人脸检测算法,针对其分类能力差的特点,基于主元分析提取特征向量空间构造弱分类器,结合AdaBoost算法构造强分类器,提出了一种人脸检测算法。利用MIT+CMU人脸数据库测试该算法的性能,结果表明本算法在运行时间与检测正确率方面明显优于基于神经网路的算法和支持向量机算法。

  4. High heat flux capabilities of the Magnum-PSI linear plasma device

    Energy Technology Data Exchange (ETDEWEB)

    De Temmerman, G., E-mail: g.c.detemmerman@differ.nl; Berg, M.A. van den; Scholten, J.; Lof, A.; Meiden, H.J. van der; Eck, H.J.N. van; Morgan, T.W.; Kruijf, T.M. de; Zeijlmans van Emmichoven, P.A.; Zielinski, J.J.

    2013-10-15

    Magnum-PSI is an advanced linear plasma device uniquely capable of producing plasma conditions similar to those expected in the divertor of ITER both steady-state and transients. The machine is designed both for fundamental studies of plasma–surface interactions under high heat and particle fluxes, and as a high-heat flux facility for the tests of plasma-facing components under realistic plasma conditions. To study the effects of transient heat loads on a plasma-facing surface, a novel pulsed plasma source system as well as a high power laser is available. In this article, we will describe the capabilities of Magnum-PSI for high-heat flux tests of plasma-facing materials.

  5. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stork, D., E-mail: derek.stork@btinternet.com [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Agostini, P. [ENEA, Brasimone Research Centre, 40032 Cumugnano, Bologna (Italy); Boutard, J.L. [CEA, cab HC, Saclay, F-91191 Gif-sur-Yvette (France); Buckthorpe, D. [AMEC, Booths Park, Chelford Road, Knutsford, Cheshire WA16 8QZ (United Kingdom); Diegele, E. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany); Dudarev, S.L. [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); English, C. [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park WA3 6AE (United Kingdom); Federici, G. [EFDA Power Plant Physics and Technology, Boltzmannstr. 2, Garching 85748 (Germany); Gilbert, M.R. [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Gonzalez, S. [EFDA Power Plant Physics and Technology, Boltzmannstr. 2, Garching 85748 (Germany); Ibarra, A. [CIEMAT, Avda. Complutense 40, Madrid (Spain); Linsmeier, Ch. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, EURATOM Association, 52425 Jülich (Germany); Li Puma, A. [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Marbach, G. [CEA, cab HC, Saclay, F-91191 Gif-sur-Yvette (France); Morris, P.F. [Formerly of TATA Steel Europe, Swinden Technology Centre, Moorgate, Rotherham S60 3AR (United Kingdom); Packer, L.W. [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Raj, B. [Indian National Academy of Engineering, Shaheed Jeet Singh Marg, New Delhi 110016 (India); Rieth, M. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany); and others

    2014-12-15

    The findings of the EU ‘Materials Assessment Group’ (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R and D up to a DEMO construction decision. A DEMO phase I with a ‘Starter Blanket’ and ‘Starter Divertor’ is foreseen: the blanket being capable of withstanding ⩾2 MW yr m{sup −2} fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m{sup −2} first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R and D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290–320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R and D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200–350 °C) that could be realised, as a

  6. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    Science.gov (United States)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper

  7. Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas

    Science.gov (United States)

    Fu, Zhen-Guo; Wang, Zhigang; Li, Meng-Lei; Li, Da-Fang; Kang, Wei; Zhang, Ping

    2016-12-01

    The energy loss of multi-MeV charged particles moving in two-component warm dense plasmas (WDPs) is studied theoretically beyond the random-phase approximation. The short-range correlations between particles are taken into account via dynamic local field corrections (DLFC) in a Mermin dielectric function for two-component plasmas. The mean ionization states are obtained by employing the detailed configuration accounting model. The Yukawa-type effective potential is used to derive the DLFC. Numerically, the DLFC are obtained via self-consistent iterative operations. We find that the DLFC are significant around the maximum of the stopping power. Furthermore, by using the two-component extended Mermin dielectric function model including the DLFC, the energy loss of a proton with an initial energy of ˜15 MeV passing through a WDP of beryllium with an electronic density around the solid value ne≈3 ×1023cm-3 and with temperature around ˜40 eV is estimated numerically. The numerical result is reasonably consistent with the experimental observations [A. B. Zylsta et al., Phys. Rev. Lett. 111, 215002 (2013), 10.1103/PhysRevLett.111.215002]. Our results show that the partial ionization and the dynamic properties should be of importance for the stopping of charged particles moving in the WDP.

  8. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  9. Multi-particle collision simulations of 2D one-component plasmas: anomalous transport and dimensional crossovers

    CERN Document Server

    Di Cintio, Pierfrancesco; Lepri, Stefano; Ciraolo, Guido

    2016-01-01

    By means of hybrid MPC-PIC simulations we study the dynamical scaling of energy and density correlations at equilibrium in moderately coupled 2D and quasi 1D plasmas. We find that the predictions of Nonlinear Fluctuating Hydrodynamics for the structure factors of density and energy fluctuations in 1D systems with three global conservation laws hold true also for two dimensional systems that are more extended along one of the two spatial dimensions. Moreover, from the analysis of the equilibrium energy correlators and density structure factors of both 1D and 2D neutral plasmas, we find that neglecting the contribution of the fluctuations of the vanishing self-consistent electrostatic fields overestimates the interval of frequencies over which the anomalous transport is observed. Such violations of the expected scaling in the currents correlation are found in different regimes, hindering the observation of the asymptotic scaling predicted by the theory.

  10. Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment (vol 18, 056118, 2011)

    Energy Technology Data Exchange (ETDEWEB)

    Canik, John [ORNL; Maingi, Rajesh [ORNL; Kubota, S. [University of California, Los Angeles; Ren, Yang [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Callen, J. D. [University of Wisconsin, Madison; Guttenfelder, W. [University of Wisconsin, Madison; Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Osborne, T. H. [General Atomics; Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL)

    2011-01-01

    This article was originally published online on 26 May 2011 with an incorrect figure for Fig. 10. AIP apologizes for this error. Figure 10 was correct as it appeared in the printed version of the article. All online versions of the article were corrected on 8 June 2011.

  11. Elimination of columnar microstructure in N-face InAlN, lattice-matched to GaN, grown by plasma-assisted molecular beam epitaxy in the N-rich regime

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Elaheh; Wienecke, Steven; Keller, Stacia; Mishra, Umesh K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Shivaraman, Ravi; Wu, Feng; Kaun, Stephen W.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-02-17

    The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. These layers were grown by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. Microstructural analysis shows an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. A room temperature two-dimensional electron gas (2DEG) mobility of 1100 cm{sup 2}/V s and 2DEG sheet charge density of 1.9 × 10{sup 13} cm{sup −2} was measured for N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers.

  12. Development of a widely applicable immunoassay for insulin in marine teleosts that regulates cross-reactivity using biotinylation and inhibits interference by plasma components.

    Science.gov (United States)

    Andoh, Tadashi

    2016-01-15

    Amino acids are important insulinotropins in fish, and their effects vary between amino acids and fish species. Insulin levels are indicative of growth efficiency and stress levels in fish; however, interspecies comparisons of insulin levels are hampered by the difficulty of measuring insulin concentration in each fish. We developed a widely applicable competitive immunoassay using biotinylated yellowtail (Seriola quinqueradiata) insulin for measuring insulin in marine teleosts, including yellowtail and red seabream (Pagrus major), which are the most common species raised by aquaculture in Japan. Amino acid sequence substitution was limited at the ninth residue of the A-chain (A9) between these two species, and analysis of the primary structures of insulins from six phylogenetically far teleosts suggested that the sequences of yellowtail and red seabream insulins are identical to those of many teleosts, except the A9 residue. However, A9 is known to be an epitope that confers cross-reactive differences on insulin. We solved this problem through immunoreactive invalidation of this residue by biotinylation. The binding-inhibition curves of yellowtail and red seabream insulins were identical following the use of this technique. However, yellowtail and red seabream plasma was found to contain components that interfere with immunoassays. This problem was solved by the extraction of plasma using equal volume of acid-ethanol in yellowtail and by cooling at 0°C during the cross-reaction between the ligand and antibody in red seabream. Serially diluted plasma samples from both species exhibited linearity after these treatments. In a recovery test using plasma with added yellowtail insulin, the average recovery varied from 96.2% to 109.4%. A post-feeding rise in insulin was confirmed by this immunoassay in yellowtail, and peak of the rise was 39.8±7ng/ml at 1h postfeeding from 3.9±1.1ng/ml at 0h. This indicates that this assay is sufficient for measuring the baseline

  13. About Face

    Medline Plus

    Full Text Available Skip to Content Menu Closed (Tap to Open) Home Videos by Topic Videos by Type Search All ... What is AboutFace? Resources for Professionals Get Help Home Watch Videos by Topic Videos by Type Search ...

  14. About Face

    Medline Plus

    Full Text Available ... Home Videos by Topic Videos by Type Search All Videos PTSD Basics PTSD Treatment What is AboutFace? ... Watch Videos by Topic Videos by Type Search All Videos Learn More PTSD Basics PTSD Treatment What ...

  15. Face Forward

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Last November, surgeons in France successfully performed the world's first face transplant surgery. Ten days later, Chen Huanran in Beijing began soliciting patients who were ready to accept a face transplant, searching for China's first such patient through an advertisement on his website and other channels. Chen, chief orthopedic surgeon at the Plastic Surgery Hospital under the Chinese Academy of Medical Sciences, has conducted more than 300 transsexual operations and was considered one of the top com...

  16. Highlights of PBTI Coimbra Conference on PRT of Plasma & Current Opinions on Pathogen Reduction Treatment of Blood Components.

    Science.gov (United States)

    de Sousa, Gracinda; Seghatchian, Jerard

    2015-04-01

    Two experts from Octapharma and from Cerus addressed, in very concise ways, the concerns about non-viral inactivated FFP and how they managed to obtain highest standard of safety margin for pathogen reduction treatment [PRT] of plasma. The session was moderated by Portuguese Institute of Blood and Transplantation (PIBT) consultant advisor [Jerard Seghatchian] with long standing familiarity and international recognition in PR technologies for plasma, platelets and WB/red cells. The focus of conference was mainly on the criteria of acceptability of PRT-FFP; added values of having diversity in choice without fears of liability, as both of PRT technologies provide an excellent safeguard margins, for more than a decade of usage. In most European countries, it is believed that patients' safety come first followed by the safe usage initiatives, in particular using locally available products. Portugal is finally going forward with the implementation PRT plasma using its own FFP for their clinical use. The round table Q&A session focused on the impacts of the additional processing, which is still continuously improving, on the residual/emerging pathogen infectivity; eliminating the clinical impacts of donors viable leukocytes; the degree of altered product potency in particular cold activation of FVII; and loss of endothelial permeability factors during fluid storage of plasma. Both speakers highlighted their product safety and clinical efficacy using both routine in vitro, including the modern proteomic tests to establish the relevant changes in various parameters and in the overall clinical outcomes. The advancements in pharmacovigilance and hemovigilance, regulatory aspects and cost effectiveness were also highlighted. A local speaker [from the PIBT] described the state of the art of local processing issues and overall required standards used both during validation and the intercept process scale up, which is going ahead smoothly to providing the highest safety standards

  17. Asymmetric structures of field-aligned currents and convection of ionospheric plasma controlled by the IMF azimuthal component and season of year

    DEFF Research Database (Denmark)

    Lukianova, R. Yu.; Kozlovsky, A.; Christiansen, Freddy

    2010-01-01

    We present the results of using the statistical model of field-aligned currents (FACs) based on satellite data and the numerical model of the electric potential distribution in order to detect the asymmetric part in FAC structures and ionospheric plasma convection controlled by the IMF azimuthal (B...... y ) component at different seasons of the year. These structures can be identified by plotting diagrams, which represent differences in corresponding maps for opposite signs of IMF B y . Circular near-pole current symmetric about the noon meridian and corresponding convection vortices around...

  18. Study of Face Recognition Techniques

    Directory of Open Access Journals (Sweden)

    Sangeeta Kaushik

    2014-12-01

    Full Text Available A study of both face recognition and detection techniques is carried out using the algorithms like Principal Component Analysis (PCA, Kernel Principal Component Analysis (KPCA, Linear Discriminant Analysis (LDA and Line Edge Map (LEM. These algorithms show different rates of accuracy under different conditions. The automatic recognition of human faces presents a challenge to the pattern recognition community. Typically, human faces are different in shapes with minor similarity from person to person. Furthermore, lighting condition changes, facial expressions and pose variations further complicate the face recognition task as one of the difficult problems in pattern analysis.

  19. Proposed interpretation of the transverse magnetic field dependence of the melting temperature T m(B) of a two-dimensional one-component plasma driven by logarithmic interactions

    Science.gov (United States)

    Glasser, M. L.; March, N. H.; Nieto, L. M.

    2012-11-01

    We propose an approximate scaling property of the classical partition function of a two-dimenisional one-component plasma in a high magnetic field based on the molecular dynamics simulations of dubey and Gumbs

  20. Face Synthesis (FASY) System for Determining the Characteristics of a Face Image

    CERN Document Server

    Halder, Santanu; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    This paper aims at determining the characteristics of a face image by extracting its components. The FASY (FAce SYnthesis) System is a Face Database Retrieval and new Face generation System that is under development. One of its main features is the generation of the requested face when it is not found in the existing database, which allows a continuous growing of the database also. To generate the new face image, we need to store the face components in the database. So we have designed a new technique to extract the face components by a sophisticated method. After extraction of the facial feature points we have analyzed the components to determine their characteristics. After extraction and analysis we have stored the components along with their characteristics into the face database for later use during the face construction.

  1. Stability of hybrid modes of a single-component electron plasma containing an admixture of background gas ions

    Science.gov (United States)

    Yeliseyev, Yu. N.

    2014-05-01

    The spectrum of eigenmodes of a waveguide completely filled with a cold electron plasma containing a small admixture of ions produced due to electron-impact ionization of background gas atoms is calculated numerically. The calculations were performed within the entire range of allowable values of the radial electric and longitudinal magnetic fields for both magnetized and unmagnetized ions by using the earlier derived nonlocal dispersion relation [Plasma Phys. Rep. 36, 563 (2010)]. The spectrum consists of three families of electron modes with frequencies equal to the Doppler-shifted upper and lower hybrid frequencies and modified ion cyclotron (MIC) modes. When the Doppler shift caused by electron rotation in the crossed electric and magnetic fields compensates for the hybrid frequency, the electron modes become low-frequency modes and interact with the ion modes. For m = 1, only the lower hybrid modes can be low-frequency ones, whereas at m ≥ 2, both lower and upper hybrid modes can be low-frequency ones. The spectrum of modes having the azimuthal number m = 2 is thoroughly analyzed. It is shown that, in this case, the lower hybrid modes behave similar to the m = 1 modes. The dispersion curves of the upper hybrid modes intersect with all harmonics of the MIC frequency (positive, negative, and zero) and are unstable in the vicinities of the intersections. The maximum value of the instability growth rate is several times higher than the ion plasma frequency. The MIC modes are unstable within a wide range of the field strengths, and their growth rates are two orders of magnitude slower. Instabilities are caused by the relative motion of electrons and ions (the transverse current) and the anisotropy of the ion distribution function.

  2. Variability and component composition

    NARCIS (Netherlands)

    Storm, T. van der

    2004-01-01

    In component-based product populations, feature models have to be described at the component level to be able to benefit from a product family approach. As a consequence, composition of components becomes very complex. We describe how component-level variability can be managed in the face of compone

  3. Wake effect and stopping power for a charged ion moving in magnetized two-component plasmas: two-dimensional particle-in-cell simulation.

    Science.gov (United States)

    Hu, Zhang-Hu; Song, Yuan-Hong; Wang, You-Nian

    2010-08-01

    A two-dimensional particle-in-cell (PIC) model is proposed to study the wake field and stopping power induced by a nonrelativistic charged particle moving perpendicular to the external magnetic field in two-component plasmas. The effects of the magnetic field on the wake potential and the stopping due to the polarization of both the plasma ions and electrons are discussed. The velocity fields of plasma ions and electrons are investigated, respectively, in the weak and strong magnetic field cases. Our simulation results show that in the case of weak magnetic field and high ion velocity, the wakes exhibit typical V-shaped cone structures and the opening cone angles decrease with the increasing ion velocity. As the magnetic field becomes strong, the wakes lose their typical V-shaped structures and become highly asymmetrical. Similar results can be obtained in the case of low ion velocity and strong magnetic field. In addition, stopping power is calculated and compared with previous one-dimensional and full three-dimensional PIC results.

  4. Development of a dynamic multiple reaction monitoring method for determination of digoxin and six active components of Ginkgo biloba leaf extract in rat plasma.

    Science.gov (United States)

    Rao, Zhi; Qin, Hongyan; Wei, Yuhui; Zhou, Yan; Zhang, Guoqiang; Zhang, Fan; Shao, Yunyun; Huang, Jing; Wu, Xin'an

    2014-05-15

    A new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method by using dynamic multiple reaction monitoring (DMRM) has been developed and validated for the simultaneous determination of digoxin (DGX) and six main components of Ginkgo biloba leaf extract (GBE) in rat plasma. Comparing with the conventional multiple reaction monitoring (MRM), DMRM dramatically decreases the number of concurrent MRM transitions, and significantly extended the dwell time, which provided much higher sensitivity and reproducibility than MRM when complex multi-component samples were quantified. The plasma samples were protein precipitated with methanol, the detection was accomplished with electro-spray ionization (ESI) as the ion source operating in the negative ionization mode, with methanol and water as mobile phase, and with an Agilent Zorbax eclipse plus C18 column (4.6 × 100 mm, 3.5 μm) as the analytical column. The total run time was 12.0 min. The validation of the method was implemented including specificity, linearity, accuracy, precision, recovery, matrix effect and stability. This method was successfully applied to the herb-drug pharmacokinetic interaction study of DGX combined with GBE after oral administration to rats. The result indicated that co-administration of GBE and DGX significantly influenced the pharmacokinetics of DGX when compared to that of single DGX-treated rats.

  5. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    Science.gov (United States)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  6. A comparative study of circulating plasma lipid components and superoxide dismutase activity in pre and postmenopausal women

    Directory of Open Access Journals (Sweden)

    Priyanka Chaudhari

    2016-09-01

    Results: Mean serum SOD level in premenopausal women was 4.80+/-1.73 U/ml and in postmenopausal was 1.35+/-0.58 U/ml. This variation was found to be extremely significant (p <0.0001. Changes in lipid components in pre and postmenopausal women showed that total cholesterol and triglycerides levels were higher in postmenopausal than premenopausal participants. These variations were also significant (p = 0.0003. Levels of HDL-C were lower in postmenopausal women than pre-menopausal group with a mean+/-SD of 51.5+/-12.20 mg/dl and 54.05+/-14.03mg/dl respectively. Conclusions: Findings of this study corroborate the hypothesis that gradual loss of ovarian function is associated with a decrease in antioxidant status. Menopause also leads to changes in lipid components, which can predispose women to cardiovascular diseases. [Int J Res Med Sci 2016; 4(9.000: 3801-3805

  7. Effects of feeding system on growth performance, plasma biochemical components and hormones, and carcass characteristics in Hanwoo steers

    Directory of Open Access Journals (Sweden)

    Chan Sung Chung

    2017-08-01

    Full Text Available Objective This study was conducted to compare growth performance, blood components and carcass traits by two feeding systems (concentrate with roughage separately [CON] vs total mixed ration [TMR] in Hanwoo steers, and to learn the relationship between blood components during fattening or finishing phases and carcass traits in Hanwoo steers. Methods Sixty steers aged 8 months were allotted to two feeding systems and fed similar amounts of average dry matter and total digestible nutrient throughout whole experimental period according to each feeding program. Steers were weighed monthly, taken blood at the end of growing, fattening and finishing periods, and slaughtered at 30 month of age. Results Growing performance was higher (p<0.05 in the CON group compared to the TMR group during fattening and finishing periods. The CON group was lower (p<0.05 in blood aspartic acid transaminase, blood urea nitrogen and retinol levels during growing period, but higher in triglyceride and cholesterol levels during fattening and finishing periods compared to the TMR group. The CON group was greater (p<0.05 in rib-eye area, and lighter (p<0.05 red in meat color compared to the TMR group. In the correlation coefficients between blood components of steers and carcass traits, retinol had a negative (p<0.05 correlation with marbling score and rib-eye area. Leptin had a positive (p<0.05 correlation with back fat thickness. Blood cholesterol and triglyceride were positively (p<0.05 correlated with carcass weight and rib-eye area. Conclusion Growth performance, carcass ribeye area and meat color showed a more desirable result in the CON compared to the TMR in Hanwoo steers. Assessing the accumulated data of carcass traits with blood components including hormones—particularly retinol, cholesterol, triglyceride, and leptin—during the fattening or finishing phases, it may be possible to find a biomarker for determining beef quality in living animals.

  8. About Face

    Medline Plus

    Full Text Available ... PTSD (posttraumatic stress disorder). Watch the intro This is AboutFace In these videos, Veterans, family members, and ... to hear what they have to say. What is PTSD? → How does PTSD affect loved ones? → Am ...

  9. About Face

    Medline Plus

    Full Text Available ... traumatic event — like combat, an assault, or a disaster — it's normal to feel scared, keyed up, or sad at first. But if it's been months or years since the trauma and you're not feeling better, you may have PTSD (posttraumatic stress disorder). Watch the intro This is AboutFace In ...

  10. Simultaneous quantification of 5 main components of Psoralea corylifolia L. in rats' plasma by utilizing ultra high pressure liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Gao, Qianqian; Xu, Zisheng; Zhao, Genhua; Wang, Heng; Weng, Zebin; Pei, Ke; Wu, Li; Cai, Baochang; Chen, Zhipeng; Li, Weidong

    2016-02-01

    Psoralea corylifolia L. has long been used in traditional Chinese medicine for treating and preventing many diseases. A group of flavonoid components are regarded as the active principals within the seeds. In this research, a rapid, accurate and sensitive ultra high pressure liquid chromatography tandem mass spectrometry (UHPLC/MS/MS) method has been established for simultaneous quantification of its 5 main components, namely, neobavaisoflavone, bavachin, isobavachalcone, bavachinin and corylifol A in rats' plasma after the rats were orally administrated with Buguzhi extract. Negative ion electrospray mode was applied in the detection process. Multiple reactions monitoring (MRM) mode was utilized for simultaneous quantitative analyzing of neobavaisoflavone (m/z 321.1→m/z 265.1), bavachin (m/z 323.1→m/z 119.0), isobavachalcone (m/z 323.2→m/z 119.0), bavachinin (m/z 337.2→m/z 119.0), corylifol A (m/z 389.2→m/z 277.0) and liquiritigenin (Internal Standard, m/z 255.1→m/z 119.0). Chromatographic separation of the above mentioned components was conducted on a Waters BEH-C18 column (100 mm×2.1mm, 1.7μm) with gradient elution system at flow rate of 0.3mL/min. The mobile phase was composed of acetonitrile and 0.1% formic acid solution. The lower limit of quantification (LLOQ) for each of the above analytes was 0.5ng/mL. Each of the analytes exhibited good linearity within the concentration range of 0.5-100ng/mL. The method was fully validated for its selectivity, accuracy, precision, stability, matrix effect and extraction recovery. The validated method has been successfully applied for simultaneous determination of the 5 flavonoids in rat plasma for the first time.

  11. Effect of electrolyte components on the magnetic and magnetoresistive characteristics of Fe-containing plasma electrolytic oxide coatings on titanium

    Science.gov (United States)

    Rudnev, V. S.; Adigamova, M. V.; Tkachenko, I. A.; Sergienko, V. I.; Yanushkevich, K. I.; Aplesnin, S. S.; Lukiyanchuk, I. V.; Morozova, V. P.; Medkov, M. A.

    2017-03-01

    The effect replacing Na3PO4 with Na2HPO4 in aqueous phosphate-borate-tungstate electrolyte that additionally contains Fe2(C2O4)3 on the magnetic and magnetoresistive characteristics of oxide coating/ titanium composites formed by means of plasma electrolytic oxidation (PEO) is investigated. It is established that PEO coatings with ferromagnetic characteristics form on titanium in an electrolyte containing Na3PO4 (pH 11) upon adding iron(III) oxalate, while replacing Na3PO4 with Na2HPO4 and the respective drop in the pH of the base electrolyte down to 9.8 results in the formation of coatings with different magnetic characteristics. The correlation between changes in the values of the charge carriers' activation energy and the magnetic susceptibility is demonstrated for the latter. An increase in the electric resistance of coatings in a magnetic field is observed, and the type of the magnetic resistance temperature dependence is established.

  12. Reading faces and Facing words

    DEFF Research Database (Denmark)

    Robotham, Julia Emma; Lindegaard, Martin Weis; Delfi, Tzvetelina Shentova

    It has long been argued that perceptual processing of faces and words is largely independent, highly specialised and strongly lateralised. Studies of patients with either pure alexia or prosopagnosia have strongly contributed to this view. The aim of our study was to investigate how visual...

  13. Reading faces and Facing words

    DEFF Research Database (Denmark)

    Robotham, Julia Emma; Lindegaard, Martin Weis; Delfi, Tzvetelina Shentova

    performed within normal range on at least one test of visual categorisation, strongly suggesting that their abnormal performance with words and faces does not represent a generalised visuo-perceptual deficit. Our results suggest that posterior areas in both hemispheres may be critical for both reading...

  14. FaceID: A face detection and recognition system

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.B.; Rao, N.S.V.; Olman, V.; Uberbacher, E.C.; Mann, R.C.

    1996-12-31

    A face detection system that automatically locates faces in gray-level images is described. Also described is a system which matches a given face image with faces in a database. Face detection in an Image is performed by template matching using templates derived from a selected set of normalized faces. Instead of using original gray level images, vertical gradient images were calculated and used to make the system more robust against variations in lighting conditions and skin color. Faces of different sizes are detected by processing the image at several scales. Further, a coarse-to-fine strategy is used to speed up the processing, and a combination of whole face and face component templates are used to ensure low false detection rates. The input to the face recognition system is a normalized vertical gradient image of a face, which is compared against a database using a set of pretrained feedforward neural networks with a winner-take-all fuser. The training is performed by using an adaptation of the backpropagation algorithm. This system has been developed and tested using images from the FERET database and a set of images obtained from Rowley, et al and Sung and Poggio.

  15. Quantified Faces

    DEFF Research Database (Denmark)

    Sørensen, Mette-Marie Zacher

    2016-01-01

    Abstract: The article presents three contemporary art projects that, in various ways, thematise questions regarding numerical representation of the human face in relation to the identification of faces, for example through the use of biometric video analysis software, or DNA technology. The Dutch...... and critically examine bias in surveillance technologies, as well as scientific investigations, regarding the stereotyping mode of the human gaze. The American artist Heather Dewey-Hagborg creates three-dimensional portraits of persons she has “identified” from their garbage. Her project from 2013 entitled....... The three works are analysed with perspectives to historical physiognomy and Francis Galton's composite portraits from the 1800s. It is argued that, rather than being a statistical compression like the historical composites, contemporary statistical visual portraits (composites) are irreversible...

  16. Intake of rye bread ileostomists increases ileal excretion of fiber polysaccharide components and organic acids but does not increase plasma or urine lignans and isoflavonoids.

    Science.gov (United States)

    Pettersson, D; Aman, P; Knudsen, K E; Lundin, E; Zhang, J X; Hallmans, G; Härkönen, H; Adlercreutz, H

    1996-06-01

    The excretion of starch, enzyme-resistant starch, dietary fiber components and organic acids (short-chain fatty acids plus lactic acid) as well as plasma and urine lignans and isoflavonoids was studied in eight ileostomists consuming mixed diets with wheat bread (low fiber diet) or rye bread (high fiber diet) in a crossover design. Average ileal excretions of enzyme-available starch were 3.5 g/d during the low fiber period and 4.1 g/d during the high fiber period. The excretion of enzyme-resistant starch was approximately the same (2.3 g/d) in both periods. In comparison with intake, similar amounts of total fiber residues were excreted both by subjects receiving the low fiber diet (3.4 g/d) and by those receiving the high fiber diet (2.7 g/d). However, subjects excreted significantly more of certain polysaccharide residues (fucose, galactose, and uronic acids) than they ingested. On average, the excretion of organic acids was 18.6 mmol/d during the low fiber period and 30.2 mmol/d during the high fiber period. No significant differences in plasma lignans were observed between the high fiber and the low fiber dietary periods. The present findings indicate that enzyme-available starch is highly digested and that a microbial breakdown of dietary fibers and probably other carbohydrates occurs in the small intestine. However, the bacterial activity in the ileostomists was not sufficient to cause an increased level in plasma lignans even when subjects consumed the high fiber rye diet.

  17. High-density properties of integral-equation theories of fluids: Universal analytic structure and details for the one-component plasma

    Science.gov (United States)

    Rosenfeld, Yaakov

    1986-03-01

    We study the analytic properties of the hypernetted-chain (HNC) and soft-mean-spherical (SMSA) theories in the asymptotic high-density limit (AHDL). The scaling properties of the inverse power potentials lead to the introduction of the SMSA-Ewald functions, which correspond to the ``overlap-volume'' functions for hard spheres. The HNC and SMSA theories for soft interactions, as well as the Percus-Yevick theory for hard spheres, feature the same AHDL analytic structure of the pair correlation functions, which is dictated by the hard-sphere Ewald functions. The general discussion is supplemented by detailed results for the one-component plasma. Implications to the analysis of the density-functional theory, of dense matter, near its exact Thomas-Fermi limit are pointed out.

  18. 新型钨基面向等离子体材料的研究进展%Development of New Tungsten-based Materials as Plasma Facing Materials

    Institute of Scientific and Technical Information of China (English)

    朱玲旭; 郭双全; 张宇; 葛昌纯

    2011-01-01

    The pure tungsten used in plasma facing materials for fusion reactors has disadvantage of difficult machining, high ductile-brittle transition temperature and low recrystallization temperature, etc. Tungsten-base material is a kind of broad application prospect of plasma facing materials, extensive research overseas and domestic. The preparation of new W-base plasma facing materials of the recent research progress is reviewed, using oxide dispersion strengthening, carbide particle dispersion enhanced, alloying enhance W-base materials and W-base composite reinforcement method. The corresponding enhancement method allows certain aspects of W-base materials performance improved, such as the flexural strength, hardness and fracture toughness, and good corrosion resistance and resistance to impact ductility, but in the thermal load, w-base materials will still fails, the relevant materials need to continue be studied about the craft and the properties.%纯钨应用于聚变堆中面向等离子体材料具有难加工、高的韧脆转变温度、低的再结晶温度等缺点,而钨基材料是一类具有广阔应用前景的面向等离子体材料,受到国内外的广泛研究.综述了采用氧化物颗粒弥散强化、碳化物颗粒弥散增强、合金化增强钨基材料和钨基复合材料等强化手段制备新型钨基面向等离子体材料的近年研究进展.采用相应的增强方法可使得钨基材料某些方面的性能得到提高,如显著提高抗弯强度、硬度和断裂韧性,具有较好的抗腐蚀性、延展性和抗冲击力等优点,但是在承受大的工作热负荷时,钨基材料仍会失效,尚需要继续进行相关材料的工艺、性能研究.

  19. Decay of correlations in fluids: The one-component plasma from Debye-Hückel to the asymptotic-high-density limit

    Science.gov (United States)

    Leote de Carvalho, R. J. F.; Evans, R.; Rosenfeld, Y.

    1999-02-01

    The decay of structural correlations in the classical one-component plasma is analyzed by calculating the poles of the Fourier transform of the total (pairwise) correlation function h(r) for two integral equation theories, the soft mean spherical approximation and the hypernetted chain (HNC). We show that for all except the largest values of the plasma coupling constant Γ, the leading-order pole contribution provides an accurate description of h(r) at intermediate range, as well as the ultimate asymptotic decay. The crossover from monotonic decay at weak coupling to exponentially damped oscillatory decay at strong coupling is shown to arise from the same mechanism as that which occurs for charge correlations in binary ionic fluids. We calculate the values of Γ at which the crossover occurs in the two theories. The role of higher-order poles and (within the HNC) other singularities in determining the intermediate range behavior of h(r) for strong coupling is discussed. We investigate the properties of the solutions of the integral equations in the strong coupling, Γ-->∞, asymptotic high-density limit (AHDL). Padé approximants are employed in order to test the validity of the scaling laws proposed for the potential energy, direct correlation function, and for the poles and their contributions to h(r) in the AHDL. Our numerical results provide strong support for the validity of the theoretical predictions concerning the AHDL.

  20. Taoren-Honghua herb pair and its main components promoting blood circulation through influencing on hemorheology, plasma coagulation and platelet aggregation.

    Science.gov (United States)

    Liu, Li; Duan, Jin-ao; Tang, Yuping; Guo, Jianming; Yang, Nianyun; Ma, Hongyue; Shi, Xuqin

    2012-01-31

    Persicae Semen (Taoren) and Carthami Flos (Honghua) used in pair which is named as Taoren-Honghua (TH) herb pair has been used in traditional Chinese medicine (TCM) for promoting blood circulation to dissipate blood stasis for many years in China. This paper investigated the effects of TH and its main components amygdalin and hydroxysafflor yellow A (HSYA) on hemorheological disorders of blood stasis in rats. Rats were randomly divided into seven groups (control group, model group, TH group, amygdalin group, HSYA group, amygdalin+HSYA group, and aspirin group) with eight animals in each, whose gender was equally distributed throughout groups. All treatments were performed by gavage and administered seven times with an interval of 12h. After the fifth administration, the model rats except those in control group with blood stasis were established by being placed in ice-cold water during the interval between two injections of adrenaline hydrochloride (Adr); and blood samples were collected 30min after the last administration on the following day. TH could significantly decrease whole blood viscosity (WBV), plasma viscosity (PV) and packed cell volume (PCV). It also significantly prolonged thrombin time (TT) and thromboplastin time (APTT), increased prothrombin time (PT) and lowered fibrinogen content (FIB). HSYA which significantly decreased WBV and PV had no effect on plasma coagulation parameters. Amygdalin could significantly decrease PV, prolong APTT and decrease FIB, showing few effects on WBV. TH and its main components amygdalin and HSYA could significantly reduce platelet aggregation and protect vascular endothelial cells. Based on the above results, amygdalin and HSYA were responsible for the main curative effects of TH and usually had synergetic effects, such as decreasing PV and platelet aggregation percentage. The study may provide scientific information to further understanding of the mechanism(s) of TH and its main components in activating blood

  1. LC-MS determination and pharmacokinetic study of six phenolic components in rat plasma after taking traditional Chinese medicinal-preparation: Guanxinning lyophilized powder for injection.

    Science.gov (United States)

    Guo, Xiaorui; Chen, Xiaohui; Li, Li; Shen, Zhenduo; Wang, Xiaoli; Zheng, Ping; Duan, Fangxia; Ma, Yongfen; Bi, Kaishun

    2008-09-15

    A traditional Chinese medicinal preparation (TCMP) named Guanxinning lyophilized powder for injection composed of Salvia miltiorrhiza Bge. (SMB) and Ligusticum chuanxiong Hort. (LCH) was studied. In order to learn the kinetic behaviors of the lyophilized powder and provide proofs for rational administration, we have developed a sensitive and reproducible method for determination and pharmacokinetic study of six main phenolic components {danshensu (DSS), protocatechuic acid (PAC), protocatechuic aldehyde (PAL), chlorogenic acid (CHA), caffeic acid (CAA) and salvianolic acid B (SAB)} of Guanxinning in rat plasma using liquid chromatography-mass spectrometric (LC-MS) method. Sample preparations were carried out by protein precipitation with the addition of methanol followed by liquid-liquid extraction with ethyl acetate-ethyl ether (3:1, v/v) after internal standard (IS, galic acid) spiked. After evaporation to dryness, the resultant residue was reconstituted in methanol and injected onto a Kromasil C(18) column (150 mm x 4.6 mm i.d. with 5 microm particle size). The analytes were analyzed by using negative electrospray ionization (ESI) mass spectrometry in selected ion monitoring (SIM) mode. The method was with good linearity in the range 0.342-85.0 microgmL(-1) for DSS, 0.0647-12.9 microgmL(-1) for PAC, 0.0933-18.7 microgmL(-1) for PAL, 0.0085-3.40 microgmL(-1) for CHA, 0.0138-2.75 microgmL(-1) for CAA and 0.0272-810 microgmL(-1) for SAB (r>0.99). The average extract recoveries of the six analytes from rat plasma were all no less than 75%, the precision and accuracy determined were all within the required limits. This LC-MS method was successfully applied to pharmacokinetic study of the six phenolic components of Guanxinning lyophilized powder for injection in rats.

  2. An in vitro study of interactions between insulin-mimetic zinc(II) complexes and selected plasma components.

    Science.gov (United States)

    Enyedy, Eva Anna; Horváth, László; Gajda-Schrantz, Krisztina; Galbács, Gábor; Kiss, Tamás

    2006-12-01

    The speciations of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 1,2-dimethyl-3-hydroxypyridinone with (O,O) and picolinic acid with (N,O) coordination modes, were studied via solution equilibrium investigations of the ternary complex formation in the presence of small relevant bioligands of the blood serum such as cysteine, histidine and citric acid. Results show that formation of the ternary complexes, especially with cysteine, is favoured at physiological pH range in almost all systems studied. Besides these low molecular mass binders, serum proteins among others albumin and transferrin can bind zinc(II) or its complexes. Accordingly, the distribution of zinc(II) between the small and high molecular mass fractions of the serum was also studied by ultrafiltration. Modelling calculations relating to the distribution of zinc(II), using the stability constants of the ternary complexes studied and those of the serum proteins reported in the literature, confirmed the ultrafiltration results, namely, the primary role of albumin in zinc(II) binding among the low and high molecular mass components of the serum.

  3. Effects of Beak Trimming, Stocking Density and Sex on Carcass Yield, Carcass Components, Plasma Glucose and Triglyceride Levels in Large White Turkeys.

    Science.gov (United States)

    Sengul, Turgay; Inci, Hakan; Sengul, Ahmet Y; Sogut, Bunyamin; Kiraz, Selahattin

    2015-01-01

    This study was conducted to determine the effects of beak trimming, stocking density (D) and sex (S) on live weight (LW), carcass yield and its component, and plasma glucose (PG) and triglyceride levels in Large White turkeys. To accomplish this aims, totally 288 d old large white turkey chicks (144 in each sex) were used. Beaks of 77 male and female poults were trimmed when 8 d old with an electrical beak trimmer. The birds were fed by commercial turkey rasion. Experiment was designed as 2 × 2 × 2 factorial arrangement with 3 replications in each group. Beak trimming and stocking density did not affect live weight, carcass composition and its components. The higher LW and carcass weight observed in trimmed groups. As expected, male birds are heavier than female, and carcass percentage (CP) would be adverse. However, in this study, CP of male was higher in trimmed, in 0.25 m(2)/bird. (D) × sex (S) interaction had an effect on both CP and thigh weights (pplasma glucose level (p<0.05). Triglyceride level was affected (p<0.05) by sex. Significant relationships were found between percentage of thighs (r=0.447, p<0.01) and percentage of breast (r=0.400, p<0.01). According to this study, it can be said that trimming is useful with density of 0.25 m(2)/bird in turkey fattening.

  4. Optimization and Update of EAST In-Vessel Components in 2011

    Science.gov (United States)

    Ji, Xiang; Song, Yuntao; Shen, Guang; Cao, Lei; Zhou, Zibo; Xu, Tiejun; Liu, Xufeng; Xu, Weiwei; Peng, Xuebing; Wang, Shengming; Zhang, Ping; Zhu, Ning; Dai, Yu; Liu, Zhihong; Wu, Jiefeng; Gao, Daming; Gong, Xianzu; Fu, Peng; Wan, Baonian; Li, Jiangang

    2013-03-01

    For safe operation with active water cooling plasma facing components (PFCs) to handle a large input power over a long pulse discharge, some design optimization, R&D and maintenance were accomplished to improve the in-vessel components. For the purpose of large plasma current (1 MA) operation, the previous separated top and bottom passive stabilizers in the low field were electrical connected to stabilize plasma in the case of vertical displace events (VDEs). The design and experiments are described in this paper

  5. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  6. Compositionally graded InGaN layers grown on vicinal N-face GaN substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Hestroffer, Karine; Lund, Cory; Koksaldi, Onur; Li, Haoran; Schmidt, Gordon; Trippel, Max; Veit, Peter; Bertram, Frank; Lu, Ning; Wang, Qingxiao; Christen, Jürgen; Kim, Moon J.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    This work reports on compositionally graded (0 0 0 1 bar) N-polar InxGa1-xN layers. The InGaN grades with different final In compositions xf up to 0.25 were grown by plasma-assisted molecular beam epitaxy on vicinal GaN base layers with a miscut angle of 4° towards the m-direction. When increasing xf the surface morphology evolved from an interlacing finger structure, attributed to the Ehrlich-Schwöbel effect, towards fully strain-relaxed columnar features. Regardless of the crystal morphology and the strain state each graded sample exhibited a bright photoluminescence signal at room temperature spanning the whole visible range. Cross-sectional nanoscale cathodoluminescence evidenced a red-shift of the luminesced signal from 420 to 580 nm along the grade and also showed strong lateral emission inhomogeneities.

  7. The activation of visual face memory and explicit face recognition are delayed in developmental prosopagnosia.

    Science.gov (United States)

    Parketny, Joanna; Towler, John; Eimer, Martin

    2015-08-01

    Individuals with developmental prosopagnosia (DP) are strongly impaired in recognizing faces, but the causes of this deficit are not well understood. We employed event-related brain potentials (ERPs) to study the time-course of neural processes involved in the recognition of previously unfamiliar faces in DPs and in age-matched control participants with normal face recognition abilities. Faces of different individuals were presented sequentially in one of three possible views, and participants had to detect a specific Target Face ("Joe"). EEG was recorded during task performance to Target Faces, Nontarget Faces, or the participants' Own Face (which had to be ignored). The N250 component was measured as a marker of the match between a seen face and a stored representation in visual face memory. The subsequent P600f was measured as an index of attentional processes associated with the conscious awareness and recognition of a particular face. Target Faces elicited reliable N250 and P600f in the DP group, but both of these components emerged later in DPs than in control participants. This shows that the activation of visual face memory for previously unknown learned faces and the subsequent attentional processing and conscious recognition of these faces are delayed in DP. N250 and P600f components to Own Faces did not differ between the two groups, indicating that the processing of long-term familiar faces is less affected in DP. However, P600f components to Own Faces were absent in two participants with DP who failed to recognize their Own Face during the experiment. These results provide new evidence that face recognition deficits in DP may be linked to a delayed activation of visual face memory and explicit identity recognition mechanisms.

  8. Face verification for mobile personal devices

    NARCIS (Netherlands)

    Tao, Qian

    2009-01-01

    In this thesis, we presented a detailed study of the face verification problem on the mobile device, covering every component of the system. The study includes face detection, registration, normalization, and verification. Furthermore, the information fusion problem is studied to verify face sequenc

  9. Famous face recognition, face matching, and extraversion.

    Science.gov (United States)

    Lander, Karen; Poyarekar, Siddhi

    2015-01-01

    It has been previously established that extraverts who are skilled at interpersonal interaction perform significantly better than introverts on a face-specific recognition memory task. In our experiment we further investigate the relationship between extraversion and face recognition, focusing on famous face recognition and face matching. Results indicate that more extraverted individuals perform significantly better on an upright famous face recognition task and show significantly larger face inversion effects. However, our results did not find an effect of extraversion on face matching or inverted famous face recognition.

  10. Face-to-face: Perceived personal relevance amplifies face processing.

    Science.gov (United States)

    Bublatzky, Florian; Pittig, Andre; Schupp, Harald T; Alpers, Georg W

    2017-05-01

    The human face conveys emotional and social information, but it is not well understood how these two aspects influence face perception. In order to model a group situation, two faces displaying happy, neutral or angry expressions were presented. Importantly, faces were either facing the observer, or they were presented in profile view directed towards, or looking away from each other. In Experiment 1 (n = 64), face pairs were rated regarding perceived relevance, wish-to-interact, and displayed interactivity, as well as valence and arousal. All variables revealed main effects of facial expression (emotional > neutral), face orientation (facing observer > towards > away) and interactions showed that evaluation of emotional faces strongly varies with their orientation. Experiment 2 (n = 33) examined the temporal dynamics of perceptual-attentional processing of these face constellations with event-related potentials. Processing of emotional and neutral faces differed significantly in N170 amplitudes, early posterior negativity (EPN), and sustained positive potentials. Importantly, selective emotional face processing varied as a function of face orientation, indicating early emotion-specific (N170, EPN) and late threat-specific effects (LPP, sustained positivity). Taken together, perceived personal relevance to the observer-conveyed by facial expression and face direction-amplifies emotional face processing within triadic group situations. © The Author (2017). Published by Oxford University Press.

  11. [Study on compatibility of Salviae Miltiorrhizae Radix et Rhizoma and Chuanxiong Rhizoma based on pharmacokinetics of effective components salvianolic acid B and ferulic acid in rat plasma].

    Science.gov (United States)

    Zhang, Cui-ying; Zhang, Hong; Dong, Yu; Ren, Wei-guang; Chen, Heng-wen

    2015-04-01

    A study was made on the pharmacokinetic regularity of effective components salvianolic acid B and ferulic acid in Salviae Miltiorrhizae Radix et Rhizoma (SMRR) and Chuanxiong Rhizoma(CR) in rats, so as to discuss the compatibility mechanism of Salviae Miltiorrhizae Radix et Rhizoma and Chuanxiong Rhizoma. Rats were randomly divided into three groups and intravenously injected with 50 mg x kg(-1) salvianolic acid B for the single SMRR extracts group, 0.5 mg x kg(-1) ferulic acid for the single CR extracts group and 50 mg x kg(-1) salvianolic acid B + 0.5 mg x kg(-1) ferulic acid for the SMRR and CR combination group. The blood samples were collected at different time points and purified by liquid-liquid extraction with ethyl acetate. With chloramphenicol as internal standard (IS), UPLC was adopted to determine concentrations of salvianolic acid B and ferulic acid. The pharmacokinetic parameters of salvianolic acid B and ferulic acid were calculated with WinNonlin 6.2 software and analyzed by SPSS 19.0 statistical software. The UPLC analysis method was adopted to determine salvianolic acid B and ferulic acid in rat plasma, including linear equation, stability, repeatability, precision and recovery. The established sample processing and analysis methods were stable and reliable, with significant differences in major pharmacokinetic parameters, e.g., area under the curve (AUC), mean residence time (MRT) and terminal half-life (t(1/2)). According to the experimental results, the combined application of SMRR and CR can significantly impact the pharmacokinetic process of their effective components in rats and promote the wide distribution, shorten the action time and prolong the in vivo action time of salvianolic acid B and increase the blood drug concentration and accelerate the clearance of ferulic acid in vivo.

  12. Dynamin-like protein 1 at the Golgi complex: a novel component of the sorting/targeting machinery en route to the plasma membrane.

    Science.gov (United States)

    Bonekamp, Nina A; Vormund, Kerstin; Jacob, Ralf; Schrader, Michael

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  13. Dynamin-like protein 1 at the Golgi complex: A novel component of the sorting/targeting machinery en route to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bonekamp, Nina A. [Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Vormund, Kerstin; Jacob, Ralf [Department of Cell Biology and Cell Pathology, University of Marburg, Robert-Koch-Str. 6, 35037 Marburg (Germany); Schrader, Michael, E-mail: mschrader@ua.pt [Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2010-12-10

    The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed.

  14. Using UPLC-MS/MS for Characterization of Active Components in Extracts of Yupingfeng and Application to a Comparative Pharmacokinetic Study in Rat Plasma after Oral Administration

    Directory of Open Access Journals (Sweden)

    Meng-Qi Jia

    2017-05-01

    Full Text Available Yupingfeng (YPF, a famous traditional Chinese medicine, which contains a large array of compounds, has been effectually used in health protection. A two-dimensional liquid chromatography (2D-LC combined with quadrupole time-of-flight mass spectrometry (QTOF-MS method was firstly established to separate and identify chemical components in YPF. A total of 33 compounds were identified, including 15 constituents (flavonoids and saponins in Astragali radix; seven constituents (sesquiterpenoids and polysaccharide in Atractylodis rhizoma; and 11 constituents (chromone and coumarins in Saposhnikoviae radix. The corresponding fragmentation pathway of typical substances was investigated. Then, seven active constituents (astragaloside, calycosin, formononetin, cimicifugoside, 4-O-beta-d-glucosyl-5-O-methylvisamminol, sec-O-glucosylhamaudol, and atractylenolide II derived from three medicinal plants were chosen to further investigate the pharmacokinetic behavior of YPF formula using ultrahigh-performance liquid chromatography with triple quadrupole mass spectrometry system. The method was sensitive, accurate and reliable. We also used the area under the plasma concentration–time curve from zero to infinity (AUC0−∞ as weighting factor to make an integrated pharmacokinetic curve. Results show that the constituents of Saposhnikoviae radix have the best absorption and pharmacokinetic behavior and may play important role in leading to the changes of overall therapeutic effects of YPF. Further study is needed to confirm the association between them.

  15. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  16. Ginzburg-Landau theory for the solid-liquid interface of bcc elements. II - Application to the classical one-component plasma, the Wigner crystal, and He-4

    Science.gov (United States)

    Zeng, X. C.; Stroud, D.

    1989-01-01

    The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.

  17. High flux irradiations of Li coatings on polycrystalline W and ATJ graphite with D, He, and He-seeded D plasmas at Magnum PSI

    NARCIS (Netherlands)

    Neff, A. L.; Allain, J. P.; F. Bedoya,; Morgan, T. W.; De Temmerman, G.

    2015-01-01

    Lithium wall conditioning on PFCs (Plasma Facing Components) on a variety of substrate platforms (e.g. graphite, Mo, etc.) has resulted in improved plasma performance on multiple magnetic fusion devices. On graphite, this improvement occurs through the control of retention and recycling of hydrogen

  18. Effects of aging on face identification and holistic face processing.

    Science.gov (United States)

    Konar, Yaroslav; Bennett, Patrick J; Sekuler, Allison B

    2013-08-09

    Several studies have shown that face identification accuracy is lower in older than younger adults. This effect of aging might be due to age differences in holistic processing, which is thought to be an important component of human face processing. Currently, however, there is conflicting evidence as to whether holistic face processing is impaired in older adults. The current study therefore re-examined this issue by measuring response accuracy in a 1-of-4 face identification task and the composite face effect (CFE), a common index of holistic processing, in older adults. Consistent with previous reports, we found that face identification accuracy was lower in older adults than in younger adults tested in the same task. We also found a significant CFE in older adults that was similar in magnitude to the CFE measured in younger subjects with the same task. Finally, we found that there was a significant positive correlation between the CFE and face identification accuracy. This last result differs from the results obtained in a previous study that used the same tasks and which found no evidence of an association between the CFE and face identification accuracy in younger adults. Furthermore, the age difference was found with subtraction-, regression-, and ratio-based estimates of the CFE. The current findings are consistent with previous claims that older adults rely more heavily on holistic processing to identify objects in conditions of limited processing resources.

  19. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  20. Social Cognition in Williams Syndrome: Face Tuning.

    Science.gov (United States)

    Pavlova, Marina A; Heiz, Julie; Sokolov, Alexander N; Barisnikov, Koviljka

    2016-01-01

    Many neurological, neurodevelopmental, neuropsychiatric, and psychosomatic disorders are characterized by impairments in visual social cognition, body language reading, and facial assessment of a social counterpart. Yet a wealth of research indicates that individuals with Williams syndrome exhibit remarkable concern for social stimuli and face fascination. Here individuals with Williams syndrome were presented with a set of Face-n-Food images composed of food ingredients and in different degree resembling a face (slightly bordering on the Giuseppe Arcimboldo style). The primary advantage of these images is that single components do not explicitly trigger face-specific processing, whereas in face images commonly used for investigating face perception (such as photographs or depictions), the mere occurrence of typical cues already implicates face presence. In a spontaneous recognition task, participants were shown a set of images in a predetermined order from the least to most resembling a face. Strikingly, individuals with Williams syndrome exhibited profound deficits in recognition of the Face-n-Food images as a face: they did not report seeing a face on the images, which typically developing controls effortlessly recognized as a face, and gave overall fewer face responses. This suggests atypical face tuning in Williams syndrome. The outcome is discussed in the light of a general pattern of social cognition in Williams syndrome and brain mechanisms underpinning face processing.

  1. Social cognition in Williams syndrome: face tuning

    Directory of Open Access Journals (Sweden)

    Marina A Pavlova

    2016-08-01

    Full Text Available Many neurological, neurodevelopmental, neuropsychiatric and psychosomatic disorders are characterized by impairments in visual social cognition, body language reading, and facial assessment of a social counterpart. Yet a wealth of research indicates that individuals with Williams syndrome exhibit remarkable concern for social stimuli and face fascination. Here individuals with Williams syndrome were presented with a set of Face-n-Food images composed of food ingredients and in different degree resembling a face (slightly bordering on the Giuseppe Arcimboldo style. The primary advantage of these images is that single components do not explicitly trigger face-specific processing, whereas in face images commonly used for investigating face perception (such as photographs or depictions, the mere occurrence of typical cues already implicates face presence. In a spontaneous recognition task, participants were shown a set of images in a predetermined order from the least to most resembling a face. Strikingly, individuals with Williams syndrome exhibited profound deficits in recognition of the Face-n-Food images as a face: they did not report seeing a face on the images, which typically developing controls effortlessly recognized as a face, and gave overall fewer face responses. This suggests atypical face tuning in Williams syndrome. The outcome is discussed in the light of a general pattern of social cognition in Williams syndrome and brain mechanisms underpinning face processing.

  2. Determination of 4,4'-dinitrocarbanilide (DNC), the active component of the antifertility agent nicarbazin, in chicken, duck, and goose plasma.

    Science.gov (United States)

    Primus, T M; Kohler, D J; Goodall, M A; Yoder, C; Griffin, D; Miller, L; Johnston, J J

    2001-08-01

    4,4'-Dinitrocarbanilide (DNC) was extracted from chicken, duck, and goose plasma and isolated by reversed-phase high-performance liquid chromatography. DNC was detected by ultraviolet absorbance at 347 nm and quantified by comparison to a calibration standard. Recovery data were determined by analyzing DNC-fortified control plasma. The mean recovery of DNC in fortified chicken plasma samples was 99.7 +/- 1.9% for 0.18 and 9.1 ppm DNC, and in fortified duck and goose plasma samples was 99.5 +/- 4.9% and 101.4 +/- 4.5%, respectively, for 0.18, 9.1, and 18 ppm DNC.

  3. FUZZY WITHIN-CLASS MATRIX PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION%模糊的类内矩阵模式主分量分析及在人脸识别中的应用

    Institute of Scientific and Technical Information of China (English)

    朱玉莲

    2008-01-01

    矩阵模式主分量分析(MatPCA)作为有效的特征提取方法能同时处理矩阵表式的模式和向量表式的模式.但与主分量分析(PCA)方法一样,MatPCA没有使用样本的类别信息,因此所提取的特征不能提供足够的判别信息,进而影响随后的分类性能.为有效利用样本的类别信息,在MatPCA基础上提出了一种新的特征提取方法棗模糊的类内MatPCA(F-WMatPCA).F-WMatPCA利用模糊K最近邻(FKNN)求解训练样本的模糊隶属度并在模糊的类内执行MatPCA.由于F-WMatPCA使用更多的类别信息,因此能有效地提高识别精度.对ORL,Yale人脸数据集和几个UCI数据集做了实验,结果证实了该方法的有效性.另外,讨论了F-WMatPCA在人脸识别上的应用,并与F-Fisherfaces作了比较,结果表明F-WMatPCA具有比F-Fisherfaces更稳定、更鲁棒的识别性能.%Matrix principal component analysis (MatPCA),as an effective feature extraction method,can dealwith the matrix pattern and the vector pattern.However,like PCA,MatPCA does not use the class informationof samples.As a result,the extracted features cannot provide enough useful information for distinguishing pat-tern from one another,and further resulting in degradation of classification performance.To fullly use class in-formation of samples,a novel method,called the fuzzy within-class MatPCA (F-WMatPCA)is proposed.F-WMatPCA utilizes the fuzzy K-nearest neighbor method (FKNN) to fuzzily the class membership degrees of atraining sample and then performs fuzzy MatPCA within these patterns having the same class label.Due to moreclass information is used in feature extraction,F-WMatPCA can intuitively improve the classification perfor-mance.Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effectiveand competitive than MatPCA.The experimental analysis on face image databases indicates that F-WMatPCA im-proves the recognition accuracy and is more stable and robust in

  4. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis.

    Science.gov (United States)

    Wang, Hai-Yan; Zhang, Ji; Zhang, Yue-Jing; Zhang, Bo; Liu, Chong-Xi; He, Hai-Rong; Wang, Xiang-Jing; Xiang, Wen-Sheng

    2014-12-01

    Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime.

  5. Discriminant Incoherent Component Analysis.

    Science.gov (United States)

    Georgakis, Christos; Panagakis, Yannis; Pantic, Maja

    2016-05-01

    Face images convey rich information which can be perceived as a superposition of low-complexity components associated with attributes, such as facial identity, expressions, and activation of facial action units (AUs). For instance, low-rank components characterizing neutral facial images are associated with identity, while sparse components capturing non-rigid deformations occurring in certain face regions reveal expressions and AU activations. In this paper, the discriminant incoherent component analysis (DICA) is proposed in order to extract low-complexity components, corresponding to facial attributes, which are mutually incoherent among different classes (e.g., identity, expression, and AU activation) from training data, even in the presence of gross sparse errors. To this end, a suitable optimization problem, involving the minimization of nuclear-and l1 -norm, is solved. Having found an ensemble of class-specific incoherent components by the DICA, an unseen (test) image is expressed as a group-sparse linear combination of these components, where the non-zero coefficients reveal the class(es) of the respective facial attribute(s) that it belongs to. The performance of the DICA is experimentally assessed on both synthetic and real-world data. Emphasis is placed on face analysis tasks, namely, joint face and expression recognition, face recognition under varying percentages of training data corruption, subject-independent expression recognition, and AU detection by conducting experiments on four data sets. The proposed method outperforms all the methods that are compared with all the tasks and experimental settings.

  6. Janus faces of amyloid proteins in neuroinflammation.

    Science.gov (United States)

    Steinman, Lawrence; Rothbard, Jonathan B; Kurnellas, Michael P

    2014-07-01

    Amyloid forming molecules are generally considered harmful. In Alzheimer's Disease two amyloid molecules Aβ A4 and tau vie for consideration as the main pathogenic culprit. But molecules obey the laws of chemistry and defy the way we categorize them as humans with our well-known proclivities to bias in our reasoning. We have been exploring the brains of multiple sclerosis patients to identify molecules that are associated with protection from inflammation and degeneration. In 2001 we noted that aB crystallin (cryab) was the most abundant transcript found in MS lesions, but not in healthy brains. Cryab can reverse paralysis and attenuate inflammation in several models of inflammation including experimental autoimmune encephalomyelitis (EAE), and various models of ischemia. Cryab is an amyloid forming molecule. We have identified a core structure common to many amyloids including amyloid protein Aβ A4, tau, amylin, prion protein, serum amyloid protein P, and cryab. The core hexapeptide structure is highly immune suppressive and can reverse paralysis in EAE when administered systemically. Administration of this amyloid forming hexapeptide quickly lowers inflammatory cytokines in plasma like IL-6 and IL-2. The hexapeptide bind a set of proinflammatory mediators in plasma, including acute phase reactants and complement components. The beneficial properties of amyloid forming hexapeptides provide a potential new therapeutic direction. These experiments indicate that amyloid forming molecules have Janus faces, providing unexpected benefit for neuroinflammatory conditions.

  7. Plasma burn-through simulations using the DYON code and predictions for ITER

    CERN Document Server

    Kim, Hyun-Tae; de Vries, P C; Contributors, JET-EFDA

    2014-01-01

    This paper will discuss simulations of the full ionization process (i.e. plasma burn-through), fundamental to creating high temperature plasma. By means of an applied electric field, the gas is partially ionized by the electron avalanche process. In order for the electron temperature to increase, the remaining neutrals need to be fully ionized in the plasma burn-through phase, as radiation is the main contribution to the electron power loss. The radiated power loss can be significantly affected by impurities resulting from interaction with the plasma facing components. The DYON code is a plasma burn-through simulator developed at Joint European Torus (JET) [1] [2]. The dynamic evolution of the plasma temperature and plasma densities including impurity content is calculated in a self-consistent way, using plasma wall interaction models. The recent installation of a beryllium wall at JET enabled validation of the plasma burn-through model in the presence of new, metallic plasma facing components. The simulation...

  8. Face Recognition using Curvelet Transform

    CERN Document Server

    Cohen, Rami

    2011-01-01

    Face recognition has been studied extensively for more than 20 years now. Since the beginning of 90s the subject has became a major issue. This technology is used in many important real-world applications, such as video surveillance, smart cards, database security, internet and intranet access. This report reviews recent two algorithms for face recognition which take advantage of a relatively new multiscale geometric analysis tool - Curvelet transform, for facial processing and feature extraction. This transform proves to be efficient especially due to its good ability to detect curves and lines, which characterize the human's face. An algorithm which is based on the two algorithms mentioned above is proposed, and its performance is evaluated on three data bases of faces: AT&T (ORL), Essex Grimace and Georgia-Tech. k-nearest neighbour (k-NN) and Support vector machine (SVM) classifiers are used, along with Principal Component Analysis (PCA) for dimensionality reduction. This algorithm shows good results, ...

  9. European cinema: face to face with Hollywood

    NARCIS (Netherlands)

    T. Elsaesser

    2005-01-01

    In the face of renewed competition from Hollywood since the early 1980s and the challenges posed to Europe's national cinemas by the fall of the Wall in 1989, independent filmmaking in Europe has begun to re-invent itself. European Cinema: Face to Face with Hollywood re-assesses the different debate

  10. Mapping Teacher-Faces

    Science.gov (United States)

    Thompson, Greg; Cook, Ian

    2013-01-01

    This paper uses Deleuze and Guattari's concept of faciality to analyse the teacher's face. According to Deleuze and Guattari, the teacher-face is a special type of face because it is an "overcoded" face produced in specific landscapes. This paper suggests four limit-faces for teacher faciality that actualise different mixes of significance and…

  11. Robust multi-camera view face recognition

    CERN Document Server

    Kisku, Dakshina Ranjan; Gupta, Phalguni; Sing, Jamuna Kanta

    2010-01-01

    This paper presents multi-appearance fusion of Principal Component Analysis (PCA) and generalization of Linear Discriminant Analysis (LDA) for multi-camera view offline face recognition (verification) system. The generalization of LDA has been extended to establish correlations between the face classes in the transformed representation and this is called canonical covariate. The proposed system uses Gabor filter banks for characterization of facial features by spatial frequency, spatial locality and orientation to make compensate to the variations of face instances occurred due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images produces Gabor face representations with high dimensional feature vectors. PCA and canonical covariate are then applied on the Gabor face representations to reduce the high dimensional feature spaces into low dimensional Gabor eigenfaces and Gabor canonical faces. Reduced eigenface vector and canonical face vector are fused together usi...

  12. Multithread Face Recognition in Cloud

    Directory of Open Access Journals (Sweden)

    Dakshina Ranjan Kisku

    2016-01-01

    Full Text Available Faces are highly challenging and dynamic objects that are employed as biometrics evidence in identity verification. Recently, biometrics systems have proven to be an essential security tools, in which bulk matching of enrolled people and watch lists is performed every day. To facilitate this process, organizations with large computing facilities need to maintain these facilities. To minimize the burden of maintaining these costly facilities for enrollment and recognition, multinational companies can transfer this responsibility to third-party vendors who can maintain cloud computing infrastructures for recognition. In this paper, we showcase cloud computing-enabled face recognition, which utilizes PCA-characterized face instances and reduces the number of invariant SIFT points that are extracted from each face. To achieve high interclass and low intraclass variances, a set of six PCA-characterized face instances is computed on columns of each face image by varying the number of principal components. Extracted SIFT keypoints are fused using sum and max fusion rules. A novel cohort selection technique is applied to increase the total performance. The proposed protomodel is tested on BioID and FEI face databases, and the efficacy of the system is proven based on the obtained results. We also compare the proposed method with other well-known methods.

  13. FORMATION OF THE INITIAL DISTRIBUTION OF PLASMA COMPONENTS ON THE PHASE PLANE OF LARGE PARTICLES METHOD IN ELECTRIC ARC SYNTHESIS CNS

    Directory of Open Access Journals (Sweden)

    G. V. Abramov

    2014-01-01

    Full Text Available The article deals with the modeling of charged particles in a multicomponent plasma of electric arc discharge with binary collisions in the synthesis of carbon nanostructures (CNS. One of the common methods of obtaining the quality of fullerenes and nanotubes is arc synthesis under inert gas (helium. The determination of the necessary conditions and the mechanism of formation of carbon clusters in the plasma forming set CNS will more effectively and efficiently manage this process. Feature of the problem is that in a plasma arc discharge is a large number of particle interactions and on the cathode surface. Due to the high temperatures and high energy concentration in plasma detailed experimental investigation difficult to carry out. With the aim of avoiding difficult and costly physical experiments developed numerical methods for the analysis of plasma processes. In this article to solve a system of equations of Maxwell - Boltzmann basis for the authors had taken the method of large particles, which reduces the amount of computation and reduce the demands on computing resources. The authors cites the general design scheme of the large particles, and the algorithm of particle distribution of a multicomponent plasma in the phase plane at the initial time. In conclusion, the author argues that the results in the future will define the zone satisfies the energy conditions, the probability of formation of a plasma cluster groups of carbon involved in the synthesis of the CNS.

  14. Simultaneous face and voice processing in schizophrenia.

    Science.gov (United States)

    Liu, Taosheng; Pinheiro, Ana P; Zhao, Zhongxin; Nestor, Paul G; McCarley, Robert W; Niznikiewicz, Margaret

    2016-05-15

    While several studies have consistently demonstrated abnormalities in the unisensory processing of face and voice in schizophrenia (SZ), the extent of abnormalities in the simultaneous processing of both types of information remains unclear. To address this issue, we used event-related potentials (ERP) methodology to probe the multisensory integration of face and non-semantic sounds in schizophrenia. EEG was recorded from 18 schizophrenia patients and 19 healthy control (HC) subjects in three conditions: neutral faces (visual condition-VIS); neutral non-semantic sounds (auditory condition-AUD); neutral faces presented simultaneously with neutral non-semantic sounds (audiovisual condition-AUDVIS). When compared with HC, the schizophrenia group showed less negative N170 to both face and face-voice stimuli; later P270 peak latency in the multimodal condition of face-voice relative to unimodal condition of face (the reverse was true in HC); reduced P400 amplitude and earlier P400 peak latency in the face but not in the voice-face condition. Thus, the analysis of ERP components suggests that deficits in the encoding of facial information extend to multimodal face-voice stimuli and that delays exist in feature extraction from multimodal face-voice stimuli in schizophrenia. In contrast, categorization processes seem to benefit from the presentation of simultaneous face-voice information. Timepoint by timepoint tests of multimodal integration did not suggest impairment in the initial stages of processing in schizophrenia.

  15. Additive effect of polymorphisms in the IL-6, LTA, and TNF-{alpha} genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components

    OpenAIRE

    2010-01-01

    Context: Cytokine polymorphisms and dietary fat composition may influence the risk of the metabolic syndrome (MetS). Objective: The objective of the study was to determine the relationship between lymphotoxin-α (LTA), TNF-α, and IL-6 gene polymorphisms with MetS risk and investigate whether plasma fatty acid composition, a biomarker of dietary fat intake, modulated these associations. Design: Polymorphisms (LTA rs915654, TNF-α rs1800629, IL-6 rs1800797), biochemical measurements, and plasma f...

  16. Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

    Science.gov (United States)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-02-01

    The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting

  17. Thermal shock behaviour of tungsten after high flux H-plasma loading

    NARCIS (Netherlands)

    Wirtz, M.; Linke, J.; Pintsuk, G.; De Temmerman, G.; Wright, G. M.

    2013-01-01

    Previous studies have shown that transient thermal shock loads induce crack networks on tungsten samples especially at low base temperatures. To achieve test conditions which are more relevant for the performance of tungsten-armoured plasma facing components in next step thermonuclear fusion devices

  18. Metabolite identification of seven active components of Huan-Nao-Yi-Cong-Fang in rat plasma using high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Minchao; Lu, Yanzhen; Liu, Jiangang; Li, Hao; Wei, Yun

    2016-02-01

    Huan-Nao-Yi-Cong-Fang (HNYCF) is a potential prescription in treating Alzheimer's disease. Seven constituents [ferulic acid (FA), 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside (THSG), berberine hydrochloride (BHCl), emodin, ginsenoside Rg1 (Rg1), ginsenoside Re (Re) and ginsenoside Rb1 (Rb1)] have been used as quality chemical markers of HNYCF owing to their biological significance and high contents in crude plant materials. This study explored the metabolites of the seven bioactive components in rat plasma to give useful data for further study of the action mechanism of HNYCF. LC/MS-IT-TOF was used to simultaneously characterize the metabolites of the seven components. Using the combination of MetID Solution 1.0 software and accurate mass measurements, the metabolites of HNYCF were reliably characterized. Their structures were elucidated based on the accurate MS(2) spectra and comparisons of their changes in accurate molecular masses and fragment ions with those of parent compounds. A total of five parent active compounds (BHCl, emodin, Rg1, Rb1 and Re) and 10 metabolites were found from the rat plasma 2 h after oral administration of HNYCF dosage, of which two metabolites of emodin were observed for the first time. The proposed metabolic pathways of the bioactive components in the rat plasma are helpful for further studies on the pharmacokinetics and real active compound forms of this drug.

  19. Pre-conceptual design activities for the materials plasma exposure experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Arnold, E-mail: lumsdainea@ornl.gov; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-11-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m{sup 2} with ion fluxes up to 10{sup 24}/m{sup 2} s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  20. Spatial attention modulates early face processing.

    Science.gov (United States)

    Feng, Wenfeng; Martinez, Antigona; Pitts, Michael; Luo, Yue-Jia; Hillyard, Steven A

    2012-12-01

    It is widely reported that inverting a face dramatically affects its recognition. Previous studies have shown that face inversion increases the amplitude and delays the latency of the face-specific N170 component of the event-related potential (ERP) and also enhances the amplitude of the occipital P1 component (latency 100-132 ms). The present study investigates whether these effects of face inversion can be modulated by visual spatial attention. Participants viewed two streams of visual stimuli, one to the left and one to the right of fixation. One stream consisted of a sequence of alphanumeric characters at 6.67 Hz, and the other stream consisted of a series of upright and inverted images of faces and houses presented in randomized order. The participants' task was to attend selectively to one or the other of the streams (during different blocks) in order to detect infrequent target stimuli. ERPs elicited by inverted faces showed larger P1 amplitudes compared to upright faces, but only when the faces were attended. In contrast, the N170 amplitude was larger to inverted than to upright faces only when the faces were not attended. The N170 peak latency was delayed to inverted faces regardless of attention condition. These inversion effects were face specific, as similar effects were absent for houses. These results suggest that early stages of face-specific processing can be enhanced by attention, but when faces are not attended the onset of face-specific processing is delayed until the latency range of the N170.

  1. Perceptual face processing in developmental prosopagnosia is not sensitive to the canonical location of face parts.

    Science.gov (United States)

    Towler, John; Parketny, Joanna; Eimer, Martin

    2016-01-01

    Individuals with developmental prosopagnosia (DP) are strongly impaired in recognizing faces, but it is controversial whether this deficit is linked to atypical visual-perceptual face processing mechanisms. Previous behavioural studies have suggested that face perception in DP might be less sensitive to the canonical spatial configuration of face parts in upright faces. To test this prediction, we recorded event-related brain potentials (ERPs) to intact upright faces and to faces with spatially scrambled parts (eyes, nose, and mouth) in a group of ten participants with DP and a group of ten age-matched control participants with normal face recognition abilities. The face-sensitive N170 component and the vertex positive potential (VPP) were both enhanced and delayed for scrambled as compared to intact faces in the control group. In contrast, N170 and VPP amplitude enhancements to scrambled faces were absent in the DP group. For control participants, the N170 to scrambled faces was also sensitive to feature locations, with larger and delayed N170 components contralateral to the side where all features appeared in a non-canonical position. No such differences were present in the DP group. These findings suggest that spatial templates of the prototypical feature locations within an upright face are selectively impaired in DP.

  2. Face Detection and Modeling for Recognition

    Science.gov (United States)

    2002-01-01

    facial components show the important role of hair and face outlines in human face recognition. . . 8 1.6 Caricatures of (a) Vincent Van Gogh ; (b) Jim... Vincent Van Gogh ; (b) Jim Carrey; (c) Arnold Schwarzenegger; (d) Einstein; (e) G. W. Bush; and (f) Bill Gates. Images are down- loaded from [9], [10

  3. Face-Lift

    Science.gov (United States)

    Tests and Procedures Face-lift By Mayo Clinic Staff A face-lift (rhytidectomy) is a cosmetic surgical procedure to improve the look of your face and neck. During a face-lift, facial soft tissues are lifted, excess skin is ...

  4. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    Energy Technology Data Exchange (ETDEWEB)

    Bays, J. Timothy; King, David L.; O' Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  5. Simultaneous Determination and Pharmacokinetic Study of Six Components in Rat Plasma by HPLC-MS/MS after Oral Administration of Acanthopanax sessiliflorus Fruit Extract

    OpenAIRE

    Peng Du; Mingdao Lei; Yu Liu; Shilin Yang

    2016-01-01

    A specific and reliable HPLC-MS/MS method was developed and validated for the simultaneous determination of protocatechuic acid (PCA), scopolin, (−)-pinoresinol-4,4′-di-O-β-d-glucopyranoside (PDG), acanthoside D, acanthoside B and hyperin in rat plasma for the first time. The analytes were separated on a C18 column (50 × 2.1 mm, 1.8 µm) and a triple-quadrupole mass spectrometer equipped with an electrospray ionization (ESI) source was used for detection. The rat plasma sample was prepared usi...

  6. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  7. Maternal and Paternal Plasma, Salivary, and Urinary Oxytocin and Parent-Infant Synchrony: Considering Stress and Affiliation Components of Human Bonding

    Science.gov (United States)

    Feldman, Ruth; Gordon, Ilanit; Zagoory-Sharon, Orna

    2011-01-01

    Studies in mammals have implicated the neuropeptide oxytocin (OT) in processes of bond formation and stress modulation, yet the involvement of OT in human bonding throughout life remains poorly understood. We assessed OT in the plasma, saliva, and urine of 112 mothers and fathers interacting with their 4-6-month-old infants. Parent-infant…

  8. Optimizing Face Recognition Using PCA

    Directory of Open Access Journals (Sweden)

    Manal Abdullah

    2012-03-01

    Full Text Available Principle Component Analysis PCA is a classical feature extraction and data representation technique widely used in pattern recognition. It is one of the most successful techniques in face recognition. But it has drawback of high computational especially for big size database. This paper conducts a study to optimize the time complexity of PCA (eigenfaces that does not affects the recognition performance. The authors minimize the participated eigenvectors which consequently decreases the computational time. A comparison is done to compare the differences between the recognition time in the original algorithm and in the enhanced algorithm. The performance of the original and the enhanced proposed algorithm is tested on face94 face database. Experimental results show that the recognition time is reduced by 35% by applying our proposed enhanced algorithm. DET Curves are used to illustrate the experimental results.

  9. Optimizing Face Recognition Using PCA

    Directory of Open Access Journals (Sweden)

    Manal Abdullah

    2012-04-01

    Full Text Available Principle Component Analysis PCA is a classical feature extraction and data representation technique widely used in pattern recognition. It is one of the most successful techniques in face recognition. But it has drawback of high computational especially for big size database. This paper conducts a study to optimize the time complexity of PCA (eigenfaces that does not affects the recognition performance. The authorsminimize the participated eigenvectors which consequently decreases the computational time. A comparison is done to compare the differences between the recognition time in the original algorithm and in the enhanced algorithm. The performance of the original and the enhanced proposed algorithm is tested on face94 face database. Experimental results show that the recognition time is reduced by 35% by applying our proposed enhanced algorithm. DET Curves are used to illustrate the experimental results.

  10. 面向等离子体钨基材料的增韧研究最新进展%Recent progress on toughening of tungsten-based materials as plasma facing materials

    Institute of Scientific and Technical Information of China (English)

    何培; 姚伟志; 吕建明; 张向东

    2016-01-01

    Pure tungsten and tungsten-based materials are promising candidates as plasma facing materials in fu-sion application due to their high melting point,good thermal conductivity,low vapor pressure,low sputter rates and low radioactivity.However,the intrinsic brittleness is considered as the main restricting factor for tungsten-based materials and draws the maj or focus of the international fusion materials community.This paper reviews recent progress of three main strategies on toughening of tungsten-based materials:alloying,dispersion strengthening and composite.Presently only Rehnium addition is known to improve tungsten fracture properties by alloying.Proper mechanical working/treatment decreases ductile-brittle transition temperature of dispersion strengthened tungsten alloys.The ductile-brittle transition temperature of tungsten foil laminates by brazing is decreased to 150 ℃.%钨及钨基材料由于其高熔点、高热导率、低蒸气压、低溅射产额及低辐照放射性等优异性能,成为具有广阔应用前景的面向等离子体材料.然而,钨基材料的本征脆性成为其作为聚变材料的主要限制因素,也成为国际聚变材料界的研究热点.本文综述了通过合金化、弥散强化以及复合材料等3种途径来增加钨基材料韧性的最新研究进展.目前合金元素中只有铼的添加能够显著改善钨的韧性;单一弥散强化方式难以有效提高钨的韧性,适当的热机械加工能够明显降低钨基材料的韧脆转变温度;通过钨箔钎焊制备出的钨层压结构复合材料的韧脆转变温度降低到了150℃.

  11. A Novel Face Segmentation Algorithm from a Video Sequence for Real-Time Face Recognition

    Directory of Open Access Journals (Sweden)

    Sudhaker Samuel RD

    2007-01-01

    Full Text Available The first step in an automatic face recognition system is to localize the face region in a cluttered background and carefully segment the face from each frame of a video sequence. In this paper, we propose a fast and efficient algorithm for segmenting a face suitable for recognition from a video sequence. The cluttered background is first subtracted from each frame, in the foreground regions, a coarse face region is found using skin colour. Then using a dynamic template matching approach the face is efficiently segmented. The proposed algorithm is fast and suitable for real-time video sequence. The algorithm is invariant to large scale and pose variation. The segmented face is then handed over to a recognition algorithm based on principal component analysis and linear discriminant analysis. The online face detection, segmentation, and recognition algorithms take an average of 0.06 second on a 3.2 GHz P4 machine.

  12. Real Time Implementation Of Face Recognition System

    Directory of Open Access Journals (Sweden)

    Megha Manchanda

    2014-10-01

    Full Text Available This paper proposes face recognition method using PCA for real time implementation. Nowadays security is gaining importance as it is becoming necessary for people to keep passwords in their mind and carry cards. Such implementations however, are becoming less secure and practical, also is becoming more problematic thus leading to an increasing interest in techniques related to biometrics systems. Face recognition system is amongst important subjects in biometrics systems. This system is very useful for security in particular and has been widely used and developed in many countries. This study aims to achieve face recognition successfully by detecting human face in real time, based on Principal Component Analysis (PCA algorithm.

  13. Face recognition with L1-norm subspaces

    Science.gov (United States)

    Maritato, Federica; Liu, Ying; Colonnese, Stefania; Pados, Dimitris A.

    2016-05-01

    We consider the problem of representing individual faces by maximum L1-norm projection subspaces calculated from available face-image ensembles. In contrast to conventional L2-norm subspaces, L1-norm subspaces are seen to offer significant robustness to image variations, disturbances, and rank selection. Face recognition becomes then the problem of associating a new unknown face image to the "closest," in some sense, L1 subspace in the database. In this work, we also introduce the concept of adaptively allocating the available number of principal components to different face image classes, subject to a given total number/budget of principal components. Experimental studies included in this paper illustrate and support the theoretical developments.

  14. Energetic ions in ITER plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S. D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul-lez-Durance Cedex (France); Chapman, I. T.; Sharapov, S. E. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Lauber, Ph. W. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmanstraße 2, D-85748 Garching (Germany); Oliver, H. J. C. [H H Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shinohara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Tani, K. [Nippon Advanced Technology Co., Ltd, Naka, Ibaraki 311-0102 (Japan)

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  15. Energetic ions in ITER plasmas

    Science.gov (United States)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  16. Fabrication of 13Cr-2Mo Ferritic/Martensitic Oxide-Dispersion-Strengthened Steel Components by Mechanical Alloying and Spark-Plasma Sintering

    Science.gov (United States)

    Bogachev, I.; Grigoryev, E.; Khasanov, O. L.; Olevsky, E.

    2014-06-01

    The outcomes of the mechanical alloying of 13Cr-2Mo ferritic/martensitic steel and yttria (oxide-dispersion-strengthened steel) powders in a ball mill are reported in terms of the powder particle size and morphology evolution. The optimal ball mill rotation speed and the milling time are discussed. The densification kinetics of the mechanically alloyed powder during the process of spark-plasma sintering is analyzed. An optimal set of the compaction processing parameters, including the maximum temperature, the dwell time, and the heating rate, is determined. The specifics of the densification are discussed in terms of the impact of major spark-plasma sintering parameters as well as the possible phase transformations occurring during compaction processing.

  17. Multi-component quantitation of loratadine, pseudoephedrine and paracetamol in plasma and pharmaceutical formulations with liquid chromatography-tandem mass spectrometry utilizing a monolithic column

    Directory of Open Access Journals (Sweden)

    Kamran Abro

    2012-01-01

    Full Text Available The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE, paracetamol (PAR and loratadine (LOR in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%.

  18. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F;

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...... role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments...... of the endocytic pathway, with the notable exclusion of coated vesicles. Relocalization of eps15 is independent of its binding to the EGFR or of binding of the receptor to AP-2. Furthermore, eps15 appears to undergo tyrosine phosphorylation both at the plasma membrane and in a nocodazole-sensitive compartment...

  19. Design, Analysis and R&D of the EAST In-Vessel Components

    Institute of Scientific and Technical Information of China (English)

    YAO Damao; LIU Xufeng; CAO Lei; ZHOU Zibo; CHEN Junling; MAO Xinqiao; WANG Shengming; ZHU Ning; WENG Peide; WAN Yuanxi; BAO Liman; LI Jiangang; SONG Yuntao; CHEN Wenge; DU Shijun; HU Qingsheng; WEI Jing; XIE Han

    2008-01-01

    In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m3/s pumping rate at a pressure of 10-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500℃. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.

  20. Causes of plasma flow bursts and dayside auroral transients: An evaluation of two models invoking reconnection pulses and changes in the Y component of the magnetosheath field

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, M. [Rutherford Appleton Lab., Didcot (United Kingdom); Cowley, S.W.H. [Imperial College, London (United Kingdom); Sandholt, P.E. [Univ. of Oslo (Norway)] [and others

    1995-05-01

    The authors apply two models to interpret data observed by the EISCAT radar, and sky cameras, which observe bursty plasma flow events in conjunction with auroral transients near 630{angstrom}. One model argues the flows are caused by enhanced reconnection events at the magnetopause. The other argues they result from an increase in field line curvature forces associated with magnetosheath fields. The authors conclude that only the reconnection model can reliably explain the observed data.

  1. [Recent circumstances in the supply and demand of various blood products in Japan, and appropriate use of blood components or plasma protein derivatives].

    Science.gov (United States)

    Tohyama, H

    1986-10-01

    In Japan, as in the United States and several other advanced countries, the use of fresh frozen plasma (FFP) and albumin has increased dramatically over the past 10 years. Especially in Japan the increase has been at least tenfold, and half of this usage has been for surgery. Most reviews of albumin usage acknowledge that there is a high ratio of wastage, or use in clinical circumstances without a firm scientific basis. Recently Japan has imported an enormous volume of various plasma fraction products such as albumin, Factor VIII etc., or plasma as raw material from foreign countries, especially the United States. As a result, Japan has come to monopolized a quarter of the albumin manufactured in the world, and has therefore received much internal and external criticism from or ethical standpoint. As countermeasures against shortage of these blood products, it will be necessary for doctors to use these blood products more sparingly and to increase the yield of volunteer donor's blood, especially plasma. More red blood cell concentrate should be utilized for hemorrhage in routine surgical operations. Because whole blood transfusion is rarely used except in cases of massive bleeding that cannot be stopped immediately, exchange transfusion has been performed in the United States and European countries recently. Transfusion of FFP is appropriately used only for replacement of coagulation factor deficiencies, massive transfusion etc. in the United States. It should be particularly noted that these carry the risk of transmission of diseases such as hepatitis and possibly AIDS. Albumin is an effective oncotic agent in the treatment of acute shock and in the maintenance of intravascular volume and cardiac output. However, albumin and FFP have no demonstrable effect in the general supportive management of chronic hypoproteinemia and undernutrition.

  2. The Effect of Blood Component Transfusion Training on Rational Clinical Use of Plasma%成分输血培训教育对血浆临床合理使用率的影响

    Institute of Scientific and Technical Information of China (English)

    任民; 丁显平

    2015-01-01

    Objective:To discuss the method to improve rational use rate of plasma through all-round blood component transfusion training. Methods:The cases of clinical blood component transfusion from February,2012 to march,2013 were selected and investigated. After all-round blood component transfusion training for clinician under the requirements of〞the technical specifications of clinical blood transfusion〞 and〞the management measures of blood for clinical use in medical institutions〞 issued by the ministry of health,the rational usage of blood component was analyzed and compared before and af-ter training. Results:Before training,in terms of the rate of irrational use of blood components,the highest was plasma,followed by platelets and cryoprecipitate. After training,the rate of rational use increased from 47. 92% to 84. 56% and the difference was statistically significant( P <0. 05 ). Conclusion:The blood component transfusion training can obviously improve the rate of rational use of plasma.%目的:通过对成分输血知识的培训后效果调查,探讨提高血浆合理使用率的方法。方法:调查2012年2月~2013年3月临床成份输注情况,按照卫生部《临床输血技术规范》、《医疗机构临床用血管理办法》要求对临床医生进行培训,比较培训前后血浆成份输注合理利用的变化。结果:培训前临床输注血液成份不合理使用率中,血浆最高,其次为血小板和冷沉淀;培训后血浆合理使用率由培训前47.92%提升到84.56%,差异有统计学意义( P<0.05)。结论:临床医生规范输血培训能提高血浆的合理使用率。

  3. About (above) a face - a face

    OpenAIRE

    2009-01-01

    This text intents to unfold some considerations regardind the perception of the image of the Lóri’s face, from the book Uma aprendizagem ou o livro dos prazeres, published by Clarice Lispector in 1969. For that, will be studied the politicians devices who involve the apprehension of the face as a qualifying of the subject and, at the same time, its relation with the lenguage.

  4. About (above a face - a face

    Directory of Open Access Journals (Sweden)

    Diego Cervelin

    2009-07-01

    Full Text Available This text intents to unfold some considerations regardind the perception of the image of the Lóri’s face, from the book Uma aprendizagem ou o livro dos prazeres, published by Clarice Lispector in 1969. For that, will be studied the politicians devices who involve the apprehension of the face as a qualifying of the subject and, at the same time, its relation with the lenguage.

  5. Face Context Influences Local Part Processing: An ERP Study.

    Science.gov (United States)

    Zhang, Hong; Sun, Yaoru; Zhao, Lun

    2017-01-01

    Perception of face parts on the basis of features is thought to be different from perception of whole faces, which is more based on configural information. Face context is also suggested to play an important role in face processing. To investigate how face context influences the early-stage perception of facial local parts, we used an oddball paradigm that tested perceptual stages of face processing rather than recognition. We recorded the event-related potentials (ERPs) elicited by whole faces and face parts presented in four conditions (upright-normal, upright-thatcherised, inverted-normal and inverted-thatcherised), as well as the ERPs elicited by non-face objects (whole houses and house parts) with corresponding conditions. The results showed that face context significantly affected the N170 with increased amplitudes and earlier peak latency for upright normal faces. Removing face context delayed the P1 latency but did not affect the P1 amplitude prominently for both upright and inverted normal faces. Across all conditions, neither the N170 nor the P1 was modulated by house context. The significant changes on the N170 and P1 components revealed that face context influences local part processing at the early stage of face processing and this context effect might be specific for face perception. We further suggested that perceptions of whole faces and face parts are functionally distinguished.

  6. A successful experience of the Iranian blood transfusion organization in improving accessibility and affordability of plasma derived medicine.

    Science.gov (United States)

    Chegini, Azita; Torab, Seyed Ardeshir; Pourfatollah, Ali Akbar

    2017-02-01

    Plasma is the liquid part of blood. It is estimated 21.6 million liters of plasma collect from Whole blood annually. From these plasma, 4.2 million liters transfuse, 8.1 million liters fractionate, 9.3 million liters waste. Nowadays, blood products and PDM (plasma derived medicine) consider as essential medicine in modern health care and transfusion medicine. Iranian blood transfusion organization as a non-profit organization was established in 1974 in order to centralize all blood transfusion activities from donor recruitment to distribution of blood components to hospitals. Iran is the only country in EMR region with the rate of 20-29.9 blood donations per 1000 population and reached 100% voluntary non-remunerated blood donation in 2007. RBCs and platelets demand are much more than FFPs so the IBTO was faced the surplus plasma that could cause surplus plasma wastage. Simultaneously, hospitals need more plasma derived medicine especially albumin, IVIG, factor VIII, factor IX. IBTO was faced the challenges such as Fractionators selection, Plasma volume shipment, Contract duration, Product profile, Multiple External audits, Cold chain maintenance, Transporting plasma across international borders, NAT test. To overcome plasma wastage and storage of PDM. IBTO