WorldWideScience

Sample records for plasma electrode pockels

  1. Modeling plasma behavior in a plasma electrode Pockels cell

    International Nuclear Information System (INIS)

    Boley, C.D.; Rhodes, M.A.

    1999-01-01

    The authors present three interrelated models of plasma behavior in a plasma electrode Pockels cell (PEPC). In a PEPC, plasma discharges are formed on both sides of a thin, large-aperture electro-optic crystal (typically KDP). The plasmas act as optically transparent, highly conductive electrodes, allowing uniform application of a longitudinal field to induce birefringence in the crystal. First, they model the plasma in the thin direction, perpendicular to the crystal, via a one-dimensional fluid model. This yields the electron temperature and the density and velocity profiles in this direction as functions of the neutral pressure, the plasma channel width, and the discharge current density. Next, they model the temporal response of the crystal to the charging process, combining a circuit model with a model of the sheath which forms near the crystal boundary. This model gives the time-dependent voltage drop across the sheath as a function of electron density at the sheath entrance. Finally, they develop a two-dimensional MHD model of the planar plasma, in order to calculate the response of the plasma to magnetic fields. They show how the plasma uniformity is affected by the design of the current return, by the longitudinal field from the cathode magnetron, and by fields from other sources. This model also gives the plasma sensitivity to the boundary potential at which the top and bottom of the discharge are held. They validate these models by showing how they explain observations in three large Pockels cells built at Lawrence Livermore National Laboratory

  2. Plasma Electrode Pockels Cells for the Beamlet and NIF lasers

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Woods, B.; DeYoreo, J.; Atherton, J.

    1994-05-01

    We describe Plasma Electrode Pockels Cells (PEPC) for the Beamlet laser and the proposed National Ignition Facility (NIF) laser. These PEPCs, together with passive polarizers, function as large aperture (> 35 x 35 cm 2 ) optical switches enabling the design of high-energy (> 5 kJ), multipass laser amplifiers. In a PEPC, plasma discharges form on both sides of a thin (1 cm) electro-optic crystal (KDP). These plasma discharges produce highly conductive and transparent electrodes that facilitate rapid (< 100 ns) and uniform charging of the KDP up to the half-wave voltage (17 kV) and back to zero volts. We discuss the operating principles, design, and optical performance of the Beamlet PEPC and briefly discuss our plans to extend PEPC technology for the NIF

  3. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 x 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V x ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V x , the polarization of an incoming, linearly polarized, laser beam is rotated by 90 degree. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 x 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches

  4. 2x1 prototype plasma-electrode pockels cell (PEPC) for the National Ignition Facility

    International Nuclear Information System (INIS)

    Rhodes, M. A.

    1996-10-01

    A large aperture optical switch based on plasma electrode Pockels cell (PEPC) technology is an integral part of the National Ignition Facility (NIP) laser design. This optical switch will trap the input optical pulse in the NIF amplifier cavity for four gain passes and then switch the high-energy output optical pulse out of the cavity. The switch will consist of arrays of plasma electrode Pockels cells working in conjunction with thin-film, Brewster's angle polarizes. The 192 beams in the NIF will be arranged in 4x2 bundles. To meet the required beam-to-beam spacing within each bundle, we have proposed a NIF PEPC design based on a 4x1 mechanical module (column) which is in turn comprised of two electrically independent 2x1 PEPC units. In this paper, we report on the design a single 2x1 prototype module and experimental tests of important design issues using our single, 32 cm aperture PEPC prototype. The purpose the 2x1 prototype is to prove the viability of a 2x1 PEPC and to act, as an engineering test bed for the NIF PEPC design

  5. PLASMA ELECTRODE POCKELS CELL SUBSYSTEM PERFORMANCE IN THE NATIONAL IGNITION FACILITY

    International Nuclear Information System (INIS)

    Barbosa, F; Arnold, P; Hinz, A; Zacharias, R; Ollis, C; Fulkerson, E; Mchale, B; Runtal, A; Bishop, C

    2007-01-01

    The Plasma Electrode Pockels Cell (PEPC) subsystem is a key component of the National Ignition Facility, enabling the laser to employ an efficient four-pass main amplifier architecture. PEPC relies on a pulsed power technology to initiate and maintain plasma within the cells and to provide the necessary high voltage bias to the cells nonlinear crystals. Ultimately, nearly 300 high-voltage, high-current pulse generators will be deployed in the NIF in support of PEPC. Production of solid-state plasma pulse generators and thyratron-switched pulse generators is now complete, with the majority of the hardware deployed in the facility. An entire cluster (one-fourth of a complete NIF) has been commissioned and is operating on a routine basis, supporting laser shot operations. Another cluster has been deployed, awaiting final commissioning. Activation and commissioning of new hardware continues to progress in parallel, driving toward a goal of completing the PEPC subsystem in late 2007

  6. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    International Nuclear Information System (INIS)

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-01-01

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 (Omega) load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs

  7. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.

    1984-01-01

    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  8. Mechanisms of the anomalous Pockels effect in bulk water

    Science.gov (United States)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  9. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  10. Tailored ion energy distributions on plasma electrodes

    International Nuclear Information System (INIS)

    Economou, Demetre J.

    2013-01-01

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas

  11. The heating of plasma focus electrodes

    International Nuclear Information System (INIS)

    Angeli, E; Frignani, M; Mannucci, S; Rocchi, F; Sumini, M; Tartari, A

    2006-01-01

    Plasma focus (PF) technology development today is strictly related to the possibility of a high frequency repetitive working regime. One of the more relevant obstacles to this goal is the heating of structural components due to direct interaction with plasma. In this paper, temperature decay measurements of the inner electrode of a 7 kJ Mather type PF are presented. Data from several series of shots at different bank energies are analysed and compared with theoretical and numerical models. Two possible scale laws are derived from the experimental data to correlate thermal deposition with bank energy. It is found that a fraction of about 10% of total energy is released to the inner electrode. Finally, after some considerations about the cooling and heating mechanisms, an analysis on maximum temperature sustained by materials is presented

  12. Agnes Pockels: Life, Letters and Papers

    Science.gov (United States)

    Helm, Christiane A.

    2004-03-01

    Agnes Pockels (1862 - 1935) was a German woman, whose studies pioneered surface science. She was born in malaria infected North Italy while her father served in the Austrian army. Because he suffered adverse health effects, the family moved in1871 to Braunschweig (North Germany). There, Pockels went to high school. She was interested in science, but formal training was not available for girls. She took on the role of household manager and nurse as her parents' health deteriorated further. Her diary illustrates the difficulties she faced in trying to maintain her own health, the health of her parents and her scientific research at the same time. When Pockels was 18 or 19, she designed a ring tensiometer. Additionally, she found a new method to introduce water-insoluble compounds to the water surface by dissolving them in an organic solvent, and applying drops of the solution. Her surface film balance technique from 1882 is the basis for the method later developed by Langmuir. Since her experimental work was highly original and in a new field, she failed to get it recognized in her own country. When she was 28, she wrote to Lord Rayleigh, since she had read about his recent experiments in surface physics. Rayleigh was so impressed with her experimental methods and results that he had her letter translated from German and published it in Nature (1891). She continued her research on surface films, interactions of solutions and contact angles (more papers, 3 in Nature). Still, she did all experiments at home. With the death of her brother in 1913 and the onset of the war, she retired into private life. Thus she was surprised when she was awarded in her late 60ies with a honorary doctorate by the TU Braunschweig (1932) and the annual prize of the German Colloid Society (1931).

  13. A method and an electrode for excitation of a plasma

    International Nuclear Information System (INIS)

    Glejboel, K.

    1998-01-01

    The method for excitation of a plasma comprises the step of subjecting a gas to an electric field generated by an electrode system. Each of 3 to 30 electrodes are connected to one of three specified AC voltages. The frequency is preferably between 50 and 60 Hz. The invention also concerns an electrode system for carrying out the method. 3 figs

  14. Three electrode atmospheric pressure plasma jet in helium flow

    Science.gov (United States)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  15. Analytical studies of plasma extraction electrodes and ion beam formation

    International Nuclear Information System (INIS)

    Hassan, A.; Elsaftawy, A.; Zakhary, S. G.

    2007-01-01

    In this work a theoretical and computational study on the space charge dominated beams extracted from a plasma ion source through a spherical and planer electrode is simulated and optimized. The influence of some electrode parameters: axial position, electrode diameter, material and shape; on ion current extracted from a plasma source; were investigated and compared. The optimum values and conditions of the curvature of the plasma boundary, angular divergence, perveance, and the extraction gap were optimized to extract a high quality beams. It has shown that for a planar electrode system there is usually a minimum for optimum perveance versus angular divergence at about ? 0.6 for corresponding aspect ratios. This was assured by experimental data. The appropriate spherical electrode system focus the beam to a minimum value located at a distance equal to the focal length of the spherical extraction electrode.

  16. Driving pockels cells in multi-arm lasers

    International Nuclear Information System (INIS)

    Carder, B.M.

    1978-01-01

    This paper describes the method used to drive Pockels cells on the 20-arm Shiva laser for inertial confinement fusion research at the Lawrence Livermore Laboratory. Shiva became operational last fall, and has just completed a series of 20-arm target shots. It uses two pockels cell gates in each laser arm for suppression of amplified spontaneous emission (ASE) that can damage or destroy the target before the main pulse arrives. Two additional Pockels cells are used in the preamplification stages, so that a total of 42 cells must be driven by the pulser system

  17. Plasma structures in front of a floated emissive electrode

    International Nuclear Information System (INIS)

    Ishiguro, S.; Sato, N.

    1993-01-01

    A particle simulation with plasma source is carried out on plasma structures generated by an electron emissive electrode floated in a collisionless plasma. When low-temperature, high-density thermal electrons are emitted, there appears a negative potential dip in front of the electrode, which is always accompanied by a low-frequency oscillation. On the other hand, three regimes of plasma structures appear for an electron beam injection. When a high-flux electron beam is injected, an electron sheath is generated in front of the electrode. The sheath reflects ions flowing to the electrode, providing an increase in the plasma density. When a low-flux electron beam is injected, no electron sheath is generated. When an intermediate-flux beam is injected, the electron sheath structure appears periodically in time. The lifetime of the sheath is proportional to the system length. These results of beam injection are almost consistent with those of a Q-machine experiment

  18. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lota, Grzegorz; Frackowiak, Elzbieta [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Tyczkowski, Jacek; Kapica, Ryszard [Technical University of Lodz, Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Wolczanska 213, 90-924 Lodz (Poland); Lota, Katarzyna [Institute of Non-Ferrous Metals Branch in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland)

    2010-11-15

    The carbon material was modified by RF plasma with various reactive gases: O{sub 2}, Ar and CO{sub 2}. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application. (author)

  19. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    Science.gov (United States)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  20. Response of the plasma to the size of an anode electrode biased near the plasma potential

    International Nuclear Information System (INIS)

    Barnat, E. V.; Laity, G. R.; Baalrud, S. D.

    2014-01-01

    As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of the anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. The discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode

  1. Development of a power electrode for plasma biasing on RFX

    International Nuclear Information System (INIS)

    Desideri, D.; Lorenzi, A. de; Zaccaria, P.

    1999-01-01

    A movable power electrode has been developed on the RFX experiment to modify the radial electric field at the edge of the plasma configuration. The electrode insertion head is a mushroom shaped limiter made of a carbon-carbon composite, and boron nitride is used as insulating material to be exposed to the plasma. The power electrode is designed to carry a 10 kA impulsive current and is insulated for 10 kV DC. The current into the electrode is driven by a power supply based on capacitor banks, and protective actions to cope with fault conditions have been implemented. The design of the electrode supporting structure has been done by using 3D finite element analyses, performed to evaluate the dynamic response of the system subjected to impulsive electromagnetic loads. The system has been used on the RFX experiment, showing the expected capability and flexibility. The current and voltage electrode waveforms are reported and discussed as far as the experimental results are concerned. Displacements of the electrode stiffening structure under electromagnetic load have been measured and compared to the numerical results. (orig.)

  2. Electrode breakdown potentials in MHD plasmas

    International Nuclear Information System (INIS)

    Sodha, M.S.; Raju, G.V.R.; Kumar, A.S.; Gupta, Bhumesh

    1988-01-01

    Electrode breakdown potentials and current densities have been calculated for both the thermionically electron emitting and non-emitting cathodes. Calculated values have been compared with the available experimental results. It is found that the cathode potential drop for the breakdown is almost unaffected by the emission. However, both the total potential difference between the anode and the cathode and the current density at the breakdown are higher for electron-emitting cathodes than for non-emitting cathodes. (author)

  3. Development of DBD plasma actuators: The double encapsulated electrode

    Science.gov (United States)

    Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos

    2015-04-01

    Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.

  4. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    International Nuclear Information System (INIS)

    Matsuyama, Shoichiro; Shinohara, Shunjiro

    2001-01-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  5. High plasma rotation velocity and density transitions by biased electrodes in RF produced, magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Shoichiro; Shinohara, Shunjiro [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Fukuoka (Japan)

    2001-07-01

    A large density profile modification was successfully obtained by voltage biasing to electrodes inserted in a RF (radio frequency) produced, magnetized plasma, and formation of strong shear of azimuthal plasma rotation velocity in a supersonic regime was found. For the case of biasing to an electrode near the central plasma region, two types of density transitions were observed in the outer plasma region: one was an oscillatory transition between two states, and the other was a transition from high to low density states with a large reduction of density fluctuations. (author)

  6. Plasma-liquid system with rotational gliding discharge with liquid electrode

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Solomenko, O.V; Martysh, E.V.; Fedirchuk, I.I.

    2014-01-01

    Plasma-liquid system based on rotational gliding discharge with one liquid electrode was developed. Emission spectra of plasma of rotational gliding discharge with one liquid electrode were investigated. Discovered effective mechanism of controlling non-isothermal level of plasma in dynamic plasma-liquid systems. Major mechanism of expulsion of metal anode material from plasma-liquid systems with rotational discharges was shown.

  7. Time-dependent simulation of plasma and electrodes in high-intensity discharge lamps with different electrode shapes

    CERN Document Server

    Flesch, P

    2003-01-01

    The subject of this paper is the modelling of d.c. and a.c. high-intensity Hg-discharge lamps with differently shaped electrodes. Different arc attachments on the electrodes are studied and insight for the development of new electrodes is gained. The model includes the entire discharge plasma (plasma column, hot plasma spots in front of electrodes, near-electrode non-LTE-plasma) as well as anode and cathode. No subdivision of the discharge space into different regions is necessary (like space charge layer, ionization zone, plasma column). This is achieved by using a differential equation for a non-LTE electrical conductivity which is applicable for local thermal equilibrium (LTE-)regions as well as for non-LTE plasma regions close to the electrodes in a high pressure plasma. Modelling results for a 0.6 MPa mercury discharge considering six different electrode shapes (anode and cathode) are presented and compared with experimental results. The electrodes have different diameters and different electrode tips, s...

  8. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    Science.gov (United States)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  9. Direct reform of graphite oxide electrodes by using ambient plasma for supercapacitor applications

    Science.gov (United States)

    Kim, Ho Jun; Jeong, Hae Kyung

    2017-10-01

    Ambient plasma is applied to graphite oxide electrodes directly to improve electrochemical properties for supercapacitor applications. Surface morphology of the electrodes after the plasma treatment changes dramatically and amount of oxygen reduced significantly, demonstrating a reduction effect on the graphite oxide electrode by the ambient plasma. Equivalent series resistance of the electrode also reduced from 108 Ω to 84 Ω after the plasma treatment. Corresponding specific capacitance, therefore, increases from 0.45 F cm-2 to 0.85 F cm-2, proving that the ambient plasma treatment is very efficient, clean, economic, and environment-friendly method to reform the graphite oxide electrodes directly for the supercapacitor applications.

  10. High density plasma productions by hydrogen storage electrode in the Tohoku University Heliac

    International Nuclear Information System (INIS)

    Utoh, H.; Takahashi, H.; Tanaka, Y.; Takenaga, M.; Ogawa, M.; Shinde, J.; Iwazaki, K.; Shinto, K.; Kitajima, S.; Sasao, M.; Nishimura, K.; Inagaki, S.

    2005-01-01

    In the Tohoku University Heliac (TU-Heliac), the influence of a radial electric field on improved modes has been investigated by an electrode biasing. In both positive and negative biasing experiments by the stainless steel (SUS) electrode (cold-electron or ion collection), the improvement of plasma confinement was clearly observed. Furthermore, by negative biasing with a hot cathode (electron injection), the radial electric fields can be actively controlled as a consequence of the control of the electrode current I E . By using the electrode made of a hydrogen storage metal, for example Titanium (Ti) or Vanadium (V), the following possibility can be expected: (1) ions accelerated from the positive biased electrode allow the simulation for the orbit loss of high-energy particles, (2) the electrons/neutral- particles injected from the negative biased electrode provide the production of the high- density plasma, if hydrogen are successfully stored in the electrode. In this present work, several methods were tried as the treatment for hydrogen storage. In the case of the Ti electrode biased positively after the treatment, the improvement of plasma confinement was observed in He plasma, which were same as the experimental results of the SUS electrode. However, in the electron density profiles inside the electrode position there was difference between the biased plasma by the Ti electrode and that by the SUS electrode. In some of Ar discharges biased negatively with the Ti electrode after the treatment, the electron density and the line intensity of H α increased about 10 times of those before biasing. This phenomenon has not been observed in the Ar plasma biased by the SUS electrode. This result suggested that the Ti electrode injected electrons/neutral-hydrogen into the plasma. This high-density plasma productions were observed only 1 ∼ 3 times in the one treatment for hydrogen storage. By using a Vanadium (V) electrode, productions of the high-density plasma

  11. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  12. Plasma confinement using biased electrode in the TCABR tokamak

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Kuznetsov, Y.K.; Severo, J.H.F.; Fonseca, A.M.M.; Elfimov, A.; Bellintani, V.; Heller, M.V.A.P.; Galvao, R.M.O.; Sanada, E.K.; Elizondo, J.I.; Machida, M.

    2005-01-01

    Experimental data obtained on the TCABR tokamak (R = 0.61 m, r = 0.18 m) with an electrally polarized electrode, placed at r = 0.16 m, is reported in this paper. The experiment was performed with plasma current of 90 kA (q 3.1), and hydrogen gas injection adjusted for keeping the electron density at 1.0x10(19) m(-3) without bias. Temporal and radial profiles of plasma parameters with and without bias were measured. The comparison of the profiles shows an increase of the density, up to a maximum factor of 2.6, while H-alpha hydrogen spectral line intensity decreases, and the CIII impurity stays on the same level. The analysis of temporal and radial profiles of plasma parameters indicates that the confined plasma entered in the H-mode regime. The data analysis shows a maximum enhanced confinement factor of 1.95, decaying to 1.5 at the maximum of the density, in comparison with predicted Neo-Alcator scaling law values. Indications of transient increase of the density gradient near the plasma edge were obtained with measurements of density profiles. Calculations of turbulence and transport at the plasma edge, using measured floating potentials and ion saturation currents, show strong decrease in the power spectra and transport. Bifurcation was not observed, and the decrease in the saturation current occurs in 50 microseconds. (author)

  13. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    Science.gov (United States)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  14. Material for electrodes of low temperature plasma generators

    Science.gov (United States)

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  15. Plasma confinement using biased electrode in the TCABR tokamak

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Kuznetsov, Y.K.; Severo, J.H.F.; Fonseca, A.M.M.; Elfimov, A.; Bellintani, V.; Machida, M.; Heller, M.V.A.P.; Galvao, R.M.O.; Sanada, E.K.; Elizondo, J.I.

    2005-01-01

    Experimental data obtained on the TCABR tokamak (R = 0.61 m, a = 0.18 m) with an electrically polarized electrode, placed at r = 0.16 m, is reported in this paper. The experiment was performed with plasma current of 90 kA (q 3.1) and hydrogen gas injection adjusted for keeping the electron density at 1.0 x 10 19 m -3 without bias. Time evolution and radial profiles of plasma parameters with and without bias were measured. The comparison of the profiles shows an increase of the central line-averaged density, up to a maximum factor of 2.6, while H α hydrogen spectral line intensity decreases and the C III impurity stays on the same level. The analysis of temporal behaviour and radial profiles of plasma parameters indicates that the confined plasma enters the H-mode regime. The data analysis shows a maximum enhanced energy confinement factor of 1.95, decaying to 1.5 at the maximum of the density, in comparison with predicted Neo-Alcator scaling law values. Indications of transient increase of the density gradient near the plasma edge were obtained with measurements of density profiles. Calculations of turbulence and transport at the Scrape-Off-Layer, using measured floating potentials and ion saturation currents, show a strong decrease in the power spectra and transport. Bifurcation was not observed and the decrease in the saturation current occurs in 50 μs

  16. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  17. Investigation of supercapacitors with carbon electrodes obtained from argon-acetylene arc plasma

    OpenAIRE

    Kavaliauskas, Žydrūnas

    2010-01-01

    The dissertation examines topics related to the formation of supercapacitors using plasma technology and their analysis. Plasma spray technology was used to form supercapacitors electrodes. Carbon was deposited on stainless steel surface using the atmospheric pressure argon-acetylene plasma. The deposition of nickel oxide on the surface of carbon electrodes was made using magnetron sputtering method. The influence of acetylene amount to the supercapacitors electrodes and the electrical charac...

  18. Using oxygen plasma treatment to improve the performance of electrodes for capacitive water deionization

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Zou, Linda; Fabretto, Manrico; Short, Robert D.

    2013-01-01

    An oxygen plasma treatment was employed to modify the surface of carbon electrodes used in capacitive deionization (CDI). X-ray photoelectron spectroscopy analysis of samples showed that oxygen plasma is mainly attaching oxygenated groups on the PTFE binder used in these electrodes. By functionalizing the binder it can increase the hydrophilicity of the electrode surface and increase the available specific surface area. 2.5 min of plasma treatment resulted in the largest improvement of CDI performance of electrodes. Thermodynamic study of CDI performance showed that the modified electrodes followed Langmuir and Freundlich isotherms resulting from the increased interaction between the enhanced electrodes and water. The kinetic study showed that the CDI process followed a pseudo-first order adsorption kinetics. The calculated adsorption rate constants suggested that plasma modification can accelerate ion adsorption of electrodes

  19. Electrical Processes in a Flowing Plasma with Cold Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Distefano, E.; Fraidenraich, N. [Facultad de Ciencias Fisicas y Matematicas, University of Chile, Santiago (Chile)

    1968-11-15

    The voltage-current characteristics of a flowing plasma between two electrodes is of interest for MHD power generation because of the high voltage drop necessary to make a current flow through the cool boundary layer of the plasma, lowering the efficiency of the MHD generator when the duct walls are cooled. The V-I characteristics are obtained for a combustion driven shock-tube generated plasma, and the voltage distribution is measured by probes inserted across the plasma. The gas used is argon and the plasma parameters are: T = 9000 Degree-Sign K, p = 130 mmHg, u = 2500 m/sec, n{sub e} = 1.60 x 10{sup 15} cm{sup -3}. The probe technique has allowed experimental confirmation of the high voltage drop obtained in the vicinity of the cathode. A theoretical model has been set up in order to explain the main features of this phenomenon. The model considers the voltage drop along the following regions: the turbulent boundary layer and the viscous sublayer. The structure of the first two regions are taken into account according to the Coles transformation theory. The model considers three fluids, ions, electrons and neutrals: the mass and momentum particle conservation together with the Poisson equation and continuity of electric current allows us to set up a system of four differential equations with four unknowns. Pair production is taken into account in order to explain the necessary change over from electron current in the main body of the plasma to the predominantly ionic current in the neighbourhood of the cathode wall. Numerical computation of the system of equations has been done and the main features of the experimental results are explained. (author)

  20. Operational features and air plasma characteristics of a thermal plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Hur, Min; Kim, Keun Su; Hong, Sang Hee

    2003-01-01

    The operational features and thermal plasma characteristics of a plasma torch with hollow electrodes are investigated based on their dependence on input current, gas flow rate and electrode diameter when air is used as a plasma gas. A plasma torch with a hollow cathode and anode has been designed and fabricated, and the arc voltages and thermal efficiencies are measured from its discharge. The newly modified similarity criteria are derived from the measured data related to torch performances. From the fact that these criteria successfully describe both the arc voltage and thermal efficiency behaviour of the torch, depending on its operating and geometrical parameters, it is proved that they can be usefully applied to the design and operation of high power torches. For the numerical modelling of the interior region of the torch, a cold flow analysis is employed along with a simplified balance equation of the Lorentz and gas dynamic drag forces in order to determine a cathode spot position on the cathode surface. The validity of this method is confirmed by comparison of the calculated and measured net powers. As a practically useful result of this analysis, carried out through this numerical and experimental work, it is suggested that low input current, high gas flow rate and relatively large electrode diameter are more favourable as appropriate operating conditions of the torch for the efficient treatment of hazardous organic wastes

  1. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  2. Effects of electrode geometry on transient plasma induced ignition

    International Nuclear Information System (INIS)

    Shukla, B; Gururajan, V; Eisazadeh-Far, K; Windom, B; Egolfopoulos, F N; Singleton, D; Gundersen, M A

    2013-01-01

    Achieving effective ignition of reacting mixtures using nanosecond pulsed discharge non-equilibrium transient plasma (TP), requires that the effects of several experimental parameters be quantified and understood. Among them are the electrode geometry, the discharge location especially in non-premixed systems, and the relative ignition performance by spark and TP under the same experimental conditions. In the present investigation, such issues were addressed experimentally using a cylindrical constant volume combustion chamber and a counterflow flame configuration coupled with optical shadowgraph that enables observation of how and where the ignition process starts. Results were obtained under atmospheric pressure and showed that the electrode geometry has a notable influence on ignition, with the needle-to-semicircle exhibiting the best ignition performance. Furthermore, it was determined that under non-premixed conditions discharging TP in the reactants mixing layer was most effective in achieving ignition. It was also determined that in the cases considered, the TP induced ignition initiates from the needle head where the electric field and electron densities are the highest. In the case of a spark, however, ignition was found to initiate always from the hot region between the two electrodes. Comparison of spark and TP discharges in only air (i.e. without fuel) and ignition phenomena induced by them also suggest that in the case of TP ignition is at least partly non-thermal and instead driven by the production of active species. Finally, it was determined that single pulsed TP discharges are sufficient to ignite both premixed and non-premixed flames of a variety of fuels ranging from hydrogen to heavy fuels including F-76 diesel and IFO380 bunker fuel even at room temperature. (paper)

  3. Optimization and analysis of shape of coaxial electrode for microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi

    2010-01-01

    The effect of the shape of the electrode to generate 2.45 GHz microwave plasma in pure water is examined. Three variations of a common coaxial electrode are proposed, and compared according to the power required for plasma ignition and the position of plasma ignition in pure water at 6 kPa using a high-speed camera. These coaxial electrodes are calculated using three-dimensional finite-difference time-domain method calculations. The superior shape of coaxial electrode is found to be one with a flat plane on the tip of the inner electrode and dielectric substance located below the tip of the outer electrode. The position of the plasma ignition is related to the shape of the coaxial electrode. By solving the heat-conduction equation of water around the coaxial electrode taking into account the absorption of the microwave energy, the position of the plasma ignition is found to be not where electric field is the largest, but rather where temperature is maximized.

  4. Low-energy plasma-cathode electron gun with a perforated emission electrode

    Science.gov (United States)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  5. Destruction of Bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma

    International Nuclear Information System (INIS)

    Panikov, N.S.; Paduraru, S.; Crowe, R.; Ricatto, P.J.; Christodoulatos, C.; Becker, K.

    2002-01-01

    The results of experiments aimed at the investigation of the destruction of spore-forming bacteria, which are believed to be among the most resistant microorganisms, using a novel atmospheric-pressure dielectric capillary electrode discharge plasma are reported. Various well-characterized cultures of Bacillus subtilis were prepared, subjected to atmospheric-pressure plasma jets emanating from a plasma shower reactor operated either in He or in air (N 2 /O 2 mixture) at various power levels and exposure times, and analyzed after plasma treatment. Reductions in colony-forming units ranged from 10 4 (He plasma) to 10 8 (air plasma) for plasma exposure times of less than 10 minutes. (author)

  6. Transmission line theory for long plasma production by radio frequency discharges between parallel-plate electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1991-01-01

    In order to seek for a radio frequency (RF) eigen-mode of waves in producing a plasma between a pair of long dielectric-covered parallel-plate RF electrodes, this paper analyzed all normal modes propagating along the electrodes by solving Maxwell's equations. The result showed that only an odd surface wave mode will produce the plasma in usual experimental conditions, which will become a basic transmission line theory when use of such long electrodes for on-line mass-production of amorphous silicon solar cells

  7. Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells

    Science.gov (United States)

    Xu, G.; Liu, J.; Yao, C.; Chen, S.; Lin, F.; Li, P.; Shi, X.; Zhang, Guan-Jun

    2017-08-01

    Atmospheric pressure cold plasma jets have been recently shown as a highly promising tool in certain cancer therapies. In this paper, an atmospheric pressure plasma jet (APPJ) with a one inner floating and two outer electrode configuration using helium gas for medical applications is developed. Subjected to a range of applied voltages with a frequency of 19.8 kHz at a fixed rate of gas flow (i.e., 3 l/min), electrical and optical characteristics of the APPJ are investigated. Compared with the device only with two outer electrodes, higher discharge current, longer jet, and more active species in the plasma plume at the same applied voltage together with the lower gas breakdown voltage can be achieved through embedding a floating inner electrode. Employing the APPJ with a floating electrode, the effects of identical plasma treatment time durations on murine melanoma cancer and normal fibroblast cells cultured in vitro are evaluated. The results of cell viability, cell apoptosis, and DNA damage detection show that the plasma can inactivate melanoma cells in a time-dependent manner from 10 s to 60 s compared with the control group (p cells compared with their control group, the plasma with treatment time from 30 s to 60 s can induce significant changes (p cells at the same treatment time. The different basal reactive oxygen species level and antioxidant superoxide dismutase level of two kinds of cells may account for their different responses towards the identical plasma exposure.

  8. Controlling laser ablation plasma with external electrodes. Application to sheath dynamics study and beam physics

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko

    2013-01-01

    The potential of laser ablation plasma was controlled successfully by using external ring electrodes. We found that an electron sheath is formed at the plasma boundary, which plays an important role in the potential formation. When the positively biased plasma reaches a grounded grid, electrons in the plasma are turned away and ions are accelerated, which leads to the formation of a virtual anode between the grid and an ion probe. We think that this device which can raise the plasma potential up to order of kV can be applied to the study of sheath dynamics and to a new type of ion beam extraction. (author)

  9. Effects of electrode polarization and particle deposition profile on TJ-I plasma confinement

    International Nuclear Information System (INIS)

    Zurro, B.; Tabares, F.; Pardo, C.; Tafalla, D.; Cal, E. de la; Garcia-Castaner, B.; Pedrosa, M.A.; Sanchez, J.; Rodriguez-Yunta, A.

    1991-01-01

    The role of self-created radial electric field on particle confinement in TJ-I plasmas was addressed using plasma rotation data in conjunction with particle confinement times measured by laser ablation. In this paper following the pioneer work of Taylor, we have started to study the influence of a polarized electrode inserted into the plasma on particle confinement and plasma rotation in this ohmically heated tokamak. To have a supportive frame of reference, the confinement time of background particles and their transport into plasma without electrode, has been studied by measuring with space-time resolution the H α emission on varying plasma conditions. These experiments have been carried out in ohmically heated discharges of the TJ-I tokamak (R 0 =30 cm, a=10 cm) which was operated with plasma currents between 20 and 45 kA and a toroidal field ranging from 0.8 to 1.5 T. In this paper, firstly the experimental plasma and specific diagnostics are described, secondly, the parametric dependence of the particle confinement time and radial transport of background plasma is presented and finally, the influence of polarizing an inserted electrode on a particular discharge is given and discussed in the context of other polarization experiments. (author) 7 refs., 4 figs

  10. Precise alignment of a longitudinal Pockels Cell for Q-switch operation Nd:YAG laser

    International Nuclear Information System (INIS)

    Nisperuza, D.; Botero, G.; Bastidas, A.

    2009-01-01

    The failure to accurately center optical components may, especially in the case of high gain of the Nd:YAG lasers, produce strong parasitic off-axis laser action capable of causing severe component damage typically to the Pockels cell. We report a precise longitudinal alignment of the Pockels cell by modulating the laser polarization using an experimental setup of circular dichroism. This procedure is based on the use of an analyzer at 0 o or 45 o of the Pockels cell axes, and it allows us to adjust the Q-switching delay for best pulse shape, maximum output energy and to reduce the lack of symmetry of the spot laser considerably. (Author)

  11. Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization

    Science.gov (United States)

    Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi

    2018-01-01

    We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.

  12. Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Kumar, S.; Sugai, H.

    2001-01-01

    Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C 4 F 8 +Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure

  13. Potential Formation in Front of an Electron Emitting Electrode in a Two-Electron Temperature Plasma

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.; Erzen, D.

    2003-01-01

    Plasma potential formation in the pre-sheath region of a floating electron emitting electrode (collector) is studied theoretically in a two-electron-temperature plasma using a static kinetic plasma-sheath model. Dependence of the collector floating potential, the plasma potential in the pre-sheath region, and the critical emission coefficient on the hot electron density and temperature is calculated. It is found that for high hot to cool electron temperature ratio a double layer like solutions exist in a certain range of hot to cool electron densities

  14. Theoretical and experimental identification of a plasma in a gaseous discharge between two parallel plates electrodes

    International Nuclear Information System (INIS)

    Delgado Aparicio Villaran, Luis Felipe; Chaname D, Julio

    1996-01-01

    This work allows a basic approach to the identification of a gaseous discharge plasma (of air, hydrogen, argon or any other gas) between two metallic electrodes separated by a variable distance 'd' in the range of 1 to 17 cm. The discharge zone identification (anodic and cathodic regions), the tabulation of the characteristic curves V (volts), versus vs I (m A), and V (Volts) versus pd (Torr x cm), as well the implementation of some electric probes, will characterize this plasma. (author)

  15. The effect of phase difference between powered electrodes on RF plasmas

    International Nuclear Information System (INIS)

    Proschek, M; Yin, Y; Charles, C; Aanesland, A; McKenzie, D R; Bilek, M M; Boswell, R W

    2005-01-01

    This paper presents the results of measurements carried out on plasmas created in five different RF discharge systems. These systems all have two separately powered RF (13.56 MHz) electrodes, but differ in overall size and in the geometry of both vacuum chambers and RF electrodes or antennae. The two power supplies were synchronized with a phase-shift controller. We investigated the influence of the phase difference between the two RF electrodes on plasma parameters and compared the different system geometries. Single Langmuir probes were used to measure the plasma parameters in a region between the electrodes. Floating potential and ion density were affected by the phase difference and we found a strong influence of the system geometry on the observed phase difference dependence. Both ion density and floating potential curves show asymmetries around maxima and minima. These asymmetries can be explained by a phase dependence of the time evolution of the electrode-wall coupling within an RF-cycle resulting from the asymmetric system geometry

  16. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  17. Electromagnetic surface waves for large-area RF plasma productions between large-area planar electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1992-01-01

    Recently, large-area plasma production has been tested by means of a 13.56 MHz radio-frequency (RF) discharge between a pair of large-area planar electrodes, approximately 0.5 m x 1.4 m, as one of the semiconductor technologies for fabrication of large-area amorphous silicon solar cells in the ''Sunshine Project'' of the Agency of Industrial Science and Technology in Japan. We also confirmed long plasma production between a pair of long electrodes. In this paper, normal electromagnetic (EM) waves propagating in a region between a planar waveguide with one plasma and two dielectric layers are analyzed in order to study the feasibility of large-area plasma productions by EM wave-discharges between a pair of large-area RF electrodes larger than the half-wavelength of RF wave. In conclusion, plasmas higher than an electron plasma frequency will be produced by an odd TMoo surface mode. (author) 4 refs., 3 figs

  18. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    Science.gov (United States)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  19. Novel Plasma Reactor with Rotary Helix Electrode Used in Coupling of CH4 at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Wang Dawang; Ma Tengcai

    2006-01-01

    At the ambient temperature and pressure a glow discharge plasma was used as a new approach for the coupling of methane with the newly-developed rotary multidentate helix electrode. In the presence of hydrogen, the effects of the input peak voltages and gas flow rates on methane conversion, C 2 single pass yield and selectivity were investigated, and then the results were compared with those from the three-disc multidentate electrode. This demonstrated, on an experimental scale, that the rotary multidentate helix electrode was better than the multidentate three-disc electrode as there was little accumulation of coke, and the C 2 yield per pass was 69.85% and C 2 selectivity over 99.14% with 70.46% methane conversion at an input peak voltage of 2300 V and 60 ml/min gas flow rate

  20. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  1. Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ardhaoui, Malika, E-mail: malika.ardhaoui@ucd.ie [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France); Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Surface Engineering Research Group, School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4 (Ireland); Bhatt, Sudhir [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France); Zheng, Meihui [Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Dowling, Denis [Surface Engineering Research Group, School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4 (Ireland); Jolivalt, Claude [Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Khonsari, Farzaneh Arefi [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France)

    2013-08-01

    In this work, a simple and rapid method was used to functionalize carbon electrode in order to efficiently immobilize laccase for biosensor application. A stable allylamine coating was deposited using a low pressure inductively excited RF tubular plasma reactor under mild plasma conditions (low plasma power (10 W), few minutes) to generate high density amine groups (N/C ratio up to 0.18) on rough carbon surface electrodes. The longer was the allylamine plasma deposition time; the better was the surface coverage. Laccase from Trametes versicolor was physisorbed and covalently bound to these allylamine modified carbon surfaces. The laccase activities and current outputs measured in the presence of 2,2′-azinobis-(3-ethylbenzothiazole-6-sulfonic acid) (ABTS) showed that the best efficiency was obtained for electrode plasma coated during 30 min. They showed also that for all the tested electrodes, the activities and current outputs of the covalently immobilized laccases were twice higher than the physically adsorbed ones. The sensitivity of these biocompatible bioelectrodes was evaluated by measuring their catalytic efficiency for oxygen reduction in the presence of ABTS as non-phenolic redox substrate and 2,6-dimethoxyphenol (DMP) as phenolic one. Sensitivities of around 4.8 μA mg{sup −1} L and 2.7 μA mg{sup −1} L were attained for ABTS and DMP respectively. An excellent stability of this laccase biosensor was observed for over 6 months. - Highlights: • Low pressure plasma was used to generate stable allylamine coating. • Laccase from Trametes versicolor was physisorbed and covalently immobilized. • Best biosensor efficiency obtained for the covalently immobilized laccases • Sensitivities of 4.8 μA mg{sup −1} L and 2.7 μA mg{sup −1} L for ABTS and DMP respectively.

  2. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    Science.gov (United States)

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Investigation of the connection between plasma temperature and electrode temperature in metal-halide lamps

    International Nuclear Information System (INIS)

    Fromm, D.C.; Gleixner, K.H.; Lieder, G.H.

    2002-01-01

    Spatial profiles of electrode temperatures and plasma temperatures have been measured on 'real' HID lamps filled with a commercial metal-halide compound. The absolute accuracy of pyrometric determination of electrode tip temperatures was ±30 K, while the determination of plasma core temperatures, using a modified Bartels method, has an accuracy of ±100 K. We could deduce a close correlation between the plasma temperature in front of an electrode T p and its tip temperature T t due to the influence of the cataphoresis. If T p is reduced at the cathode the T t value has also lowered, whereas T p at the anode is raised together with its T t data. This correlation disappears at ballast frequencies above 100 Hz, whereas the cataphoresis influence on T p continues up to 500 Hz. Based on the latter limit, a rough estimation of the cataphoresis velocity delivers 700 cm s -1 . As a tentative interpretation, we suggest that the connection between T p and T t is caused by an increase of the ion part of the total current at the cathode due to Na accumulation before it. Thus, the cathode has to emit fewer electrons and works at a lower temperature. Further results are the temporal behaviour of T t depends on the ballast type. For vertical operation the strong influence of convection on T t has also to be taken into account. Above 100 Hz, where only convection plays a role, the upper electrode T t exceeds the T t value of the lower electrode by nearly 400 K. This discrepancy one may explain, tentatively, by convection heating of the upper electrode and convection cooling of the lower one. (author)

  4. Arc plasma assisted rotating electrode process for preparation of metal pebbles

    International Nuclear Information System (INIS)

    Mohanty, T.; Tripathi, B.M.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Spherical beryllium pebbles of size ranging from 0.2-2 mm are required as neutron multiplying material in solid Test Blanket Module (TBM) of International Thermonuclear Experimental Reactor (ITER). Rotating electrode process (REP) has been identified as a suitable technique for preparation of beryllium pebbles. In REP, arc plasma generated between non-consumable electrode (cathode) and rotating metal electrode (anode) plays a major role for continuous consumption of metal electrode and preparation of spherical metal pebbles. This paper focuses on description of the process, selection of sub-systems for development of REP experimental set up and optimization of arc parameters, such as, cathode geometry, arc current, arc voltage, arc gap and carrier gas flow rate for preparation of required size spherical metal pebbles. Other parameters which affect the pebbles sizes are rotational speed, metal electrode diameter and physical properties of the metal. As beryllium is toxic in nature its surrogate metals such as stainless steel (SS) and Titanium (Ti) were selected to evaluate the performance of the REP equipment. Several experiments were carried out using SS and Ti electrode and process parameters have been optimized for preparation of pebbles of different sizes. (author)

  5. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    Science.gov (United States)

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E., E-mail: mgriswold@trialphaenergy.com; Korepanov, S.; Thompson, M. C. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    An end loss analyzer system consisting of electrostatic, gridded retarding-potential analyzers and pyroelectric crystal bolometers was developed to characterize the plasma loss along open field lines to the divertors of C-2U. The system measures the current and energy distribution of escaping ions as well as the total power flux to enable calculation of the energy lost per escaping electron/ion pair. Special care was taken in the construction of the analyzer elements so that they can be directly mounted to the divertor electrode. An attenuation plate at the entrance to the gridded retarding-potential analyzer reduces plasma density by a factor of 60 to prevent space charge limitations inside the device, without sacrificing its angular acceptance of ions. In addition, all of the electronics for the measurement are isolated from ground so that they can float to the bias potential of the electrode, 2 kV below ground.

  7. “Virtual IED sensor” at an rf-biased electrode in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, M. A.; Zyryanov, S. M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation); Faculty of Physics, Moscow State University, MSU, Moscow (Russian Federation); Lopaev, D. V.; Rakhimov, A. T. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation)

    2016-07-15

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtual IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low

  8. Generation of high-power-density atmospheric pressure plasma with liquid electrodes

    International Nuclear Information System (INIS)

    Dong Lifang; Mao Zhiguo; Yin Zengqian; Ran Junxia

    2004-01-01

    We present a method for generating atmospheric pressure plasma using a dielectric barrier discharge reactor with two liquid electrodes. Four distinct kinds of discharge, including stochastic filaments, regular square pattern, glow-like discharge, and Turing stripe pattern, are observed in argon with a flow rate of 9 slm. The electrical and optical characteristics of the device are investigated. Results show that high-power-density atmospheric pressure plasma with high duty ratio in space and time can be obtained. The influence of wall charges on discharge power and duty ratio has been discussed

  9. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    Science.gov (United States)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  10. Study of the plasma column in hollow-electrode arc; Etude de la colonne de plasma dans un arc a electrodes creuses

    Energy Technology Data Exchange (ETDEWEB)

    Cano, R; Mattioli, M; Zanfagna, B [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    A steady state hollow electrodes arc has been built. The density of the plasma column obtained varies between 1.5 10{sup 13} cm{sup -3} and 8.10{sup 14} cm{sup -3} when the argon feed rate is varied from 0.2 and 30 l/h S.T.P. and the corresponding values of the electron temperature vary from at least 15 eV to 1 eV. Three diagnostic methods have been utilized: electrostatic probes, far-infrared emission (wavelength between 10 and 0.1 mm) and microwave techniques utilizing either the transmitted or the reflected wave. The results obtained are described in detail and compared. Limits of utilization of the different techniques are given. (authors) [French] On decrit les mesures effectuees sur une decharge a electrodes creuses fonctionnant en regime continu. Pour un debit d'argon variable entre 0,2 et 30 l/h N.T.P. la colonne de plasma obtenue a une densite qui peut varier entre 1,5.10{sup 13} cm{sup -3} et 8.10{sup 14} cm{sup -3} et une temperature electronique comprise entre au moins 15 eV et 1 eV (les densites plus elevees correspondent aux temperatures plus faibles). Trois methodes de diagnostic ont ete utilisees: sondes electrostatiques, emission dans l'infrarouge lointain (longueurs d'onde comprise entre 10 mm et 0,1 mm) et mesures en hyperfrequences avec ({lambda} = 2, 4, 3 et 8,6 mm en utilisant l'onde reflechie ou transmise par le plasma. Les resultats obtenus sont decrits en detail et compares entre eux. Des limites d'utilisation des differentes techniques sont donnees. (auteurs)

  11. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    Science.gov (United States)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  12. New type of discharge-produced plasma source for extreme ultraviolet based on liquid tin jet electrodes

    NARCIS (Netherlands)

    Koshelev, K.N.; Krivtsun, V.M.; Ivanov, V.; Yakushev, O.; Chekmarev, A.; Koloshnikov, V.; Snegirev, E.; Medvedev, Viacheslav

    2012-01-01

    A new approach for discharge-produced plasma (DPP) extreme ultraviolet (EUV) sources based on the usage of two liquid metallic alloy jets as discharge electrodes has been proposed and tested. Discharge was ignited using laser ablation of one of the cathode jets. A system with two jet electrodes was

  13. Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Rhee, J. K.; Gweon, B.; Moon, S. Y.; Choe, W.

    2007-01-01

    Microsize jet-type plasmas were generated in a single pin electrode structure source for two separate input frequencies of 50 kHz and 13.56 MHz in the ambient air. The copper pin electrode radius was 360 μm, and it was placed in a Pyrex tube with a radius of 3 mm for helium gas supply. Due to the input frequency difference, the generated plasmas showed distinct discharge characteristics for their plasma physical appearances, electrical properties, gas temperatures, and optical properties. Strengths and weaknesses of both plasmas were discussed for further applications

  14. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-01-01

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO 2 , H 2 O, and formic acid. Discharge products such as O 3 , N 2 O, N 2 O 5 , and HNO 3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  15. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    International Nuclear Information System (INIS)

    Tawidian, H; Mikikian, M.; Couedel, L.; Lecas, T.

    2011-01-01

    Dusty plasmas can be found in fusion devices. In this paper we analyse a new phenomenon occurring during dust particle growth instabilities and consisting of the appearance of small plasma spheroids in the vicinity of discharge electrodes. Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids

  16. Confinement of nonneutral spheroidal plasmas in multi-ring electrode traps

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Yuyama, Tetsumori; Michishita, Toshinori; Higaki, Hiroyuki; Tanaka, Hitoshi; Yamazawa, Yohei; Aoyagi, Masayuki

    1998-01-01

    A nonneutral spheroidal plasma can be settled in a rigid rotor equilibrium inside a closed conducting cell independently of induced image charges on the cell wall if the electrostatic potential distribution on the wall surface is set equal to the sum of the external hyperbolic potential (r 2 -2z 2 ) and the self-potential produced by the plasma. A confinement system equipped with a train of properly biased ring electrodes can approximately generate any axisymmetric potential, including the above field. Experiments on confinement of electron spheroids in such a system showed that the confinement time became the longest when the condition to diminish the image charge effects was satisfied. The observed frequency of the centre-of-mass harmonic oscillation of the plasma in this configuration was in good agreement with the estimated one. (author)

  17. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    Science.gov (United States)

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-02-14

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Plasma functionalization of powdery nanomaterials using porous filter electrode and sample circulation

    Science.gov (United States)

    Lee, Deuk Yeon; Choi, Jae Hong; Shin, Jung Chul; Jung, Man Ki; Song, Seok Kyun; Suh, Jung Ki; Lee, Chang Young

    2018-06-01

    Compared with wet processes, dry functionalization using plasma is fast, scalable, solvent-free, and thus presents a promising approach for grafting functional groups to powdery nanomaterials. Previous approaches, however, had difficulties in maintaining an intimate sample-plasma contact and achieving uniform functionalization. Here, we demonstrate a plasma reactor equipped with a porous filter electrode that increases both homogeneity and degree of functionalization by capturing and circulating powdery carbon nanotubes (CNTs) via vacuum and gas blowing. Spectroscopic measurements verify that treatment with O2/air plasma generates oxygen-containing groups on the surface of CNTs, with the degree of functionalization readily controlled by varying the circulation number. Gas sensors fabricated using the plasma-treated CNTs confirm alteration of molecular adsorption on the surface of CNTs. A sequential treatment with NH3 plasma following the oxidation pre-treatment results in the functionalization with nitrogen species of up to 3.2 wt%. Our approach requiring no organic solvents not only is cost-effective and environmentally friendly, but also serves as a versatile tool that applies to other powdery micro or nanoscale materials for controlled modification of their surfaces.

  19. Plasma etching treatment for surface modification of boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ito, Hiroyuki [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Kusakabe, Kazuhide [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Ohkawa, Kazuhiro [Department of Applied Physics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Fujishima, Akira [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan); Kawai, Takeshi [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)]. E-mail: kawai@ci.kagu.tus.ac.jp

    2007-03-01

    Boron-doped diamond (BDD) thin film surfaces were modified by brief plasma treatment using various source gases such as Cl{sub 2}, CF{sub 4}, Ar and CH{sub 4}, and the electrochemical properties of the surfaces were subsequently investigated. From X-ray photoelectron spectroscopy analysis, Cl and F atoms were detected on the BDD surfaces after 3 min of Cl{sub 2} and CF{sub 4} plasma treatments, respectively. From the results of cyclic voltammetry and electrochemical AC impedance measurements, the electron-transfer rate for Fe(CN){sub 6} {sup 3-/4-} and Fe{sup 2+/3+} at the BDD electrodes was found to decrease after Cl{sub 2} and CF{sub 4} plasma treatments. However, the electron-transfer rate for Ru(NH{sub 3}){sub 6} {sup 2+/3+} showed almost no change after these treatments. This may have been related to the specific interactions of surface halogen (C-Cl and C-F) moieties with the redox species because no electrical passivation was observed after the treatments. In addition, Raman spectroscopy showed that CH{sub 4} plasma treatment of diamond surfaces formed an insulating diamond-like carbon thin layer on the surfaces. Thus, by an appropriate choice of plasma source, short-duration plasma treatments can be an effective way to functionalize diamond surfaces in various ways while maintaining a wide potential window and a low background current.

  20. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    Science.gov (United States)

    Tawidian, H.; Mikikian, M.; Couëdel, L.; Lecas, T.

    2011-11-01

    Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids.

  1. Pockels cell shutter operating in the 100 picosecond range

    International Nuclear Information System (INIS)

    Blanchet, M.; Gex, J.P.

    1975-01-01

    The object of the first part of the statement is the study and the description of a 20 x 20mm section tranversal field shutter realized as a line transmission structure, acting as a roller-blind shutter acting within the limits of a subnanosecond. It is constituted by two appropriately cut, deuterized KDP electro-optical crystals, situated on either side of a birefringent plate having its neutral lines at a 45 0 angle to their optical axis, placed within a prtion of the dual plate transmission line. A resolution above 20 pairs of lines per millimetre, as well as a Transmission/Extinction ratio greater than 100 over all the optical section are obtained for a 250 picoseconds dynamic functioning. The second part of the statement deals with the application of this shutter to photography and hyper-rapid interferometry of plasmas created by lasers. (author)

  2. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Skab, Ihor; Vasylkiv, Yurij; Smaga, Ihor; Vlokh, Rostyslav [Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv (Ukraine)

    2011-10-15

    In the present work we have demonstrated a possibility for operation by orbital angular momentum (OAM) of optical beams via the Pockels effect in solid-crystalline materials. Based on the analysis of an optical Fresnel ellipsoid perturbed by a conically shaped electric field, we have shown that the point groups of crystals convenient for the conversion of spin angular momentum (SAM) to OAM should contain a threefold symmetry axis or a sixfold inversion axis. The results of our experimental studies and theoretical simulations of the SAM-to-OAM conversion efficiency carried out for LiNbO{sub 3} crystals agree well with each other.

  3. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals

    International Nuclear Information System (INIS)

    Skab, Ihor; Vasylkiv, Yurij; Smaga, Ihor; Vlokh, Rostyslav

    2011-01-01

    In the present work we have demonstrated a possibility for operation by orbital angular momentum (OAM) of optical beams via the Pockels effect in solid-crystalline materials. Based on the analysis of an optical Fresnel ellipsoid perturbed by a conically shaped electric field, we have shown that the point groups of crystals convenient for the conversion of spin angular momentum (SAM) to OAM should contain a threefold symmetry axis or a sixfold inversion axis. The results of our experimental studies and theoretical simulations of the SAM-to-OAM conversion efficiency carried out for LiNbO 3 crystals agree well with each other.

  4. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  5. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  6. Influence of geometry of the impenetrable electrodes on processes of formation of the current crisis in the plasma accelerators

    International Nuclear Information System (INIS)

    Kozlov, A.N.

    2010-01-01

    This paper reports the results of the numerical studies of the axisymmetric flows in the plasma accelerators with the impenetrable equipotential electrodes of the various geometries. The calculations were performed using the two-dimensional two-fluid magnetohydrodynamic model taking into account the Hall effect and the conductivity tensor of the medium. The numerical experiments have allowed to reveal the influence of the electrode form on effect of occurrence of the current crisis.

  7. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    OpenAIRE

    Heesoo Jung; Jin Ah Seo; Seungki Choi

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design?wearable APP (WAPP)?that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully e...

  8. Enthalpy probe measurements and three-dimensional modelling on air plasma jets generated by a non-transferred plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-01-01

    Thermal flow characteristics of air plasma jets generated by a non-transferred plasma torch with hollow electrodes are experimentally and numerically investigated in order to provide more reliable scientific and technical information, which has been insufficient for their practical applications to material and environmental industries. In this work, a thermal plasma torch of hollow electrode type is first designed and fabricated, and similarity criteria for predicting operational conditions for the scale-up to high-power torches are derived from the arc voltage characteristics measured with various operating and geometry conditions of the torch. The thermal flow characteristics of air plasma jets ejected from the torch are measured by enthalpy probe diagnostics and turn out to have relatively low temperatures of around 3000-7000 K, but show features of other unique properties, such as high energy flux, broad high temperature region and long plasma jet with moderate axial velocity, which are promising for their applications to material syntheses and hazardous waste treatments. Such high enthalpy at a relatively low temperature of air thermal plasma compared with the argon one is due to the high thermal energy residing in the vibrational and rotational states and oxygen dissociation, besides the translational states in monatomic gases such as argon. It is expected that this high specific enthalpy of the air plasma will enable material and environmental industries to treat a large amount of precursors and waste materials effectively at a lower temperature for a longer residence time by the low plasma velocity. It is also found from the measurements that the turbulence intensity influenced by the size of the electrode diameter has a significant effect on the axial and radial profiles of plasma jet properties and that a longer plasma jet is more readily achievable with a larger electrode diameter reducing the turbulence intensity in the external region of the torch. In

  9. Electrochemical determination of glutathione in plasma at carbon nanotubes based screen printed electrodes.

    Science.gov (United States)

    Turunc, Ezgi; Karadeniz, Hakan; Armagan, Guliz; Erdem, Arzum; Yalcin, Ayfer

    2013-11-01

    Glutathione (GSH) is a major endogenous antioxidant highly active in human tissues and plays a key role in controlling cellular thiol redox system, maintaining the immune and detoxification system. The determination of GSH levels in tissue is important to estimate endogenous defenses against oxidative stress. In our study, the multi-walled carbon nanotube modified screen-printed electrodes (MWCNT-SPEs) were used to determine the levels of GSH in trichloroacetic acid (TCA)-treated or untreated samples of rat plasma. It was found that the deproteinization of samples with TCA improved the electrochemical detection of GSH particularly in plasma. The oxidation of GSH was measured by using differential pulse voltammetry (DPV) method in combination with MWCNT-SPE (n=3), and the detection limit of GSH was found to be 0.47 µM (S/N=3). The GSH levels in plasma samples were also measured spectrophotometrically in order to compare the effectiveness of electrochemical method and we obtained a high correlation between the two methods (R(2)=0.976).

  10. On electrostatic acceleration of plasmas with the Hall effect using electrode shaping

    International Nuclear Information System (INIS)

    Wang, Zhehui; Barnes, Cris W.

    2001-01-01

    Resistive magnetohydrodynamics (MHD) is used to model the electromagnetic acceleration of plasmas in coaxial channels. When the Hall effect is considered, the inclusion of resistivity is necessary to obtain physically meaningful solutions. In resistive MHD with the Hall effect, if and only if the electric current and the plasma flow are orthogonal (J·U=0), then there is a conserved quantity, in the form of U 2 /2+w+eΦ/M, along the flow, where U is the flow velocity, Φ is the electric potential, w is the enthalpy, and M is the ion mass. New solutions suggest that in coaxial geometry the Hall effect along the axial plasma flow can be balanced by proper shaping of conducting electrodes, with acceleration then caused by an electrostatic potential drop along the streamlines of the flow. The Hall effect separation of ion and electron flow then just cancels the electrostatic charge separation. Assuming particle ionization increases with energy density in the system, the resulting particle flow rates (J p ) scales with accelerator bias (V bias ) as J p ∝V bias 2 , exceeding the Child--Langmuir limit. The magnitude of the Hall effect (as determined by the Morozov Hall parameter, Ξ, which is defined as the ratio of electric current to particle current) is related to the energy needed for the creation of each ion--electron pair

  11. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  12. [Study on plasma parameters in diffuse discharge with semispherical electrod by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Tong, Guo-Liang; Shen, Zhong-Kai; Liu, Liang; Ji, Ya-Fei; Zhao, Huan-Huan

    2012-06-01

    The diffuse discharge plasma in air was observed in a dielectric barrier discharge with two semispherical water electrodes. The variations of vibration temperature, rotation temperature, and average electron energy as the function of the applied voltage were studied by emission spectroscopy. The vibration temperature and the rotation temperature were calculated through the second positive band system (C3Pi(u)-->B3Pi(g)) of N2+ and the first negative band system (B2 Sigma(u+)-->Chi2Sigma(g+)) of N(2+) respectively. The average electron energy was studied by intensity ratio of 391.4 and 337.1 nm. It was found that the rotation temperature increases with the applied voltage increasing, while the vibration temperature and the electron energy decrease.

  13. Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma

    International Nuclear Information System (INIS)

    Wu Jian; Yu Jing; Li Jun; Wang Jianping; Ying Yibin

    2007-01-01

    In this paper, the discharge ignited in a capillary connecting two beakers filled with electrolyte solution is investigated. During the experiment, an external electrical voltage is applied through two platinum electrodes dipped in the beakers. A gas bubble forms inside the capillary when the applied voltage is higher than 1000 V. Since the beakers are tilted slightly, after generation, the bubble moves slowly to the uphill outlet of the capillary due to buoyancy. When the bubble reaches the end of the capillary, it cracks and a bright discharge is ignited. The emission spectra of the discharge plasma are related to the metal ions dissolved in the solution and thus can be used for metal ion detection. An application of the system to measurement of water hardness is shown

  14. Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode

    Science.gov (United States)

    Takeuchi, Nozomi; Ishibashi, Naoto

    2018-04-01

    The production mechanism of liquid-phase H2O2 in dc driven plasma in O2 and Ar with a water electrode was investigated. When a water anode was used, the concentration of H2O2 increased linearly with the treatment time. The production rate was proportional to the discharge current, and there was no dependence on the gap distance. On the other hand, the production rate was much smaller with a water anode. We concluded that the production of gas-phase H2O2 in the cathode sheath just above a water cathode and diffusion of this H2O2 into the water constitute the key mechanism in the production of liquid-phase H2O2.

  15. Plasma immersion ion implantation of the interior surface of a large cylindrical bore using an auxiliary electrode

    International Nuclear Information System (INIS)

    Zeng, X.C.; Kwok, T.K.; Liu, A.G.; Chu, P.K.; Tang, B.Y.

    1998-01-01

    A model utilizing cold, unmagnetized, and collisionless fluid ions as well as Boltzmann electrons is used to comprehensively investigate the sheath expansion into a translationally invariant large bore in the presence of an auxiliary electrode during plasma immersion ion implantation (PIII) of a cylindrical bore sample. The governing equation of ion continuity, ion motion, and Poisson close-quote s equation are solved by using a numerical finite difference method for different cylindrical bore radii, auxiliary electrode radii, and voltage rise times. The ion density and ion impact energy at the cylindrical inner surface, as well as the ion energy distribution, maximum ion impact energy, and average ion impact energy for the various cases are obtained. Our results show a dramatic improvement in the impact energy when an auxiliary electrode is used and the recommended normalized auxiliary electrode radius is in the range of 0.1 endash 0.3. copyright 1998 American Institute of Physics

  16. Design, fabrication, and characterization of a 2.3 kJ plasma focus of negative inner electrode

    International Nuclear Information System (INIS)

    Mathuthu, M.; Zengeni, T.G.; Gholap, A.V.

    1997-01-01

    The design, fabrication, and characterization of a 2.3 kJ plasma focus device with negative inner electrode are discussed. The purpose of the design was to initiate research in and study of plasma dynamics, nuclear reactions, and neutron emission mechanisms at the university. Also the device will be used to teach and demonstrate plasma phenomena at the postgraduate level and to perform experiments with inverted polarity to examine different operating regimes with nonstandard gases. It is hoped that in the long run the research work will help find a solution to the polarity riddle of plasma focus devices. When the system was operated with spectrographic argon as the filling gas, the best focus was obtained at a pressure range of 0.1 endash 1.25 Torr. With nitrogen as the filling gas, the best focus was obtained at pressures between 0.1 and 1.25 Torr. Air gave the best focus at a pressure range of 0.5 endash 1.5 Torr. The observed good focus action is attributed to the small inner electrode length (this reduces the amount of anode material ablated into the current sheath) and tapering of the inner electrode. Positive z-directed electrons contribute to the temperature and further ionization of the plasma gas during focusing. The performance of the device compares quite well with other known devices. copyright 1997 American Institute of Physics

  17. Study of electrochemical properties of thin film materials obtained using plasma technologies for production of electrodes for pacemakers

    International Nuclear Information System (INIS)

    Obrezkov, O I; Vinogradov, V P; Krauz, V I; Mozgrin, D V; Guseva, I A; Andreev, E S; Zverev, A A; Starostin, A L

    2016-01-01

    Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time. (paper)

  18. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  19. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  20. Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma.

    Science.gov (United States)

    Bagheri, Akbar; Hosseini, Hadi

    2012-12-01

    The electrochemical behavior of raloxifene (RLX) on the surface of a glassy carbon electrode (GCE) has been studied by cyclic voltammetry (CV). The CV studies were performed in various supporting electrolytes, wide range of potential scan rates, and pHs. The results showed an adsorption-controlled and quasi-reversible process for the electrochemical reaction of RLX, and a probable redox mechanism was suggested. Under the optimum conditions, differential pulse voltammetry (DPV) was applied for quantitative determination of the RLX in pharmaceutical formulations. The DPV measurements showed that the anodic peak current of the RLX was linear to its concentration in the range of 0.2-50.0μM with a detection limit of 0.0750μM, relative standard deviation (RSD %) below 3.0%, and a good sensitivity. The proposed method was successfully applied for determination of the RLX in pharmaceutical and human plasma samples with a good selectivity and suitable recovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Luais, E. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Thobie-Gautier, C. [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Tailleur, A.; Djouadi, M.-A.; Granier, A.; Tessier, P.Y. [IMN, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France); Debarnot, D.; Poncin-Epaillard, F. [PCI, Universite du Maine, CNRS, rue Aristote, 72085 Le Mans cedex 9 (France); Boujtita, M., E-mail: mohammed.boujtita@univ-nantes.f [CEISAM, Universite de Nantes, CNRS, 2 rue de la Houssiniere, 44322 Nantes cedex 3 (France)

    2010-11-30

    An electrochemical transducer based on vertically aligned carbon nanotubes (CNT) was prepared as a platform for biosensor development. Prior to enzyme immobilization, the CNT were treated using a microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) in order to functionalize the CNT surface with oxygenated and aminated groups. The morphological aspect of the electrode surface was examined by SEM and its chemical structure was also elucidated by XPS analysis. It was found out that microwave plasma system (CO{sub 2} and N{sub 2}/H{sub 2}) not only functionalizes the CNT but also permits to avoid the collapse phenomena retaining thus the alignment structure of the electrode surface. The electrochemical properties of the resulting new material based on CNT were carried out by cyclic voltammetry and were found suitable to develop high sensitive enzyme (HRP) biosensors operating on direct electron transfer process.

  2. Disruption avoidance in the SINP-Tokamak by means of electrode-biasing at the plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Debjyoti [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064, WB (India); Instituto de Ciencias Nucleares-UNAM, Mexico D.F. 04510 (Mexico); Pal, Rabindranath [Saha Institute of Nuclear Physics, 1/AF-Bidhannagar, Kolkata 700064, WB (India); Martinell, Julio J. [Instituto de Ciencias Nucleares-UNAM, Mexico D.F. 04510 (Mexico); Ghosh, Joydeep; Chattopadhyay, Prabal K. [Institute for Plasma Research, Gandhinagar (India)

    2013-05-15

    Control of plasma disruption by a biased edge electrode is reported in SINP-Tokamak. The features that characterize a plasma disruption are reduced with increasing bias potential. The disruption can be completely suppressed with the concomitant stabilization of observed MHD modes that are allegedly precursors of the disruption. An m = 3/n = 1 tearing mode, which apparently causes disruption can be stabilized when a negative biasing potential is applied near the edge. These changes in the disruptive behavior with edge biasing are hypothesized to be due to changes in the current density profile.

  3. Disruption avoidance in the SINP-Tokamak by means of electrode-biasing at the plasma edge

    International Nuclear Information System (INIS)

    Basu, Debjyoti; Pal, Rabindranath; Martinell, Julio J.; Ghosh, Joydeep; Chattopadhyay, Prabal K.

    2013-01-01

    Control of plasma disruption by a biased edge electrode is reported in SINP-Tokamak. The features that characterize a plasma disruption are reduced with increasing bias potential. The disruption can be completely suppressed with the concomitant stabilization of observed MHD modes that are allegedly precursors of the disruption. An m = 3/n = 1 tearing mode, which apparently causes disruption can be stabilized when a negative biasing potential is applied near the edge. These changes in the disruptive behavior with edge biasing are hypothesized to be due to changes in the current density profile

  4. Investigation of E x B transport with a multi-electrode probe in the plasma boundary of TEXTOR

    International Nuclear Information System (INIS)

    Ivanov, R.S.; Moyer, R.A.; Nieuwenhove, R. van; Oost, G. van; Fuchs, G.; Hoethker, K.; Samm, U.

    1991-01-01

    A movable multi-element Langmuir probe was implemented in TEXTOR in order to study properties of the edge and scrape-off plasma. The probe has five graphite electrode pins allowing the simultaneous measurement of main parameters such as plasma densities, electron temperatures, floating potentials, poloidal and radial electric fields. Both time-averaged and fluctuating quantities have been considered in order to evaluate the DC and turbulence-driven cross-field particle fluxes. The spectral analysis of the fluctuating floating potentials at spatially separated probe pins allows to determine the velocity associated with the rotations of the boundary plasma. The investigations have been focused on the variations of plasma boundary properties in plasmas with pure ohmic heating as well as auxiliary heating (ICRH). Special attention has been paid to the change of transport properties with the transition to a detached plasma. In particular, a significant reduction of the poloidal phase velocity at the limited edge has been observed for detached plasmas. Preliminary data on physical effects near the plasma boundary, which occur when the toroidal belt limiter (ALT-II) is biased, are reported. (orig.)

  5. Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Ren Jingyu; Qu Guangzhou; Liang Dongli; Hu Shibin; Wang Tiecheng

    2015-01-01

    A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. (paper)

  6. Characterization of Pb(Zr, Ti)O3 thin films fabricated by plasma enhanced chemical vapor deposition on Ir-based electrodes

    International Nuclear Information System (INIS)

    Lee, Hee-Chul; Lee, Won-Jong

    2002-01-01

    Structural and electrical characteristics of Pb(Zr, Ti)O 3 (PZT) ferroelectric thin films deposited on various Ir-based electrodes (Ir, IrO 2 , and Pt/IrO 2 ) using electron cyclotron resonance plasma enhanced chemical vapor deposition were investigated. On the Ir electrode, stoichiometric PZT films with pure perovskite phase could be obtained over a very wide range of processing conditions. However, PZT films prepared on the IrO 2 electrode contain a large amount of PbO x phases and exhibited high Pb-excess composition. The deposition characteristics were dependent on the behavior of PbO molecules on the electrode surface. The PZT thin film capacitors prepared on the Ir bottom electrode showed different electrical properties depending on top electrode materials. The PZT capacitors with Ir, IrO 2 , and Pt top electrodes showed good leakage current characteristics, whereas those with the Ru top electrode showed a very high leakage current density. The PZT capacitor exhibited the best fatigue endurance with an IrO 2 top electrode. An Ir top electrode provided better fatigue endurance than a Pt top electrode. The PZT capacitor with an Ir-based electrode is thought to be attractive for the application to ferroelectric random access memory devices because of its wide processing window for a high-quality ferroelectric film and good polarization, fatigue, and leakage current characteristics

  7. Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells

    Science.gov (United States)

    He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-05-01

    The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2  <  1.18.

  8. Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Eva-Maria Hammer

    2014-02-01

    Full Text Available In the frame of the present contribution oxidizing plasma pretreatment is used for the improvement of the electrocatalytic activity of graphite felt electrodes for Vanadium-Redox-Flow-Batteries (VRB. The influence of the working gas media on the catalytic activity and the surface morphology is demonstrated. The electrocatalytical properties of the graphite felt electrodes were examined by cyclic voltammetry and electrochemical impedance spectroscopy. The obtained results show that a significant improvement of the redox reaction kinetics can be achieved for all plasma modified samples using different working gasses (Ar, N2 and compressed air in an oxidizing environment. Nitrogen plasma treatment leads to the highest catalytical activities at the same operational conditions. Through a variation of the nitrogen plasma treatment duration a maximum performance at about 14 min cm-2 was observed, which is also represented by a minimum of 90 Ω in the charge transfer resistance obtained by EIS measurements. The morphology changes of the graphitized surface were followed using SEM.

  9. Experimental investigation of cathode spots and plasma jets behavior subjected to two kinds of axial magnetic field electrodes

    International Nuclear Information System (INIS)

    Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian

    2016-01-01

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B_t and AMF B_z (B_t/B_z). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.

  10. Experimental investigation of cathode spots and plasma jets behavior subjected to two kinds of axial magnetic field electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun; Deng, Jie; Zhou, Xin; Jia, Shenli; Qian, Zhonghao; Shi, Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-04-15

    In this paper, cathode spot plasma jet (CSPJ) rotation and cathode spots behavior subjected to two kinds of large diameter axial magnetic field (AMF) electrode (cup-shaped and coil-shaped) are studied and analyzed based on experiments. The influence of gap distances on the CSPJ rotational behavior is analyzed. Experimental results show that CSPJ rotational phenomena extensively exist in the vacuum interrupters, and CSPJ rotational direction is along the direction of composite magnetic field (mainly the combination of the axial and azimuthal components). For coil-shaped and cup-shaped AMF electrodes, the rotational or inclination phenomena before the current peak value are much more significant than that after current peak value (for the same arc current), which is related to the larger ratio of azimuthal magnetic field B{sub t} and AMF B{sub z} (B{sub t}/B{sub z}). With the increase of the gap distance, the AMF strength decreases, when the arc current is kept as constant, the azimuthal magnetic field is kept invariable, the ratio between azimuthal magnetic field and AMF is increased, which results in the increase of rotational effect. For cathode spots motion, compared with cup-shaped electrode, coil-shaped electrode has the inverse AMF direction. The Robson drift direction of cathode spots of coil-shaped electrode is opposite to that of cup-shaped electrode. With the increase of gap distance, the Robson angle is decreased, which is associated with the reduced AMF strength. Erosion imprints of anode and cathode are also related to the CSPJ rotational phenomena and cathode spots behavior. The noise of arc voltage in the initial arcing stage is related to the weaker AMF.

  11. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Science.gov (United States)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  12. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    Science.gov (United States)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  13. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    International Nuclear Information System (INIS)

    Fubiani, G; Boeuf, J P

    2015-01-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric. (paper)

  14. Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells.

    Science.gov (United States)

    Vaagensmith, Bjorn; Reza, Khan Mamun; Hasan, Md Nazmul; Elbohy, Hytham; Adhikari, Nirmal; Dubey, Ashish; Kantack, Nick; Gaml, Eman; Qiao, Qiquan

    2017-10-18

    Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent electrodes (TEs) offer great potential as a low cost alternative to expensive indium tin oxide (ITO). However, strong acids are typically used for enhancing the conductivity of PEDOT:PSS TEs, which produce processing complexity and environmental issues. This work presents an environmentally friendly acid free approach to enhance the conductivity of PEDOT:PSS using a light oxygen plasma treatment, in addition to solvent blend additives and post treatments. The plasma treatment was found to significantly reduce the sheet resistance of PEDOT:PSS TEs from 85 to as low as 15 Ω sq -1 , which translates to the highest reported conductivity of 5012 S/cm for PEDOT:PSS TEs. The plasma treated PEDOT:PSS TE resulted in an ITO-free perovskite solar cell efficiency of 10.5%, which is the highest reported efficiency for ITO-free perovskite solar cells with a PEDOT:PSS electrode that excludes the use of acid treatments. This research presents the first demonstration of this technology. Moreover, the PEDOT:PSS TEs enabled better charge extraction from the perovskite solar cells and reduced hysteresis in the current density-voltage (J-V) curves.

  15. Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry

    International Nuclear Information System (INIS)

    Moreau, Eric; Sosa, Roberto; Artana, Guillermo

    2008-01-01

    Active flow control is a rapidly developing topic because the associated industrial applications are of immense importance, particularly for aeronautics. Among all the flow control methods, such as the use of mechanical flaps or wall jets, plasma-based devices are very promising devices. The main advantages of such systems are their robustness, their simplicity, their low-power consumption and that they allow a real-time control at high frequency. This paper deals with an experimental study about the electric wind produced by a surface discharge based on a three-electrode geometry. This new device is composed of a typical two-electrode surface barrier discharge excited by an AC high voltage, plus a third electrode at which a DC high voltage is applied in order to extend the discharge region and to accelerate the ion drift velocity. In the first part the electrical current of these different surface discharges is presented and discussed. This shows that the current behaviour depends on the DC component polarity. The second part is dedicated to analysing the electric wind characteristics through Schlieren visualizations and to measuring its time-averaged velocity with a Pitot tube sensor. The results show that an excitation of the electrodes with an AC voltage plus a positive DC component can significantly modify the topology of the electric wind produced by a single DBD. In practice, this DC component allows us to increase the value of the maximum induced velocity (up to +150% at a few centimetres downstream of the discharge) and the plasma extension, to enhance the depression occurring above the discharge region and to increase the discharge-induced mass flow rate (up to +100%), without increasing the electrical power consumption

  16. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma

    Directory of Open Access Journals (Sweden)

    Nastaran Hashemzadeh

    2016-08-01

    Full Text Available Low toxic graphene quantum dot (GQD was synthesized by pyrolyzing citric acid in alkaline solution and characterized by ultraviolet--visible (UV–vis spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM, spectrofluorimetery and dynamic light scattering (DLS techniques. GQD was used for electrode modification and electro-oxidation of doxorubicin (DOX at low potential. A substantial decrease in the overvoltage (−0.56 V of the DOX oxidation reaction (compared to ordinary electrodes was observed using GQD as coating of glassy carbon electrode (GCE. Differential pulse voltammetry was used to evaluate the analytical performance of DOX in the presence of phosphate buffer solution (pH 4.0 and good limit of detection was obtained by the proposed sensor. Such ability of GQD to promote the DOX electron-transfer reaction suggests great promise for its application as an electrochemical sensor.

  17. Plasma flow between equipotential electrodes in an ion current transport mode

    International Nuclear Information System (INIS)

    Zimin, A.M.; Morozov, A.I.

    1995-01-01

    The paper deals with calculation of parameters in accelerator channel and near electrodes, when realizing ion current transport mode. Model on the basis of two-dimensional two-liquid nondissipative magnetohydrodynamics was formulated, and its solution for isomagnetic flow in smooth channel approximation was conducted. Change of parameters near anode surface was considered in detail. It is shown that regular joining of flow with equipotential electrodes without large near-electrode jumps is performed during ion current transport. Current distribution along accelerator length was calculated when determining ion intake through anode surface due to inertial-drift emission. It is shown that this mechanism can provide rather high current density in ion current transport. 10 refs.; 6 figs

  18. H- ion source using a localized virtual magnetic filter in the plasma electrode: type I LV magnetic filter

    International Nuclear Information System (INIS)

    Oka, Y.; Kaneko, O.; Tsumori, K.; Takeiri, Y.; Osakabe, M.; Kawamoto, T.; Asano, E.; Akiyama, R.

    1999-12-01

    A new multicusp H - ion source using a Localized Virtual magnetic filter of type I [Ref.6] in the plasma electrode is investigated. A multipole (MP) arrangement with a spacing of 10 mm of the magnet bars holds an extraction hole, optimizing the efficient production of high H - current, and at the same time only a small electron component was co-extracted with the H - ions. The local filter arrangement separates the beam electrons at a low energy. It is shown that the co-extracted total electron current is determined principally by the integrated magnetic field flux (Gcm) of the local filter with an extraction system at a constant extraction voltage. When the value of the Gcm is increased, the total electron component is reduced, while the H - electrical efficiency had a broad maximum around the optimized value of the Gcm. A thicker plasma electrode should be necessary for sufficient reduction of electron current. In pure hydrogen operation, the achieved current density of H - is 10 mA/cm 2 . When Cs was seeded in a filter optimized for pure volume mode H - production, the maximum H - current density obtained is 51 mA/cm 2 and the ratio I ele /H - is ∼0.4 without applying a bias potential. (author)

  19. Electrochemical Characterization of O2 Plasma Functionalized Multi-Walled Carbon Nanotube Electrode for Legionella pneumophila DNA Sensor

    Science.gov (United States)

    Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki

    2010-08-01

    An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.

  20. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    Science.gov (United States)

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.

  1. An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode.

    Science.gov (United States)

    Jin, Mingchao; Zhang, Xiaoqing; Zhen, Qianna; He, Yifan; Chen, Xiao; Lyu, Wenjing; Han, Runchuan; Ding, Min

    2017-12-15

    Indole is an essential metabolite in intestinal tract. The dysregulation of plasma indole concentration occurred in various diseases. In this study, the indole in plasma was determined directly using electrochemical sensor with multiwall carbon nanotubes-chitosan (MWCNTs-CS) modified screen-printed carbon electrode (SPCE). The electrochemical behavior of indole was elucidated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) on the MWCNTs-CS composites modified SPCE (MWCNTs-CS/SPCE). The results showed that the current responses of indole improved greatly due to the high catalytic activity and electron transfer reaction of nano-composites. Under the optimized conditions, the linear range of indole was from 5 to 100μgL -1 with the detection limit of 0.5μgL -1 (S/N = 3). This novel electrochemical sensor exhibited acceptable accuracies and precisions with the variations less than 7.3% and 9.0%, respectively. Furthermore, high performance liquid chromatography (HPLC) method was utilized to compare with the established electrochemical method for the determination of indole in plasma. The results showed a high correlation between the two methods. At last, the electrochemical sensor was successfully applied to detect the level of indole in plasma samples with satisfactory selectivity and sensitivity. The concentrations of plasma indole in healthy pregnant women and gestational diabetes mellitus (GDM) patients were 5.3 (4.1-7.0)μgL -1 and 7.2 (4.5-9.4)μgL -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantitative determination of total cesium in highly active liquid waste by using liquid electrode plasma optical emission spectrometry.

    Science.gov (United States)

    Do, Van-Khoai; Yamamoto, Masahiko; Taguchi, Shigeo; Takamura, Yuzuru; Surugaya, Naoki; Kuno, Takehiko

    2018-06-01

    A sensitive analytical method for determination of total cesium (Cs) in highly active liquid waste (HALW) by using modified liquid electrode plasma optical emission spectrometry (LEP-OES) is developed in this study. The instrument is modified to measure radioactive samples in a glove box. The effects of important factors, including pulsed voltage sequence and nitric acid concentration, on the emission of Cs are investigated. The limit of detection (LOD) and limit of quantification (LOQ) are 0.005 mg/L and 0.02 mg/L, respectively. The achieved LOD is one order lower than that of recently developed spectroscopic methods using liquid discharge plasma. The developed method is validated by subjecting a simulated HALW sample to inductively coupled plasma mass spectrometry (ICP-MS). The recoveries obtained from a spike-and-recovery test are 96-102%, implying good accuracy. The method is successfully applied to the quantification of Cs in a real HALW sample at the Tokai reprocessing plant in Japan. Apart from dilution and filtration of the HALW sample, no other pre-treatment process is required. The results agree well with the values obtained using gamma spectrometry. The developed method offers a reliable technique for rapid analysis of total Cs in HALW samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Design of extraction system on grid of plasma generator electrode for pulsed electron irradiator

    International Nuclear Information System (INIS)

    Agus Purwadi; Bambang Siswanto; Lely Susita RM; Suprapto; Anjar Anggraini H; Ihwanul Azis

    2016-01-01

    It has been carried out design and study of electron extraction particularly for obtaining the electron extraction current via grid on the Plasma Generator Chamber (PGC) caused by the existence of extraction voltage U_a. Electrons of plasma surface emitted to acceleration region through emission window and then extracted acceleration by extraction voltage U_a through foil window to atmospheric region for being applied to any target. Applied extraction voltage U_a on PEI device influences the forming and energy value of electron extraction current I_e then the PGC dimension influences the product of thermal electron emission current I_e_0. It has been determinated the PGC geometry and dimension of producing electron extraction current based on arc discharge plasma current to desire on any plasma density. From the calculation yield for the value of plasma density n_e = 78 x 10"1"0 cm"-"3 and the arc discharge current Id = 80 A (pulse width τ = 100µs) used the PGC size of (80 x 20 x 40) cm"3. Emission window area of (65 x 15) cm"2 located on the low part surface of PGC is covered by a grid sheet made of stainless steel of rectangular shape and the distance of one grid hole to another is 0,25 mm each others. Current value of I_e beside depends on plasma parameters also depends on the size of grid holes. The optimum of geometry and size is rectangular with its side size of p ≈ 0,50 mm with the plasma parameters optimum (density value n_e = 10"1"6 m"-"3 and electron temperature T_e = 6 eV). From the initial experiment yields obtained that the electron extraction efficiency value α = 37,25 % on extraction voltage V = 3 kV. (author)

  4. Discharge characteristics of He-Ne-Xe gas mixture with varying Xe contents and at varying sustain electrode gap lengths in the plasma display panel

    International Nuclear Information System (INIS)

    Kwon, Ohyung; Whang, Ki-Woong; Bae, Hyun Sook

    2009-01-01

    The discharge characteristics of He-Ne-Xe gas mixture in the plasma display panel were investigated using a two-dimensional numerical simulation to understand the effects of adding He and varying the Xe contents in the gas mixture, and also varying sustain electrode gap. With 5% Xe content and 60 μm sustain electrode gap, decreased ionization led to the improvement of the vacuum ultraviolet (vuv) efficacy at increasing He mixing ratios. However, at 20% Xe content and 60 μm sustain electrode gap, increased electron heating improved the vuv efficacy until the He mixing ratio reached 0.7, but the efficacy decreased beyond the ratio of 0.7 due to the increased ionization of Xe atoms. At 5% Xe content and 200 μm sustain electrode gap, the vuv efficacy increased as a result of increased electron heating at the gap space at increasing He mixing ratios.

  5. Heparin molecularly imprinted polymer thin flm on gold electrode by plasma-induced graft polymerization for label-free biosensor.

    Science.gov (United States)

    Orihara, Kouhei; Hikichi, Atsushi; Arita, Tomohiko; Muguruma, Hitoshi; Yoshimi, Yasuo

    2018-03-20

    Heparin, a highly sulfated glycosaminoglycan, is an important biomaterial having biological and therapeutic functionalities such as anticoagulation, regeneration, and protein stabilization. This study addresses a label-free quartz crystal microbalance (QCM) biosensor for heparin detection based on a macromolecularly imprinted polymer (MIP) as an artificial recognition element. We demonstrate the novel strategy for MIP in the form of thin film on a gold (Au) electrode with the plasma-induced graft polymerization (PIP) technique. The procedure of PIP is as follows: (i) Hexamethyldisiloxane plasma-polymerized thin film (PPF) as a pre-coating scaffold of active species for PIP (post-polymerization) is deposited on an Au electrode. (ii) The PPF/Au electrode is soaked in an water solution containing heparin (template), (2-(methacryloxy)-ethyl)trimethylammonium chloride acrylamide (functional monomer), acrylamide, and N,N-methylenebisacrylamide (crosslinker). Double bonds of monomer and crosslinker attacked by residually active species in pre-coating PPF cause radical chain reaction. Consequently, a growing polymer network of 20 nm thickness of PIP-MIP thin film is formed and grafted on the PPF/Au surface. (iii) The PIP-MIP/PPF/Au is washed by sodium chloride solution so as to remove the template. Non-imprinted polymer (NIP) is carried out like the same procedure without a template. The AFM, XPS, and QCM measurements show that the PIP process facilitates macromolecularly surface imprinting of template heparin where the template is easily removed and is rapidly rebound to PIP-MIP without a diffusional barrier. The heparin-PIP-MIP specifically binds to heparin compared with heparin analog chondroitin sulfate C (selective factor: 4.0) and a detectable range of heparin in the presence of CS (0.1 wt%) was 0.001-0.1 wt%. The PIP-NIP does not show selectivity between them. The evaluated binding kinetics are association (k a  = 350 ± 100 M -1  s -1

  6. Bipolar plasma vaporization using plasma-cutting and plasma-loop electrodes versus cold-knife transurethral incision for the treatment of posterior urethral stricture: a prospective, randomized study.

    Science.gov (United States)

    Cai, Wansong; Chen, Zhiyuan; Wen, Liping; Jiang, Xiangxin; Liu, Xiuheng

    2016-01-01

    Evaluate the efficiency and safety of bipolar plasma vaporization using plasma-cutting and plasma-loop electrodes for the treatment of posterior urethral stricture. Compare the outcomes following bipolar plasma vaporization with conventional cold-knife urethrotomy. A randomized trial was performed to compare patient outcomes from the bipolar and cold-knife groups. All patients were assessed at 6 and 12 months postoperatively via urethrography and uroflowmetry. At the end of the first postoperative year, ureteroscopy was performed to evaluate the efficacy of the procedure. The mean follow-up time was 13.9 months (range: 12 to 21 months). If re-stenosis was not identified by both urethrography and ureteroscopy, the procedure was considered "successful". Fifty-three male patients with posterior urethral strictures were selected and randomly divided into two groups: bipolar group (n=27) or cold-knife group (n=26). Patients in the bipolar group experienced a shorter operative time compared to the cold-knife group (23.45±7.64 hours vs 33.45±5.45 hours, respectively). The 12-month postoperative Qmax was faster in the bipolar group than in the cold-knife group (15.54±2.78 ml/sec vs 18.25±2.12 ml/sec, respectively). In the bipolar group, the recurrence-free rate was 81.5% at a mean follow-up time of 13.9 months. In the cold-knife group, the recurrence-free rate was 53.8%. The application of bipolar plasma-cutting and plasma-loop electrodes for the management of urethral stricture disease is a safe and reliable method that minimizes the morbidity of urethral stricture resection. The advantages include a lower recurrence rate and shorter operative time compared to the cold-knife technique.

  7. Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

    Science.gov (United States)

    Ming, SUN; Zhan, TAO; Zhipeng, ZHU; Dong, WANG; Wenjun, PAN

    2018-05-01

    The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2∑+ → X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (T e) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (T g) that was measured by Lifbase was in a range from 400 K to 600 K.

  8. A novel approach for the improvement of electrostatic behaviour of physically doped TFET using plasma formation and shortening of gate electrode with hetero-gate dielectric

    Science.gov (United States)

    Soni, Deepak; Sharma, Dheeraj; Aslam, Mohd.; Yadav, Shivendra

    2018-04-01

    This article presents a new device configuration to enhance current drivability and suppress negative conduction (ambipolar conduction) with improved RF characteristics of physically doped TFET. Here, we used a new approach to get excellent electrical characteristics of hetero-dielectric short gate source electrode TFET (HD-SG SE-TFET) by depositing a metal electrode of 5.93 eV work function over the heavily doped source (P+) region. Deposition of metal electrode induces the plasma (thin layer) of holes under the Si/HfO2 interface due to work function difference of metal and semiconductor. Plasma layer of holes is advantageous to increase abruptness as well as decrease the tunneling barrier at source/channel junction for attaining higher tunneling rate of charge carriers (i.e., electrons), which turns into 86.66 times higher ON-state current compared with the conventional physically doped TFET (C-TFET). Along with metal electrode deposition, gate electrode is under-lapped for inducing asymmetrical concentration of charge carriers in the channel region, which is helpful for widening the tunneling barrier width at the drain/channel interface. Consequently, HD-SG SE-TFET shows suppression of ambipolar behavior with reduction in gate-to-drain capacitance which is beneficial for improvement in RF performance. Furthermore, the effectiveness of hetero-gate dielectric concept has been used for improving the RF performance. Furthermore, reliability of C-TFET and proposed structures has been confirmed in term of linearity.

  9. Fluctuation-Coupling of Cathode Cavity Pressure and Arc Voltage in a dc Plasma Torch with a Long Inter-Electrode Channel at Reduced Pressure

    International Nuclear Information System (INIS)

    Cao Jin-Wen; Huang He-Ji; Pan Wen-Xia

    2014-01-01

    Fluctuations of cathode cavity pressure and arc voltage are observed experimentally in a dc plasma torch with a long inter-electrode channel. The results show that they have the same frequency of around 4 kHz under typical experimental conditions. The observed phase difference between the pressure and the voltage, which is influenced by the path length between the pressure sensor and the cathode cavity, varies with different input powers. Combined with numerical simulation, the position of the pressure perturbation origin is estimated, and the results show that it is located at 0.01–0.05 m upstream of the inter-electrode channel outlet

  10. Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices

    International Nuclear Information System (INIS)

    Boyle, P C; Ellingboe, A R; Turner, M M

    2004-01-01

    Dual frequency capacitive discharges are designed to offer independent control of the flux and energy of ions impacting on an object immersed in a plasma. This is desirable in applications such as the processing of silicon wafers for microelectronics manufacturing. In such discharges, a low frequency component couples predominantly to the ions, while a high frequency component couples predominantly to electrons. Thus, the low frequency component controls the ion energy, while the high frequency component controls the plasma density. Clearly, this desired behaviour is not achieved for arbitrary configurations of the discharge, and in general one expects some unwanted coupling of ion flux and energy. In this paper we use computer simulations with the particle-in-cell method to show that the most important governing parameter is the ratio of the driving frequencies. If the ratio of the high and low frequencies is great enough, essentially independent control of the ion energy and flux is possible by manipulation of the high and low frequency power sources. Other operating parameters, such as pressure, discharge geometry, and absolute power, are of much less significance

  11. Liquid electrode plasma-optical emission spectrometry combined with solid-phase preconcentration for on-site analysis of lead.

    Science.gov (United States)

    Barua, Suman; Rahman, Ismail M M; Alam, Iftakharul; Miyaguchi, Maho; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2017-08-15

    A relatively rapid and precise method is presented for the determination of lead in aqueous matrix. The method consists of analyte quantitation using the liquid electrode plasma-optical emission spectrometry (LEP-OES) coupled with selective separation/preconcentration by solid-phase extraction (SPE). The impact of operating variables on the retention of lead in SPEs such as pH, flow rate of the sample solution; type, volume, flow rate of the eluent; and matrix effects were investigated. Selective SPE-separation/preconcentration minimized the interfering effect due to manganese in solution and limitations in lead-detection in low-concentration samples by LEP-OES. The LEP-OES operating parameters such as the electrical conductivity of sample solution; applied voltage; on-time, off-time, pulse count for applied voltage; number of measurements; and matrix effects have also been optimized to obtain a distinct peak for the lead at λ max =405.8nm. The limit of detection (3σ) and the limit of quantification (10σ) for lead determination using the technique were found as 1.9 and 6.5ng mL -1 , respectively. The precision, as relative standard deviation, was lower than 5% at 0.1μg mL -1 Pb, and the preconcentration factor was found to be 187. The proposed method was applied to the analysis of lead contents in the natural aqueous matrix (recovery rate:>95%). The method accuracy was verified using certified reference material of wastewaters: SPS-WW1 and ERM-CA713. The results from LEP-OES were in good agreement with inductively coupled plasma optical emission spectrometry measurements of the same samples. The application of the method is rapid (≤5min, without preconcentration) with a reliable detection limit at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tailoring nanomaterial products through electrode material and oxygen partial pressure in a mini-arc plasma reactor

    International Nuclear Information System (INIS)

    Cui Shumao; Mattson, Eric C.; Lu, Ganhua; Hirschmugl, Carol; Gajdardziska-Josifovska, Marija; Chen Junhong

    2012-01-01

    Nanomaterials with controllable morphology and composition are synthesized by a simple one-step vapor condensation process using a mini-arc plasma source. Through systematic investigation of mini-arc reactor parameters, the roles of carrier gas, electrode material, and precursor on producing diverse nanomaterial products are revealed. Desired nanomaterial products, including tungsten oxide nanoparticles (NPs), tungsten oxide nanorods (NRs), tungsten oxide and tin oxide NP mixtures and pure tin dioxide NPs can thus be obtained by tailoring reaction conditions. The amount of oxygen in the reactor is critical to determining the final nanomaterial product. Without any precursor material present, a lower level of oxygen in the reactor favors the production of W 18 O 49 NRs with tungsten as cathode, while a high level of oxygen produces more round WO 3 NPs. With the presence of a precursor material, amorphous particles are favored with a high ratio of argon:oxygen. Oxygen is also found to affect tin oxide crystallization from its amorphous phase in the thermal annealing. Results from this study can be used for guiding gas phase nanomaterial synthesis in the future.

  13. Suppression and excitation of MHD activity with an electrically polarized electrode at the TCABR tokamak plasma edge

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Kuznetsov, Yu.K.; Guimaraes-Filho, Z.O.; Chamaa-Neto, I. El; Usuriaga, O.; Fonseca, A.M.M.; Galvao, R.M.O.; Caldas, I.L.; Severo, J.H.F.; Semenov, I.B.; Ribeiro, C.; Heller, M.V.P.; Bellintani, V.; Elizondo, J.I.; Sanada, E.

    2007-01-01

    Two reproducible regimes of tokamak operation, with excitation or suppression of MHD activity can be obtained using a voltage-biased electrode inside the edge of the TCABR tokamak. The experiment was carried out adjusting the tokamak parameters to obtain two types of discharges: with strong or weak MHD activity, without biasing in both cases. The plasma current was adjusted to cover a range of safety factor from 2.9 up to 3.5, so that when biasing was applied the magnetic island (3,1) could interact with the edge barrier. The application of biasing in subsequent discharges of each type resulted in excitation or suppression of the MHD activity. The results show that the dominant modes are m = 2, n = 1 and m = 3, n = 1 for excitation and partial suppression, respectively. In both regimes a strong decrease in the radial electric field is detected with destruction of the transport barrier and of the improved confinement caused by different mechanisms. The measurements include temporal behaviour of edge transport, turbulence, poloidal electric and magnetic fields, edge density, radial electric fields and radial profile of H α line intensity. The explanation of the excitation and suppression processes is discussed in the paper

  14. Influence of boron concentration on growth characteristic and electro-catalytic performance of boron-doped diamond electrodes prepared by direct current plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Feng Yujie; Lv Jiangwei; Liu Junfeng; Gao Na; Peng Hongyan; Chen Yuqiang

    2011-01-01

    A series of boron-doped diamond (BDD) electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) with different compositions of CH 4 /H 2 /B(OCH 3 ) 3 gas mixture. A maximum growth rate of 0.65 mg cm -2 h -1 was obtained with CH 4 /H 2 /B(OCH 3 ) 3 radio of 4/190/10 and this growth condition was also a turning point for discharge plasma stability which arose from the addition of B(OCH 3 ) 3 that changed electron energy distribution and influenced the plasma reaction. The surface coating structure and electro-catalytic performance of the BDD electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Hall test, and electrochemical measurement and electro-catalytic oxidation in phenol solution. It is suggested that the boron doping level and the thermal stress in the films are the main factors affecting the electro-catalytic characteristics of the electrodes. Low boron doping level with CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/199/1 decreased the films electrical conductivity and its electro-catalytic activity. When the carrier concentration in the films reached around 10 20 cm -3 with CH 4 /H 2 /B(OCH 3 ) 3 ratio over a range of 4/195/5-4/185/15, the thermal stress in the films was the key reason that influenced the electro-catalytic activity of the electrodes for its effect on diamond lattice expansion. Therefore, the BDD electrode with modest CH 4 /H 2 /B(OCH 3 ) 3 ratio of 4/190/10 possessed the best phenol removal efficiency.

  15. A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles–modified carbon paste electrode

    International Nuclear Information System (INIS)

    Arvand, Majid; Dehsaraei, Mohammad

    2013-01-01

    Folic acid (FA) is a water soluble vitamin that exists in many natural species. The lack of FA causes some deficiencies in human body, so finding a simple and sensitive method for determining the FA is important. A new chemically modified electrode was fabricated for determination of FA in human blood plasma using gold nanoparticles (AuNPs) and carbon paste electrode (CPE). Gold nanoparticles–modified carbon paste electrode (AuNPs/CPE) was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experimental parameters such as pH, scan rate (ν) and amount of modifier were studied by cyclic voltammetry and the optimized values were chosen. The electrochemical parameters such as diffusion coefficient of FA (D FA ), electrode surface area (A) and electron transfer coefficient (α) were calculated. Square wave voltammetry as an accurate technique was used for quantitative calculations. A good linear relation was observed between anodic peak current (i pa ) and FA concentration (C FA ) in the range of 6 × 10 −8 to 8 × 10 −5 mol L −1 , and the detection limit (LOD) achieved 2.7 × 10 −8 mol L −1 , that is comparable with recently studies. This paper demonstrated a novel, simple, selective and rapid sensor for determining the FA in the biological samples. - Highlights: • We examine a AuNPs/CPE for direct electrooxidation behavior and determination of FA. • Characterization of the electrode showed an obvious increase in surface area and porosity after modification. • The modified electrode showed good ability to distinguish the electrochemical response of FA. • The results were attributed to the specific characteristics of AuNPs present in the AuNPs/CPE. • This paper demonstrated a simple and rapid sensor for determination of FA in plasma

  16. One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process.

    Science.gov (United States)

    Khataee, Alireza; Sajjadi, Saeed; Hasanzadeh, Aliyeh; Vahid, Behrouz; Joo, Sang Woo

    2017-09-01

    Natural Martite ore particles and graphite were modified by alternating current (AC) glow discharge plasma to form nanostructured catalyst and cathode electrode for using in the heterogeneous-electro Fenton-like (Het-EF-like) process. The performance of the plasma-treated martite (PTM) and graphite electrode (PTGE) was studied for the treatment of paraquat herbicide in a batch system. 85.78% degradation efficiency for 20 mg L -1 paraquat was achieved in the modified process under desired operational conditions (i.e. current intensity of 300 mA, catalyst amount of 1 g L -1 , pH = 6, and background electrolyte (Na 2 SO 4 ) concentration of 0.05 mol L -1 ) which was higher than the 41.03% for the unmodified one after 150 min of treatment. The ecofriendly modification of the martite particles and the graphite electrode, no chemical needed, low leached iron and milder operational pH were the main privileges of plasma utilization. Moreover, the degradation efficiency through the process was not declined after five repeated cycles at the optimized conditions, which proved the stability of the nanostructured PTM and PTGE in the long-term usage. The archived results exhibit this method is the first example of high efficient, cost-effective, and environment-friendly method for generation of nanostructured samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO2/Ti Electrode as Catalyst

    Science.gov (United States)

    Gong, Jianying; Zhang, Xingwang; Wang, Xiaoping; Lei, Lecheng

    2013-12-01

    Oxidation of S(IV) to S(VI) in the effluent of a flue gas desulfurization(FGD) system is very critical for industrial applications of seawater FGD. This paper reports a pulsed corona discharge oxidation process combined with a TiO2 photocatalyst to convert S(IV) to S(VI) in artificial seawater. Experimental results show that the oxidation of S(IV) in artificial seawater is enhanced in the pulsed discharge plasma process through the application of TiO2 coating electrodes. The oxidation rate of S(IV) using Ti metal as a ground electrode is about 2.0×10-4 mol · L-1 · min-1, the oxidation rate using TiO2/Ti electrode prepared by annealing at 500°C in air is 4.5×10-4 mol · L-1 · min-1, an increase with a factor 2.25. The annealing temperature for preparing TiO2/Ti electrode has a strong effect on the oxidation of S(IV) in artificial seawater. The results of in-situ emission spectroscopic analysis show that chemically active species (i.e. hydroxyl radicals and oxygen radicals) are produced in the pulsed discharge plasma process. Compared with the traditional air oxidation process and the sole plasma-induced oxidation process, the combined application of TiO2 photocatalysts and a pulsed high-voltage electrical discharge process is useful in enhancing the energy and conversion efficiency of S(IV) for the seawater FGD system.

  18. Comparative study of two- and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-01-01

    A comparative study between two- and three-dimensional (2D and 3D) modeling is carried out on arc discharge phenomena inside a thermal plasma torch with hollow electrodes, in order to evaluate the effects of arc root configuration characterized by either 2D annular or 3D highly localized attachment on the electrode surface. For this purpose, a more precise 3D transient model has been developed by taking account of 3D arc current distribution and arc root rotation. The 3D simulation results apparently reveal that the 3D arc root attachment brings about the inherent 3D and turbulence nature of plasma fields inside the torch. It is also found that the constricted arc column near the vortex chamber plays an important role in heating and acceleration of injected arc gases by concentrating arc currents on the axis of the hollow electrodes. The inherent 3D nature of arc discharge is well preserved inside the cathode region, while these 3D features slowly diminish behind the vortex chamber where the turbulent flow begins to be developed in the anode region. Based on the present simulation results, it is noted that the mixing effects of the strong turbulent flow on the heat and mass transfer are mainly responsible for the gradual relaxation of the 3D structures of plasma fields into the 2D axisymmetric ones that eventually appear in the anode region near the torch exit. From a detailed comparison of the 3D results with the 2D ones, the arc root configuration seems to have a significant effect on the heat transfer to the electrode surfaces interacting with the turbulent plasma flow. That is, in the 2D simulation based on an axisymmetric stationary model, the turbulence phenomena are fairly underestimated and the amount of heat transferred to the cold anode wall is calculated to be smaller than that obtained in the 3D simulation. For the validation of the numerical simulations, calculated plasma temperatures and axial velocities are compared with experimentally measured ones

  19. Theoretical and experimental identification of a plasma in a gaseous discharge between two parallel plates electrodes; Identificacion teorica y experimental de un plasma en una descarga gaseosa entre dos electrodos de placas paralelas

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Aparicio Villaran, Luis Felipe; Chaname D, Julio [Ponitificia Univ. Catolica del Peru, Lima (Peru). Dept. de Ciencias. Seccion Fisica

    1997-12-31

    This work allows a basic approach to the identification of a gaseous discharge plasma (of air, hydrogen, argon or any other gas) between two metallic electrodes separated by a variable distance `d` in the range of 1 to 17 cm. The discharge zone identification (anodic and cathodic regions), the tabulation of the characteristic curves V (volts), versus vs I (m A), and V (Volts) versus pd (Torr x cm), as well the implementation of some electric probes, will characterize this plasma. (author). 11 refs., 8 figs.

  20. Large gap plasma display cell with auxiliary electrodes: macro-cell experiments and two-dimensional modelling

    International Nuclear Information System (INIS)

    Ouyang, J T; Callegari, Th; Caillier, B; Boeuf, J-P

    2003-01-01

    In this paper we use a two-dimensional fluid model and a 'macroscopic' PDP cell to investigate the possibility of using large gap configurations with auxiliary electrodes to improve the efficiency of PDP discharge cells. The large gap allows operation in a transient positive column regime where energy is more efficiently deposited into xenon excitation, while the auxiliary electrodes are used to keep reasonable values of the operating voltage. Two types of auxiliary electrode configurations (floating and powered) are considered. The discharge characteristics and the discharge efficiency in exciting xenon are studied with simulations and by measuring the intensity of infrared emission from xenon and visible emission from neon in a macroscopic PDP cell. The results show that an efficient positive column regime can be achieved at reasonably low operating voltages when the auxiliary electrode configuration is carefully designed

  1. Deactivation of Escherichia coli in a post-discharge chamber coupled to an atmospheric pressure multi-electrode DBD plasma source

    International Nuclear Information System (INIS)

    Pérez-Ruiz, V H; López-Callejas, R; De la Piedad Beneitez, A; Peña-Eguiluz, R; Mercado-Cabrera, A; Muñoz-Castro, A E; Barocio, S R; Valencia-Alvarado, R; Rodríguez-Méndez, B G

    2012-01-01

    Experimental results from applying a room pressure RF multi-electrode DBD plasma source to the inhibition of the population growth of Gram negative Escherichia coli (E. coli) within a post-discharge reactor are reported. The sample to be treated is deposited in the post-discharge chamber at about 50 mm from the plasma source outlet. Thus, the active species generated by the source are conveyed toward the chamber by the working gas flow. The plasma characterization included the measurement of the axial temperature at different distances from the reactor outlet by means of a K-type thermocouple. The resulting 294 K to 322 K temperature interval corresponded to distances between 10 mm to 1 mm respectively. As the material under treatment is placed further away, any thermal damage of the sample by the plasma is prevented. The measurement and optimization of the ozone O 3 concentration has also been carried out, provided that this is an active specie with particularly high germicide power. The effectiveness treatment of the E. coli bacteria growth inhibition by the proposed plasma source reached 99% when a 10 3 CFU/mL concentration on an agar plate had been exposed during ten minutes.

  2. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yamaguchi, Masahito

    2015-01-01

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the...

  3. A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode.

    Science.gov (United States)

    Zabardasti, Abedin; Afrouzi, Hossein; Talemi, Rasoul Pourtaghavi

    2017-07-01

    In this work, we have prepared a nano-material modified pencil graphite electrode for the sensing of valproic acid (VA) by immobilization 3-aminopropyletriethoxy silane coated magnetic nanoparticles (APTES-MNPs) on the pencil graphite surface (PGE). Electrochemical studies indicated that the APTES-MNPs efficiently increased the electron transfer kinetics between VA and the electrode and the free NH 2 groups of the APTES on the outer surface of magnetic nanoparticles can interact with carboxyl groups of VA. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for VA determination. Under the optimized conditions, the reduction peak current of VA is found to be proportional to its concentration in the range of 1.0 (±0.2) to 100.0 (±0.3) ppm with a detection limit of 0.4 (±0.1) ppm. The whole sensor fabrication process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods with using [Fe(CN) 6 ] 3-/4- as an electrochemical redox indicator. The prepared modified electrode showed several advantages such as high sensitivity, selectivity, ease of preparation and good repeatability, reproducibility and stability. The proposed method was applied to determination of valproic acid in blood plasma samples and the obtained results were satisfactory accurate. Copyright © 2017. Published by Elsevier B.V.

  4. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng, E-mail: rchsh@dlut.edu.cn [School of Physics and Optoelectronic Technology, Key laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2015-04-15

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  5. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    International Nuclear Information System (INIS)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-01-01

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance

  6. Microwave exposure as a fast and cost-effective alternative of oxygen plasma treatment of indium-tin oxide electrode for application in organic solar cells

    Science.gov (United States)

    Soultati, Anastasia; Kostis, Ioannis; Papadimitropoulos, Giorgos; Zeniou, Angelos; Gogolides, Evangelos; Alexandropoulos, Dimitris; Vainos, Nikos; Davazoglou, Dimitris; Speliotis, Thanassis; Stathopoulos, Nikolaos A.; Argitis, Panagiotis; Vasilopoulou, Maria

    2017-12-01

    Pre-treatment methods are commonly employed to clean as well as to modify electrode surfaces. Many previous reports suggest that modifying the surface properties of indium tin oxide (ITO) by oxygen plasma treatment is a crucial step for the fabrication of high performance organic solar cells. In this work, we propose a fast and cost-effective microwave exposure step for the modification of the surface properties of ITO anode electrodes used in organic solar cells. It is demonstrated that a short microwave exposure improves the hydrophilicity and reduces the roughness of the ITO surface, as revealed by contact angle and atomic force microscopy (AFM) measurements, respectively, leading to a better quality of the PEDOT:PSS film coated on top of it. Similar results were obtained with the commonly used oxygen plasma treatment of ITO suggesting that microwave exposure is an effective process for modifying the surface properties of ITO with the benefits of low-cost, easy and fast processing. In addition, the influence of the microwave exposure of ITO anode electrode on the performance of an organic solar cell based on the poly(3-hexylthiophene):[6,6]-phenyl C70 butyric acid methyl ester (P3HT:PC70BM) blend is investigated. The 71% efficiency enhancement obtained in the microwave annealed-ITO based device as compared to the device with the as-received ITO was mainly attributed to the improvement in the short circuit current (J sc) and decreased leakage current caused by the reduced series and the increased shunt resistances and also by the higher charge generation efficiency, and the reduced recombination losses.

  7. Decay of enhanced density and damping of plasma flows after the electrode biasing terminaton on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Hron, Martin; Ďuran, Ivan; Stöckel, Jan; Hidalgo, C.

    2004-01-01

    Roč. 54, suppl. C (2004), C22-C27 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/03/0786 Institutional research plan: CEZ:AV0Z2043910 Keywords : tokamak, edge plasma, polarization Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  8. Simulation of a two-dimensional sheath over a flat insulator-conductor interface on a radio-frequency biased electrode in a high-density plasma

    International Nuclear Information System (INIS)

    Kim, Doosik; Economou, Demetre J.

    2004-01-01

    A combined fluid/Monte Carlo (MC) simulation was developed to study the two-dimensional (2D) sheath over a flat insulator/conductor interface on a radio-frequency (rf) biased electrode in a high-density plasma. The insulator capacitance increased the local impedance between the plasma and the bias voltage source. Thus, for uniform ion density and electron temperature far away from the wall, the sheath potential over the insulator was only a fraction of that over the conductor, resulting in a thinner sheath over the insulator. The fluid model provided the spatiotemporal profiles of the 2D sheath electric field. These were used as input to the MC simulation to compute the ion energy distribution (IED) and ion angular distribution (IAD) at different locations on the surface. The ion flux, IED, and IAD changed drastically across the insulator/conductor interface due to the diverging rf electric field in the distorted sheath. The ion flux was larger on the conductor at the expense of that on the insulator. Both the ion impact angle and angular spread increased progressively as the material interface was approached. The ion impact energy and energy spread were smaller on the insulator as compared to the conductor. For given plasma parameters, as the insulator thickness was increased, the sheath potential and thickness over the insulator decreased, and sheath distortion became more pronounced

  9. Dependence of plasma treatment of ITO electrode films on electrical and optical properties of polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Baek, Seung Jun; Chang, Ho Jung; Chang, Young Chul

    2012-01-01

    Polymer light-emitting diodes (PLEDs) having indium tin oxide (ITO)/PEDOT:PSS [poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate]/PVK [poly-vinylcarbazole]:PFO-poss [poly(9,9-dioctylfluorene) end capped by polyhedral oligomeric silsesquioxane]/TPBI [2,2',2''-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)]/LiF/Al structures were prepared on plasma-treated ITO/glass substrates using spin-coating and thermal evaporation methods. The effects of the plasma treatment on the ITO films to the optical and electrical properties of the PLEDs were examined. The sheet resistance of the ITO films decreased with an increasing radio frequency (RF) plasma intensity from 20 to 200 W under a 20 mTorr Ar + O 2 gas (50:50 vol.%) pressure. The work function of the ITO films without plasma treatment was 4.97 eV, and increased to about 5.16-5.23 eV after the plasma treatment of the films. The surface roughness improved with increasing plasma intensities. The luminance and current efficiency of the PLEDs were improved when the devices were prepared on the plasma-treated ITO/glass substrates. The maximum current density and luminance for the PLEDs was obtained at a 150-W RF plasma intensity; they were 310 mA cm -2 and 2535 cd m -2 at 9 V, respectively. The Commission Internationale d'Eclairage (CIE) color coordinates were found to be x, y = 0.17, 0.06-0.07, showing a good blue color. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Electrical and spectral characteristics of an atmospheric pressure argon plasma jet generated with tube-ring electrodes in surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Y. [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Department of Physics and Electrical Engineering, Weinan Teachers University, Weinan 71400 (China); Lu, N. [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Pan, J. [Department of Physics and Electrical Engineering, Weinan Teachers University, Weinan 71400 (China); Li, J., E-mail: lijie@dlut.edu.cn [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Wu, Y. [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China)

    2013-03-01

    An atmospheric-pressure argon plasma jet is generated with tube-ring electrodes in surface dielectric barrier discharge by a sinusoidal excitation voltage at 8 kHz. The electrical and spectral characteristics are estimated such as conduction and displacement current, electric-field, electron temperature, rotational temperature of N{sub 2} and OH, electronic excitation temperature, and oxygen atomic density. It is found that the electric-field magnitudes in the top area of the ground electrode are higher than that in the bottom area of the power electrode, and the electron temperature along radial direction is in the range of 9.6–10.4 eV and along axial direction in the range of 4.9–10 eV. The rotational temperature of N{sub 2} obtained by comparing the simulated spectrum with the measured spectrum at the C{sup 3}Π{sub u} → B{sup 3}Π{sub g}(Δv = − 2) band transition is in the range of 342–387 K, the electronic excitation temperature determined by Boltzmann's plot method is in the range of 3188–3295 K, and the oxygen atomic density estimated by the spectral intensity ratio of atomic oxygen line λ = 844.6 nm to argon line λ = 750.4 nm is in the order of magnitude of 10{sup 16} cm{sup −3}, respectively. - Highlights: ► The conduction and displacement current are calculated by equivalent circuit diagram. ► The 2D distribution of electric-field magnitude is calculated by ElecNet software. ► The electron temperature along axial direction is in the range of 4.9–10 eV. ► The oxygen atomic density is about a magnitude of 10{sup 16} cm{sup −3}.

  11. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    International Nuclear Information System (INIS)

    Ohtsu, Yasunori; Matsumoto, Naoki

    2014-01-01

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200 nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2 Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6 Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode

  12. Optimized Extraction of H– by Three-Electrode Faraday Cup System in Magnetized Sheet Plasma Ion Source

    Directory of Open Access Journals (Sweden)

    M. S. Fernandez

    2003-06-01

    Full Text Available A locally designed rectangular parallelepiped, three-electrode Faraday cup system has been developed.Its design incorporates the capability of simultaneous extraction and deposition of the H– ions on substrates.The device functions to attain prescribed selectivity conditions of extracted ions, with controlled energies,for deposition or adsorption. It has been proven to detect the ions at filter bias voltage of 13.61 V with acurrent density of 5.3 A/m2 that is relatively higher than reported (Abate & Ramos, 2000.

  13. Method for finding the distribution function of the ions formed in an electrode sheath in a plasma

    International Nuclear Information System (INIS)

    Chumenkov, V.

    1981-01-01

    A steady-state one-dimensional kinetic equation is studied for the ions formed in an electrode sheath in a discharge in a transverse magnetic field and also in the ionization--acceleration zone of Hall accelerators. Only single ionization of atoms by electron impact is considered in the collision term on the right side of the equation. The variables which appear on the right side are grouped into an expression which is a measure of the ion energy distribution. The problem is solved through the use of an empirical expression for the integrated ion energy distribution. This approach for finding the ion distribution function makes it a comparatively simple matter to trace the evolution of the distribution function due to changes in the external parameters (the magnetic field, the discharge voltage, and the pressure) or in the geometric characteristics of the discharge apparatus

  14. Plasma Temperature Determination of Hydrogen Containing High-Frequency Electrode less Lamps by Intensity Distribution Measurements of Hydrogen Molecular Band

    International Nuclear Information System (INIS)

    Gavare, Z.; Revalde, G.; Skudra, A.

    2011-01-01

    The goal of the present work was the investigation of the possibility to use intensity distribution of the Q-branch lines of the hydrogen Fulcher-a diagonal band (d3η u- a3Σg + electronic transition; Q-branch with ν=ν=2) to determine the temperature of hydrogen containing high-frequency electrode less lamps (HFEDLs). The values of the rotational temperatures have been obtained from the relative intensity distributions for hydrogen-helium and hydrogen-argon HFEDLs depending on the applied current. The results have been compared with the method of temperature derivation from Doppler profiles of He 667.8 nm and Ar 772.4 nm lines. The results of both methods are in good agreement, showing that the method of gas temperature determination from the intensity distribution in the hydrogen Fulcher-a (2-2)Q band can be used for the hydrogen containing HFEDLs. It was observed that the admixture of 10% hydrogen in the argon HFEDLs significantly reduces the gas temperature

  15. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  16. High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode

    Science.gov (United States)

    Dan, ZHAO; Feng, YU; Amin, ZHOU; Cunhua, MA; Bin, DAI

    2018-01-01

    With the rapid increase in the number of cars and the development of industry, nitrogen oxide (NOx) emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOx removal at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO2, ZrO2, or Fe2O3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency (28.8%) than that obtained using quartz tube (14.1%) at a frequency of 8 kHz with an input voltage of 6.8 kV. Furthermore, under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.

  17. Investigation of the internal electric field distribution under in situ x-ray irradiation and under low temperature conditions by the means of the Pockels effect

    International Nuclear Information System (INIS)

    Prekas, G; Sellin, P J; Veeramani, P; Davies, A W; Lohstroh, A; Oezsan, M E; Veale, M C

    2010-01-01

    The internal electric field distribution in cadmium zinc telluride (CdZnTe) x-ray and γ-ray detectors strongly affects their performance in terms of charge transport and charge collection properties. In CdZnTe detectors the electric field distribution is sensitively dependent on not only the nature of the metal contacts but also on the working conditions of the devices such as the temperature and the rate of external irradiation. Here we present direct measurements of the electric field profiles in CdZnTe detectors obtained using the Pockels electo-optic effect whilst under in situ x-ray irradiation. These data are also compared with alpha particle induced current pulses obtained by the transient current technique, and we discuss the influence of both low temperature and x-ray irradiation on the electric field evolution. Results from these studies reveal strong distortion of the electric field consistent with the build-up of space charge at temperatures below 250 K, even in the absence of external irradiation. Also, in the presence of x-ray irradiation levels a significant distortion in the electric field is observed even at room temperature which matches well the predicted theoretical model.

  18. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    Science.gov (United States)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  19. Second Harmonic Generation, Electrooptical Pockels Effect, and Static First-Order Hyperpolarizabilities of 2,2′-Bithiophene Conformers: An HF, MP2, and DFT Theoretical Investigation

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available The static and dynamic electronic (hyperpolarizabilities of the equilibrium conformations of 2,2′-bithiophene (anti-gauche and syn-gauche were computed in the gas phase. The calculations were carried out using Hartree-Fock (HF, Møller-Plesset second-order perturbation theory (MP2, and density functional theory methods. The properties were evaluated for the second harmonic generation (SHG, and electrooptical Pockels effect (EOPE nonlinear optical processes at the typical λ=1064 nm of the Nd:YAG laser. The anti-gauche form characterized by the S–C2–C2′–S dihedral angle of 137° (MP2/6-311G** is the global minimum on the potential energy surface, whereas the syn-gauche rotamer (S–C2–C2′–S = 48°, MP2/6-311G** lies ca. 0.5 kcal/mol above the anti-gauche form. The structural properties of the gauche structures are rather similar to each other. The MP2 electron correlation effects are dramatic for the first-order hyperpolarizabilities of the 2,2′-bithiophenes, decreasing the HF values by ca. a factor of three. When passing from the anti-gauche to the syn-gauche conformer, the static and frequency-dependent first-order hyperpolarizabilities increase by ca. a factor of two. Differently, the electronic polarizabilities and second-order hyperpolarizabilities of these rotamers are rather close to each other. The syn-gauche structure could be discriminated from the anti-gauche one through its much more intense SHG and EOPE signals.

  20. An experimental assessment of methods used to compute secondary electron emission yield for tungsten and molybdenum electrodes based on exposure to Alcator C-Mod scrape-off layer plasmas

    Science.gov (United States)

    McCarthy, W.; LaBombard, B.; Brunner, D.; Kuang, A. Q.

    2018-03-01

    Plasma potentials computed from Langmuir probe data rely on a method to account for secondary electron emission (SEE) from the electrodes. However, significant variations exist among published models for SEE and the reported experimental parameters used to evaluate them. As a means to critically assess SEE computation methods, two of four tungsten electrodes on a Langmuir-Mach probe head were replaced with molybdenum and exposed to Alcator C-Mod boundary plasmas where electron temperatures exceed 50 eV and SEE becomes significant. In this situation, plasma potentials computed for either material should be identical—the SEE evaluation method should properly account for the differences in SEE yields. Of the six methods used to compute SEE, two are found to produce consistent results (Sternglass model with Bronstein experimental parameters and Young-Dekker model with Bronstein experimental parameters). In contrast, the method previously used for C-Mod data analysis (Sternglass model with Kollath parameters) was found to be inconsistent. We have since adopted Young-Dekker-Bronstein as the preferred method.

  1. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  2. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  3. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.

    1983-01-01

    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  4. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  5. Particle and power balances of hot-filament discharge plasmas in a multi-dipole device in the presence of a positively biased electrode

    International Nuclear Information System (INIS)

    Cho, M.H.; Hershkowitz, N.; Intrator, T.

    1989-01-01

    The plasma potential is typically assumed to float above an anode potential by a few times of an electron temperature (T /e). The difference between the plasma potential and the anode potential can be estimated by considering the particle production and loss. However, it has been reported experimentally that the plasma potential of a steady state plasma can be more negative than the anode potential with a potential dip (-- T /e) in front of the anode. This paper describes particle and power balances to estimate the bulk plasma potential of a hot-filament discharge plasma produced in a multi-dipole plasma device. The bulk plasma potential dependence on positive DC bias applied to an anode is analyzed, and the predicted characteristics of the plasma potential dependence are compared to the experiment. A steady state potential dip in front of an anode is experimentally observed using emissive probes with the zero emission inflection point method, and the conditions for the potential dip formation are derived

  6. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  7. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  8. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  9. Dependence of beam emittance on plasma electrode temperature and rf-power, and filter-field tuning with center-gapped rod-filter magnets in J-PARC rf-driven H− ion source

    International Nuclear Information System (INIS)

    Ueno, A.; Koizumi, I.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2014-01-01

    The prototype rf-driven H − ion-source with a nickel plated oxygen-free-copper (OFC) plasma chamber, which satisfies the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of a H − ion beam current of 60 mA within normalized emittances of 1.5 π mm mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500 μs × 25 Hz) and a life-time of more than 50 days, was reported at the 3rd international symposium on negative ions, beams, and sources (NIBS2012). The experimental results of the J-PARC ion source with a plasma chamber made of stainless-steel, instead of nickel plated OFC used in the prototype source, are presented in this paper. By comparing these two sources, the following two important results were acquired. One was that the about 20% lower emittance was produced by the rather low plasma electrode (PE) temperature (T PE ) of about 120 °C compared with the typically used T PE of about 200 °C to maximize the beam current for the plasma with the abundant cesium (Cs). The other was that by using the rod-filter magnets with a gap at each center and tuning the gap-lengths, the filter-field was optimized and the rf-power necessary to produce the J-PARC required H − ion beam current was reduced typically 18%. The lower rf-power also decreases the emittances

  10. Influence of an octupole arrangement of electrodes on drift waves

    International Nuclear Information System (INIS)

    Block, D.; Piel, A.; Schroeder, Ch.; Klinger, T.

    2001-01-01

    In order to influence drift waves an octupole arrangement of electrodes is placed in direct vicinity of the plasma. By applying sinusoidal signals with proper phase shift to the electrodes synchronisation of drift waves is observed. The width of the synchronisation area is taken to quantify the interaction of the electrodes with the plasma. It turns out that the synchronisability strongly depends on the frequency, amplitude and phase shift and has to be interpreted as spatiotemporal effect. (orig.)

  11. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pain, H. J.; Fearn, D. G.; Distefano, E. [Imperial College. London (United Kingdom)

    1966-10-15

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 {mu}mHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  12. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    International Nuclear Information System (INIS)

    Pain, H.J.; Fearn, D.G.; Distefano, E.

    1966-01-01

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 μmHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  13. FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Pierre [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused our efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.

  14. Ferroelectric Plasma Thruster

    National Research Council Canada - National Science Library

    Kovaleski, Scott D; Kemp, Mark A

    2008-01-01

    .... When radiofrequency high voltage is applied between the electrodes, through the thickness of the crystal, a combination of triple point and piezoelectric effects produce dense plasma on the crystal surface...

  15. Dual-electrode biasing experiments in KT-5C device

    International Nuclear Information System (INIS)

    Yu Yi; Lu Ronghua; Wang Chen; Pan Geshen; Wen Yizhi; Yu Changxuan; Ma Jinxiu; Wan Shude; Liu Wandong

    2005-01-01

    Based on the single biasing electrode experiments to optimize the confinement of plasma in the device of KT-5C tokamak, dual-biasing electrodes were inserted into the KT5C plasma for the first time to explore the enhancement of the effects of biasing and the mechanisms of the biasing. By means of applying different combinations of biasing voltages to the dual electrodes, the changes in E r , which is the key factor for boosting up the Er x B flow shear, were observed. The time evolution showed the inner electrode played a major role in dual-biasing, for it always drew a larger current than the outer one. The outer electrode made little influence. It turned out that the dual-biasing electrodes were as effective as a single one, in improving plasma confinement, for the mechanism of biasing was essentially an edge effect. (author)

  16. Study of electric discharges between moving electrodes in air

    International Nuclear Information System (INIS)

    Andreev, V. V.; Pichugin, Yu. P.; Telegin, V. G.; Telegin, G. G.

    2011-01-01

    A barrier electric discharge excited between a fixed electrode and a rotating electrode covered with a dielectric layer in atmospheric-pressure air is studied experimentally. A distinctive feature of this type of discharge is that it operates at a constant voltage between the electrodes. An advantage of the proposed method for plasma generation in the boundary layer of the rotating electrode (e.g., for studying the influence of plasma on air flows) is the variety of forms of the discharge and conditions for its initiation, simplicity of the design of the discharge system, and ease of its practical implementation

  17. Study of electric discharges between moving electrodes in air

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V.; Pichugin, Yu. P.; Telegin, V. G.; Telegin, G. G. [Chuvash State University (Russian Federation)

    2011-12-15

    A barrier electric discharge excited between a fixed electrode and a rotating electrode covered with a dielectric layer in atmospheric-pressure air is studied experimentally. A distinctive feature of this type of discharge is that it operates at a constant voltage between the electrodes. An advantage of the proposed method for plasma generation in the boundary layer of the rotating electrode (e.g., for studying the influence of plasma on air flows) is the variety of forms of the discharge and conditions for its initiation, simplicity of the design of the discharge system, and ease of its practical implementation.

  18. Fluid model of the sheath in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field: Some comments on ion source terms and ion temperature effects

    International Nuclear Information System (INIS)

    Gyergyek, T.; Kovačič, J.

    2015-01-01

    A one-dimensional fluid model of the magnetized plasma-wall transition region in front of a floating electrode immersed in a magnetized plasma with oblique magnetic field is presented. The Boltzmann relation is assumed for the electrons, while the positive ions obey the ion continuity and momentum exchange equation. The ions are assumed to be isothermal. By comparison with a two-fluid model, it is shown that assuming the Boltzmann relation for the electrons implies that there is no creation or annihilation of the electrons. Consequently, there should not be any creation and annihilation of the positive ions either. The models that assume the Boltzmann relation for the electrons and a non-zero ion source term at the same time are therefore inconsistent, but such models have nevertheless been used extensively by many authors. So, in this work, an extensive comparison of the results obtained using the zero source term on one hand and three different non-zero source terms on the other hand is made. Four different ion source terms are considered in total: the zero source term and three different non-zero ion source terms. When the zero source term is used, the model becomes very sensitive to the boundary conditions, and in some cases, the solutions exhibit large amplitude oscillations. If any of the three non-zero ion source terms is used, those problems are eliminated, but also the consistency of the model is broken. The model equations are solved numerically in the entire magnetized plasma-wall transition region. For zero ion temperature, the model can be solved even if a very small ion velocity is selected as a boundary condition. For finite ion temperature, the system of equations becomes stiff, unless the ion velocity at the boundary is increased slightly above the ion thermal velocity. A simple method how to find a solution with a very small ion velocity at the boundary also for finite ion temperature in the entire magnetized plasma-wall transition region is

  19. Metallurgical plasma torches

    International Nuclear Information System (INIS)

    Shapovalov, V.A.; Latash, Yu.V.

    2000-01-01

    The technological equipment for the plasma heating of metals, plasma melting and plasma treatment of the surface is usually developed on the basis of are plasma torches using direct or alternating current. The reasons which partly restrict the industrial application of the plasma torches are the relatively short service life of the electrode (cathode) on which the arc is supported, and the contamination of the treated metal with the products of failure of the electrode. The aim of this work was to determine the reasons for the occurrence of negative phenomena observed in the process of service of plasma torches, and propose suitable approaches to the design of metallurgical plasma torches characterised by a long service life

  20. AC low-pressure plasmas generated by using annular-shaped electrodes for abatement of pollutants emitted during semiconductor manufacturing processes

    International Nuclear Information System (INIS)

    Hur, Min; Lee, Jae Ok; Song, Young Hoon

    2011-01-01

    A plasma abatement system operating at low pressures is set up with the aim of treating pollutants emitted by the semiconductor industry. The abatement device is characterized by using a tube-shaped reactor design and a bipolar alternating current, which allows an easy connection to pre-existing pipelines in the semiconductor industry and low installation cost, respectively. By using optical emission spectroscopy (OES) and Fourier transform infrared spectroscopy (FTIR), we analyzed the discharge characteristics and abatement efficiency with emphasis on the working pressure effect. In the case of CF 4 , the destruction and removal efficiency (DRE) is greatly reduced with increasing pressure. However, the pressure has a relatively small influence on the DRE for tetrakis(ethylmethylamino)zirconium (TEMAZ), which is significantly destroyed only with several hundred watts and without any liquefied byproducts. This difference is closely related to the spatial distribution of reactive species and to the chemical bond strengths of the pollutant's components. Finally, the applicability of the abatement device is discussed based on the experimental results.

  1. Flexible Transparent Electrode of Hybrid Ag-Nanowire/Reduced-Graphene-Oxide Thin Film on PET Substrate Prepared Using H2/Ar Low-Damage Plasma

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Huang

    2017-01-01

    Full Text Available We employ H2/Ar low-damage plasma treatment (H2/Ar-LDPT to reduce graphene oxide (GO coating on a polymer substrate—polyethylene terephthalate (PET—with the assistance of atomic hydrogen (Hα at low temperature of 70 °C. Four-point probing and ultraviolet-visible (UV-Vis spectroscopy demonstrate that the conductivity and transmittance can be controlled by varying the H2/Ar flow rate, treatment time, and radio-frequency (RF power. Optical emission spectroscopy reveals that the Hα intensity depends on these processing parameters, which influence the removal of oxidative functional groups (confirmed via X-ray photoelectron spectroscopy to yield reduced GO (rGO. To further improve the conductivity while maintaining high transmittance, we introduce silver nanowires (AgNWs between rGO and a PET substrate to obtain a hybrid rGO/AgNWs/PET with a sheet resistance of ~100 Ω/sq and 81% transmittance. In addition, the hybrid rGO/AgNWs thin film also shows high flexibility and durability and is suitable for flexible and wearable electronics applications.

  2. Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration

    Directory of Open Access Journals (Sweden)

    Bogdan Butoi

    2017-12-01

    Full Text Available This work is focused on the structural and morphological investigations of polyaniline and poly(o-anisidine polymers generated in a direct current glow discharge plasma, in the vapors of the monomers, without a buffer gas, using an oblique angle-positioned substrate configuration. By atomic force microscopy and scanning electron microscopy we identified the formation of worm-like interlinked structures on the surface of the polyaniline layers, the layers being compact in the bulk. The poly(o-anisidine layers are flat with no kind of structures on their surfaces. By Fourier transform infrared spectroscopy we identified the main IR bands characteristic of polyaniline and poly(o-anisidine, confirming that the polyaniline chemical structure is in the emeraldine form. The IR band from 1070 cm−1 was attributed to the emeraldine salt form of polyaniline as an indication of its doping with H+. The appearance of the IR band at 1155 cm−1 also indicates the conducting protonated of polyaniline. The X-ray diffraction revealed the formation of crystalline domains embedded in an amorphous matrix within the polyaniline layers. The interchain separation length of 3.59 Å is also an indicator of the conductive character of the polymers. The X-ray diffraction pattern of poly(o-anisidine highlights the semi-crystalline nature of the layers. The electrical conductivities of polyaniline and poly(o-anisidine layers and their dependence with temperature are also investigated.

  3. High throughput production of nanocomposite SiO x powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Keiichiro Homma

    2014-04-01

    Full Text Available Nanocomposite Si/SiO x powders were produced by plasma spray physical vapor deposition (PS-PVD at a material throughput of 480 g h−1. The powders are fundamentally an aggregate of primary ~20 nm particles, which are composed of a crystalline Si core and SiO x shell structure. This is made possible by complete evaporation of raw SiO powders and subsequent rapid condensation of high temperature SiO x vapors, followed by disproportionation reaction of nucleated SiO x nanoparticles. When CH4 was additionally introduced to the PS-PVD, the volume of the core Si increases while reducing potentially the SiO x shell thickness as a result of the enhanced SiO reduction, although an unfavorable SiC phase emerges when the C/Si molar ratio is greater than 1. As a result of the increased amount of Si active material and reduced source for irreversible capacity, half-cell batteries made of PS-PVD powders with C/Si = 0.25 have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAh g−1 after 100 cycles at the same time.

  4. High throughput production of nanocomposite SiO x powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries.

    Science.gov (United States)

    Homma, Keiichiro; Kambara, Makoto; Yoshida, Toyonobu

    2014-04-01

    Nanocomposite Si/SiO x powders were produced by plasma spray physical vapor deposition (PS-PVD) at a material throughput of 480 g h -1 . The powders are fundamentally an aggregate of primary ∼20 nm particles, which are composed of a crystalline Si core and SiO x shell structure. This is made possible by complete evaporation of raw SiO powders and subsequent rapid condensation of high temperature SiO x vapors, followed by disproportionation reaction of nucleated SiO x nanoparticles. When CH 4 was additionally introduced to the PS-PVD, the volume of the core Si increases while reducing potentially the SiO x shell thickness as a result of the enhanced SiO reduction, although an unfavorable SiC phase emerges when the C/Si molar ratio is greater than 1. As a result of the increased amount of Si active material and reduced source for irreversible capacity, half-cell batteries made of PS-PVD powders with C/Si = 0.25 have exhibited improved initial efficiency and maintenance of capacity as high as 1000 mAh g -1 after 100 cycles at the same time.

  5. Field reversal produced by a plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Condit, W.; Granneman, E.H.A.; Prono, D.; Smith, A.C. Jr.; Taska, J.; Turner, W.C.

    1980-01-01

    Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode

  6. Electrode and limiter biasing experiments on the tokamak ISTTOK

    International Nuclear Information System (INIS)

    Silva, C.; Figueiredo, H.; Cabral, J.A.C.; Nedzelsky, I.; Varandas, C.A.F.

    2003-01-01

    In this contribution limiter and electrode biasing experiments are compared, in particular in what concerns their effects on the edge plasma parameters. For electrode AC bias a substantial increase (>50%) in the average plasma density is observed with positive voltage, without significant changes in the edge density, leading to steeper profiles. The ratio n e /Hα also increases significantly (>20%), indicating an improvement in gross particle confinement. The plasma potential profile is strongly modified as both the edge E r and its shear increase significantly. For positive limiter bias an increase in the average plasma density and the radiation losses is observed, resulting in almost no modification, or a slight, in particle confinement. Preliminary results of simultaneous electrode and limiter bias experiments show that the control of the plasma potential profile is very limited, since negative voltages do not modify the plasma parameters significantly. (author)

  7. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  8. A Plasma Lens for Magnetron Sputtering

    International Nuclear Information System (INIS)

    Anders, Andre; Brown, Jeff

    2010-01-01

    A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

  9. Theory of edge plasma in a spheromak

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1998-01-01

    Properties of the edge plasma in the SSPX spheromak during the plasma formation and sustainment phases are discussed. For the breakdown and formation phase, the main emphasis is on the analysis of possible plasma contamination by impurities from the electrodes of the plasma gun (helicity injector). The issue of an azimuthally uniform breakdown initiation is also discussed. After the plasma settles down in the main vacuum chamber, one has to sustain the current between the electrodes, in order to continuously inject helicity. We discuss properties of the plasma on the field lines intersecting the electrodes. We conclude that the thermal balance of this plasma is maintained by Joule heating competing with parallel heat losses to the electrodes. The resulting plasma temperature is in the range of 15 - 30 eV. Under the expected operational conditions, the ''current'' velocity of the electrons is only slightly below their thermal velocity. Implications of this observation are briefly discussed

  10. Modelling of an RF plasma shower

    NARCIS (Netherlands)

    Atanasova, M.; Carbone, E.A.D.; Mihailova, D.B.; Benova, E.; Degrez, G.; Mullen, van der J.J.A.M.

    2012-01-01

    A capacitive radiofrequency (RF) discharge at atmospheric pressure is studied by means of a time-dependent, two-dimensional fluid model. The plasma is created in a stationary argon gas flow guided through two perforated electrodes, hence resembling a shower. The inner electrode, the electrode facing

  11. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  12. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  13. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  14. Cyanex based uranyl sensitive polymeric membrane electrodes.

    Science.gov (United States)

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  15. Pulsed Plasma Lubrication Device and Method

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Bickler, Donald B. (Inventor); D'Agostino, Saverio A. (Inventor)

    2016-01-01

    Disclosed herein is a lubrication device comprising a solid lubricant disposed between and in contact with a first electrode and a second electrode dimensioned and arranged such that application of an electric potential between the first electrode and the second electrode sufficient to produce an electric arc between the first electrode and the second electrode to produce a plasma in an ambient atmosphere at an ambient pressure which vaporizes at least a portion of the solid lubricant to produce a vapor stream comprising the solid lubricant. Methods to lubricate a surface utilizing the lubrication device in-situ are also disclosed.

  16. Basic electrochemical properties of sputtered gold film electrodes

    International Nuclear Information System (INIS)

    Libansky, Milan; Zima, Jiri; Barek, Jiri; Reznickova, Alena; Svorcik, Vaclav; Dejmkova, Hana

    2017-01-01

    Gold nanolayers made by sputtering of pure gold (physical vapour deposition) are commonly used for many biophysical and material applications. However, the use of sputtering method for fabrication of working electrodes for electroanalytical purposes is less common. This paper focuses on the testing and characterization of sputtered working roughened gold nanostructured film electrodes, which fall into category of upcoming desirable new generation of nanostructured gold working electrodes. Gold nanostructured films (80 nm thin) were sputtered onto 50 μm thin PTFE substrates with three different types of treatment: pristine, plasma treated, and plasma treated and subsequently spontaneously grafted with biphenyl-4,4′-dithiol. The characterization of gold nanostructured film electrodes was carried out by examination of the electrode reaction of standard redox probes (ferrocyanide/ferricyanide, hydroquinone/benzoquinone) in different types of supporting electrolytes (BR buffers of various pH, KCl, KNO 3 , H 2 SO 4 ), by exploration of the electrode surface by scanning electron microscopy, by atomic force microscopy accompanied by elementary analysis and contact angle measurements. The testing of electrodes was complemented by an attempt to calculate their real surface areas from Randles-Sevcik equation. All results were compared to conventional bulk gold electrode. The practical applicability of the nanostructured gold electrodes as sensors for the determination of environmental pollutants was verified by voltammetric determination of hydroquinone as a model electrochemically oxidisable organic environmental pollutant.

  17. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  18. Lage-area planar RF plasma productions by surface waves

    International Nuclear Information System (INIS)

    Nonaka, S.

    1994-01-01

    Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs

  19. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  20. Diagnostics for the Biased Electrode Experiment on NSTX

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Zweben, S.J.; Bush, C.E.; Kaita, R.; Marsalsa, R.J.; Maqueda, R.J.

    2009-01-01

    A linear array of four small biased electrodes was installed in NSTX in an attempt to control the width of the scrape-off layer (SOL) by creating a strong local poloidal electric field. The set of electrodes were separated poloidally by a 1 cm gap between electrodes and were located slightly below the midplane of NSTX, 1 cm behind the RF antenna and oriented so that each electrode is facing approximately normal to the magnetic field. Each electrode can be independently biased to ± 100 volts. Present power supplies limit the current on two electrodes to 30 amps the other two to 10 amps each. The effect of local biasing was measured with a set of Langmuir probes placed between the electrodes and another set extending radially outward from the electrodes, and also by the gas puff imaging diagnostic (GPI) located 1 m away along the magnetic field lines intersecting the electrodes. Two fast cameras were also aimed directly at the electrode array. The hardware and controls of the biasing experiment will be presented and the initial effects on local plasma parameters will be discussed

  1. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  2. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  3. Nippon paint atmospheric plasma system

    International Nuclear Information System (INIS)

    Tsuchiya, Y.; Akutsu, K.

    1996-01-01

    An invitational plasma systems which are able to generate the wide and stable plasma (discharge distance 30 cm length, discharge electrode length max. 16 m) under normal air and pressure by using and narrow wave-form of pulse voltage has been developed. Its technical outline and some applied examples are reported

  4. A new large-scale plasma source with plasma cathode

    International Nuclear Information System (INIS)

    Yamauchi, K.; Hirokawa, K.; Suzuki, H.; Satake, T.

    1996-01-01

    A new large-scale plasma source (200 mm diameter) with a plasma cathode has been investigated. The plasma has a good spatial uniformity, operates at low electron temperature, and is highly ionized under relatively low gas pressure of about 10 -4 Torr. The plasma source consists of a plasma chamber and a plasma cathode generator. The plasma chamber has an anode which is 200 mm in diameter, 150 mm in length, is made of 304 stainless steel, and acts as a plasma expansion cup. A filament-cathode-like plasma ''plasma cathode'' is placed on the central axis of this source. To improve the plasma spatial uniformity in the plasma chamber, a disk-shaped, floating electrode is placed between the plasma chamber and the plasma cathode. The 200 mm diameter plasma is measure by using Langmuir probes. As a result, the discharge voltage is relatively low (30-120 V), the plasma space potential is almost equal to the discharge voltage and can be easily controlled, the electron temperature is several electron volts, the plasma density is about 10 10 cm -3 , and the plasma density is about 10% variance in over a 100 mm diameter. (Author)

  5. Visualization and mechanisms of splashing erosion of electrodes in a DC air arc

    International Nuclear Information System (INIS)

    Wu, Yi; Cui, Yufei; Rong, Mingzhe; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi; Murphy, Anthony B

    2017-01-01

    The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten–copper and tungsten–ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten–copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion. (letter)

  6. Visualization and mechanisms of splashing erosion of electrodes in a DC air arc

    Science.gov (United States)

    Wu, Yi; Cui, Yufei; Rong, Mingzhe; Murphy, Anthony B.; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi

    2017-11-01

    The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten-copper and tungsten-ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten-copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion.

  7. Plasma focus matching conditions

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.; Elkhalafawy, T.A.

    1988-01-01

    A snow-plough and slug models have been used to obtain the optimum matching conditions of the plasma in the focus. The dimensions of the plasma focus device are, inner electrode radius = 2 cm, outer electrode radius = 5.5 cm, and its length = 8 cm. It was found that the maximum magnetic energy of 12.26 kJ has to be delivered to plasma focus whose density is 10 19 /cm 3 at focusing time of 2.55 μs and with total external inductance of 24.2 n H. The same method is used to evaluate the optimum matching conditions for the previous coaxial discharge system which had inner electrode radius = 1.6 cm, outer electrode radius = 3.3 cm and its length = 31.5 cm. These conditions are charging voltage = 12 kV, capacity of the condenser bank = 430 μf, plasma focus density = 10 19 /cm 3 focusing time = 8 μs and total external inductance = 60.32 n H.3 fig., 2 tab

  8. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  9. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  10. Converging-barrel plasma accelerator

    International Nuclear Information System (INIS)

    Paine, T.O.

    1971-01-01

    The invention comprises a device for generating and accelerating plasma to extremely high velocity, while focusing the plasma to a decreasing cross section for attaining a very dense high-velocity plasma burst capable of causing nuclear fusion reactions. A converging coaxial accelerator-electrode configuration is employed with ''high-pressure'' gas injection in controlled amounts to achieve acceleration by deflagration and focusing by the shaped electromagnetic fields. (U.S.)

  11. Methods and Apparatus for Pulsed-DC Dielectric Barrier Discharge Plasma Actuator and Circuit

    Science.gov (United States)

    Corke, Thomas C. (Inventor); Kaszeta, Richard (Inventor); Gold, Calman (Inventor)

    2017-01-01

    A plasma generating device intended to induce a flow in a fluid via plasma generation includes a dielectric separating two electrodes and a power supply. The first electrode is exposed to a fluid flow while the second electrode is positioned under the dielectric. The power supply is electrically coupled to a switch and the first and second electrodes. When the power supply is energized by repeated action of the switch, it causes a pulsed DC current between the electrodes which causes the fluid to ionize generating a plasma. The generation of the plasma induces a force with a velocity component in the fluid.

  12. Some experimental results of plasma cumulation in a rod plasma gun obtained by means of laser interferometry

    International Nuclear Information System (INIS)

    Appelt, J.; Kurzyna, J.

    1980-01-01

    Some experimental studies of the plasma gun with ''particle transparent'' electrodes are described. In order to ascertain whether a plasma cumulation occurred the laser interferometry and soft X-ray measurements have been applied. The filament shaped plasma formation was observed with densities of the order of 10 18 cm -3 . A strong correlation between the occurrence of a dense plasma and the voltage peak at the gun electrodes was established. (author)

  13. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  14. Co-axial electrodes gun characteristics

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.

    1981-01-01

    A coaxial electrodes gun is constructed with inner electrode diameter of 3.2 cm; outer electrode diameter of 6.6 cm and length of 25 cm it is connected to a condenser bank which delivers 4 K joule stored energy. The maximum power of the discharge is equal to 4.5x10 4 K watt; for 5 KV charging voltage. The inductance showed two main peak values of 0.257μH and 0.27μH. Theoretical calculations using one-dimension-single fluid model is μ sed, which shows that the maximum acceleration is at 0.5 sec, and the gas breakdown takes place at the gun breech; at the start of the discharge, will leave the gun after 1.625μ sec, also the drift velocity, the force and the magnetic field are given. The measured results show quite reasonable agreement with the calculations for most of the results, and the position of the plasma sheath inside the gun slightly deviated from the theoretical calculations due to viscosity and wall interaction, as well as other parameters which did not be take into consideration. The plasma current density of the sheath has its maximum value at Z=18 cm, the plasma will leave the coaxial source after 1.5μ sec, from the start of the discharge, which conferms with the theoretical model. Resistance of the gas between the electrodes, changes with time according to the particle injected from this source, and the maximum efficiency of the installation for charging voltage 5kV and pressure 80μ Hg is at approx.=10μ sec and 20.5μ sec

  15. Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor

    Science.gov (United States)

    Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.

    2017-10-01

    We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.

  16. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  17. Ion-plasma gun for ion-milling machine

    Science.gov (United States)

    Kaminsky, Manfred S.; Campana, Jr., Thomas J.

    1976-01-01

    An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.

  18. Platelet-cooled plasma arc torch. Final report

    International Nuclear Information System (INIS)

    1995-10-01

    In this 12-month program sponsored by the DOE Morgantown Energy Technology Center, Aerojet designed, fabricated, and tested six platelet cooled electrodes for a Retech 75T (90 MW) plasma arc torch capable of processing mixed radioactive waste. Two of the electrodes with gas injection through the electrode wall demonstrated between eight and forty times the life of conventional water cooled electrodes. If a similar life increase can be produced in a 1 Mw size electrode, then electrodes possessing thousands, rather than hundreds, of hours of life will be available to DOE for potential application to mixed radioactive waste processing

  19. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  20. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  1. Observations of current flow to a positively polarized electrode in a quiescent magnetoplasma

    International Nuclear Information System (INIS)

    Ferreira, J.L.; Urrutia, J.M.; Stenzel, R.L.

    1988-05-01

    This work reports experimental studies on the current flow to an electrode immersed in a quiescent magnetized plasma. The observed intense current driven instabilities during the current flow were found to be related with an anomalous current transport. (author)

  2. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  3. Ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelson, Konstantin N. [St. Petersburg State Univ. (Russian Federation). Ion-Selective Electrode Laboratory

    2013-06-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered.

  4. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  5. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  6. Ignitor electrode system design for the pulses electron irradiators device

    International Nuclear Information System (INIS)

    Lely Susita RM; Ihwanul Aziz

    2016-01-01

    The designed ignitor electrode system is a system used to initiate the plasma discharge. It consists of two pieces which are placed on both side of the plasma vessel. Each of the ignitor electrode system consists of a cathode, an anode and insulator between the cathode and the anode. The best cathode material for ignitor electrode system is Mg due to its lowest ion erosion rate (γi =11.7 μg/C) and its low cohesive energy (1.51 eV). The specifications of ignitor electrode system designed for the pulse electron irradiators is as follow: Mg cathode materials in the form of rod having a diameter of 6.35 mm and length of 76.75 mm. Anode material are made of non magnetic of SS 304 cylinder shaped with an outer diameter of 88.53 mm, an inner diameter of 81.53 mm and a thickness of 3.50 mm. Insulating material between the cathode and the anode is made of teflon cylinder shaped, outer diameter of 9.50 mm, an inner diameter of 6.35 mm and a length of 30 mm. Based on the ignitor electrode system design, the next step is construction and function test of the ignitor electrode system. (author)

  7. Vacuum arc plasma thrusters with inductive energy storage driver

    Science.gov (United States)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  8. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  9. Plasma sheath dynamics and parameters in focus and defocus conditions. Vol. 2

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Aragi, G.M.

    1996-01-01

    The study deals with the effect of the inner electrode polarity on the dynamic behaviour and parameters of plasma sheath in a coaxial discharge. The experimental investigations presented here were carried out in a coaxial plasma focus discharge device of mather geometry. It consisted of coaxial stainless steel hollow cylindrical electrodes with inner electrode 18.2 cm length and outer-electrode 31.5 cm length. The diameter of the inner and outer electrodes are 3.2 cm and 6.6 cm, respectively. The two electrodes are separated by a teflon disc at the breech. The outer electrode muzzle is connected to stainless steel expansion chamber of 23 cm length and 17 cm diameter. The discharge takes place in hydrogen gas with a base pressure of 1 torr. The experiments were conducted with 10 kV bank voltage, which corresponds to 100 K A peak discharge current. By using a double electric probe, It was found that the plasma electron density was higher near the negative electrode. Investigations using a miniature rogovsky coil have shown that, the radial and azimuthal current density increased with radial distance from negative electrode to positive electrode. The shape and the axial velocity of plasma sheath were measured using a magnetic probe. The experimental results indicate that, the plasma is thick near the negative electrode, in both cases of the outer or the inner electrode. Also it has been found that the axial plasma sheath velocity reaches its maximum value at the muzzle for positive and negative inner electrode. The magnitude of maximum axial velocity reaches 1.7 x 10 60 cm/s for positive inner electrode and decreased by 25% for negative inner electrode further investigations revealed that on interchanging the polarity from normal operation (positive inner electrode), it was found that with negative inner electrode the soft x-ray emission intensity dropped by three orders of magnitude from that with positive inner electrode. 9 figs

  10. Plasma sheath dynamics and parameters in focus and defocus conditions. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Masoud, M M; Soliman, H M; El-Aragi, G M [Plasma Physics and Nuclear Fusion Department, Nuclear Research Centre, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    The study deals with the effect of the inner electrode polarity on the dynamic behaviour and parameters of plasma sheath in a coaxial discharge. The experimental investigations presented here were carried out in a coaxial plasma focus discharge device of mather geometry. It consisted of coaxial stainless steel hollow cylindrical electrodes with inner electrode 18.2 cm length and outer-electrode 31.5 cm length. The diameter of the inner and outer electrodes are 3.2 cm and 6.6 cm, respectively. The two electrodes are separated by a teflon disc at the breech. The outer electrode muzzle is connected to stainless steel expansion chamber of 23 cm length and 17 cm diameter. The discharge takes place in hydrogen gas with a base pressure of 1 torr. The experiments were conducted with 10 kV bank voltage, which corresponds to 100 K A peak discharge current. By using a double electric probe, It was found that the plasma electron density was higher near the negative electrode. Investigations using a miniature rogovsky coil have shown that, the radial and azimuthal current density increased with radial distance from negative electrode to positive electrode. The shape and the axial velocity of plasma sheath were measured using a magnetic probe. The experimental results indicate that, the plasma is thick near the negative electrode, in both cases of the outer or the inner electrode. Also it has been found that the axial plasma sheath velocity reaches its maximum value at the muzzle for positive and negative inner electrode. The magnitude of maximum axial velocity reaches 1.7 x 10{sup 60} cm/s for positive inner electrode and decreased by 25% for negative inner electrode further investigations revealed that on interchanging the polarity from normal operation (positive inner electrode), it was found that with negative inner electrode the soft x-ray emission intensity dropped by three orders of magnitude from that with positive inner electrode. 9 figs.

  11. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  12. Analysis of the plasma sweeper

    International Nuclear Information System (INIS)

    Glanz, J.; Motley, R.W.

    1982-09-01

    The coupling of lower hybrid waves to a plasma can be modified by placing potentials on electrodes near the mouth of a phased array. Positive potentials on the electrodes create an electric field that sweeps the plasma away at a velocity c anti E x anti B/B 2 . In this paper we derive the electric field created by the applied potential from the nondivergent character of the current flow and the ion momentum equation, in which ion-neutral charge-exchange collisions are retained, and we compare the predictions with experimental data

  13. Electron plasma dynamics during autoresonant excitation of the diocotron mode

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C. J., E-mail: cbaker@physics.ucsd.edu; Danielson, J. R., E-mail: jrdanielson@ucsd.edu; Hurst, N. C., E-mail: nhurst@physics.ucsd.edu; Surko, C. M., E-mail: csurko@ucsd.edu [Physics Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2015-02-15

    Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ≥90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ≥70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.

  14. Applications of a single carbon electrode | Skelskey | SINET ...

    African Journals Online (AJOL)

    Abstract. A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. Key words/phrases: Arc, carbon, dry cell, plasma, welding. SINET: Ethiopian Journal of Science Vol.26(2) 2003: 173-176 ...

  15. Merging and Splitting of Plasma Spheroids in a Dusty Plasma

    Science.gov (United States)

    Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas

    2012-12-01

    Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.

  16. Atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  17. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  18. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  19. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  20. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  1. Determination of plasma spot current and arc discharge plasma current on the system of plasma cathode electron sources using Rogowski coil technique

    International Nuclear Information System (INIS)

    Wirjoadi; Bambang Siswanto; Lely Susita RM; Agus Purwadi; Sudjatmoko

    2015-01-01

    It has been done the function test experiments of ignitor electrode system and the plasma generator electrode system to determine the current spot plasma and arc discharge plasma current with Rogowski coil technique. Ignitor electrode system that gets power supply from IDPS system can generate the plasma spot current of 11.68 ampere to the pulse width of about 33 μs, this value is greater than the design probably because of electronic components used in the IDPS system was not as planned. For the plasma generator electrode system that gets power from ADPS system capable of producing an arc discharge plasma current around 103.15 amperes with a pulse width of about 96 μs, and this value as planned. Based on the value of the arc discharge plasma current can be determined plasma electron density, which is about 10.12 10"1"9 electrons/m"3, and with this electron density value, an ignitor electrode system and a plasma generator system is quite good if used as a plasma cathode electron source system. (author)

  2. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  3. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  4. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  5. Research and development of tungsten electrodes added with rare earth oxides

    International Nuclear Information System (INIS)

    Zuoren Nie; Ying Chen; Meiling Zhou; Tieyong Zuo

    2001-01-01

    The recent research and development of tungsten electrodes used in TIG and Plasma technologies are introduced, and the tungsten materials as well as the effects of rare earth oxides are specially discussed. in W-La 2 O 3 , W-CeO 2 , W-Y 2 O 3 and W-ThO 2 electrode materials, the W-2.2mass%La 2 O 3 electrode exhibited the best properties when the current is of little or middle volume, and when the electrodes are used in large current, the W-Y 2 O 3 electrode is the best. By a comparative study between the tungsten electrodes activated with single metal oxides, as above-mentioned, and those containing two or three rare earth oxides, namely La 2 O 3 , CeO 2 and Y 2 O 3 , it was indicated that the welding arc properties of the tungsten electrodes activated with combined rare earth oxides additions is superior than that of the electrodes containing single oxides as above mentioned. It was also shown that the operating properties of tungsten electrodes depend intensively on the rare earth oxides contained in the electrodes, and the actions of rare earth oxides during arcing are the most important factors to the electrodes' operating properties, temperature, work function as well as the arc stability. (author)

  6. Effect of shape and resistivity of electrodes in a Faraday MHD duct

    International Nuclear Information System (INIS)

    Jayakumar, R.; Ghosh, S.

    1976-01-01

    The object of achieving uniform current distribution in the presence of high axial fields has prompted the use of resistive electrodes in flat and wedge geometries. In the case of flat geometry the technique involves the generation of voltage drop along the surface of the electrodes in the axial direction, due to the Faraday current collected by the electrode and flowing into a lead wire, to reduce or eliminate the discontinuity in the axial electrical field that would otherwise occur, say in case of metal electrodes. In the case of wedge shapes, higher resistance path is provided for the regions where current is likely to concentrate. In the case of flat geometry, the effect of the position of lead wire also influences the current distribution in the plasma and on the electrode surface. The resistive electrodes have been investigated for the actual current distribution by numerically solving the Laplace's equation for current stream function, arising out of Maxwell's equation and generalised Ohm's law. In the case of wedge electrode, the solution has been sought by numerical analysis of both plasma and electrode zones. It is shown that both geometries, the flat geometry with a lead wire shifted optimally from one edge and the wedge electrode can almost eliminate current concentration. (author)

  7. Ignition phase and steady-state structures of a non-thermal air plasma

    CERN Document Server

    Lu Xin Pei

    2003-01-01

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.

  8. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  9. Modes of spheroidal ion plasmas at the Brillouin limit

    International Nuclear Information System (INIS)

    Tinkle, M. D.; Greaves, R. G.; Surko, C. M.

    1995-01-01

    Brillouin-density pure ion plasmas have been generated in a quadrupole Penning tray by electron-beam ionization of a low-pressure gas. Large, spheroidal, steady-state plasmas are produced that extend to one of the trap electrodes. With the density fixed at the Brillouin limit by the high ion production rate, the electrode potentials determine the plasma shape. The frequencies of azimuthally propagating cyclotron and diocotron modes are found to vary significantly with the plasma aspect ratio. For oblate plasmas, we are able to test theoretical predictions of a simple fluid model, and the frequencies are in good agreement

  10. Basic principles and applications of atmospheric-pressure discharge plasmas

    International Nuclear Information System (INIS)

    Becker, K.H.

    2002-01-01

    The principles that govern the generation and maintenance of atmospheric - pressure discharge plasmas are summarized. The properties and operating parameters of various types such as dielectric barrier discharge plasmas (DBDs), corona discharge plasmas (CDs), microhollow cathode discharge plasmas (MHCDs) , and dielectric capillary electrode discharge plasmas (CDEDs) are introduced. All of them are self sustained, non equilibrium gas discharges that can be operated at atmospheric pressure. CDs and DBDDs represent very similar types of discharges, while DBDs are characterized by insulating layers on one or both electrodes, CDs depend on inhomogeneous electric fields at least in some parts of the electrode configuration to restrict the primary ionization processes to a small fraction of the inter - electrode region. Their application to novel light sources in the ultraviolet (UV) and vacuum ultraviolet (VUV) spectral region is described. (nevyjel)

  11. Mesoscale characterization of local property distributions in heterogeneous electrodes

    Science.gov (United States)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.

    2018-05-01

    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  12. Investigation of Plasma Facing Components in Plasma Focus Operation

    Science.gov (United States)

    Roshan, M. V.; Babazadeh, A. R.; Kiai, S. M. Sadat; Habibi, H.; Mamarzadeh, M.

    2007-09-01

    Both aspects of the plasma-wall interactions, counter effect of plasma and materials, have been considered in our experiments. The AEOI plasma focus, Dena, has Filippov-type electrodes. The experimental results verify that neutron production increases using tungsten as an anode insert material, compared to the copper one. The experiments show decrement of the hardness of Aluminum targets outward the sides, from 135 to 78 in Vickers scale. The sputtering yield is about 0.0065 for deuteron energy of 50 keV.

  13. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  14. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  15. Miniature Coaxial Plasma injector Diagnostics by Beam Plasma Interaction

    International Nuclear Information System (INIS)

    El-Tayeb, H.; El-Gamal, H.

    2003-01-01

    A miniature coaxial gun has been used to study the interaction between plasma beam and low density plasma formed in glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 kA as a single pulse with pulse width of 60 mu. Investigations are carried out with argon gas at pressure 0.4 Torr. The plasma stream ejected from the coaxial discharge propagates in the neutral argon atoms with mean velocity of 1.2x10 5 cm/s. The plasma stream temperature and density were 4.2 eV and 2.4x10 13 cm -3 respectively. An argon negative glow has been used as base plasma where its electron temperature and density were 2.2 eV and 6.2x10 7 cm -3 respectively. When the plasma stream propagates through the negative glow discharge region its velocity decreased to 8.8 x 10 4 cm/s and also the plasma electron temperature decreased to 3.1 eV, while the stream density remained the same. An excited wave appeared on the electric probe having frequency equal to the plasma frequency of the plasma under consideration. Simulation of the problem showed that this method could be applied for plasma diagnostics within the region of investigation. Those further studies for high temperature, dense, and magnetized plasma will be considered

  16. Kinetic simulations in plasmas: a general view and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Maria Virginia [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: alves@plasma.inpe.br

    1999-07-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  17. Kinetic simulations in plasmas: a general view and some applications

    International Nuclear Information System (INIS)

    Alves, Maria Virginia

    1999-01-01

    In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)

  18. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  19. Non thermal plasma surface cleaner and method of use

    KAUST Repository

    Neophytou, Marios

    2017-09-14

    Described herein are plasma generation devices and methods of use of the devices. The devices can be used for the cleaning of various surfaces and/or for inhibiting or preventing the accumulation of particulates, such as dust, or moisture on various surfaces. The devices can be used to remove dust and other particulate contaminants from solar panels and windows, or to avoid or minimize condensation on various surfaces. In an embodiment a plasma generation device is provided. The plasma generation device can comprise: a pair of electrodes (1,2) positioned in association with a surface of a dielectric substrate (3). The pair of electrodes (1,2) can comprise a first electrode (1) and a second electrode (2). The first electrode and second electrode can be of different sizes, one of the electrodes being smaller than the other of the electrodes. The first electrode and second electrode can be separated by a distance and electrically connected to a voltage source (4,5).

  20. Non thermal plasma surface cleaner and method of use

    KAUST Repository

    Neophytou, Marios; Lacoste, Deanna A.; Kirkus, Mindaugas

    2017-01-01

    Described herein are plasma generation devices and methods of use of the devices. The devices can be used for the cleaning of various surfaces and/or for inhibiting or preventing the accumulation of particulates, such as dust, or moisture on various surfaces. The devices can be used to remove dust and other particulate contaminants from solar panels and windows, or to avoid or minimize condensation on various surfaces. In an embodiment a plasma generation device is provided. The plasma generation device can comprise: a pair of electrodes (1,2) positioned in association with a surface of a dielectric substrate (3). The pair of electrodes (1,2) can comprise a first electrode (1) and a second electrode (2). The first electrode and second electrode can be of different sizes, one of the electrodes being smaller than the other of the electrodes. The first electrode and second electrode can be separated by a distance and electrically connected to a voltage source (4,5).

  1. Plasma Lens for Muon and Neutrino Beams

    Science.gov (United States)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  2. Dielectrophoretic capture of low abundance cell population using thick electrodes.

    Science.gov (United States)

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-09-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).

  3. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  4. Field testing of sulphide electrodes

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; Gadiyar, H.S.

    1993-01-01

    Sulphide ion selective electrodes have been developed at BARC, for determination of Ag + and S - ions directly and Cl - and CN - ions indirectly. The electrodes were tested for their use in sulphide environments in the EAD (Effluent After Dilution) stream at the Heavy Water Plant, Kota. The electrodes are suitable in the concentration range of 16000 ppm to 0.002 ppm, with a slope of 29-31 mV per decade change in the sulphide ion concentration. The response time is less than 10 seconds. These electrodes are reliable for continuous on-line use for a long period. (author). 7 refs., 11 figs., 1 tab

  5. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  6. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  7. Micro-column plasma emission liquid chromatograph. [Patent application

    Science.gov (United States)

    Gay, D.D.

    1982-08-12

    In a direct current plasma emission spectrometer for use in combination with a microcolumn liquid chromatograph, an improved plasma source unit is claimed. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  8. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  9. Plasma automatic control in magnetic traps

    International Nuclear Information System (INIS)

    Samojlenko, Yu.I.; Chuyanov, V.A.

    1983-01-01

    Principles of constructing the systems providing a plasma equilibrium and stability in thermonuctear devices are laid down. Operation of the servo system to maintain a plasma equilibrium is described using the tokamak plasma filament as an example. Operation of the system to suppress a flute instability is also described. This system measures electric disturbances on the plasma body surface and controls charge distribution on external electrodes. It is pointed out that systems of automatic control of plasma equilibrium and stability become an essential element of a future thermonuclear reactor and the system potentialities would much determine the reactor economic efficiency

  10. Characterization of DBD plasma source for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuchenbecker, M; Vioel, W [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany); Bibinov, N; Awakowicz, P [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetstr. 150, 44780 Bochum (Germany); Kaemlimg, A; Wandke, D, E-mail: m.kuchenbecker@web.d, E-mail: Nikita.Bibinov@rub.d, E-mail: awakowicz@aept-ruhr-uni-bochum.d, E-mail: vioel@hawk-hhg.d [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany)

    2009-02-21

    The dielectric barrier discharge (DBD) plasma source for biomedical application is characterized using optical emission spectroscopy, plasma-chemical simulation and voltage-current measurements. This plasma source possesses only one electrode covered by ceramic. Human body or some other object with enough high electric capacitance or connected to ground can serve as the opposite electrode. DBD consists of a number of microdischarge channels distributed in the gas gap between the electrodes and on the surface of the dielectric. To characterize the plasma conditions in the DBD source, an aluminium plate is used as an opposite electrode. Electric parameters, the diameter of microdischarge channel and plasma parameters (electron distribution function and electron density) are determined. The gas temperature is measured in the microdischarge channel and calculated in afterglow phase. The heating of the opposite electrode is studied using probe measurement. The gas and plasma parameters in the microdischarge channel are studied at varied distances between electrodes. According to an energy balance study, the input microdischarge electric energy dissipates mainly in heating of electrodes (about 90%) and partially (about 10%) in the production of chemical active species (atoms and metastable molecules).

  11. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  12. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    International Nuclear Information System (INIS)

    Ponomarev, A V; Pedos, M S; Scherbinin, S V; Mamontov, Y I; Ponomarev, S V

    2015-01-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface. (paper)

  13. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    2016-01-01

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plume charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.

  14. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2016-06-15

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plume charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.

  15. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  16. Dependence of streamer density on electric field strength on positive electrode

    Science.gov (United States)

    Koki, Nakamura; Takahumi, Okuyama; Wang, Douyan; Takao, N.; Hidenori, Akiyama; Kumamoto University Collaboration

    2015-09-01

    Pulsed streamer discharge plasma, a type of non-thermal plasma, is known as generation method of reactive radicals and ozone and treatment of exhausted gas. From our previous research, the distance between electrodes has been considered a very important parameter for applications using pulsed streamer discharge. However, how the distance between electrodes affects the pulsed discharge hasn't been clarified. In this research, the propagation process of pulsed streamer discharge in a wire-plate electrode was observed using an ICCD camera for 4 electrodes having different distance between electrodes. The distance between electrodes was changeable at 45 mm, 40 mm, 35 mm, and 30 mm. The results show that, when the distance between electrodes was shortened, applied voltage with a pulse duration of 100 ns decreased from 80 to 60.3 kV. Conversely, discharge current increased from 149 to 190 A. Streamer head velocity became faster. On the other hand, Streamer head density at onset time of streamer head propagation didn't change. This is considered due to the electric field strength of streamer head at that time, in result, it was about 14 kV/mm under each distance between electrodes.

  17. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  18. Plasma probe characteristics in low density hydrogen pulsed plasmas

    International Nuclear Information System (INIS)

    Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

    2015-01-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

  19. Duoplasmatron with a nozzle type plasma expension cup

    International Nuclear Information System (INIS)

    Kobayashi, M.; Nishikawa, T.; Takagi, A.

    1974-01-01

    Various tests are described which were carried out in order to clarify the cause of the aberration existing in the beams extracted from a nozzle type plasma expansion cup. The tests involve the extraction electrodes having different edge shapes, gridded extraction electrodes, high-voltage facing electrodes at the cup exit making different angles with the axis, plasma cups having different contours at the exit, plasma cups gridded at the exit, biasing the cup exit with respect to anode, plasma cups having different ratios of the exit area to axial length, etc. The results show that the inward meniscus type distortion of the plasma boundary near the rim of plasma cup will be a dominant source for the aberration. Both proper shaping of the contour of the cup exit and biasing the cup exit reduced the aberration

  20. EDM Electrode for Internal Grooves

    Science.gov (United States)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  1. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  2. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  3. Storage-battery electrodes. [preparation

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-29

    Two incompatible thermoplastic resins are mixed with a powdered electrochemical active substance. The substance may be, for example, an oxide of cadmium, iron, lead, or zinc or nickel hydroxide. After the mixture is shaped into elements which are inserted into conducting sheaths for an electrode, the one resin is washed out to form a porous electrode. (RWR)

  4. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  5. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  6. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  7. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  8. Adsorption at electrodes

    International Nuclear Information System (INIS)

    Hubbard, A.T.; Ping Gao

    1991-01-01

    Surface electrochemical studies are described and summarized in which atomic, ionic or molecular layers were allowed to form from aqueous solutions at well-defined Pt(111) surfaces. The resulting adsorbed layers were chemisorbed in most cases and stable in vacuum, permitting identification and quantitation by Auger spectroscopy, EELS, LEED and electrochemistry. Adsorbed atomic, ionic, or molecular layers formed at metal-solution interfaces frequently display long-range order. Molecular properties of the adsorbed layers correlate with their electrochemical properties. The molecular orientation of organic adsorbates was deduced from packing density measurements, supplemented with vibrational spectra. Interfacial variables such as electrode potential have a strong influence on interfacial structure along with the nature and mode of surface attachment of adsorbates. The angular distribution of Auger electron emission from metal single crystals and atomic adsorbed layers has proved to be useful for direct imaging of surface crystal and interfacial structure. (author). 14 refs, 11 figs

  9. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  10. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  11. Spark gap produced plasma diagnostics

    International Nuclear Information System (INIS)

    Chang, H.Y.

    1990-01-01

    A Spark Gap (Applied voltage : 2-8KV, Capacitor : 4 Micro F. Dia of the tube : 1 inch, Electrode distance : .3 ∼.5 inch) was made to generate a small size dynamic plasma. To measure the plasma density and temperature as a function of time and position, we installed and have been installing four detection systems - Mach-Zehnder type Interferometer for the plasma refractivity, Expansion speed detector using two He-Ne laser beams, Image Processing using Lens and A Optical-Fiber Array for Pointwise Radiation Sensing, Faraday Rotation of a Optical Fiber to measure the azimuthal component of B-field generated by the plasma drift. These systems was used for the wire explosion diagnostics, and can be used for the Laser driven plasma also

  12. Plasmatron with expanding channel of outlet electrode and its applications

    International Nuclear Information System (INIS)

    Chinnov, V.F.; Isakajev, E.Kh.; Ivanov, P.P.; Sinkevich, O.A.; Tyuftyaev, A.S.

    2000-01-01

    A serious industrial application is found for the plasmatron with expanding channel of outlet electrode - hardening and nitriding surface treatment of railway wheels. Several plasma installations are under operation at the engine houses of Moscow Railways. More than 12 000 wheel sets have been treated up to now. Results are evident: wheel life doubles due to plasma treatment. The plasmatron developed essentially in an empiric way is now under heavy investigation both theoretically and experimentally. High precision measurements of nitrogen emission spectra are expected to be used directly for accurate calculation of radiation heat loss term in a quasi-one dimensional flow code. (Authors)

  13. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  14. Characterization of cable gun plasma with a charge collector array

    International Nuclear Information System (INIS)

    Chen Yulan; Zeng Zhengzhong; Sun Fengju; Kuai Bin; Qiu Aici; Yin Jiahui; Cong Peitian; Liang Tianxue

    2003-01-01

    The density, drift velocity and reproducibility of the plasma produced by a cable plasma gun array have been measured with a charge collector array. The plasma is used to prefill a coaxial plasma-opening switch with a conducting time approaching 0.4 μs. The reproducibility of the plasma source in subsequent shots is better than 5%. Near the gun nozzle and the opposite electrode, the plasma density amounts to 10 15 cm -3 , which is 2 times to 3 times that in the gap between the two coaxial electrodes. A plasma drift velocity of about 2.4 cm/μs is observed from the time of flight of the charged particles. Both plasma density and drift velocity increase almost linearly with the rise in charge voltage

  15. Electrode configuration for extreme-UV electrical discharge source

    Science.gov (United States)

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  16. Nitrogen-doped diamond electrode shows high performance for electrochemical reduction of nitrobenzene

    International Nuclear Information System (INIS)

    Zhang, Qing; Liu, Yanming; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2014-01-01

    Highlights: • A metal-free nitrogen-doped diamond electrode was synthesized. • The electrode exhibits high electrocatalytic activity for nitrobenzene reduction. • The electrode exhibits high selectivity for reduction of nitrobenzene to aniline. • High energy efficiency was obtained compared with graphite electrode. -- Abstract: Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC–MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN

  17. Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes

    International Nuclear Information System (INIS)

    Lv, Jiangwei; Feng, Yujie; Liu, Junfeng; Qu, Youpeng; Cui, Fuyi

    2013-01-01

    Boron-doped diamond (BDD) and SnO 2 electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) and sol–gel method, respectively. Electrochemical characterization of the two electrodes were investigated by phenol electrochemical degradation, accelerated service life test, cyclic voltammetry (CV) in phenol solution, polarization curves in H 2 SO 4 . The surface morphology and crystal structure of two electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed a considerable difference between the two electrodes in their electrocatalytic activity, electrochemical stability and surface properties. Phenol was readily mineralized to CO 2 at BDD electrode, favoring electrochemical combustion, but its degradation was much slower at SnO 2 electrode. The service life of BDD electrode was 10 times longer than that of SnO 2 . Higher electrocatalytic activity and electrochemical stability of BDD electrode arise from its high oxygen evolution potential and the physically absorbed hydroxyl radicals (·OH) on electrode surface.

  18. A contoured gap coaxial plasma gun with injected plasma armature

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard II; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States)

    2009-08-15

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 {mu}g of plasma with density above 10{sup 17} cm{sup -3} to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 {mu}g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  19. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  20. A contoured gap coaxial plasma gun with injected plasma armature

    International Nuclear Information System (INIS)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard II; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-01-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 10 17 cm -3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  1. ELECTROD FLUOR-SELECTIV

    Directory of Open Access Journals (Sweden)

    Mariana DÎRU

    2018-03-01

    Full Text Available A fost preparat un senzor anionic specific, bazat pe pivalatul trinuclear al cromului(III ca material electro­activ încorporat în membrana PVC plastifiată. Senzorul prezintă răspuns Nernstian (55,78 mV/decadă în intervalul de concentrație 10-1-10-4 mol/L cu limita de detecție 2,0∙10-5 mol/L pentru anionul fluorură. Domeniul optim de pH de funcţionare a electrodului asamblat este ˃5. Senzorul dat are un timp de răspuns de 30-60 s și reproductibilitatea rezultatelor se menține timp de 3 luni. Coeficienții potențiometrici ai selectivității au fost determinați prin metoda soluțiilor separate. A fost realizată aplicarea acestor electrozi la analiza pastei de dinți ce conține fluorură și rezultatele experimentale au fost comparate cu datele de pe prospect.FLUORIDE-SELECTIVE ELECTRODEA specific anionic sensor has been prepared, based on trinuclearchromium(III pivalate as sensing material incorpo­rated into the plasticized PVC-membrane. The sensor exhibited Nernstian response (55,78 mV/decade in the region between 10-1-10-4 mol/L with a detection limit of 2,0∙10-5 mol/L for fluoride. The working pH of the electrode was in the 5-6 range. The sensor has a response time 30-60 s and can be used for least 3 month. The potentiometric selectivity coefficients were determined by separate solution method. Application of these electrodes to the analysis of toothpaste containing fluoride has been realized and experimental results have been compared with the data on the prospectus.

  2. All-Carbon Electrode Consisting of Carbon Nanotubes on Graphite Foil for Flexible Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Je-Hwang Ryu

    2014-03-01

    Full Text Available We demonstrate the fabrication of an all-carbon electrode by plasma-enhanced chemical vapor deposition for use in flexible electrochemical applications. The electrode is composed of vertically aligned carbon nanotubes that are grown directly on a flexible graphite foil. Being all-carbon, the simple fabrication process and the excellent electrochemical characteristics present an approach through which high-performance, highly-stable and cost-effective electrochemical applications can be achieved.

  3. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  4. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1990-06-01

    This paper discusses the following topics: MHD plasma activity: equilibrium, stability and transport; statistical analysis; transport studies; edge physics studies; wave propagation analysis; basic plasma physics and fluid dynamics; space plasma; and numerical methods

  5. Studies of pyrrole black electrodes as possible battery positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Fleischmann, M.; Pletcher, D.

    1984-05-01

    It is shown that a polypyrrole, pyrrole black, may be formed anodically in several aqueous acids. The polypyrrole film shows a redox couple at less positive potentials than that required to form the film and the charge associated with these reduction and oxidation processes together with their stabilty to cycling varies with the anion in solution and the potential where the polypyrrole is formed; over-oxidation of the film caused by taking its potential too positive has a particularly disadvantageous affect. In the acids HBr and HI, the polypyrrole films can act as a storage medium for Br/sub 2/ or I/sub 2/ so that they may be used as a substrate for a X/sub 2//X/sup -/ electrode. Such electrodes may be charge/discharge cycled and the pyrrole/Br/sub 2/ electrode shows promise as a battery positive electrode.

  6. Novel methods of ozone generation by micro-plasma concept

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, A.; Chiper, A.; Chen, W.; Stamate, E.

    2008-02-15

    The project objective was to study the possibilities for new and cheaper methods of generating ozone by means of different types of micro-plasma generators: DBD (Dielectric Barrier Discharge), MHCD (Micro-Hollow Cathode Discharge) and CPED (Capillary Plasma Electrode Discharge). This project supplements another current project where plasma-based DeNOx is being studied and optimised. The results show potentials for reducing ozone generation costs by means of micro-plasmas but that further development is needed. (ln)

  7. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  8. Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure

    Science.gov (United States)

    Paulauskas, Felix L.; Bonds, Truman

    2016-09-20

    A plasma treatment method that includes providing treatment chamber including an intermediate heating volume and an interior treatment volume. The interior treatment volume contains an electrode assembly for generating a plasma and the intermediate heating volume heats the interior treatment volume. A work piece is traversed through the treatment chamber. A process gas is introduced to the interior treatment volume of the treatment chamber. A plasma is formed with the electrode assembly from the process gas, wherein a reactive species of the plasma is accelerated towards the fiber tow by flow vortices produced in the interior treatment volume by the electrode assembly.

  9. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward, E-mail: etjr@auburn.edu; Lynch, Brian; Konopka, Uwe [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, Marlene [Department of Electrical and Computer Engineering, University of California–San Diego, La Jolla, California 92093 (United States)

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  10. Impact of electrode geometry on an atmospheric pressure surface barrier discharge

    Science.gov (United States)

    Hasan, M. I.; Morabit, Y.; Dickenson, A.; Walsh, J. L.

    2017-06-01

    Several of the key characteristics of an atmospheric pressure surface barrier discharge (SBD) are heavily dependent on the geometrical configuration of the plasma generating electrodes. This paper reveals that increasing the surface area of an SBD device by reducing the gaps within the electrodes can have major and unforeseen consequence on the discharge properties. It is experimentally demonstrated that a critical limit exists when reducing the diameter of a circular electrode gap below 5 mm, beyond which the required breakdown voltage increases exponentially and the power deposited in the discharge is impeded. Using a numerical model, it is shown that a reduced electrode gap diameter yields a decrease in the voltage difference between the electrode and dielectric surface, thus lowering the maximum electric field. This study indicates a link between the electrode geometry and the nature of the reactive chemistry produced in the plasma, findings which have wide-reaching implications for many applications where multiple closely packed surface barrier discharges are employed to achieve uniform and large area plasma processing.

  11. Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution

    Science.gov (United States)

    Mercado-Cabrera, Antonio; Peña-Eguiluz, Rosendo; López-Callejas, Régulo; Jaramillo-Sierra, Bethsabet; Valencia-Alvarado, Raúl; Rodríguez-Méndez, Benjamín; Muñoz-Castro, Arturo E.

    2017-07-01

    Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar-10% O2, 80% Ar-20% O2 and 0% Ar-100% O2. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from ˜0.0115 S m-1 up to ˜0.0430 S m-1 after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were: (1) lower typical power consumption, (2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation, (3) a relatively lower temperature of the aqueous solution during the process, and (4) the plasma generation length is larger.

  12. Vortex trapping in Pb-alloy Josephson junctions induced by strong sputtering of the base electrode

    International Nuclear Information System (INIS)

    Wada, M.; Nakano, J.; Yanagawa, F.

    1985-01-01

    It is observed that strong rf sputtering of the Pb-alloy base electrodes causes the junctions to trap magnetic vortices and thus induces Josephson current (I/sub J/) suppression. Trapping begins to occur when the rf sputtering that removes the native thermal oxide on the base electrode is carried out prior to rf plasma oxidation. Observed large I/sub J/ suppression is presumably induced by the concentration of vortices into the sputtered area upon cooling the sample below the transition temperature. This suggests a new method of the circumvention of the vortex trapping by strongly rf sputtering the areas of the electrode other than the junction areas

  13. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    Directory of Open Access Journals (Sweden)

    Huska Dalibor

    2011-01-01

    Full Text Available Abstract The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs. MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode.

  14. Discharge Simulation and Fabrication Process of an Aluminum Electrode and an Alumina Layer in AC-PDP

    International Nuclear Information System (INIS)

    Liu Qifa; Ding Guifu; Liu Chang; Wang Yan; Yan Qun

    2013-01-01

    A larger space PDP cell with patterned aluminum as the addressing electrode and alumina as the dielectric layer was proposed. The aluminum electrode and the alumina dielectric layer formed on the aluminum electrode were prepared separately by magnetron sputtering and anodic oxidation for plasma display panel. The properties of the aluminum electrode and the alumina dielectric layer were tested and can meet the demand of PDP application. The resistivity of the aluminum electrode is about 5 × 10 −8 Ω·m, the voltage withstanding of the alumina dielectric layer exceeds 100 V/μm and the relative permittivity is about 3.5 at 1 MHz. With this structure, the manufacturing cost of PDP could be cut and the addressing discharge formative delay is reduced by 0.67%, which is proved by PIC-MCC simulation. (plasma technology)

  15. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  16. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  17. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  18. Atmospheric Plasma Blade for Surgical Purposes

    Science.gov (United States)

    Oksuz, Lutfi; Yurdabak Karaca, Gozde; Özkaptan, Emir; Uygun, Emre; Uygun Oksuz, Aysegul

    2017-10-01

    Atmospheric plasma cut is a process at the minimum level due to the ions, radicals and free electrons generated by the active electrode and target tissue. Atmospheric plasma cutting devices provide significant advantages as a non-contact electrocautery system that can operate in isotonic environment. During operations where plasma cutting is applied, bleeding is controlled and the side effects that would create the isotonic environment are eliminated. In this study in vivo and in vitro studies will be carried out by producing and optimizing the atmospheric plasma blade. Once the optimum parameters of the instrument are determined, in vivo studies will be performed and the pathology results will be evaluated.

  19. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  20. Large area atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  1. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  2. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    International Nuclear Information System (INIS)

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-01-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  3. Effect of electrode for producing the highly charged heavy ions from RIKEN 18 GHz electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurita, Tetsuro; Nakagawa, Takahide; Kidera, Masanori

    1999-01-01

    We successfully produced the intense beam of highly charged Kr ions using an electrode. Under the pulsed mode operation, we found that the depth of the plasma potential dip strongly depends on the duration of the microwave and takes about 40 ms to reach the equilibrium state. Taking these results into account, we compared the beam intensities of highly charged Kr ions with and without the use of an electrode under the pulsed mode operation. We observed that the density of highly charged Kr ions and ion confinement time increase with increasing mirror magnetic field strength. The plasma potential dip becomes shallower with insertion of the electrode. Consequently, when we increase the mirror magnetic field strength and insert the electrode into the plasma, the beam intensities of highly charged ions increase. (author)

  4. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  5. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  6. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  7. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  8. 3.5. Apparatus for plasma electron temperature measurement by Thomson scattering

    International Nuclear Information System (INIS)

    Kolacek, K.; Babicky, V.

    1981-01-01

    Equipment was developed and tested for measuring time-resolved local electron plasma temperature and density by the Thomson scattering of ruby laser light. The laser consists of a Q-switched generator (ruby 12 mm in diameter by 150 mm long) followed by one amplifier (ruby 16 mm indi long) followed by one amplifier (ruby 16 mm in diameter by 250 mm long). For Q-switching a Pockels cell with a z-cut ADP crystal was used. The laser is capable of delivering 4 J of energy in a pulse of 50 ns in duration. The spectrum of the laser light scattered at an angle of 9a degrees is analyzed by a six-channel polychromator. Fibre optics and photomultipliers with gated amplifiers are used. Output signals are transmitted via a parallel-to-series converter to a single-trace oscilloscope. The whole Thomson scattering apparatus was successfully tested by the Rayleigh scattering in the air at atmospheric pressure. (J.U.)

  9. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described for electron beam heating of a high-density plasma to drive a fast liner. An annular or solid relativistic electron beam is used to heat a plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the plasma then converges on a fast liner to explosively or ablatively drive the liner to implosion. (U.K.)

  10. Plasma focusing in coaxial gun

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.; El-Khalafawy, T.

    1986-01-01

    A capacitor bank has been discharged between two coaxial electrodes of 6.6 cm outer diameter, 3.2 cm inner diameter and length of 31.5 cm. filled with hydrogen gas at pressure of 310 μHg. Results show that, the axial and radial plasma current reach a maximum value at a position adjacent to the gun muzzle, at which the plasma focus occurs. The measurement of the electron temperature and density and azimuthal electric field along the axis of the expansion chamber, gives a maximum value at z∼18 cm from the gun muzzle, while the axial plasma current and velocity has a minimum value at that position. These results indicate that a second point of a plasma focus has been formed at z∼18 cm from the gun muzzle, along the axis of the expansion chamber

  11. Cutoff effects of electron velocity distribution to the properties of plasma parameters near the plasma-sheath boundary

    International Nuclear Information System (INIS)

    Jelic, N.

    2011-01-01

    The plasma properties under high thermodynamic non-equilibrium condition, established due to the presence of electrically biased electrode, are investigated. Assumption of electron cut-off velocity distribution function (VDF), as done by Andrews and Varey in their investigations of the sheath region [J. Phys. A 3, 413 (1970)], has been extended here to both plasma and sheath regions. Analytic expressions for the moments of electron VDF, as well as for the electron screening temperature function dependence on the plasma-sheath local potential are derived. In deriving the ion velocity distribution the ''standard'' assumption of strict plasma quasineutrality, or equivalently vanishing of the plasma Debye length, is employed, whereas the ions are assumed to be generated at rest over the plasma region. However, unlike the standard approach of solving the plasma equation, where pure Boltzmann electron density profile is used, here we employ modified Boltzmann's electron density profile, due to cutoff effect of the electron velocity distribution. It is shown that under these conditions the quasineutrality equation solution is characterised by the electric field singularity for any negative value of the electrode bias potential as measured with respect to the plasma potential. The point of singularity i.e., the plasma length and its dependence on the electrode bias and sheath potential is established for the particular case of ionization profile mechanism proportional to the local electron density. Relevant parameters for the kinetic Bohm criterion are explicitly calculated for both ions and electrons, for arbitrary electrode bias.

  12. MODULATED PLASMA ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, L. H.

    1963-08-15

    Techniques have been developed for producing electron beams of two amperes or more, from a plasma within a hollow cathode. Electron beam energies of 20 kilovolts are readily obtained and power densities of the order of 10,000 kilowatts per square inch can be obtained with the aid of auxiliary electromagnetic focusing. An inert gas atmosphere of a few microns pressure is used to initiate and maintain the beam. Beam intensity increases with both gas pressure and cathode potential but may be controlled by varying the potential of an internal electrode. Under constant pressure and cathode potential the beam intensity may be varied over a wide range by adjusting the potential of the internal control electrode. The effects of cathode design on the volt-ampere characteristics of the beam and the design of control electrodes are described. Also, performance data in both helium and argon are given. A tentative theory of the origin of electrons and of beam formation is proposed. Applications to vacuum metallurgy and to electron beam welding are described and illustrated. (auth)

  13. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  14. Extraction electrode geometry for a calutron

    International Nuclear Information System (INIS)

    Veach, A.M.; Bell, W.A. Jr.

    1975-01-01

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source

  15. Plasma technology for waste treatment

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1995-01-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing (∼10,000 degrees C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300 degrees C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams

  16. The Upgraded Plasma Focus Installation > - The Installation >

    International Nuclear Information System (INIS)

    Krokhin, O.N.; Nikulin, V.Ya.; Babenko, B.A.; Gorbunov, D.N.; Gurei, A.E.; Kalachev, N.V.; Kozlova, T.A.; Malafeev, Yu.S.; Polukhin, S.N.; Sychev, A.A.; Tikhomirov, A.A.; Tsybenko, S.P.; Volobuev, I.V.

    1999-01-01

    The paper presents the upgraded plasma focus installation > - the installation > and some preliminary experimental results. The total energy stored in capacity bank is now 400 kJ, current - 5 MA with the rise time 3.5 μs. The investigation is targeted on the study of near electrode processes and its influence on plasma dynamics in a special operating regime of Filippov type PF - Hard X-ray regime. (author)

  17. Investigation of plasma dynamics and x-ray emission in'ATON'plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1995-01-01

    The experimental studies on 20 kJ 'Aton' plasma focus device are presented in this paper. The plasma sheath structure has been investigated by means of the measurements of the axial and azimuthal magnetic fields along the coaxial electrodes. The operating gas was hydrogen with pressures in the range of 0.62 torr to 6 torr. The intensity of visible radiation emitted by the plasma sheath was measured as a function of axial distances along the coaxial electrodes. The results showed that the visible radiation intensity is increased with axial distances until a position near the muzzle, then it decreased and has a minimum value at the coaxial electrode muzzle. The main parameters contributing to the behavior of the distribution are the plasma sheath density and the impurities from the eroded materials of the discharge electrodes. An x-ray pulse has been detected along the coaxial electrodes and extended up to the expansion chamber. At a distance near the muzzle two x-ray pulses have been detected, the second one has intensity relative to the first one with time lag of 11μs. 8 fig

  18. Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster

    Science.gov (United States)

    Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN

    2018-02-01

    At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.

  19. Post-breakdown secondary discharges at the electrode/dielectric interface of a cylindrical barrier discharge

    Science.gov (United States)

    Carman, Robert; Ward, Barry; Kane, Deborah

    2011-10-01

    The electrical breakdown characteristics of a double-walled cylindrical dielectric barrier discharge (DBD) lamp with a neon buffer gas under pulsed voltage excitation have been investigated. Following the formation of plasma in the main discharge gap, we have observed secondary breakdown phenomena at the inner and outer mesh electrode/dielectric interfaces under specific operating conditions. Plasma formation at these interfaces is investigated by monitoring the Ozone production rate in controlled flows of ultra high purity oxygen together with the overall electrical voltage-charge characteristics of the lamp. The results show that this secondary breakdown only occurs after the main discharge plasma has been established, and that significant electrical power may be dissipated in generating these spurious secondary plasmas. The results are important with regards to optimising the design and identifying efficient operating regimes of DBD based devices that employ mesh-type or wire/strip electrodes.

  20. [Applications of atomic emission spectrum from liquid electrode discharge to metal ion detection].

    Science.gov (United States)

    Mao, Xiu-Ling; Wu, Jian; Ying, Yi-Bin

    2010-02-01

    The fast and precise detection of metal ion is an important research project concerning studies in diverse academic fields and different kinds of detecting technologies. In the present paper, the authors review the research on atomic emission spectrum based on liquid electrode discharge and its applications in the detection of metal ion. In the first part of this paper the principles and characteristics of the methods based on electrochemistry and spectroscopy were introduced. The methods of ion-selective electrode (ISE), anodic stripping voltammetry, atomic emission spectrum and atomic absorption spectrum were included in this part and discussed comparatively. Then the principles and characteristics of liquid electrode spectra for metal ion detection were introduced. The mechanism of the plasma production and the characteristics of the plasma spectrum as well as its advantages compared with other methods were discussed. Secondly, the authors divided the discharge system into two types and named them single liquid-electrode discharge and double-liquid electrode respectively, according to the number of the liquid electrode and the configuration of the discharge system, and the development as well as the present research status of each type was illustrated. Then the characteristics and configurations of the discharge systems including ECGD, SCGD, LS-APGD and capillary discharge were discussed in detail as examples of the two types. By taking advantage of the technology of atomic emission spectrum based on liquid electrode discharge, the detecting limit of heavy metals such as copper, mercury and argent as well as active metal ions including sodium, potass and magnesium can achieve microg x L(-1). Finally, the advantages and problems of the liquid-electrode discharge applied in detection of metal ion were discussed. And the applications of the atomic emission spectrum based on liquid electrode discharge were prospected.

  1. Electric-Arc Plasma Installation for Preparing Nanodispersed Carbon Structures

    International Nuclear Information System (INIS)

    Stefanov, P.; Garlanov, D.; Vissokov, G.

    2008-01-01

    An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc generated by a plasma torch using an inert gas is used as heat source. The average mass temperature of arc is higher than 10 4 K, while its power density, which is directly transferred onto the electrode (anode), is ∼ 2 kW/mm 2 . The anode contact area formed on the electrode moves against the arc by way of shifting the electrode and is hidden completely in the interior of plasma gas stream moving towards it. As a result of both the direct plasma attack and the opposite movement of streams in the hidden anode contact area, a temperature higher than 6000 K is reached. Thus, intensive vaporization takes place, which forms a saturated plasma-gas-aerosol phase of the initial material of electrode (anode). This gas phase is mixed in and carried by the plasma stream. Over that mixed plasma stream, a controlled process of quenching (fixation) is carried out by twisted turbulent fluid streams. After the fixation, the resultant carbon nano-structures are caught by a filter and collected in a bunker.

  2. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  3. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  4. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  5. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  6. RETGEM with polyvinylchloride (PVC) electrodes

    CERN Document Server

    Razin, V I; Reshetin, A I; Filippov, S N

    2009-01-01

    This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

  7. Composite Electrodes for Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yang QuanMin

    2010-01-01

    Full Text Available Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7–15 mg cm−2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC. The highest SC of 185 F g−1 was obtained at a scan rate of 2 mV s−1 for mass loading of 7 mg cm−2. The SC decreased with increasing scan rate and increasing electrode mass.

  8. Composite Electrodes for Electrochemical Supercapacitors

    Science.gov (United States)

    Li, Jun; Yang, Quan Min; Zhitomirsky, Igor

    2010-03-01

    Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4-6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with total mass loading of 7-15 mg cm-2, showed a capacitive behavior in 0.5-M Na2SO4 solutions. The decrease in stirring time during precipitation of the nanofibers resulted in reduced agglomeration and higher specific capacitance (SC). The highest SC of 185 F g-1 was obtained at a scan rate of 2 mV s-1 for mass loading of 7 mg cm-2. The SC decreased with increasing scan rate and increasing electrode mass.

  9. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective

  10. Time correlation between plasma behaviour and soft x-ray emission in a plasma focus

    International Nuclear Information System (INIS)

    Hirano, Katsumi; Tagaya, Yutaka; Shimoda, Katsuji; Okabe, Yushiro; Yamamoto, Toshikazu

    1986-01-01

    Soft X-rays emitted from a plasma focus are investigated experimentally. In contrast to single-pulsive burst of neutron, hard X-rays, ion- and electron beams, the soft X-rays are observed from the collapse phase to the decay phase of the plasma column, and have typically three successive peaks in its signal. Each peak corresponds to the maximum compression, the disruption and the decay phase of plasma column. It is revealed that the first and the second peaks are radiated by plasma itself, whereas the third peak is caused by emission from the inner electrode face. (author)

  11. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  12. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  13. Deterministic dynamics of plasma focus discharges

    International Nuclear Information System (INIS)

    Gratton, J.; Alabraba, M.A.; Warmate, A.G.; Giudice, G.

    1992-04-01

    The performance (neutron yield, X-ray production, etc.) of plasma focus discharges fluctuates strongly in series performed with fixed experimental conditions. Previous work suggests that these fluctuations are due to a deterministic ''internal'' dynamics involving degrees of freedom not controlled by the operator, possibly related to adsorption and desorption of impurities from the electrodes. According to these dynamics the yield of a discharge depends on the outcome of the previous ones. We study 8 series of discharges in three different facilities, with various electrode materials and operating conditions. More evidence of a deterministic internal dynamics is found. The fluctuation pattern depends on the electrode materials and other characteristics of the experiment. A heuristic mathematical model that describes adsorption and desorption of impurities from the electrodes and their consequences on the yield is presented. The model predicts steady yield or periodic and chaotic fluctuations, depending on parameters related to the experimental conditions. (author). 27 refs, 7 figs, 4 tabs

  14. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  15. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    Science.gov (United States)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  16. Advanced oxide powders processing based on cascade plasma

    International Nuclear Information System (INIS)

    Solonenko, O P; Smirnov, A V

    2014-01-01

    Analysis of the potential advantages offered to thermal spraying and powder processing by the implementation of plasma torches with inter-electrode insert (IEI) or, in other words, cascade plasma torches (CPTs) is presented. The paper provides evidence that the modular designed single cathode CPT helps eliminate the following major disadvantages of conventional plasma torches: plasma parameters drifting, 1-5 kHz pulsing of plasma flow, as well as excessive erosion of electrodes. More stable plasma results in higher quality, homogeneity and reproducibility of plasma sprayed coatings and powders treated. In addition, CPT offers an extremely wide operating window, which allows better control of plasma parameters, particle dwell time and, consequently, particle temperature and velocity within a wide range by generating high enthalpy quasi-laminar plasmas, medium enthalpy transient plasmas, as well as relatively low enthalpy turbulent plasmas. Stable operation, flexibility with plasma gases as well as wide operating window of CPT should help significantly improve the existing plasma spraying processes and coatings, and also help develop new advanced technologies

  17. Technological challenges in thermal plasma production

    International Nuclear Information System (INIS)

    Ramakrishnan, S.

    1995-01-01

    Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process. In this paper, the advantages of plasma technology, its constraints and future challenges for technology developments are highlighted. 36 refs., 14 figs

  18. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  19. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A method is described of providing electron beam heating of a high-density plasma to drive a fast liner to implode a structured microsphere. An annular relativistic electron beam is used to heat an annular plasma to kilovolt temperatures through streaming instabilities in the plasma. Energy deposited in the annular plasma then converges on a fast liner to explosively or ablatively drive the liner to convergence to implode the structured microsphere. (U.K.)

  20. Modes of spheroidal ion plasmas at the Brillouin limit

    International Nuclear Information System (INIS)

    Tinkle, M.D.; Greaves, R.G.; Surko, C.M.

    1996-01-01

    The confinement properties and collective modes of single-component plasmas are investigated in a quadrupole Penning trap. Brillouin-density pure ion plasmas are generated by electron-beam ionization of a low-pressure gas. Large, spheroidal, steady-state plasmas are produced, extending out to contact one or more of the trap electrodes. With the density fixed at the Brillouin limit by the high ion production rate, the electrode potentials determine the plasma shape. The frequencies of azimuthally propagating cyclotron and diocotron modes are found to vary significantly with the plasma aspect ratio. For oblate plasmas, the frequencies are in good agreement with a simple fluid model. copyright 1996 American Institute of Physics

  1. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  2. Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

    International Nuclear Information System (INIS)

    Abdel Rahman, M.M.; EI-Khabeary, H.

    2007-01-01

    In this work simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. Tbe influence of acceleration voltage applied to tbe acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat concave and convex ) without space change at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. Tbe influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V a cc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V a cc = - 2000 volt applied to the acceleration electrode of. the triode extraction system has been studied

  3. Simulation of the plasma meniscus with and without space charge using triode extraction system

    International Nuclear Information System (INIS)

    Rahman, M.M.Abdel; El-Khabeary, H.

    2009-01-01

    In this work, simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. The influence of acceleration voltage applied to the acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes, ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat, concave and convex ) without space charge at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. The influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been studied. (author)

  4. Isotope separation by rotating plasmas

    International Nuclear Information System (INIS)

    Nicoli, C.

    1982-02-01

    A steady-state model of a fully ionized plasma column in a concentric cylindrical electrodes structures is proposed to study the plasma separation properties of its singly ionized ionic species, composed of two isotopes of the element. In this model (a one-fluid model) rotation is imparted to the plasma column through the J (vector) x B (vector) interaction. Radial pressure balance is mainly between the radial component of the J (vector) x B (vector) force and the pressure gradient plus centrifugal force and the azimutal component of the J (vector) x B (vector) force is balanced purely by viscous force. A pressure tensor 31 describes the viscoys effect and the heat balance provides an equation for temperature. A uranium gas with is two main isotopes (U 235 and U 238 ) was used for the ionic component of the plasma. The computing code to solve the resulting, system of equations in tems of density, temperature, and velocity as functions of the radial independent variable was set up to yield solutions satisfying null velocity conditions on both boundaries (inner and outer electrodes). (M.A.F.) [pt

  5. Progress in understanding SOFC electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Jørgensen, M.J.

    2002-01-01

    The literature of SOFC electrode kinetics and mechanisms is full of contradicting details in case of both the SOFC anode and cathode processes. Only weak patterns may be identified. One interpretation is that each of the reported data sets reflects a laboratory specific nature of each of the elec...

  6. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  7. Advanced screening of electrode couples

    Science.gov (United States)

    Giner, J. D.; Cahill, K.

    1980-01-01

    The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.

  8. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    Science.gov (United States)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  9. Arc root dynamics in high power plasma torches – Evidence of ...

    Indian Academy of Sciences (India)

    Two of the major causes of erratic and poor performance of a variety of thermal plasma processes are currently identified as the fluctuations arising out of the arc root movement on the electrodes inside the plasma torch and the fluid dynamic instabilities arising out of entrainment of the air into the plasma jet. This paper ...

  10. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    International Nuclear Information System (INIS)

    Tazmeev, A Kh; Tazmeeva, R N

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed. (paper)

  11. The material balance of process of plasma-chemical conversion of polymer wastes into synthesis gas

    Science.gov (United States)

    Tazmeev, A. Kh; Tazmeeva, R. N.

    2017-01-01

    The process of conversion of polymer wastes in the flow of water-steam plasma which are created by the liquid electrodes plasma generators was experimentally studied. The material balance was calculated. The regularities of the participating of hydrogen and oxygen which contained in the water-steam plasma, in formation of chemical compounds in the final products were revealed.

  12. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  13. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  14. Resistivity of flame plasma in an electric field

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML. (author)

  15. International Workshop on Magneto-Plasma Aerodynamics (8th)

    Science.gov (United States)

    2010-05-14

    outer conductor of coaxial waveguide. (b) (1 − 3) − different positions of a plasma channel in nonsteady-state plasmatron. The microwave power is...out at MIPT. Nanosecond DBD discharge in a special coaxial geometry of electrodes was used to produce a thin layer of quasi-uniform plasma in the...discharge cell, diagnostics means, high-voltage sources and commutation units. Cell commutation was effected by a plasma gun actuated by a start unit

  16. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  17. Investigation and applications of a plasma generator

    International Nuclear Information System (INIS)

    Frere, Isabelle

    1992-01-01

    This work describes the experimental study of a plasma generator: a cylindrical or parallelepipedic rectangle cathode. A permanent magnet creates an axial magnetic field of a few hundred Gauss. A cold and abnormal glow discharge plasma is obtained. The experimental research on the correlation between the discharge parameters (electrode geometry, gas pressure, discharge voltage and current, magnetic field) of the discharge is presented. Another part of the text mentions some generator applications to surface treatment: evaporation, sputtering, surface modification of polymers by exposure to plasma. (author) [fr

  18. Excitation temperature of a solution plasma during nanoparticle synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Genki, E-mail: genki@eng.hokudai.ac.jp; Nakasugi, Yuki; Akiyama, Tomohiro [Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo 060-8628 (Japan)

    2014-08-28

    Excitation temperature of a solution plasma was investigated by spectroscopic measurements to control the nanoparticle synthesis. In the experiments, the effects of edge shielding, applied voltage, and electrode material on the plasma were investigated. When the edge of the Ni electrode wire was shielded by a quartz glass tube, the plasma was uniformly generated together with metallic Ni nanoparticles. The emission spectrum of this electrode contained OH, H{sub α}, H{sub β}, Na, O, and Ni lines. Without an edge-shielded electrode, the continuous infrared radiation emitted at the edge created a high temperature on the electrode surface, producing oxidized coarse particles as a result. The excitation temperature was estimated from the Boltzmann plot. When the voltages were varied at the edge-shielded electrode with low average surface temperature by using different electrolyte concentrations, the excitation temperature of current-concentration spots increased with an increase in the voltage. The size of the Ni nanoparticles decreased at high excitation temperatures. Although the formation of nanoparticles via melting and solidification of the electrode surface has been considered in the past, vaporization of the electrode surface could occur at a high excitation temperature to produce small particles. Moreover, we studied the effects of electrodes of Ti, Fe, Ni, Cu, Zn, Zr, Nb, Mo, Pd, Ag, W, Pt, Au, and various alloys of stainless steel and Cu–Ni alloys. With the exception of Ti, the excitation temperatures ranged from 3500 to 5500 K and the particle size depended on both the excitation temperature and electrode-material properties.

  19. Depositing bulk or micro-scale electrodes

    Science.gov (United States)

    Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.

    2016-11-01

    Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.

  20. Detection of EEG electrodes in brain volumes.

    Science.gov (United States)

    Graffigna, Juan P; Gómez, M Eugenia; Bustos, José J

    2010-01-01

    This paper presents a method to detect 128 EEG electrodes in image study and to merge with the Nuclear Magnetic Resonance volume for better diagnosis. First we propose three hypotheses to define a specific acquisition protocol in order to recognize the electrodes and to avoid distortions in the image. In the second instance we describe a method for segmenting the electrodes. Finally, registration is performed between volume of the electrodes and NMR.

  1. Recovery of fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Monteiro, R.P.G.

    1988-01-01

    A recovery procedure of fluoride ion selective electrode based upon the body radiography of inactive electrode and introduction of suitable internal regeneration solution, is developed. The recovered electrode was tested in standard solutions of fluoride ions (10 sup5) to 10 -1M showing as good performance as the new one. The fluor determination by potentiometric measurements with selective electrode is used in nuclear fuel cycle for quality control of thorium and uranium mixed oxide pellets and pellets of uranium dioxides. (author) [pt

  2. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  3. Exact current to a spherical electrode in a collisionless, large-Debye-length magnetoplasma

    International Nuclear Information System (INIS)

    Sonmor, L.J.; Laframboise, J.G.

    1991-01-01

    Exact calculations of the steady-state current drawn from a collisionless, Maxwellian plasma in a uniform magnetic field by a spherical, perfectly absorbing electrode are presented for a range of dimensionless electrode potentials and magnetic-field strengths. These calculations are valid in the limit of large Debye length. The results are compared with the theory of Rubinstein and Laframboise, which gives upper and lower bounds for both the attracted-species and the repelled-species current. It is found that as the electrode potential increases from space potential with magnetic-field strength fixed, the electron (i.e., attracted-species) current decreases, but not as quickly as the adiabatic-limit (effectively lower-bound) current. The ion current also diverges immediately from the adiabatic-limit current. As the electrode potential increases further, the electron current rises and moves monotonically toward the canonical upper bound, which is the warm-plasma generalization of the well-known Parker and Murphy upper bound. It is unclear whether the current approaches the upper bound asymptotically as the electrode potential becomes large, or instead a constant proportion of the upper bound which varies with magnetic-field strength. The dependence on magnetic-field strength is more complicated. As expected for small fixed electrode potentials, the attracted-species current approaches the adiabatic-limit current monotonically as the magnetic-field strength increases. However, for large electrode potentials this pattern reverses: the current approaches the canonical upper bound monotonically as the magnetic-field strength increases. These patterns are expected to persist when the Debye length is finite. Interpretation of these results leads to an inference that for large electrode potentials, the effect of decreasing the Debye length may be to reduce the current, as in the nonmagnetic case

  4. Dusty plasmas

    International Nuclear Information System (INIS)

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities

  5. Plasma Lens for Muon and Neutrino Beams

    International Nuclear Information System (INIS)

    Kahn, S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-01-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented

  6. Plasma rotation in coaxial discharges

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; Elkhalafawy, T.A.

    1985-01-01

    Plasma rotation has been observed near the breech of the coaxial electrodes, which propagates inside the coaxial gun and moreover this has been detected in the expansion chamber. Azimuthal component of plasma current has been detected. The measuring of the axial magnetic field distribution in time along the expansion chamber-axis shows a single maximum peak for all position. Azimuthal component of electric field exists along the axis of the expansion chamber and results for two angular positions (0 0 , 180 0 ) at r 2.5 cm has been presented. Thus it is obvious that the whole plasma bulk moves in a screw configuration before and after the focus position. 9 fig

  7. Plasma chromatography

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This book examines the fundamental theory and various applications of ion mobility spectroscopy. Plasma chromatography developed from research on the diffusion and mobility of ions. Topics considered include instrument design and description (e.g., performance, spectral interpretation, sample handling, mass spectrometry), the role of ion mobility in plasma chromatography (e.g., kinetic theory of ion transport), atmospheric pressure ionization (e.g., rate equations), the characterization of isomers by plasma chromatography (e.g., molecular ion characteristics, polynuclear aromatics), plasma chromatography as a gas chromatographic detection method (e.g., qualitative analysis, continuous mobility monitoring, quantitative analysis), the analysis of toxic vapors by plasma chromatography (e.g., plasma chromatograph calibration, instrument control and data processing), the analysis of semiconductor devices and microelectronic packages by plasma chromatography/mass spectroscopy (e.g., analysis of organic surface contaminants, analysis of water in sealed electronic packages), and instrument design and automation (hardware, software)

  8. Characteristics of ITO electrode grown by linear facing target sputtering with ladder type magnetic arrangement for organic light emitting diodes

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Kim, Han-Ki; Lee, Jae-Young; Lee, Jung-Hwan; Bae, Hyo-Dae; Tak, Yoon-Heung

    2009-01-01

    The preparation and characteristics of indium tin oxide (ITO) electrodes grown using a specially designed linear facing target sputtering (LFTS) system with a ladder type magnet arrangement for organic light emitting diodes (OLED) are described. It was found that the electrical and optical properties of the ITO electrode were critically dependent on the Ar/O 2 flow ratio, while its structural and surface properties remained fairly constant regardless of the Ar/O 2 flow ratio, due to the low substrate temperature during the plasma damage-free sputtering. Under the optimized conditions, we obtained an ITO electrode with the lowest sheet resistance of 39.4 Ω/sq and high transmittance of 90.1% (550 nm wavelength) at room temperature. This suggests that LFTS is a promising low temperature and plasma damage free sputtering technology for preparing high-quality ITO electrodes for OLEDs and flexible OLEDs at room temperature.

  9. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    International Nuclear Information System (INIS)

    Keller, Sandra; Neugebauer, Alexander; Bibinov, Nikita; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  10. Electroreflectance and the problem of studying plasma-surface interactions

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1995-01-01

    A long standing problem in low-temperature plasma discharge physics is to understand in detail the mutual interaction of real exposed surfaces (electrodes) with the reactive plasma environment. In particular, one wishes to discern the influence of these surfaces on the plasma parameters given their contributions from secondary electrons and ions. This paper briefly reviews the known surface interaction processes as well as currently available diagnostics to study the interface between plasmas and surfaces. Next comes a discussion describing the application of plasma-modulated electroreflectance to this research and some potential experimental techniques

  11. High-Speed Imaging of Dusty Plasma Instabilities

    International Nuclear Information System (INIS)

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.; Coueedel, L.; Vallee, O.

    2011-01-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  12. High-Speed Imaging of Dusty Plasma Instabilities

    Science.gov (United States)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  13. Dust crystal in the electrode sheath of a gaseous discharge

    International Nuclear Information System (INIS)

    Schweigert, I.V.; Schweigert, V.A.

    2002-01-01

    The phenomena observed in strongly coupled dusty plasmas in the electrode sheath of gas discharge clearly indicate that the screened Coulomb potential is not valid for inter-particle interaction. The reason why the conventional model breaks down is clear now. The strong electric field, accelerating ions toward the cathode, leads to an asymmetrical particle shielding and the appearance of an attractive component in the inter-particle force. The sheath plasma with micro-particles is non Hamiltonian system because of input of energy from ion flux from the bulk plasma. The models of interaction potential of microparticles in sheath are proposed. The first is the linear effective positive charge (EPC). On the basis of this model the stability of the dust crystal in the sheath is analyzed both analytically and in MD simulations. The scenario of crystal melting is described. The role of different types of defects in the local heating of the crystal is considered. The next non-linear model of sheath plasma with micro-particles allows to find all parameter of plasma crystal: particle charge, inter-particle distance and study the structural transition. We constructed the analytical expression for inter-particle potential and have found the mechanism acceleration of extra particle beneath the monolayer. Recently new more simple analytical kinetic approach, accounting for ion collisions, have been developed. The structural transition in the dust molecular was obtained in simulation with multipole expansion model interaction potential

  14. Minimizing electrode contamination in an electrochemical cell

    Science.gov (United States)

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  15. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  16. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application

    Science.gov (United States)

    Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.

    2016-11-01

    Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.

  17. Formation of compact toroidal plasmas by magnetized coaxial plasma gun injection into an oblate flux conserver

    International Nuclear Information System (INIS)

    Turner, W.C.; Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1980-01-01

    Initial results are reported on the formation of compact toroidal plasmas in an oblate shaped metallic flux conserver. A schematic of the experimental apparatus is shown. The plasma injector is a coaxial plasma gun with solenoid coils wound on the inner and outer electrodes. The electrode length is 100 cm, the diameter of the inner (outer) electrode is 19.3 cm (32.4 cm). Deuterium gas is puffed into the region between electrodes by eight pulsed valves located on the outer electrode 50 cm from the end of the gun. The gun injects into a cylindrically symmetrical copper shell (wall thickness = 1.6 mm) which acts as a flux conserver for the time scale of experiments reported here. The copper shell consists of a transition cylinder 30 cm long, 34 cm in diameter, a cylindrical oblate pill box 40 cm long, 75 cm in diameter and a downstream cylinder 30 cm long, 30 cm in diameter. The gap between the gun and transition cylinder is 6 cm. An axial array of coils outside the vacuum chamber can be used to establish an initial uniform bias field

  18. Preliminary fluid channel design and thermal-hydraulic analysis of glow discharge cleaning permanent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Lijun, E-mail: cailj@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Lin, Tao; Wang, Yingqiao; Wang, Mingxu [Southwestern Institute of Physics, Chengdu (China); Maruyama, So; Yang, Yu; Kiss, Gabor [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • The plasma facing closure cap has to survive after 30,000 thermal heat load cycles. • 0.35 MW/m2 radiation heat load plus nuclear heat load are very challenging for stainless steel. • Multilayer structure has been designed by using advanced welding and drilling technology to solve the neutron heating problem. • Accurate volumetric load application in analysis model by CFX has been mastered. - Abstract: Glow discharge cleaning (GDC) shall be used on ITER device to reduce and control impurity and hydrogenic fuel out-gassing from in-vessel plasma facing components. After first plasma, permanent electrode (PE) will be used to replace Temporary Electrode (TE) for subsequent operation. Two fundamental scenarios i.e., GDC and Plasma Operation State (POS) should be considered for electrode design, which requires the heat load caused by plasma radiation and neutron heating must be taken away by cooling water flowing inside the electrode. In this paper, multilayer cooling channels inside PE are preliminarily designed, and snakelike route in each layer is adopted to improve the heat exchange. Detailed thermal-hydraulic analyses have been done to validate the design feasibility or rationality. The analysis results show that during GDC the cooling water inlet and outlet temperature difference is far less than the allowable temperature rise under water flow rate 0.15 kg/s compromised by many factors. For POS, the temperature rise and pressure drop are within the design goals, but high thermal stress occurs on the front surface of closure cap of electrode. After several iterations of optimization of the closure cap, the equivalent strain range after 30,000 loading cycles for POS is well below 0.3% design goals.

  19. Electrical Measurements on a Moving Argon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A. A.M.; Howatson, A. M. [Oxford University (United Kingdom)

    1966-10-15

    Experimental current-voltage characteristic curves were obtained for a moving argon plasma at two stations in an electrically-driven 5 cm shock tube. The standard energy was 1 kj and the base pressure 10 torr, giving a shock of about Mach 4. The measurements were made on the highly-ionized driver gas which followed the shock at speeds between 800 and 1100 m/sec. Two types of electrode were used. One comprised circular solid electrodes of aluminium, molybdenum or stainless steel so machined as to be quite flush with the tube wall; the other comprised filaments of tungsten wire which were immersed in the free stream and could be used cold or heated for thermionic emission. Characteristics were obtained both for applied voltages and for MHD-generated voltages; for the latter a magnetic field of good uniformity up to 0.9 Wb/m{sup 2} was used. The results were always markedly dependent on the surface condition of the electrodes. For consistent results the flush electrodes had to be cleaned carefully by hand after every third discharge, while the filament electrodes were thermionically cleaned before every discharge. In general the cold electrode characteristics for applied voltage showed three distinct regions: a current increase such as would be expected from a double probe; a saturation region; and a linear increase, in order of increasing voltage. For the flush electrodes another apparent saturation was found before, finally, the transition to an arc-type discharge. The first saturation current for flush electrodes corresponded to a random ion current much less than that estimated to exist away from the tube walls, as is expected from a consideration of diffusion through a boundary layer. The value of the current varied somewhat with the electrode material. For the cold filaments, the saturation current density was of the same order as for the flush electrodes. From the linear region of the curves, an effective plasma conductivity was obtained. For comparison, the

  20. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    Science.gov (United States)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  1. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    International Nuclear Information System (INIS)

    Jeong, Du Won; Jin Kim, Ju; Jung, Jongjin; Yang, Cheol-Soo; Lee, Jeong-O; Hwa Kim, Gook; Don Jung, Sang

    2015-01-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV–ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions. (paper)

  2. Long life lithium batteries with stabilized electrodes

    Science.gov (United States)

    Amine, Khalil [Downers Grove, IL; Liu, Jun [Naperville, IL; Vissers, Donald R [Naperville, IL; Lu, Wenquan [Darien, IL

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  3. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  4. Characteristics and applications of diffuse discharge of water electrode in air

    Science.gov (United States)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  5. Isotope separation in a rotational plasma

    International Nuclear Information System (INIS)

    Tomimura, A.; Nicoli, C.

    1985-03-01

    The model of a steady cascade in a plasma confined between two cylindrical electrodes and immersed in a homogenous and axial magnetic field is constructed in order to study the separation properties of the elements that make up its mono-ionised ionic species. Rotation is imposed over a column of plasma through the interaction J x B and sufficiently balanced by viscous friction. In the radial direction the pinch effect, due to the radial component of the J x B interaction, counterbalances the pressure gradient which is bigger than the centrifugal force. A uranium gas with its two principal isotopes (U 235 and U 238 ) constitutes an ionic species of plasma. The numerical scheme designed to resolve the system of equations containing variables of density, temperature and velocity as a function of the radius promises solutions that satisfy null contour conditions for velocity in the two contours (external and internal electrodes). Maximum typical values of velocity and separation factor at temperatures and densities (in the internal electrode) of the order of 60 000 K and 5 x 10 15 cm -3 are, for example, 11.8 km/s and 1.4 respectively. Bigger values can be obtained, depending on the values of the free parameters in the internal electrode

  6. Piercing by composite electrode tool

    International Nuclear Information System (INIS)

    Abdukarimov, Eh.T.; Krakov, B.G.; Saidinov, S.Ya.

    1990-01-01

    The construction of the electrode consisting of a dielectric shell, where a working liquid enters, and a metal rod is designed for precision super-deep piercing by the electroerosion treatment method. Technological parameters of piercing with small diameter (0.5-1.9 mm) for 12Kh18N10T steel, copper and tungsten are presented. A possibility to use a new tool for treating components of any form and sizes is marked

  7. Redox electrode materials for supercapatteries

    OpenAIRE

    Yu, Linpo; Chen, George Z.

    2016-01-01

    Redox electrode materials, including transition metal oxides and electronically conducting polymers, are capable of faradaic charge transfer reactions, and play important roles in most electrochemical energy storage devices, such as supercapacitor, battery and supercapattery. Batteries are often based on redox materials with low power capability and safety concerns in some cases. Supercapacitors, particularly those based on redox inactive materials, e.g. activated carbon, can offer high power...

  8. Analytic Potentials for Realistic Electrodes

    International Nuclear Information System (INIS)

    Barlow, Stephan E.; Taylor, Aimee E.; Swanson, Kenneth R.

    2002-01-01

    Finite difference algorithms are widely used to numerically solve Laplace's equation for electrode structures that are not amendable to analytic treatment. This includes essentially all real situations. However, in many cases, it is desirable to have the solution in an analytic form. A common practice is to 'fit' the numerical solution either by least squares or cubic spline approach. Neither of these approaches is really accurate, nor do they produce unique results. These limitations are avoided by our approach.

  9. Potentiometric titration with polarized electrodes

    International Nuclear Information System (INIS)

    Chikryzova, E.G.

    1977-01-01

    Based on the analysis of the works carried out during 1911-75 consideration is given to the present state of the method of potentiometric titration with polarized electrodes. The material is generalized in the tabular form indicating the elments of interest, titration conditions and the objects to be analyzed. The list and classification of the potentiometric titration methods intended for determining organic and inorganic substances are presented

  10. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  11. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  12. Simple microwave plasma source at atmospheric pressure

    International Nuclear Information System (INIS)

    Kim, Jeong H.; Hong, Yong C.; Kim, Hyoung S.; Uhm, Han S.

    2003-01-01

    We have developed a thermal plasma source operating without electrodes. One electrodeless torch is the microwave plasma-torch, which can produce plasmas in large quantities. We can generate plasma at an atmospheric pressure by marking use of the same magnetrons used as commercial microwave ovens. Most of the magnetrons are operated at the frequency of 2.45 GHz; the magnetron power microwave is about 1kW. Electromagnetic waves from the magnetrons propagate through a shorted waveguide. Plasma was generated under a resonant condition, by an auxiliary ignition system. The plasma is stabilized by vortex stabilization. Also, a high-power and high-efficiency microwave plasma-torch has been operated in air by combining two microwave plasma sources with 1kW, 2.45 GHz. They are arranged in series to generate a high-power plasma flame. The second torch adds all its power to the plasma flame of the first torch. Basically, electromagnetic waves in the waveguide were studied by a High Frequency Structure Simulator (HFSS) code and preliminary experiments were conducted

  13. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo

    2014-01-01

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n plu , which is estimated from the current and the drift velocity, and the gas flow velocity v gas is examined. It is found that the dependence of the density on the gas flow velocity has relations of n plu ∝ log(v gas ). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity

  14. Plasma physics

    CERN Document Server

    Drummond, James E

    1961-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  15. Plasma generator

    International Nuclear Information System (INIS)

    Omichi, Takeo; Yamanaka, Toshiyuki.

    1976-01-01

    Object: To recycle a coolant in a sealed hollow portion formed interiorly of a plasma limiter itself to thereby to cause direct contact between the coolant and the plasma limiter and increase of contact area therebetween to cool the plasma limiter. Structure: The heat resulting from plasma generated during operation and applied to the body of the plasma limiter is transmitted to the coolant, which recycles through an inlet and outlet pipe, an inlet and outlet nozzle and a hollow portion to hold the plasma limiter at a level less than a predetermined temperature. On the other hand, the heater wire is, at the time of emergency operation, energized to heat the plasma limiter, but this heat is transmitted to the limiter body to increase the temperature thereof. However, the coolant recycling the hollow portion comes into direct contact with the limiter body, and since the plasma limiter surround the hollow portion, the heat amount transmitted from the limiter body to the coolant increases to sufficiently cool the plasma limiter. (Yoshihara, H.)

  16. Characterization of the C-2W Plasma Guns

    Science.gov (United States)

    Dubois, Ami; Sokolov, Vladimir; Korepanov, Sergey; Osin, Dima; Player, Gabriel; TAE Team

    2017-10-01

    Previous use of coaxial arc discharge plasma guns on the C-2U device exhibited great success in plasma stabilization and improved confinement. On the C-2W experiment, arc discharge plasma guns will again be used to facilitate the electrical connection between the plasma core and the divertor electrodes in order to maintain the electrode edge biasing and induce E x B shear to control plasma rotation. Each plasma gun contains an internal solenoid used to shape the plasma stream. Characterization of electron density (ne) , electron temperature (Te) , floating potential (Vf) , and total plasma flux in an arc discharge lasting 6 ms without the internal solenoid are presented. A Langmuir probe located 27 cm axially outside of the plasma gun anode measures a bell-like radial ne profile with peak ne 1018 m-3 and Te 2 - 10 eV. Observed spectral lines of impurity ions provide an estimate of Te, and Balmer series line ratios of the main ion component are used to evaluate ne at both the probe location and near the plasma gun anode. A calorimeter measures the plasma flux to be constant and equivalent to 1 kA.

  17. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  18. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  19. X-band microwave generation caused by plasma-sheath instability

    International Nuclear Information System (INIS)

    Bliokh, Y.; Felsteiner, J.; Slutsker, Ya. Z.

    2012-01-01

    It is well known that oscillations at the electron plasma frequency may appear due to instability of the plasma sheath near a positively biased electrode immersed in plasma. This instability is caused by transit-time effects when electrons, collected by this electrode, pass through the sheath. Such oscillations appear as low-power short spikes due to additional ionization of a neutral gas in the electrode vicinity. Herein we present first results obtained when the additional ionization was eliminated. We succeeded in prolonging the oscillations during the whole time a positive bias was applied to the electrode. These oscillations could be obtained at much higher frequency than previously reported (tens of GHz compared to few hundreds of MHz) and power of tens of mW. These results in combination with presented theoretical estimations may be useful, e.g., for plasma diagnostics.

  20. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    International Nuclear Information System (INIS)

    Kaneko, T.; Baba, K.; Hatakeyama, R.

    2009-01-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  1. Influence of vacuum space on formation of potential sheath in plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1997-01-01

    Properties of potential sheaths developed in plasmas are investigated in terms of the plasma Debye length and the dimension of vacuum space. Biased plasma potential and the potential profile depend very sensitively on the geometrical configuration of plasma and vacuum space. The potential sheath is never developed near electrodes in high-density plasmas where the Debye length is much less than the dimension of the vacuum space. In this case, most of the potential drops occur in the vacuum space and almost no electric field exists inside the plasma. Parametric investigation of the potential sheath in terms of the vacuum-space and plasma dimensions is carried out. (orig.)

  2. Plasma functionalized surface of commodity polymers for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, Georgina [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Osorio, Joaquin [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Castedo, Alejandra [Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Institut de Tècniques Energètiques, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Armelin, Elaine [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); and others

    2017-03-31

    Highlights: • Electrochemically inert polymers become electroactive after plasma functionalization. • Selective dopamine detection has been achieved functionalizing polymers with plasma. • Plasma-functionalized polymers are sensitive dopamine detectors. • XPS analyses reflect the transformation of inert polymers into electrosensors. - Abstract: We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  3. Lithium manganese oxide spinel electrodes

    Science.gov (United States)

    Darling, Robert Mason

    Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The

  4. A study of plasma focus

    International Nuclear Information System (INIS)

    Hirano, Katsumi; Majima, Kazuo

    1976-01-01

    The behavior of the plasma acceleration between electrodes, the phenomena due to the pinch effect at the top of the electrodes and the neutron emission mechanism were experimentally studied. The plasma focus device was a Mather type coaxial discharge device, and the instruments used for the present purpose were a Rogoski coil, an image converter camera, a scintillation detector and a silver foil activation counter. The results of the present experiment were as follows. Plasma focus was not definitely made under the same condition. When the focus was seen, a dip was observed in the discharge wave form, and the emissions of X-ray and neutrons were detected. The angular anisotropy of neutron emission was observed, and corresponds to a beam target model. The phenomena showing the occurrence of focus were seen, when the current sheet was produced at a delayed time after discharge, and arrived at the muzzle with large velocity. The relation between the number of emitted neutrons and the velocity of the current sheet was obtained, whereas no systematic relation exists between the number of emitted neutrons and the velocity of pinch. When the focus was not observed, no dip was seen in current wave form, and the emissions of X-ray and neutrons were not detected. The reason of no focus was considered. (Kato, T.)

  5. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  6. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  7. Investigation of Pockels Cells Crystal Contrast Ratio Distribution

    Directory of Open Access Journals (Sweden)

    Giedrius Sinkevičius

    2017-07-01

    Full Text Available The BBO Pockel’s cell has been investigated. The investigation results of optimal operating area on the surface of the crystal dependent of intrinsic contrast ratio (ICR and voltage contrast ratio (VCR for Pockel’s cell are presented. The block diagram of Pockel’s cells contrast measurement stand and measurement methodology are introduced and discussed. The graphs of intrinsic contrast ratio distribution on crystal surface, contrast ratio with voltage dependency and voltage contrast ratio distribution on crystal surface with half-wave voltage are presented.

  8. An overview of plasma-in-liquid experimental studies at the University of Michigan's Plasma Science and Technology Laboratory

    Science.gov (United States)

    Foster, John; Howard, Cameron; Sommers, Bradley

    2010-11-01

    Plasma production or plasma injection in liquid water affords one the opportunity to nonthermally inject advanced oxidation processes into water for the purpose of sterilization or chemical processing. Limitations of current injection approaches include limited throughput capacity, electrode erosion, and reduced process volume. Currently we are investigating two potential approaches to circumventing these issues. These include direct plasma injection using an underwater DBD plasma jet and the direct excitation of underwater isolated bubbles via a pulsed electric field. Presented here are results from these ongoing tests, which include a comparative study of the effectiveness of microdischarge, and plasma jet direct injection approaches on the decomposition of Methylene Blue dye. Additionally, an approach to excitation of isolated bubbles using pulsed electric fields is also discussed. Streamer propagation dynamics such as surface propagation and the observed excitation of surface waves on electrode-attached and free bubbles are also discussed.

  9. Bridge between fusion plasma and plasma processing

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Takamura, Shuichi

    2008-01-01

    In the present review, relationship between fusion plasma and processing plasma is discussed. From boundary-plasma studies in fusion devices new applications such as high-density plasma sources, erosion of graphite in a hydrogen plasma, formation of helium bubbles in high-melting-point metals and the use of toroidal plasmas for plasma processing are emerging. The authors would like to discuss a possibility of knowledge transfer from fusion plasmas to processing plasmas. (T. Ikehata)

  10. Electrode phenomena, tensor conductivity and electrode heating in seeded argon

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Z.; de Montardy, A.

    1963-04-15

    Contact potential drops along the electrodes often prevent measurements of ionized gas conductivity. In order to avoid such potential drops, a measurement cell using double probe technique was realized. By adding a third probe, it is also possible to measure the conductivity tensor components. Formulas commonly used are shown to be incorrect. In order to evaluate non- equilibrium conductivity, the excitation temperature of the seed is to be considered, rather than electron temperature, especially in small scale experiments, where charged particle losses by ambipolar diffusion are to be expected. (auth)

  11. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    Science.gov (United States)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  12. Bifunctional electrodes for unitised regenerative fuel cells

    International Nuclear Information System (INIS)

    Altmann, Sebastian; Kaz, Till; Friedrich, Kaspar Andreas

    2011-01-01

    Research highlights: → Different oxygen electrode configurations for the operation in a unitised reversible fuel cell were tested. → Polarisation curves and EIS measurements were recorded. → The mixture of catalysts performs best for the present stage of electrode development. → Potential improvements for the different compositions are discussed. - Abstract: The effects of different configurations and compositions of platinum and iridium oxide electrodes for the oxygen reaction of unitised regenerative fuel cells (URFC) are reported. Bifunctional oxygen electrodes are important for URFC development because favourable properties for the fuel cell and the electrolysis modes must be combined into a single electrode. The bifunctional electrodes were studied under different combinations of catalyst mixtures, multilayer arrangements and segmented configurations with single catalyst areas. Distinct electrochemical behaviour was observed for both modes and can be explained on the basis of impedance spectroscopy. The mixture of both catalysts performs best for the present stage of electrode development. Also, the multilayer electrodes yielded good results with the potential for optimisation. The influence of ionic and electronic resistances on the relative performance is demonstrated. However, penalties due to cross currents in the heterogeneous electrodes were identified and explained by comparing the performance curves with electrodes composed of a single catalyst. Potential improvements for the different compositions are discussed.

  13. 3D Printed Dry EEG Electrodes.

    Science.gov (United States)

    Krachunov, Sammy; Casson, Alexander J

    2016-10-02

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  14. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  15. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  16. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  17. Plasma container

    International Nuclear Information System (INIS)

    Ebisawa, Katsuyuki.

    1985-01-01

    Purpose: To enable to easily detect that the thickness of material to be abraded is reduced to an allowable limit from the outerside of the plasma container even during usual operation in a plasma vessel for a thermonuclear device. Constitution: A labelled material is disposed to the inside or rear face of constituent members of a plasma container undergoing the irradiation of plasma particles. A limiter plate to be abraded in the plasma container is composed of an armour member and heat removing plate, in which the armour member is made of graphite and heat-removing plate is made of copper. If the armour member is continuously abraded under the effect of sputtering due to plasma particles, silicon nitride embedded so far in the graphite at last appears on the surface of the limiter plate to undergo the impact shocks of the plasma particles. Accordingly, abrasion of the limiter material can be detected by a detector comprising gas chromatography and it can easily be detected from the outside of the plasma content even during normal operation. (Horiuchi, T.)

  18. HVDC Ground Electrodes and Tectonic Setting

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2017-12-01

    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  19. Single electrode electrochemical detection in hybrid poly(dimethylsiloxane)/glass multichannel micro devices

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Ney Henrique; Almeida, Andre Luis de Jesus de; Piazzeta, Maria Helena de Oliveira; Gobbia, Angelo Luiz [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil). Lab. de Microfabricacao; Jesus, Dosil Pereira de [Instituto Nacional de Ciencia e Tecnologia em Bioanalitica (INCTBio), Campinas, SP (Brazil); Deblire, Ariane; Silva, Jose Alberto Fracassi da [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    The fabrication process of a novel multichannel {mu}TAS based on PDMS and glass materials and with fully-integrated electrodes for amperometric detection has been described. Using the facilities of the Microfabrication Lab. (LMF) at Brazilian Synchrotron Light Laboratory (LNLS), soft-lithography, lift-off and O{sub 2} plasma surface activation sealing techniques were employed for rapid proto typing of cost effective PDMS/glass microchips. Fast calibration procedures were possible for the electro oxidation of hydroquinone, thiocyanate, and acetaminophen using Au and Cu electrodes. (author)

  20. Cosmic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, H [California Univ., San Diego, La Jolla (USA)

    1981-01-01

    The properties of space plasmas are analyzed, based on laboratory results and data obtained by in situ measurements in the magnetosphere (including the heliosphere). Attention is given to the question of how much knowledge can be gained by a systematic comparison of different regions of plasma, and plasmas are considered with linear dimensions varying from laboratory size up to the Hubble distance. The traditional magnetic field description of plasmas is supplemented by an electric current description and it is demonstrated that many problems are easier to understand with a dualistic approach. Using the general plasma properties obtained, the origin and evolution of the solar system is summarized and the evolution and present structure of the universe (cosmology) is discussed.

  1. Plasma device

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A relativistic electron beam generator or accelerator produces a high-voltage electron beam which is modulated to initiate electron bunching within the beam which is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10 17 to 10 20 electrons per cubic centimeter. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target. The high-temperature plasma can be used to heat a high Z material to generate radiation. Alternatively, a tunable radiation source is produced by using a moderate Z gas or a mixture of high Z and low Z gas as the target plasma. (author)

  2. NOx removal enhancement by a Jerks - and - Jumps type electrode in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Mercado-Cabrera, A; Villar, E L del; Valencia-Alvarado, R; Lopez-Callejas, R; Barocio, S R; Pena-Eguiluz, R; Munozoz-Castro, A; Jaramillo-Sierra, B; Piedad-Beneitez, A de la

    2008-01-01

    In this study, the electrode surface of a NOx removal treatment reactor has been modified in order to reduce its electric potential level and, at the same time, to increase its removal capacity by generating a cold plasma using a non-homogenous electric field on the electrode surface. This electric field has been achieved by means of a jerks and jumps-like electrode profile. The other electrode conserves the original flat form. Then, experiments on the removal of NOx were carried out in this 22.4 cm 3 reactor. Concentrations of 30-80 μmol/mol of NOx in nitrogen were used with 1 SLPM flows. The exhaust gases were analysed as well as characterised by gas chromatography and mass spectrometry. Additional experiments were also carried out in a second reactor of the same reaction volume but where two conventional flat and parallel electrodes were used, in order to compare the results. The NO removal efficiency in the two flat electrode case approached 87% while ∼98% in the jerks and jumps reactor

  3. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  4. Enhanced confinement with plasma biasing in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Craig, D.; Almagri, A.F.; Anderson, J.K.

    1997-06-01

    We report an increase in particle confinement with plasma biasing in a reversed field pinch. Miniature plasma sources are used as electrodes to negatively bias the plasma at the edge (r/a ∼ 0.9). Particle content increases and H α radiation decreases upon application of bias and global particle confinement roughly doubles as a result. Measurements of plasma potential, impurity flow, and floating potential fluctuations indicate that strong flows are produced and that electrostatic fluctuations are reduced

  5. Thin-Film Polarizers for the OMEGA EP Laser System

    International Nuclear Information System (INIS)

    Oliver, J.B.; Rigatti, A.L.; Howe, J.D.; Keck, J.; Szczepanski, J.; Schmid, A.W.; Papernov, S.; Kozlov, A.; Kosc, T.Z.

    2006-01-01

    Thin-film polarizers are essential components of large laser systems such as OMEGA EP and the NIF because of the need to switch the beam out of the primary laser cavity (in conjunction with a plasma-electrode Pockels cell) as well as providing a well-defined linear polarization for frequency conversion and protecting the system from back-reflected light. The design and fabrication of polarizers for pulse-compressed laser systems is especially challenging because of the spectral bandwidth necessary for chirped-pulse amplification

  6. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  7. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  8. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  9. Electrochemical cell and negative electrode therefor

    Science.gov (United States)

    Kaun, Thomas D.

    1982-01-01

    A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.

  10. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  11. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  12. Graphene electrodes for stimulation of neuronal cells

    International Nuclear Information System (INIS)

    Koerbitzer, Berit; Nick, Christoph; Thielemann, Christiane; Krauss, Peter; Yadav, Sandeep; Schneider, Joerg J

    2016-01-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO 2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO 2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO 2 substrate is a very promising material combination for stimulation electrodes. (paper)

  13. Spectroscopic studies of pulsed-power plasmas

    International Nuclear Information System (INIS)

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.

    1993-01-01

    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  14. Plasma polymerization at different positions in an asymmetric ethylene discharge

    International Nuclear Information System (INIS)

    Trieschmann, Jan; Hegemann, Dirk

    2011-01-01

    The characteristics of plasma polymerization are investigated in an asymmetric, capacitively coupled plasma discharge. Here, the deposition in different plasma zones, i.e. on the driven electrode, within the plasma bulk and the plasma sheath as well as approximately at the plasma-sheath edge, is investigated. Principal expectations are perfectly met, though new interesting dependences of the obtained a-C : H coatings with respect to film properties and deposition rates are also found. That is, the deposition rates as measured on thin, small glass slides placed directly on the electrode are considerably higher than everywhere else in the plasma, yet only single-sided. In contrast, the deposition rates on the samples within the plasma are lowered depending on the exact placement, while a double-sided coating is obtained. Furthermore, film properties, such as the film density, are highly dependent on the sample placement in the plasma, which can even be higher under floating conditions. With simple physical arguments we are able to show the relations between the deposition rate and the energy input into the plasma as well as between the energy density during film growth and the film density itself.

  15. Plasma universe

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-04-01

    Traditionally the views in our cosmic environment have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasma. Such a medium may also emit synchrotron radiation which is observable in the radio region. If we try to base a model of the universe on the plasma phenomena mentioned we find that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasma. This approach is possible because it is likely that the basic properties of plasma are the same everywhere. In order to test the usefulness of the plasma universe model we apply it to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4-5 bilions years ago with an accuracy of better than 1 percent

  16. Electrostatic Plasma Accelerator (EPA)

    Science.gov (United States)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  17. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    OpenAIRE

    Tieshi He; Xue Ren; Junping Nie; Jun Ying; Kedi Cai

    2015-01-01

    Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC) of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′)-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distrib...

  18. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  19. Production of field-reversed plasma with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1981-01-01

    Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror

  20. Plasma physics

    International Nuclear Information System (INIS)

    1979-01-01

    This report contains the papers delivered at the AEB - Natal University summer school on plasma physics held in Durban during January 1979. The following topics were discussed: Tokamak devices; MHD stability; trapped particles in tori; Tokamak results and experiments; operating regime of the AEB Tokamak; Tokamak equilibrium; high beta Tokamak equilibria; ideal Tokamak stability; resistive MHD instabilities; Tokamak diagnostics; Tokamak control and data acquisition; feedback control of Tokamaks; heating and refuelling; neutral beam injection; radio frequency heating; nonlinear drift wave induced plasma transport; toroidal plasma boundary layers; microinstabilities and injected beams and quasilinear theory of the ion acoustic instability

  1. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  2. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Ni Guohua; Zhao Peng; Cheng Cheng; Song Ye; Meng Yuedong; Toyoda, Hirotaka

    2012-01-01

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and H β Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  3. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  4. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  5. Study of electrochemical behavior of desatinib using hanging mercury drop electrode and gold disc electrode

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Navrátil, Tomáš; Jaklová Dytrtová, Jana; Jakl, M.

    2015-01-01

    Roč. 11, č. 1 (2015), s. 116-116 ISSN 1336-7242 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : electrochemistry * hanging mercury drop electrode * gold electrode Subject RIV: CG - Electrochemistry

  6. PULSION registered HP: Tunable, High Productivity Plasma Doping

    International Nuclear Information System (INIS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism--deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  7. Energy Balance in DC Arc Plasma Melting Furnace

    International Nuclear Information System (INIS)

    Zhao Peng; Meng Yuedong; Yu Xinyao; Chen Longwei; Jiang Yiman; Nie Guohua; Chen Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency. (plasma technology)

  8. Asymmetric Supercapacitor Electrodes and Devices.

    Science.gov (United States)

    Choudhary, Nitin; Li, Chao; Moore, Julian; Nagaiah, Narasimha; Zhai, Lei; Jung, Yeonwoong; Thomas, Jayan

    2017-06-01

    The world is recently witnessing an explosive development of novel electronic and optoelectronic devices that demand more-reliable power sources that combine higher energy density and longer-term durability. Supercapacitors have become one of the most promising energy-storage systems, as they present multifold advantages of high power density, fast charging-discharging, and long cyclic stability. However, the intrinsically low energy density inherent to traditional supercapacitors severely limits their widespread applications, triggering researchers to explore new types of supercapacitors with improved performance. Asymmetric supercapacitors (ASCs) assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density. Recent progress made in the field of ASCs is critically reviewed, with the main focus on an extensive survey of the materials developed for ASC electrodes, as well as covering the progress made in the fabrication of ASC devices over the last few decades. Current challenges and a future outlook of the field of ASCs are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  10. Numerical modeling of the plasma ring acceleration experiment

    International Nuclear Information System (INIS)

    Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.

    1987-01-01

    Modeling of the LLNL RACE experiment and its many applications has necessitated the development and use of a wide array of computational tools. The two-dimensional MHD code, HAM, has been used to model the formation of a compact torus plasma ring in a magnetized coaxial gun and its subsequent acceleration by an additional applied toroidal field. Features included in the 2-D calculations are self-consistent models for (1) the time-dependent poloidal field produced by a capacitor bank discharge through a solenoid field coil (located either inside the gun inner electrode or outside the outer gun electrode) and the associated diffusion of magnetic flux through neighboring conductors, (2) gas flow into the gun annular region from a simulated puffed gas valve plenum, (3) formation and motion of a current sheet produced by J x B forces resulting from discharge of the gun capacitor bank through the plasma load between the coaxial gun electrodes, (4) the subsequent stretching and reconnection of the poloidal field lines to form a compact torus plasma ring, and (5) finally the discharge of the accelerator capacitor bank producing an additional toroidal field for acceleration of the plasma ring. The code has been extended to include various models for gas breakdown, plasma anomalous resistivity, and mass entrainment from ablation of electrode material

  11. Properties of the electrostatically driven helical plasma state

    Science.gov (United States)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal

    2018-02-01

    A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r safety factor q0(r ) just above the pitch of the electrodes m /n =1 in the interior, where the plasma is nearly force-free. However, at the edge the current density has a component perpendicular to the magnetic field B. This perpendicular current density drives nearly Alfvénic helical plasma flows, a notable feature of these states. This state is being studied for its possible application in DC electrical transformers. We present results on several issues of importance for these applications: the transient leading to the steady state; the twist and writhe of the field lines and their relation with the current density; the properties of the current density streamlines and length of the current density lines connected to the electrodes; the sensitivity to changes in the velocity boundary conditions; the effect of varying the radial resistivity profile; and the effects of a concentrated electrode potential.

  12. Plasma-ring, fast-opening switch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1986-01-01

    The authors discuss a fast-opening switch concept based on magnetically confined plasma rings, PROS (for Plasma Ring Opening Switch). In PROS, the plasma ring, confined by Bθ /sub and B/poloidal /sub fields of a compact torus, provide a low mass, localized conduction path between coaxial electrodes. To operate the switch, driver current is passed across the electrodes through the ring, storing inductive energy in external inductance and between the electrodes on the driver side of the ring. The ring is accelerated away from the driver by the field of the driver current and passes over a load gap transferring the current to the load. The authors distinguish two configurations in PROS, straight PROS where the electrodes are coaxial cylinders, and cone PROS with conical electrodes. In straight PROS ring acceleration takes place during the inductive store period as in foil switches, but with the localized ring providing the current path. Increased performance is predicted for the cone PROS (see figure) which employs compression of the ring in the cone during the inductive store period. Here, the B/θ /sub field of the driver forces the ring towards the apex of the cone but the force is in near balance with the opposing component of the radial equilibrium force of the ring along the cone. As a result, the ring undergoes a slow, quasistatic compression limited only by resistive decay of the ring field. Slow compression allows inductive storage with low-power drivers (homopoloar, magneto cumulative generators, high C-low V capacitor banks, etc.). Near the apex of the cone, near peak compression, the ring is allowed to enter a straight coaxial section where, because of low-mass, it rapidly accelerates to high velocity and crosses the load gap

  13. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  14. Laser Plasmas

    Indian Academy of Sciences (India)

    -focusing in a plasma ... Center for Energy Studies, Indian Institute of Technology, New Delhi 110 016, India; Tata Consultancy Services, Gurgaon, India; Ideal Institute of Technology, Ghaziabad, India; Center for Research in Cognitive, ...

  15. Plasma will…

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg

    2016-01-01

    Roč. 174, č. 3 (2016), s. 486-487 ISSN 0007-0963 Institutional support: RVO:68378271 Keywords : plasma * ionized gas Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.706, year: 2016

  16. Plasma technology

    International Nuclear Information System (INIS)

    Drouet, M.G.

    1984-03-01

    IREQ was contracted by the Canadian Electrical Association to review plasma technology and assess the potential for application of this technology in Canada. A team of experts in the various aspects of this technology was assembled and each team member was asked to contribute to this report on the applications of plasma pertinent to his or her particular field of expertise. The following areas were examined in detail: iron, steel and strategic-metals production; surface treatment by spraying; welding and cutting; chemical processing; drying; and low-temperature treatment. A large market for the penetration of electricity has been identified. To build up confidence in the technology, support should be provided for selected R and D projects, plasma torch demonstrations at full power, and large-scale plasma process testing

  17. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  18. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  19. Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Zaveryaev, V [Kurchatov Institute, Moscow (Russian Federation); others, and

    2012-09-15

    The success in achieving peaceful fusion power depends on the ability to control a high temperature plasma, which is an object with unique properties, possibly the most complicated object created by humans. Over years of fusion research a new branch of science has been created, namely plasma diagnostics, which involves knowledge of almost all fields of physics, from electromagnetism to nuclear physics, and up-to-date progress in engineering and technology (materials, electronics, mathematical methods of data treatment). Historically, work on controlled fusion started with pulsed systems and accordingly the methods of plasma parameter measurement were first developed for short lived and dense plasmas. Magnetically confined hot plasmas require the creation of special experimental techniques for diagnostics. The diagnostic set is the most scientifically intensive part of a plasma device. During many years of research operation some scientific tasks have been solved while new ones arose. New tasks often require significant changes in the diagnostic system, which is thus a very flexible part of plasma machines. Diagnostic systems are designed to solve several tasks. As an example here are the diagnostic tasks for the International Thermonuclear Experimental Reactor - ITER: (1) Measurements for machine protection and basic control; (2) Measurements for advanced control; (3) Additional measurements for performance evaluation and physics. Every new plasma machine is a further step along the path to the main goal - controlled fusion - and nobody knows in advance what new phenomena will be met on the way. So in the planning of diagnostic construction we should keep in mind further system upgrading to meet possible new scientific and technical challenges. (author)

  20. Plasma treatment for producing electron emitters

    Science.gov (United States)

    Coates, Don Mayo; Walter, Kevin Carl

    2001-01-01

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  1. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  3. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  4. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150 mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  5. Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries

    Science.gov (United States)

    Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.

    2017-09-01

    At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.

  6. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-01-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster

  7. Characteristics of a Novel Water Plasma Torch

    International Nuclear Information System (INIS)

    Guo-Hua, Ni; Yue-Dong, Meng; Cheng, Cheng; Yan, Lan

    2010-01-01

    Relying on heat generated by plasma arc heating liquid water into steam as a swirl gas, a water plasma torch has the distinctive steam generation structure, which has various applications such as in the treatment of organic waste and hydrogen production for fuel cells in future vehicles. The operational features of the water plasma torch and water phase change process in the discharge chamber are investigated based on the temporal evolution of the voltage and current. The optical emission spectrum measurement shows that the water molecule in the plasma is decomposed into H, OH and O radicals. As the electrodes do not require water-cooling, the thermal efficiency of the torch is very high, which is confirmed by analytical calculation and experimental measurement

  8. Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-06-01

    Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.

  9. Plasma-catalytic reforming of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya; Kolgan, V.V.; Iukhymenko, V.V.; Solomenko, O.V.; Fedirchyk, I.I.; Martysh, E.V.; Demchina, V.P.; Klochok, N.V.; Dragnev, S.V.

    2015-01-01

    The series of experiments studying the plasma-catalytic reforming of liquid hydrocarbons was carried out. The dynamic plasma-liquid system based on a low-power rotating gliding arc with solid electrodes was used for the investigation of liquid hydrocarbons reforming process. Conversion was done via partial oxidation. A part of oxidant flow was activated by the discharge. Synthesis-gas composition was analysed by means of mass-spectrometry and gas-chromatography. A standard boiler, which operates on natural gas and LPG, was used for the burning of synthesis-gas

  10. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  11. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  12. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  13. Investigation of electron and ion flows in the microsecond plasma opening switch on the terawatt power level

    International Nuclear Information System (INIS)

    Bastrikov, A.N.; Bugaev, S.P.; Volkov, A.M.; Kim, A.A.; Kovalchuk, B.M.; Kokshener, V.M.; Yakovlev, V.A.; Bystritskii, V.M.; Grigoriev, S.V.; Krasik, Ya.E.

    1989-01-01

    The results of an investigation of ion and electron flows in the coaxial microsecond plasma opening switch (POS) at generator GIT-4 are given. The 1 mks front duration POS with outer and inner electrodes of 210 mm and 75 mm diameters respectively switched 1 MA pulse during 0.1 mks to the short circuited coaxial line with the same diameters and 120 cm of length. The polarity of the inner electrode was negative. The plasma of the POS was injected from outer electrode by 32 plasma guns of capillary type. The typical POS voltage was 0.9-1.2 MV. The calculated energy losses in the POS during the switching phase reached (0.1-0.15) MJ. The calorimetric measurements of the energy dissipated on both electrodes gave the same value. The location and distribution of the head absorbed along the POS electrodes were determined

  14. Microsecond plasma opening switch experiments on GIT-4

    Energy Technology Data Exchange (ETDEWEB)

    Bystritskij, V M; Lisitsyn, I V; Sinebryukhov, A A; Sinebryukhov, V A [Russian Academy of Sciences, Tomsk (Russian Federation). Inst. of Electrophysics; Kim, A A; Kokshenev, V A; Koval` chuk, B M [Russian Academy of Sciences, Tomsk (Russian Federation). High Current Electronics Inst.

    1997-12-31

    The plasma opening switch (POS) operation at the current level up to 2 MA was studied at the terawatt power GIT-4 generator. The experiments are described in which the electrode diameter and the strength of the applied magnetic field were varied, and different plasma sources were used. It is shown that the high voltage / low impedance switch operation can be achieved if the linear current density at the POS cathode does not exceed 20 kA/cm. This value limits the maximum cathode diameter of the magnetically insulated transmission line. The anode diameter is limited by the requirement of no gap closure with a dense electrode plasma. The application of external magnetic field decreases the plasma density necessary for achieving a long POS conduction time operation regime. (J.U.). 1 tab., 4 refs.

  15. Microsecond plasma opening switch experiments on GIT-4

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Lisitsyn, I.V.; Sinebryukhov, A.A.; Sinebryukhov, V.A.; Kim, A.A.; Kokshenev, V.A.; Koval'chuk, B.M.

    1996-01-01

    The plasma opening switch (POS) operation at the current level up to 2 MA was studied at the terawatt power GIT-4 generator. The experiments are described in which the electrode diameter and the strength of the applied magnetic field were varied, and different plasma sources were used. It is shown that the high voltage / low impedance switch operation can be achieved if the linear current density at the POS cathode does not exceed 20 kA/cm. This value limits the maximum cathode diameter of the magnetically insulated transmission line. The anode diameter is limited by the requirement of no gap closure with a dense electrode plasma. The application of external magnetic field decreases the plasma density necessary for achieving a long POS conduction time operation regime. (J.U.). 1 tab., 4 refs

  16. Power Transfer to plasma Coxial accelerator

    International Nuclear Information System (INIS)

    El-Aragi, G.M.; Soliman, H.M.; Masoud, M.M.

    2000-01-01

    The total power transfer from the condenser bank, to plasma coaxial accelerator device is theoretically studied by using the voltage equation of the entire circuit and applying impulse - linear momentum theorem. This total power represents a combination of (a) the power flowing to the external inductance, (b) the power flowing to the inductance of that part of electrode system between the breech and the momentary position of the plasma current sheath, (c) the power flowing in the annular space between the two coaxial electrodes, to form the magnetic field induction, (d) the power flowing to accelerate the initial mass, (e) the power flowing to accelerate the mass, which has been swept up into the plasma current sheath, (f) the power, which produces directed kinetic energy for the plasma current sheath, (g) the power, which produces internal energy in the plasma sheath, (h) the joule heating. The peak value of the total power = 6x10 8 watt at t=4 MUs, for maximum calculated discharge current = 110KA with a with a period of 34 us. Experimentally its equal to 3.5x10 8 watt at 7MUs and I 0 = 85KA. The energy flow to the coaxial discharge system has been evaluated theoretically and experimentally, E-MAX (CALCULATED)=5.92X10 2 J AT T = 5.5 MUs and E m ax (measured) = 3.54x10 2 joule at 7.5 MUs

  17. The use of cold plasma generators in medicine

    Directory of Open Access Journals (Sweden)

    Kolomiiets R.O.

    2017-04-01

    Full Text Available Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use. This work aims at disclosing the basic principles of construction of cold atmospheric plasma generators in medicine and prospects for their further improvement. The purpose of this work is to improve the existing cold atmospheric plasma generators for use in medical applications. Novelty of this work consists in the application of new principles of construction of cold atmospheric plasmas medical apparatus, namely the combination of the gas discharge chamber, electrodes complex shape forming device and plasma flow in a single package. This helps to achieve a significant reduction in the size of the device, and a discharge chamber design change increases the therapeutic effect. The design of cold atmospheric plasma generator type «pin-to-hole», which is able to control parameters using the plasma current (modulation fluctuations in the primary winding and mechanically (using optional rotary electrode. It is also possible to combine some similar generators in the set, which will increase the surface area of the plasma treatment. We consider the basic principles of generating low atmospheric plasma flow, especially the formation of the plasma jet, changing its shape and modulation stream. The features of cold plasma generator design and information about prospects for further application, and opportunities for further improvement are revealed. The recommendations for further use of cold atmospheric plasma generators in medicine are formulated.

  18. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    International Nuclear Information System (INIS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2012-01-01

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 μm. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 μm can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  19. Preparation of the spacer for narrow electrode gap configuration in ionization-based gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Fundamental and Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia); Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Tronoh, Perak. (Malaysia)

    2012-09-26

    Carbon nanotubes (CNTs) have started to be developed as the sensing element for ionization-based gas sensors due to the demand for improved sensitivity, selectivity, stability and other sensing properties beyond what can be offered by the conventional ones. Although these limitations have been overcome, the problems still remain with the conventional ionization-based gas sensors in that they are bulky and operating with large breakdown voltage and high temperature. Recent studies have shown that the breakdown voltage can be reduced by using nanostructured electrodes and narrow electrode gap. Nanostructured electrode in the form of aligned CNTs array with evenly distributed nanotips can enhance the linear electric field significantly. The later is attributed to the shorter conductivity path through narrow electrode gap. The paper presents the study on the design consideration in order to realize ionization based gas sensor using aligned carbon nanotubes array in an optimum sensor configuration with narrow electrode gap. Several deposition techniques were studied to deposit the spacer, the key component that can control the electrode gap. Plasma spray deposition, electron beam deposition and dry oxidation method were employed to obtain minimum film thickness around 32 {mu}m. For plasma spray method, sand blasting process is required in order to produce rough surface for strong bonding of the deposited film onto the surface. Film thickness, typically about 39 {mu}m can be obtained. For the electron beam deposition and dry oxidation, the film thickness is in the range of nanometers and thus unsuitable to produce the spacer. The deposited multilayer film consisting of copper, alumina and ferum on which CNTs array will be grown was found to be removed during the etching process. This is attributed to the high etching rate on the thin film which can be prevented by reducing the rate and having a thicker conductive copper film.

  20. APPLICATIONS OF A SINGLE CARBON ELECTRODE

    African Journals Online (AJOL)

    Preferred Customer

    Page 1 ... ABSTRACT: A single carbon electrode used with a common arc welder has been successfully used on steel to weld, to surface harden, to spot weld sheet, to pierce holes and to do simple brazing. ... applications: welding, spot welding, hole piercing, etc. The metal tube holding the carbon electrodes is banded with ...