WorldWideScience

Sample records for plasma edge turbulence

  1. A dynamics investigation into edge plasma turbulence

    International Nuclear Information System (INIS)

    Thomsen, H.

    2002-08-01

    The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)

  2. Asymmetry of edge plasma turbulence in biasing experiments on tokamak TF-2

    International Nuclear Information System (INIS)

    Budaev, V.P.

    1994-01-01

    It was observed in tokamaks the suppression of edge turbulence causes by setting a radial electric field at the plasma edge. The poloidal plasma rotation governed by this electric field is likely to result in changes in edge convention and poloidal asymmetry, however there is no experimental evidence about that of the experimental database concerning the biasing and conditions of edge plasma electrostatic turbulence excitation is not still complete. Also a relation between macroscopic convection and small-scale electrostatic turbulence have not yet revealed both in biasing and non biasing plasmas. In this paper results from biasing experiments carried on on ohmically heated tokamak TF-2 are presented. Changes in both equilibrium and fluctuated edge plasma parameters also convection and turbulence driven particle flux were demonstrated in probe measurements with biasing of electrode immersed within Last Closed Flux Surface (LCFS). Poloidal edge plasma structure and charge in asymmetry have demonstrated in the biasing experiments. (author). 6 refs, 4 figs

  3. Long-range correlations and universality in plasma edge turbulence

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Pedrosa, M.A.; Carreras, B.A.

    1999-01-01

    Long-range correlations in turbulence, associated with self-similarity of the fluctuations, are a signature of transport by avalanches as occurs in Self-Organized Critical systems. We have investigated long-range correlations in plasma edge fluctuations in a variety of fusion devices, using the Rescaled-Range and similar techniques. We find that the degree of self-similarity in confining devices is high and similar between devices, and much different from non-confining devices where it is low. Likewise, we find that turbulent spectra show a high degree of similarity between devices. These findings strongly indicate the existence of universality in plasma edge (ohmic) turbulence, and demonstrate its non-Gaussian character. (author)

  4. Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE

    Energy Technology Data Exchange (ETDEWEB)

    Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)

    2016-08-15

    Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Carreras, B.A.; Richards, B.; Bengtson, R.D.; Crockett, D.B.; Gentle, K.W.; Li, G.X.; Hurwitz, P.D.; Rowan, W.L.; Tsui, H.Y.W.; Wootton, A.J.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement

  6. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-01-01

    The edge fluctuations play a critical role in the overall tokamak confinement. Experiments on TEXT show that electrostatic fluctuations in the edge plasma are the dominant mechanism for energy and particle transport. The basic mechanisms responsible for the edge turbulence are the subject of ongoing research in fusion devices. To understand the driving forces responsible for edge fluctuations, a novel experiment is underway on TEXT to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. This technique permits active probing of the spectral properties of the edge turbulence. This new approach to the study of edge fluctuations can provide more insight into the basic dynamics of the turbulence and may, in turn, enable detailed comparison with the theory. These experiments, which rely on the use of oscillating electric fields at the plasma edge, complement edge fluctuation control studies that are presently limited to the use of applied dc biasing to influence the edge electric field profile. These experiments have been extended to control of the edge plasma fluctuation level, using feedback to explore its effects on the edge turbulence characteristics as well as on confinement. (author) 8 refs., 7 figs

  7. Intrinsic momentum generation by a combined neoclassical and turbulence mechanism in diverted DIII-D plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Choe, W. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kwon, J. M. [National Fusion Research institute, Daejeon 305-806 (Korea, Republic of); Müller, Stefan H. [Max Planck Institute for Plasma Physics, Garching 85748 (Germany); Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

    2014-09-15

    Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.

  8. Edge transport and fluctuation induced turbulence characteristics in early SST-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kakati, B., E-mail: bharat.kakati@ipr.res.in; Pradhan, S., E-mail: pradhan@ipr.res.in; Dhongde, J.; Semwal, P.; Yohan, K.; Banaudha, M.

    2017-02-15

    Highlights: • Anomalous particle transport during the high MHD activity at SST-1. • Electrostatic turbulence is modulated by MHD activity at SST-1 tokamak. • Edge floating potential fluctuations shows poloidal long-range cross correlation. - Abstract: Plasma edge transport characteristics are known to be heavily influenced by the edge fluctuation induced turbulences. These characteristics play a critical role towards the confinement of plasma column in a Tokamak. The edge magnetic fluctuations and its subsequent effect on electrostatic fluctuations have been experimentally investigated for the first time at the edge of the SST-1 plasma column. This paper reports the correlations that exist and is experimentally been observed between the edge densities and floating potential fluctuations with the magnetic fluctuations. The edge density and floating potential fluctuations have been measured with the help of poloidally separated Langmuir probes, whereas the magnetic fluctuations have been measured with poloidally spaced Mirnov coils. Increase in magnetic fluctuations associated with enhanced MHD activities has been found to increase the floating potential and ion saturation current. These observations indicate electrostatic turbulence getting influenced with the MHD activities and reveal the edge anomalous particle transport during SST-1 tokamak discharge. Large-scale coherent structures have been observed in the floating potential fluctuations, indicating long-distance cross correlation in the poloidal directions. From bispectral analysis, a strong nonlinear coupling among the floating potential fluctuations is observed in the low-frequency range about 0–15 kHz.

  9. Study of the plasma edge turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Mourgues, F.; Roubin, J.P.; Samain, A.

    1990-01-01

    The plasma edge in tokamaks is known to be very turbulent. We investigate here the non linear stability of a test mode in presence of an helical potential perturbation, i.e. a pump mode, which simulates the plasma turbulence. The particle trajectories in this perturbed equilibrium are derived using an hamiltonian formalism. The electrons appear to have trapped trajectories in the potential well of the pump mode, while the ions experience a large convective motion. These two effects have a large influence on the test mode stability. First, non linearly trapped electrons supply an energy source for the test mode. Second, the ion convective motion introduces a radial scale of the test mode larger than the ion Larmor radius, in agreement with experimental data. These two phenomena allow a bifurcation in the turbulence level and provide therefore an explanation for the L-H transition

  10. Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    DEFF Research Database (Denmark)

    Priego, M.; Garcia, O.E.; Naulin, V.

    2005-01-01

    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive...... drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative...... orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass-charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations. (C) 2005 American Institute of Physics....

  11. Ion transport in turbulent edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Massachusetts Inst. of Tech., Cambridge, MA; Hazeltine, R.D.; Catto, P.J.

    1996-02-01

    Edge plasmas, such as the tokamak scrape-off layer, exist as a consequence of a balance between cross-field diffusion and parallel losses. The former is usually anomalous, and is widely thought to be driven by strong electrostatic turbulence. It is shown that the anomalous diffusion affects the parallel ion transport by giving rise to a new type of thermal force between different ion species. This force is parallel to the magnetic field, but arises entirely because of perpendicular gradients, and could be important for impurity retention in the tokamak divertor. (author)

  12. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    Science.gov (United States)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  13. Turbulent transport modeling in the edge plasma of tokamaks: verification, validation, simulation and synthetic diagnostics

    International Nuclear Information System (INIS)

    Colin-Bellot, Clothilde

    2015-01-01

    The possibility to produce power by using magnetically confined fusion is a scientific and technological challenge. The perspective of ITER conveys strong signals to intensify modeling effort on magnetized fusion plasmas. The success of the fusion operation is conditioned by the quality of plasma confinement in the core of the reactor and by the control of plasma exhaust on the wall. Both phenomena are related to turbulent cross-field transport that is at the heart of the notion of magnetic confinement studies, particle and heat losses. The study of edge phenomena is therefore complicated by a particularly complex magnetic geometry.This calls for an improvement of our capacity to develop numerical tools able to reproduce turbulent transport properties reliable to predict particle and energy fluxes on the plasma facing components. This thesis introduces the TOKAM3X fluid model to simulate edge plasma turbulence. A special focus is made on the code Verification and the Validation. It is a necessary step before using a code as a predictive tool. Then new insights on physical properties of the edge plasma turbulence are explored. In particular, the poloidal asymmetries induced by turbulence and observed experimentally in the Low-Field-Side of the devices are investigated in details. Great care is dedicated to the reproduction of the MISTRAL base case which consists in changing the magnetic configuration and observing the impact on parallel flows in the poloidal plane. The simulations recover experimental measurements and provide new insights on the effect of the plasma-wall contact position location on the turbulent features, which were not accessible in experiments. (author) [fr

  14. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  15. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  16. Characterisation of edge turbulence in relation to edge magnetic field configuration in L-mode plasmas in the Mega Amp Spherical Tokamak.

    Science.gov (United States)

    Dewhurst, J.; Hnat, B.; Dudson, B.; Dendy, R. O.; Counsell, G. F.; Kirk, A.

    2007-12-01

    Almost all astrophysical and magnetically confined fusion plasmas are turbulent. Here, we examine ion saturation current (Isat) measurements of edge plasma turbulence for three MAST L-mode plasmas that differ primarily in their edge magnetic field configurations. First, absolute moments of the coarse grained data are examined to obtain accurate values of scaling exponents. The dual scaling behaviour is identified in all samples, with the temporal scale τ ≍ 40-60 μs separating the two regimes. Strong universality is then identified in the functional form of the probability density function (PDF) for Isat fluctuations, which is well approximated by the Fréchet distribution on temporal scales τ ≤ 40μs. For temporal scales τ > 40μs, the PDFs appear to converge to the Gumbel distribution, which has been previously identified as a universal feature of many other complex phenomena. The optimal fitting parameters k=1.15 for Fréchet and a=1.35 for Gumbel provide a simple quantitative characterisation of the full spectrum of fluctuations. We conclude that, to good approximation, the properties of the edge turbulence are independent of the edge magnetic field configuration.

  17. Modification of Edge Plasma Turbulence by External Magnetic Pertubations

    International Nuclear Information System (INIS)

    Boedo, J.; McKee, G.; Rudakov, D.; Reiser, D.; Evans, T.; Moyer, R.; Schaffer, M.; Watkins, J.; Allen, S.; Fenstermacher, M.; Groth, M.; Holland, C.; Hollmann, E.; Lasnier, C.; Leonard, A.; Mahdavi, M.; McLean, A.; Tynan, G.; Wang, G.; West, W.; Zeng, L.

    2006-01-01

    Magnetostatic perturbations applied to the DIII-D plasma using a n=3 coil set have significant impact on the plasma edge, such as edge localized mode (ELM) suppression [1], but also affect the background turbulence levels. Discharges with parameters R=1.75 m, a=0.56 m, B T ∼ 1.6 T, I p ∼ 1 MA and n e ∼ 3 x 10 13 cm -3 -n e ∼ 7 x 10 13 cm -3 (low, v* e ∼ 0.1 and moderate, v* e ∼ 1 electron pedestal collisionality) were used as a target for the perturbation, [applied at 3 s Fig. 1(a) and 2 s Fig. 1(b)]. The global density and energy content, among many other parameters, are unaffected, raising the issue of what mechanism replaces the particle and heat exhaust otherwise mediated by ELMs. Mixed ELMs (high frequency, low amplitude Type II ELMs interspersed with Type I) in the moderate collisionality regime and Type I ELMs in the low collisionality regime, are replaced by intermittency and broadband turbulence or semiperiodic events. It is important to notice that the coils can be energized in high poloidal mode spectra (upper and lower coils produce fields in the same direction) or odd configuration (upper and lower coils produce fields in the opposite direction) and also rotated 60 deg toroidally. Although we will focus on scanning probe [2] data obtained in the scrape-off layer (SOL), other diagnostics, beam emission spectroscopy (BES), reflectometry [3], were used to study the changes in the plasma turbulence when the ELMs are suppressed and the underlying turbulence and transport change. Thomson scattering n e and T e profiles (Fig. 2) accumulated over 200 ms before (red) and during (blue) I-coil perturbation are fitted with y = a + b* tanh[(r-c)/d] resulting in a,b staying constant while d varies from -0.009 to -0.011 and c from -0.013 to -0.009, i.e. the profiles mostly broaden and shift outward, changes which may be connected to an increase in radial turbulent transport assuming no deformation of the separatrix. This broadening is seen in both low and

  18. Overview of edge turbulence and zonal flow studies on TEXTOR

    International Nuclear Information System (INIS)

    Xu, Y.; Kraemer-Flecken, A.; Reiser, D.

    2008-01-01

    In the TEXTOR tokamak, the edge turbulence properties and turbulence-associated zonal flows have been systematically investigated both experimentally and theoretically. The experimental results include the investigation of self-organized criticality (SOC) behavior, the intermittent blob transport and the geodesic acoustic mode (GAM) zonal flows. During the Dynamic Ergodic Divertor (DED) operation in TEXTOR, the impact of an ergodized plasma boundary on edge turbulence, turbulent transport and the fluctuation propagation has also been studied in detail. The results show substantial influence by the DED on edge turbulence. The theoretical simulations for TEXTOR parameters show characteristic features of the GAM flows and strong reduction of the blob transport by the DED at the plasma periphery. Moreover, the modelling reveals the importance of the Reynolds stress in driving mean (or zonal) flows at the plasma edge in the ohmic discharge phase in TEXTOR. (author)

  19. Study of edge turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Sarazin, Y.

    1997-01-01

    The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.)

  20. Role of impurity dynamics in resistivity-gradient-driven turbulence and tokamak edge plasma phenomena

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Terry, P.W.; Garcia, L.; Carreras, B.A.

    1986-03-01

    The role of impurity dynamics in resistivity gradient driven turbulence is investigated in the context of modeling tokamak edge plasma phenomena. The effects of impurity concentration fluctuations and gradients on the linear behavior of rippling instabilities and on the nonlinear evolution and saturation of resistivity gradient driven turbulence are studied both analytically and computationally. At saturation, fluctuation levels and particle and thermal diffusivities are calculated. In particular, the mean-square turbulent radial velocity is given by 2 > = (E 0 L/sub s/B/sub z/) 2 (L/sub/eta/ -1 + L/sub z -1 ) 2 . Thus, edged peaked impurity concentrations tend to enhance the turbulence, while axially peaked concentrations tend to quench it. The theoretical predictions are in semi-quantitative agreement with experimental results from the TEXT, Caltech, and Tosca tokamaks. Finally, a theory of the density clamp observed during CO-NBI on the ISX-B tokamak is proposed

  1. Characterization of intermittency of impurity turbulent transport in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    The statistical properties of impurity transport of a tokamak edge plasma embedded in a dissipative drift-wave turbulence are investigated using structure function analysis. The impurities are considered as a passive scalar advected by the plasma flow. Two cases of impurity advection are studied and compared: A decaying impurities case (given by a diffusion-advection equation) and a driven case (forced by a mean scalar gradient). The use of extended self-similarity enables us to show that the relative scaling exponent of structure functions of impurity density and vorticity exhibit similar multifractal scaling in the decaying case and follows the She-Leveque model. However, this property is invalidated for the impurity driven advection case. For both cases, potential fluctuations are self-similar and exhibit a monofractal scaling in agreement with Kolmogorov-Kraichnan theory for two-dimensional turbulence. These results obtained with a passive scalar model agree also with test-particle simulations.

  2. Characterization of edge turbulence in relation to edge magnetic field configuration in Ohmic L-mode plasmas in the Mega Amp Spherical Tokamak

    Science.gov (United States)

    Hnat, B.; Dudson, B. D.; Dendy, R. O.; Counsell, G. F.; Kirk, A.; MAST Team

    2008-08-01

    Ion saturation current (Isat) measurements of edge plasma turbulence are analysed for six MAST L-mode plasmas that differ primarily in their edge magnetic field configurations. The analysis techniques are designed to capture the strong nonlinearities of the datasets. First, absolute moments of the data are examined to obtain accurate values of scaling exponents. This confirms dual scaling behaviour in all samples, with the temporal scale τ ≈ 40-60 µs separating the two regimes. Strong universality is then identified in the functional form of the probability density function (PDF) for Isat fluctuations, which is well approximated by the Fréchet distribution on temporal scales τ 40 µs, the PDFs appear to converge to the Gumbel distribution, which has been previously identified as a universal feature of many other complex phenomena. The optimal fitting parameters k = 1.15 for Fréchet and a = 1.35 for Gumbel provide a simple quantitative characterization of the full spectrum of fluctuations. It is concluded that, to good approximation, the properties of the edge turbulence are independent of the edge magnetic field configuration.

  3. Boundary Plasma Turbulence Simulations for Tokamaks

    International Nuclear Information System (INIS)

    Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.

    2008-05-01

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics

  4. Simulations of edge and scrape off layer turbulence in mega ampere spherical tokamak plasmas

    DEFF Research Database (Denmark)

    Militello, F; Fundamenski, W; Naulin, Volker

    2012-01-01

    The L-mode interchange turbulence in the edge and scrape-off-layer (SOL) of the tight aspect ratio tokamak MAST is investigated numerically. The dynamics of the boundary plasma are studied using the 2D drift-fluid code ESEL, which has previously shown good agreement with large aspect ratio machin...

  5. Ballistic propagation of turbulence front in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Sugita, Satoru; Itoh, Kimitaka; Itoh, Sanae-I; Yagi, Masatoshi; Fuhr, Guillaume; Beyer, Peter; Benkadda, Sadruddin

    2012-01-01

    The flux-driven nonlinear simulation of resistive ballooning mode turbulence with tokamak edge geometry is performed to study the non-steady component in the edge turbulence. The large-scale and dynamical events in transport are investigated in a situation where the mean flow is suppressed. Two types of dynamics are observed. One is the radial propagation of the pulse of pressure gradient, the other is the appearance/disappearance of radially elongated global structure of turbulent heat flux. The ballistic propagation is observed in the pulse of pressure gradient, which is associated with the front of turbulent heat flux. We focus on this ballistic propagation phenomenon. Both of the bump of pressure gradient and the front of heat flux propagate inward and outward direction. It is confirmed that the strong fluctuation propagates with the pulse front. It is observed that the number of pulses going outward is close to those going inward. This ballistic phenomenon does not contradict to the turbulence spreading theory. Statistical characteristics of the ballistic propagation of pulses are evaluated and compared with scaling laws which is given by the turbulence spreading theory. It is found that they give qualitatively good agreement. (paper)

  6. Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)

    2010-09-01

    One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.

  7. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  8. Turbulent transport in low-beta plasmas

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Pécseli, H.L.; Juul Rasmussen, J.

    1996-01-01

    Low-frequency electrostatic fluctuations are studied experimentally in a low-P plasma, with particular attention to their importance for the anomalous plasma transport across magnetic field lines. The presence of large coherent structures in a turbulent background at the edge of the plasma column...... is demonstrated by a statistical analysis. The importance of these structures for the turbulent transport is investigated. The study is extended by a multichannel conditional analysis to illustrate detailed properties and parameter dependences of the turbulent transport. (C) 1996 American Institute of Physics....

  9. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Science.gov (United States)

    Rosato, J.; Capes, H.; Catoire, F.; Kadomtsev, M. B.; Levashova, M. G.; Lisitsa, V. S.; Marandet, Y.; Rosmej, F. B.; Stamm, R.

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li+/Li++) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (Ne, Te,…). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  10. Simulations of drift resistive ballooning L-mode turbulence in the edge plasma of the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B. I.; Umansky, M. V.; Nevins, W. M.; Makowski, M. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boedo, J. A.; Rudakov, D. L. [University of California, San Diego, San Diego, California 92093 (United States); McKee, G. R.; Yan, Z. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Groebner, R. J. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

    2013-05-15

    Results from simulations of electromagnetic drift-resistive ballooning turbulence for tokamak edge turbulence in realistic single-null geometry are reported. The calculations are undertaken with the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations [X. Q. Xu and R. H. Cohen, Contrib. Plasma Phys. 36, 158 (1998)]. The simulation setup models L-mode edge plasma parameters in the actual magnetic geometry of the DIII-D tokamak [J. L. Luxon et al., Fusion Sci. Technol. 48, 807 (2002)]. The computations track the development of drift-resistive ballooning turbulence in the edge region to saturation. Fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes are compared to experimental data near the outer midplane from Langmuir probe and beam-emission-spectroscopy for a few well-characterized L-mode discharges in DIII-D. The simulations are comprised of a suite of runs in which the physics model is varied to include more fluid fields and physics terms. The simulations yield results for fluctuation amplitudes, correlation lengths, particle and energy fluxes, and diffusivities that agree with measurements within an order of magnitude and within factors of 2 or better for some of the data. The agreement of the simulations with the experimental measurements varies with respect to including more physics in the model equations within the suite of models investigated. The simulations show stabilizing effects of sheared E × B poloidal rotation (imposed zonal flow) and of lower edge electron temperature and density.

  11. Lithium line radiation in turbulent edge plasmas: Effects of low and high frequency temperature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J., E-mail: joel.rosato@univ-provence.fr [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Capes, H.; Catoire, F. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S. [ITP, Russian Research Center ' Kurchatov Institute' , Moscow (Russian Federation); Marandet, Y. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France); Rosmej, F.B. [LULI, UMR 7605, Universite Pierre et Marie Curie/CNRS, 4 Place Jussieu, Case 128, F-75252 Paris Cedex 05 (France); Stamm, R. [PIIM, UMR 6633, Universite de Provence/CNRS, Centre de St.-Jerome, Case 232, F-13397 Marseille Cedex 20 (France)

    2011-08-01

    In lithium-wall-conditioned tokamaks, the line radiation due to the intrinsic impurities (Li/Li{sup +}/Li{sup ++}) plays a significant role on the power balance. Calculations of the radiation losses are usually performed using a stationary collisional-radiative model, assuming constant values for the plasma parameters (N{sub e}, T{sub e},...). Such an approach is not suitable for turbulent plasmas where the various parameters are time-dependent. This is critical especially for the edge region, where the fluctuation rates can reach several tens of percents [e.g. J.A. Boedo, J. Nucl. Mater. 390-391 (2009) 29-37]. In this work, the role of turbulence on the radiated power is investigated with a statistical formalism. A special emphasis is devoted to the role of temperature fluctuations, successively for low-frequency fluctuations and in the general case where the characteristic turbulence frequencies can be comparable to the collisional and radiative rates.

  12. Study of plasma discharge evolution and edge turbulence with fast visible imaging in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, R.; Chowdhuri, M.B.

    2015-01-01

    Study of discharge evolution through the different phases of a tokamak plasma shot viz., the discharge initiation, current ramp-up, current flat-top and discharge termination, is essential to address many inherent issues of the operation of a Tokamak. Fast visible imaging of the tokamak plasma can provide valuable insight in this regard. Further, edge turbulence is considered to be one of the quintessential areas of tokamak research as the edge plasma is at the immediate vicinity of the plasma core and plays vital role in the core plasma confinement. The edge plasma also bridges the core and the scrape off layer (SOL) of the tokamak and hence has a bearing on the particle and heat flux escaping the plasma column. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. Formation of the plasma column and its evolution are studied with the fast visible imaging in Aditya. Features of the ECRH and LHCD operations on Aditya will be discussed. 3D filaments can, be seen at the plasma edge all along the discharge and they get amplified in intensity at the plasma termination phase. Statistical analysis of these filaments, which are essentially plasma blobs will be presented. (author)

  13. Study of edge turbulence in tokamak plasmas; Etude de la turbulence de bord dans les plasmas de tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    1997-11-21

    The aim of this work is to propose a new frame to study turbulent transport in plasmas. In order to avoid the restraint of scale separability the forcing by flux is used. A critical one-dimension self-organized cellular model is developed. In keeping with experience the average transport can be described by means of diffusion and convection terms whereas the local transport could not. The instability due to interchanging process is thoroughly studied and some simplified equations are derived. The proposed model agrees with the following experimental results: the relative fluctuations of density are maximized on the edge, the profile shows an exponential behaviour and the amplitude of density fluctuations depends on ionization source strongly. (A.C.) 103 refs.

  14. Observation of drift wave propagation as a source of tokamak edge turbulence

    International Nuclear Information System (INIS)

    Wang Guiding; Liu Wandong; Yu Changxuan

    1998-01-01

    Core and edge turbulences were measured by Langmuir probe arrays in the KT-5C tokamak plasma. The radial wavenumber spectra show a quasimode like structure which results in a net radial outward propagation of the turbulent fluctuations. The measured fluctuation levels and wave action fluxes are in good agreement with model predictions by Mattor et al., suggesting that drift wave propagation could be a source of edge turbulence

  15. Experimental and numerical investigations of plasma turbulence

    International Nuclear Information System (INIS)

    Huld, T.

    1990-07-01

    Turbulence in plasmas has been investigated experimentally and numerically. The work described here is divided into four parts: - experiments on edge turbulence in a single-ended Q-machine. Convective cells are investigated in detail together with the anomalous transport caused by them. - Numerical simulation of the edge turbulence in the Q-machine. This simulation uses spectral methods to solve Euler's equation in a cylindrical geometry. - Measurements on wave propagation and the ion beam instability in an unmagnetized plasma with an ion beam with a finite diameter. - Development of software for the automated acquisition of data. This program can control an experiment as well as make measurements. It also include a graphics part. (author) 66 ills., 47 refs

  16. Space-time statistics of the turbulence in the PRETEXT and TEXT tokamak edge plasmas

    International Nuclear Information System (INIS)

    Levinson, S.J.

    1986-01-01

    A study of the statistical space-time properties of the turbulence observed in the edge regions of the PRETEXT and the TEXT tokamaks are reported. Computer estimates of the particle-transport spectrum T(omega), and of the local wavenumber-frequency spectra S(K,omega) for poloidal (k/sub y/) and toroidal (k/sub z/) wavenumbers was determined. A conventional fast-Fourier-transform technique is used initially for the analyses of the potential and density fluctuations obtained from spatially fixed Langmuir-probe pairs. Measurements of the fluctuation-induced particle transport revealed that the particle flux is outward for both PRETEXT and TEXT, and it results primarily from the low-frequency, long-wavelength components of the turbulence. The S(K/sub y/, omega) spectra are dominated by low frequencies ( -1 ) and appear broadened about an approximately linear statistical dispersion relation, anti k(omega). The broadening is characterized by a spectral width sigma/sub k/(omega) (rms deviation about anti k(omega)). In PRETEXT, sigma/sub k/(omega) is of the order of anti k(omega), and the turbulence appears to propagate poloidally with an apparent mean phase velocity of 1-2 x 10 5 cm/s in the ion diamagnetic drift direction. In TEXT, a reversal in the phase velocity of the turbulence in the edge plasma was observed

  17. Edge-core interaction of ITG turbulence in Tokamaks: Is the Tail Wagging the Dog?

    Science.gov (United States)

    Ku, S.; Chang, C. S.; Dif-Pradalier, G.; Diamond, P. H.

    2010-11-01

    A full-f XGC1 gyrokinetic simulation of ITG turbulence, together with the neoclassical dynamics without scale separation, has been performed for the whole-volume plasma in realistic diverted DIII-D geometry. The simulation revealed that the global structure of the turbulence and transport in tokamak plasmas results from a synergy between edge-driven inward propagation of turbulence intensity and the core-driven outward heat transport. The global ion confinement and the ion temperature gradient then self-organize quickly at turbulence propagation time scale. This synergy results in inward-outward pulse scattering leading to spontaneous production of strong internal shear layers in which the turbulent transport is almost suppressed over several radial correlation lengths. Co-existence of the edge turbulence source and the strong internal shear layer leads to radially increasing turbulence intensity and ion thermal transport profiles.

  18. Thermally driven convective cells and tokamak edge turbulence

    International Nuclear Information System (INIS)

    Thayer, D.R.; Diamond, P.H.

    1987-07-01

    A unified theory for the dynamics of thermally driven convective cell turbulence is presented. The cells are excited by the combined effects of radiative cooling and resistivity gradient drive. The model also includes impurity dynamics. Parallel thermal and impurity flows enhanced by turbulent radial duffusion regulate and saturate overlapping cells, even in regimes dominated by thermal instability. Transport coefficients and fluctuation levels characteristic of the saturated turbulence are calculated. It is found that the impurity radiation increases transport coefficients for high density plasmas, while the parallel conduction damping, elevated by radial diffusion, in turn quenches the thermal instability. The enhancement due to radiative cooling provides a resolution to the dilemma of explaining the experimental observation that potential fluctuations exceed density fluctuations in the edge plasma (e PHI/T/sub e/ > n/n 0 )

  19. Images of Edge Turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.J.; Bush, C.E.; Maqueda, R.; Munsat, T.; Stotler, D.; Lowrance, J.; Mastracola, V.; Renda, G.

    2004-01-01

    The 2-D structure of edge plasma turbulence has been measured in the National Spherical Torus Experiment (NSTX) by viewing the emission of the Da spectral line of deuterium. Images have been made at framing rates of up to 250,000 frames/sec using an ultra-high speed CCD camera developed by Princeton Scientific Instruments. A sequence of images showing the transition between L-mode and H-mode states is shown

  20. Suppression of plasma turbulence during optimised shear configurations in JET

    International Nuclear Information System (INIS)

    Conway, G.D.; Borba, D.N.; Alper, B.

    1999-08-01

    Density turbulence suppression is observed in the internal transport barrier (ITB) region of JET discharges with optimised magnetic shear. The suppression occurs in two stages. First, low frequency turbulence is reduced across the plasma core by a toroidal velocity shear generated by intense auxiliary heating. Then when the ITB forms, high frequency turbulence is reduced locally within the steep pressure gradient region of the ITB, consistent with the effects of enhanced E x B poloidal shear. The turbulence suppression is correlated with reduced plasma transport and improved fusion performance. Much effort has been spent in recent years in developing alternative scenarios for operating tokamak fusion reactors. One particular scenario involves reversing or reducing the central magnetic shear to form an internal transport barrier (ITB). The result is reduced plasma core energy transport and enhanced fusion performance. It is believed that ITBs may be formed through a combination of E x B velocity shear and magnetic shear stabilisation of plasma turbulence and instabilities. In this Letter we present results from JET optimised shear discharges showing that turbulence suppression during ITB formation occurs in two stages. First low frequency turbulence is reduced across the plasma core, coinciding with a region of strong toroidal velocity shear; then high frequency turbulence is locally suppressed around the ITB region, consistent with enhanced pressure gradient driven E x B poloidal shear. The measurements were made using a system of X-mode reflectometers consisting of two, dual-channel toroidal correlation reflectometers at 75 GHz (covering plasma outboard edge) and 105 GHz (core and inboard edge), and a 92-96 GHz swept frequency radial correlation reflectometer (plasma core). Reflectometry is a powerful tool for measuring density fluctuations. The highly localised reflection of the microwave beam gives excellent spatial localisation. Measurements can be made

  1. Active probing of plasma edge turbulence and feedback studies on the Texas Experimental Tokamak (TEXT)

    International Nuclear Information System (INIS)

    Uckan, T.; Richards, B.; Bengtson, R.D.

    1993-08-01

    A novel experiment is under way on the Texas Experimental Tokamak (TEXT) to actively modify the turbulence at the plasma edge by launching waves using electrostatic probes in the shadow of the limiter. The experiments are carried out with a wave launching system consisting of two Langmuir probes, which are about 1.8 cm apart in the poloidal direction, with respect to the magnetic field. These probes are operated in the electron side of the (I,V) characteristic. The probe tips are fed separately by independent ac power supplies. Measurements indicate that the wave, launched with a typical frequency image of 15--50 kHz from the edge of the machine top, is received by sensing probes located halfway around the torus. The detected signal strength depends on the frequency of the wave, the plasma current, and the phasing of the applied ac signal between the launching probes. Modifications to the spectra of the density and potential fluctuations are observed. These experiments have been extended to control of the edge plasma fluctuation level using feedback to explore its effects on confinement. When the launcher is driven by the floating potential of the fluctuating plasma at the location of the launching probes, then the fluctuations are suppressed or excited, depending on the phasing between the probe tips, both locally and at the downstream sensing probes. The fluctuation-induced particle flux also varies with the feedback phasing

  2. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    International Nuclear Information System (INIS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-01-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  3. Analysis of density fluctuations in the Tore Supra tokamak. Up-down asymmetries and limiter effect on plasma turbulence; Etude des fluctuations de density dans les plasmas du tokamak Tore Supra. Asymetries haut-bas et effet du limiteur sur la turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Fenzi, Ch

    1999-10-29

    In magnetic fusion devices, the optimisation of the power deposition profile on plasma facing components crucially depends on the heat diffusivity across the magnetic field fines, which is determined by the plasma edge turbulence. In this regard, spatial asymmetries of plasma edge turbulence are of great interest. In this work, we interest in up-down asymmetries of density fluctuations which are usually observed in Tore Supra, using a coherent light scattering experiment. It is shown that these asymmetries are correlated to the plasma edge geometrical configuration (plasma facing components, limiters). In fact, the plasma-limiter interaction induces locally in the plasma edge and the SOL (r/a > 0.9) an additional turbulence with short correlation length along the magnetic field fines, which spreads in the plasma core (0.9 {>=} r/a {>=} 0.5). The resultant up-down asymmetry weakly depends on density, increases with the edge safety factor, and inverts when the plasma current direction is reversed. Such up-down asymmetry observations bring strong impact on edge turbulence and transport models, which usually predict a ballooning of the turbulence in the high-field side but not an up-down asymmetry. A possible model is proposed here, based on the Kelvin Helmholtz instability. (author)

  4. ATF edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1991-01-01

    Electrostatic turbulence on the edge of the Advanced Toroidal Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in electron cyclotron heated plasmas at 1 T. At the last closed flux surface (LCFS, r√a ∼ 1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5% and eφ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r√a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 18 refs., 10 figs

  5. Multiscale coherent structures in tokamak plasma turbulence

    International Nuclear Information System (INIS)

    Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.

    2006-01-01

    A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state

  6. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  7. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    International Nuclear Information System (INIS)

    Madsen, Jens

    2010-09-01

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  8. Guiding-center models for edge plasmas and numerical simulations of isolated plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Jens

    2010-09-15

    The work presented in this thesis falls into two categories: development of reduced dynamical models applicable to edge turbulence in magnetically confined fusion plasmas and numerical simulations of isolated plasma filaments in the scrape-off layer region investigating the influence of finite Larmor radius effects on the radial plasma transport. The coexistence of low-frequency fluctuations, having length scales comparable to the ion gyroradius, steep pressure gradients and strong E x B flows in the edge region of fusion plasmas violates the standard gyrokinetic ordering. In this thesis two models are presented that overcome some of the difficulties associated with the development of reduced dynamical models applicable to the edge. Second order guiding-center coordinates are derived using the phasespace Lie transform method. Using a variational principle the corresponding Vlasov-Maxwell equations expressed in guiding-center coordinates are derived including a local energy theorem. The second order terms describe lowest order finite Larmor radius effects. This set of equations might be relevant for edge plasmas due to the capability of capturing strong E x B flows and lowest order finite Larmor radius effects self-consistently. Next, an extension of the existing gyrokinetic formalism with strong flows is presented. In this work the background electric fields is dynamical, whereas earlier contributions did only incorporate a stationary electric field. In an ordering relevant for edge plasma turbulence, fully electromagnetic second order gyrokinetic coordinates and the corresponding gyrokinetic Vlasov-Maxwell equations are derived, including a local energy theorem. By taking the polarization and magnetization densities in the drift kinetic limit, we present the gyrokinetic Vlasov-Maxwell equations in a more tractable form, which could be relevant for direct numerical simulations of edge plasma turbulence. Finally, an investigation of the influence of finite Larmor

  9. Critical gradients and plasma flows in the edge plasma of Alcator C-Moda)

    Science.gov (United States)

    Labombard, B.; Hughes, J. W.; Smick, N.; Graf, A.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Zweben, S. J.; Alcator C-Mod Team

    2008-05-01

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields—a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when B ×∇B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and "critical gradient" values in the edge plasma.

  10. Coarse Grained Transport Model for Neutrals in Turbulent SOL Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Marandet, Y.; Mekkaoui, A.; Genesio, P.; Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R., E-mail: yannick.marandet@univ-amu.fr [PIIM, CNRS/Aix-Marseille University, Marseille (France); Reiter, D.; Boerner, P. [IEK4, FZJ, Juelich (Germany)

    2012-09-15

    Full text: Edge plasmas of magnetic fusion devices exhibit strong intermittent turbulence, which governs perpendicular transport of particles and heat. Turbulent fluxes result from the coarse graining procedure used to derive the transport equation, which entails time averaging of the underlying equations governing the turbulent evolution of the electron and ion fluids. In previous works, we have pointed out that this averaging is not carried out on the Boltzmann equation that describes the transport of neutral particles (atoms, molecules) in current edge code suites (such as SOLPS). Since fluctuations in the far SOL are of order unity, calculating the transport of neutral particles, hence the source terms in plasma fluid equations, in the average plasma background might lead to misleading results. In particular, retaining the effects of fluctuations could affect the estimation of the importance of main chamber recycling, hence first wall sputtering by charge exchange atoms, as well as main chamber impurity contamination and transport. In this contribution, we obtain an exact coarse-grained equation for the average neutral density, assuming that density fluctuations are described by multivariate Gamma statistics. This equation is a scattering free Boltzmann equation, where the ionization rate has been renormalized to account for fluctuations. The coarse grained transport model for neutrals has been implemented in the EIRENE code, and applications in 2D geometry with ITER relevant plasma parameters are presented. Our results open the way for the implementation of the effects of turbulent fluctuations on the transport of neutral particles in coupled plasma/neutral edge codes like B2-EIRENE. (author)

  11. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2005-01-01

    Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...... fluctuation wave forms and transport statistics are also in a good agreement with those derived from the experiments. Associated with the turbulence bursts are relaxation oscillations in the particle and heat confinements as well as in the kinetic energy of the sheared poloidal flows. The formation of blob...

  12. Edge turbulence imaging in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Stotler, D.P.; Terry, J.L.; La Bombard, B.; Greenwald, M.; Muterspaugh, M.; Pitcher, C.S.; Hallatschek, K.; Maqueda, R.J.; Rogers, B.; Lowrance, J.L.; Mastrocola, V.J.; Renda, G.F.

    2002-01-01

    The two-dimensional (2D) radial vs poloidal structure of edge turbulence in the Alcator C-Mod tokamak [I. H. Hutchinson, R. Boivin, P. T. Bonoli et al., Nucl. Fusion 41, 1391 (2001)] was measured using fast cameras and compared with three-dimensional numerical simulations of edge plasma turbulence. The main diagnostic is gas puff imaging, in which the visible D α emission from a localized D 2 gas puff is viewed along a local magnetic field line. The observed D α fluctuations have a typical radial and poloidal scale of ≅1 cm, and often have strong local maxima ('blobs') in the scrape-off layer. The motion of this 2D structure motion has also been measured using an ultrafast framing camera with 12 frames taken at 250 000 frames/s. Numerical simulations produce turbulent structures with roughly similar spatial and temporal scales and transport levels as that observed in the experiment; however, some differences are also noted, perhaps requiring diagnostic improvement and/or additional physics in the numerical model

  13. Plasma turbulence

    International Nuclear Information System (INIS)

    Horton, W.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates

  14. Experimental studies of edge turbulence and confinement in Alcator C-Moda)

    Science.gov (United States)

    Cziegler, I.; Terry, J. L.; Hughes, J. W.; LaBombard, B.

    2010-05-01

    The steep gradient edge region and scrape-off-layer (SOL) on the low-field-side of Alcator C-Mod [I. H. Hutchinson, R. Boivin, F. Bombarda et al., Phys. Plasmas 1, 1511 (1994)] tokamak plasmas are studied using gas-puff-imaging diagnostics. In L-mode plasmas, the region extending ˜2 cm inside the magnetic separatrix has fluctuations showing a broad, turbulent spectrum, propagating in the electron diamagnetic drift direction, whereas features in the open field line region propagate in the ion diamagnetic drift direction. This structure is robust against toroidal field strength, poloidal null-point geometry, plasma current, and plasma density. Global parameter dependence of spectral and spatial structure of the turbulence inside the separatrix is explored and characterized, and both the intensity and spectral distributions are found to depend strongly on the plasma density normalized to the tokamak density limit. In H-mode discharges the fluctuations at and inside the magnetic separatrix show fundamentally different trends compared to L-mode, with the electron diamagnetic direction propagating turbulence greatly reduced in ELM-free [F. Wagner et al., Proceedings of the Thirteenth Conference on Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1982), Vol. I, p. 277], and completely dominated by the modelike structure of the quasicoherent mode in enhanced D-alpha regimes [A. E. Hubbard, R. L. Boivin, R. S. Granetz et al., Phys. Plasmas 8, 2033 (2001)], while the normalized SOL turbulence is largely unaffected.

  15. Feedback control of edge turbulence in a tokamak

    International Nuclear Information System (INIS)

    Kan, Zhai; Yi-zhi, Wen; Chang-xuan, Yu; Wan-dong, Liu; Chao, Wang; Ge, Zhuang; Kan, Zhai; Zhi-Zhan, Yu

    1997-01-01

    An experiment on feedback control of edge turbulence has been undertaken on the KT-5C tokamak. The results indicate that the edge turbulence could be suppressed or enhanced depending on the phase shift of the feedback network. In a typical case of 90 degree phase shift feedback, the turbulence amplitudes of both T e and n e were reduced by about 25% when the gain of the feedback network was 15. Correspondingly the radial particle flux decreased to about 75% level of the background. Through bispectral analysis it is found that there exists a substantial nonlinear coupling between various modes comprised in edge turbulence, especially in the frequency range from about 10 kHz to 100 kHz, which contains the large part of the edge turbulence energy in KT-5C tokamak. In particular, by actively controlling the turbulence amplitude using feedback, a direct experimental evidence of the link between the nonlinear wave-wave coupling over the whole spectrum in turbulence, the saturated turbulence amplitude, and the radial particle flux was provided. copyright 1997 The American Physical Society

  16. Edge Plasma Physics and Relevant Diagnostics on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Devynck, P.; Gunn, J.; Martines, E.; Bonhomme, G.; Van Oost, G.; Hron, Martin; Ďuran, Ivan; Pánek, Radomír; Stejskal, Pavel; Adámek, Jiří

    2004-01-01

    Roč. 3, - (2004), s. 1-6 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR GA202/03/0786; GA ČR GP202/03/P062 Keywords : tokamak * edge plasma * probe diagnostics * biasing * turbulence * polarization Subject RIV: BL - Plasma and Gas Discharge Physics

  17. Fluid model of the magnetic presheath in a turbulent plasma

    International Nuclear Information System (INIS)

    Stanojevic, M; Duhovnik, J; Jelic, N; Kendl, A; Kuhn, S

    2005-01-01

    A fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. Then, the magnetic presheath in front of an infinite plane surface is analysed in detail. The linearized planar magnetic presheath equations are applied to the plasma-presheath-magnetic-presheath boundary (i.e. the magnetic presheath edge), whereas the original non-linear planar magnetic presheath equations are used for the entire magnetic presheath, allowing for various sets of experimentally relevant free model parameters to be applied. Important new results of this study are, among others, new expressions for the fluid Bohm criterion at the Debye sheath edge and for the ion flux density perpendicular to the wall. These new results, which exhibit corrections due to the turbulent charged particle transport, can qualitatively explain the fact that whenever the angle between the magnetic field and the wall is very small (i.e. several degrees) or zero, electric currents, measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, are anomalously enhanced in comparison with those expected or predicted by other theoretical models

  18. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  19. Scaling study of edge plasma parameters using a multi-device database

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Miner, W.H.; Wootton, A.J.

    1995-01-01

    A database consisting of edge equilibrium, turbulence and transport related plasma parameters has been compiled. Scaling laws for edge density, electron temperature, and radial particle flux are derived in an initial study using a subset of data obtained from tokamaks Phaedrus-T, Tokamak de Varennes, TEXT and TEXT-U. A comparison of edge particle transport in divertor and limiter plasmas shows that the magnetic topology of a separatrix or a divertor improves particle confinement. The particle diffusion coefficient varies radially in a manner opposite to that of Bohm diffusion. ((orig.))

  20. Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

    International Nuclear Information System (INIS)

    McKee, G.; Gohil, P.; Schlossberg, D.; Boedo, J.; Burrell, K.; deGrassie, J.; Groebner, R.; Makowski, M.; Moyer, R.; Petty, C.; Rhodes, T.; Schmitz, L.; Shafer, M.; Solomon, W.; Umansky, M.; Wang, G.; White, A.; Xu, X.

    2008-01-01

    The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion (del)B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion (del)B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER

  1. Investigation of turbulent structures in the edge of magnetized plasmas

    International Nuclear Information System (INIS)

    Nold, Bernhard

    2012-01-01

    Rising energy cost and progressing climate change will exacerbate existing and give birth to new conflicts. Energy savings and the development of new technologies can counteract the reasons for these conflicts. Beside renewable energy sources, nuclear fusion can help to meet this challenge. To build future fusion power plants smaller and more efficient, the magnetic confinement must be improved and the load on plasma facing components reduced. To this end, better understanding is required of turbulent transport processes in magnetized plasmas. Within the frame of the present work, the properties and dynamics of turbulent density structures (''blobs'') have been investigated, as well as their interaction with shear flows. Langmuir-probe measurements have been conducted in the tokamak ASDEX Upgrade and in the stellarator TJ-K, and compared with GEMR plasma turbulence simulations. It has been shown, that blobs are generated at the last closed flux surface (LCFS) of ASDEX Upgrade. They propagate perpendicular to the magnetic field lines in the radial and poloidal directions. The poloidal E x B-drift depends on the radial variation of the plasma potential. The latter is given by the electron temperature profile in front of the electrically conducting wall. Experimental results show, that this can lead to a shear layer inside the scrape-off layer (SOL) of a divertor tokamak due to inhomogeneous connection lengths to the wall. Blobs can hardly cross such a shear layer unchanged. This investigation shows how blobs can exchange particles and energy across a shear layer without changing their shapes and velocities substantially. However, the dynamics of the structures are different between both sides of the shear layer. Parallel drift-wave dynamics are dominant on the plasma core side, i.e. density and potential of the blobs are in phase. Outside of the shear layer, the interchange mechanism dominates due to shorter parallel connection lengths to the wall. The poloidal

  2. Advection of long lived density blobs in the turbulent state of a simple magnetized torus plasma

    International Nuclear Information System (INIS)

    Barni, R; Riccardi, C

    2009-01-01

    The turbulent regime of a simple magnetized toroidal plasma column has been studied in the plasma device Thorello. The detection and the study of the spatio-temporal evolution of structures have been performed by means of conditional sampling techniques as well as other statistical tools. As a result the evidence of plasma blob formation and expulsion from the edge of the main plasma column has been obtained. The relation between structure phenomenology and statistical characteristics of the turbulent regime has been investigated. The motion of the density structures in the edge region of our device does not look ballistic but rather driven by the overall potential profile established in the turbulent state. Potential fluctuations are strongly anti-correlated with density structures, located in the same position and somewhat more extended. They provide a shallow potential well with a flat bottom and quite sharp edges surrounding and co-moving with the blobs. Blob lifetime exceeds the residence time associated with the overall E x B drift field. Then such persistent structures provide a means for a net convection of the charged particles to the limiter, across the magnetic field and beyond the edge region of the plasma.

  3. Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D

    Science.gov (United States)

    Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.

    2018-05-01

    In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.

  4. Investigation of non thermal effects from the Dα line wings in edge plasmas

    International Nuclear Information System (INIS)

    Marandet, Y.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2002-01-01

    The far wings of intense Dα lines measured at the edge of the Tore Supra Tokamak are found to exhibit a power-law behavior. The characteristic exponent is not far from two. Since the low density rules out thermal Stark broadening, we discuss non thermal effects which may arise from the edge plasma drift-wave turbulence. We suggest that both the Stark and the Doppler profile could be affected by the turbulence

  5. Plasma Turbulence General Topics

    Energy Technology Data Exchange (ETDEWEB)

    Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)

    1965-06-15

    It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.

  6. ATF [Advanced Toroidal Facility] edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1990-01-01

    Electrostatic turbulence on the edge of the Advanced Torodial Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in ECH plasmas at 1 T. At the last closed flux surface (LCFS, r/bar a ∼1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5%, and e φ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r/bar a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 17 refs., 10 figs

  7. Multifractal analysis of plasma turbulence in biasing experiments on Castor tokamak

    Czech Academy of Sciences Publication Activity Database

    Budaev, V.P.; Dufková, Edita; Nanobashvili, S.; Weinzettl, Vladimír; Zajac, Jaromír

    2005-01-01

    Roč. 55, C (2005), s. 1615-1621 ISSN 0011-4626. [Workshop “Electric Fields, Structures and Relaxation in Edge Plasmas". Tarragona, 5.7.2005-5.7.2005] Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma turbulence * multifractal analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.360, year: 2005

  8. Heating of plasmas in tokamaks by current-driven turbulence

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1985-10-01

    Investigations of current-driven turbulence have shown the potential to heat plasmas to elevated temperatures in relatively small cross-section devices. The fundamental processes are rather well understood theoretically. Even as it is shown to be possible to relax the technical requirements on the necessary electric field and the pulse length to acceptable values, the effect of energy generation near the plasma edge, the energy transport, the impurity influx and the variation of the current profile are still unknown for present-day large-radius tokamaks. Heating of plasmas by quasi-stationary weakly turbulent states caused by moderate increases of the resistivity due to higher loop voltages could be envisaged. Power supplies able to furnish power levels 5-10 times higher than the usual values could be used for a demonstration of those regimes. At several institutes and university laboratories the study of turbulent heating in larger tokamaks and stellarators is pursued

  9. Wave launching as a diagnostic tool to investigate plasma turbulence

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Bengtson, R.D.; Li, G.X.; Richards, B.; Uglum, J.; Wootton, A.J.; Uckan, T.

    1994-01-01

    An experimental scheme to extend the investigation of plasma turbulence has been implemented. It involves driving waves into the plasma to modify the statistical properties of the fluctuations; the dynamic balance of the turbulence is perturbed via the injection of waves at selected spectral regions. A conditional sampling technique is used in conjunction with correlation analyses to study the wave launching and the wave-wave coupling processes. Experimental results from TEXT-U tokamak show that the launched waves interact with the intrinsic fluctuations both linearly and nonlinearly. The attainment of driven nonlinearity is necessary for this diagnostic scheme to work. It is also the key to an active modification and control of edge turbulence in tokamaks

  10. Relevance, Realization and stability of a cold layer at the plasma edge for fusion reactors

    International Nuclear Information System (INIS)

    1990-09-01

    The workshop was dedicated to the realization and stability of a cold layer at the plasma edge for fusion reactors. The subjects of the communications presented were: impurity transport, and control, plasma boundary layers, power balance, radiation control and modifications, limiter discharges, tokamak density limit, Asdex divertor discharges, thermal stability of a radiating diverted plasma, plasma stability, auxiliary heating in Textor, detached plasma in Tore Supra, poloidal divertor tokamak, radiation cooling, neutral-particle transport, plasma scrape-off layer, edge turbulence

  11. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  12. Coherent structures and transport in drift wave plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bang Korsholm, S.

    2011-12-15

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  13. Coherent structures and transport in drift wave plasma turbulence

    International Nuclear Information System (INIS)

    Bang Korsholm, S.

    2011-12-01

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  14. Statistical characterization of turbulence in the boundary plasma of EAST

    DEFF Research Database (Denmark)

    Yan, Ning; Nielsen, Anders Henry; Xu, G.S.

    2013-01-01

    In Ohmic heated low confinement mode (L-mode) discharges, the intermittent statistical characteristics of turbulent fluctuations have been investigated in the edge and the scrape-off layer (SOL) plasma on EAST (the experimental advanced superconducting tokamak) by fast reciprocating Langmuir probe...

  15. Structure of density fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Endler, M.; Giannone, L.; Niedermeyer, H.; Theimer, G.

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H α -light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs

  16. Turbulent transport of impurities in a magnetized plasma; Transport turbulent d'impuretes dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Dubuit, N

    2006-10-15

    This work deals with the transport of impurities in magnetically confined thermonuclear plasmas. The accumulation of impurities in the core of the plasma would imply dramatic losses of energy that may lead to the extinction of the plasma. On the opposite, the injection of impurities in the plasma edge is considered as an efficient means to extract heat without damaging the first wall. The balance between these 2 contradictory constraints requires an accurate knowledge of the impurity transport inside the plasma. The effect of turbulence, the main transport mechanism for impurities is therefore a major issue. In this work, the complete formula of a turbulent flow of impurities for a given fluctuation spectrum has been inferred. The origin and features of the main accumulation processes have been identified. The main effect comes from the compressibility of the electrical shift speed in a plane perpendicular to the magnetic field. This compressibility appears to be linked to the curvature of the magnetic field. A less important effect is a thermal-diffusion process that is inversely proportional to the number of charges and then disappears for most type of impurities except the lightest. This effect implies an impurity flux proportional to the temperature gradient and its direction can change according to the average speed of fluctuations. A new version of the turbulence code TRB has been developed. This new version allows the constraints of the turbulence not by the gradients but by the flux which is more realistic. The importance of the processes described above has been confirmed by a comparison between calculation and experimental data from Tore-supra and the Jet tokamak. The prevailing role of the curvature of the magnetic field in the transport impurity is highlighted. (A.C.)

  17. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University (IAU), PO Box 14665-678, Tehran (Iran, Islamic Republic of); Emami, M, E-mail: rezashariatzadeh@gmail.com [Laser and Optics Research School, NSTRI, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-01-15

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  18. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    International Nuclear Information System (INIS)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K; Emami, M

    2011-01-01

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  19. Parallel plasma fluid turbulence calculations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.

    1994-01-01

    The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated

  20. Study of plasma turbulence by ultrafast sweeping reflectometry on the Tore Supra Tokamak

    International Nuclear Information System (INIS)

    Hornung, Gregoire

    2013-01-01

    The performance of a fusion reactor is closely related to the turbulence present in the plasma. The latter is responsible for anomalous transport of heat and particles that degrades the confinement. The measure and characterization of turbulence in tokamak plasma is therefore essential to the understanding and control of this phenomenon. Among the available diagnostics, the sweeping reflectometer installed on Tore Supra allows to access the plasma density fluctuations from the edge to the centre of the plasma discharge with a fine spatial (mm) and temporal resolution (μs), that is of the order of the characteristic turbulence scales.This thesis consisted in the characterization of plasma turbulence in Tore Supra by ultrafast sweeping reflectometry measurements. Correlation analyses are used to quantify the spatial and temporal scales of turbulence as well as their radial velocity. In the first part, the characterization of turbulence properties from the reconstructed plasma density profiles is discussed, in particular through a comparative study with Langmuir probe data. Then, a parametric study is presented, highlighting the effect of collisionality on turbulence, an interpretation of which is proposed in terms of the stabilization of trapped electron turbulence in the confined plasma. Finally, it is shown how additional heating at ion cyclotron frequency produces a significant though local modification of the turbulence in the plasma near the walls, resulting in a strong increase of the structure velocity and a decrease of the correlation time. The supposed effect of rectified potentials generated by the antenna is investigated via numerical simulations. (author) [fr

  1. Radial electric field studies in the plasma edge of ASDEX upgrade

    International Nuclear Information System (INIS)

    Viezzer, Eleonora

    2012-01-01

    In magnetically confined fusion plasmas, edge transport barriers (ETBs) are formed during the transition from a highly turbulent state (low confinement regime, L-mode) to a high energy confinement regime (H-mode) with reduced turbulence and transport. The performance of an H-mode fusion plasma is highly dependent on the strength of the ETB which extends typically over the outermost 5% of the confined plasma. The formation of the ETB is strongly connected to the existence of a sheared plasma flow perpendicular to the magnetic field caused by a local radial electric field E r . The gradients in E r and the accompanying E x B velocity shear play a fundamental role in edge turbulence suppression, transport barrier formation and the transition to H-mode. Thus, the interplay between macroscopic flows and transport at the plasma edge is of crucial importance to understanding plasma confinement and stability. The work presented in this thesis is based on charge exchange recombination spectroscopy (CXRS) measurements performed at the plasma edge of the ASDEX Upgrade (AUG) tokamak. During this thesis new high-resolution CXRS diagnostics were installed at the outboard and inboard miplane of AUG, which provide measurements of the temperature, density and flows of the observed species. From these measurements the radial electric field can be directly determined via the radial force balance equation. The new CXRS measurements, combined with the other edge diagnostics available at AUG, allow for an unprecedented, high-accuracy localization (2-3 mm) of the E r profile. The radial electric field has been derived from charge exchange spectra measured on different impurity species including He 2+ , B 5+ , C 6+ and Ne 10+ . The resulting E r profiles are found to be identical within the uncertainties regardless of the impurity species used, thus demonstrating the validity of the diagnostic technique. Inside the ETB the E r profile forms a deep, negative (i.e. directed towards the

  2. Radial electric field studies in the plasma edge of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viezzer, Eleonora

    2012-12-18

    In magnetically confined fusion plasmas, edge transport barriers (ETBs) are formed during the transition from a highly turbulent state (low confinement regime, L-mode) to a high energy confinement regime (H-mode) with reduced turbulence and transport. The performance of an H-mode fusion plasma is highly dependent on the strength of the ETB which extends typically over the outermost 5% of the confined plasma. The formation of the ETB is strongly connected to the existence of a sheared plasma flow perpendicular to the magnetic field caused by a local radial electric field E{sub r}. The gradients in E{sub r} and the accompanying E x B velocity shear play a fundamental role in edge turbulence suppression, transport barrier formation and the transition to H-mode. Thus, the interplay between macroscopic flows and transport at the plasma edge is of crucial importance to understanding plasma confinement and stability. The work presented in this thesis is based on charge exchange recombination spectroscopy (CXRS) measurements performed at the plasma edge of the ASDEX Upgrade (AUG) tokamak. During this thesis new high-resolution CXRS diagnostics were installed at the outboard and inboard miplane of AUG, which provide measurements of the temperature, density and flows of the observed species. From these measurements the radial electric field can be directly determined via the radial force balance equation. The new CXRS measurements, combined with the other edge diagnostics available at AUG, allow for an unprecedented, high-accuracy localization (2-3 mm) of the E{sub r} profile. The radial electric field has been derived from charge exchange spectra measured on different impurity species including He{sup 2+}, B{sup 5+}, C{sup 6+} and Ne{sup 10+}. The resulting E{sub r} profiles are found to be identical within the uncertainties regardless of the impurity species used, thus demonstrating the validity of the diagnostic technique. Inside the ETB the E{sub r} profile forms a deep

  3. Intermittency, avalanche statistics, and long-term correlations in a turbulent plasma

    International Nuclear Information System (INIS)

    Castellanos, Omar; Sentíes, José M; Anabitarte, Ernesto; López, Juan M

    2013-01-01

    We study the turbulent dynamics of a helium plasma in a non-confining cylindrical configuration. Our experimental setup allows us to analyze particle transport in different plasma regions. We find that, whereas the transport is diffusive in the innermost regions of the plasma, distinctive non-diffusive features appear in regions away from the center. Indeed, at the plasma edge we find that particle flux exhibits a power-law distribution of avalanche durations, intermittency, and long-term correlations. (paper)

  4. Oscillations of a Turbulent Jet Incident Upon an Edge

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Lin; D. Rockwell

    2000-09-19

    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  5. Structure of density fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Endler, M; Giannone, L.; Niedermeyer, H; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1990-01-01

    It is now generally believed that the anomalous particle and energy transport in tokamaks is caused by turbulent fluctuations. The physical nature of these fluctuations (mode type, the driving mechanism) have still to be identified experimentally before a self consistent transport theory can be developed. In contrast to the confinement region the plasma edge can be well diagnosed. H{sub {alpha}}-light, which is emitted at the edge, reacts to density and to some extend to temperature fluctuations. It delivers information about radially integrated spectra and correlations. Langmuir probes measure density and potential fluctuations with good spatial resolution. The edge transport governs the physics in the scrape-off layer and in the divertor which is extremely important for a reactor and therefore deserves a major experimental effort. In this paper we report on an attempt to gain detailed information about the spatial and temporal structure of the edge turbulence hoping to reduce the degrees of freedom for theoretical models to a manageable number. (author) 3 refs., 3 figs.

  6. Visible-light imaging MHD studies of the edge plasma in the JIPP-T-IIU tokamak

    International Nuclear Information System (INIS)

    Yamazaki, K.; Haba, K.; Hirokura, S.

    1984-06-01

    MHD activity and turbulence near the plasma edge are studied on the JIPP-T-IIU tokamak using a new high-speed visible-light image-converter video-camera system. Different from conventional cinefilm and photo-diode array systems, this system is convenient for the instantaneous display of the high-speed optical plasma images after plasma discharges. The effectiveness of this instrument for the research of the plasma wall interaction is demonstrated in this experiment. The observed characteristics on the edge-plasma behavior are as follows: (1) The helical mode structure of the luminous plasma boundary suggesting plasma-surface interaction is identified in the case of OH or ICRF-heated discharge. (2) In the LH-current drive case, no clear large-scale coherent modes are identified, however, on the initial stage a medium-scale turbulence (lambda-- a few cm, f -- ten kHz) is found. (3) Before current disruptions, an m=2 or m=3 helical mode is found and up-down asymmetric light emissions are often observed during disruptions. (author)

  7. Simulations of phenomena related to edge transport in tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Konzett, S.

    2011-01-01

    This thesis investigates turbulence in a tokamak fusion plasma using numerical simulations. The fluid turbulence code ATTEMPT, which computes the drift dynamics of ions and electrons in electromagnetic fields, is applied to investigate three physical effects which are motivated by recent experimental findings. The first part shows that the statistics of drift fluid turbulence are largely unaffected by the presence of rational magnetic surfaces for typical edge parameter regimes. The second part contains an analysis of the dependence of correlation lengths on various physical parameters. A systematic approach reveals the impact of plasma parameters - which change in the transition from L to H-mode - on parallel, radial and perpendicular correlation lengths. In the last part of the thesis a new flux surface geometry is implemented in the ATTEMPT code. The modified geometry models the onset of the change in magnetic topology near a magnetic X-point. Computations show that turbulent fluctuations are reduced in an X-point distorted flux surface geometry, and the spectral structure of turbulence is altered substantially. (author) [de

  8. Stochastic catastrophe theory and instabilities in plasma turbulence

    International Nuclear Information System (INIS)

    Rajkovic, Milan; Skoric, Milos

    2009-01-01

    Full text: A Langevin equation (LE) describing evolution of turbulence amplitude in plasma is analyzed from the aspect of stochastic catastrophe theory (SCT) so that turbulent plasma is considered as a stochastic gradient system. According to SCT the dynamics of the system is completely determined by the stochastic potential function and the maximum likelihood estimates of stable and unstable equilibria are associated with the modes and anti-modes, respectively, of the system's stationary probability density function. First order phase transitions occur at degenerate equilibrium points and the potential function at these points may be represented in a generic way. Since the diffusion function of plasma LE is not constant the probability density function (pdf) is not a reliable estimator of the number of stable states. We show that the generalized pdf represented as the product of the stationary pdf and the diffusion function is a reliable estimator of the stable states and that it can be evaluated from the zero mean crossing analysis of plasma turbulence signal. Stochastic bifurcations, and particularly the sudden (catastrophic) ones, are recognized from the pdf's obtained by the zero crossing analysis and we illustrate the applications of SCT in plasma turbulence on data obtained from the MAST (Mega Ampere Spherical Tokamak) for low (L), high (H) and unstable dithering (L/H) confinement regimes. The relationship of the transformation invariant zero-crossing function and SCT is shown to provide important information about the nature of edge localized modes (ELMs) and L-H transition. Finally we show that ELMs occur as a result of catastrophic (hard) bifurcations ruling out the self-organized criticality scenario for their origin. (author)

  9. Structure and motion of edge turbulence in the National Spherical Torus Experiment and Alcator C-Moda)

    Science.gov (United States)

    Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.

    2006-05-01

    In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.

  10. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.; Lomas, P.; Gowers, C.

    2000-01-01

    Models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in using a large database containing both Deuterium-only (DD) and Deuterium-Tritium (DT) plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing to study the dependence of the pedestal height on the edge shear. In addition the range of plasma currents was extended up to 6 MA. It is shown that the edge data is best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to eliminate conclusively the thermal ion model. (author)

  11. Current-driven turbulence in plasmas

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1977-10-01

    Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research

  12. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  13. Strong Turbulence in Low-beta Plasmas

    DEFF Research Database (Denmark)

    Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling

    1980-01-01

    An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence....

  14. Study of edge plasma properties comparing operation in hydrogen and helium in RFX

    International Nuclear Information System (INIS)

    Spolaore, M.; Antoni, V.; Bagatin, M.; Desideri, D.; Fattorini, L.; Martines, E.; Serianni, G.; Tramontin, L.; Vianello, N.

    2001-01-01

    The properties of the edge plasma in the reversed field pinch RFX have been investigated by comparing the operation in helium with those normally performed in hydrogen. It has been found that a spontaneous velocity shear layer takes place in the edge region also in helium discharges. The edge structure of hydrogen and helium discharges have been interpreted using a momentum balance equation, which takes into account anomalous viscosity and friction with neutrals. The electrostatic turbulence properties are also compared: it is found that electrostatic turbulence drives most of the particle losses and a small fraction of the energy losses also for the He discharges. The modifications of the mean profiles, including the ExB velocity, during PPCD are briefly discussed and compared with the results obtained in hydrogen

  15. Edge-plasma analysis for liquid-wall MFE concepts

    International Nuclear Information System (INIS)

    Moir, R.W.; Rensink, M.E.; Rognlien, T.D.

    2001-01-01

    A thick flowing layer of liquid (e.g., flibe - a molten salt, or Sn 80 Li 20 - a liquid metal) protects the structural walls of the magnetic fusion configuration so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction. The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhanced turbulent convection of hot surface liquid into the cooler interior. This surface temperature is affected by the temperature of liquid from a heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D-transport code for the DT and impurity ions; these impurity ions are either swept out to the divertor, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall may further attenuate evaporating flux of atoms and molecules by ionization near the wall. (author)

  16. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E ×B Flow During High Performance DIII-D Tokamak Discharges

    Science.gov (United States)

    Barada, K.; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Bardóczi, L.; Chen, Xi; Muscatello, C. M.; Peebles, W. A.

    2018-03-01

    A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E ×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E ×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E ×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (˜30 - 900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

  17. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Rudyj, A; Carlson, A; Giannone, L.; Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.); Bengtson, R D; Ritz, Ch P [Texas Univ., Austin, TX (USA); Kraemer, M [Bochum Univ. (Germany, F.R.); Tsois, N [NRS Demokritos, Attiki (Greece)

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H/sub {alpha}/ emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs.

  18. Investigation of low-frequency fluctuations in the edge plasma of ASDEX

    International Nuclear Information System (INIS)

    Rudyj, A.; Carlson, A.; Giannone, L.; Niedermeyer, H.; Bengtson, R.D.; Ritz, Ch.P.; Kraemer, M.; Tsois, N.

    1989-01-01

    Density fluctuations in the edge plasma of tokamaks in the frequency range up to a few 100 kHz have been reported for many years. The fluctuations are easily observed with Langmuir probes and are also visible in the H α emission at locations with sufficient neutral gas density. High speed cine films taken on ASDEX show fluctuating stripes aligned approximately parallel to the magnetic field. It has been shown that these fluctuations, which are electrostatic, cause a major part if not all of the particle transport at the plasma edge. The mechanism driving these instabilities is however not yet clear. Langmuir probe measurements and optical observations were performed on ASDEX and a comparison was made with magnetic fluctuation measurements in order to further clarify the mechanism responsible for the edge turbulence. 5 refs., 3 figs

  19. Turbulence measurements in fusion plasmas

    International Nuclear Information System (INIS)

    Conway, G D

    2008-01-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  20. 2-D image diagnostic technique for edge turbulence using fast cameras

    International Nuclear Information System (INIS)

    Nishino, N.; Mizuuchi, T.; Feng, Z.

    2007-01-01

    Fast cameras are powerful tool to visualize the edge turbulence in peripheral plasmas. Under Bi-directional collaborations recently in Heliotron J and GAMMA10 filamentary structures along the magnetic field line were firstly observed with GPI (gas puff imaging) by fast camera. In both machines the filamentary structures had similar stripe pattern in the images and simultaneous measurements of the ion saturation current by electrostatic probes show that the filamentary structures were relatively higher electron density/temperature regions in peripheral plasmas. It is not sufficient to conclude both filamentary structures are the same, however, these phenomena were thought to be related to the energy confinement. Thus the physics mechanism should be solved in the near future. (author)

  1. Turbulent transport reduction by E x B velocity shear during edge plasma biasing in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, G. [Dept. of Applied Physics, Ghent Univ., Ghent (Belgium); Adamek, J.; Antoni, V.; Balan, P.; Boedo, J.A.; Devynck, P.; Duran, I.; Eliseev, L.; Gunn, J.P.; Hron, M.; Ionita, C.; Jachmich, S.; Kirnev, G.S.; Martines, E.; Melnikov, A.; Peleman, P.; Schrittwieser, R.; Silva, C.; Stoeckel, J.; Tendler, M.; Varandas, C.; Van Schoor, M.; Vershkov, V.; Weynants, R.R.

    2004-07-01

    Experiments in the tokamaks TEXTOR, CASTOR, T-10 and ISTTOK have provided new and complementary evidence on the physics of the universal mechanism of E x B velocity shear stabilization of turbulence, concomitant transport barrier formation and radial conductivity by using various edge biasing techniques. (orig.)

  2. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  3. Experimental investigation of turbulent transport at the edge of a tokamak plasma

    International Nuclear Information System (INIS)

    Fedorczak, N.

    2010-01-01

    This manuscript is devoted to the experimental investigation of particle transport in the edge region of the tokamak Tore Supra. The first part introduces the motivations linked to energy production, the principle of a magnetic confinement and the elements of physics essential to describe the dynamic of the plasma at the edge region. From data collected by a set of Langmuir probes and a fast visible imaging camera, we demonstrate that the particle transport is dominated by the convection of plasma filaments, structures elongated along magnetic field lines. They present a finite wave number, responsible for the high enhancement of the particle flux at the low field side of the tokamak. This leads to the generation of strong parallel flows, and the strong constraint of filament geometry by the magnetic shear. (author)

  4. Plasma turbulence in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, Ibere L.; Heller, M.V.A.P.; Brasilio, Z.A. [Sao Paulo Univ., SP, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. In this work we summarize the results from experiments on electrostatic and magnetic fluctuations in tokamak plasmas. Spectral analyses show that these fluctuations are turbulent, having a broad spectrum of wavectors and a broad spectrum of frequencies at each wavector. The electrostatic turbulence induces unexpected anomalous particle transport that deteriorates the plasma confinement. The relationship of these fluctuations to the current state of plasma theory is still unclear. Furthermore, we describe also attempts to control this plasma turbulence with external magnetic perturbations that create chaotic magnetic configurations. Accordingly, the magnetic field lines may become chaotic and then induce a Lagrangian diffusion. Moreover, to discuss nonlinear coupling and intermittency, we present results obtained by using numerical techniques as bi spectral and wavelet analyses. (author)

  5. MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma

    Science.gov (United States)

    Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.; hide

    2016-01-01

    In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..

  6. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  7. Interaction between sheared flows and turbulent transport in magnetized fusion-grade plasmas; Interaction entre ecoulements cisailles et transport turbulent dans les plasmas de fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, M.

    2008-11-15

    The H confinement regime is set when the heating power reaches a threshold value P{sub c} and is linked to the formation of a transport barrier in the edge region of the plasma. Such a barrier is characterized by a high pressure gradient and is submitted to ELM (edge localized mode) instabilities. ELM instabilities trigger violent quasi-periodical ejections of matter and heat that induce quasi-periodical relaxations of the transport barrier called relaxation oscillations. In this work we studied the interaction between sheared flows and turbulence in fusion plasmas. In particular, we studied the complex dynamics of a transport barrier and we show through a simulation that resonant magnetic perturbations could control relaxation oscillations without a significant loss of confinement

  8. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya.

    1976-06-01

    In this paper, the characteristic features of the turbulent heating are reviewed, which is considered to be one of the strong candidates of the further heating method in fusion reactor systems, referring to the works in the Institute of Plasma Physics, Nagoya University. The roles of turbulence in plasma heating including toroidal plasma heating are discussed from several points of view. The relation between the heating rate of plasma particles and the thermalization (randomization) frequency is theoretically investigated and the role of plasma turbulence in the fast thermalization is shown. The experimental results on fluctuation and heating of electrons and ions in turbulently heated plasmas are presented. The influence of turbulence, which is responsible for the particle heating, on the diffusion across the confinement magnetic field is considered for the application in the toroidal plasmas. It is pointed out that the turbulent fields in the fast turbulent heating give only a minor effect to the loss of particles across the magnetic field. It can be said that the enhanced fluctuation in turbulent plasma gives its field energy to the plasma particles while it can play the role of the fast thermalization of the ordered motion of particles that is produced in the plasma by some acceleration process. (Kato, T.)

  9. Rippling modes in the edge of a tokamak plasma

    International Nuclear Information System (INIS)

    Carreras, B.A.; Callen, J.D.; Gaffney, P.W.; Hicks, H.R.

    1982-02-01

    A promising resistive magnetohydrodynamic candidate for the underlying cause of turbulence in the edge of a tokamak plasma is the rippling instability. In this paper we develop a computational model for these modes in the cylindrical tokamak approximation and explore the linear growth and single-helicity quasi-linear saturation phases of the rippling modes for parameters appropriate to the edge of a tokamak plasma. Large parallel heat conduction does not stabilize these modes; it only reduces their growth rate by a factor scaling as k/sub parallel//sup -4/3/. Nonlinearly, individual rippling modes are found to saturate by quasi-linear flattening of the resistivity profile. The saturated amplitude of the modes scales as m/sup -1/, and the radial extent of these modes grows linearly with time due to radial Vector E x Vector B 0 convection. This evolution is found to be terminated by parallel heat conduction

  10. Rippling modes in the edge of a tokamak plasma

    International Nuclear Information System (INIS)

    Carreras, B.A.; Gaffney, P.W.; Hicks, H.R.; Callan, J.D.

    1982-01-01

    A promising resistive magnetohydrodynamic candidate for the underlying cause of turbulence in the edge of a tokamak plasma is the rippling instability. In this paper a computational model for these modes in the cylindrical tokamak approximation was developed and the linear growth and single-helicity quasi-linear saturation phases of the rippling modes for parameters appropriate to the edge of a tokamak plasma were explored. Large parallel heat conduction does not stabilize these modes; it only reduces their growth rate by a factor sacling as K/sup -4/3//sub parallel/. Nonlinearly, individual rippling modes are found to saturate by quasi-linear flattening of the resistivity profile. The saturated amplitude of the modes scales as m -1 , and the radial extent of these modes grows linearly with time due to radial E x B 0 convection. This evolution is found to be terminated by parallel heat conduction

  11. Particle dynamics in the rmp ergodic layer under the influence of edge plasma turbulence

    Czech Academy of Sciences Publication Activity Database

    Kurian, M.; Krlín, Ladislav; Cahyna, Pavel; Pánek, Radomír

    2013-01-01

    Roč. 53, č. 4 (2013), s. 359-364 ISSN 1210-2709 R&D Projects: GA AV ČR IAA100430502; GA ČR GA202/07/0044; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : resonant-magnetic perturbation * plasma turbulence * non-linear dynamics Subject RIV: BL - Plasma and Gas Discharge Physics http://ojs.cvut.cz/ojs/index.php/ap/article/view/1831/1663

  12. Plasma edge physics in an actively cooled tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Adamek, A.; Boucher, C.

    2005-01-01

    Tore Supra is a large tokamak with a plasma of circular cross section (major radius 2.4 m and minor radius 0.72 m) lying on a toroidal limiter. Tore Supra's main mission is the development of technology to inject up to 25 MW of microwave heating power and extract it continuously for up to 1000 s in steady state without uncontrolled overheating of, or outgassing from, plasma-facing components. The entire first wall of the tokamak is actively cooled by a high pressure water loop and special carbon fiber composite materials have been designed to handle power fluxes up to 10 MW/m 2 . The edge plasma on open magnetic flux surfaces that intersect solid objects plays an important role in the overall behaviour of the plasma. The transport of sputtered impurity ions and the fueling of the core plasma are largely governed by edge plasma density, temperature, and flow profiles. Measurements of these quantities are becoming more reliable and frequent in many tokamaks, and it has become clear that we do not understand them very well. Classical two-dimensional fluid modelling fails to reproduce many aspects of the experimental observations such as the significant thickness of the edge plasma, and the near-sonic flows that occur where none should be expected. It is suspected that plasma turbulence is responsible for these anomalies. In the Tore Supra tokamak, various kinds of Langmuir probes are used to characterize the edge plasma. We will present original measurements that demonstrate the universality of many phenomena that have been observed in X-point divertor tokamaks, especially concerning the ion flows. As in the JET tokamak, surprisingly large values of parallel Mach number are measured midway between the two strike zones, where one would expect to find nearly stagnant plasma if the particle source were poloidally uniform. We will present results of a novel experiment that provides evidence for a poloidally localized particle and energy source on the outboard midplane of

  13. Initial Studies of Core and Edge Transport of NSTX Plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.

    2001-01-01

    Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence

  14. Development of the Megahertz Planar Laser-induced Fluorescence Diagnostic for Plasma Turbulence Visualization

    International Nuclear Information System (INIS)

    Kuritsyn, Aleksey; Levinton, Fred M.

    2004-01-01

    A megahertz LIF-based diagnostic system for measuring ion density fluctuations in two spatial dimensions is described. Well resolved spatial and temporal 2D images of turbulent structures will be useful in understanding ion turbulence in magnetically confined plasmas which is a key factor in the performance of fusion experimental devices. A sheet beam of a megahertz repetition rate tunable Alexandrite laser is used to excite ion emission from argon plasma. The fluorescence emitted from the plane of the laser beam is detected with a narrow band interference filter and intensified ultra-fast CCD camera providing 2D images of relative ion density fluctuations every microsecond. It is expected that the edge plasma on fusion devices will be accessible to this technique

  15. Measurement of plasma edge profile on Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Drews, Philipp; Liang, Yunfeng; Neubauer, Olaf; Denner, Peter; Rack, Michael; Liu, Shaocheng; Wang, Nunchao; Nicolai, Dirk; Hollfeld, Klaus; Satheeswaran, Guruparan [Forschungszentrum Juelich, IEK4, Juelich (Germany); Grulke, Olaf [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Collaboration: W7-X Team

    2016-07-01

    Wendelstein 7-X (W7-X), currently under commissioning at the IPP Greifswald, will be the world's largest stellarator with modular superconducting coils, which will enable steady-state-like plasma operation of up to thirty minutes in order to explore the reactor relevance of this concept. The first operation phase of W7-X will employ a limiter configuration. It will be used primarily for setting up the diagnostics and testing the magnetic configuration. In conjunction with the multipurpose manipulator, a fast reciprocating probe is installed. The combined probe head will be used to measure the radial distribution of the magnetic field using magnetic pick-up coils; the plasma temperature and density profiles and the radial electric field using Langmuir pins; and the plasma flows using a Mach setup. As a quasi-isodynamic stellarator, it has been predicted that not only neoclassical but also turbulent transport will be comparable to or possibly even lower than that of tokamaks. Edge plasma profile measurements, especially those of the electron temperature and density, will play a key role in validating this performance in comparison to the tokamak and hence the viability of a stellarator fusion reactor. The edge plasma profile measurements using the combined probe head are presented.

  16. Modification of tokamak edge turbulence using feedback

    International Nuclear Information System (INIS)

    Richards, B.; Uckan, T.; Wootton, A.J.; Carreras, B.A.; Bengtson, R.D.; Hurwitz, P.; Li, G.X.; Lin, H.; Rowan, W.L.; Tsui, H.Y.W.; Sen, A.K.; Uglum, J.

    1994-01-01

    Using active feedback, the turbulent fluctuation levels have been reduced by as much as a factor of 2 in the edge of the Texas Experimental Tokamak (TEXT) [K. W. Gentle, Nucl. Fusion Technol. 1, 479 (1981)]. A probe system was used to drive a suppressor wave in the TEXT limiter shadow. A decrease in the local turbulence-induced particle flux has been seen, but a global change in the particle transport at the present time has not been observed. By changing the phase shift and gain of the feedback network, the amplitude of the turbulence was increased by a factor of 10

  17. Electrostatic Fluxes and Plasma Rotation in the Edge Region of EXTRAP-T2R

    Science.gov (United States)

    Serianni, G.; Antoni, V.; Bergsåker, H.; Brunsell, P.; Drake, J. R.; Spolaore, M.; Sätherblom, H. E.; Vianello, N.

    2001-10-01

    The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the E×B drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation.

  18. Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Benkadda, S.; Garbet, X.; Ropokis, G.; Hizanidis, K.; Castillo-Negrete, D. del

    2009-01-01

    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.

  19. Fast Low-to-High Confinement Mode Bifurcation Dynamics in a Tokamak Edge Plasma Gyrokinetic Simulation.

    Science.gov (United States)

    Chang, C S; Ku, S; Tynan, G R; Hager, R; Churchill, R M; Cziegler, I; Greenwald, M; Hubbard, A E; Hughes, J W

    2017-04-28

    Transport barrier formation and its relation to sheared flows in fluids and plasmas are of fundamental interest in various natural and laboratory observations and of critical importance in achieving an economical energy production in a magnetic fusion device. Here we report the first observation of an edge transport barrier formation event in an electrostatic gyrokinetic simulation carried out in a realistic diverted tokamak edge geometry under strong forcing by a high rate of heat deposition. The results show that turbulent Reynolds-stress-driven sheared E×B flows act in concert with neoclassical orbit loss to quench turbulent transport and form a transport barrier just inside the last closed magnetic flux surface.

  20. Physics of increased edge electron temperature and density turbulence during ELM-free QH-mode operation on DIII-D

    Science.gov (United States)

    Sung, C.; Rhodes, T. L.; Staebler, G. M.; Yan, Z.; McKee, G. R.; Smith, S. P.; Osborne, T. H.; Peebles, W. A.

    2018-05-01

    For the first time, we report increased edge electron temperature and density turbulence levels ( T˜ e and n˜ e) in Edge Localized Mode free Quiescent H-mode (ELM-free QH-mode) plasmas as compared to the ELMing time period. ELMs can severely damage plasma facing components in fusion plasma devices due to their large transient energy transport, making ELM-free operation a highly sought after goal. The QH-mode is a candidate for this goal as it is ELM-free for times limited only by hardware constraints. It is found that the driving gradients decrease during the QH-mode compared to the ELMing phase, however, a significant decrease in the ExB shearing rate is also observed that taken together is consistent with the increased turbulence. These results are significant as the prediction and control of ELM-free H-mode regimes are crucial for the operation of future fusion devices such as ITER. The changes in the linear growth rates calculated by CGYRO [Candy et al., J. Comput. Phys. 324, 73 (2016)] and the measured ExB shearing rate between ELMing and QH-mode phases are qualitatively consistent with these turbulence changes. Comparison with ELMing and 3D fields ELM suppressed H-mode finds a similar increase in T˜ e and n˜ e, however, with distinctly different origins, the increased driving gradients rather than the changes in the ExB shearing rate in 3D fields ELM suppressed the H-mode. However, linear gyrokinetic calculation results are generally consistent with the increased turbulence in both ELM-controlled discharges.

  1. Comparison of L- and H-mode plasma edge fluctuations in MAST

    International Nuclear Information System (INIS)

    Dudson, B D; Dendy, R O; Kirk, A; Meyer, H; Counsell, G F

    2005-01-01

    Edge turbulence measurements from a reciprocating Langmuir probe in MAST are presented. A comparison of the range/standard deviation (R/S), growth of range, first moment and differencing and rescaling methods for calculating the Hurst exponent is made. The differencing and rescaling method is found to be the most useful for identifying scaling over long time-periods. A comparison is made between L-mode, dithering H-mode and H-mode plasma edge turbulence and evidence for self-similarity is found. Tests are performed and it is demonstrated that the results are due to properties of the data, and are not artefacts of the methods. A comparison of Hurst exponent methods with the autocorrelation function and power spectrum is used to demonstrate the presence of long-time correlation in L-mode data, and the absence of long-time correlation in the case of dithering H-mode

  2. Turbulence of high-beta plasma

    International Nuclear Information System (INIS)

    Khvesyuk, V.I.; Chirkov, A.Y.

    1999-01-01

    Principals of numerical modelling of turbulence in high-beta plasma (β > 0.1) are discussed. Creation of transport model for axial symmetric nonuniform confining magnetic field is considered. Numerical model of plasma turbulence in FRC is presented. The physical and mathematical models are formulated from nonuniform axial symmetric high-beta plasma. It is shown that influence of waves arise under this plasma conditions lead to chaotic motion of charged particles across magnetic field. (author)

  3. Edge turbulence measurement in Heliotron J using a combination of hybrid probe system and fast cameras

    International Nuclear Information System (INIS)

    Nishino, N.; Zang, L.; Takeuchi, M.; Mizuuchi, T.; Ohshima, S.; Kasajima, K.; Sha, M.; Mukai, K.; Lee, H.Y.; Nagasaki, K.; Okada, H.; Minami, T.; Kobayashi, S.; Yamamoto, S.; Konoshima, S.; Nakamura, Y.; Sano, F.

    2013-01-01

    The hybrid probe system (a combination of Langmuir probes and magnetic probes), fast camera and gas puffing system were installed at the same toroidal section to study edge plasma turbulence/fluctuation in Heliotron J, especially blob (intermittent filament). Fast camera views the location of the probe head, so that the probe system yields the time evolution of the turbulence/fluctuation while the camera images the spatial profile. Gas puff at the same toroidal section was used to control the plasma density and simultaneous gas puff imaging technique. Using this combined system the filamentary structure associated with magnetic fluctuation was found in Heliotron J at the first time. The other kind of fluctuation was also observed at another experiment. This combination measurement enables us to distinguish MHD activity and electro-static activity

  4. Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments

  5. Electrostatic fluxes and plasma rotation in the edge region of EXTRAP-T2R

    International Nuclear Information System (INIS)

    Serianni, G.; Antoni, V.; Bergsaaker, H.; Brunsell, P.; Drake, J.R.; Spolaore, M.; Saetherblom, H.E.; Vianello, N.

    2001-01-01

    The EXTRAP-T2 reversed field pinch has undergone a significant reconstruction into the new T2R device. This paper reports the first measurements performed with Langmuir probes in the edge region of EXTRAP-T2R. The radial profiles of plasma parameters like electron density and temperature, plasma potential, electrical fields and electrostatic turbulence-driven particle flux are presented. These profiles are interpreted in a momentum balance model where finite Larmor radius losses occur over a distance of about two Larmor radii from the limiter position. The double shear layer of the ExB drift velocity is discussed in terms of the Biglari-Diamond-Terry theory of turbulence decorrelation. (author)

  6. Edge turbulence control on the KT-5C tokamak by feedback using electrostatic probes

    International Nuclear Information System (INIS)

    Zhai Kan; Wang Cheng; Wen Yizi; Yu Changxuan; Wan Shude; Liu Wandong; Xu Zhizhan

    1998-01-01

    Experiments on edge turbulence control have been performed on the KT-5C tokamak by feedback using two sets of electrostatic probes as the driving probe and detective probe. The results indicate that the feedback can enhance or reduce the turbulence amplitude depending upon the phase shift and gain of the feedback network. When the feedback with 90 degree phase shift and with certain loop gain is applied, the spectrum component of turbulence is reduced obviously and the fluctuation amplitude of the electron density and electron temperature become lower by about 25%. consistently the particle flux across the magnetic field induced by the electrostatic fluctuation also decreases by about 25%. On the other hand, the feedback with 0 degree or 180 degree or -90 degree phase shift can enhance the amplitude of the edge turbulence. These results indicate a nonlinear mechanism of the influence of feedback on the edge turbulence, which to some extent also reflect a specific nonlinear characteristic of the edge turbulence

  7. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  8. Attempt to model the edge turbulence of a tokamak as a random superposition of eddies

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M; Theimer, G; Weinlich, M; Carlson, A; Giannone, L.; Niedermeyer, H; Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1993-12-31

    Turbulence is considered to be the most likely origin of the anomalous transport in tokamaks. Although the main interest is focussed on the bulk plasma, transport in the scrape-off layer is very important for reactor design. For this reason extensive experimental investigations of the edge turbulence were performed on the ASDEX divertor tokamak. Langmuir probe arrays were used in the floating potential mode and in the ion saturation mode to measure the poloidal distribution of density and plasma potential fluctuations neglecting temperature fluctuations. Density fluctuations integrated radially over the boundary layer were derived from H{sub {alpha}}-measurements. Data from up to 16 channels were sampled with a frequency of 1 MHz during time windows of 1 s. Often one parameter like the plasma density or the radial probe position were scanned during this interval. It is impossible to derive physical mechanisms directly from these statistical observations. We draw general conclusions about the physics involved from the entity of observations and propose a set of basic effects to include in a theoretical model. Being still unable to solve the complex nonlinear problem of the fully developed turbulence exactly we attempt to describe the turbulence with a simple non-self-consistent statistical model. This allows to derive plausible physical interpretations of several features of the statistical functions and may be used as a guide-line for the development of a manageable theoretical model. (author) 6 refs., 3 figs.

  9. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    International Nuclear Information System (INIS)

    Hahm, T.S.; Wang, Lu; Madsen, J.

    2008-01-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E x B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ i θi ∼ L E ∼ L p i is the thermal ion Larmor radius and ρ θi = B/B θ ρ i ), as typically observed in the tokamak H-mode edge, with L E and L p being the radial electric field and pressure gradient lengths. We take k # perpendicular# ρ i ∼ 1 for generality, and keep the relative fluctuation amplitudes e(delta)φ/T i ∼ (delta)B/B up to the second order. Extending the electrostatic theory in the presence of high E x B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation

  10. Edge plasma physical investigations of tokamak plasmas in CRIP

    International Nuclear Information System (INIS)

    Bakos, J.; Ignacz, P.; Koltai, L.; Paszti, F.; Petravich, G.; Szigeti, J.; Zoletnik, S.

    1988-01-01

    The results of the measurements performed in the field of thermonuclear high temperature plasma physics in CRIP (Hungary) are summarized. In the field of the edge plasma physics solid probes were used to test the external zone of plasma edges, and atom beams and balls were used to investigate both the external and internal zones. The plasma density distribution was measured by laser blow-off technics, using Na atoms, which are evaporated by laser pulses. The excitation of Na atom ball by tokamak plasma gives information on the status of the plasma edge. The toroidal asymmetry of particle transport in tokamak plasma was measured by erosion probes. The evaporated and transported impurities were collected on an other part of the plasma edge and were analyzed by SIMS and Rutherford backscattering. The interactions in plasma near the limiter were investigated by a special limiter with implemented probes. Recycling and charge exchange processes were measured. Disruption phenomena of tokamak plasma were analyzed and a special kind of disruptions, 'soft disruptions' and the related preliminary perturbations were discovered. (D.Gy.) 10 figs

  11. Dissipation range turbulent cascades in plasmas

    International Nuclear Information System (INIS)

    Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.

    2012-01-01

    Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.

  12. Investigation of self-organized criticality behavior of edge plasma transport in Torus experiment of technology oriented research

    International Nuclear Information System (INIS)

    Xu, Y.H.; Jachmich, S.; Weynants, R.R.; Huber, A.; Unterberg, B.; Samm, U.

    2004-01-01

    The self-organized criticality (SOC) behavior of the edge plasma transport has been studied using fluctuation data measured in the plasma edge and the scrape-off layer of Torus experiment of technology oriented research tokamak [H. Soltwisch et al., Plasma Phys. Controlled Fusion 26, 23 (1984)] before and during the edge biasing experiments. In the 'nonshear' discharge phase before biasing, the fluctuation data clearly show some of the characteristics associated with SOC, including similar frequency spectra to those obtained in 'sandpile' transport and other SOC systems, slowly decaying long tails in the autocorrelation function, values of Hurst parameters larger than 0.5 at all the detected radial locations, and a radial propagation of avalanchelike events in the edge plasma area. During the edge biasing phase, with the generation of an edge radial electric field E r and thus of E r xB flow shear, contrary to theoretical expectation, the Hurst parameters are substantially enhanced in the negative flow shear region and in the scrape-off layer as well. Concomitantly, it is found that the local turbulence is well decorrelated by the E r xB velocity shear, consistent with theoretical predictions

  13. Weak turbulence theory for beam-plasma interaction

    Science.gov (United States)

    Yoon, Peter H.

    2018-01-01

    The kinetic theory of weak plasma turbulence, of which Ronald C. Davidson was an important early pioneer [R. C. Davidson, Methods in Nonlinear Plasma Theory, (Academic Press, New York, 1972)], is a venerable and valid theory that may be applicable to a large number of problems in both laboratory and space plasmas. This paper applies the weak turbulence theory to the problem of gentle beam-plasma interaction and Langmuir turbulence. It is shown that the beam-plasma interaction undergoes various stages of physical processes starting from linear instability, to quasilinear saturation, to mode coupling that takes place after the quasilinear stage, followed by a state of quasi-static "turbulent equilibrium." The long term quasi-equilibrium stage is eventually perturbed by binary collisional effects in order to bring the plasma to a thermodynamic equilibrium with increased entropy.

  14. Implications of Navier-Stokes turbulence theory for plasma turbulence

    International Nuclear Information System (INIS)

    Montgomery, David

    1977-01-01

    A brief discussion of Navier-Stokes turbulence theory is given with particular reference to the two dimensional case. The MHD turbulence is introduced with possible applications of techniques developed in Navier-Stokes theory. Turbulence in Vlasov plasma is also discussed from the point of view of the ''direct interaction approximation'' (DIA). (A.K.)

  15. Global numerical modeling of magnetized plasma in a linear device

    DEFF Research Database (Denmark)

    Magnussen, Michael Løiten

    Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

  16. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  17. 3D fluid simulations of tokamak edge turbulence

    International Nuclear Information System (INIS)

    Zeiler, A.; Biskamp, D.; Drake, J.F.; Guzdar, P.N.

    1995-09-01

    3D simulations of drift resistive ballooning turbulence are presented. The turbulence is basically controlled by a parameter α, the ratio of the drift wave frequency to the ideal ballooning growth rate. If this parameters is small (α≤1, corresponding to Ohmic or L-mode plasmas), the system is dominated by ballooning turbulence, which is strongly peaked at the outside of the torus. If it is large (α≥1, corresponding to H-mode plasmas) field line curvature plays a minor role. The turbulence is nonlinearly sustained even if curvature is removed and all modes are linearly stable due to magnetic shear. In the nonlinear regime without curvature the system obeys a different scaling law compared to the low α regime. The transport scaling is discussed in both regimes and the implications for OH-, L-mode and H-mode transport are discussed. (orig.)

  18. Plasma turbulence effects on aurorae

    International Nuclear Information System (INIS)

    Mishin, E.V.; Telegin, V.A.

    1989-01-01

    Analysis of modern state of microprocesses physics in plasma of aurorare, initiated by energetic electron flow intrusion, is presented. It is shown that there is a number of phenomena, which cannot be explained under non-collision (collective) mechanisms of interaction are applied. Effects of plasma turbulence in the area of auroral arcs are considered. Introduction of a new structural element to auroral arc - plasma-turbulence (PT) layer is substantiated. Numerical simulation of electron kinetics, changes in neutral composition, as well as generation of IR- and UV-radiation in PT layer has been realized

  19. US SciDAC Program on Integrated Simulation of Edge Transport in Fusion Plasmas, and its Progress

    International Nuclear Information System (INIS)

    Chang, C.S.

    2007-01-01

    The multi-institutional collaborative center for plasma edge simulation (CPES) has been launched in the USA under the SciDAC (Scientific Discovery through Advanced Computing) Fusion Simulation Program. This is a multi-disciplinary effort among physicists, applied mathematicians, and computer scientists from 15 national laboratories and universities. Its goal is to perform first principles simulations on plasma transport in the edge region from the top of the pedestal to the scrape off/divertor regions bounded by a material wall, and to predict L-H transition, pedestal buildup, ELM crashes, scrape-off transport and divertor heat load. As a major part of the effort, a PIC gyrokinetic edge code XGC is constructed. The gyrokinetic edge code XGC is coupled to a nonlinear edge MHD/2fluid code (M3D and NIMROD) to predict the cycle of pedestal buildup and ELM crash. The magnetic geometry includes the realistic separatrix, X-point, open field lines and material wall. In the first phase of this effort, the electrostatic version of the PIC gyrokinetic code XGC-1 has been built, to be extended into an electromagnetic version soon in the next phase. XGC-1 includes the gyrokinetic ions, electrons, and Monte Carlo neutrals with wall recycling. Since the ions have non-Maxwellian distribution function in the edge, as demonstrated in XGC, a full-f ion technique is used. Electrons are, though, handled with a mixed-f technique: the full-f technique for neoclassical and adiabatic or delta-f split-weight techniques for turbulence physics. The mixed-f electron approach used in XGC is new, successfully integrating the neoclassical and turbulence physics. Recent progress and results on neoclassical and electrostatic turbulence transports will be reported, which includes the pedestal buildup by neutral ionization, density pedestal width scaling, electrostatic potential and plasma flow distributions in the pedestal and scrape-off, and other important physical effects in the pedestal

  20. Global variation of meteor trail plasma turbulence

    Directory of Open Access Journals (Sweden)

    L. P. Dyrud

    2011-12-01

    Full Text Available We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere, will the resulting trail become plasma turbulent? What are the factors influencing the development of turbulence? and how do these trails vary on a global scale? Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars. Turbulence also influences the evolution of specular radar meteor trails; this fact is important for the inference of mesospheric temperatures from the trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and ionospheric plasma density have on the variability of meteor trail evolution and on the observation of non-specular meteor trails. We demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends for non-specular and specular meteor trails.

  1. Coherent Structures and Intermittency in Plasma Turbulence

    International Nuclear Information System (INIS)

    Das, Amita; Kaw, Predhiman; Sen, Abhijit

    2008-01-01

    The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.

  2. Fast visible imaging and study of edge turbulence in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, Ranjana; Chowdhuri, Malay Bikas; Ramaiya, Nilam; Parmar, Navin; Ghosh, Joydeep; Tanna, Rakesh L.; Shukla, Braj Kishore; Sharma, Pramod K.

    2015-01-01

    Fast visible imaging is used on toroidal magnetic confinement devices for a wide variety of purposes. This includes monitoring of the plasma evolution, transient effects in the plasma and the study of edge turbulence. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. During the termination phase of Aditya plasma, large filaments are seen predominantly across all types of discharges. These filaments are apparent just after the strong interaction of the plasma column with the high field side limiter surface almost at the end of the discharge. Statistical features of these filaments and their role during the termination of plasma is studied. Further, there are many interesting visual impacts of either the experiments carried out or several inherent phenomena in Aditya like the ECRH and LHCD operations, dynamics of the runaway dominated discharges and plasma equilibrium at various discharge scenarios. Such observations and the gained physical insights will be reported. (author)

  3. Edge plasma physics modifications due to magnetic ripple in RFX-mod

    International Nuclear Information System (INIS)

    Scarin, P.; Agostini, M.; Carraro, L.; Cavazzana, R.; Ciaccio, G.; De Masi, G.; Spizzo, G.; Spolaore, M.; Vianello, N.

    2015-01-01

    The edge of the RFX-mod (R = 2 m, a = 0.46 m) Reversed Field Pinch is characterized by weak magnetic chaos affecting ion and electron diffusion. Edge particle transport is strongly influenced by a toroidal asymmetry caused by magnetic islands. An ambipolar radial electric field ensures local neutrality and possesses the same symmetry as the parent magnetic ripple: the result is the modulation of the perpendicular flow, with a slowing-down at the island X-point. In this paper we present a complete statistical analysis, over a large database of RFX-mod discharges, of the edge properties as they are modified by the magnetic topology: the plasma wall footprint follows the helical shape of the dominant central mode (m/n = 1/7), with an increase of H α emission and electron density corresponding to the O-point of the inner magnetic island. Edge turbulence is modified by the magnetic topology, being generated in the O-point region and damped near the X-point

  4. Spectral line profiles in weakly turbulent plasmas

    International Nuclear Information System (INIS)

    Capes, H.; Voslamber, D.

    1976-07-01

    The unified theory of line broadening by electron perturbers is generalized to include the case of a weakly turbulent plasma. The collision operator in the line shape expression is shown to be the sum of two terms, both containing effects arising from the non-equilibrium nature of the plasma. One of the two terms represents the influence of individual atom-particle interactions occuring via the nonequilibrium dielectric plasma medium. The other term is due to the interaction of the atom with the turbulent waves. Both terms contain damping and diffusion effects arising from the plasma turbulence

  5. Coherent structures in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Huld, T.; Nielsen, A.H.; Pécseli, H.L.

    1991-01-01

    -band turbulent fluctuations is demonstrated by a conditional sampling technique. Depending on plasma parameters, the dominant structures can appear as monopole or multipole vortices, dipole vortices in particular. The importance of large structures for the turbulent plasma diffusion is discussed. A statistical...... analysis of the randomly varying plasma flux is presented....

  6. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  7. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  8. Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention

    Science.gov (United States)

    Davidovits, Seth

    Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a

  9. The roles of turbulence on plasma heating

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Kawabe, Takaya

    1976-01-01

    The relation between the heating rate of plasma particles and the thermalization frequency is established, and the important role of plasma turbulence in the fast thermalization process is underlined. This relation can be applied not only in the case of high current turbulent heating but also when turbulent phenomena occur with other heating means. The experimental results on ion and electron heating during the Mach II experiment are presented. The role of turbulence on particle losses accross the magnetic field is analyzed

  10. Transfer anisotropy in a turbulent plasma

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Gradov, O.M.; Silin, V.P.

    1982-01-01

    We formulate a theory for transfer phenomena in a plasma with developed ion-sound turbulence. A transfer anisotropy effect caused by a temperature gradient is revealed. The corresponding fluxes transverse to the effective force vector (1) which generates the turbulence turn out to be considerably larger than the longitudinal fluxes in a plasma with a relatively small degree of nonisothermality. For a strongly nonisothermal plasma a suppression of the transverse fluxes takes place and corresponds to a growth of the thermal insulation of the current-carrying plasma filaments

  11. Properties of the tokamak edge plasma

    International Nuclear Information System (INIS)

    Wolff, H.

    1988-01-01

    A short review of some features of the edge plasma in limiter tokamaks is given. The limits of the simple one-dimensional scrape-off layer (SOL) model and the relation between the core plasma are discussed. Multifaceted asymmetric radiation from the edge (MARFE) phenomena and detached plasma are closely connected with the particle and energy balance of the SOL. Their occurrence is based on the relation of plasma parameters of the edge plasma to those of the core. Important problems of plasma wall interactions are the detection of the impurity sources and sinks and the study of the impurity transport and shielding. The non-uniform character of plasma wall interactions and their dependence on the discharge performance still renders difficult any theoretical forecast of impurity distribution and transport and calls for better diagnostics. (author)

  12. Turbulence in unmagnetized Vlasov plasmas

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1985-01-01

    The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)

  13. Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.

    2018-02-01

    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.

  14. Spatial structure of ion-scale plasma turbulence

    Directory of Open Access Journals (Sweden)

    Yasuhito eNarita

    2014-03-01

    Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.

  15. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  16. Ion-acoustic plasma turbulence

    International Nuclear Information System (INIS)

    Bychenkov, V.Y.; Silin, V.P.

    1982-01-01

    A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted

  17. Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1992-01-01

    It is clear that the edge plasma plays a crucial role in global tokamak confinement. This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2d fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations for the vorticity ∇ perpendicular 2 φ, the electron density n c and the temperature T c in a shearless plasma slab confined by a uniform, straight magnetic field B z with two divertor (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model boundary conditions at diverter plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates, and furthermore the large-scale radial structures of fluctuation quantities indicate that the cross-field transport is not diffusive. After saturation, the electron density and temperature profiles are flattened. A self-consistent simulation to determine the microturbulent SOL electron temperature profile has been done, the results of which reasonably agree with the experimental measurements

  18. Numerical simulation of the anomalous transport at the plasma-edge

    International Nuclear Information System (INIS)

    Pohn, E.

    2001-03-01

    In addition to the classical transport which is caused by Coloumb-collisions two further transport mechanisms take place in an inhomogeneous magnetically confined thermonuclear fusion-plasma, the neoclassical and the anomalous transport. The anomalous transport is caused by collective motion of the plasma-particles respectively turbulence and essentially affects the energy-confinement-time of the plasma. The energy-confinement-time in turn constitutes an important criterion with respect to the feasibility of using nuclear fusion for energy production. The anomalous transport is theoretically not yet well understood. By means of numerical simulations of the anomalous transport in the plasma edge, it is the intention of this work to contribute to the understanding of this transport mechanism. The Vlasov-Poisson-system constitutes the starting point for all performed simulations. This system consists of kinetic equations, which model for each particle-species the motion of the particles composing the plasma in six-dimensional phase-space. A coupling of these kinetic equations occurs due to the Poisson-equation, resulting in a nonlinear system of differential equations. The time evolution of this system was calculated numerically. On the one hand, simulations were performed where the whole velocity-space was retained. This fully-kinetic model was applied for the spatially one- as well as two-dimensional case. In the one-dimensional case only the radial direction of the plasma-edge was modeled, i.e. the direction along which the plasma joins to the vacuum. When performing the spatially two-dimensional simulations, in addition the poloidal direction has been regarded. A second set of simulations was performed using a gyro-kinetic model. In this model only the velocity-component parallel to the magnetic field vector is retained. The components perpendicular to the magnetic field vector, which are responsible for the gyration of particles, are omitted from phase-space but

  19. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Pots, B.F.M.

    1979-01-01

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  20. Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma

    Science.gov (United States)

    Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.

    2017-12-01

    The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.

  1. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths

    Science.gov (United States)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Li, N. M.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Ye, M. Y.; Wan, Y. X.

    2018-05-01

    The heat flux distributions on divertor targets in H-mode plasmas are serious concerns for future devices. We seek to simulate the tokamak boundary plasma turbulence and heat transport in the edge localized mode-suppressed regimes. The improved BOUT++ model shows that not only Ip but also the radial electric field Er plays an important role on the turbulence behavior and sets the heat flux width. Instead of calculating Er from the pressure gradient term (diamagnetic Er), it is calculated from the plasma transport equations with the sheath potential in the scrape-off layer and the plasma density and temperature profiles inside the separatrix from the experiment. The simulation results with the new Er model have better agreement with the experiment than using the diamagnetic Er model: (1) The electromagnetic turbulence in enhanced Dα H-mode shows the characteristics of quasi-coherent modes (QCMs) and broadband turbulence. The mode spectra are in agreement with the phase contrast imaging data and almost has no change in comparison to the cases which use the diamagnetic Er model; (2) the self-consistent boundary Er is needed for the turbulence simulations to get the consistent heat flux width with the experiment; (3) the frequencies of the QCMs are proportional to Er, while the divertor heat flux widths are inversely proportional to Er; and (4) the BOUT++ turbulence simulations yield a similar heat flux width to the experimental Eich scaling law and the prediction from the Goldston heuristic drift model.

  2. Plasma Soliton Turbulence and Statistical Mechanics

    International Nuclear Information System (INIS)

    Treumann, R.A.; Pottelette, R.

    1999-01-01

    Collisionless kinetic plasma turbulence is described approximately in terms of a superposition of non-interacting solitary waves. We discuss the relevance of such a description under astrophysical conditions. Several types of solitary waves may be of interest in this relation as generators of turbulence and turbulent transport. A consistent theory of turbulence can be given only in a few particular cases when the description can be reduced to the Korteweg-de Vries equation or some other simple equation like the Kadomtsev-Petviashvili equation. It turns out that the soliton turbulence is usually energetically harder than the ordinary weakly turbulent plasma description. This implies that interaction of particles with such kinds of turbulence can lead to stronger acceleration than in ordinary turbulence. However, the description in our model is only classical and non-relativistic. Transport in solitary turbulence is most important for drift wave turbulence. Such waves form solitary drift wave vortices which may provide cross-field transport. A more general discussion is given on transport. In a model of Levy flight trapping of particles in solitons (or solitary turbulence) one finds that the residence time of particles in the region of turbulence may be described by a generalized Lorentzian probability distribution. It is shown that under collisionless equilibrium conditions far away from thermal equilibrium such distributions are natural equilibrium distributions. A consistent thermodynamic description of such media can be given in terms of a generalized Lorentzian statistical mechanics and thermodynamics. (author)

  3. Absorption of turbulent laser plasma radiation

    International Nuclear Information System (INIS)

    Silin, V.P.

    1979-02-01

    Some theoretical results relating to the interaction of high-power laser radiation with a plasma are presented including the development of a theory of parametric instabilities in an inhomogeneous laser plasma which shows that the size of the spatial region in which the turbulent state develops is comparable with the characteristic dimension of a several-fold fluctuation in the plasma density close to its critical value. The conditions are identified under which parametric turbulence gives an anomalous effective collision frequency substantially greater than the normal electron-ion collision frequency. Even during the build-up of strong parametric turbulence, conditions are found for the development of anomalous dissipation which results in heating of the bulk of the electrons. Under opposite conditions, the dynamic behaviour due to the influence of the ponderomotive forces associated with the p component of the radiation field shows that under slow plasma flow conditions, a considerable proportion of the laser energy absorbed by the plasma is transferred to the fast electrons. Suppression of the Cherenkov mechanism for generation of the fast electron component is observed on transition to fast plasma flow conditions. (author)

  4. Density effects on tokamak edge turbulence and transport with magnetic X-points

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Ryutov, D.D.; Umansky, M.V.; Pearlstein, L.D.; Bulmer, R.H.; Russell, D.A.; Myra, J.R.; D'Ippolito, D.A.; Greenwald, M.; Snyder, P.B.; Mahdavi, M.A.

    2005-01-01

    Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) identification of convective transport by localized plasma 'blobs' in the SOL at high density during neutral fueling, and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (4) a new divertor-leg instability driven at high plasma beta by a radial tilt of the divertor plate. (author)

  5. Resonant quasiparticles in plasma turbulence

    International Nuclear Information System (INIS)

    Mendonca, J.T.; Bingham, R.; Shukla, P.K.

    2003-01-01

    A general view is proposed on wave propagation in fluids and plasmas where the resonant interaction of monochromatic waves with quasiparticles is considered. A kinetic equation for quasiparticles is used to describe the broadband turbulence interacting with monochromatic waves. Resonant interactions occur when the phase velocity of the long wavelength monochromatic wave is nearly equal to the group velocity of short wavelength wave packets, or quasiparticles, associated with the turbulent spectrum. It is shown that quasiparticle Landau damping can take place, as well as quasiparticle beam instabilities, thus establishing a direct link between short and large wavelength perturbations of the medium. This link is distinct from the usual picture of direct and inverse energy cascades, and it can be used as a different paradigm for the fluid and plasma turbulence theories

  6. Turbulence evaluation at PSI-2 by fast visible imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, Michael; Reinhart, Michael; Huber, Alexander; Unterberg, Bernhard [Institute for Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, EURATOM Association (Germany)

    2014-07-01

    Turbulent transport in the plasma edge poses a critical challenge for fusion reactors due to the high heat and particle fluxes on plasma facing components. Various chemical and physical processes lead to a deterioration of the surface morphology as well as the inner structure of wall materials. These processes depend strongly on the temperature and density of particles in their onset-threshold region. The turbulent, intermittent structures found in the edge of toroidal machines are also present in linear plasma devices, which running steady state, makes them ideal for studying properties of turbulence. A fast CMOS camera with a typical time resolution of several 100.000 fps can resolve short turbulent events (blobs) in the linear plasma device PSI-2. Movies of the plasma were taken perpendicular from a side port and axial through the hollow plasma source. Properties of the intermittent transport are evaluated by conditional averaging and other statistical methods to investigate the dependence of turbulence on discharge parameters and working gases. Intermittent transport events show a strong correlation to the global plasma rotation, thus they might be triggered by an m=1 instability, which appears as a 4 and 8 kHz Fourier component. The profile of the skewness supports the presence of blobs just outside of the density maximum.

  7. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  8. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    Science.gov (United States)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  9. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  10. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  11. Edge turbulence and transport: Text and ATF modeling

    International Nuclear Information System (INIS)

    Ritz, C.P.; Rhodes, T.L.; Lin, H.; Rowan, W.L.; Bengtson, R.; Wootton, A.J.; Diamond, P.H.; Ware, A.S.; Thayer, D.R.

    1990-01-01

    We present experimental results on edge turbulence and transport from the tokamak TEXT and the torsatron ATF. The measured electrostatic fluctuations can explain the edge transport of particles and energy. Certain drive (radiation) and stabilizing (velocity shear) terms are suggested by the results. The experimental fluctuation levels and spectral widths can be reproduced by considering the nonlinear evolution of the reduced MHD equations, incorporating a thermal drive from line radiation. In the tokamak limit (with toroidal electric field) the model corresponds to the resistivity gradient mode, while in the currentless torsatron or stellarator limit it corresponds to a thermally driven drift wave

  12. Presheath profiles in simulated tokamak edge plasmas

    International Nuclear Information System (INIS)

    LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

    1988-04-01

    The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines

  13. Magnetohydrodynamic stability of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.

    1998-01-01

    A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle

  14. Impurity and trace tritium transport in tokamak edge turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2005-01-01

    The turbulent transport of impurity or minority species, as for example tritium, is investigated in drift-Alfven edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients...... and locally exceeds its initial values due to the compressibility of the flow. An approximate decomposition of the impurity flux into a diffusive part and an effective convective part (characterized by a pinch velocity) is performed and a net inward pinch effect is recovered. The pinch velocity is explained...

  15. BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling

    Science.gov (United States)

    Yoshizawa, A.; Itoh, S. I.; Itoh, K.

    2003-03-01

    The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an

  16. Chaos control and taming of turbulence in plasma devices

    DEFF Research Database (Denmark)

    Klinger, T.; Schröder, C.; Block, D.

    2001-01-01

    Chaos and turbulence are often considered as troublesome features of plasma devices. In the general framework of nonlinear dynamical systems, a number of strategies have been developed to achieve active control over complex temporal or spatio-temporal behavior. Many of these techniques apply...... to plasma instabilities. In the present paper we discuss recent progress in chaos control and taming of turbulence in three different plasma "model" experiments: (1) Chaotic oscillations in simple plasma diodes, (2) ionization wave turbulence in the positive column of glow discharges, and (3) drift wave...

  17. On the Dynamics of Edge-core Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hahm,T.S.; Diamond, P.H.; Lin, Z.; Rewoldt, G.; Gurcan, O.; Ethier, S.

    2005-08-26

    One of the nagging, unresolved questions in fusion theory is concerned with the extent of the edge. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the Gyrokinetic Toroidal Code (GTC) [Z. Lin et al., Science 281, 1835 (1998)] and its related dynamical model have been extended to a system with radially varying ion temperature gradient, in order to study the inward spreading of edge turbulence toward the core plasma. Due to such spreading, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only, and the precise boundary of the edge region is blurred. Even when the core gradient is within the Dimits shift regime (i.e., dominated by self-generated zonal flows which reduce the transport to a negligible value), a significant level of turbulence can penetrate to the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from a nonlinear diffusion model than from one based on linear toroidal coupling.

  18. Transfer anisotropy effect in a turbulent plasma

    International Nuclear Information System (INIS)

    Bychenkov, V.Yu.; Gradov, O.M.; Silin, V.P.

    1982-01-01

    A theory is developed of transfer phenomena with pronounced ion-sound turbulence. A transfer anisotropy effect is observed which is due to the temperature gradient. The corresponding fluxes across the effective force vector generating the turbulence are found to be considerably greater than the longitudinal fluxes in a plasma with a comparatively low degree of nonisothermality. In a strongly nonisothermal plasma the suppression of transverse fluxes occurs, corresponding to the growth of thermal insulation of the current-carrying plasma filaments

  19. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2000-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge MHD instabilities and plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. The article examines these phenomena and their interaction. (author)

  20. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    1999-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  1. Influence of the plasma edge on tokamak performance

    International Nuclear Information System (INIS)

    Wilson, H.R.; Connor, J.W.; Field, A.R.; Fielding, S.J.; Hastie, R.J.; Taylor, J.B.; Miller, R.L.

    2001-01-01

    A number of edge plasma physics phenomena are considered to determine tokamak performance: transport barrier, edge magneto-hydrodynamic (MHD) instabilities, plasma flow. These phenomena are thought to be causally related: a spontaneous increase in the plasma flow (actually, its radial variation) suppresses heat and particle fluxes at the plasma edge, to form a transport barrier; the edge pressure gradient steepens until limited by MHD instabilities, resulting in a temperature pedestal at the top of the steep gradient region; a number of core transport models predict enhanced confinement for higher values of the temperature pedestal. This paper examines these phenomena and their interaction. (author)

  2. Radiated sound and turbulent motions in a blunt trailing edge flow field

    International Nuclear Information System (INIS)

    Shannon, Daniel W.; Morris, Scott C.; Mueller, Thomas J.

    2006-01-01

    The dipole sound produced by edge scattering of pressure fluctuations at a trailing edge is most often an undesirable effect in turbomachinery and control surface flows. The ability to model the flow mechanisms associated with the production of trailing edge acoustics is important for the quiet design of such devices. The objective of the present research was to experimentally measure flow field and acoustic variables in order to develop an understanding of the mechanisms that generate trailing edge noise. The results of these experiments have provided insight into the causal relationships between the turbulent flow field, unsteady surface pressure, and radiated far field acoustics. Experimental methods used in this paper include particle image velocimetry (PIV), unsteady surface pressures, and far field acoustic pressures. The model investigated had an asymmetric 45 o beveled trailing edge. Reynolds numbers based on chord ranged from 1.2 x 10 6 to 1.9 x 10 6 . It was found that the small-scale turbulent motions in the vicinity of the trailing edge were modulated by a large scale von Karman wake instability. The broadband sound produced by these motions was also found to be dependant on the 'phase' of the wake instability

  3. Investigations of the role of nonlinear couplings in structure formation and transport regulation in plasma turbulence

    Science.gov (United States)

    Holland, Christopher George

    Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well

  4. Integrated modelling of the edge plasma and plasma facing components

    International Nuclear Information System (INIS)

    Coster, D.P.; Bonnin, X.; Mutzke, A.; Schneider, R.; Warrier, M.

    2007-01-01

    Modelling of the interaction between the edge plasma and plasma facing components (PFCs) has tended to place more emphasis on either the plasma or the PFCs. Either the PFCs do not change with time and the plasma evolution is studied, or the plasma is assumed to remain static and the detailed interaction of the plasma and the PFCs are examined, with no back-reaction on the plasma taken into consideration. Recent changes to the edge simulation code, SOLPS, now allow for changes in both the plasma and the PFCs to be considered. This has been done by augmenting the code to track the time-development of the properties of plasma facing components (PFCs). Results of standard mixed-materials scenarios (base and redeposited C; Be) are presented

  5. Curvature and temperature gradient driven instabilities in tokomak edge plasmas with SOL

    International Nuclear Information System (INIS)

    Novakovskii, S.V.; Guzdar, P.N.; Drake, J.F.; Liu, C.S.

    1996-01-01

    Curvature driven resistive ballooning modes (RBM) as well as the electron temperature gradient (ETG) modes have been investigated in the tokomak edge region and the SOL, with the help of the numerical code open-quotes 2D-BALLOONclose quotes. This is an initial value code, which determines the stability properties and estimates the quasi-linear transport for given density, temperature, the magnetic and electric field profiles, taking into account the SOL geometry as well as a closed flux region. The results related to the following issues will be presented: (1) Comparative analysis of the ETG and the RBM instabilities in the SOL and their influence on the transport in the edge region (inside the Last Closed Magnetic Surface). (2) The influence of the effective Debye sheath current. (3) Different poloidal positions of the toroidal limiter and their effect on the instabilities. Other aspects of the edge plasma turbulence, such as finite β effects, flow-shear of the poloidal rotation etc. will also be discussed

  6. Li-BES detection system for plasma turbulence measurements on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Berta, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Anda, G.; Bencze, A.; Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Háček, P., E-mail: hacek@ipp.cas.cz [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Hron, M. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Kovácsik, A. [Wigner – RCP, HAS, Budapest (Hungary); Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pánek, R. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Réfy, D.; Veres, G. [Wigner – RCP, HAS, Budapest (Hungary); Weinzettl, V. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)

    2015-10-15

    Highlights: • Li-BES detection system on the COMPASS tokamak is optimized observation system with high temporal resolution. • High sensitivity to low level light fluctuations. • Optics and detectors with electronics are placed in thermally stabilized compact box. • Fast deflection system allows us to measure background corrected electron density profiles on microsecond time-scale. - Abstract: A new Li beam emission spectroscopy (Li-BES) diagnostic system with a ∼ cm spatial resolution, and with beam energy ranging from 10 keV up to 120 keV and a 18 channel Avalanche photo diode (APD) detector system sampled at 2 MHz has been recently installed and tested on the COMPASS tokamak. This diagnostic allows to reconstruct density profile based on directly measured light profiles, and to follow turbulent behaviour of the edge plasma. The paper reports technical capabilities of this new system designed for fine spatio-temporal measurements of plasma electron density. Focusing on turbulence-induced fluctuation measurements, we demonstrate how physically relevant information can be extracted using the COMPASS Li-BES system.

  7. Anomalous transport in the tokamak edge

    International Nuclear Information System (INIS)

    Vayakis, G.

    1991-04-01

    The tokamak edge has been studied with arrays of Langmuir and magnetic probes on the DITE and COMPASS-C devices. Measurements of plasma parameters such as density, temperature and radial magnetic field were taken in order to elucidate the character, effect on transport and origin of edge fluctuations. The tokamak edge is a strongly-turbulent environment, with large electrostatic fluctuation levels and broad spectra. The observations, including direct correlation measurements, are consistent with a picture in which the observed magnetic field fluctuations are driven by the perturbations in electrostatic parameters. The propagation characteristics of the turbulence, investigated using digital spectral techniques, appear to be dominated by the variation of the radial electric field, both in limiter and divertor plasmas. A shear layer is formed, associated in each case with the last closed flux surface. In the shear layer, the electrostatic wavenumber spectra are significantly broader. The predictions of a drift wave model (DDGDT) and of a family of models evolving from the rippling mode (RGDT group), are compared with experimental results. RGDT, augmented by impurity radiation effects, is shown to be the most reasonable candidate to explain the nature of the edge turbulence, only failing in its estimate of the wavenumber range. (Author)

  8. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  9. Transport in the tokamak plasma edge

    International Nuclear Information System (INIS)

    Vold, E.L.

    1989-01-01

    Experimental observations characterize the edge plasma or boundary layer in magnetically confined plasmas as a region of great complexity. Evidence suggests the edge physics plays a key role in plasma confinement although the mechanism remains unresolved. This study focuses on issues in two areas: observed poloidal asymmetries in the Scrape Off Layer (SOL) edge plasma and the physical nature of the plasma-neutral recycling. A computational model solves the coupled two dimensional partial differential equations governing the plasma fluid density, parallel and radial velocities, electron and ion temperatures and neutral density under assumptions of toroidal symmetry, ambipolarity, anomalous diffusive radial flux, and neutral-ion thermal equilibrium. Drift flow and plasma potential are calculated as dependent quantities. Computational results are compared to experimental data for the CCT and TEXTOR:ALT-II tokamak limiter cases. Comparisons show drift flux is a major component of the poloidal flow in the SOL along the tangency/separatrix. Plasma-neutral recycling is characterized in several tokamak divertors, including the C-MOD device using magnetic flux surface coordinates. Recycling is characterized by time constant, τ rc , on the order of tens of milliseconds. Heat flux transients from the core into the edge on shorter time scales significantly increase the plasma temperatures at the target and may increase sputtering. Recycling conditions in divertors vary considerably depending on recycled flux to the core. The high density, low temperature solution requires that the neutral mean free path be small compared to the divertor target to x-point distance. The simulations and analysis support H-mode confinement and transition models based on the recycling divertor solution bifurcation

  10. Scrape-off layer tokamak plasma turbulence

    Science.gov (United States)

    Bisai, N.; Singh, R.; Kaw, P. K.

    2012-05-01

    Two-dimensional (2D) interchange turbulence in the scrape-off layer of tokamak plasmas and their subsequent contribution to anomalous plasma transport has been studied in recent years using electron continuity, current balance, and electron energy equations. In this paper, numerically it is demonstrated that the inclusion of ion energy equation in the simulation changes the nature of plasma turbulence. Finite ion temperature reduces floating potential by about 15% compared with the cold ion temperature approximation and also reduces the radial electric field. Rotation of plasma blobs at an angular velocity about 1.5×105 rad/s has been observed. It is found that blob rotation keeps plasma blob charge separation at an angular position with respect to the vertical direction that gives a generation of radial electric field. Plasma blobs with high electron temperature gradients can align the charge separation almost in the radial direction. Influence of high ion temperature and its gradient has been presented.

  11. Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.

    1993-01-01

    This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2D(x,y) fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations (in the electrostatic limit) for the vorticity ∇ perpendicular 2 φ, the electron density n e and the temperature T e in a shearless plasma slab confined by a uniform, straight magnetic field B z with two diverter (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model (logical sheath) boundary conditions at diverter (or limiter) plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy (toward both long wavelengths and low frequencies) is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates. The results from the self-consistent simulations to determine the microturbulent SOL electron temperature profile agree reasonably with the experimental measurements. The effects on the mode of neutral gas collisions at the divertor sheath and comparisons with the ionization driven turbulence are discussed

  12. The possible role of Reynolds stress in the creation of a transport barrier in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Vergote, M.; Van Schoor, M.; Xu, Y.; Jachmich, S.; Weynants, R.; Hron, M.; Stoeckel, J.

    2005-01-01

    To obtain a good confinement, mandatory in a fusion reactor, the understanding of the formation of transport barriers in the edge plasma of a tokamak is essential. Turbulence, the major candidate to explain anomalous transport, can be quenched by sheared flows in the edge which rip the convective cells apart, thus forming a barrier. Experimental evidence from the Chinese HT-6M tokamak [Y.H. Xu et al.: Phys. Rev. Lett. 84 (2000) 3867], points to the fact that momentum transfer from the turbulence can create these sheared flows via the Reynolds stresses. A new 1-d fluid model for the generation of the poloidal flow, has been developed taking into account the driving force of the Reynolds stress and the friction forces due to neutrals and parallel viscosity. Special attention has been dedicated to the computation of the flux-surface-averaging for the various terms. This model has been confronted with the experimental results obtained in the HT-6M tokamak, where Reynolds stresses were generated by application of a turbulent heating pulse. If the model is applied in cylindrical geometry, the calculated Reynolds stress-induced flow agrees well with the measured poloidal velocity in the plasma edge. However, when the full toroidal geometry is taken into account, it seems that the Reynolds stresses are too small to explain the observed rotation. This indicates that the role of the Reynolds stresses in inducing macroscopic flow in the torus is weakened. A combined system of probes allowing to measure the Reynolds stress and the rotation velocity simultaneously, has been developed and installed on the CASTOR tokamak. We report here on the first results obtained. (author)

  13. Edge Minority Heating Experiment in Alcator C-Mod

    International Nuclear Information System (INIS)

    Zweben, S.J.; Terry, J.L.; Bonoli, P.; Budny, R.; Chang, C.S.; Fiore, C.; Schilling, G.; Wukitch, S.; Hughes, J.; Lin, Y.; Perkins, R.; Porkolab, M.; Alcator C-Mod Team

    2005-01-01

    An attempt was made to control global plasma confinement in the Alcator C-Mod tokamak by applying ion cyclotron resonance heating (ICRH) power to the plasma edge in order to deliberately create a minority ion tail loss. In theory, an edge fast ion loss could modify the edge electric field and so stabilize the edge turbulence, which might then reduce the H-mode power threshold or improve the H-mode barrier. However, the experimental result was that edge minority heating resulted in no improvement in the edge plasma parameters or global stored energy, at least at power levels of P RF (le) 5.5 MW. A preliminary analysis of these results is presented and some ideas for improvement are discussed

  14. Drift wave turbulence in low-β plasmas

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans

    1983-01-01

    Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms of w...... spectrum is demonstrated. Some aspects of the relative diffusion of a test-cloud of charged particles released in the turbulent field are discussed.......Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...... of wavenumber spectra. The spectral index of the turbulent potential fluctuations is determined and the variation of the spectral intensity is investigated for varying magnetic fields. The results compare favourably with theoretical predictions. The importance of distinguishing subranges in the turbulent...

  15. Edge Turbulence Imaging on NSTX and Alcator C-Mod

    International Nuclear Information System (INIS)

    S.J. Zweben; R.A. Maqueda; J.L. Terry; B. Bai; C.J. Boswell; C.E. Bush; D. D'Ippolito; E.D. Fredrickson; M. Greenwald; K. Hallatschek; S. Kaye; B. LaBombard; R. Maingi; J. Myra; W.M. Nevins; B.N. Rogers; D.P. Stotler; J. Wilgen; and X.Q. Xu

    2002-01-01

    Edge turbulence images have been made using an ultra-high speed CCD camera on both NSTX and Alcator C-Mod. In both cases, the D-alpha or HeI (587.6 nm) line emission from localized deuterium or helium gas puffs was viewed along a local magnetic field line near the outer midplane. Fluctuations in this line emission reflect fluctuations in electron density and/or electron temperature through the atomic excitation rates, which can be modeled using the DEGAS-2 code. The 2-D structure of the measured turbulence can be compared with theoretical simulations based on 3-D fluid models

  16. Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru

    2009-01-01

    Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)

  17. Optimization of the Magnetic Field Structure for Sustained Plasma Gun Helicity Injection for Magnetic Turbulence Studies at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Cartagena-Sanchez, C. A.; Schaffner, D. A.; Johnson, H. K.; Fahim, L. E.

    2017-10-01

    A long-pulsed magnetic coaxial plasma gun is being implemented and characterized at the Bryn Mawr Plasma Laboratory (BMPL). A cold cathode discharged between the cylindrical electrodes generates and launches plasma into a 24cm diameter, 2m long chamber. Three separately pulsed magnetic coils are carefully positioned to generate radial magnetic field between the electrodes at the gun edge in order to provide stuffing field. Magnetic helicity is continuously injected into the flux-conserving vacuum chamber in a process akin to sustained slow-formation of spheromaks. The aim of this source, however, is to supply long pulses of turbulent magnetized plasma for measurement rather than for sustained spheromak production. The work shown here details the optimization of the magnetic field structure for this sustained helicity injection.

  18. Functional calculus in strong plasma turbulence

    International Nuclear Information System (INIS)

    Ahmadi, G.; Hirose, A.

    1980-01-01

    The theory of electrostatic plasma turbulence is considered. The basic equations for the dynamics of the hierarchy of the moment equations are derived and the difficulty of the closure problem for strong plasma turbulence is discussed. The characteristic functional in phase space is introduced and its relations to the correlation functions are described. The Hopf functional equation for dynamics of the characteristic functional is derived, and its equivalence to the hierarchy of the moment equations is established. Similar formulations were carried out in velocity-wave vector space. The cross-spectral moments and the characteristic functional are considered and their relationships are studied. An approximate solution for Hopf's equation for the nearly normal turbulence is obtained which is shown to predict diffusion of the mean distribution function in velocity space. (author)

  19. Multi-channel Langmuir-probe and H[alpha]-measurements of edge fluctuations on ASDEX

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeyer, H; Carlson, A; Endler, M; Giannone, L.; Rudyj, A; Theimer, G [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1991-01-01

    The anomalous transport observed in tokamaks is caused by turbulent fluctuations, the nature of which is still poorly understood. Diagnostic difficulties are one major reason for this lack of understanding, at least with respect to the bulk plasma. The plasma edge, however, is accessible by several diagnostics permitting localized measurements of different parameters with good spatial and temporal resolution. For this reason one can hope to obtain enough information about edge fluctuations to permit the development of theoretical models. Different ranges of plasma parameters and the lack of closed magnetic surfaces distinguish this plasma zone from the bulk plasma. Edge turbulence might well involve other mechanisms than the turbulence in the bulk. Although transport in the bulk plasma receives more attention transport in the edge plasma and edge physics are very relevant for reactor design. The realistic hope to find a solution and the importance of the problem for the next step in fusion research are reasons for the strong effort in this field on many tokamaks. Like in many limiter tokamaks Langmuir probes were used in the ASDEX divertor device for measurements of the floating potential and of the ion saturation current. Under certain assumptions the electron density and the plasma potential can be derived from these data. Observation of the H[alpha]-light emitted from the edge in the vicinity of a neutral gas source yields information about the electron density. While probe measurements are more suitable for quantitative evaluations including the calculation of the local particle flux the H[alpha]-method is not calibrated and integrates radially over the edge. It is however applicable in situations where probes fail because of excessive heat load. With 16-channel arrays both methods permit spatial correlations and wavenumber spectra to be determined without any further assumptions. (author) 4 refs., 2 figs.

  20. Self-regulated shear flow turbulence in confined plasmas: Basic concepts and potential applications to the L → H transition

    International Nuclear Information System (INIS)

    Diamond, P.H.; Shapiro, V.; Schevchenko, V.; Kim, Y.B.; Rosenbluth, M.N.; Carreras, B.A.; Sidikman, K.; Lynch, V.E.; Garcia, L.; Terry, P.W.; Sagdeev, R.Z.

    1992-01-01

    This paper describes developments in the theory of edge plasma turbulence in a differentially rotating plasma. The thesis that such systems are dynamically self-regulating is presented. Results indicate that relevant fluctuations will generate a predominantly curved flow. Similar, curvature is shown to be the predominant flow profile effect on fluctuations. A system fixed point is identified, the eigenfrequencies for small oscillations around it are calculated, and an over-all stability criterion is determined

  1. Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence, and self-organized criticality

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2000-01-01

    Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified

  2. Information Theory and Plasma Turbulence

    International Nuclear Information System (INIS)

    Dendy, R. O.

    2009-01-01

    Information theory, applied directly to measured signals, yields new perspectives on, and quantitative knowledge of, the physics of strongly nonlinear and turbulent phenomena in plasmas. It represents a new and productive element of the topical research programmes that use modern techniques to characterise strongly nonlinear signals from plasmas, and that address global plasma behaviour from a complex systems perspective. We here review some pioneering studies of mutual information in solar wind and magnetospheric plasmas, using techniques tested on standard complex systems.

  3. The fusion code XGC: Enabling kinetic study of multi-scale edge turbulent transport in ITER

    Energy Technology Data Exchange (ETDEWEB)

    D' Azevedo, Eduardo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abbott, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koskela, Tuomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worley, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ku, Seung-Hoe [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yoon, Eisung [Rensselaer Polytechnic Inst., Troy, NY (United States); Shephard, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lang, Jianying [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Intel Corporation, Santa Clara, CA (United States); Choi, Jong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Podhorszki, Norbert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Klasky, Scott [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parashar, Manish [Rutgers Univ., Piscataway, NJ (United States); Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2017-01-01

    The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.

  4. Suprathermal ion transport in turbulent magnetized plasmas

    International Nuclear Information System (INIS)

    Bovet, A. D.

    2015-01-01

    Suprathermal ions, which have an energy greater than the quasi-Maxwellian background plasma temperature, are present in many laboratory and astrophysical plasmas. In fusion devices, they are generated by the fusion reactions and auxiliary heating. Controlling their transport is essential for the success of future fusion devices that could provide a clean, safe and abundant source of electric power to our society. In space, suprathermal ions include energetic solar particles and cosmic rays. The understanding of the acceleration and transport mechanisms of these particles is still incomplete. Basic plasma devices allow detailed measurements that are not accessible in astrophysical and fusion plasmas, due to the difficulty to access the former and the high temperatures of the latter. The basic toroidal device TORPEX offers an easy access for diagnostics, well characterized plasma scenarios and validated numerical simulations of its turbulence dynamics, making it the ideal platform for the investigation of suprathermal ion transport. This Thesis presents three-dimensional measurements of a suprathermal ion beam injected in turbulent TORPEX plasmas. The combination of uniquely resolved measurements and first principle numerical simulations reveals the general non-diffusive nature of the suprathermal ion transport. A precise characterization of their transport regime shows that, depending on their energies, suprathermal ions can experience either a super diffusive transport or a subdiffusive transport in the same background turbulence. The transport character is determined by the interaction of the suprathermal ion orbits with the turbulent plasma structures, which in turn depends on the ratio between the ion energy and the background plasma temperature. Time-resolved measurements reveal a clear difference in the intermittency of suprathermal ions time-traces depending on the transport regime they experience. Conditionally averaged measurements uncover the influence of

  5. Electrostatic turbulence in strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Nielsen, A.H.

    1993-01-01

    Turbulence in plasmas has been investigated experimentally and numerically. On the experimental side the turbulent nature of the Kelvin-Helmholtz instability has been studied in a single-ended Q-machine. The development of coherent structures in the background of the turbulent flow has been demonstrated and the capability of structures of transporting plasma across the magnetic field-lines is explained in detail. The numerical investigations are divided into two parts: Numerical simulations of the dynamics from the Q-machine experiments using spectral methods to solve the two-dimensional Navier-Stokes equations in a cylindrical geometry. A numerical study of the Eulerian-Lagrangian transformation in a two-dimensional flow. Here the flow is made up by a large number of structures, where each individual structure is convected by the superposed flow field of all the others. (au) (33 ills., 67 refs.)

  6. Instabilities, turbulence and transport in a magnetized plasma; Instabilites, turbulence et transport dans un plasma magnetise

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  7. On the role of turbulence on momentum redistribution in fusion devices

    International Nuclear Information System (INIS)

    Hidalgo, C.

    2005-01-01

    The mechanisms underlying the generation of plasma flows play a crucial role in understanding key issues on transport in magnetically confined plasmas. It is well known the importance of driving shear in plasma rotation in the development of transport barriers. Rotation can be driven by external forces such as momentum from Neutral Beam Injection (NBI). However, in large scale devices like ITER (where the available NBI power is limited and the energy of injected neutrals must be high to reach the core plasma region) the NBI driven rotation will be limited. Then, it is important to study the possible role of other mechanisms which can drive plasma rotation. The amplitude of parallel flow measured in the scrape-off layer (SOL) is significantly larger than those resulting from simulations. Recent experiments have pointed out the possible influence of turbulence in explaining a component of the anomalous flows observed in the plasma boundary region. In the plasma core region, evidence of anomalous toroidal momentum transport has been reported. Different mechanisms have been proposed to explain these results, including neoclassical effects, turbulence driven models and fast particle effects. The response of toroidal rotation to near-perpendicular NB injection on JT-60U has been interpreted on the basis of the influence of loss of high-energy particles. The flow reversal observed in the CHS stellarator can be explained by the spontaneous flow driven by large radial electric fields. Neoclassical effects can also play an import role. Recent experiments in the TJ-II stellarator have shown that the generation of spontaneous perpendicular sheared flows requires a minimum plasma density. Near this critical density, the level of edge turbulent transport and the turbulent kinetic energy significantly increases in the plasma edge. Experimental results also show significant turbulent parallel forces at plasma densities above the threshold value to trigger perpendicular ExB sheared

  8. Statistical properties of transport in plasma turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Garcia, O.E.; Nielsen, A.H.

    2004-01-01

    The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...

  9. Numerical simulation of edge plasma in tokamak

    International Nuclear Information System (INIS)

    Chen Yiping; Qiu Lijian

    1996-02-01

    The transport process and transport property of plasma in edge layer of Tokamak are simulated by solving numerically two-dimensional and multi-fluid plasma transport equations using suitable simulation code. The simulation results can show plasma parameter distribution characteristics in the area of edge layer, especially the characteristics near the first wall and divertor target plate. The simulation results play an important role in the design of divertor and first wall of Tokamak. (2 figs)

  10. Plasma Turbulence in Earth's Magnetotail Observed by the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Pollock, C. J.

    2017-12-01

    Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collision less plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (Image-5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI

  11. H-mode edge rotation in W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Ehmler, H.; Grigull, P.; Maassberg, H.; McCormick, K.; Wagner, F.; Wobig, H.

    2005-01-01

    In W7-AS three regimes of improved confinement exist which base on negative radial electric fields at the plasma edge resulting there from ion-root conditions of the ambipolar radial fluxes. Experimental control besides the magnetic configuration is given via the edge density profile i.e. the recycling and fuelling conditions. However, the ordering element seems to be the radial electric field profile (respectively its shear) and its interplay with the gradients of ion temperature and density. At low to medium densities the so called optimum confinement regime occurs with maximum density gradients located well inside the plasma boundary and large negative values of E r extending deep in the bulk plasma. For a large inner fraction of the bulk the ion temperature can be sufficiently high that ion transport conditions already can be explained by neoclassics. This regime delivers maximum values of T i , τ e and n τ e T i . Density gradients located right inside the plasma boundary result in the classical H-mode phenomena reminiscent to other toroidal devices with the capability of an edge layer with nearly complete suppression of turbulence either quasi stationary (in a quiescent H-mode) or intermittently (in between ELMs). At even higher densities and highly collisional plasmas with the maximum of ∇n shifted to or even out of the plasma boundary the High Density H-mode (HDH) opens access to steady state conditions with no measurable impurity accumulation. These improved confinement regimes are accessed and left via significant transitions of the transport properties albeit these transitions occur on rather different timescales. A comprehensive picture of improved edge confinement regimes in W7-AS is drawn based on the assumption that a weak edge bounded transport barrier resulting from the ion root conditions (thus E r <0) is the ground state of the (turbulent) edge plasma and already behaves as a barrier for anomalous transport. On top of that the classical H

  12. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  13. Nonlinear neoclassical theory for toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of the standard neoclassical theory break down. We have extended the theory of neoclassical transport in an impure plasma with arbitrary cross section and aspect ratio to allow for steeper pressure and temperature gradients than are usually considered in the conventional theory. The gradients are allowed to be so large that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. In this case the impurity ions are found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. The theoretical predictions are compared with experimental data from several tokamaks. (orig.)

  14. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.

    2002-01-01

    Edge plasma processes play a critical role for the global confinement of the plasma in a tokamak. In the edge region, where impurity ions are abundant and the temperature and density gradients are large, the assumptions of standard neoclassical theory break down. This paper reviews recent extensions of neoclassical theory to treat this problem, in particular our own work, which focuses on the nonlinear aspects of transport in a plasma with heavy impurity ions. In this theory, the pressure and temperature gradients are allowed to be steeper than in conventional theory neoclassical theory, so that the friction force between the bulk ions and heavy impurities is comparable to the parallel impurity pressure gradient. The impurity ions are then found to undergo a spontaneous rearrangement on each flux surface. This reduces their parallel friction with the bulk ions and causes the neoclassical ion flux to become a non-monotonic function of the gradients for plasma parameters typical of the tokamak edge. Thus, the neoclassical confinement is improved in regions where the gradients are large, such as in the edge pedestal. (orig.)

  15. Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks

    International Nuclear Information System (INIS)

    Tan, Ing Hwie.

    1992-05-01

    Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes

  16. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, M. A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, R. O.; Pablos, J. L. de

    2005-07-01

    It is well known the importance of the shear as a stabilizing mechanism to control plasma fluctuations in magnetically confined plasmas [1]. It has been clearly established that Ex B shear stabilization mechanisms are an important piece for the improvement of confinement on fusion devices. In particular both edge and core transport barriers are related to a large increase in the Ex B sheared flow. As a consequence clarifying the driving mechanisms of sheared flow in fusion plasmas is a main issue. The existence of parallel and perpendicular sheared flows at the plasma edge, and the interplay between them in different plasma conditions has been studied in the TJ-II [2]. Recent experiments carried out by means of different approaches in the TJ-II stellarator have shown that the generation of spontaneous edge perpendicular sheared flow can be externally controlled by means of plasma density with good reproducibility and reliability [3, 4]. Although experimentally the plasma density has been used as an external control knob, it would be more appropriate to characterize experimental results in terms of edge plasma gradient (e.g. ion saturation current gradient) [3]. It has also been found that there exists a coupling between the onset of sheared flow development and an increase in the level of plasma edge turbulence; once sheared flow is fully developed the level of fluctuations and turbulent transport slightly decreases whereas edge gradients and plasma density increase. It has been experimentally established that the minimum plasma density (or/and minimum level of plasma turbulence) essential for the development of the shear layer depends on the plasma magnetic configuration [5, 6]. For some plasma magnetic configurations with high iota value a sheared flow-induced regime with characteristics resembling those of an improved confinement one has been found. The similarity in the structure of the velocity shear layer and in the turbulence characteristics [7] in different

  17. Coherent vortical structures in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Coutsias, E.A.; Huld, T.

    1992-01-01

    A laboratory experiment was carried out in order to study the nonlinear saturated stage of the cross-field electrostatic Kelvin-Helmholtz instability in a strongly magnetized plasma. The presence of large vortex-like structures in a background of wide-band turbulent fluctuations was demonstrated...... simulations. The importance of the large scale structures for the turbulent plasma transport across magnetic field lines was analyzed in detail....

  18. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  19. First measurement of the magnetic turbulence induced Reynolds stress in a tokamak

    International Nuclear Information System (INIS)

    Xu Guosheng; Wan Baonian; Song Mei

    2003-01-01

    Reynolds stress component due to magnetic turbulence was first measured in the plasma edge region of the HT-7 superconducting tokamak using an insertable magnetic probe. A radial gradient of magnetic Reynolds stress was observed to be close to the velocity shear layer location; however, in this experiment its contribution to driving the poloidal flows is small compared to the electrostatic component. The electron heat transport driven by magnetic turbulence is quite small and cannot account for the total energy transport at the plasma edge

  20. Relativistic plasma turbulence and its application to pulsar phenomena

    International Nuclear Information System (INIS)

    Hinata, S.

    1976-01-01

    A turbulent plasma model of pulsars which has the potential of providing a self-regulatory mechanism for producing an electron-positron plasma over the polar caps, as well as the coherency of the radio wave emission, is analyzed. Turbulent plasma properties including the kinetic and electrostatic energy densities, the wavelength of the most unstable mode, and the effective collision frequency due to the excited electric field, are obtained and applied to the pulsar situation. Since these properties depend on the momentum distribution of the plasma particles, model calculations have been carried out with simple momentum distribution functions. The radio luminosity due to turbulence (bunching or otherwise) turned out to be either insufficient or unclear at the moment for these simple momentum distributions. This indicates that a further investigation of turbulence processes with the self-consistently determined momentum distribution is needed. This is left for future analysis, because entirely different processes (e.g. trapping) are likely to dominate the physics as is demonstrated for one of the model distribution functions. In addition to the above mentioned model, we examine some wave propagation properties in a relativistic electron-positron plasma immersed in a strong magnetic field

  1. Fokker-Planck description of the scattering of radio frequency waves at the plasma edge

    International Nuclear Information System (INIS)

    Hizanidis, Kyriakos; Kominis, Yannis; Tsironis, Christos; Ram, Abhay K.

    2010-01-01

    In magnetic fusion devices, radio frequency (rf) waves in the electron cyclotron (EC) and lower hybrid (LH) range of frequencies are being commonly used to modify the plasma current profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by providing current in the island region [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The appearance of NTMs severely limits the plasma pressure and leads to the degradation of plasma confinement. LH waves could be used in ITER to modify the current profile closer to the edge of the plasma. These rf waves propagate from the excitation structures to the core of the plasma through an edge region, which is characterized by turbulence--in particular, density fluctuations. These fluctuations, in the form of blobs, can modify the propagation properties of the waves by refraction. In this paper, the effect on rf due to randomly distributed blobs in the edge region is studied. The waves are represented as geometric optics rays and the refractive scattering from a distribution of blobs is formulated as a Fokker-Planck equation. The scattering can have two diffusive effects--one in real space and the other in wave vector space. The scattering can modify the trajectory of rays into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for example, could make them miss the intended target region where the NTMs occur. The broadening of the wave vector spectrum could broaden the wave generated current profile. The Fokker-Planck formalism for diffusion in real space and wave vector space is used to study the effect of density blobs on EC and LH waves in an ITER type of plasma environment. For EC waves the refractive effects become important since the distance of propagation from the edge to the core in ITER is of the order of a meter. The diffusion in wave vector space is small. For LH waves the refractive effects are insignificant but the diffusion in wave vector space is

  2. On the role of impurity radiation on edge turbulence in the TJ-1 Tokamak

    International Nuclear Information System (INIS)

    Ochando, M.A.; Pedrosa, M.A.; Balbin, R.; Garcia-Cortes, I.; Hidalgo, C.

    1994-01-01

    The correlation between edge radiation and electron temperature and density fluctuations has been studied in the vicinity of the upper poloidal limiter of the TJ-I tokamak. When edge impurity radiation is strongly raked in the proximity of the limiter radius, electron temperature fluctuations are notably higher than density fluctuations. Results provide experimental evidence of edge turbulence driven by thermal instabilities

  3. The acceleration and propagation of energetic particles in turbulent cosmic plasmas

    International Nuclear Information System (INIS)

    Achterberg, A.

    1981-01-01

    This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)

  4. An analytically-based method for predicting the noise generated by the interaction between turbulence and a serrated leading edge

    Science.gov (United States)

    Mathews, J. R.; Peake, N.

    2018-05-01

    This paper considers the interaction of turbulence with a serrated leading edge. We investigate the noise produced by an aerofoil moving through a turbulent perturbation to uniform flow by considering the scattered pressure from the leading edge. We model the aerofoil as an infinite half plane with a leading edge serration, and develop an analytical model using a Green's function based upon the work of Howe. This allows us to consider both deterministic eddies and synthetic turbulence interacting with the leading edge. We show that it is possible to reduce the noise by using a serrated leading edge compared with a straight edge, but the optimal noise-reducing choice of serration is hard to predict due to the complex interaction. We also consider the effect of angle of attack, and find that in general the serrations are less effective at higher angles of attack.

  5. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    Science.gov (United States)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding

  6. Phase space diffusion in turbulent plasmas

    International Nuclear Information System (INIS)

    Pecseli, H.L.

    1990-01-01

    Turbulent diffusion of charged test particles in electrostatic plasma turbulence is reviewed. Two different types of test particles can be distinguished. First passice particles which are subject to the fluctuating electric fields without themselves contributing to the local space charge. The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulent. The latter ''active'' type of particles can be subjected to an effective frictional force due to radiation of plasma waves. In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions for the mean square particle displacements in phase space are discussed. More generally equations for the full probability densities are derived and these are solved analytically in special limits. (orig.)

  7. Investigation of plasma turbulence in a theta-pinch-discharge

    International Nuclear Information System (INIS)

    Lins, G.

    1980-01-01

    This thesis is concerned with investigations of plasma turbulence in a 3 KJ Theta-Pinch during implosion by high-frequency Stark-effect and Thomson scattering. The next points are modifications of electron-distribution function by ionization in low preionizized turbulent plasma and energy losses by particle flow and heat flow at the ends. (HT)

  8. Characterization and parametric dependencies of low wavenumber pedestal turbulence in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.

  9. Studies of Turbulence and Transport in Alcator C-Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO

    Science.gov (United States)

    Porkolab, M.; Lin, L.; Edlund, E. M.; Rost, J. C.; Fiore, C. L.; Greenwald, M.; Mikkelsen, D.

    2008-11-01

    We present recent experimental measurements of turbulence and transport in C-Mod H-Mode plasmas with and without internal transport barriers (ITB) using the phase contrast imaging (PCI) diagnostic and compare the results with GYRO predictions. In plasmas without ITB, the fluctuation above 300 kHz observed by PCI agrees with ITG in GYRO simulation, including the direction of propagation, wavenumber spectrum, and absolute intensity within experimental uncertainly (+/-75%). After transition to ITBs, the observed overall fluctuation intensity increases. GYRO simulation in the core shows that ITG dominates in ITBs but its intensity is lower than the overall experimental measurements which may also include contributions from the plasma edge. These results, as well as the impact of varying ∇Ti, ∇n, and ExB shear on turbulence will be discussed. C.L. Fiore et al., Fusion Sci. Technol., 51, 303 (2007). M. Porkolab et al., IEEE Trans. Plasma Sci. 34, 229 (2006). J. Candy et al., Phys. Rev. Lett., 91, 045001 (2003).

  10. Toward the Theory of Turbulence in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Boldyrev, Stanislav

    2013-01-01

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model

  11. Comprehensive ab initio simulations of turbulence in ITER-relevant fusion plasmas

    International Nuclear Information System (INIS)

    Jenko, Frank

    2014-01-01

    The astonishing improvements achieved in supercomputing capabilities over the past two decades have allowed groundbreaking new insights into the physics of plasma turbulence. Even though much has been learned already, fundamental challenges related to predicting the performance of future fusion reactors still remain. In particular, today's fusion experiments routinely achieve a transition to a high-confinement mode (H-mode) with a strong transport barrier at the plasma boundary. Understanding the formation conditions of this barrier and its characteristic size and height are crucial to predicting the efficiency of future fusion reactors, but a fully consistent numerical treatment has still been lacking up to now. A main challenge in the treatment of such barriers is their extreme profile variation, implying their susceptibility to finite-size effects. Global simulation capabilities such as demonstrated within the framework of the present project are thus essential in order to understand the dynamics of the edge transport barrier. Both present and future projects employing the GENE code will build on the experience established within this SuperMUC project and tackle this challenging issue. Another increasingly important field relates to turbulence studies in stellarators, which represent an alternative machine design for future fusion applications. With its newly developed capability of studying turbulence in stellarator geometry (i.e. retaining magnetic geometry variations within a magnetic surface), the GENE code is uniquely suited for this problem. With the new German stellarator experiment Wendelstein 7-X nearing completion, existing predictions already made with GENE for stellarator turbulence will be put to the test, and possibilities for validation will emerge. Due to the complex magnetic geometry, stellarator turbulence simulations have extreme computational requirements and will thus continue to challenge the available supercomputing capabilities also in

  12. Statistical properties of turbulent transport and fluctuations in tokamak and stellarator devices

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Pedrosa, M A; Milligen, B Van; Sanchez, E; Balbin, R; Garcia-Cortes, I [Euratom-CIEMAT Association, Madrid (Spain); Bleuel, J; Giannone, L.; Niedermeyer, H [Euratom-IPP Association, Garching (Germany)

    1997-05-01

    The statistical properties of fluctuations and turbulent transport have been studied in the plasma boundary region of stellarator (TJ-IU, W7-AS) and tokamak (TJ-I) devices. The local flux probability distribution function shows the bursty character of the flux and presents a systematic change as a function of the radial location. There exist large amplitude transport bursts that account for a significant part of the total flux. There is a strong similarity between the statistical properties of the turbulent fluxes in different devices. The value of the radial coherence associated with fluctuations and turbulent transport is strongly intermittent. This result emphasizes the importance of measurements with time resolution in understanding the interplay between the edge and the core regions in the plasma. For measurements in the plasma edge region of the TJ-IU torsatron, the turbulent flux does not, in general, show a larger radial coherence than the one associated with the fluctuations. (author). 14 refs, 6 figs.

  13. Sheared electric field-induced suppression of edge turbulence using externally driven R.F. waves

    International Nuclear Information System (INIS)

    Craddock, G.G.; Diamond, P.H.

    1991-01-01

    Here the authors propose a novel method for active control and suppression of edge turbulence by sheared ExB flows driven by externally launched RF waves. The theory developed addresses the problem of open-quotes flow driveclose quotes, which is somewhat analogous to the problem of plasma current drive. As originally demonstrated for the case of spontaneously driven flows, a net difference in the gradient of the fluid and magnetic Reynolds' stresses produced by radially propagating waves can drive the plasma flow. For the prototypical case of the Alfven wave flow drive considered here, ρ 0 r v θ > - r B θ > is proportional to k perpendicular 2 ρ s 2 in the case of the kinetic Alfven wave, and [(ηk perpendicular 2 -vk perpendicular 2 )/ω] 2 in the case of resistive MHD. Both results reflect the dependence of flow drive on the net stress imbalance. The shear layer width is determined by the waves evanescence length (determined by dissipation) that sets the stress gradient scale length, while the direction of the flow is determined by the poloidal orientation of the launched waves. In particular, it should be noted that both positive and negative E r may be driven, so that enhanced confinement need not be accompanied by impurity accumulation, as commonly encountered in spontaneous H-modes. The efficiency is determined by the criterion that the radial electric field shear be large enough to suppress turbulence. For typical TEXT parameters, and unity efficiency, 300 kW of absorbed power is needed to suppress turbulence over 3 cm radially. For DIII-D, 300 kW over 4 cm is needed. Also, direct transport losses induced by RF have been shown to be small. Extensions of the theory to ICRF are underway and are discussed. They also discuss the analogous problem of current drive using kinetic Alfven waves. 2 refs

  14. On the Role of Impurity Radiation on Edge Turbulence in the TJ-I Tokamak

    International Nuclear Information System (INIS)

    Ochando, M. A.; Pedrosa, M. A.; Balbin, R.; Garcia-Cortes, I.; Hidalgo, C.

    1994-01-01

    The correlation between edge radiation and electron temperature and density fluctuations has been studied in the vicinity of the upper poloidal limiter of the TJ-I tokamak. When edge impurity radiation is strongly peaked in the proximity of the limiter radius, electron temperature fluctuations are notably higher than density fluctuations. Results provide experimental evidence of edge turbulence driven by thermal instabilities. (Author) 16 refs

  15. On the Role of Impurity Radiation on Edge Turbulence in the TJ-I Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ochando, M A; Pedrosa, M A; Balbin, R; Garcia-Cortes, I; Hidalgo, C

    1994-07-01

    The correlation between edge radiation and electron temperature and density fluctuations has been studied in the vicinity of the upper poloidal limiter of the TJ-I tokamak. When edge impurity radiation is strongly peaked in the proximity of the limiter radius, electron temperature fluctuations are notably higher than density fluctuations. Results provide experimental evidence of edge turbulence driven by thermal instabilities. (Author) 16 refs.

  16. Effect of turbulent collisions on diffusion in stationary plasma turbulence

    International Nuclear Information System (INIS)

    Xia, H.; Ishihara, O.

    1990-01-01

    Recently the velocity diffusion process was studied by the generalized Langevin equation derived by the projection operator method. The further study shows that the retarded frictional function plays an important role in suppressing particle diffusion in the velocity space in stronger turbulence as much as the resonance broadening effect. The retarded frictional effect, produced by the effective collisions due to the plasma turbulence is assumed to be a Gaussian, but non-Markovian and non-wide-sense stationary process. The relations between the proposed formulation and the extended resonance broadening theory is discussed. The authors also carry out test particle numerical experiment for Langmuir turbulence to test the theories. In a stronger turbulence a deviation of the diffusion rate from the one predicted by both the quasilinear and the extended resonance theories has been observed and is explained qualitatively by the present formulation

  17. Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.

    2012-01-01

    This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.

  18. Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D.

    2012-07-01

    This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.

  19. Three-dimensional simulations of plasma turbulence in the RFX-mod scrape-off layer and comparison with experimental measurements

    Science.gov (United States)

    Riva, Fabio; Vianello, Nicola; Spolaore, Monica; Ricci, Paolo; Cavazzana, Roberto; Marrelli, Lionello; Spagnolo, Silvia

    2018-02-01

    The tokamak scrape-off layer (SOL) plasma dynamics is investigated in a circular limiter configuration with a low edge safety factor. Focusing on the experimental parameters of two ohmic tokamak inner-wall limited plasma discharges in RFX-mod [Sonato et al., Fusion Eng. Des. 74, 97 (2005)], nonlinear SOL plasma simulations are performed with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The numerical results are compared with the experimental measurements, assessing the reliability of the GBS model in describing the RFX-mod SOL plasma dynamics. It is found that the simulations are able to quantitatively reproduce the RFX-mod experimental measurements of the electron plasma density, electron temperature, and ion saturation current density (jsat) equilibrium profiles. Moreover, there are indications that the turbulent transport is driven by the same instability in the simulations and in the experiment, with coherent structures having similar statistical properties. On the other hand, it is found that the simulation results are not able to correctly reproduce the floating potential equilibrium profile and the jsat fluctuation level. It is likely that these discrepancies are, at least in part, related to simulating only the tokamak SOL region, without including the plasma dynamics inside the last close flux surface, and to the limits of applicability of the drift approximation. The turbulence drive is then identified from the nonlinear simulations and with the linear theory. It results that the inertial drift wave is the instability driving most of the turbulent transport in the considered discharges.

  20. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, H.; Pécseli, H.L.; Trulsen, J.

    1987-01-01

    Low‐frequency electrostatic turbulence generated by the ion–ion beam instability was investigated experimentally in a double‐plasma device. Real time signals were recorded and examined by a conditional statistical analysis. Conditionally averaged potential distributions reveal the formation...... and propagation of structures with a relatively long lifetime. Various methods for making a conditional analysis are discussed and compared. The results are discussed with reference to ion phase space vortices and clump formation in collisionless plasmas....

  1. The inverse problem for the refractometry diagnostics of electromagnetic turbulence in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics

    1994-06-01

    Turbulence is an important property of laboratory plasmas. A number of relevant diagnostics are based on the interaction of an electromagnetic beam with plasma. Here we discuss a refractometry technique, where information on plasma properties is obtained by probing plasma with a plane polarized electromagnetic beam. It is shown that the problem of recovering statistical properties of plasma turbulence from the line integrated data can be solved uniquely using a realistic model of plasma. Analytical expressions relating statistics of both the random density and random magnetic fields to the measured statistics have been found. This information is of importance in studies of plasma turbulence. (author).

  2. The inverse problem for the refractometry diagnostics of electromagnetic turbulence in plasma

    International Nuclear Information System (INIS)

    Lazarian, A.

    1994-01-01

    Turbulence is an important property of laboratory plasmas. A number of relevant diagnostics are based on the interaction of an electromagnetic beam with plasma. Here we discuss a refractometry technique, where information on plasma properties is obtained by probing plasma with a plane polarized electromagnetic beam. It is shown that the problem of recovering statistical properties of plasma turbulence from the line integrated data can be solved uniquely using a realistic model of plasma. Analytical expressions relating statistics of both the random density and random magnetic fields to the measured statistics have been found. This information is of importance in studies of plasma turbulence. (author)

  3. A complex probe for tokamak plasma edge conditions

    International Nuclear Information System (INIS)

    Castro, R.M. de; Silva, R.P. da; Heller, M.V.A.P.; Caldas, I.L.; Nascimento, I.C.; Degasperi, F.T.

    1995-01-01

    The study of the physical processes that occur in the plasma edge of tokamak machines has recently grown due to the evidence that these processes influence those that occur in the center of the plasma column. Experimental studies show the existence of a strong level of fluctuations in the plasma edge. The results of these studies indicate that these fluctuations enhance particle and energy transport and degrade the confinement. In order to investigate these processes in the plasma edge of the TBR-1 Tokamak, a Langmuir probe array, a triple and a set of magnetic probes have been designed and constructed. With this set probes the mean and fluctuation values of the magnetic field were detected and correlated with the fluctuating parameters obtained with the electrostatic probes. (author). 7 refs., 5 figs

  4. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    Science.gov (United States)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  5. A new maser effect in plasma turbulence

    International Nuclear Information System (INIS)

    Nambu, M.

    1983-01-01

    The present state of understanding of a new maser effect is reviewed. The new maser effect, the idea that the resonant electrons in a turbulent plasma can radiate amplified electromagnetic radiation, does not require population inversion of electrons. The new maser effect always coexists with Landau (or cyclotron) damping; thus it is a fundamental effect in plasma turbulence. In nuclear fusion, magnetic confinement will be at a disadvantage due to the enhanced radiation losses in the long wave length region, while inertial confinement will be improved by the laser effect in the X-ray region. (author)

  6. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  7. Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

    International Nuclear Information System (INIS)

    Lin, Z; Rewoldt, G; Ethier, S; Hahm, T S; Lee, W W; Lewandowski, J L V; Nishimura, Y; Wang, W X

    2005-01-01

    Recent progress in gyrokinetic particle-in-cell simulations of turbulent plasmas using the gyrokinetic toroidal code (GTC) is surveyed. In particular, recent results for electron temperature gradient (ETG) modes and their resulting transport are presented. Also, turbulence spreading, and the effects of the parallel nonlinearity, are described. The GTC code has also been generalized for non-circular plasma cross-section, and initial results are presented. In addition, two distinct methods of generalizing the GTC code to be electromagnetic are described, along with preliminary results. Finally, a related code, GTC-Neo, for calculating neoclassical fluxes, electric fields, and velocities, are described

  8. Turbulent Wing-Leading-Edge Correlation Assessment for the Shuttle Orbiter

    Science.gov (United States)

    King, Rudolph A.; Vaughan, Matthew P.

    2009-01-01

    This study was conducted in support of the Orbiter damage assessment activity that takes place for each Shuttle mission since STS-107 (STS - Space Transportation System). As part of the damage assessment activity, the state of boundary layer (laminar or turbulent) during reentry needs to be estimated in order to define the aerothermal environment on the Orbiter. Premature turbulence on the wing leading edge (WLE) is possible if a surface irregularity promotes early transition and the resulting turbulent wedge flow contaminates the WLE flow. The objective of this analysis is to develop a criterion to determine if and when the flow along the WLE experiences turbulent heating given an incoming turbulent boundary layer that contaminates the attachment line. The data to be analyzed were all obtained as part of the MH-13 Space Shuttle Orbiter Aerothermodynamic Test conducted on a 1.8%-scale Orbiter model at Calspan/University of Buffalo Research Center in the Large Energy National Shock Tunnels facility. A rational framework was used to develop a means to assess the state of the WLE flow on the Orbiter during reentry given a contaminated attachment-line flow. Evidence of turbulent flow on the WLE has been recently documented for a few STS missions during the Orbiter s flight history, albeit late in the reentry trajectory. The criterion developed herein will be compared to these flight results.

  9. Modification of the turbulence in the plasma boundary of the Wendelstein 7-AS stellarator using electric probes

    International Nuclear Information System (INIS)

    Thomsen, H.; Endler, M.; Schubert, M.

    2001-01-01

    The fluctuations in the edge plasmas of magnetic fusion experiments are thought to play an important role in terms of anomalous energy and particle transport. Experiments on Wendelstein 7-AS were conducted with the primary goal to investigate the performance of influencing and modifying the turbulence in the plasma boundary using electrical probes. Two movable poloidal probe arrays were used for the experiments, one located on the inboard side of the vessel and the other on the outboard side. A subset of probe tips was used for actively driving the plasma by different control signals, the remaining probes collected fluctuation data in the plasma boundary. Poloidally, we find a significant cross-correlation between active and passive probes. From analysis of the coherency and phases of the passive probe tips, it can clearly be seen that the background ExB-rotation of the plasma plays a crucial role for the applied signals. In the case of externally driven waves by several phase-locked active probes, the direction of the wave propagation with respect to the plasma rotation (co- or counter-rotating) is essential for a proper coupling to the turbulence. In toroidal direction we find that the propagation of the signals along the magnetic field lines depends on co- or counter-rotation with respect to the background plasma rotation. (author)

  10. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    Energy Technology Data Exchange (ETDEWEB)

    Saenko, V.V. [Ulyanovsk State University, Leo Tolstoy str., 42, Ulyanovsk (Russian Federation)

    2010-05-15

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x{sup -{alpha}}{sup -1} and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Self-similarity of fluctuation particle fluxes in the plasma edge of the stellarator L-2M

    International Nuclear Information System (INIS)

    Saenko, V.V.

    2010-01-01

    Results are presented of statistical studies of probability density of fluctuations of plasma density, floating potential, and turbulent particle fluxes measured by a Langmuir probe in the edge plasma of the L-2M stellarator. Empirical probability densities differ from Gaussian distributions. The empirical probability density distributions have heavy tails decreasing as x -α-1 and are leptokurtic. Fractional stable distributions were successfully applied to describing such distributions. It is shown that fractional stable distributions give good fit to the distri-butions of increments of fluctuation amplitudes of physical variables under study. The distribution parameters are statistically estimated from measured time sequences (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)

  13. Plasma turbulence measured by fast sweep reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.

    2004-01-01

    Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal

  14. On plasma coupling and turbulence effects in low velocity stopping

    Energy Technology Data Exchange (ETDEWEB)

    Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)

    2006-04-28

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.

  15. On plasma coupling and turbulence effects in low velocity stopping

    International Nuclear Information System (INIS)

    Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A

    2006-01-01

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly

  16. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers

    Energy Technology Data Exchange (ETDEWEB)

    Neophytou, A.; Mastorakos, E.; Cant, R.S. [Hopkinson Laboratory, Department of Engineering, University of Cambridge (United Kingdom)

    2010-06-15

    A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with

  17. The edge plasma and divertor in TIBER

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.

    1987-10-16

    An open divertor configuration has been adopted for TIBER. Most recent designs, including DIII-D, NET and CIT use open configurations and rely on a dense edge plasma to shield the plasma from the gas produced at the neutralizer plate. Experiments on ASDEX, PDX, D-III, and recently on DIII-D have shown that a dense edge plasma can be produced by re-ionizing most of the gas produced at the plate. This high recycling mode allows a large flux of particles to carry the heat to the plate, so that the mean energy per particle can be low. Erosion of the plate can be greatly reduced if the average impact energy of the ions at the plate can be reduced to near or below the threshold for sputtering of the plate material. The present configuration allows part of the flux of edge plasma ions to be neutralized at the entrance to the pumping duct so that helium is pumped as well as hydrogen. 7 refs., 3 figs.

  18. The edge plasma and divertor in TIBER

    International Nuclear Information System (INIS)

    Barr, W.L.

    1987-01-01

    An open divertor configuration has been adopted for TIBER. Most recent designs, including DIII-D, NET and CIT use open configurations and rely on a dense edge plasma to shield the plasma from the gas produced at the neutralizer plate. Experiments on ASDEX, PDX, D-III, and recently on DIII-D have shown that a dense edge plasma can be produced by re-ionizing most of the gas produced at the plate. This high recycling mode allows a large flux of particles to carry the heat to the plate, so that the mean energy per particle can be low. Erosion of the plate can be greatly reduced if the average impact energy of the ions at the plate can be reduced to near or below the threshold for sputtering of the plate material. The present configuration allows part of the flux of edge plasma ions to be neutralized at the entrance to the pumping duct so that helium is pumped as well as hydrogen. 7 refs., 3 figs

  19. Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport

    International Nuclear Information System (INIS)

    Ito, Sanae I.

    2010-01-01

    The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)

  20. Effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge

    International Nuclear Information System (INIS)

    Kim, S. M.; Kim, Youn J.; Cho, H. H.

    2001-01-01

    We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 7.1x10 4 . Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio

  1. Studies on waves and turbulence in natural plasmas and in laboratory plasmas

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1990-09-01

    The project for studying plasma waves and plasma turbulence submitted to CAPES to be included in the CAPES/COFECUB international cooperation agreement is presented. The project will be carry out in cooperation with Paris University aiming to simulate in laboratory wave-particle interaction phenomena occuring in space plasma. (M.C.K.)

  2. Multispecies density peaking in gyrokinetic turbulence simulations of low collisionality Alcator C-Mod plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D. R., E-mail: dmikkelsen@pppl.gov; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Greenwald, M.; Howard, N. T.; Hughes, J. W.; Rice, J. E. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); Reinke, M. L. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Podpaly, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); AAAS S and T Fellow placed in the Directorate for Engineering, NSF, 4201 Wilson Blvd., Arlington, Virginia 22230 (United States); Ma, Y. [MIT Plasma Science and Fusion Center, 175 Albany St., Cambridge, Massachusetts 02139 (United States); ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Candy, J.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-06-15

    Peaked density profiles in low-collisionality AUG and JET H-mode plasmas are probably caused by a turbulently driven particle pinch, and Alcator C-Mod experiments confirmed that collisionality is a critical parameter. Density peaking in reactors could produce a number of important effects, some beneficial, such as enhanced fusion power and transport of fuel ions from the edge to the core, while others are undesirable, such as lower beta limits, reduced radiation from the plasma edge, and consequently higher divertor heat loads. Fundamental understanding of the pinch will enable planning to optimize these impacts. We show that density peaking is predicted by nonlinear gyrokinetic turbulence simulations based on measured profile data from low collisionality H-mode plasma in Alcator C-Mod. Multiple ion species are included to determine whether hydrogenic density peaking has an isotope dependence or is influenced by typical levels of low-Z impurities, and whether impurity density peaking depends on the species. We find that the deuterium density profile is slightly more peaked than that of hydrogen, and that experimentally relevant levels of boron have no appreciable effect on hydrogenic density peaking. The ratio of density at r/a = 0.44 to that at r/a = 0.74 is 1.2 for the majority D and minority H ions (and for electrons), and increases with impurity Z: 1.1 for helium, 1.15 for boron, 1.3 for neon, 1.4 for argon, and 1.5 for molybdenum. The ion temperature profile is varied to match better the predicted heat flux with the experimental transport analysis, but the resulting factor of two change in heat transport has only a weak effect on the predicted density peaking.

  3. Edge plasma control using an LID configuration on CHS

    Energy Technology Data Exchange (ETDEWEB)

    Masuzaki, S.; Komori, A.; Morisaki, T. [National Inst. for Fusion Science, Oroshi, Toki (Japan)] [and others

    1997-07-01

    A Local Island Divertor (LID) has been proposed to enhance energy confinement through neutral particle control. For the case of the Large Helical Device (LHD), the separatrix of an m/n = 1/1 magnetic island, formed at the edge region, will be utilized as a divertor configuration. The divertor head is inserted in the island, and the island separatrix provides connection between the edge plasma region surrounding the core plasma and the back plate of the divertor head through the field lines. The particle flux and associated heat flux from the core plasma strike the back plate of the divertor head, and thus particle recycling is localized in this region. A pumping duct covers the divertor head to form a closed divertor system for efficient particle exhaust. The advantages of the LID are ease of hydrogen pumping because of the localized particle recycling and avoidance of the high heat load that would be localized on the leading edge of the divertor head. With efficient pumping, the neutral pressure in the edge plasma region will be reduced, and hence the edge plasma temperature will be higher, hopefully leading to a better core confinement region. A LID configuration experiment was done on the Compact Helical System (CHS) to confirm the effect of the LID. The typical effects of the LID configuration on the core plasma are reduction of the line averaged density to a half, and small or no reduction of the stored energy. In this contribution, the experimental results which were obtained in edge plasma control experiments with the LID configuration in the CHS are presented.

  4. Tungsten transport in the plasma edge at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Janzer, Michael Arthur

    2015-04-30

    Heating (ICRH) limiters on the injected ICRH power was used. The phase and amplitude of the inwardly propagating tungsten signal was then observed at the erosion site and at three radial positions in the main plasma, from which two were identified in the course of this work by a thorough investigation of the tungsten radiation features in the Vacuum Ultra-Violet (VUV) spectral range. The newly found observation sites are located right in the steep gradient region, close to the Edge Transport Barrier (ETB) and slightly further inside at the pedestal top of AUG H-mode discharges. Furthermore, the parallel flows in the SOL have been monitored by spectroscopical means and Langmuir probes. The experimental results were quite unexpected, since the ELM frequency had no influence on the tungsten concentration, and the sole actuator on this quantity was the gas injection rate. The evaluation of the modulated tungsten signal revealed that neither gas puffing nor plasma shape had an measureable influence on the radial tungsten transport processes. In addition, the tungsten erosion sources were only partially responsible for the observed tungsten behavior. These observations inspired a simple model, which balanced the tungsten outflux with the tungsten influx. In this model the impurity exhaust by ELMs is not diffusive, but turbulent and linked to the ELM size. The model predicted a linear dependence between the tungsten concentration and the parallel velocity in the SOL. This linear dependence was confirmed by the spectroscopical evaluation of the SOL parallel flows.

  5. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  6. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  7. Dissipation of a power electromagnetic wave in an inhomogeneous plasma and ''superstrong'' plasma turbulence

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.

    1980-01-01

    An attempt is made to analyze two assumptions of the present theory of plasma turbulence, initiated by an electromagnetic wave, as applied to the problem of heating the plasma target. It has been assumed that in the long-scale region (the region of an electromagnetic wave source) and in the inertia range, separating the source region and the short-wave absorption region, there is a permanent pumping. The first assumption consists in simulating a situation in a plasma target when the Langmuir turbulence arises due to an electromagnetic wave incident on the target. The second assumption is valid only at a very high intensity of plasma waves when their energy is significantly less than the thermal energy of plasma W/nsub(c)T 0 is the frequency of an incident electromagnetic wave). At W approximately equal to nsub(c)T the plasma oscillations, arising due to modulation instability from the electromagnetic pumping wave, fall immediately into the absorption region. A phenomenological theory of such a turbulence, called ''superstrong'', is formulated on the assumption that there is a mechanism of ''mixing up'' plasmon phases as a result of their populating the long-wave density fluctuations

  8. Excitation of an instability by neutral particle ionization induced fluxes in the tokamak edge plasma

    International Nuclear Information System (INIS)

    Bachmann, P.; Sunder, D.

    1991-01-01

    Strong density and potential fluctuations in the edge plasma of toroidal nuclear fusion devices can lead to anomalously fast particle and energy transport. There are some reasons to assume the level of these fluctuations to be connected with neutral particles which enter the plasma by gas puffing or recycling processes. The influence of neutral particles on the behaviour of electrostatic drift modes was investigated. Using the ballooning transformation the excitation of dissipative drift waves in tokamak was studied taking ionization and charge exchange into consideration. Ionization driven drift wave turbulence was analyzed. The higher the neutral particle density is the more important the plasma-wall interaction and the less important the action of the limiter becomes. Instabilities localized in the edge plasma and far from the limiter can be one of the reasons of such a phenomenon. In the present paper we show that such an instability may exist. Usually the neutral particle density is large in the vicinity of the limiter and decreases rapidly with the distance from it. Plasma particles generated by ionization of these neutrals outside the limiter shadow, move along the magnetic field lines into a region without neutrals and diffuse slowly across the magnetic field. We solve the stability problem for modes with a perpendicular wave length that is much larger than the ion Larmor radius with electron temperature, and much smaller than the minor plasma radius. The excitation of such modes localized far from the limiter is investigated. A one-dimensional differential equation is derived in the cold ion approximation without taking shear and toroidal effects into consideration. In the case of low flow velocities a nearly aperiodic instability is found analytically. Its growth rate is proportional to the equilibrium plasma velocity at the boundary of the neutral particle's free region and to the inverse of the extension of this zone. This mode is localized in the edge

  9. Flux-driven turbulence GDB simulations of the IWL Alcator C-Mod L-mode edge compared with experiment

    Science.gov (United States)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Prior to predicting confinement regime transitions in tokamaks one may need an accurate description of L-mode profiles and turbulence properties. These features determine the heat-flux width upon which wall integrity depends, a topic of major interest for research aid to ITER. To this end our work uses the GDB model to simulate the Alcator C-Mod edge and contributes support for its use in studying critical edge phenomena in current and future tokamaks. We carried out 3D electromagnetic flux-driven two-fluid turbulence simulations of inner wall limited (IWL) C-Mod shots spanning closed and open flux surfaces. These simulations are compared with gas puff imaging (GPI) and mirror Langmuir probe (MLP) data, examining global features and statistical properties of turbulent dynamics. GDB reproduces important qualitative aspects of the C-Mod edge regarding global density and temperature profiles, within reasonable margins, and though the turbulence statistics of the simulated turbulence follow similar quantitative trends questions remain about the code's difficulty in exactly predicting quantities like the autocorrelation time A proposed breakpoint in the near SOL pressure and the posited separation between drift and ballooning dynamics it represents are examined This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  10. Computer simulation of plasma turbulence in open systems

    International Nuclear Information System (INIS)

    Sigov, Yu.S.

    1982-01-01

    A short review of the results of kinetic simulation of collective phenomena in open plasma systems with the variable total energy and number of particles, i.e., the particle and energy fluxes on boundary surfaces and/or their internal sources and channels is given. Three specific problems are considered in different detail for such systems in one-dimensional geometry: the generation and evolution of double layers in a currently unstable plasma; the collisionless relaxation of strongly non-equilibrium electron distributions; the Langmuir collapse and strong electrostatic turbulence in systems with parametric excitation of a plasma by an external pumping wave and with cooling the fast non-Maxwell electrons. In all these cases the non-linearity and a collective character of processes give examples of new dissipative plasma structures that essentially widen our idea about the nature of the plasma turbulence in non-homogeneous open systems. (Auth.)

  11. Probes for edge plasma studies of TFTR (invited)

    International Nuclear Information System (INIS)

    Manos, D.M.; Budny, R.V.; Kilpatrick, S.; Stangeby, P.; Zweben, S.

    1986-01-01

    Tokamak fusion test reactor (TFTR) probes are designed to study the interaction of the plasma with material surfaces such as the wall and limiters, and to study the transport of particles and energy between the core and edge. Present probe heads have evolved from prototypes in Princeton large torus (PLT), poloidal divertor experiment (PDX) [Princeton BETA experiment (PBX)], and the initial phase of TFTR operation. The newest heads are capable of making several simultaneous measurements and include Langmuir probes, heat flux probes, magnetic coils, rotating calorimeter fast ion probes, and sample exposure specimens. This paper describes these probe heads and presents some of the data they and their prototypes have acquired. The paper emphasizes measurement of transient plasma effects such as fast ion loss during auxiliary heating, the evolution of the edge plasma during heating, compression, and free expansion, and fluctuations in the edge plasma

  12. Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator

    Science.gov (United States)

    Yadong, HUANG; Benmou, ZHOU

    2018-05-01

    Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.

  13. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    International Nuclear Information System (INIS)

    Zakharov, L.E.

    2010-01-01

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the (delta)-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  14. Quasilinear theory of plasma turbulence. Origins, ideas, and evolution of the method

    Science.gov (United States)

    Bakunin, O. G.

    2018-01-01

    The quasilinear method of describing weak plasma turbulence is one of the most important elements of current plasma physics research. Today, this method is not only a tool for solving individual problems but a full-fledged theory of general physical interest. The author's objective is to show how the early ideas of describing the wave-particle interactions in a plasma have evolved as a result of the rapid expansion of the research interests of turbulence and turbulent transport theorists.

  15. Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes

    International Nuclear Information System (INIS)

    Hur, Min; Hong, Sang Hee

    2002-01-01

    The thermal plasma characteristics inside the two non-transferred plasma torches with rod-type cathode (RTC) and well-type cathode (WTC) are analysed in conjunction with turbulent effects on them in the atmospheric-pressure conditions. A control volume method and a modified semi-implicit pressure linked equations revised algorithm are used for solving the governing equations, i.e. conservation equations of mass, momentum, and energy together with a current continuity equation for arc discharge. A cold flow analysis is introduced to find the cathode spot position in the WTC torch, and both the laminar and turbulent models are employed to gain a physical insight into the turbulent effects on the thermal plasma characteristics produced inside the two torches. The numerical analysis for an RTC torch shows that slightly different values of plasma temperature and velocity between the laminar and turbulent calculations occur and the radial temperature profiles are constricted at the axis with increasing the gas flow rate, and that the large turbulent viscosities appear mostly near the anode wall. These calculated results indicate that the turbulent effects on the thermal plasma characteristics are very weak in the whole discharge region inside the RTC torch. On the other hand, the calculated results of the two numerical simulations for a WTC torch present that the significantly different values of plasma characteristics between the two models appear in the whole torch region and the plasma temperatures decrease with increasing the gas flow rate because the relatively strong turbulent effects are prevailing in the entire interior region of the WTC torch. From the comparisons of plasma net powers calculated and measured in this work, the turbulent modelling turns out to provide the more accurately calculated results close to the measured ones compared with the laminar one, especially for the torch with WTC. This is because the turbulent effects are considerably strong in

  16. Strong plasma turbulence in the earth's electron foreshock

    Science.gov (United States)

    Robinson, P. A.; Newman, D. L.

    1991-01-01

    A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V/m. The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted.

  17. Strong plasma turbulence in the earth's electron foreshock

    International Nuclear Information System (INIS)

    Robinson, P.A.; Newman, D.L.

    1991-01-01

    A quantitative model is developed to account for the distribution in magnitude and location of the intense plasma waves observed in the Earth's electron foreshock given the observed rms levels of waves. In this model, nonlinear strong-turbulence effects cause solitonlike coherent wave packets to form and decouple from incoherent background beam-excited weak turbulence, after which they convect downstream with the solar wind while collapsing to scales as short as 100 m and fields as high as 2 V m -1 . The existence of waves with energy densities above the strong-turbulence wave-collapse threshold is inferred from observations from IMP 6 and ISEE 1 and quantitative agreement is found between the predicted distribution of fields in an ensemble of such wave packets and the actual field distribution observed in situ by IMP 6. Predictions for the polarization of plasma waves and the bandwidth of ion-sound waves are also consistent with the observations. It is shown that strong-turbulence effects must be incorporated in any comprehensive theory of the propagation and evolution of electron beams in the foreshock. Previous arguments against the existence of strong turbulence in the foreshock are refuted

  18. Heavy ion beam probe (HIBP) diagnostics as a tool for investigations into the plasma turbulence and the local electric field of dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krupnik, L.I.; Chmyga, A.A.; Komarov, A.D.; Kozachok, A.S.; Zhezhera, A.I. [Institute of Plasma Physics, NSC KIPT, 310108 Kharkov (Ukraine); Melnikov, A.V.; Eliseev, L.G.; Lysenko, S.E.; Mavrin, V.A.; Perfilov, S.V. [Institute of Nuclear Fusion, RRC ' Kurchatov Institute' , Moscow (Russian Federation); Hidalgo, C.; Ascasibar, E.; Estrada, T.; Liniers, M.; Ochando, M.A.; Pablos, J.L. de; Pedrosa, M.A.; Tabares, F. [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion EURATOM-CIEMAT, 28040-Madrid (Spain)

    2011-07-01

    One of essential achievements of the Heavy Ion Beam Probe (HIBP) diagnostics is the possibility to use it for investigation of plasma confinement by measuring the fluctuations of electric field and plasma density; the method is based on the important role of the plasma electric fields. Both edge and core transport barriers are related to a large increase in the E*B sheared flows in a fusion device. In the TJ-II stellarator the HIBP diagnostics has recently been upgraded for two-point measurements with a good spatial (1 cm) and temporal (10 {mu}s) resolution of the plasma electric potential and density, as well as their fluctuations and poloidal component of electric field, E{sub p} equals ({phi}1 - {phi}2)/{Delta}r [V/cm]; these data give chance to extract the radial turbulent particle flux: {Gamma}(r) equals {Gamma}(Epol*Btor) equals {Gamma}(E*B). (authors)

  19. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  20. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  1. Turbulent current heating of dense plasma

    International Nuclear Information System (INIS)

    Suprunenko, V.A.; Sukhomlin, E.A.; Volkov, E.D.; Perepelkij, N.F.

    1976-01-01

    Based upon experimental results an attempt is made for systematizing and analysing conditions of experiments in anomalous resistance and turbulent heating of a plasma. The extensive program of such investigations aims at a direct practical study on quasistationary heating and plasma containment in magnetic traps. It has been shown that in real conditions turbulent heating turns out to be a far more complicated phenomenon than that described within the framework of theories developed so far. It has been established that the phenomenon alters in the transition through the critical values of electric and magnetic fields. This makes it possible to separate four characteristic experimental regimes. For all the regimes the stabilization of the electron current drift rate is typical. On the basis of the experimental results obtained an explanation is given of the sporadic character of the ultrathermal radiation in a quasistationary discharge

  2. Transport phenomena in the edge of Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Terry, J.L.; Basse, N.P.; Cziegler, I.; Greenwald, M.; LaBombard, B.; Edlund, E.M.; Hughes, J.W.; Lin, L.; Lin, Y.; Porkolab, M.; Veto, B.; Wukitch, S.J.; Grulke, O.; Zweben, S.J.; Sampsell, M.

    2005-01-01

    Two aspects of edge turbulence and transport in Alcator C-Mod are explored. The quasi-coherent mode, an edge fluctuation present in Enhanced Da H-mode plasmas, is examined with regard to its role in the enhanced particle transport found in these plasmas, its in/out asymmetry, its poloidal wave number, and its radial width and location. It is shown to play a dominant role in the perpendicular particle transport. The QCM is not observed at the inboard midplane, indicating that its amplitude there is significantly smaller than on the outboard side. The peak amplitude of the QCM is found just inside the separatrix, with a radial width ≥5 mm, leading to a non-zero amplitude outside the separatrix and qualitatively consistent with its transport enhancement. Also examined are the characteristics of the intermittent convective transport, associated with 'blobs' and typically occurring in the scrape-off-layer. The blobs are qualitatively similar in L- and H-mode. When their sizes, occurrence frequencies, and magnitudes are compared, it is found that the blob size may be somewhat smaller in ELMfree H-Mode, and blob frequency is similar. A clear difference is seen in the blob magnitude in the far SOL, with ELMfree H-mode showing a smaller perturbation there than L-mode. As the Greenwald density limit is approached (n/n GW ≥0.7), blobs are seen inside the separatrix, consistent with the observation that the high cross-field transport region, normally found in the far scrape-off, penetrates the closed flux surfaces at high n/n GW . (author)

  3. Ion turbulence and thermal transport in laser-produced plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.

    1982-01-01

    In the interaction of high-intensity lasers with target plasmas the transport of thermal energy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. The role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1.06 μm neodymium laser light at irradiances of 10 15 W cm - 2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux are calculated on the basis of perturbed orbit theory. The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model. (author)

  4. Salient issues of edge physics pertaining to loss of confinement: A resistive MHD analysis

    International Nuclear Information System (INIS)

    Thayer, D.R.

    1991-01-01

    The progress that has been made during this fiscal year is significant in the area of tokamak edge plasma transport. The drift-rippling mode model of edge turbulent transport was extended. In particular, the research areas on which were concentrated include the following topics: (1) The theoretical investigation of the radiatively enhanced transport due to the effects of impurity driven radiation instabilities has been expanded to include a situation with multiple impurities (such as carbon, C 4+ , and oxygen, O 6+ ); (2) In order to validate the use of the impurity radiation input from the tokamak bolometer experiments in the theoretical edge turbulent transport calculations, the analysis that is utilized to transform impurity brightness data to radiated power profiles has been checked for state population and Abel inversion correctness; (3) The drift-rippling model of edge turbulent transport has been extended to include ionization particle sources in addition to the impurity driven thermal instability drive; and (4) The detailed limiter and realistic edge geometric effects on the edge turbulent transport has been included in the drift-rippling model

  5. High density turbulent plasma processes from a shock tube. Final performance report

    International Nuclear Information System (INIS)

    Johnson, J.A. III.

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions

  6. High density turbulent plasma processes from a shock tube

    International Nuclear Information System (INIS)

    Oyedeji, O.; Johnson, J.A. III

    1991-01-01

    We have finished the first stages of our experimental and theoretical investigations on models for energy and momentum transport and for photon-particle collision processes in a turbulent quasi-stationary high density plasma. The system is explored by beginning to determine the turbulence phenomenology associated with an ionizing shock wave. The theoretical underpinnings are explored for phonon particle collisions by determining the collisional redistribution function, using Lioville Space Green's Function, which will characterize the inelastic scattering of the radiation from one frequency to another. We have observed that a weak magnetic field tends to increase the apparent random-like behaviors in a collisional turbulent plasma. On the theoretical side, we have been able to achieve a form for the collisional redistribution function. It remains to apply these concepts to a stationary turbulent plasma in the reflected ionizing shock wave and to exercise the implications of evaluations of the collisional redistribution function for such a system when it is probed by a strong radiation source. These results are discussed in detail in the publications, which have resulted from the this effort, cited at the end of the report

  7. Understanding SOL plasma turbulence by interchange motions

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jan; Pitts, R. A.; Nielsen, A.H.; Garcia, O.E.

    2007-01-01

    Roč. 52, č. 16 (2007), s. 192-193 ISSN 0003-0503. [Annual meeting of the division of plasma physics/49th./. Orlando , 12.11.2007-16.11.2007] Grant - others:-(XE) European Training fellowships and Grants (Euratom), EDGETURB Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * scrape-off layer * turbulence * interchange instability Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Event/70125

  8. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Porter, G.D.; Rognlien, T.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    2001-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and nite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  9. Turbulence studies in tokamak boundary plasmas with realistic divertor geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Por, G.D. ter; Rognlien, T.D.; Ryutov, D.D.; Myra, J.R.; D'Ippolito, D.A.; Moyer, R.; Groebner, R.J.

    1999-01-01

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT and the linearized shooting code BAL for studies of turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the E x B drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters. (author)

  10. High-confinement-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Snyder, P.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; La Bombard, B.; Snipes, J.A.; Wolfe, S.; Wilson, H.

    2003-01-01

    For steady state high-confinement-mode (H-mode) operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. Alcator C-Mod [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] sees two such mechanisms--EDA (enhanced D-alpha H mode) and grassy ELMs (edge localized modes), but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasicoherent (QC) electromagnetic mode that exists at moderate pedestal temperature T 95 >3.5, and does not limit the buildup of the edge pressure gradient. The q boundary of the operational space of the mode depends on plasma shape, with the q 95 limit moving down with increasing plasma triangularity. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations ( f<50 kHz) and small irregular ELMs are observed. Ideal MHD (magnetohydrodynamic) stability analysis that includes both pressure and current driven edge modes shows that the discharges where the QC mode is observed are stable. The ELMs are identified as medium n (10< n<50) coupled peeling/ballooning modes. The predicted stability boundary of the modes as a function of pedestal current and pressure gradient is reproduced in experimental observations. The measured dependence of the ELMs' threshold and amplitude on plasma triangularity is consistent with the results of ideal MHD analysis performed with the linear stability code ELITE [Wilson et al., Phys. Plasmas 9, 1277 (2002)

  11. Effect of neutral atoms on tokamak edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Catto, Peter J.; Helander, P.

    2001-01-01

    Neutral atoms can significantly influence the physics of tokamak edge plasmas, e.g., by affecting the radial electric field and plasma flow there, which may, in turn, be important for plasma confinement. Earlier work [Fueloep et al., Phys. Plasmas 5, 3969 (1998)], assuming short mean-free path neutrals and Pfirsch-Schlueter ions, has shown that the ion-neutral coupling through charge-exchange affects the neoclassical flow velocity significantly. However, the mean-free path of the neutrals is not always small in comparison with the radial scale length of densities and temperatures in the edge pedestal. It is therefore desirable to determine what happens in the limit when the neutral mean-free path is comparable with the scale length. In the present work a self-similar solution for the neutral distribution function allowing for strong temperature and density variation is used, following the analysis of Helander and Krasheninnikov [Phys. Plasmas 3, 226 (1995)]. The self-similar solution is possible if the ratio of the mean-free path to the temperature and density scale length is constant throughout the edge plasma. The resulting neutral distribution function is used to investigate the neutral effects on the ion flow and electrostatic potential as this ratio varies from much less than one to order unity

  12. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  13. Search for coherent structure within tokamak plasma turbulence

    International Nuclear Information System (INIS)

    Zweben, S.J.

    1985-01-01

    Two-dimensional tokamak edge density turbulence data are examined for possible coherent or organized structure. The spatial patterns of density fluctuations n appear to consist of localized ''blobs'' of relatively high or low density which can move irregularly both radially and poloidally through the edge region. However, a statistical analysis of the lifetime, area, direction, speed, and amplitude of these blobs does not as yet suggest any organized structure associated with the blobs beyond that which can be described by time-averaged correlation functions

  14. Intrinsic suppression of turbulence in linear plasma devices

    Science.gov (United States)

    Leddy, J.; Dudson, B.

    2017-12-01

    Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.

  15. Theory of self-sustained turbulence in confined plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Fukuyama, A.; Yagi, M.

    1996-01-01

    This article reviews some aspects of recent theoretical activities in Japan on the problem of turbulent transport in confined plasmas. The method of self-sustained turbulence is discussed. The process of the renormalization is shown and the turbulent Prandtl number is introduced. Nonlinear destabilization by the electron momentum diffusion is explained. The nonlinear eigenmode equation is derived for the dressed-test-mode for the inhomogeneous plasma in the shear magnetic field. The eigenvalue equation is solved, and the least stable mode determines the anomalous transport coefficient. The formula of the thermal conductivity is presented for the system of bad average magnetic curvature (current diffusive interchange mode (CDIM) turbulence) and that for the average good magnetic curvature (current diffusive ballooning mode (CDBM) turbulence). The transport coefficient, scale length of fluctuations and fluctuation level are shown to be an increasing function of the pressure gradient. Verification by use of the nonlinear simulation is shown. The bifurcation of the electric field and improved confinement are addressed, in order to explain the H-mode physics. The improved confinement and dynamics such as ELMs are explained. Application to the transport analysis of tokamaks is also presented, including explanations of the L-mode confinement, internal transport barrier, and the role of the current profile control

  16. The role of the sheath in magnetized plasma turbulence and flows

    International Nuclear Information System (INIS)

    Loizu, J.

    2013-01-01

    Controlled nuclear fusion could provide our society with a clean, safe, and virtually inexhaustible source of electric power production. The tokamak has proven to be capable of producing large amounts of fusion reactions by conning magnetically the fusion fuel at sufficiently high density and temperature, thus in the plasma state. Because of turbulence, however, high temperature plasma reaches the outermost region of the tokamak, the Scrape-Off Layer (SOL), which features open magnetic field lines that channel particles and heat into a dedicated region of the vacuum vessel. The plasma dynamics in the SOL is crucial in determining the performance of tokamak devices, and constitutes one of the greatest uncertainties in the success of the fusion program. In the last few years, the development of numerical codes based on reduced fluid models has provided a tool to study turbulence in open field line configurations. In particular, the GBS (Global Braginskii Solver) code has been developed at CRPP and is used to perform global, three-dimensional, full-n, flux-driven simulations of plasma turbulence in open field lines. Reaching predictive capabilities is an outstanding challenge that involves a proper treatment of the plasma-wall interactions at the end of the field lines, to well describe the particle and energy losses. This involves the study of plasma sheaths, namely the layers forming at the interface between plasmas and solid surfaces, where the drift and quasi neutrality approximations break down. This is an investigation of general interest, as sheaths are present in all laboratory plasmas. This thesis presents progress in the understanding of plasma sheaths and their coupling with the turbulence in the main plasma. A kinetic code is developed to study the magnetized plasma-wall transition region and derive a complete set of analytical boundary conditions that supply the sheath physics to fluid codes. These boundary conditions are implemented in the GBS code and

  17. Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices

    Directory of Open Access Journals (Sweden)

    S. Wiesen

    2017-08-01

    Full Text Available Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs. For an electricity-producing fusion power plant at power density Psep/R>15MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures, SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation

  18. Instabilities, turbulence and transport in a magnetized plasma

    International Nuclear Information System (INIS)

    Garbet, X.

    2001-06-01

    The purpose of this work is to introduce the main processes that occur in a magnetized plasma. During the last 2 decades, the understanding of turbulence has made great progress but analytical formulas and simulations are far to produce reliable predictions. The values of transport coefficients in a tokamak plasma exceed by far those predicted by the theory of collisional transport. This phenomenon is called abnormal transport and might be due to plasma fluctuations. An estimation of turbulent fluxes derived from the levels of fluctuations, is proposed. A flow description of plasma allows the understanding of most micro-instabilities. The ballooning representation deals with instabilities in a toric geometry. 3 factors play an important role to stabilize plasmas: density pinch, magnetic shear and speed shear. The flow model of plasma gives an erroneous value for the stability threshold, this is due to a bad description of the resonant interaction between wave and particle. As for dynamics, flow models can be improved by adding dissipative terms so that the linear response nears the kinetic response. The kinetic approach is more accurate but is complex because of the great number of dimensions involved. (A.C.)

  19. Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence

    Science.gov (United States)

    Howes, Gregory; Klein, Kristropher

    2016-10-01

    Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.

  20. Total hydrogen and oxygen fluxes in the edge plasma of tokamaks

    International Nuclear Information System (INIS)

    Kastelewicz, H.

    1988-01-01

    A relativistic model of the edge plasma of tokamaks is described considering the primary neutral fluxes emitted from limiter and wall. The primary neutrals, which determine essentially the particle flux balance in the plasma edge, the scrape-off layer plasma and the particles adsorbed at limiter and wall are treated as separate subsystems which are iteratively coupled through the mutual particle sinks and sources. The model is used for the calculation of total hydrogen and oxygen fluxes in edge plasma of tokamaks. The results for different fractions of and contributions to the total fluxes are illustrated and discussed

  1. Effects of the location of a biased limiter on turbulent transport in the IR-T1 tokamak plasma

    International Nuclear Information System (INIS)

    Alipour, R.; Ghoranneviss, M.; Salar Elahi, A.; Meshkani, S.

    2017-01-01

    Plasma confinement plays an important role in fusion study. Applying an external voltage using limiter biasing system is proved to be an efficient approach for plasma confinement. In this study, the position of the limiter biasing system was changed to investigate the effect of applying external voltages at different places to the plasma. The external voltages of ±200 V were applied at the different positions of edge, 5 mm and 10 mm inside the plasma. Then, the main plasma parameters were measured. The results show that the poloidal turbulent transport and radial electric field increased about 25-35% and 35-45%, respectively (specially when the limiter biasing system was placed 5 mm inside the plasma). Also, the Reynolds stress has experienced its maximum reduction about 5-10% when the limiter biasing system was at 5 mm inside the plasma and the voltage of +200 V was applied to the plasma. When the limiter biasing system move 10 mm inside the plasma, the main plasma parameters experienced more instabilities and fluctuations than other positions. (authors)

  2. Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Garth V. Hobson

    1999-01-01

    Full Text Available Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.

  3. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-01-01

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  4. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  5. Neutral molecules in tokamak edge plasma - role of vibrationally excited hydrogen molecules

    International Nuclear Information System (INIS)

    Cadez, I.; Cercek, M.; Pelicon, P.; Razpet, A.

    2003-01-01

    The role of neutral molecules in edge plasma is discussed with special emphasis on the vibrationally excited hydrogen. Neutral molecules are formed mostly by surface processes on the walls and then released to the edge plasma where they take part in volumetric reactions with other particles. Typically these molecules are formed in excited states and data are needed for their reactions on the wall and in the volume. Processes in edge plasma determine particle and energy flux what is especially critical issue in tokamak divertor region. Various cross sections and reaction rates are needed for modelling edge plasma and its interaction with walls. (author)

  6. Radio wave dissipation in turbulent auroral plasma during the precipitation of energetic electrons

    International Nuclear Information System (INIS)

    Mishin, E.V.; Luk'ianova, L.N.; Makarenko, S.F.; Atamaniuk, B.M.

    1992-01-01

    The results of the theoretical analysis of anomalous (collisionless) radio wave absorption in the turbulent auroral ionosphere during the intrusion of energetic electrons (i.e., in aurorae) are presented. The implications of the plasma turbulent layer (PTL) theory are used. It is shown that the dissipation of radio waves with frequencies much higher than the plasma frequency is caused by the nonlinear (combined) scattering in turbulent plasma of the PTL. In the auroral electrojet layer the principal dissipative process for the radio waves with frequencies close to the plasma frequency is O-Z transformation on the field-aligned, small-scale density fluctuations. The typical dissipation decrements are estimated. 26 refs

  7. Time dependent plasma viscosity and relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    Time dependent plasma viscosities for asymmetric toroidal plasmas in various collisionality regimes are calculated. It is known that in the symmetric limit the time dependent plasma viscosities accurately describe plasma flow damping rate. Thus, time dependent plasma viscosities are important in modeling the radial electric field of the zonal flow. From the momentum balance equation, it is shown that, at the steady state, the balance of the viscosity force and the momentum source determines the radial electric field of the zonal flow. Thus, for a fixed source, the smaller the viscous force is, the larger the value of the radial electric field is, which in turn suppresses the turbulence fluctuations more and improves turbulence transport. However, the smaller the viscous force also implies the smaller the neoclassical transport fluxes based on the neoclassical flux-force relationship. We thus show that when neoclassical transport fluxes are improved so are the turbulent fluxes in toroidal plasmas. (author)

  8. Plasma shaping effects on tokamak scrape-off layer turbulence

    Science.gov (United States)

    Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo

    2017-03-01

    The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\

  9. Comparison between 2D turbulence model ESEL and experimental data from AUG and COMPASS tokamaks

    DEFF Research Database (Denmark)

    Ondac, Peter; Horacek, Jan; Seidl, Jakub

    2015-01-01

    In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtain...... for an extension of the ESEL model from 2D to 3D to fully resolve the parallel dynamics, and the coupling from the plasma to the sheath....

  10. Microstructures (clumps) in turbulent plasmas

    International Nuclear Information System (INIS)

    Balescu, R.; Misguich, J.H.

    1977-01-01

    A general analysis of binary correlations in a turbulent plasma leads to a functional relation relating correlations to the one-particle distribution function. Such a relation allows to understand the mechanism of generation of the microstructures or clumps introduced by Dupree. The expressions introduced by this author appear as a lowest approximation of the general equation. The features and interpretation of these microstructures are briefly discussed [fr

  11. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  12. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  13. The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer

    Science.gov (United States)

    Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.

    2011-12-01

    In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as

  14. The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer

    International Nuclear Information System (INIS)

    Taveira, R M R; Silva, C B da; Pereira, J C F

    2011-01-01

    In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ('nibbling') motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Re λ = 120 to Re λ = 160 (da Silva and Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the 'scalar interface' and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by I , in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface 0.1y I /λ to 1y I /λand boosting them as far as -2.5y I /η θ C .

  15. Effects of Collisionality on the Nonlinear Characteristics of Boundary Turbulence and Blob/hole Transport in Tokamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Yasuaki, K., E-mail: lijq@energy.kyoto-u.ac.jp [Kyoto University, Kyoto (Japan); Cheng, J.; Longwen, Y.; Jiaqi, D. [Southwestern Institute of Physics, Chengdu (China)

    2012-09-15

    Full text: Blob/hole dynamics near tokamak separatrix is of striking importance in determining the boundary transport. Based on simulations using an extended 2-region (edge/SOL) fluid model, we found that blob/hole dynamics are sensitively influenced by the plasma collisionality, i.e., ion-electron and ion-neutral collisions. Namely, the holes are enhanced in highly collisional edge whereas the blobs are weakened at the SOL, causing larger particle convection. These blob/hole dynamics are closely correlated with potential dipoles. The trends are experimentally evidenced on the HL-2A tokamak. Moreover, as the neutral-ion collision increases, the blobs at the SOL tend to develop into streamers propagating outwards with reduced amplitude while the holes inwards are suppressed, showing a key role in nonlinear structure regulation and resultant transport suppression. Results suggest that adjusting the plasma collisionality by fueling, e.g., gas puffing, could serve as a method to nonlinearly select turbulent structures, i.e., blobs, holes or streamers, to access the control of boundary transport. (author)

  16. A weakened cascade model for turbulence in astrophysical plasmas

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.

    2011-01-01

    A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.

  17. Edge Sheared Flows and Blob Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Myra, J.; D' Ippolito, D.; Russell, D., E-mail: jrmyra@lodestar.com [Lodestar Research Corporation, Boulder (United States); Davis, W. M.; Zweben, S. [Princeton Plasma Physics Laboratory, Princeton (United States); Terry, J.; LaBombard, B. [Massachusetts Institute of Technology, Cambridge (United States)

    2012-09-15

    Full text: A study of sheared flows in the edge and scrape-off layer (SOL) and their interaction with blob-filaments is presented. Edge sheared flows are believed to be important for the L-H, and H-L transitions. Blob generation and dynamics impacts both the (near-separatrix) scrape-off-layer (SOL) width critical for power handling in the divertor, and the interaction of plasma in the far SOL with plasma-facing components. These topics are critical for ITER and future devices. A fluid-based 2D curvature-interchange model embedded in the SOLT code is employed to study these issues. Sheared binormal flows both regulate the power flux crossing the separatrix and control the character of emitted turbulence structures such as blob-filaments. At a critical power level (depending on parameters) the laminar flows containing intermittent, but bound, structures give way to full-blown blob emissions signifying a transition from quasi-diffusive to convective transport. In order to diagnose sheared flows in experiments and assess their interaction with blobs, a blob-tracking algorithm has been developed and applied to both NSTX and Alcator C-Mod data. Blob motion and ellipticity can be affected by sheared flows, and are diagnosed and compared with seeded blob simulations. A picture of the interaction of blobs and sheared flows is emerging from advances in the theory and simulation of edge turbulence, combined with ever-improving capabilities for edge diagnostics and their analysis. (author)

  18. The pinch of cold ions from recycling in the tokamak edge pedestal

    International Nuclear Information System (INIS)

    Wan Weigang; Parker, Scott E.; Chen Yang; Park, Gun-Young; Chang, Choong-Seock; Stotler, Daren

    2011-01-01

    We apply the ''natural fueling mechanism'' [W. Wan, S. E. Parker, Y. Chen, and F. W. Perkins, Phys. Plasmas 17, 040701 (2010)] to the edge pedestal. The natural fueling mechanism is where cold ions naturally pinch radially inward for a heat-flux dominated plasma. It is shown from neoclassical-neutral transport coupled simulations that the recycling neutrals and the associated source ions are colder than the main ions in the edge pedestal. These recycling source ions will pinch radially inward due to microturbulence. Gyrokinetic turbulence simulations indicate that near the top of the pedestal, the pinch velocity of the recycling source ions is much higher than the main ion outgoing flow velocity. The turbulent pinch of the recycling source ions may play a role in the edge pedestal transport and dynamics. The cold ion temperature significantly enhances the pinch velocity of the recycling source ions near to the pedestal top. Neoclassical calculations show a cold ion pinch in the pedestal as well.

  19. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  20. Langmuir turbulence in space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, M.V. [Colorado Univ., Boulder, CO (United States); Newman, D.L. [Colorado Univ., Boulder, CO (United States); Wang, J.G. [Colorado Univ., Boulder, CO (United States); Muschietti, L. [California Univ., Berkeley (United States). Space Sciences Lab.

    1996-11-01

    Recent developments in theoretical and numerical modeling of Langmuir turbulence in space and laboratory plasmas are addressed. Kinetic effects, which have been missing from (fluid) traditional Zakharov equation models are explored using Vlasov code simulations. These studies are motivated by beam-driven Langmuir waves and particle distributions measured in earth`s foreshock region, and by beam-driven Langmuir waves and beams that underlie type III solar radio emission in the solar wind. The nonlinear physical processes studied in these 1-D Vlasov simulations include both wave-wave interactions and acceleration of particles by waves-leading to electron-beam flattening. We study bump-on-tail instabilities as boundary value problems, and determine the interplay in space and time between beam plateau formation, stimulated wave-wave backscatter cascades, and strong turbulence wave-packet collapse. (orig.).

  1. Self-consistent dynamo-like activity in turbulent plasmas

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Hameiri, E.

    1986-05-01

    The evolution of turbulent plasmas is investigated within the framework of resistive magnetohydrodynamics. The functional form of the mean electric field is derived for fluctuations generated by tearing and resistive interchange modes. It is shown that a bath of such local and global modes in pinches causes toroidal field-reversal with finite pressure gradients in the plasma

  2. Extended fluid transport theory in the tokamak plasma edge

    Science.gov (United States)

    Stacey, W. M.

    2017-06-01

    Fluid theory expressions for the radial particle and energy fluxes and the radial distributions of pressure and temperature in the edge plasma are derived from fundamental conservation (particle, energy, momentum) relations, taking into account kinetic corrections arising from ion orbit loss, and integrated to illustrate the dependence of the observed edge pedestal profile structure on fueling, heating, and electromagnetic and thermodynamic forces. Solution procedures for the fluid plasma and associated neutral transport equations are discussed.

  3. Fast wave evanescence in filamentary boundary plasmas

    International Nuclear Information System (INIS)

    Myra, J. R.

    2014-01-01

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed

  4. Carbon distribution during plasma detachment triggered by edge magnetic island formation in LHD

    International Nuclear Information System (INIS)

    Dong, C.F.; Morita, S.; Kobayashi, M.; Oishi, T.; Goto, M.; Wang, E.H.; Huang, X.L.

    2013-01-01

    The detached plasma has been successfully achieved by applying the edge 1/1 magnetic island in Large Helical Device (LHD). Carbon, which is uniquely the dominant intrinsic impurity in general LHD discharges, is considered to be the main radiating species in the island-triggered detached plasma. The vertical profile of CIV measured from general discharges of LHD is characterized by a single edge intensity peak. In detached plasmas triggered by the edge magnetic island formation, however, the vertical profile of CIV shows a significant difference. Double edge peaks of CIV are found during the plasma detachment and the CIV radiation is also remarkably enhanced in the vicinity of X-point, whereas the vertical profile of CVI does not show any significant difference in both the attached and detached plasmas. In this proceeding the carbon distribution during the plasma detachment is presented and the results are discussed with edge magnetic field structure. (author)

  5. Toward a first-principles integrated simulation of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Chang, C S; Klasky, Scott A; Cummings, Julian; Samtaney, Ravi; Shoshani, A.; Sugiyama, L.; Keyes, David E; Ku, Seung-Hoe; Park, G.; Parker, Scott; Podhorszki, Norbert; Strauss, H.; Abbasi, H.; Adams, Mark; Barreto, Roselyne D; Bateman, Glenn; Bennett, K.; Chen, Yang; D'Azevedo, Eduardo; Docan, Ciprian; Ethier, Stephane; Feibush, E.; Greengard, Leslie; Hahm, Taik Soo; Hinton, Fred; Jin, Chen; Khan, A.; Kritz, Arnold; Krstic, Predrag S; Lao, T.; Lee, Wei-Li; Lin, Zhihong; Lofstead, J.; Mouallem, P. A.; Nagappan, M.; Pankin, A.; Parashar, Manish; Pindzola, Michael S.; Reinhold, Carlos O; Schultz, David Robert; Schwan, Karsten; Silver, D.; Sim, A.; Stotler, D.

    2008-01-01

    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles

  6. Bispectral experimental estimation of the nonlinear energy transfer in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Manz, P.; Ramisch, M.; Stroth, U.

    2008-01-01

    Experimental density and potential fluctuation data from a 2D probe array have been analysed to study the turbulent cascade in a toroidally confined magnetized plasma. The bispectral analysis technique used is from Ritz et al ( 1989 Phys. Fluids B 1 153) and Kim et al ( 1996 Phys. Plasmas 3 3998...... scales. This is the first experimental evidence for the dual turbulent cascade in a magnetized plasma....

  7. Plasma turbulence imaging using high-power laser Thomson scattering

    Science.gov (United States)

    Zweben, S. J.; Caird, J.; Davis, W.; Johnson, D. W.; Le Blanc, B. P.

    2001-01-01

    The two-dimensional (2D) structure of plasma density turbulence in a magnetically confined plasma can potentially be measured using a Thomson scattering system made from components of the Nova laser of Lawrence Livermore National Laboratory. For a plasma such as the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory, the laser would form an ≈10-cm-wide plane sheet beam passing vertically through the chamber across the magnetic field. The scattered light would be imaged by a charge coupled device camera viewing along the direction of the magnetic field. The laser energy required to make 2D images of density turbulence is in the range 1-3 kJ, which can potentially be obtained from a set of frequency-doubled Nd:glass amplifiers with diameters in the range of 208-315 mm. A laser pulse width of ⩽100 ns would be short enough to capture the highest frequency components of the expected density fluctuations.

  8. UCLA program in theory and modeling of edge physics and plasma material interaction

    International Nuclear Information System (INIS)

    Conn, R.W.; Najmabadi, F.; Grossman, A.; Merriman, B.; Day, M.

    1992-01-01

    Our research activity in edge plasma modeling is directed towards understanding edge plasma behavior and towards innovative solutions for controlling the edge plasma as well as the design and operation of impurity control, particle exhaust. and plasma facing components. During the last nine months, substantial progress was made in many areas. The highlights are: (A) Development of a second-generation edge-plasma simulation code (Section II); (B) Development of models for gas-target divertors, including a 1 1/2-D fluid model for plasma and Monte Carlo neutral-transport simulations (Section III); and (C) Utilization of the RF ponderomotive force and electrostatic biasing to distribute the heat load on a larger area of the divertor plate, and the development of analytical and numerical transport models that include both ponderomotive and electrostatic potentials

  9. Exponential Frequency Spectrum in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Measurements of a magnetized plasma with a controlled electron temperature gradient show the development of a broadband spectrum of density and temperature fluctuations having an exponential frequency dependence at frequencies below the ion cyclotron frequency. The origin of the exponential frequency behavior is traced to temporal pulses of Lorentzian shape. Similar exponential frequency spectra are also found in limiter-edge plasma turbulence associated with blob transport. This finding suggests a universal feature of magnetized plasma turbulence leading to nondiffusive, cross-field transport, namely, the presence of Lorentzian shaped pulses

  10. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    Science.gov (United States)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  11. Processes arising in the edge and diverted plasmas during ITB formation in the U-3M torsatron

    Energy Technology Data Exchange (ETDEWEB)

    Chechkin, V V [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Grigor' eva, L I [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Sorokovoy, E L [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Sorokovoy, Ye L [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Slavnyj, A S [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Volkov, Ye D [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Beletskij, A A [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Burchenko, P Ya [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Tsybenko, S A [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Lozin, A V [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Kulaga, A Ye; Letvinov, A P [Institute of Plasma Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya st. 1, 61108 Kharkov (Ukraine); Masuzaki, S; Yamazaki, K [National Institute for Fusion Science, Oroshi-cho 322-6, Toki-shi 509-5292 (Japan)

    2006-05-15

    Spontaneous changes in confined plasma parameters have been observed recently in the l = 3/m = 9 Uragan-3M torsatron with an RF produced and heated plasma, these being interpreted as transition to an improved confinement mode due to ITB formation near the {iota} = 1/4 rational magnetic surface. In the work presented joint studies are carried out of changes in some edge and diverted plasma characteristics that accompany ITB formation. It is shown that ITB formation induces a hard E{sub r} bifurcation at the boundary presumably driven by the ion orbit loss. As a result, E{sub r} becomes more negative, and an E{sub r} shear layer occurs, where the low-frequency microturbulence and the turbulence-induced anomalous transport are suppressed, i.e. an ETB is formed. At the pre-bifurcation phase of transition a reduction of fast ion loss takes place. The bifurcation results in an improvement of electron confinement, while the ion loss increases.

  12. Transport of thermal plasma above the auroral ionosphere in the presence of electrostatic ion-cyclotron turbulence

    Directory of Open Access Journals (Sweden)

    V. E. Zakharov

    Full Text Available The electron component of intensive electric currents flowing along the geomagnetic field lines excites turbulence in the thermal magnetospheric plasma. The protons are then scattered by the excited electromagnetic waves, and as a result the plasma is stable. As the electron and ion temperatures of the background plasma are approximately equal each other, here electrostatic ion-cyclotron (EIC turbulence is considered. In the nonisothermal plasma the ion-acoustic turbulence may occur additionally. The anomalous resistivity of the plasma causes large-scale differences of the electrostatic potential along the magnetic field lines. The presence of these differences provides heating and acceleration of the thermal and energetic auroral plasma. The investigation of the energy and momentum balance of the plasma and waves in the turbulent region is performed numerically, taking the magnetospheric convection and thermal conductivity of the plasma into account. As shown for the quasi-steady state, EIC turbulence may provide differences of the electric potential of ΔV≈1–10 kV at altitudes of 500 < h < 10 000 km above the Earth's surface. In the turbulent region, the temperatures of the electrons and protons increase only a few times in comparison with the background values.

    Key words. Magnetospheric physics (electric fields; plasma waves and instabilities

     

  13. Impurity flux collection at the plasma edge of the tokamak MT-1

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Bakos, J.S.; Petravich, G.

    1989-09-01

    Fluxes of intrinsic and injected impurities and background plasma ions were collected using a bidirectional probe at the plasma edge of the tokamak MT-1. The directional and radial dependences of injected impurities and plasma ions were very similar indicating a strong coupling of the impurity transport to the dynamics of the background plasma. The measured intrinsic concentration of about 10 -4 for Mo at the plasma edge is derived. (author) 17 refs.; 5 figs

  14. Radio images of the interplanetary turbulent plasma

    International Nuclear Information System (INIS)

    Vlasov, V.I.

    1979-01-01

    The results of the interplanetary scintillation daily observations of approximately 140 radio sources are given. The observations were carried out at the radiotelescope VLPA FIAN during 24 days in October-November 1975 and 6 days in April 1976. The maps (radio images) of interplanetary turbulent plasma are presented. The analysis of the maps reveals the presence of large-scale irregularities in the interplanetary plasma. The variability in large-scale structure of the interplanetary plasma is due mainly to transport of matter from the Sun. A comparison of the scintillation with the geomagnetic activity index detected the presence of a straight connection between them

  15. Intermittent and global transitions in plasma turbulence

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Itoh, K.; Itoh, S.-I.

    2003-07-01

    The dynamics of the transition processes in plasma turbulence described by the nonlinear Langevin equation (1) is studied. We show that intermittent or global transitions between metastable states can appear. The conditions for the generation of these transitions and their statistical characteristics are determined. (author)

  16. Code improvements and applications of a two-dimensional edge plasma model for toroidal devices

    International Nuclear Information System (INIS)

    Baelmans, M.

    1994-03-01

    This thesis focuses mainly on plasma behaviour in boundary layers of magnetically confined plasmas. Increasing emphasis has been put on edge studies during the last decade, as it became evident that some aspects of Tokamak operations are largely controlled, or even dominated, by edge processes. Therefore, the motivation for this research is to improve understanding of plasma behaviour in general, and edge plasma behaviour in particular, firstly in present experiments, and also to predict edge plasma conditions in future nuclear fusion devices. In a first section some fundamental concepts and principles of controlled fusion are described. Two different types of plasma confinement concepts which have promising features with regard to the above mentioned goal are outlined in a next section, 1.2. In section 1.3 an introduction to plasma edge phenomena is given. In a last section, 1.4, the outline of the thesis is described. (orig.)

  17. The impact of pedestal turbulence and electron inertia on edge-localized-mode crashes

    Energy Technology Data Exchange (ETDEWEB)

    Xi, P. W. [FSC and State Key Lab of Nuclear Physics and Technology, Department of Physics, Peking University, Beijing 100871 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Center for Astrophysics and Space Sciences and Department of Physics, University of California San Diego, La Jolla, California 92093-0429 (United States)

    2014-05-15

    We demonstrate that the occurrence of Edge-Localized-Modes (ELM) crashes does not depend only on the linear peeling-ballooning threshold, but also relies on nonlinear processes. Wave-wave interaction constrains the growth time of a mode, thus inducing a shift in the criterion for triggering an ELM crash. An ELM crash requires the P-B growth rate to exceed a critical value γ>γ{sub c}, where γ{sub c} is set by 1/τ{sup ¯}{sub c}, and τ{sup ¯}{sub c} is the averaged mode phase coherence time. For 0<γ<γ{sub c}, P-B turbulence develops but drives enhanced turbulent transport. We also show that electron inertia dramatically changes the instability threshold when density is low. However, P-B turbulence alone cannot generate enough current transport to allow fast reconnection during an ELM crash.

  18. ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  19. Statistical theory of plasmas turbulence

    International Nuclear Information System (INIS)

    Kim, Eun-jin; Anderson, Johan

    2009-01-01

    We present a statistical theory of intermittency in plasma turbulence based on short-lived coherent structures (instantons). In general, the probability density functions (PDFs) of the flux R are shown to have an exponential scaling P(R) ∝ exp (-cR s ) in the tails. In ion-temperature-gradient turbulence, the exponent takes the value s=3/2 for momentum flux and s=3 for zonal flow formation. The value of s follows from the order of the highest nonlinear interaction term and the moments for which the PDFs are computed. The constant c depends on the spatial profile of the coherent structure and other physical parameters in the model. Our theory provides a powerful mechanism for ubiquitous exponential scalings of PDFs, often observed in various tokamaks. Implications of the results, in particular, on structure formation are further discussed. (author)

  20. Interaction of ICRF power and edge plasma in Tore Supra ergodic divertor configuration

    International Nuclear Information System (INIS)

    Nguyen, F.; Grosman, A.; Basiuk, V.; Fraboulet, D.; Beaumont, B.; Becoulet, A.; Ghendrih, Ph.; Ladurelle, L.; Meslin, B.

    2000-01-01

    The coupling of ICRF power to plasma is a crucial problem in Tore Supra for high power and long pulse operations and depends greatly on the edge parameters, in particular on the edge density. Conversely, the behaviour of the bulk plasma is related to the edge conditions and the injection of RF power also induces major modifications on the edge plasma. Moreover, the Ergodic Divertor (ED) of Tore Supra imposes a complex configuration at the edge due to the presence of the magnetic perturbation. Several diagnostics are available to study the interaction of ICRF power with the edge plasma: Langmuir probes on the ED modules, infra red (IR) cameras, charge exchange neutral analysers. In minority heating scheme, the edge density is very sensitive to any perturbation in the high recycling regime which is always found in the ED configuration for relevant plasma parameters. Partially detached regimes, with or without inhomogeneities of density and temperature induced by the flux tubes of the laminar layer, are obtained for high resistance coupling values. The coupling is then not very robust and feedback control or antenna automatic matching techniques are developed. In fast wave electron heating scheme with ED, various fast wave absorption mechanisms (minority heating, Mode Conversion, Alfven resonance) are present at the plasma edge due to the large size of the plasma. The ICRF coupling is difficult due to the low fast wave direct electron damping, even with high hydrogen minority scheme. An increase of the injected ICRF power could improve this situation

  1. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    International Nuclear Information System (INIS)

    Plunk, G. G.; Tatsuno, T.

    2011-01-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  2. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    Science.gov (United States)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  3. Derivation of stochastic differential equations for scrape-off layer plasma fluctuations from experimentally measured statistics

    Energy Technology Data Exchange (ETDEWEB)

    Mekkaoui, Abdessamad [IEK-4 Forschungszentrum Juelich 52428 (Germany)

    2013-07-01

    A method to derive stochastic differential equations for intermittent plasma density dynamics in magnetic fusion edge plasma is presented. It uses a measured first four moments (mean, variance, Skewness and Kurtosis) and the correlation time of turbulence to write a Pearson equation for the probability distribution function of fluctuations. The Fokker-Planck equation is then used to derive a Langevin equation for the plasma density fluctuations. A theoretical expectations are used as a constraints to fix the nonlinearity structure of the stochastic differential equation. In particular when the quadratically nonlinear dynamics is assumed, then it is shown that the plasma density is driven by a multiplicative Wiener process and evolves on the turbulence correlation time scale, while the linear growth is quadratically damped by the fluctuation level. Strong criteria for statistical discrimination of experimental time series are proposed as an alternative to the Kurtosis-Skewness scaling. This scaling is broadly used in contemporary literature to characterize edge turbulence, but it is inappropriate because a large family of distributions could share this scaling. Strong criteria allow us to focus on the relevant candidate distribution and approach a nonlinear structure of edge turbulence model.

  4. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Wang, W.X.; Hahm, T.S.; Ethier, S.; Zakharov, L.E.

    2011-01-01

    Recent progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported with emphasis on electron thermal transport dominated regimes. The turbulence driven intrinsic torque associated with nonlinear residual stress generation by the fluctuation intensity and the intensity gradient in the presence of zonal flow shear induced asymmetry in the parallel wavenumber spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current. These results qualitatively reproduce empirical scalings of intrinsic rotation observed in various experiments. The origin of current scaling is found to be due to enhanced kll symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic torque on pressure gradient is that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving residual stress, increase with the strength of turbulence drive, which is R0/LTe and R0/Lne for the trapped electron mode.

  5. Arc Voltage Fluctuation in DC Laminar and Turbulent Plasma Jets Generation

    International Nuclear Information System (INIS)

    Pan Wenxia; Meng Xian; Wu Chengkang

    2006-01-01

    Arc voltage fluctuations in a direct current (DC) non-transferred arc plasma generator are experimentally studied, in generating a jet in the laminar, transitional and turbulent regimes. The study is with a view toward elucidating the mechanism of the fluctuations and their relationship with the generating parameters, arc root movement and flow regimes. Results indicate that the existence of a 300 Hz alternating current (AC) component in the power supply ripples does not cause the transition of the laminar plasma jet into a turbulent state. There exists a high frequency fluctuation at 4 kHz in the turbulent jet regime. It may be related to the rapid movement of the anode attachment point of the arc

  6. Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge

    International Nuclear Information System (INIS)

    Jiao Yiming; Gao Qingdi; Shi Bingren

    2001-01-01

    The poloidal rotation of the magnetized edge plasma in tokamak driven by the ponderomotive force which is generated by injecting lower hybrid wave (LHW) electric field has been studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla's grill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneous cold plasma have been derived. It is shown that a strong wave electric field will be generated in the plasma edge by injecting LH wave of the power in MW magnitude, and this electric field will induce a poloidal rotation with a sheared poloidal velocity

  7. Scaling of plasma turbulence resulting from parametric instabilities

    International Nuclear Information System (INIS)

    Ott, E.

    1976-01-01

    Dimensional analysis is used to obtain results on the turbulent state resulting from parametric instabilities of an initially cold plasma. The results include the possibility of an applied magnetic field, multiple ion species, and arbitrary dimensionality

  8. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701, South Korea and University of Maryland, College Park, Maryland 20742 (United States); Simões, F. J. R.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, Rio Grande do Sul (Brazil); Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul (Brazil)

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  9. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2006-01-01

    the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  10. Turbulence effect on Ohm's law in partially ionized plasmas

    International Nuclear Information System (INIS)

    Numano, M.

    1977-01-01

    An investigation of the effect of nonuniformity on electric current flow in partially ionized plasmas is made. An Ohm's law for a nonuniform plasma was derived, from which Rosa's equation is obtained as a special case. Making use of this new Ohm's law, the effective electrical conductivity and Hall coefficient are determined for isotropically turbulent plasmas. They are found to be in good agreement with the results obtained previously. (author)

  11. Coherent structures and turbulence evolution in magnetized non-neutral plasmas

    Science.gov (United States)

    Romé, M.; Chen, S.; Maero, G.

    2018-01-01

    The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.

  12. Investigation of small-scale tokamak plasma turbulence by correlative UHR backscattering diagnostics

    International Nuclear Information System (INIS)

    Gusakov, E Z; Gurchenko, A D; Altukhov, A B; Bulanin, V V; Esipov, L A; Kantor, M Yu; Kouprienko, D V; Lashkul, S I; Petrov, A V; Stepanov, A Yu

    2006-01-01

    Fine scale turbulence is considered nowadays as a possible candidate for the explanation of anomalous ion and electron energy transport in magnetized fusion plasmas. The unique correlative upper hybrid resonance backscattering (UHR BS) technique is applied at the FT-2 tokamak for investigation of density fluctuations excited in this turbulence. The measurements are carried out in Ohmic discharge at several values of plasma current and density and during current ramp up experiment. The moveable focusing antennas set have been used in experiments allowing probing out of equatorial plane. The radial wave number spectra of the small-scale component of tokamak turbulence are determined from the correlation data with high spatial resolution. Two small-scale modes possessing substantially different phase velocities are observed in plasma under conditions when the threshold for the electron temperature gradient mode excitation is overcome. The possibility of plasma poloidal velocity profile determination using the UHR BS signal is demonstrated

  13. Initial results of H-mode edge pedestal turbulence evolution with quadrature reflectometer measurements on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [University of California, Los Angeles, CA 90095 (United States)]. E-mail: wangg@fusion.gat.com; Peebles, W.A. [University of California, Los Angeles, CA 90095 (United States); Doyle, E.J. [University of California, Los Angeles, CA 90095 (United States); Rhodes, T.L. [University of California, Los Angeles, CA 90095 (United States); Zeng, L. [University of California, Los Angeles, CA 90095 (United States); Nguyen, X. [University of California, Los Angeles, CA 90095 (United States); Osborne, T.H. [General Atomics, San Diego, CA 92186-5608 (United States); Snyder, P.B. [General Atomics, San Diego, CA 92186-5608 (United States); Kramer, G.J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Groebner, R.J. [General Atomics, San Diego, CA 92186-5608 (United States); Burrell, K.H. [General Atomics, San Diego, CA 92186-5608 (United States); Leonard, A.W. [General Atomics, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Strait, E.J. [General Atomics, San Diego, CA 92186-5608 (United States)

    2007-06-15

    High-resolution quadrature reflectometer measurements of density fluctuation levels have been obtained on DIII-D for H-mode edge pedestal studies. Initial results are presented from the L-H transition to the first ELM for two cases: (i) a low pedestal beta discharge, in which density turbulence in the pedestal has little change during the ELM-free phase, and (ii) a high pedestal beta discharge in which both density and magnetic turbulence are observed to increase before the first ELM. These high beta data are consistent with the existence of electromagnetic turbulence suggested by some transport models. During Type-I ELM cycles, when little magnetic turbulence can be observed, pedestal turbulence increases just after an ELM crash and then decreases before next ELM strikes, in contrast to a drop after ELM crash and then it re-grows when strong magnetic turbulence shows similar behavior. Clear ELM precursors are observed on {<=}20% of Type-I ELMs observed to date.

  14. High Speed Images of Edge Plasmas in NSTX and Alcator C-Mod

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Grulke, O.; Terry, J.L.; Zweben, S.J.

    2007-01-01

    This talk will describe the high speed imaging diagnostics on NSTX and Alcator C-Mod and show movies of various edge phenomena, including turbulence during L-modes and H modes, L-H and H-L transitions, effects of MHD activity and ELMs of various types, and wide angle views of the toroidal vs. poloidal structure of these edge '' filaments ''. Issues concerning the interpretation of these images will be discussed. (author)

  15. Turbulence in Wendelstein 7-AS plasmas measured by collective light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Basse, Nils Plesner

    2002-08-01

    This Ph.D. thesis contains theoretical and experimental work on plasma turbulence measurements using collective light scattering. The motivation for measuring turbulence in hot fusion plasmas is, along with the method used and results obtained, the subject of chapter 1. The theoretical part is divided into three chapters. Chapter 2 contains a full analytical derivation of the expected dependency of the detected signal on plasma parameters. Thereafter, spatial resolution of the measurements using different methods is treated in chapter 3. Finally, the spectral analysis tools used later in the thesis are described and illustrated in chapter 4. The experimental part is divided into four chapters. In chapter 5 transport concepts relevant to the thesis are outlined. Main parameters of the Wendelstein 7-AS (W7-AS) stellarator in which measurements were made are collected in chapter 6. The setup used to study fluctuations in the electron density of W7-AS plasmas is covered in chapter 7. This localised turbulence scattering (LOTUS) diagnostic is based on a CO{sub 2} laser radiating at a wavelength of 10.59 {mu}m. Fast, heterodyne, dual volume detection at variable wavenumbers between 14 and 62 cm{sup -1} is performed. The central chapter of the thesis, chapter 8, contains an analysis of the measured density fluctuations before, during and after several confinement transition types. The aim was to achieve a better understanding of the connection between turbulence and the confinement quality of the plasma. Conclusions and suggestions for further work are summarised in chapter 9. (au)

  16. Turbulence in Wendelstein 7-AS plasmas measured by collective light scattering

    International Nuclear Information System (INIS)

    Basse, Nils Plesner

    2002-08-01

    This Ph.D. thesis contains theoretical and experimental work on plasma turbulence measurements using collective light scattering. The motivation for measuring turbulence in hot fusion plasmas is, along with the method used and results obtained, the subject of chapter 1. The theoretical part is divided into three chapters. Chapter 2 contains a full analytical derivation of the expected dependency of the detected signal on plasma parameters. Thereafter, spatial resolution of the measurements using different methods is treated in chapter 3. Finally, the spectral analysis tools used later in the thesis are described and illustrated in chapter 4. The experimental part is divided into four chapters. In chapter 5 transport concepts relevant to the thesis are outlined. Main parameters of the Wendelstein 7-AS (W7-AS) stellarator in which measurements were made are collected in chapter 6. The setup used to study fluctuations in the electron density of W7-AS plasmas is covered in chapter 7. This localised turbulence scattering (LOTUS) diagnostic is based on a CO 2 laser radiating at a wavelength of 10.59 μm. Fast, heterodyne, dual volume detection at variable wavenumbers between 14 and 62 cm -1 is performed. The central chapter of the thesis, chapter 8, contains an analysis of the measured density fluctuations before, during and after several confinement transition types. The aim was to achieve a better understanding of the connection between turbulence and the confinement quality of the plasma. Conclusions and suggestions for further work are summarised in chapter 9. (au)

  17. Structure functions and intermittency in ionospheric plasma turbulence

    Directory of Open Access Journals (Sweden)

    L. Dyrud

    2008-11-01

    Full Text Available Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions.

  18. Plasma potential measurements in the edge region of the ISTTOK plasma, using electron emissive probes

    International Nuclear Information System (INIS)

    Ionita, C.; Balan, P.; Schrittwieser, R.; Cabral, J.A.; Fernandes, H.; Figueiredo, H. F.C.; Varandas, C.

    2001-01-01

    We have recently started to use electron-emissive probes for direct measurements of the plasma potential and its fluctuations in the edge region of the plasma ring in the tokamak ISTTOK in Lisbon, Portugal. This method is based on the fact that the electron emission current of such a probe is able to compensate electron temperature variations and electron drifts, which can occur in the edge plasma region of magnetized fusion devices, and which are making measurements with cold probes prone to errors. In this contribution we present some of the first results of our investigations in ISTTOK.(author)

  19. Interplay between edge and outer core fluctuations in the tokamak Tore Supra

    International Nuclear Information System (INIS)

    Fenzi, C.; Garbet, X.; Capes, H.; Devynck, P.; Laviron, C.; Truc, A.; Gervais, F.; Hennequin, P.; Quemeneur, A.

    2000-01-01

    In the tokamak Tore Supra, when a poloidally and toroidally localized limiter, called a modular limiter, is introduced into the lower part of the scrape-off layer, density fluctuations located in the vicinity of this limiter present a specific feature with the appearance of a new spectral pattern in the associated frequency spectrum. This leads to a strong up-down asymmetry observed in both the plasma edge and the plasma outer core, with a maximum level of turbulence at the bottom of the plasma. The observed asymmetry characteristics show that magnetic connection lengths play a critical role here and that the limiter configuration has some effect on the outer core turbulence. (author)

  20. Statistics of turbulent structures in a thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří; Něnička, Václav; Zachar, Andrej

    2005-01-01

    Roč. 38, - (2005), s. 1760-1768 ISSN 0022-3727 R&D Projects: GA AV ČR(CZ) IAA1057202; GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : turbulent structures * thermal plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  1. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    Science.gov (United States)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  2. Development and application of poloidal correlation reflectometry to study turbulent structures in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Prisiazhniuk, Dmitrii

    2017-06-05

    {sup circle}. A small additional declination angle of turbulent structures of the order of ∼ 2-3 {sup circle} from the equilibrium magnetic field line is found at the pedestal position. The dispersion relation of propagating density fluctuations is found to be nearly linear between perpendicular wavenumbers k {sub perpendicular} {sub to} =1 and 12 cm{sup -1} in both the core and edge regions of the plasma. The propagation velocity v {sub perpendicular} {sub to} =v{sub E} {sub x} {sub B}+v{sub ph}, composed of the background E x B drift and the intrinsic phase velocity of the turbulence, shows reasonable agreement with v{sub E} {sub x} {sub B} calculated from neoclassical theory. The extracted turbulence phase velocity from the difference of the measured v {sub perpendicular} {sub to} and the neoclassical estimate of v{sub E} {sub x} {sub B} is significantly smaller than values predicted for linear electron drift waves in the plasma edge region. This value of the measured phase velocity has been compared with a nonlinear turbulence simulation by the gyrofluid code GEMR, which is found to reproduce small phase velocity. In the second part of the thesis, the relation between the turbulence structure, the mean plasma parameters and the v {sub perpendicular} {sub to} velocity shear is investigated. The measured correlation length varies from 0.6 to 2.0 cm and the decorrelation time from 5 to 50 μs. It is shown that the perpendicular correlation length scales with the drift wave scale ρ{sub s}=√(m{sub i}T{sub e})/eB, while the decorrelation time is roughly 40/v {sub perpendicular} {sub to}. Furthermore it is shown that an increase of the v {sub perpendicular} {sub to} flow shear in the edge region results in an additional decrease of decorrelation time that is in agreement with theoretical expectations. The last part of the thesis is devoted to the measurement of turbulence parameters between two different confinement regimes: the linear Ohmic confinement and the

  3. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    Science.gov (United States)

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  4. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2001-02-16

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  5. Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields

    International Nuclear Information System (INIS)

    Krommes, John A.

    2001-01-01

    A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations

  6. PLASMA EMISSION BY WEAK TURBULENCE PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2014-11-10

    The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.

  7. Neutral particle transport modeling with a reflective source in the plasma edge

    International Nuclear Information System (INIS)

    Valenti, M.E.

    1992-01-01

    A reflective source term is incorporated into the Boltzmann neutral particle transport equation to account for boundary reflection. This reflective neutral model is integrated over a uniform axis and subsequently discretized. The discrete two-dimensional equations are solved iteratively with a computer code. The results of the reflective neutral model computer code are benchmarked with the neutral particle transport code ONEDANT. The benchmark process demonstrates the validity of the reflective neutral model. The reflective neutral model is coupled to the Braams plasma particle and energy transport code. The coupled system generates self-consistent plasma edge transport solutions. These solutions, which utilize the transport equation are similar to solutions which utilize simple plasma edge neutral models when high recycle divertors are modeled. In the high recycle mode, the high electron density at the divertor plate reduces the mean free path of plate neutrals. Hence, the similarity in results. It is concluded that simple neutral models are sufficient for the analysis of high recycle power reactor edge plasmas. Low recycle edge plasmas were not examined

  8. Generation and evolution of anisotropic turbulence and related energy transfer in drifting proton-alpha plasmas

    Science.gov (United States)

    Maneva, Y. G.; Poedts, S.

    2018-05-01

    The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.

  9. Tuning of turbulent boundary layer anisotropy for improved surface pressure and trailing-edge noise modeling

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Fischer, Andreas; Zhu, Wei Jun

    2014-01-01

    The modeling of the surface pressure spectrum beneath a turbulent boundary layer is investigated, focusing on the case of airfoil flows and associated trailing edge noise prediction using the so-called TNO model. This type of flow is characterized by the presence of an adverse pressure gradient...... along the airfoil chord. It is shown that discrepancies between measurements and results from the TNO model increase as the pressure gradient increases. The original model is modified by introducing anisotropy in the definition of the turbulent vertical velocity spectrum across the boundary layer...

  10. Suppression and excitation of MHD activity with an electrically polarized electrode at the TCABR tokamak plasma edge

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Kuznetsov, Yu.K.; Guimaraes-Filho, Z.O.; Chamaa-Neto, I. El; Usuriaga, O.; Fonseca, A.M.M.; Galvao, R.M.O.; Caldas, I.L.; Severo, J.H.F.; Semenov, I.B.; Ribeiro, C.; Heller, M.V.P.; Bellintani, V.; Elizondo, J.I.; Sanada, E.

    2007-01-01

    Two reproducible regimes of tokamak operation, with excitation or suppression of MHD activity can be obtained using a voltage-biased electrode inside the edge of the TCABR tokamak. The experiment was carried out adjusting the tokamak parameters to obtain two types of discharges: with strong or weak MHD activity, without biasing in both cases. The plasma current was adjusted to cover a range of safety factor from 2.9 up to 3.5, so that when biasing was applied the magnetic island (3,1) could interact with the edge barrier. The application of biasing in subsequent discharges of each type resulted in excitation or suppression of the MHD activity. The results show that the dominant modes are m = 2, n = 1 and m = 3, n = 1 for excitation and partial suppression, respectively. In both regimes a strong decrease in the radial electric field is detected with destruction of the transport barrier and of the improved confinement caused by different mechanisms. The measurements include temporal behaviour of edge transport, turbulence, poloidal electric and magnetic fields, edge density, radial electric fields and radial profile of H α line intensity. The explanation of the excitation and suppression processes is discussed in the paper

  11. Peeling-off of the external kink modes at tokamak plasma edge

    International Nuclear Information System (INIS)

    Zheng, L. J.; Furukawa, M.

    2014-01-01

    It is pointed out that there is a current jump between the edge plasma inside the last closed flux surface and the scrape-off layer and that the current jump can lead the external kink modes to convert to the tearing modes, due to the current interchange effects [L. J. Zheng and M. Furukawa, Phys. Plasmas 17, 052508 (2010)]. The magnetic reconnection in the presence of tearing modes subsequently causes the tokamak edge plasma to be peeled off to link to the divertors. In particular, the peeling or peeling-ballooning modes can become the “peeling-off” modes in this sense. This phenomenon indicates that the tokamak edge confinement can be worse than the expectation based on the conventional kink mode picture

  12. Peeling-off of the external kink modes at tokamak plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L. J. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Furukawa, M. [Graduate School of Engineering, Tottori University, Tottori 680-8552 (Japan)

    2014-08-15

    It is pointed out that there is a current jump between the edge plasma inside the last closed flux surface and the scrape-off layer and that the current jump can lead the external kink modes to convert to the tearing modes, due to the current interchange effects [L. J. Zheng and M. Furukawa, Phys. Plasmas 17, 052508 (2010)]. The magnetic reconnection in the presence of tearing modes subsequently causes the tokamak edge plasma to be peeled off to link to the divertors. In particular, the peeling or peeling-ballooning modes can become the “peeling-off” modes in this sense. This phenomenon indicates that the tokamak edge confinement can be worse than the expectation based on the conventional kink mode picture.

  13. Turbulence in tokamak plasmas. Effect of a radial electric field shear; Turbulence dans les plasmas de tokamaks. Effet d`un cisaillement de champ electrique radial

    Energy Technology Data Exchange (ETDEWEB)

    Payan, J

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.

  14. Current filaments in turbulent magnetized plasmas

    DEFF Research Database (Denmark)

    Martines, E.; Vianello, N.; Sundkvist, D.

    2009-01-01

    gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events......Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed....

  15. Integrated Predictive Models for ICRF-Edge Plasma Interactions

    International Nuclear Information System (INIS)

    Daniel A. D'Ippolito

    2005-01-01

    The coupling of radiofrequency waves to the edge plasma of a fusion device produces strong nonlinear interactions with the plasma and surrounding material walls which must be controlled in order to protect the antenna and to obtain efficient heating of the core plasma. The goal of the STTR project was to develop the first quantitative numerical simulation of this problem. This report describes the results of the Phase I work by Lodestar and ORNL on this project

  16. Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers

    Science.gov (United States)

    Watanabe, T.; Zhang, X.; Nagata, K.

    2018-03-01

    The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

  17. Performance of a plasma fluid code on the Intel parallel computers

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Leboeuf, J.N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel σ machine gives an improvement factor close to 64 over the single-processor CRAY-2

  18. Performance of a plasma fluid code on the Intel parallel computers

    Science.gov (United States)

    Lynch, V. E.; Carreras, B. A.; Drake, J. B.; Leboeuf, J. N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2.

  19. The calculation of turbulence phenomena in plasma focus dynamics using REDUCE

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.

    1982-05-01

    Based on previous calculations of the development of highly turbulent plasma states resulting from m=0 instabilities and the application to the turbulent development in the late stage of a plasma focus experiment, using REDUE, the treatment of plasma focus dynamics is extended to the compression stage and 'intermediate' stage between maximum density and m = o onset. For this, a two-fluid model of the magneto-fluid dynamic equations is employed. The non-linear development is again treated in ω, k-space and transformed back into r, t-space to obtain local dynamic variables as functions of time. The calculation is applied to the Stuttgart plasma focus experiment POSEIDON. It is shown that for relatively high pinch currents, neutron production also appears in the 'intermediate' phase, the life-time of which increases with increasing pinch current. (orig.)

  20. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Wu Wangping; Chen Zhaofeng; Liu Yong

    2012-01-01

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  1. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    Science.gov (United States)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and

  2. Theory of edge plasma in a spheromak

    International Nuclear Information System (INIS)

    Hooper, E.B.

    1998-01-01

    Properties of the edge plasma in the SSPX spheromak during the plasma formation and sustainment phases are discussed. For the breakdown and formation phase, the main emphasis is on the analysis of possible plasma contamination by impurities from the electrodes of the plasma gun (helicity injector). The issue of an azimuthally uniform breakdown initiation is also discussed. After the plasma settles down in the main vacuum chamber, one has to sustain the current between the electrodes, in order to continuously inject helicity. We discuss properties of the plasma on the field lines intersecting the electrodes. We conclude that the thermal balance of this plasma is maintained by Joule heating competing with parallel heat losses to the electrodes. The resulting plasma temperature is in the range of 15 - 30 eV. Under the expected operational conditions, the ''current'' velocity of the electrons is only slightly below their thermal velocity. Implications of this observation are briefly discussed

  3. Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.

  4. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma

    DEFF Research Database (Denmark)

    Thrysøe, Alexander Simon; Løiten, M.; Madsen, J.

    2018-01-01

    The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms...... is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms...... are included in a four-field drift fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the lastclosed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation...

  5. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  6. Characterization of local turbulence in magnetic confinement devices

    International Nuclear Information System (INIS)

    Rajkovic, Milan; Skoric, Milos; Solna, Knut; Antar, Ghassan

    2007-07-01

    A multifractal analysis based on evaluation and interpretation of Large Deviation spectra is applied to plasma edge turbulence data from different devices (MAST and Tore Supra). It is demonstrated that in spite of some universal features there are unique characteristics for each device as well as for different confinement regimes. In the second part of the exposition the issue of estimating the variable power law behavior of spectral densities is addressed. The analysis of this issue is performed using fractional Brownian motion (fBm) as the underlying stochastic model whose parameters are estimated locally in time by wavelet scale spectra. In such a manner information about the inertial range as well as variability of the fBm parameters is obtained giving more information important for understanding edge turbulence and intermittency. (author)

  7. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    Science.gov (United States)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  8. Transport and turbulence in a magnetized plasma (application to tokamak plasmas); Transport et turbulence dans un plasma magnetise (application aux plasmas de tokamaks)

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y

    2004-03-01

    This document gathers the lectures made in the framework of a Ph.D level physics class dedicated to plasma physics. This course is made up of 3 parts : 1) collisions and transport, 2) transport and turbulence, and 3) study of a few exchange instabilities. More precisely the first part deals with the following issues: thermonuclear fusion, Coulomb collisions, particles trajectories in a tokamak, neo-classical transport in tokamaks, the bootstrap current, and ware pinch. The second part involves: particle transport in tokamaks, quasi-linear transport, resonance islands, resonance in tokamaks, from quasi to non-linear transport, and non-linear saturation of turbulence. The third part deals with: shift velocities in fluid theory, a model for inter-change instabilities, Rayleigh-Benard instability, Hasegawa-Wakatani model, and Hasegawa-Mima model. This document ends with a series of appendices dealing with: particle-wave interaction, determination of the curvature parameter G, Rossby waves.

  9. Electron transport in the plasma edge with rotating resonant magnetic perturbations at the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Stoschus, Henning

    2011-01-01

    Small three-dimensional (3D) magnetic perturbations can be used as a tool to control the edge plasma parameters in magnetically confined plasmas in high confinement mode (''H-mode'') to suppress edge instabilities inherent to this regime, the Edge Localized Modes (ELMs). In this work, the impact of rotating 3D resonant magnetic perturbation (RMP) fields on the edge plasma structure characterized by electron density and temperature fields is investigated. We study a low confinement (L-mode) edge plasma (r/a>0.9) with high resistivity (edge electron collisionality ν * e >4) at the TEXTOR tokamak. The plasma structure in the plasma edge is measured by a set of high resolution diagnostics: a fast CCD camera (Δt=20 μs) is set up in order to visualize the plasma structure in terms of electron density variations. A supersonic helium beam diagnostic is established as standard diagnostic at TEXTOR to measure electron density n e and temperature T e with high spatial (Δr=2 mm) and temporal resolution (Δt=20 μs). The measured plasma structure is compared to modeling results from the fluid plasma and kinetic neutral transport code EMC3-EIRENE. A sequence of five new observations is discussed: (1) Imaging of electron density variations in the plasma edge shows that a fast rotating RMP field imposes an edge plasma structure, which rotates with the external RMP rotation frequency of vertical stroke ν RMP vertical stroke =1 kHz. (2) Measurements of the electron density and temperature provide strong experimental evidence that in the far edge a rotating 3D scrape-off layer (SOL) exists with helical exhaust channels to the plasma wall components. (3) Radially inward, the plasma structure at the next rational flux surface is found to depend on the relative rotation between external RMP field and intrinsic plasma rotation. For low relative rotation the plasma structure is dominated by a particle and energy loss along open magnetic field lines to the wall components. For high

  10. Electron transport in the plasma edge with rotating resonant magnetic perturbations at the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Stoschus, Henning

    2011-10-13

    Small three-dimensional (3D) magnetic perturbations can be used as a tool to control the edge plasma parameters in magnetically confined plasmas in high confinement mode (''H-mode'') to suppress edge instabilities inherent to this regime, the Edge Localized Modes (ELMs). In this work, the impact of rotating 3D resonant magnetic perturbation (RMP) fields on the edge plasma structure characterized by electron density and temperature fields is investigated. We study a low confinement (L-mode) edge plasma (r/a>0.9) with high resistivity (edge electron collisionality {nu}{sup *}{sub e}>4) at the TEXTOR tokamak. The plasma structure in the plasma edge is measured by a set of high resolution diagnostics: a fast CCD camera ({delta}t=20 {mu}s) is set up in order to visualize the plasma structure in terms of electron density variations. A supersonic helium beam diagnostic is established as standard diagnostic at TEXTOR to measure electron density n{sub e} and temperature T{sub e} with high spatial ({delta}r=2 mm) and temporal resolution ({delta}t=20 {mu}s). The measured plasma structure is compared to modeling results from the fluid plasma and kinetic neutral transport code EMC3-EIRENE. A sequence of five new observations is discussed: (1) Imaging of electron density variations in the plasma edge shows that a fast rotating RMP field imposes an edge plasma structure, which rotates with the external RMP rotation frequency of vertical stroke {nu}{sub RMP} vertical stroke =1 kHz. (2) Measurements of the electron density and temperature provide strong experimental evidence that in the far edge a rotating 3D scrape-off layer (SOL) exists with helical exhaust channels to the plasma wall components. (3) Radially inward, the plasma structure at the next rational flux surface is found to depend on the relative rotation between external RMP field and intrinsic plasma rotation. For low relative rotation the plasma structure is dominated by a particle and energy loss

  11. Investigation of three-dimensional turbulent structures in the torsatron TJ-K

    International Nuclear Information System (INIS)

    Mahdizadeh, N.

    2007-01-01

    In this work, for the first time, the three-dimensional nature of drift waves has been verified experimentally inside the confinement region of the toroidal plasma in TJ-K. The perpendicular dynamics of turbulence has been studied with the focus on the poloidal wavenumber spectra and the scaling of the turbulent structure with the drift scale. To this end, a 64 tip Langmuir probe array has been used, which is poloidally positioned on a flux surface. For the first time, the parallel dynamics of turbulence has been investigated in the core of a toroidally confined plasma. In contrast to previous experiments, multi-probe measurements were carried out to get simultaneous information on the shape and the propagation direction of the turbulent structures. The results for the parallel wave number and the parallel propagation velocity have been compared with results from the simulation code GEM3. It is demonstrated that the propagation in the direction parallel to the magnetic field is affected by Alfven dynamics. Together, these results strongly confirm previous investigations, which have demonstrated the importance of drift-wave turbulence in TJ-K and therefore also in fusion edge plasma. (orig.)

  12. Investigation of three-dimensional turbulent structures in the torsatron TJ-K

    Energy Technology Data Exchange (ETDEWEB)

    Mahdizadeh, N.

    2007-02-14

    In this work, for the first time, the three-dimensional nature of drift waves has been verified experimentally inside the confinement region of the toroidal plasma in TJ-K. The perpendicular dynamics of turbulence has been studied with the focus on the poloidal wavenumber spectra and the scaling of the turbulent structure with the drift scale. To this end, a 64 tip Langmuir probe array has been used, which is poloidally positioned on a flux surface. For the first time, the parallel dynamics of turbulence has been investigated in the core of a toroidally confined plasma. In contrast to previous experiments, multi-probe measurements were carried out to get simultaneous information on the shape and the propagation direction of the turbulent structures. The results for the parallel wave number and the parallel propagation velocity have been compared with results from the simulation code GEM3. It is demonstrated that the propagation in the direction parallel to the magnetic field is affected by Alfven dynamics. Together, these results strongly confirm previous investigations, which have demonstrated the importance of drift-wave turbulence in TJ-K and therefore also in fusion edge plasma. (orig.)

  13. Non-diffusive transport in 3-D pressure driven plasma turbulence

    International Nuclear Information System (INIS)

    Del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.

    2005-01-01

    Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the super-diffusive scaling of the moments. (author)

  14. The structure of the solution obtained with Reynolds-stress-transport models at the free-stream edges of turbulent flows

    Science.gov (United States)

    Cazalbou, J.-B.; Chassaing, P.

    2002-02-01

    The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is investigated. Current turbulent-diffusion models are found to produce propagative (possibly weak) solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bradshaw [Phys. Fluids 6, 1797 (1994)] for two-equation models. As in the latter study, an analysis is presented that provides qualitative information on the flow structure predicted near the edge if a condition on the values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive to the residual free-stream turbulence levels needed with conventional numerical methods. The main specific result is that, depending on the diffusion model, the propagative solution can force turbulence toward definite and rather extreme anisotropy states at the edge (one- or two-component limit). This is not the case with the model of Daly and Harlow [Phys. Fluids 13, 2634 (1970)]; it may be one of the reasons why this "old" scheme is still the most widely used, even in recent Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties encountered in computing even very simple flows with Lumley's pressure-diffusion model [Adv. Appl. Mech. 18, 123 (1978)]. A new realizability condition, according to which the diffusion model should not globally become "anti-diffusive," is introduced, and a recalibration of Lumley's model satisfying this condition is performed using information drawn from the analysis.

  15. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  16. Plasma properties

    International Nuclear Information System (INIS)

    Weitzner, H.

    1991-06-01

    The Magneto-Fluid Dynamics Division continues to study a broad range of problems originating in plasma physics. Its principal focus is fusion plasma physics, and most particularly topics of particular significance for the world magnetic fusion program. During the calendar year 1990 we explored a wide range of topics including RF-induced transport as a plasma control mechanism, edge plasma modelling, further statistical analysis of L and H mode tokamak plasmas, antenna design, simulation of the edge of a tokamak plasma and the L-H transition, interpretation of the CCT experimental results at UCLA, turbulent transport, studies in chaos, the validity of moment approximations to kinetic equations and improved neoclassical modelling. In more basic studies we examined the statistical mechanisms of Coulomb systems and applied plasma ballooning mode theory to conventional fluids in order to obtain novel fluid dynamics stability results. In space plasma physics we examined the problem of reconnection, the effect of Alfven waves in space environments, and correct formulation of boundary conditions of the Earth for waves in the ionosphere

  17. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, J.; Wan, Weigang; Chen, Yang; Parker, Scott E. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Holland, C. [University of California at San Diego, La Jolla, California 92093 (United States); Howard, N. T. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37831 (United States)

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.

  18. Instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.

    2008-01-01

    Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities

  19. Plasma edge cooling during RF heating

    International Nuclear Information System (INIS)

    Suckewer, S.; Hawryluk, R.J.

    1978-01-01

    A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using RF power to modify the edge plasma temperature profile is presented. This concept is based on spectroscopic measurements on PLT during ohmic heating and ATC during RF heating. A one dimensional impurity transport model is used to interpret the ATC results

  20. Influence of pinches on magnetic reconnection in turbulent space plasmas

    Science.gov (United States)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  1. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics

    International Nuclear Information System (INIS)

    Maggs, J E; Morales, G J

    2012-01-01

    Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)

  2. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma

    Science.gov (United States)

    Thrysøe, A. S.; Løiten, M.; Madsen, J.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul

    2018-03-01

    The conditions in the edge and scrape-off layer (SOL) of magnetically confined plasmas determine the overall performance of the device, and it is of great importance to study and understand the mechanics that drive transport in those regions. If a significant amount of neutral molecules and atoms is present in the edge and SOL regions, those will influence the plasma parameters and thus the plasma confinement. In this paper, it is displayed how neutrals, described by a fluid model, introduce source terms in a plasma drift-fluid model due to inelastic collisions. The resulting source terms are included in a four-field drift-fluid model, and it is shown how an increasing neutral particle density in the edge and SOL regions influences the plasma particle transport across the last-closed-flux-surface. It is found that an appropriate gas puffing rate allows for the edge density in the simulation to be self-consistently maintained due to ionization of neutrals in the confined region.

  3. Interaction of supra-thermal ions with turbulence in a magnetized toroidal plasma

    International Nuclear Information System (INIS)

    Plyushchev, G.

    2009-01-01

    This thesis addresses the interaction of a supra-thermal ion beam with turbulence in the simple magnetized toroidal plasma of TORPEX. The first part of the Thesis deals with the ohmic assisted discharges on TORPEX. The aim of these discharges is the investigation of the open to closed magnetic field line transition. The relevant magnetic diagnostics were developed. Ohmic assisted discharges with a maximum plasma current up to 1 kA are routinely obtained. The equilibrium conditions on the vacuum magnetic field configuration were investigated. In the second part of the Thesis, the design of the fast ion source and detector are discussed. The accelerating electric field needed for the fast ion source was optimized. The fast ion source was constructed and commissioned. To detect the fast ions a specially designed gridded energy analyzer was used. The electron energy distribution function was obtained to demonstrate the efficiency of the detector. The experiments with the fast ion beam were conducted in different plasma regions of TORPEX. In the third part of the Thesis, numerical simulations are used to interpret the measured fast ion beam behavior. It is shown that a simple single particle equation of motion explains the beam behavior in the experiments in the absence of plasma. To explain the fast ion beam experiments with the plasma a turbulent electric field must be used. The model that takes into account this turbulent electrical field qualitatively explains the shape of the fast ion current density profile in the different plasma regions of TORPEX. The vertically elongated fast ion current density profiles are explained by a spread in the fast ion velocity distribution. The theoretically predicted radial fast ion beam spreading due to the turbulent electric field was observed in the experiment. (author)

  4. Resonance absorption of ICRF wave in edge plasma

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Yamanaka, Kaoru.

    1987-07-01

    An edge plasma is shown to significantly absorb ICRF wave when a resonant triplet, a cutoff-resonance-cutoff triplet, is constructed in the evanescent region. Two-ion-component plasmas in a torus are considered though the plasmas are modeled by a slab in which the density changes linearly along the x-axis. The resonance is a perpendicular-ion-cyclotron resonance, i.e., an Alfven resonance, and is formed when the applied frequency ω is smaller than the local cyclotron frequency, at the edge of the antenna side, of the lighter species of ions. Roughly the absorption rate A b is given by M 2 for M 2 >> S 2 and S 4 for S 2 >> M 2 where M = k y l and S ≅ k z l and l is a scale length of the order of the plasma minor radius and k y and k z are the perpendicular and the parallel components of the wave vector. It is noted that the both quantities, M and S, readily become of the order of unity. Since A b is not very sensitive to the density ratio of the two ion species, a few percent of impurities may cause a significant absorption. As the mass ratio of the two ion species comes close to unity the triplet forms readily. Therefore a D-T plasma seems to suffer more easily this kind of resonance absorption than a D-H plasma. (author)

  5. Plasma Edge Control in Tore Supra

    International Nuclear Information System (INIS)

    Evans, T.E.; Mioduszewski, P.K.; Foster, C.; Haste, G.; Horton, L.; Grosman, A.; Ghendrih, P.; Chatelier, M.; Capes, H.; Michelis, C. De; Fall, T.; Geraud, A.; Grisolia, C.; Guilhem, D.; Hutter, T.

    1990-01-01

    TORE SUPRA is a large superconducting tokamak designed for sustaining long inductive pulses (t∼ 30 s). In particular, all the first wall components have been designed for steady-state heat and particle exhaust, particle injection, and additional heating. In addition to these technological assets, a strict control of the plasma-wall interactions is required. This has been done at low power: experiments with ohmic heating have been mainly devoted to the pump limiter, ergodic divertor and pellet injection experiments. Some specific problems arising in large tokamaks are encountered; the pump limiter and the ergodic divertor yield the expected effects on the plasma edge. The effects on the bulk are discussed

  6. Edge localized mode control by resonant magnetic perturbations in tokamak plasmas

    International Nuclear Information System (INIS)

    Orain, Francois

    2014-01-01

    The growth of plasma instabilities called Edge Localized Modes (ELMs) in tokamaks results in the quasi-periodic relaxation of the edge pressure profile. These relaxations induce large heat fluxes which might be harmful for the divertor in ITER, thus ELM control is mandatory in ITER. One of the promising control methods planned in ITER is the application of external resonant magnetic perturbations (RMPs), already efficient for ELM mitigation/suppression in current tokamak experiments. However a better understanding of the interaction between ELMs, RMPs and plasma flows is needed to explain the experimental results and make reliable predictions for ITER. In this perspective, non-linear modeling of ELMs and RMPs is done with the reduced MHD code JOREK, in toroidal geometry including the X-point and the Scrape-Off Layer. The initial model has been further developed to describe self-consistent plasma flows - with the addition of the bi-fluid diamagnetic drifts, the neoclassical friction and a source of parallel rotation - and to simulate the RMP penetration consistently with the plasma response. As a first step, the plasma response to RMPs (without ELMs) is studied for JET, MAST and ITER realistic plasma parameters and geometry. The general behaviour of the plasma/RMP interaction is similar for the three studied cases: RMPs are generally screened by the formation of response currents, induced by the plasma rotation on the resonant surfaces. RMPs however penetrate at the very edge where an ergodic zone is formed. The amplification of the non-resonant spectrum of the magnetic perturbations is also observed in the core. The edge ergodization induces an enhanced transport at the edge, which slightly degrades the pedestal profiles. RMPs also generate the 3D-deformation of the plasma boundary with a maximum deformation near the X-point where lobe structures are formed. Then the full dynamics of a multi-ELM cycle (without RMPs) is modeled for the first time in realistic

  7. Drift wave instability and turbulence in advanced stellarator configurations

    International Nuclear Information System (INIS)

    Kendl, A.

    2001-08-01

    In the following chapter, an overview and references on the physics and geometry of helical advanced stellarators is given. On the basis of this configuration, the influence of magnetic field geometry is then discussed in a basic model of drift-Alfven wave turbulence which contains the necessary physics that applies to the plasma edge. By means of linear models, core physics in the form of ITG and dissipative trapped electron modes is further included in our survey. These models are, of course, by far not comprehensive in order to cover the complex physics of plasma turbulence in three-dimensional fusion devices, where a large range of parameter and mode regimes is present. Optimization criteria for a possible systematic minimization of turbulent transport in Helias configurations therefore still have to be regarded as tentative. The results presented here should, however, encourage for more detailed future computations. (orig.)

  8. Performance of a plasma fluid code on the Intel parallel computers

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Drake, J.B.; Leboeuf, J.N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2. 12 refs

  9. Edge plasma control: Particle channeling in Tore Supra pump limiter and ergodic divertor

    International Nuclear Information System (INIS)

    Ghendrih, P.; Samain, A.; Grosman, A.; Capes, H.; Morera, J.P.

    1989-01-01

    Improved pumping efficiency can be achieved on Tore Supra by channeling process for particles, i.e. channeling of neutrals in the throat of pump limiters and channeling of plasma towards neutralizer plates in the ergodic divertor. The plugging length for the pump limiter throat is computed and numerical evidence of plasma flux channeling between the conductor bars of the ergodic divertor is presented. The effect of the Tore Supra ergodic divertor on edge plasma state and edge plasma transport is discussed. (orig.)

  10. Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.

    Science.gov (United States)

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M

    2009-04-17

    For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.

  11. Edge localized modes and edge pedestal in NBI and ICRF heated H, D and T-plasmas in JET

    International Nuclear Information System (INIS)

    Bhatnagar, V.; Lingertat, J.; Barnsley, R.

    1998-12-01

    Based on experiments carried out in JET in D:T mixtures varying from 100:0 to 5:95 and those carried out in hydrogen plasmas, the isotopic mass dependence of ELM parameters and the edge pedestal pressure in neutral beam (NBI) and ion cyclotron resonance (ICRF) heated H-mode plasmas is presented. The ELM frequency is found to decrease with the atomic mass number both in ICRH and NBI discharges. However, the frequency in the case of ICRH is about 8 - 10 times higher than in the NBI case. Assuming that ELMs occur at a critical edge pressure gradient, limited by the ballooning instability, the scaling of the maximum edge pressure is most consistent with the assumption that the width of the transport barrier scales as the ion poloidal Larmor radius governed by the average energy of fast ions at the edge. The critical edge pressure in NBI heated discharges increases with the isotopic mass which. is consistent with the higher deduced width of the edge transport, barrier in tritium than in deuterium and hydrogen. The critical edge pressure in ICRH discharges is smaller, presumably, due to the smaller fast-ion contribution to the edge region. As a consequence of the edge pressure scaling with isotopic mass, the edge operational space in the n e - T e diagram increases with operation in tritium. If the evidence that the edge pedestal width is governed by the average energy of fast ions in the edge prevails, the pedestal in ITER would be controlled by the slowing down energy spectrum of α-particles in the edge. (author)

  12. Turbulence in tokamak plasmas. Effect of a radial electric field shear

    International Nuclear Information System (INIS)

    Payan, J.

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs

  13. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  14. Stochastic models of edge turbulent transport in the thermonuclear reactors

    International Nuclear Information System (INIS)

    Volchenkov, Dima

    2005-01-01

    Two-dimensional stochastic model of turbulent transport in the scrape-off layer (SOL) of thermonuclear reactors is considered. Convective instability arisen in the system with respect to perturbations reveals itself in the strong outward bursts of particle density propagating ballistically across the SOL. The criterion of stability for the fluctuations of particle density is formulated. A possibility to stabilize the system depends upon the certain type of plasma waves interactions and the certain scenario of turbulence. A bias of limiter surface would provide a fairly good insulation of chamber walls excepting for the resonant cases. Pdf of the particle flux for the large magnitudes of flux events is modeled with a simple discrete time toy model of I-dimensional random walks concluding at the boundary. The spectra of wandering times feature the pdf of particle flux in the model and qualitatively reproduce the experimental statistics of transport events

  15. Transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of {lambda}{sub D} is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  16. Transition in multiple-scale-lengths turbulence in plasmas

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.

    2002-02-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)

  17. Dynamics of Turbulence Suppression in a Helicon Plasma

    Science.gov (United States)

    Hayes, Tiffany; Gilmore, Mark

    2012-10-01

    Experiments are currently being conducted in the the Helicon-Cathode Device (HelCat) at the University of New Mexico. The goal is to the study in detail the transition from a turbulent to a non-turbulent state in the presence of flow shear. HelCat has intrinsic fluctuations that have been identified as drift-waves. Using simple electrode biasing, it has been found that these fluctuations can be completely suppressed. In some extreme cases, a different instability, possibly the Kelvin-Helmholtz instability, can be excited. Detailed studies are underway in order to understand the characteristics of each mode, and to elucidate the underlying physics that cause the change between an unstable plasma, and an instability-free plasma. Dynamics being observed include changes in flow profiles, both azimuthal and parallel, as well as changes in potential and temperature gradients. Further understanding is being sought using several computer codes developed at EPFL: a linear stability solver (LSS,footnotetextP. Ricci and B.N. Rogers (2009). Phys Plasmas 16, 062303. a one-dimensional PIC code/sheath solver, ODISEE,footnotetextJ. Loizu, P. Ricci, and C. Theiler (2011). Phys Rev E 83, 016406 and a global, 3D Braginski code, GBS.footnotetextRicci, Rogers (2009) A basic overview of results will be presented.

  18. Comments on the dispersion equation of a turbulent plasma - an inhomogeneous, magnetoactive case

    International Nuclear Information System (INIS)

    Ag, A.

    1978-03-01

    A weakly turbulent, magnetoactive plasma is considered in an inhomogeneous case with anisotropic temperature distribution. The dispersion relation is established following a method developed by Tsytovich and Nekrasov. The correction coefficients are calculated in the three principal scaling modes: (1) the turbulent frequencies predominate, (2) the cyclotronic velocities of the macroinstabilities predominate, (3) the turbulent frequencies are lower. (D.P.)

  19. Laser-Driven Hydrodynamic Experiments in the Turbulent Plasma Regime: from OMEGA to NIF

    International Nuclear Information System (INIS)

    Robey, H F; Miles, A R; Hansen, J F; Blue, B E; Drake, R P

    2003-01-01

    There is a great deal of interest in studying the evolution of hydrodynamic phenomena in high energy density plasmas that have transitioned beyond the initial phases of instability into an Ely developed turbulent state. Motivation for this study arises both in fusion plasmas as well as in numerous astrophysical applications where the understanding of turbulent mixing is essential. Double-shell ignition targets, for example, are subject to large growth of short wavelength perturbations on both surfaces of the high-Z inner shell. These perturbations, initiated by Richtmyer-Meshkov and Rayleigh-Taylor instabilities, can transition to a turbulent state and will lead to deleterious mixing of the cooler shell material with the hot burning fuel. In astrophysical plasmas, due to the extremely large scale, turbulent hydrodynamic mixing is also of wide-spread interest. The radial mixing that occurs in the explosion phase of core-collapse supernovae is an example that has received much attention in recent years and yet remains only poorly understood. In all of these cases, numerical simulation of the flow field is very difficult due to the large Reynolds number and corresponding wide range of spatial scales characterizing the plasma. Laboratory experiments on high energy density facilities that can access this regime are therefore of great interest. Experiments exploring the transition to turbulence that are currently being conducted on the Omega laser will be described. We will also discuss experiments being planned for the initial commissioning phases of the NIF as well as the enhanced experimental parameter space that will become available, as additional quads are made operational

  20. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions.

  1. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    International Nuclear Information System (INIS)

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions

  2. Turbulence and transport characteristics of a barrier in a toroidal plasma

    International Nuclear Information System (INIS)

    Fujisawa, A; Shimizu, A; Nakano, H; Ohsima, S; Itoh, K; Iguchi, H; Yoshimura, Y; Minami, T; Nagaoka, K; Takahashi, C; Kojima, M; Nishimura, S; Isobe, M; Suzuki, C; Akiyama, T; Nagashima, Y; Ida, K; Toi, K; Ido, T; Itoh, S-I; Matsuoka, K; Okamura, S; Diamond, P H

    2006-01-01

    Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g. spectra of both density and potential fluctuations, the coherence and the phase between them and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. Time-dependent analysis reveals that the intermittency of turbulence is correlated with the evolution of the stationary zonal flow

  3. Turbulence and transport characteristics of a barrier in a toroidal plasma

    International Nuclear Information System (INIS)

    Fujisawa, A.; Shimizu, A.; Nakano, H.

    2005-10-01

    Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g., spectra of both density and potential fluctuations, coherence and phase between them, and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. The time-dependent analysis reveals that intermittency of turbulence is correlated with evolution of stationary zonal flow. (author)

  4. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  5. Papers presented at the eleventh topical conference on high-temperature plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report contains the following eleven papers presented at the conference: Neutral Beam Diagnostics for Alcator C-Mod; A Study for the Installation of the TEXT HIBP on DIII-D; Time-domain Triple-probe Measurement of Edge Plasma Turbulence on TEXT-U; A Langmuir/Mach Probe Array for Edge Plasma Turbulence and Flow; Determination of Field Line Location and Safety Factor in TEXT-U; Hybrid ECE Imaging Array System for TEXT-U; First Results from the Phase Contrast Imaging System on TEXT-U; A Fast Tokamak Plasma Flux and Electron Density Reconstruction Technique; Time-series Analysis of Nonstationary Plasma Fluctuations Using Wavelet Transforms; Quantitative Modeling of 3-D Camera Views for Tokamak Divertors; and Variable-frequency Complex Demodulation Technique for Extracting Amplitude and Phase Information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Papers presented at the eleventh topical conference on high-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains the following eleven papers presented at the conference: Neutral Beam Diagnostics for Alcator C-Mod; A Study for the Installation of the TEXT HIBP on DIII-D; Time-domain Triple-probe Measurement of Edge Plasma Turbulence on TEXT-U; A Langmuir/Mach Probe Array for Edge Plasma Turbulence and Flow; Determination of Field Line Location and Safety Factor in TEXT-U; Hybrid ECE Imaging Array System for TEXT-U; First Results from the Phase Contrast Imaging System on TEXT-U; A Fast Tokamak Plasma Flux and Electron Density Reconstruction Technique; Time-series Analysis of Nonstationary Plasma Fluctuations Using Wavelet Transforms; Quantitative Modeling of 3-D Camera Views for Tokamak Divertors; and Variable-frequency Complex Demodulation Technique for Extracting Amplitude and Phase Information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  7. Radial electric field at the plasma edge on the FT-2 Tokamak in regimes with large gradients

    International Nuclear Information System (INIS)

    Lashkul, S.; Popov, A.

    2001-01-01

    The transport barrier formation is widely believed to be the fundamental element of transition into improved confinement regimes (H-mode). Experiments on many tokamaks demonstrate that transport barrier formation is connected with the suppression of turbulent transport by shear of E x B drift. Therefore, the calculation of radial electric field is of great importance. Our work is devoted to progress the neoclassical theory by taking into account electron viscosity and non-linear effects (ion inertia), presented results being valuable for interpretation transition into H-mode at the plasma edge in small tokamaks. Calculations of the electric field profile for FT-2 tokamak (a=8cm, R 0 =55cm, Ioffe Institute, Russia) according found expressions are in the good agreement with experimental results obtained. (orig.)

  8. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively

  9. Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Pustovitov, V.D.; Erokhin, N.N.; Konovalov, S.V.

    2008-01-01

    The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted

  10. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. Q., E-mail: xxu@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ma, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Li, G. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  11. Recent Progress on the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Schaffner, D. A.; Cartagena-Sanchez, C. A.; Johnson, H. K.; Fahim, L. E.; Fiedler-Kawaguchi, C.; Douglas-Mann, E.

    2017-10-01

    Recent progress is reported on the construction, implementation and testing of the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory (BMPL). The experiment at the BMPL consists of an ( 300 μs) long coaxial plasma gun discharge that injects magnetic helicity into a flux-conserving chamber in a process akin to sustained slow-formation of spheromaks. A 24cm by 2m cylindrical chamber has been constructed with a high density axial port array to enable detailed simultaneous spatial measurements of magnetic and plasma fluctuations. Careful positioning of the magnetic structure produced by the three separately pulsed coils (one internal, two external) are preformed to optimize for continuous injection of turbulent magnetized plasma. High frequency calibration of magnetic probes is also underway using a power amplifier.

  12. Plasma turbulence resulting from the interaction between the solar wind and the earth's magnetic field

    International Nuclear Information System (INIS)

    Roux, A.

    1989-01-01

    The interaction between the supersonic and super-Alfvenic solar wind plasma and the Earth's magnetic field leads to the formation of critical layers, such as the bow shock, the magnetopause, the polar cusp, and the inner and outer edge of the plasmasheet. The mean free path between binary colisions being much larger than the transverse scale of these layers, plasma turbulence must ensure the thermalization, the magnetic diffusion, the dissipation within these critical layers. We suggest the existence of small scale, presumably 2D structures, developing within these thin layers. The unambiguous characterization of these small-scale structures is, however, beyond the capabilities of existing spacecraft, which cannot spatially resolve them, nor disentangle spatial/temporal variations. We present a new mission concept: a cluster of four relatively simple spacecraft, which will make it possible (i) to disentangle spatial from temporal variations, (ii) to evaluate, by finite differences between spacecraft measurements, the gradients, divergences, curls of MHD parameters, and )iii) to characterize small-scale structures, via inter-spacecraft correlations. (author). 10 refs.; 10 figs

  13. 2D edge plasma modeling extended up to the main chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)

    2011-08-01

    Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.

  14. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  15. Shear flow generation and energetics in electromagnetic turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Kendl, A.; Garcia, O.E.

    2005-01-01

    acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated. By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions...... relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén...

  16. Excitation and propagation of modified fluctuation in a toroidal plasma in KT-5C device

    International Nuclear Information System (INIS)

    Sun Xuan; Wang Zhijiang; Lu Ronghua; Wen Yizhi; Wan Shude; Yu Changxuan; Liu Wandong; Wang Cheng; Pan Gesheng; Wang Wenhao; Wang Jun

    2002-01-01

    Understanding the propagation of the turbulent perturbation in the tokamak edge plasma is an important issue to actively modify or control the turbulence, reduce the anomalous transport and improve plasma confinement. To realize active modification of the edge perturbation, a high dynamic output, broad-band, low-cost power amplifier is set up, and used to drive the active probes in the experiments on KT-5C Tokamak. By using small-size magnetic probes together with Langmiur probes. It is observed that the modified perturbation by the active probes with sufficiently driving power may spread with electrostatic mode, and electromagnetic mode as well

  17. Comparison of turbulence measurements from DIII-D low-mode and high-performance plasmas to turbulence simulations and models

    International Nuclear Information System (INIS)

    Rhodes, T.L.; Leboeuf, J.-N.; Sydora, R.D.; Groebner, R.J.; Doyle, E.J.; McKee, G.R.; Peebles, W.A.; Rettig, C.L.; Zeng, L.; Wang, G.

    2002-01-01

    Measured turbulence characteristics (correlation lengths, spectra, etc.) in low-confinement (L-mode) and high-performance plasmas in the DIII-D tokamak [Luxon et al., Proceedings Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] show many similarities with the characteristics determined from turbulence simulations. Radial correlation lengths Δr of density fluctuations from L-mode discharges are found to be numerically similar to the ion poloidal gyroradius ρ θ,s , or 5-10 times the ion gyroradius ρ s over the radial region 0.2 θ,s or 5-10 times ρ s , an experiment was performed which modified ρ θs while keeping other plasma parameters approximately fixed. It was found that the experimental Δr did not scale as ρ θ,s , which was similar to low-resolution UCAN simulations. Finally, both experimental measurements and gyrokinetic simulations indicate a significant reduction in the radial correlation length from high-performance quiescent double barrier discharges, as compared to normal L-mode, consistent with reduced transport in these high-performance plasmas

  18. Local regulation of interchange turbulence in a dipole-confined plasma torus using current-collection feedback

    International Nuclear Information System (INIS)

    Roberts, T. M.; Mauel, M. E.; Worstell, M. W.

    2015-01-01

    Turbulence in plasma confined by a magnetic dipole is dominated by interchange fluctuations with complex dynamics and short spatial coherence. We report the first use of local current-collection feedback to modify, amplify, and suppress these fluctuations. The spatial extent of turbulence regulation is limited to a correlation length near the collector. Changing the gain and phase of collection results in power either extracted from or injected into the turbulence. The measured plasma response shows some agreement with calculations of the linear response of global interchange-like MHD and entropy modes to current-collection feedback

  19. Time behaviours of visible lines in turbulently heated TRIAM-1 plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, N; Nakamura, K; Nakamura, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-08-01

    Spectroscopic studies were carried out on turbulently heated TRIAM-1 tokamak plasma. The temporal evolutions of the line radiance of visible lines were measured and two types of time behaviours of the line radiance were identified. The observed remarkable reduction of the line radiance of visible lines which have low ionization potential and are localized in the skin-layer due to the application of a pulsed electric-field for turbulent heating is attributed to the strong plasma heating in the peripherical region. Spatial profiles of neutrals and ions which are related to these lines are calculated, and the temporal variations of these profiles caused by the application of the heating pulse are discussed.

  20. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  1. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    Science.gov (United States)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  2. A model for the neoclassical toroidal viscosity effect on Edge plasma toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Miron, I.G. [National Institute for Laser, Plasma and Radiation Physics, Euratom-MEdC Association, Bucharest (Romania)

    2013-11-15

    A semianalytic expression for the edge plasma angular toroidal rotation frequency that includes the neoclassical toroidal viscosity braking influence is obtained. Based on the model presented in a previous paper [I.G. Miron, Contrib. Plasma Phys. 53, 214 (2013)], the less destabilizing error field spectrum is found in order to minimize the nonlinear effect of the NTV on the toroidal rotation of the edge of the plasma. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Structure function analysis of long-range correlations in plasma turbulence

    International Nuclear Information System (INIS)

    Yu, C.X.; Gilmore, M.; Peebles, W.A.; Rhodes, T.L.

    2003-01-01

    Long-range correlations (temporal and spatial) have been predicted in a number of different turbulence models, both analytical and numerical. These long-range correlations are thought to significantly affect cross-field turbulent transport in magnetically confined plasmas. The Hurst exponent, H - one of a number of methods to identify the existence of long-range correlations in experimental data - can be used to quantify self-similarity scalings and correlations in the mesoscale temporal range. The Hurst exponent can be calculated by several different algorithms, each of which has particular advantages and disadvantages. One method for calculating H is via structure functions (SFs). The SF method is a robust technique for determining H with several inherent advantages that has not yet been widely used in plasma turbulence research. In this article, the SF method and its advantages are discussed in detail, using both simulated and measured fluctuation data from the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. In addition, it is shown that SFs used in conjunction with rescaled range analysis (another method for calculating H) can be used to mitigate the effects of coherent modes in some cases

  4. Investigation of the dynamics of HF plasma turbulence by means of artificial ionospheric radio emission

    International Nuclear Information System (INIS)

    Sergeev, E.N.; Boiko, G.N.; Frolov, V.L.

    1994-01-01

    The results of measurements of the growth and decay characteristics of artificial ionospheric radio emission and their dependence on the level of low-frequency artificial turbulence, time of day, and pump-wave frequency are presented. A time delay of the onset of the exponential nature of the decay process is detected, and its characteristics are studied. It is shown that the effect is determined by nonlinear pumping over the spectrum of high-frequency plasma turbulence. The experimental results demonstrate the possibilities of using artificial radio emission to study the properties of high-frequency plasma turbulence. Areas of future research are discussed

  5. Gyrokinetic theory and dynamics of the tokamak edge

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-08-15

    The validity of modern gyrokinetic field theory is assessed for the tokamak edge. The basic structure of the Lagrangian and resulting equations and their conservation laws is reviewed. The conventional microturbulence ordering for expansion is small potential/arbitrary wavelength. The equilibrium ordering for expansion is long wavelength/arbitrary amplitude. The long-wavelength form of the conventional Lagrangian is derived in detail. The two Lagrangians are shown to match at long wavelength if the E x B Mach number is small enough for its corrections to the gyroaveraging to be neglected. Therefore, the conventional derivation and its Lagrangian can be used at all wavelengths if these conditions are satisfied. Additionally, dynamical compressibility of the magnetic field can be neglected if the plasma beta is small. This allows general use of a shear-Alfven Lagrangian for edge turbulence and self consistent equilibrium-scale phenomena for flows, currents, and heat fluxes for conventional tokamaks without further modification by higher-order terms. Corrections in polarisation and toroidal angular momentum transport due to these higher-order terms for global edge turbulence computations are shown to be small. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Plasma turbulence driven by transversely large-scale standing shear Alfvén waves

    International Nuclear Information System (INIS)

    Singh, Nagendra; Rao, Sathyanarayan

    2012-01-01

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  7. Comparison of simulations and theory of low-frequency plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LoDestro, L L; Cohen, B I; Cohen, R H; Dimits, A M; Matsuda, Y; Nevins, W M; Newcomb, W A; Williams, T J; Koniges, A E; Dannevik, W P; Crotinger, J A; Amala, P A.K. [Lawrence Livermore National Lab., CA (USA); Sydora, R D; Dawson, J M; Ma, S; Decyk, V K [California Univ., Los Angeles, CA (USA). Dept. of Physics; Lee, W W; Hahm, T S [Princeton Univ., NJ (USA). Plasma Physics Lab.; Naitou, H

    1990-08-15

    We use a combination of computational and analytic methods to study low-frequency turbulence and turbulent transport in a strongly magnetized plasma. We describe two major computational efforts, one based on gyrokinetic-particle simulation and the second on numerical solution of closure approximations to fluid equations. These codes are used to study instabilities on the drift timescale, and to assess the validity of qualitative predictions of energy-transport scalings based on dimensional analysis and on analytic versions of closure approximations. 27 refs., 2 figs.

  8. Turbulent transport and shear at the E x B velocity in wall plasma of the TF-2 tokamak

    International Nuclear Information System (INIS)

    Budaev, V.P.

    1999-01-01

    Turbulence of near-the-wall plasma and potentialities of affecting the turbulence and periphery transport of the TF-2 tokamak by inducing radial electric fields and ergodization of periphery magnetic structure have been investigated, the results are presented. Essential role of the E x B velocity shear in suppression of the turbulence and turbulent transport in periphery has been pointed out. Decrease in transport losses stemming from effect of radial electric fields is brought about suppression of turbulence amplitude, decrease in correlations and decrease in the width of the wave numbers spectrum. Profiles of plasma density, electron temperature, turbulence level, electric fields over entire periphery of discharge change as a result. Ergodization of magnetic structure also results in the change of properties of periphery turbulence and turbulent transport [ru

  9. Relaxation of potential, flows, and density in the edge plasma of Castor tokamak

    International Nuclear Information System (INIS)

    Hron, M.; Weinzettl, V.; Dufkova, E.; Duran, I.; Stoeckel, J.; Hidalgo, C.

    2004-01-01

    Decay times of plasma flows and plasma profiles have been measured after a sudden biasing switch-off in experiments on the Castor tokamak. A biased electrode has been used to polarize the edge plasma. The edge plasma potential and flows have been characterized by means of Langmuir and Mach probes, the radiation was measured using an array of bolometers. Potential profiles and poloidal flows can be well fitted by an exponential decay time in the range of 10 - 30 μs when the electrode biasing is turned off in the Castor tokamak. The radiation shows a slower time scale (about 1 ms), which is linked to the evolution in the plasma density and particle confinement. (authors)

  10. Impact of bumpiness control on edge plasma in a helical-axis heliotron device

    International Nuclear Information System (INIS)

    Mizuuchi, T.; Watanabe, S.; Fujikawa, S.; Okada, H.; Kobayashi, S.; Yabutani, H.; Nagasaki, K.; Nakamura, H.; Torii, Y.; Yamamoto, S.; Kaneko, M.; Arimoto, H.; Motojima, G.; Kitagawa, H.; Tsuji, T.; Uno, M.; Matsuoka, S.; Nosaku, M.; Watanabe, N.; Nakamura, Y.; Hanatani, K.; Kondo, K.; Sano, F.

    2007-01-01

    In the helical-axis heliotron configuration, bumpiness of the confinement field ε b is introduced to control the plasma transport. The plasma performance were experimentally investigated in Heliotron J for three configurations with ε b = 0.01, 0.06 and 0.15 at ρ = 2/3. The obtained volume-averaged stored energy depends on the configuration. To understand the observed difference in global energy confinement, the ε b -control effects on the edge plasma is discussed. For ε b = 0.01, the plasma density and temperature in the peripheral region is low compared to other cases. This poor plasma edge relates to the observed low stored energy or poor energy confinement for ε b = 0.01

  11. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Chan, V.S.; Chen, L.

    1998-12-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n ∼ 2--9 and a fast growth time γ -1 = 20--150 micros are often observed prior to the first giant type 1 ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n > 1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region

  12. Effects of plasma shape and profiles on edge stability in DIII-D

    International Nuclear Information System (INIS)

    Lao, L.L.; Ferron, J.R.; Miller, R.L.

    2001-01-01

    The results of recent experimental and theoretical studies concerning the effects of plasma shape and current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillations with toroidal mode number n∼2-9 and a fast growth time γ -1 =20-150μs are often observed prior to the first giant type I ELM in discharges with moderate squareness. High n ideal ballooning second stability access encourages edge instabilities by facilitating the buildup of the edge pressure gradient and bootstrap current density which destabilize the intermediate to low n modes. Analysis suggests that discharges with large edge pressure gradient and bootstrap current density are more unstable to n>1 modes. Calculations and experimental results show that ELM amplitude and frequency can be varied by controlling access to the second ballooning stability regime at the edge through variation of the squareness of the discharge shape. A new method is proposed to control edge instabilities by reducing access to the second ballooning stability regime at the edge using high order local perturbation of the plasma shape in the outboard bad curvature region. (author)

  13. Nonlinear neoclassical transport in toroidal edge plasmas

    International Nuclear Information System (INIS)

    Fueloep, T.; Helander, P.

    2001-01-01

    In conventional neoclassical theory, the density and temperature gradients are not allowed to be as steep as frequently observed in the tokamak edge. In this paper the theory of neoclassical transport in a collisional, impure plasma is extended to allow for steeper profiles than normally assumed. The dynamics of highly charged impurity ions then becomes nonlinear, which affects the transport of all species. As earlier found in the banana regime, when the bulk plasma gradients are large the impurity ions undergo a poloidal redistribution, which reduces their parallel friction with the bulk ions and suppresses the neoclassical ion particle flux. The neoclassical confinement is thus improved in regions with large radial gradients. When the plasma is collisional and the gradients are large, the impurities accumulate on the inboard side of the torus

  14. Magnetic turbulent electron transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.; Moses, R.

    1990-01-01

    A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs

  15. Comments on ''theory of dissipative density-gradient-driven turbulence in the tokamak edge'' [Phys. Fluids 28, 1419 (1985)

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1985-11-01

    The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs

  16. Electrostatic instabilities and turbulence in a toroidal magnetized plasma

    International Nuclear Information System (INIS)

    Poli, F. M.

    2007-06-01

    This Thesis aims at characterizing the linear properties of electrostatic drift instabilities arising in a toroidal plasma and the mechanisms leading to their development into turbulence. The experiments are performed on the TORoidal Plasma EXperiment (TORPEX) at CRPP-EPFL, Lausanne. The first part of the Thesis focuses on the identification of the nature of the instabilities observed in TORPEX, using a set of electrostatic probes, designed and built for this purpose. The global features of fluctuations, analyzed for different values of control parameters such as the magnetic field, the neutral gas pressure and the injected microwave power, are qualitatively similar in different experimental scenarios. The maximum of fluctuations is observed on the low field side, where the pressure gradient and the gradient of the magnetic field are co-linear, indicating that the curvature of the magnetic field lines has an important role in the destabilization of the waves. The power spectrum is dominated by electrostatic fluctuations with frequencies much lower than the ion cyclotron frequency. Taking advantage of the extended diagnostics coverage, the spectral properties of fluctuations are measured over the whole poloidal cross-section. Both drift and interchange instabilities develop and propagate on TORPEX, with the stability of both being affected by the curvature of the magnetic field. It is shown that modes of different nature are driven at separate locations over the plasma cross-section and that the wavenumber and frequency spectra, narrow at the location where the instabilities are generated, broaden during convection, suggesting an increase in the degree of turbulence. The transition from coherent to turbulent spectral features and the role of nonlinear coupling between modes in the development of turbulence are treated in the second part of this work. It is found that nonlinear mode-mode coupling is responsible for the redistribution of spectral energy from the

  17. Simultaneous Measurements of Electrostatic and Magnetic Fluctuations in ASDEX Upgrade Edge Plasma

    DEFF Research Database (Denmark)

    Ionita, Codrina; Vianello, Nicola; Müller, H.W.

    2009-01-01

    In ASDEX Upgrade (AUG) electrostatic and magnetic fluctuations in the edge plasma region were measured simultaneously during ELMy H-mode (high confinement) plasmas and L-mode (low confinement) plasmas and during a transition between the two modes. A special probe was used containing six Langmuir...

  18. Edge and Plasma -Wall Interaction Diagnostics in the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F. L.; Tafalla, D.; Branas, B.; Hidalgo, A.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Ortiz, P.

    2003-07-01

    The operation of the TJ-II stellarator, carried out under ECR heating conditions until now, the plasma edge parameters and those processes has been identified. Therefore, an important , has implieda careful control of partied e sources and the associated plasma-wall interaction processes. A clear coupling between the plasma edge parameters and those processes has been identified. Therefore, an important effort has been devoted to the development of dedicated diagnostics in both fields. Remarkable success has been attained in the development of atomic-beam based edge diagnostics, namely, thermal Li and supersonic He beams. In particular, fast (up to 200 Hz) sampling of temperature and density profiles has been made possible thorough an upgraded version of the pulsed, supersonic He beam diagnostic. In this paper, whorl devoted to the upgrading of these techniques is described. Also, preliminary experiments oriented to the validation of the collisional radiative models use din the beam-based diagnostic interpretaron as well as simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. (Author) 17 refs.

  19. Edge and Plasma-Wall Interaction Diagnostics in the TJ-II Stellarator

    International Nuclear Information System (INIS)

    Tabares, F.L.; Tafalla, D.; Branas, B.; Hidalgo, A.; Garcia-Cortes, I.; Lopez-Fraguas, A.; Ortiz, P.

    2003-01-01

    The operation of the TJ-II stellarator, carried out under ECR heating conditions until now, the plasma edge parameters and those processes has been identified. Therefore, an important, has implied a careful control of partied e sources and the associated plasma-wall interaction processes. A clear coupling between the plasma edge parameters and those processes has been identified. Therefore, an important effort has been devoted to the development of dedicated diagnostics in both fields. Remarkable success has been attained in the development of atomic-beam based edge diagnostics, namely, thermal Li and supersonic He beams. In particular, fast (up to 200 Hz) sampling of temperature and density profiles has been made possible thorough an upgraded version of the pulsed, supersonic He beam diagnostic. In this paper, whorl devoted to the upgrading of these techniques is described. Also, preliminary experiments oriented to the validation of the collisional radiative models used in the beam-based diagnostic interpretaron as well as simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. (Author) 17 refs

  20. Edge Plasma Response to Non-Axisymmetric Fields in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, N. M.; Lao, L. L.; Buttery, R. J.; Evans, T. E.; Snyder, P. B.; Wade, M.R., E-mail: ferraro@fusion.gat.com [General Atomics, San Diego (United States); Moyer, R. A.; Orlov, D. M. [University of California San Diego, La Jolla (United States); Lanctot, M. J. [Lawrence Livermore National Laboratory, Livermore (United States)

    2012-09-15

    Full text: The application of non-axisymmetric fields is found to have significant effects on the transport and stability of H-mode tokamak plasmas. These effects include dramatic changes in rotation and particle transport, and may lead to the partial or complete suppression of edge-localized modes (ELMs) under some circumstances. The physical mechanism underlying these effects is presently not well understood, in large part because the response of the plasma to non- axisymmetric fields is significant and complex. Here, recent advances in modeling the plasma response to non-axisymmetric fields are discussed. Calculations using a resistive two-fluid model in diverted toroidal geometry confirm the special role of the perpendicular electron velocity in suppressing the formation of islands in the plasma. The possibility that islands form near the top of the pedestal, where the zero-crossing of the perpendicular electron velocity may coincide with a mode-rational surface, is explored, and the implications for ELM suppression are discussed. Modeling results are compared with empirical data. It is shown that numerical modeling is successful in reproducing some experimentally observed effects of applied non-axisymmetric fields on the edge temperature and density profiles. The numerical model self-consistently includes the plasma, separatrix, and scrape-off layer. Rotation and diamagnetic effects are also included self-consistently. Solutions are calculated using the M3D-C1 extended-MHD code. (and others)

  1. Introduction to turbulent transport in fusion plasmas

    International Nuclear Information System (INIS)

    Garbet, X.

    2006-01-01

    This introduction presents the main instabilities responsible for turbulence in tokamak plasmas, and the prominent features of the resulting transport. The usual techniques to construct reduced transport models are described. These models can be tested by analysing steady state and transient regimes. Another way to test the theory is to use a similarity principle, similar to the one used in fluid mechanics. Finally, the physics involved in the formation and sustainment of transport barriers is presented. (author)

  2. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    Science.gov (United States)

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-04

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  3. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  4. Transport of plasma impurities and the role of the plasma edge layers for the hot plasma production

    International Nuclear Information System (INIS)

    Drawin, H.W.

    1987-01-01

    The first problem of impurity transport is removal of alpha particles from the interior outward. The second problem is the control of impurities produced in the plasma-wall interaction. Finally there is the problem of using injected impurities for assessment of transport coefficients. The influence of impurity radiation on the power balance of a DT plasma is considered. Limiters and divertors as impurity sources are mentioned and transport equations for impurities are given. As an example iron impurities transport in a hydrogen plasma is considered. The role of the edge layer is emphasized. Finally requirements for plasma diagnostics are stated. 50 refs., 10 figs. (qui)

  5. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.

  6. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  7. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Goncalves, B.

    2003-01-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shows that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients. (author)

  8. Reflectometry simulation as a tool to explore new schemes of characterizing the fusion plasma turbulence

    International Nuclear Information System (INIS)

    Heuraux, S; Silva, F da; Gusakov, E; Popov, A Yu; Kosolapova, N; Syisoeva, K V

    2013-01-01

    A first step towards the measurement of turbulence characteristics or transient events required for the understanding of turbulent transport is to build an interpretative model able to link the measurements of a given diagnostic to a wanted parameter of the turbulence, and simulation helps us to do that. To obtain density fluctuation parameters in fusion plasmas, microwaves can be used. However, the interpretation of the received signals requires generally sophisticated data processing to extract an exact evaluation of the wanted parameters. Simulations of electromagnetic wave propagation in turbulent plasmas permit to identify the main processes involved in probing wave-fluctuations interaction and the reflectometry signature of the expected events, which gives ideas to model them. It is shown here how simulations have permitted to exhibit the role of resonances of the probing wave induced by turbulence and to explain part of phase jumps seen during reflectometer measurements. The multi-scattering phenomena can be modelled by a photon diffusion equation which can be used to provide information on the turbulence at density fluctuations levels higher than allowed by usual methods. The reflectometry simulations show that at high level of turbulence a competition between the resonances generation mechanism, able to maintain the probing depth, and the Bragg backscattering exists. Its consequences on turbulence characterisation are discussed.

  9. Higher Order Analysis of Turbulent Changes Found in the ELF Range Electric Field Plasma Before Major Earthquakes

    Science.gov (United States)

    Kosciesza, M.; Blecki, J. S.; Parrot, M.

    2014-12-01

    We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.

  10. Quiet Periods in Edge Turbulence Preceding the L-H Transition in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.J.; Hager, R.; Hallatschek, K.; Kaye, S.M.; Munsat, T.; Poli, F.M.; Roquemore, A.L.; Sechrest, Y.; Stotler, D.P.

    2010-01-01

    This paper describes the first observations in NSTX of 'quiet periods' in the edge turbulence preceding the L-H transition, as diagnosed by the GPI diagnostic near the outer midplane separatrix. During these quiet periods the GPI D light emission pattern was transiently similar to that seen during Hmode, i.e. with a relatively small fraction of the GPI light emission located outside the separatrix. These quiet periods had a frequency of ∼3 kHz for at least 30 msec before the L-H transition, and were correlated with changes in the direction of the local poloidal velocity. The GPI turbulence images were also analyzed to obtain an estimate for the dimensionless poloidal shearing S =(dVp/dr)(Lr/Lp). The values of S were strongly modulated by the quiet periods, but not otherwise varying for at least 30 msec preceding the L-H transition. Since neither the quiet periods nor the shear flow increased significantly immediately preceding the L-H transition, neither of these appears to be the trigger for this transition, at least for these cases in NSTX.

  11. Plasma fluctuation measurements in tokamaks using beam-plasma interactions

    International Nuclear Information System (INIS)

    Fonck, R.J.; Duperrex, P.A.; Paul, S.F.

    1990-01-01

    High-frequency observations of light emitted from the interactions between plasma ions and injected neutral beam atoms allow the measurement of moderate-wavelength fluctuations in plasma and impurity ion densities. To detect turbulence in the local plasma ion density, the collisionally excited fluorescence from a neutral beam is measured either separately at several spatial points or with a multichannel imaging detector. Similarly, the role of impurity ion density fluctuations is measured using charge exchange recombination excited transitions emitted by the ion species of interest. This technique can access the relatively unexplored region of long-wavelength plasma turbulence with k perpendicular ρ i much-lt 1, and hence complements measurements from scattering experiments. Optimization of neutral beam geometry and optical sightlines can result in very good localization and resolution (Δx≤1 cm) in the hot plasma core region. The detectable fluctuation level is determined by photon statistics, atomic excitation processes, and beam stability, but can be as low as 0.2% in a 100 kHz bandwidth over the 0--1 MHz frequency range. The choices of beam species (e.g., H 0 , He 0 , etc.), observed transition (e.g., H α , L α , He I singlet or triplet transitions, C VI Δn=1, etc.) are dictated by experiment-specific factors such as optical access, flexibility of beam operation, plasma conditions, and detailed experimental goals. Initial tests on the PBX-M tokamak using the H α emissions from a heating neutral beam show low-frequency turbulence in the edge plasma region

  12. The scaling of edge parameters in jet with plasma input power

    International Nuclear Information System (INIS)

    Erents, S.K.; McCracken, G.M.; Harbour, P.J.; Clement, S.; Summers, D.D.R.; Tagle, J.A.; Kock, L. de

    1989-01-01

    The scaling of edge parameters of density and temperature with central density and ohmic power in JET has been presented previously for the discrete limiter geometry and more recently for the new belt limiter configuration. However, the scaling with plasma current (I p ) is difficult to interpret because varying I p does not only change the input power but also the safety factor qs and consequently the SOL thickness. The use of additional heating at constant current allows more direct observation of the effects of changing heating power. In this paper we present data in which the plasma input power is increased by ICRH, (Pt<20MW), using a 3MA target plasma, and compare data for different plasma currents using discrete and belt limiter geometries. Edge data is presented from Langmuir probes in tiles at the top of the torus, when the tokamak is operated in single null magnetic separatrix (divertor) mode, as well as for probes in the main plasma boundary to contrast these data with limiter data. (author) 3 refs., 4 figs

  13. Statistical theory and transition in multiple-scale-lengths turbulence in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-06-01

    The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)

  14. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K. H.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Barada, K.; Rhodes, T. L.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90024 (United States); Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Yan, Z. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamak energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints

  15. One possible method of mathematical modeling of turbulent transport processes in plasma

    International Nuclear Information System (INIS)

    Skvortsova, Nina N.; Batanov, German M.; Petrov, Alexander E.; Pshenichnikov, Anton A.; Sarksyan, Karen A.; Kharchev, Nikolay K.; Bening, Vladimir E.; Korolev, Victor Yu.

    2003-01-01

    It is proposed to use the mathematical modeling of the increments of fluctuating plasma variables to analyzing the probability characteristics of turbulent transport processes in plasma. It is shown that, in plasma of the L-2M stellarator and the TAU-1 linear device, the increments of the process of local fluctuating particle flux are stochastic in nature and their distribution is a scale mixture of Gaussians. (author)

  16. Phase space diffusion in turbulent plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1990-01-01

    . The second type are particles introduced at a prescribed phase space position at a certain time and which then self-consistently participate in the phase space dynamics of the turbulence. The latter "active" type of particles can be subject to an effective frictional force due to radiation of plasma waves....... In terms of these test particle types, two basically different problems can be formulated. One deals with the diffusion of a particle with respect to its point of release in phase space. Alternatively the relative diffusion between many, or just two, particles can be analyzed. Analytical expressions...

  17. Calculation of coulomb correlation potential in a turbulent non-ideal plasma with reduced degrees of freedom

    International Nuclear Information System (INIS)

    Dwivedi, C.B.; Bhattacharjee, M.

    1998-01-01

    A simple but reasonable physical model has been developed to find out the correlation potential in a turbulent non-ideal plasma. It is assumed that the turbulent plasma state comprises of weakly interacting pseudo particles i.e. nonlinear coherent structures like solitons with random distribution in space and time. The calculation is based on the lowest order binary interacting model of the nonlinear normal modes (pseudo particles) of the weakly correlated plasmas. Its implication in the phase transition of the correlated Coulomb gas is discussed. (author)

  18. Turbulence in the solar atmosphere and in the interplanetary plasma

    International Nuclear Information System (INIS)

    Chashei, I.V.; Shishov, V.I.

    1984-01-01

    Analysis of the basic properties of the turbulence in the solar chromosphere, corona, and supercorona (the plasma acceleration zone) indicates that the energy of acoustic disturbances generated at the photospheric level will be conveyed outward into the interplanetary plasma jointly by nonlinear wave interactions and wave propagation effects. Above the chromosphere, damping will be strongest at heights Rroughly-equal0.4 R/sub sun/ for acoustic-type waves and at Rroughly-equalR/sub sun/ for Alfven waves

  19. Physics of turbulence control and transport barrier formation in DIII-D

    International Nuclear Information System (INIS)

    Doyle, E.J.; Burrell, K.H.; Carlstrom, T.N.

    1996-10-01

    This paper describes the physical mechanisms responsible for turbulence control and transport barrier formation on DIII-D as determined from a synthesis of results from different enhanced confinement regimes, including quantitative and qualitative comparisons to theory. A wide range of DIII-D data support the hypothesis that a single underlying physical mechanism, turbulence suppression via E x B shear flow is playing an essential, though not necessarily unique, role in reducing turbulence and transport in all of the following improved confinement regimes: H-mode, VH-mode, high-ell i modes, improved performance counter-injection L-mode discharges and high performance negative central shear (NCS) discharges. DIII-D data also indicate that synergistic effects are important in some cases, as in NCS discharges where negative magnetic shear also plays a role in transport barrier formation. This work indicates that in order to control turbulence and transport it is important to focus on understanding physical mechanisms, such as E x B shear, which can regulate and control entire classes of turbulent modes, and thus control transport. In the highest performance DIII-D discharges, NCS plasmas with a VH-mode like edge, turbulence is suppressed at all radii, resulting in neoclassical levels of ion transport over most of the plasma volume

  20. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1990-01-01

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2-200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated. 42 refs., 1 fig., 4 tabs

  1. Practical aspects of a 2-D edge-plasma model

    International Nuclear Information System (INIS)

    Rensink, M.E.; Hill, D.N.; Porter, G.D.; Braams, B.J.; Princeton Univ., NJ

    1989-07-01

    The poloidal divertor configuration is considered the most promising solution to the particle and energy exhaust problem for a tokamak reactor. The scrape-off layer plasma surrounding the core and the high-recycling plasma near the divertor plates can be modelled by fluid equations for particle, momentum and energy transport. A numerical code (B2) based on a two-dimensional multi-fluid model has been developed for the study of edge plasmas in tokamaks. In this report we identify some key features of this model as applied to the DIII-D tokamak. 2 refs., 1 fig

  2. Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

    International Nuclear Information System (INIS)

    Burrell, K.H.

    1996-11-01

    One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization

  3. Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs

    International Nuclear Information System (INIS)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2012-01-01

    The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

  4. Divertor plasma modification by divertor biasing and edge ergodization in JFT-2M

    International Nuclear Information System (INIS)

    Shoji, T.; Nagashima, K.; Tamai, H.; Ohdachi, S.; Miura, Y.; Ohasa, K.; Maeda, H.; Ohyabu, N.; Leonard, A.W.; Aikawa, H.; Fujita, T.; Hoshino, K.; Kawashima, H.; Matsuda, T.; Maeno, M.; Mori, M.; Ogawa, H.; Shimada, M.; Uehara, K.; Yamauchi, T.

    1995-01-01

    The effects of divertor biasing and edge ergodization on the divertor plasma have been investigated in the JFT-2M tokamak. Experimental results show; (1) The differential divertor biasing can change the in/out asymmetry of the divertor plasma. It especially changes the density on the ion side divertor plasma. The in/out electron pressure difference has a good correlation with the biasing current. (2) The unipolar divertor biasing can change the density profile of divertor plasma. The radial electric field and shear flow are the cause for this change. (3) The electron temperature of the divertor plasma in the H-mode with frequent ELMs induced by edge ergodization is lower than that of usual H-mode. That is due to the enhancement of the radial particle flux by frequent ELMs, ((orig.))

  5. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  6. Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Trulsen, J.

    1991-01-01

    Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...

  7. Exposure of tungsten nano-structure to TEXTOR edge plasma

    International Nuclear Information System (INIS)

    Ueda, Y.; Miyata, K.; Ohtsuka, Y.; Lee, H.T.; Fukumoto, M.; Brezinsek, S.; Coenen, J.W.; Kreter, A.; Litnovsky, A.; Philipps, V.; Schweer, B.; Sergienko, G.; Hirai, T.; Taguchi, A.; Torikai, Y.; Sugiyama, K.; Tanabe, T.; Kajita, S.; Ohno, N.

    2011-01-01

    W nano-structures (fuzz), produced in the linear high plasma device, NAGDIS, were exposed to TEXTOR edge plasmas (ohmic He/D mixed plasma and pure D plasma) to study formation, erosion and C deposition on W fuzz in tokamak plasmas for the first time. Fuzz layers were either completely eroded or covered by C deposit. There was no clear indication of W fuzz growth under the present conditions. There was no significant difference of C deposition between 'thick' fuzz (500-600 nm in thickness) and 'thin' fuzz (300-400 nm) in the He/D plasma. On the W fuzz surface, C deposition was enhanced probably due to reduction of effective sputtering yield and effective reflection coefficient of carbon ions, similar to roughness effects. Formation and erosion of W fuzz in tokamak devices and role of impurities are discussed.

  8. ICRF induced edge plasma convection in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); University of Ghent, Ghent (Belgium); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Feng, Yuehe; Lunt, Tilmann; Jacquot, Jonathan; Coster, David; Bilato, Roberto; Bobkov, Volodymyr; Ochoukov, Roman [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); Noterdaeme, Jean-Marie [Max Planck Institute for Plasma Physics, Garching/Greifswald (Germany); University of Ghent, Ghent (Belgium); Colas, Laurent [CEA, IRFM, Saint-Paul-Lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    Ion Cyclotron Range of Frequency (ICRF) heating is one of the main auxiliary plasma heating methods in tokamaks. It relies on the fast wave to heat the plasma. However the slow wave can also be generated parasitically. The parallel electric field of the slow wave can induce large biased plasma potential through sheath rectification. The rapid variation of this rectified potential across the magnetic field can cause significant E x B convection in the Scrape-Off Layer (SOL). The ICRF induced convection can affect the SOL density, influence the ICRF power coupling and enhance the strength of plasma-wall interactions. To explore these physics, we not only show the experimental evidences in ASDEX Upgrade, but also present the associated simulation results with the 3D edge plasma fluid code EMC3-Eirene. Further simulations via combination of EMC3-Eirene and a sheath code SSWICH in an iterative and quasi self-consistent way can give good predictions for future experiments.

  9. Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment

    International Nuclear Information System (INIS)

    Ricci, Paolo; Theiler, C.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.

    2009-01-01

    The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.

  10. Framework Application for Core Edge Transport Simulation (FACETS)

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei; Pigarov, Alexander

    2011-10-15

    The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.

  11. Observation of self-organized criticality (SOC) behavior during edge biasing experiment on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H.; Jachmich, S.; Weynants, R.R. [Ecole Royale Militaire/Koninklijke Militaire School, Laboratory for Plasma Physics, Euratom-Belgian State Association, Brussels, Belgium, Partner in the Trilateral Euregio Cluster (Belgium)

    2004-07-01

    The self-organized criticality (SOC) behavior of the edge plasma transport has been investigated using the fluctuation data measured in the plasma edge and the scrape-off layer of TEXTOR tokamak before and during the edge electrode biasing experiments. In the 'non-shear' discharge phase before biasing, both the potential and density fluctuations clearly exhibit some of the characteristics associated with SOC: (1) existence of f{sup -1} power-law dependence in the frequency spectrum, (2) slowly decaying long tails in the autocorrelation function, (3) values of Hurst parameters larger than 0.5 at all the detected radial locations, (4) non-Gaussian probability density function of fluctuations and (5) radial propagation of avalanche-like events in the edge plasma area. During the biasing phase, with the generation of an edge radial electric field E{sub r} and hence a sheared E{sub r} x B flow, the local turbulence is found to be well de-correlated by the E{sub r} x B velocity shear, consistent with theoretical predictions. Nevertheless, it is concomitantly found that the Hurst parameters are substantially enhanced in the negative flow shear region and in the scrape-off layer as well, which is contrary to theoretical expectation. Implication of these observations to our understanding of plasma transport mechanisms is discussed. (authors)

  12. Simulation of an ITER-like dissipative divertor plasma with a combined edge plasma Navier-Stokes neutral model

    International Nuclear Information System (INIS)

    Knoll, D.A.; McHugh, P.R.; Krasheninnikov, S.I.; Sigmar, D.J.

    1996-01-01

    A combined edge plasma/Navier-Stokes neutral transport model is used to simulate dissipative divertor plasmas in the collisional limit for neutrals on a simplified two-dimensional slab geometry with ITER-like plasma conditions and scale lengths. The neutral model contains three momentum equations which are coupled to the plasma through ionization, recombination, and ion-neutral elastic collisions. The neutral transport coefficients are evaluated including both ion-neutral and neutral-neutral collisions. (orig.)

  13. Plasma fluctuation measurements in tokamaks using beam-plasma interactions (abstract)

    International Nuclear Information System (INIS)

    Fonck, R.J.; Duperrex, P.A.; Paul, S.F.

    1990-01-01

    High-frequency observations of light emitted from the interactions between plasma ions and injected neutral beam atoms allow the measurement of moderate-wavelength fluctuations in plasma and impurity ion densities. To detect turbulence in the local plasma ion density, the collisionally excited fluorescence from a neutral beam is measured either separately at several spatial points or with a multichannel imaging detector. Similarly, the role of impurity ion density fluctuations is measured using charge exchange recombination excited transitions emitted by the ion species of interest. This technique can access the relatively unexplored region of long-wavelength plasma turbulence with k perpendicular ρ i much-lt 1, and hence complements measurements from scattering experiments. Optimization of neutral beam geometry and optical sightlines can result in very good localization and resolution (Δx≤1 cm) in the hot plasma core region. The detectable fluctuation level is determined by photon statistics, atomic excitation processes, and beam stability, but can be as low as 0.2% in a 100 kHz bandwidth over the 0--1 MHz frequency range. The choices of beam species (e.g., H 0 , He 0 , etc.), observed transition (e.g., H α , L α , He I singlet or triplet transitions, C VI Δn=1, etc.) are dictated by experiment-specific factors such as optical access, flexibility of beam operation, plasma conditions, and detailed experimental goals. Initial tests on the PBX-M tokamak using the H α emissions from a heating neutral beam show low-frequency turbulence in the edge plasma region

  14. Abstracts of 4. IAEA technical meeting on the theory of plasma instabilities

    International Nuclear Information System (INIS)

    2009-05-01

    The Fourth IAEA-TM on Theory of Plasma Instabilities provided a forum for open discussion on theoretical and computational physics issues relevant to burning plasma. The meeting covered linear and non-linear theory and simulation of plasma instabilities, including core/edge turbulence, magneto-hydrodynamic (MHD) process, high energy particle driven dynamics and their effects on plasma confinement. Special attention was paid to the multi-scale interaction dynamics in better understanding the burning plasma and also to the modeling of such complex physical processes. The meeting also organized a panel session to discuss the prospect of plasma theory and simulation for future fusion research for the ITER ERA. Young scientists were enthusiastically encouraged to enjoy this session which may stimulate the research for the future. The meeting covered the following topics: (1) Overview: State of the art and importance of multi-scale physics for understanding burning plasmas; (2) Linear and nonlinear instabilities and their theoretical/computational methodologies including critical gradient problem and comparison with experiments; (3) Core/edge turbulent transport including momentum transport, turbulence-profile interaction and barrier formation, etc and their theoretical/ computational understandings; (4) Magneto-hydrodynamic (MHD) instability including energetic particle physics and their impact on confinement in burning plasmas; (5) Physics and modeling of multi-scale interactions and their impact on the plasma performance and control. Those topics were discussed with close relevance to key experimental results. A panel session 'Theoretical Plasma Physics for the ITER ERA' was organized under interdisciplinary aspects with other fields such as astrophysics and fluid dynamics. Each of the abstracts available has been indexed separately

  15. H-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; LaBombard, B.; Snipes, J.A.; Wolfe, S.; Snyder, P.; Wilson, H.; Xu, X.; Nevins, W.

    2003-01-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. C-Mod sees two such mechanisms - EDA and grassy ELMs, but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasi coherent electromagnetic mode that exists at moderate pedestal temperature T 3.5 and does not limit the build up of the edge pressure gradient. The mode is not observed in the ideal MHD stability analysis, but is recorded in the nonlinear real geometry fluctuations modeling based on fluid equations and is thus tentatively identified as a resistive ballooning mode. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations (f< 50 kHz) and small irregular ELMs are observed. Based on ideal MHD calculations that include the effects of edge bootstrap current, these ELMs are identified as medium n (10 < n < 50) coupled peeling/ballooning modes. The stability thresholds, its dependence on the plasma shape and the modes structure are studied experimentally and with the linear MHD stability code ELITE. (author)

  16. Tokamak turbulence in self-regulated differentially rotating flow and L-H transition dynamics

    International Nuclear Information System (INIS)

    Terry, P.W.; Carreras, B.A.; Sidikman, K.

    1992-01-01

    An analytical study of turbulence in the presence of turbulently generated differentially rotating flow is presented as a paradigm for fluctuation dynamics in L- and H-mode plasmas. Using a drift wave model, the role of both flow shear and flow curvature (second radial derivative of the poloidal ExB flow) is detailed in linear and saturated turbulence phases. In the strong turbulence saturated state, finite amplitude-induced modification of the fluctuation structure near low order rational surfaces strongly inhibits flow shear suppression. Suppression by curvature is not diminished, but it occurs through a frequency shift. A description of L-H mode transition dynamics based on the self-consistent linking of turbulence suppression by differentially rotating flow and generation of flow by turbulent momentum transport is presented. In this model, rising edge temperature triggers a transition characterized by spontaneous generation of differentially rotating flow and decreasing turbulence intensity

  17. Transition to Collisionless Ion-Temperature-Gradient-Driven Plasma Turbulence: A Dynamical Systems Approach

    International Nuclear Information System (INIS)

    Kolesnikov, R.A.; Krommes, J.A.

    2005-01-01

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a 'Dimits shift' of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift

  18. Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the trapped gyro-Landau-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, J. E. [CompX, P.O. Box 2672, Del Mar, California 92014 (United States); Staebler, G. M.; Candy, J.; Petty, C. C.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Rhodes, T. L. [Physics Department and PSTI, University of California, Los Angeles, California 90095 (United States)

    2015-01-15

    Previous studies of DIII-D L-mode plasmas have shown that a transport shortfall exists in that our current models of turbulent transport can significantly underestimate the energy transport in the near edge region. In this paper, the Trapped Gyro-Landau-Fluid (TGLF) drift wave transport model is used to simulate the near edge transport in a DIII-D L-mode experiment designed to explore the impact of varying the safety factor on the shortfall. We find that the shortfall systematically increases with increasing safety factor and is more pronounced for the electrons than for the ions. Within the shortfall dataset, a single high current case has been found where no transport shortfall is predicted. Reduced neutral beam injection power has been identified as the key parameter separating this discharge from other discharges exhibiting a shortfall. Further analysis shows that the energy transport in the L-mode near edge region is not stiff according to TGLF. Unlike the H-mode core region, the predicted temperature profiles are relatively more responsive to changes in auxiliary heating power. In testing the fidelity of TGLF for the near edge region, we find that a recalibration of the collision model is warranted. A recalibration improves agreement between TGLF and nonlinear gyrokinetic simulations performed using the GYRO code with electron-ion collisions. The recalibration only slightly impacts the predicted shortfall.

  19. Modelling of Lévy walk kinetics of charged particles in edge electrostatic turbulence in tokamaks

    Czech Academy of Sciences Publication Activity Database

    Krlín, Ladislav; Papřok, R.; Svoboda, V.

    2008-01-01

    Roč. 48, č. 1 (2008), s. 95-109 ISSN 1434-6060 R&D Projects: GA AV ČR IAA100430502; GA ČR GA202/07/0044 Institutional research plan: CEZ:AV0Z20430508 Keywords : PLASMA TURBULENCE * DIFFUSION * TRANSPORT * FIELD * WAVES Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.397, year: 2008 http://www.springerlink.com/content/101161/?p=0fb843e139344681908c5cc2140bb828&pi=0

  20. Plasma turbulence calculations on the Intel iPSC/860 (rx) hypercube

    International Nuclear Information System (INIS)

    Lynch, V.E.; Ruiter, J.R.

    1990-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A serial algorithm used for plasma turbulence calculations was modified to allocate a radial region in each node. In this way, convolutions at a fixed radius are performed in parallel, and communication is limited to boundary values for each radial region. For a semi-implicity numerical scheme (tridiagonal matrix solver), there is a factor of 3 improvement in efficiency with the Intel iPSC/860 machine using 64 processors over a single-processor Cray-II. For block-tridiagonal matrix cases (fully implicit code), a second parallelization takes place. The Fourier components are distributed in nodes. In each node, the block-tridiagonal matrix is inverted for each of allocated Fourier components. The algorithm for this second case has not yet been optimized. 10 refs., 4 figs