WorldWideScience

Sample records for plasma drift

  1. Drift wave in pair-ion plasma

    Indian Academy of Sciences (India)

    Samiran Ghosh; Nikhil Chakrabarti; Manoranjan Khan; M R Gupta

    2013-02-01

    The conditions for the existence of low-frequency electrostatic drift wave in pair-ion plasma are discussed. It is shown that the temperature and/or mass difference of both species could produce drift wave in a pair-ion plasma. The results are discussed in the context of the fullerene pair-ion plasma experiment.

  2. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  3. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  4. Stable discrete representation of relativistically drifting plasmas

    CERN Document Server

    Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R

    2016-01-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  5. Collisional Drift Waves in Stellarator Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    J.L.V. Lewandowski

    2003-10-07

    A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  6. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  7. Drift Kelvin-Helmholtz instabilities in space plasmas

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1992-01-01

    Drift Kelvin-Helmholtz instabilities of a finite-beta plasma in equilibrium electric and magnetic fields which are perpendicular to each other are studied using two fluid equations. Three types of these instabilities are considered including the magnetosonic instability of a finite beta-homogeneous plasma, the electrostatic drift instability of an inhomogeneous low-beta plasma, and the magneto-acoustic instability of a high-beta inhomogeneous isothermal plasma. It is shown that the electric field has either stabilizing or destabilizing effect depending on conditions under consideration.

  8. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  9. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    CERN Document Server

    Martines, E; Cavazzana, R; Adámek, J; Antoni, V; Serianni, G; Spolaore, M; Vianello, N

    2014-01-01

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

  10. Suppression of phase mixing in drift-kinetic plasma turbulence

    CERN Document Server

    Parker, J T; Schekochihin, A A; Dellar, P J

    2016-01-01

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to "anti-phase-mixing" modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  11. Coherent structures and transport in drift wave plasma turbulence

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang

    for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa- Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa......-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron......Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important...

  12. On the drift kinetic equation driven by plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Shaing, K C [Plasma and Space Science Center and ISAPS, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Engineering Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2010-07-15

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators. (brief communication)

  13. Plasma Drifts in the Intermediate Magnetosphere: Simulation Results

    Science.gov (United States)

    Lyon, J.; Zhang, B.

    2016-12-01

    One of the outstanding questions about the inner magnetosphere dynamics is how the ring current is populated. It is not clear how much is due to a general injection over longer time and spatial scales and how much due to more bursty events. One of the major uncertainties is the behavior of the plasma in the intermediate magnetosphere: the region where the magnetosphere changes from being tail-like to one where the dipole field dominates. This is also the region where physically the plasma behavior changes from MHD-like in the tail to one dominated by particle drifts in the inner magnetosphere. No of the current simulation models self-consistently handle the region where drifts are important but not dominant. We have recently developed a version of the multi-fluid LFM code that can self-consistently handle this situation. The drifts are modeled in a fashion similar to the Rice Convection Model in that a number of energy "channels" are explicitly simulated. However, the method is not limited to the "slow flow" region and both diamagnetic and inertial drifts are included. We present results from a number of idealized cases of the global magnetosphere interacting with a southward turning of the IMF. We discuss the relative importance of general convection and bursty flows to the transport of particles and energy across this region.

  14. Drift waves and chaos in a LAPTAG plasma physics experiment

    Science.gov (United States)

    Gekelman, Walter; Pribyl, Patrick; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Wolman, Ben; Baker, Bob; Marmie, Ken; Patankar, Vedang; Bridges, Gabriel; Buckley-Bonanno, Samuel; Buckley, Susan; Ge, Andrew; Thomas, Sam

    2016-02-01

    In a project involving an alliance between universities and high schools, a magnetized plasma column with a steep pressure gradient was established in an experimental device. A two-dimensional probe measured fluctuations in the plasma column in a plane transverse to the background magnetic field. Correlation techniques determined that the fluctuations were that of electrostatic drift waves. The time series data were used to generate the Bandt-Pompe entropy and Jensen-Shannon complexity for the data. These quantities, when plotted against one another, revealed that a combination of drift waves and other background fluctuations were a deterministically chaotic system. Our analysis can be used to tell the difference between deterministic chaos and random noise, making it a potentially useful technique in nonlinear dynamics.

  15. A space-charge-neutralizing plasma for beam drift compression

    Science.gov (United States)

    Roy, P. K.; Seidl, P. A.; Anders, A.; Bieniosek, F. M.; Coleman, J. E.; Gilson, E. P.; Greenway, W.; Grote, D. P.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Sefkow, A. B.; Waldron, W. L.; Welch, D. R.

    2009-07-01

    Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a ˜10-cm-long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter ˜5 mm along the solenoid axis when the FFS is powered with an 8 T field. Measured plasma density of ⩾1×10 13 cm -3 meets the challenge of np/ Znb>1, where np and nb are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the beam ions.

  16. Coherent structures and transport in drift wave plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bang Korsholm, S.

    2011-12-15

    Fusion energy research aims at developing fusion power plants providing safe and clean energy with abundant fuels. Plasma turbulence induced transport of energy and particles is a performance limiting factor for fusion devices. Hence the understanding of plasma turbulence is important for optimization. The present work is a part of the puzzle to understand the basic physics of transport induced by drift wave turbulence in the edge region of a plasma. The basis for the study is the Hasegawa-Wakatani model. Simulation results for 3D periodic and nonperiodic geometries are presented. The Hasegawa-Wakatani model is further expanded to include ion temperature effects. Another expansion of the model is derived from the Braginskii electron temperature equation. The result is a self-consistent set of equations describing the dynamical evolution of the drift wave fluctuations of the electron density, electron temperature and the potential in the presence of density and temperature gradients. 3D simulation results of the models are presented. Finally, the construction and first results from the MAST fluctuation reflectometer is described. The results demonstrate how L- to H-mode transitions as well as edge-localized-modes can be detected by the relatively simple diagnostic system. The present Risoe report is a slightly updated version of my original PhD report which was submitted in April 2002 and defended in August 2002. (Author)

  17. SuperDARN convection and Sondrestrom plasma drift

    Directory of Open Access Journals (Sweden)

    L. Xu

    Full Text Available Plasma convection measurements by the Goose Bay and Stokkseyri SuperDARN radar pair and the Sondrestrom incoherent scatter radar are compared in three different ways, by looking at the line-of-sight (l-o-s velocities, by comparing the SuperDARN vectors and corresponding Sondrestrom l-o-s velocities and by comparing the end products of the instruments, the convection maps. All three comparisons show overall reasonable agreement of the convection measurements though the data spread is significant and for some points a strong disagreement is obvious. The convection map comparison shows a tendency for the SuperDARN velocities to be often less than the Sondrestrom drifts for strong flows (velocities > 1000 m/s and larger for weak flows (velocities < 500 m/s. On average, both effects do not exceed 35%. Data indicate that inconsistencies between the two data sets occur largely at times of fast temporal variations of the plasma drift and for strongly irregular flow ac-cording to the SuperDARN convection maps. These facts indicate that the observed discrepancies are in many cases a result of the different spatial and temporal resolutions of the instruments.

    Key words. Ionosphere (ionospheric irregularities; plasma convection; polar ionosphere

  18. The distribution and depth of ion doses implanted into wedges by plasma immersion ion implantation in drifting and stationary plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tarrant, R N; Devasahayam, S; McKenzie, D R; Bilek, M M M [School of Physics (A28), University of Sydney, NSW 2006 (Australia)

    2006-08-15

    The distribution of ion dose arising from plasma immersion ion implantation (PIII) of a complex shape in the form of a wedge is measured. Two types of plasma are considered: a drifting titanium plasma derived from a pulsed cathodic arc and a stationary plasma generated by PIII pulses in oxygen or nitrogen gas. The distributions of the implanted material over the surface of the aluminium wedge were studied using secondary ion mass spectroscopy and Rutherford backscattering. The effects of varying the apex angles of the wedge and the plasma density are investigated. We conclude that ion-focusing effects at the apex of the wedge were more important for the drifting plasma than for the stationary plasmas. In a drifting plasma, the ion drift velocity directed towards the apex of the wedge compresses the sheath close to the apex and enhances the concentration of the dose. For the stationary plasma, the dose is more uniform.

  19. Linear Analysis of Drift Ballooning Modes in Tokamak Edge Plasmas

    Science.gov (United States)

    Tangri, Varun; Kritz, Arnold; Rafiq, Tariq; Pankin, Alexei

    2012-10-01

    The H-mode pedestal structure depends on the linear stability of drift ballooning modes (DBMs) in many H-mode pedestal models. Integrated modeling that uses these pedestal models requires fast evaluation of linear stability of DBMs. Linear analysis of DBMs is also needed in the computations of effective diffusivities associated with anomalous transport that is driven by the DBMs in tokamak edge plasmas. In this study several numerical techniques of linear analysis of the DBMs are investigated. Differentiation matrix based spectral methods are used to compute the physical eigenvalues of the DBMs. The model for DBMs used here consists of six differential equations [T. Rafiq et al. Phys. Plasmas, 17, 082511, (2010)]. It is important to differentiate among non-physical (numerical) modes and physical modes. The determination of the number of eigenvalues is solved by a computation of the `nearest' and `ordinal' distances. The Finite Difference, Hermite and Sinc based differentiation matrices are used. It is shown that spectral collocation methods are more accurate than finite difference methods. The technique that has been developed for calculating eigenvalues is quite general and is relevant in the computation of other modes that utilize the ballooning mode formalism.

  20. Scattering of Electromagnetic Waves by Drift Vortex in Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; CHEN Yinhua; WANG Ge

    2008-01-01

    In a quasi-two-dimensional model, the scattering of incident ordinary electromag-netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia << 1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approxi-mation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then ki<< 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering cross-section. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.

  1. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.;

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...

  2. Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing

    Science.gov (United States)

    Ari, Gizem; Toker, Cenk

    2016-07-01

    Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  3. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    Science.gov (United States)

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-09-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave - zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow.

  4. Drift-Alfven instabilities of a finite beta plasma shear flow along a magnetic field

    Science.gov (United States)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-02-01

    It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows.

  5. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Science.gov (United States)

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  6. An Obliquely Propagating Electromagnetic Lower-Hybrid-Drift Instability in Plasmas with Negative Ions

    Institute of Scientific and Technical Information of China (English)

    WANG Feihu; ZHANG Zhou; CHEN Yinhua; HUANG Feng

    2007-01-01

    In this study,by employing a local fluid theory for warm plasma containing negative ions,an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field currents or relative drifts between electrons and ions Was investigated.It is found that the growth rate of the lower-hybrid-drift instability(LHDI)can be controlled by appropriate selection of the propagation direction,the wave number and the relative population of the negative ions.

  7. Convective modes in plasma with the strong shear of ExB drift velocity

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A.V. [RRC ' Kurchatov Institute' , Moscow, Russia 123182 (Russian Federation)

    2001-05-01

    The convective modes of an inhomogeneously drifting plasma in a shear magnetic field (a generalization of Suydam's problem) is considered. It is shown that a sufficiently great shear of ExB velocity drift suppresses the instability in the case of an arbitrary 'magnetic hill'. This result can be considered again as a Rayleigh theorem analogue. (author). Letter-to-the-editor.

  8. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    CERN Document Server

    Matsuoka, Seikichi; Kanno, Ryutaro; Sugama, Hideo

    2015-01-01

    In evaluating neoclassical transport by radially-local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport are investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight $\\delta f$ Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas $\\rm \\textbf{1}$, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transpo...

  9. Electron drift waves in an advanced tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, M.A.; Persson, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Signals and Systems and Euratom/VR Association; Rafiq, T. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics

    2006-06-15

    The influence of details of an international thermonuclear experimental reactor (ITER)-like geometry on drift wave stability is studied. The eigenvalue problem for electrostatic electron drift waves is solved numerically by following the ballooning mode formalism and using a standard shooting technique. The real frequencies and growth rates of the most unstable modes and their eigenfunctions are calculated for two specific magnetic flux surfaces. For the equilibrium under investigation, the modes are found to be unstable for peak density profiles and their stability is found to be strongly affected by the local magnetic shear (LMS). The presence of positive LMS is found to be destabilizing on the magnetic surface where global magnetic shear is reverse. The stability behaviour is however different for a positive magnetic shear surface where the effect of large positive LMS is found to be stabilizing. The eigenfunctions are more localized in the regions where normal curvature is bad and magnetic field is weak.

  10. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    Science.gov (United States)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  11. Numerical instability due to relativistic plasma drift in EM-PIC simulations

    CERN Document Server

    Xu, Xinlu; Martins, Samual F; Tsung, Frank S; Decyk, Viktor K; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2012-01-01

    The numerical instability observed in the Electromagnetic-Particle-in-cell (EM-PIC) simulations with a plasma drifting with relativistic velocities is studied using both theory and computer simulations. We derive the numerical dispersion relation for a cold plasma drifting with a relativistic velocity and find an instability attributed to the coupling between the beam modes of the drifting plasma and the electromagnetic modes in the system. The characteristic pattern of the instability in Fourier space for various simulation setups and Maxwell Equation solvers are explored by solving the corresponding numerical dispersion relations. Furthermore, based upon these characteristic patterns we derive an asymptotic expression for the instability growth rate. The results are compared against simulation results and good agreement is found. The results are used as a guide to develop possible approaches to mitigate the instability. We examine the use of a spectral solver and show that such a solver when combined with a...

  12. Benchmark of the Local Drift-kinetic Models for Neoclassical Transport Simulation in Helical Plasmas

    CERN Document Server

    Huang, B; Kanno, R; Sugama, H; Matsuoka, S

    2016-01-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are ZOW, ZMD, DKES-like, and global, as classified in [Matsuoka et al., Physics of Plasmas 22, 072511 (2015)]. The magnetic geometries of HSX, LHD, and W7-X are employed in the benchmarks. It is found that the assumption of $\\boldsymbol E \\times \\boldsymbol B$ incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models, when $\\boldsymbol E \\times \\boldsymbol B$ is sufficiently large compared to the magnetic drift velocities. On the other hand, when $\\boldsymbol E \\times \\boldsymbol B$ and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at $E_r \\simeq 0$. In low collisionality plasmas, in particular, the tangential drift effect works w...

  13. Enhanced reliability of drift-diffusion approximation for electrons in fluid models for nonthermal plasmas

    Directory of Open Access Journals (Sweden)

    M. M. Becker

    2013-01-01

    Full Text Available Common fluid models used for the description of electron transport in nonthermal discharge plasmas are subject to substantial restrictions if the electron energy transport significantly influences the discharge behaviour. A drift-diffusion approach is presented which is based on a multiterm approximation of the electron velocity distribution function and overcomes some of these restrictions. It is validated using a benchmark model and applied for the analysis of argon discharge plasmas at low and atmospheric pressure. The results are compared to those of common drift-diffusion models as well as to experimental data. It is pointed out that fluid models are able to describe nonlocal phenomena caused by electron energy transport, if the energy transport is consistently described. Numerical difficulties that frequently occur when the conventional drift-diffusion model is consistently applied are avoided by the proposed method.

  14. Analytical and numerical treatment of resistive drift instability in a plasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Mirnov, V. V., E-mail: vvmirnov@wisc.edu; Sauppe, J. P.; Hegna, C. C.; Sovinec, C. R. [University of Wisconsin-Madison and the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas (United States)

    2016-05-15

    An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron−ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear in unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.

  15. Control of arc plasma torches: compensation of operational enthalpy drifts

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D H; Alexieva, J; Djakov, B E; Enikov, R [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Dimitrov, D [Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia (Bulgaria)], E-mail: dick.oliver@gmail.com

    2008-05-01

    In arc plasma torches electrode wear is the main reason for slow changes in the electrical and thermal torch characteristics. Such effects hinder technological applications of this type of plasma torches whenever the enthalpy must be maintained at a fixed level, or varied as needed. To solve this problem, a new method and algorithm for torch control are proposed. The time evolution of the arc current, voltage and thermal power loss of the torch are recorded. The values measured are used to find the required value of the enthalpy.

  16. Characteristics of ionospheric plasma drifts as obtained from Doppler ionosonde measurements at magnetic equator over Indian sector

    Science.gov (United States)

    Samireddipalle, Sripathi; Banola, Sridhar; Singh, Ram

    2016-07-01

    We present equatorial plasma drifts over Tirunelveli (8.73°N, 77.70°E; Dip 0.5°N), an equatorial site over Indian region using Doppler interferometry technique of Canadian Advanced Digital Ionosonde (CADI) system. In the Doppler interferometry technique, it is possible to infer three dimensional bulk motion of the scatterers as reflected from the ionosphere at selected frequencies using spaced receivers arranged in mag. east-west, north-south directions. Spectral phases and amplitudes are calculated using FFT to identify the Doppler frequencies and their drifts. This technique produces reliable drifts when sharp refractive index gradients exists which produces higher scattering sources. The vertical drifts so obtained are compared with same drifts from Digisonde at Trivandrum. After having compared with Digisonde drifts, we studied the temporal and seasonal variability of these drifts during quiet periods for the year 2012. It is seen that vertical drifts exhibited equinoctial maximum in the Pre-Reversal-Enhancement (PRE) followed by winter and summer respectively. A comparison of these vertical drifts is made with drifts obtained from (a) virtual height measured at 4 MHz and (b) Fejer drift model. The comparison suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height. However, the correlation seems to be good around evening PRE times. The zonal drifts, on the other hand, showed westward drifts during daytime with mean drifts of ~250 m/s, while they are eastward during nighttime with mean drifts of ~150 m/s. These drifts seems to be higher as compared to zonal drifts obtained in the South American sector. However, the zonal drifts so obtained showed good correlation with Equatorial Electrojet (EEJ) strength suggesting zonal drifts are influenced by E region drifts during daytime in agreement with Woodman et al., 2013 paper. The magnitude of these drifts are comparable to other independent

  17. Drift wave turbulence in low-β plasmas

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Larsen, Søren Ejling; Pécseli, Hans

    1983-01-01

    Experimental investigations of strong turbulence associated with the radial density gradient of a rotating magnetized plasma column are reported. The experiment is designed to make Taylor's hypothesis effective, in order to allow a simple interpretation of measured frequency spectra in terms...

  18. Plasma-Maser Instability of the Electromagnetic Radiation In The Presence Of Electrostatic Drift Wave Turbulence in Inhomogeneous Plasma

    Directory of Open Access Journals (Sweden)

    Mahinder Singh

    2016-10-01

    Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma

  19. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  20. DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.

    2011-01-01

    Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics

  1. DC Electric Fields and Associated Plasma Drifts Observed with the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Rowland, D.

    2009-01-01

    Initial DC electric field observations and associated plasma drifts are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite. We present statistical averages of the vector fields for the first year of operations that include both the zonal and radial components of the resulting E x B plasma flows at low latitudes. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. The DC electric field detector reveals zonal and radial electric fields that undergo strong diurnal variations, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. There is considerable variation in the large scale DC electric field data, in both the daytime and nighttime cases, with enhanced structures typically observed at night. In general, the measured zonal DC electric field amplitudes include excursions that extend within the 0.4 - 2 m V/m range, corresponding to E x B drifts of the order of 30-150 m/s. The average vertical or radial electric fields may exceed the zonal fields in amplitude by a factor of 1.5 to 2. Although the data compare well, in a general sense, with previous satellite observations and statistical patterns of vertical ion drifts, the E x B drifts we report from C/NOFS rarely show a pronounced pre-reversal enhancement after sunset. We attribute this to a combination of extreme solar minimum conditions and the fact that the C/NOFS orbit of 401 by 867 km carries the probes essentially above the lower altitude regions where the wind-driven dynamo might be expected to create enhanced upwards drifts in the early evening. Evidence for wavenumber 4 tidal effects and other longitudinal signatures have been detected and will be presented. We also discuss off-equatorial electric fields and their relation to the ambient plasma density.

  2. Sheared Flow Driven Drift Instability and Vortices in Dusty Plasmas with Opposite Polarity

    Science.gov (United States)

    Mushtaq, A.; Shah, AttaUllah; Ikram, M.; Clark, R. E. H.

    2016-02-01

    Low-frequency electrostatic drift waves are studied in an inhomogeneous dust magnetoplasma containing dust with components of opposite polarity. The drift waves are driven by the magnetic-field-aligned (parallel) sheared flows in the presence of electrons and ions. Due to sheared flow in the linear regime, the electrostatic dust drift waves become unstable. The conditions of mode instability, with the effects of dust streaming and opposite polarity, are studied. These are excited modes which gain large amplitudes and exhibit interactions among themselves. The interaction is governed by the Hasegawa-Mima (HM) nonlinear equation with vector nonlinearity. The stationary solutions of the HM equation in the form of a vortex chain and a dipolar vortex, including effects of dust polarity and electron (ion) temperatures, are studied. The relevance of the present work to space and laboratory four component dusty plasmas is noted.

  3. Instabilities and transport in Hall plasmas with ExB drift

    Science.gov (United States)

    Smolyakov, Andrei

    2016-10-01

    Low temperature plasma with moderate magnetic field, where the ions are not or just weakly magnetized, i.e. the ion Larmor radius being larger or comparable to the characteristic length scale of interest (e.g. the size ofthe system), have distinctly different properties from strongly magnetized plasmas such as that for fusion applications. Such parameters regimes are generally defined here as Hall plasmas. The natural scale separation between the ion and electron Larmor radii in Hall plasma, further exploited by the application of the external electric field, offers unique applications in various plasma devices for material processing and electric propulsion. Plasmas in such devices are in strongly non-equilibrium state making it prone to a number of instabilities. This talk presents physics description of the dominant unstable modes in ExB Hall plasmas resulting in highly turbulent state with nonlinear coherent structures and anomalous electron current. Since ions are un-magnetized, fundamental instabilities operating in low temperature Hall plasmas are very different from much studied gradients (density, temperature and magnetic field) driven drift-wave turbulence in strongly magnetized plasmas for fusion applications. As a result the nonlinear saturation mechanisms, role of the ExB shear flows are also markedly different in such plasmas. We review the basic instabilities in these plasmas which are related to the ion-sound, low-hybrid and anti-drift modes, discuss nonlinear saturation and anomalous transport mechanisms. The advanced nonlinear fluid model for such plasmas and results of nonlinear simulations of turbulence and anomalous transport performed within a modified BOUT++ framework will be presented. Research supported by NSERC Canada and US AFOSR FA9550-15-1-0226.

  4. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  5. Silicon Drift Detector for Soft x-ray Spectrometer in Fusion Plasmas

    Institute of Scientific and Technical Information of China (English)

    LI Mei; JU Hong-jun

    2008-01-01

    Silicon drift detector(SDD) is used in the soft x-ray pulse height analyzer(PHA) to measure soft x-ray emissions in fusion plasmas. SDD has the virtues of high count rates and high energy resolution, and the good performances at work temperature of about -10 ℃ achieved by single stage peltier element. The performance and first experimental results from SDD system are presented.

  6. Drift wave stabilized by an additional streaming ion or plasma population.

    Science.gov (United States)

    Bashir, M F; Vranjes, J

    2015-03-01

    It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vph-vf0)exp[-(vph-vf0)2], where vf0 is the flow speed and vph is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf0vph.

  7. Drift wave stabilized by an additional streaming ion or plasma population

    CERN Document Server

    Bashir, M F

    2015-01-01

    It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vph-vf0) exp[-(vph-vf0)^2], where vf0 is the flow speed and vph phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf0 < vph.

  8. Relation of zonal plasma drift and wind in the equatorial F region as derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    J. Park

    2013-06-01

    Full Text Available In this paper we estimate zonal plasma drift in the equatorial ionospheric F region without counting on ion drift meters. From June 2001 to June 2004 zonal plasma drift velocity is estimated from electron, neutral, and magnetic field observations of Challenging Mini-satellite Payload (CHAMP in the 09:00–20:00 LT sector. The estimated velocities are validated against ion drift measurements by the Republic of China Satellite-1/Ionospheric Plasma and Electrodynamics Instrument (ROCSAT-1/IPEI during the same period. The correlation between the CHAMP (altitude ~ 400 km estimates and ROCSAT-1 (altitude ~ 600 km observations is reasonably high (R ≈ 0.8. The slope of the linear regression is close to unity. However, the maximum westward drift and the westward-to-eastward reversal occur earlier for CHAMP estimates than for ROCSAT-1 measurements. In the equatorial F region both zonal wind and plasma drift have the same direction. Both generate vertical currents but with opposite signs. The wind effect (F region wind dynamo is generally larger in magnitude than the plasma drift effect (Pedersen current generated by vertical E field, thus determining the direction of the F region vertical current.

  9. Numerical study of drift-kinetic evolution of collisional plasmas in tori

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, Jr., C. O.; Meier, H. K.; van Rij, W. I.; McCune, J. E.

    1976-03-01

    Preliminary numerical results for the dynamics of toroidally confined plasmas in the drift-kinetic, Fokker--Planck description are discussed. These solutions were obtained by using the techniques inherent to the collisional plasma model (CPM) described in detail elsewhere. An initial value problem is solved in the local approximation in which collisions and particle dynamics compete in a given magnetic field to set up a quasi-equilibrium. Both the plasma (guiding center) distribution function and many macroscopic quantities of interest are monitored. Good agreement with corresponding but more approximate theories is obtained over a wide range of collisionality, particularly with regard to the neoclassical particle flux. Encouraging confirmation of earlier results for the distribution function is achieved when due account is taken of the differing collisionality of particles with differing energies. These initial results indicate the potential importance of certain non-local effects as well as inclusion of self-consistency between fields and plasma currents and densities.

  10. Large-scale drifts observed on electron temperature measurements on JET plasmas

    CERN Document Server

    Gerbaud, Thomas; Alper, Barry; Beausang, Kieran; Beurskens, Marc; Flanagan, Joanne; Kempenaars, Mark; Sirinelli, Antoine; Maslov, Mikhail; Dif-Pradalier, Guilhem; Contributors, JET EFDA

    2012-01-01

    Between 1995 and 2009, electron temperature (Te) measurements of more than 15000 plasmas produced in the Joint European Torus (JET) have been carefully reviewed using the two main diagnostics available over this time period: Michelson interferometer and Thomson scattering systems. Long term stability of JET Te is experimentaly observed by defining the ECE TS ratio as the ratio of central Te measured by Michelson and LIDAR. This paper, based on a careful review of Te measurement from 15 years of JET plasmas, concludes that JET Te exhibits a 15-20% effective uncertainty mostly made of large-scale temporal drifts, and an overall uncertainty of 16-22%. Variations of 18 plasma parameters are checked in another data set, made of a "reference data set" made of ohmic pulses as similar as possible between 1998 and 2009. Time drifts of ECE TS ratios appear to be mostly disconnected from the variations observed on these 18 plasma parameters, except for the very low amplitude variations of the field which are well correl...

  11. Regulating drift-wave plasma turbulence into spatiotemporal patterns by pinning coupling.

    Science.gov (United States)

    Liu, Panpan; Yang, Lei; Deng, Zhigang; Wang, Xingang

    2011-07-01

    Using the technique of pinning coupling in chaos control, we investigate how the two-dimensional drift-wave plasma turbulence described by the Hasegawa-Mima equation can be regulated into different spatiotemporal patterns. It is shown both analytically and numerically that, depending on the pattern structure of the target, the pinning strength necessary for regulating the turbulence could have a large variation. More specifically, with the increase of the wave number of the target, the critical pinning strength is found to be increased by a power-law scaling. Moreover, in both the transition and transient process of the pinning regulation, the modes of the turbulence are found to be suppressed in a hierarchical fashion, that is, by the sequence of mode wave number. The findings give insight into the dynamics of drift-wave turbulence, as well as indicative to the design of new control techniques for real-world turbulence.

  12. Equatorial nighttime vertical f-region plasma drifts during disturbed-time in the african sector

    Science.gov (United States)

    Oyekola, O. S.; Ojo, A.; Akinrimisi, J.

    The terrestrial ionosphere deals with the basic structure and variability of plasma within the upper atmosphere of the Earth Furthermore the ionosphere comprises less than one percent of the mass of the upper atmosphere yet it has a significant influence on advanced communication and navigation systems both have important economic consequences As society beings to rely on more complex technologies those systems become more susceptible to environmental effects However there is still considerable difficulty in the understanding of the equatorial ionospheric phenomena under different solar and geomagnetic conditions despite all extensive studies in the middle and high latitudes and in equatorial and low latitude American and Indian sectors By contrast there is a remarkably sparse database at equatorial African continent of the globe Consequently we infer F-region vertical plasma drifts at the magnetic equatorial station Ibadan 7 4 o N 3 9 o E 6 o S dip from the time variation of the hourly recorded ionosonde virtual height of F layer h F data obtained during 1957-58 International Geophysical Year IGY period corresponding to a year of high solar flux under geomagnetic disturbed night hours 1800-0600 LT The results show a strong geomagnetic control of ionospheric plasma drifts velocities variability in month-to-month and at three different seasonal conditions The largest random fluctuations are observed in June solstice months The evening and morning reversal times are highly variable The average magnitude of the downward

  13. Numerical instability due to relativistic plasma drift in EM-PIC simulations

    Science.gov (United States)

    Xu, Xinlu; Yu, Peicheng; Martins, Samual F.; Tsung, Frank S.; Decyk, Viktor K.; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2013-11-01

    The numerical instability observed in electromagnetic particle-in-cell (EM-PIC) simulations with a plasma drifting with relativistic velocities is studied using both theory and computer simulations. We derive the numerical dispersion relation for a cold plasma drifting with a relativistic velocity, and find an instability attributed to the intersection between beam resonances and the electromagnetic modes in the drifting plasma. The intersection can occur in the fundamental Brillouin zones when EM waves with phase velocities less than the speed of light exist, and from aliasing beam resonances and aliasing EM modes. The unstable modes are neither purely transverse nor longitudinal. The characteristic patterns of the instability in Fourier space for various simulation setups and Maxwell equation solvers are explored by solving the corresponding numerical dispersion relations. Furthermore, based upon these characteristic patterns, we derive an asymptotic expression for the instability growth rate. The asymptotic expression greatly speeds up the calculation of the instability growth rate and makes the parameter scans for minimal growth rate feasible even for full three dimensions. The results are compared against simulation results, and good agreements are found. These results can be used as a guide to develop possible approaches to mitigate the instability. We examine the use of a spectral solver and show that such a solver when combined with a low pass filter with a cutoff value of |k→| essentially eliminates the instability while not modifying modes of physical interest. The use of a spectral solver also provides minimal errors to electromagnetic modes in the lowest Brillouin zones.

  14. Drift-Alfven turbulence of a parallel shearing flow of the finite beta plasma with warm ions

    Science.gov (United States)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-09-01

    It was predicted [Mikhailenko et al., Phys. Plasmas 23, 020701 (2016)] that two distinct drift-Alfven instabilities may be developed in the parallel shearing flow of finite beta plasmas ( 1 ≫β≫me/mi ) with comparable ion and electron temperatures. The first one is the shear-flow-modified drift-Alfven instability, which develops due to the inverse electron Landau damping and exists in the shearless plasma as well. The second one is the shear-flow-driven drift-Alfven instability, which develops due to the combined effect of the velocity shear and ion Landau damping and is absent in the shearless plasma flows. In the present paper, these drift-Alfven instabilities are examined numerically and analytically by including the electromagnetic response of the ions. The levels of the drift-Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of ion scattering by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same nonlinear effect of ion scattering, is derived and employed for the analysis of the ion viscosity and ions heating resulting from the interactions of ions with drift-Alfven turbulence.

  15. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented

  16. Onset of stimulated Raman scattering of a laser in a plasma in the presence of hot drifting electrons

    Science.gov (United States)

    Gupta, D. N.; Yadav, Pinki; Jang, D. G.; Hur, M. S.; Suk, H.; Avinash, K.

    2015-05-01

    Stimulated Raman scattering of a laser in plasmas with energetic drifting electrons was investigated by analyzing the growth of interacting waves during the Raman scattering process. The Langmuir wave and scattered electromagnetic sideband wave grow initially and are dampened after attaining a maximum level that indicates a periodic exchange of energy between the pump wave and the daughter waves. The presence of energetic drifting electrons in the laser-produced plasma influences the stimulated Raman scattering process. The plasma wave generated by Raman scattering may be influenced by the energetic electrons, which enhance the growth rate of the instability. Our results show that the presence of energetic (hot) drifting electrons in a plasma has an important effect on the evolution of the interacting waves. This phenomenon is modeled via two-dimensional particle-in-cell simulations of the propagation and interaction of the laser under Raman instability.

  17. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Bai, Zhibin [State Grid Yulin Electric Power Supply Company, Shaanxi 719000 (China)

    2016-05-15

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  18. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    Science.gov (United States)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  19. Coupled dust drift acoustic shock and soliton in collisional four component magnetized dusty plasmas

    Science.gov (United States)

    Farooq, M.; Ahmad, Mushtaq; Jan, Qasim

    2017-09-01

    Low frequency electrostatic coupled dust drift dust acoustic waves are studied in an inhomogeneous, collisional four component dust magnetoplasma composed of dust components of opposite polarity, along with Boltzmannian ions and electrons. The nonlinear evolution equation in the form of an ordinary differential equation and its limiting cases are derived and solved using the Tanh-method. The numerical analysis of the obtained solutions is studied for both laboratory and cosmic plasma systems. It is observed that, depending on the values of the plasma parameters like ion and electron temperatures, and charge number, both rarefactive and compressive shock and solitary waves may exist. It is shown that the concepts of a critical ion and electron temperatures/density in the nonlinear equations treatment, and of a changeover from compressive to rarefactive shock and soliton characters, correspond to the formation of rarefactive regimes, at which the electric stresses maximize and density minimizes.

  20. Drift Mode Growth Rate and Associated Ion Thermal Transport in Reversed Magnetic Shear Tokamak Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-Ke; QIU Xiao-Ming

    2001-01-01

    Drift mode linear growth rate and quasi-linear ion thermal transport in the reversed magnetic shear plasma are investigated by using the two-fluid theory, previously developed by Weiland and the Chalmers group [J. Nucl.Fusion, 29 (1989) 1810; ibid. 30 (1990) 983]. The theory is here extended to include both the radial electrical field shear (dEr/dr) and the electron fluid velocity (Ve) in the sheared coordinate system. Here, Ve describes the coupling between the safety factor q and the Er × B velocity V E. Their influences on the growth rate and associated ion thermal transport are obtained numerically. In addition, the ion heat pinch in the reversed shear plasma is observed. Qualitatively, the present conclusions are in good agreement with the experimental results.

  1. Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas

    Science.gov (United States)

    Revel, A.; Minea, T.; Tsikata, S.

    2016-10-01

    A pseudo-3D modeling approach, based on a particle-in-cell (PIC)-Monte Carlo collisions algorithm, has been developed for the study of large- and short-scale organization of the plasma in a planar magnetron. This extension of conventional PIC modeling permits the observation of spontaneous organization of the magnetron plasma, under the influence of crossed electric and magnetic fields, into the well-known, large-scale regions of enhanced ionization and density known as spokes. The nature of complex three-dimensional electron trajectories around such structures, and non-uniform ionization within them, is revealed. This modeling provides direct numerical evidence for the existence of high-amplitude internal spoke electric fields, proposed in earlier works. A 3D phenomenological model, consistent with numerical results, is proposed. Electron density fluctuations in the megahertz range, with characteristics similar to the electron cyclotron drift instability experimentally identified in a recent Letter, are also found.

  2. The effect of plasma shear flow on drift Alfven instabilities of a finite beta plasma and on anomalous heating of ions by ion cyclotron turbulence

    Science.gov (United States)

    Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.

    2016-01-01

    It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.

  3. Validation study of a drift-wave turbulence model for CSDX linear plasma device

    Science.gov (United States)

    Vaezi, P.; Holland, C.; Thakur, S. C.; Tynan, G. R.

    2017-09-01

    A validation study of self-regulating drift-wave turbulence/zonal flow dynamics in the Controlled Shear Decorrelation Experiment linear plasma device using Langmuir probe synthetic diagnostics is presented in this paper. We use a set of nonlocal 3D equations, which evolve density, vorticity, and electron temperature fluctuations, and include proper sheath boundary conditions. Nonlinear simulations of these equations are carried out using BOUndary Turbulence (BOUT++) framework. To identify the dominant parametric dependencies of the model, a linear growth rate sensitivity analysis is performed using input parameter uncertainties, which are taken from the experimental measurements. For the direct comparison of nonlinear simulation results to experiment, we use synthetic Langmuir probe diagnostics to generate a set of synthetic ion saturation current and floating potential fluctuations. In addition, comparisons of azimuthal velocities determined via time-delay estimation, and nonlinear energy transfer are shown. We observe a significant improvement of model-experiment agreement relative to the previous 2D simulations. An essential component of this improved agreement is found to be the effect of electron temperature fluctuations on floating potential measurements, which introduces clear amplitude and phase shifts relative to the plasma potential fluctuations in synthetically measured quantities, where the simulations capture the experimental measurements in the core of plasma. However, the simulations overpredict the fluctuation levels at larger radii. Moreover, systematic simulation scans show that the self-generated E × B zonal flows profile is very sensitive to the steepening of density equilibrium profile. This suggests that evolving both fluctuations and equilibrium profiles, along with the inclusion of modest axial variation of radial profiles in the model are needed for further improvement of simulation results against the experimental measurements.

  4. Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

    Science.gov (United States)

    Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.

    2016-04-01

    > A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  5. Phase mixing vs. nonlinear advection in drift-kinetic plasma turbulence

    CERN Document Server

    Schekochihin, A A; Highcock, E G; Dellar, P J; Dorland, W; Hammett, G W

    2015-01-01

    A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g., drift-wave turbulence driven by temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating ExB flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. A consistent theory is constructed in which very little free energy leaks into high velocity moments of the distribution, rendering the turbulent cascade in the energetically relevant part of the wave-number space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also i...

  6. An improved neoclassical drift-magnetohydrodynamical fluid model of helical magnetic island equilibria in tokamak plasmas

    Science.gov (United States)

    Fitzpatrick, Richard

    2016-05-01

    The effect of the perturbed ion polarization current on the stability of neoclassical tearing modes in tokamak plasmas is calculated using an improved, neoclassical, four-field, drift-magnetohydrodynamical model. The calculation involves the self-consistent determination of the pressure and scalar electric potential profiles in the vicinity of the associated magnetic island chain, which allows the chain's propagation velocity to be fixed. Two regimes are considered. First, a regime in which neoclassical ion poloidal flow damping is not strong enough to enhance the magnitude of the polarization current (relative to that found in slab geometry). Second, a regime in which neoclassical ion poloidal flow damping is strong enough to significantly enhance the magnitude of the polarization current. In both regimes, two types of solution are considered. First, a freely rotating solution (i.e., an island chain that is not interacting with a static, resonant, magnetic perturbation). Second, a locked solution (i.e., an island chain that has been brought to rest in the laboratory frame via interaction with a static, resonant, magnetic perturbation). In all cases, the polarization current is found to be either always stabilizing or stabilizing provided that ηi≡d ln Ti/d ln ne does not exceed some threshold value. In certain ranges of ηi, the polarization current is found to have a stabilizing effect on a freely rotating island, but a destabilizing effect on a corresponding locked island.

  7. Non-resonant instability of coupled Alfvén and drift compressional modes in magnetospheric plasma

    Science.gov (United States)

    Mager, Pavel N.; Klimushkin, Dmitri Yu

    2017-09-01

    A new mechanism of generation of the high-m compressional ULF waves in the magnetosphere is considered. It is suggested that the wave can be generated by the non-resonant instability of coupled Alfvén and drift compressional modes in the energetic component of the magnetospheric plasma. A stability analysis of the of the coupled modes in the inhomogeneous finite-β plasma in the dipole-like field in gyrokinetics is performed. A quadratic equation was obtained that determines mode frequency and the growth rate. The frequencies of both modes depend on the azimuthal wave number, m. The branches are merged at some critical m value, forming a mode with both real and imaginary parts of the wave frequency. This mode is amplified due to the instability called the drift coupling instability. The instability criterion was found. Its growth rate is determined by the mode coupling.

  8. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    Science.gov (United States)

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  9. A High Frequency Radio Technique for Measuring Plasma Drifts in the Ionosphere.

    Science.gov (United States)

    1983-07-01

    For Doppler-drift measurements at Goose Bay, Digi- sonde operation is alternated between the ionogram and drift modes (see section 1.5.2). The...Frequency #Is 4-6 # OF HARACTERS FORMAT OF EACH RECORD 5, 6, 7 80 Preface* 8, 9 160 Dummies ANTENNA # OF SPECTRAL # LINES** 80 1 32 Same for each 80...reasons the data transfer from the Digi- sonde to digital tape is not done correctly for drift measure- ments at ranges greater than 510 km, so the

  10. Drifting plasma collection by a positive biased tether wire in LEO-like plasma conditions: current measurement and plasma diagnostic

    OpenAIRE

    Siguier, Jean-Michel; Sarrailh, Pierre; Roussel, Jean-François; Inguimbert, Virgine; Murat, Gaël; Sanmartín Losada, Juan Ramón

    2013-01-01

    BETs is a three-year project financed by the Space Program of the European Commission, aimed at developing an efficient deorbit system that could be carried on board any future satellite launched into Low Earth Orbit (LEO). The operational system involves a conductive tape-tether left bare to establish anodic contact with the ambient plasma as a giant Langmuir probe. As a part of this project, we are carrying out both numerical and experimental approaches to estimate the collected current by ...

  11. Storm time equatorial plasma bubble zonal drift reversal due to disturbance Hall electric field over the Brazilian region

    Science.gov (United States)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.; Denardini, C. M.

    2016-06-01

    The dynamics of equatorial ionospheric plasma bubbles over Brazilian sector during two magnetic storm events are investigated in this work. The observations were made at varying phases of magnetic disturbances when the bubble zonal drift velocity was found to reverse westward from its normally eastward velocity. Calculation of the zonal drift based on a realistic low-latitude ionosphere modeled by the Sheffield University Plasmasphere-Ionosphere Model showed on a quantitative basis a clear competition between vertical Hall electric field and disturbance zonal winds on the variations observed in the zonal velocity of the plasma bubble. The Hall electric field arising from enhanced ratio of field line-integrated conductivities, ΣH/ΣP, is most often generated by an increase in the integrated Hall conductivity, arising from enhanced energetic particle precipitation in the South American Magnetic Anomaly region for which evidence is provided from observation of anomalous sporadic E layers over Cachoeira Paulista and Fortaleza. Such sporadic E layers are also by themselves evidence for the development of the Hall electric field that modifies the zonal drift.

  12. On the study of ion-acoustic solitary waves and double-layers in a drift multicomponent plasma with electron-inertia

    Indian Academy of Sciences (India)

    S N Paul; S Chattopadhyaya; S K Bhattacharya; B Bera

    2003-06-01

    Using the pseudopotential method, theoretical investigation has been made on the first-order Korteweg-deVries ion-acoustic solitons in a multicomponent plasma consisting of warm positive ions, negative ions and isothermal electrons. The effects of electron-inertia and drift motion of the ions on the amplitudes and widths of the solitons have been studied in a plasma having (H+, Cl-), (H+, O-), (He+, H-) and (He+, O-) ions. Ion-acoustic double-layers have also been investigated for such plasmas. It has been found that drift velocity and electron-inertia have significant contribution on the formation of double-layers in multicomponent plasma.

  13. Initial Results of DC Electric Fields, Associated Plasma Drifts, Magnetic Fields, and Plasma Waves Observed on the C/NOFS Satellite

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Klenzing, J.; Rowland, D.; Maynard, N.

    2010-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. Finally, the data set includes a wide range of ELF/VLF/HF oscillations corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.

  14. Stabilizing effect of ion pressure gradient on magnetic curvature-driven drift modes located at rational surface of tokamak plasma

    Institute of Scientific and Technical Information of China (English)

    Wang Ai-Ke

    2005-01-01

    In the fluid model, we derive a dispersion relation for the toroidal drift modes of tokamak plasmas, including the ion pressure gradient and the magnetic field gradient and curvature. It is shown that the magnetic field gradient and curvature (MFGC) can cause instabilities at the rational surface, which are of toroidicity-induced (TI) modes. On the other hand, it is discovered that the ion pressure gradient can stabilize the present MFGC instabilities. The critical threshold of ion pressure gradient, which makes the growth rate reduced to zero, is obtained both analytically and numerically.

  15. Quasilinear transport due to the magnetic drift resonance with the ion temperature gradient instability in a rotating plasma

    Science.gov (United States)

    Zhang, Debing; Xu, Yingfeng; Wang, Shaojie

    2017-08-01

    The quasilinear transport fluxes due to the ion temperature gradient instability are calculated in a toroidal plasma, in which the magnetic drift resonance is treated rigorously. The effects of the equilibrium parallel flow and flow shear on the radial particle and heat fluxes are studied numerically in detail. In the radial component of parallel viscosity, there exist the pinches driven by the density gradient, the temperature gradient, and the curvature of the background magnetic field. The direction of these pinches is discussed. It is found that each pinch can be inward or outward, which depends crucially on the resonance condition.

  16. Resolving critical dimension drift over time in plasma etching through virtual metrology based wafer-to-wafer control

    Science.gov (United States)

    Lee, Ho Ki; Baek, Kye Hyun; Shin, Kyoungsub

    2017-06-01

    As semiconductor devices are scaled down to sub-20 nm, process window of plasma etching gets extremely small so that process drift or shift becomes more significant. This study addresses one of typical process drift issues caused by consumable parts erosion over time and provides feasible solution by using virtual metrology (VM) based wafer-to-wafer control. Since erosion of a shower head has center-to-edge area dependency, critical dimensions (CDs) at the wafer center and edge area get reversed over time. That CD trend is successfully estimated on a wafer-to-wafer basis by a partial least square (PLS) model which combines variables from optical emission spectroscopy (OES), VI-probe and equipment state gauges. R 2 of the PLS model reaches 0.89 and its prediction performance is confirmed in a mass production line. As a result, the model can be exploited as a VM for wafer-to-wafer control. With the VM, advanced process control (APC) strategy is implemented to solve the CD drift. Three σ of CD across wafer is improved from the range (1.3-2.9 nm) to the range (0.79-1.7 nm). Hopefully, results introduced in this paper will contribute to accelerating implementation of VM based APC strategy in semiconductor industry.

  17. Geometrical effects on drift wave stability in low shear stellarator plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nasim, M H; Rafiq, T; Persson, M [Department of Electromagnetics and Euratom/VR Association, Chalmers University of Technology, S-41296 Goeteborg (Sweden)

    2004-01-01

    Modern stellarators are designed with neoclassical transport in mind, potentially leading to anomalous transport originating from drift wave turbulence as the primary cause of energy and particle losses. It is therefore of interest to consider the influence of details of geometry on drift wave stability. In this paper the eigenvalue drift wave equation is therefore solved numerically in fully three-dimensional stellarator geometries using the ballooning mode formalism. The correlation between the details of the configurations such as local magnetic shear (LMS), normal curvature, geodesic curvature and magnetic field strength and the drift wave spectrum is discussed for two different stellarator configurations. A detailed discussion of the localization of the most unstable modes is presented and analysed. It is found that the most unstable modes are localized where the stabilizing effect of integrated LMS is minimum or where the coupling between the integrated LMS and geodesic curvature is strong. Since the more the modes are localized the stronger they will be influenced by the local geometrical effects, the most unstable modes are also highly localized.

  18. Equatorial ionospheric plasma drifts and O+ concentration enhancements associated with disturbance dynamo during the 2015 St. Patrick's Day magnetic storm

    Science.gov (United States)

    Huang, Chao-Song; Wilson, Gordon R.; Hairston, Marc R.; Zhang, Yongliang; Wang, Wenbin; Liu, Jing

    2016-08-01

    Disturbance dynamo is an important dynamic process during magnetic storms. However, very few direct observations of dynamo-induced plasma drifts and ion composition changes in the equatorial ionosphere are available. In this study, we use measurements of the Defense Meteorological Satellite Program (DMSP) satellites to identify the characteristics of the disturbance dynamo process in the topside equatorial ionosphere near dawn during the magnetic storm with a minimum Dst of -223 nT on 17 March 2015. Data from four DMSP satellites with equatorial crossings at 0245, 0430, 0630, and 0730 LT are available for this case. The dynamo process was first observed in the postmidnight sector 3-4.7 h after the beginning of the storm main phase and lasted for 31 h, covering the second storm intensification and the initial 20 h of the recovery phase. The dynamo vertical ion drift was upward (up to 150-200 m s-1) in the postmidnight sector and downward (up to ~80 m s-1) in the early morning sector. The dynamo zonal ion drift was westward at these locations and reached ~100 m s-1. The dynamo process caused large enhancements of the O+ concentration (the ratio of the oxygen ion density to the total ion density) at the altitude of 840 km near dawn. The O+ concentration increased from below 60% during the prestorm period to 80-90% during the storm time. More specifically, the O+ density was increased, and the H+ density was decreased. The variations of the O+ concentration were well correlated with the vertical ion drift.

  19. Eigenmode stability analysis of drift-mirror modes in nonuniform plasmas

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-10-01

    Full Text Available Drift-mirror modes in a one-dimensional inhomogeneous model of the magnetosphere are studied by employing gyrokinetics, taking into account finite Larmor radius effects. A wave equation is derived which describes both the spatial structure of the modes, and its eigenvalue yields a growth rate of the mode. The finite Larmor radius effects are shown to raise the instability threshold especially for high-m waves, and lead to wave propagation across field lines.

  20. A flowing plasma model to describe drift waves in a cylindrical helicon discharge

    CERN Document Server

    Chang, L; Cormac, C S

    2011-01-01

    A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetised plasma (WOMBAT), with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalised rotation frequency, lower temperature and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These r...

  1. The equilibrium probability distribution of a conductive sphere's floating charge in a collisionless, drifting Maxwellian plasma

    CERN Document Server

    Thomas, Drew M

    2013-01-01

    A dust grain in a plasma has a fluctuating electric charge, and past work concludes that spherical grains in a stationary, collisionless plasma have an essentially Gaussian charge probability distribution. This paper extends that work to flowing plasmas and arbitrarily large spheres, deriving analytic charge probability distributions up to normalizing constants. We find that these distributions also have good Gaussian approximations, with analytic expressions for their mean and variance.

  2. Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves

    Science.gov (United States)

    Mathias, A. C.; Viana, R. L.; Kroetz, T.; Caldas, I. L.

    2017-03-01

    Chaotic dynamics in open Hamiltonian dynamical systems typically presents a number of fractal structures in phase space derived from the interwoven structure of invariant manifolds and the corresponding chaotic saddle. These structures are thought to play an important role in the transport properties related to the chaotic motion. Such properties can explain some aspects of the non-uniform nature of the anomalous transport observed in magnetically confined plasmas. Accordingly we consider a theoretical model for the interaction of charged test particles with drift waves. We describe the exit basin structure of the corresponding chaotic orbit in phase space and interpret it in terms of the invariant manifold structure underlying chaotic dynamics. As a result, the exit basin boundary is shown to be a fractal curve, by direct calculation of its box-counting dimension. Moreover, when there are more than two basins, we verify the existence of the Wada property, an extreme form of fractality.

  3. Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Z. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Chen, L. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Dept. Physics and Astronomy, Univ. of California, Irvine, California 92697-4575 (United States); Zonca, F. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati (Italy)

    2014-02-15

    Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations describing parametric decay of DW into GAM and DW lower sideband are derived and then solved both analytically and numerically to investigate the effects on the parametric decay process due to system nonuniformities, such as nonuniform diamagnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness. It is found that the parametric decay process is a convective instability for typical tokamak parameters when finite group velocities of DW and GAM associated with kinetic dispersiveness and finite radial envelope are taken into account. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instability.

  4. An Improved Neoclassical Drift-Magnetohydrodynamical Fluid Model of Helical Magnetic Island Equilibria in Tokamak Plasmas

    CERN Document Server

    Fitzpatrick, Richard

    2015-01-01

    The effect of the perturbed ion polarization current on the stability of neoclassical tearing modes is calculated using an improved, neoclassical, four-field, drift-MHD model. The calculation involves the self-consistent determination of the pressure and scalar electric potential profiles in the vicinity of the associated magnetic island chain, which allows the chain's propagation velocity to be fixed. Two regimes are considered. First, a regime in which neoclassical ion poloidal flow damping is not strong enough to enhance the magnitude of the polarization current (relative to that found in slab geometry). Second, a regime in which neoclassical ion poloidal flow damping is strong enough to significantly enhance the magnitude of the polarization current. In both regimes, two types of solution are considered. First, a freely rotating solution (i.e., an island chain that is not interacting with a static, resonant, magnetic perturbation). Second, a locked solution (i.e., an island chain that has been brought to ...

  5. Low latitude ionospheric scintillation and zonal plasma irregularity drifts climatology around the equatorial anomaly crest over Kenya

    Science.gov (United States)

    Olwendo, O. J.; Baki, P.; Cilliers, P. J.; Doherty, P.; Radicella, S.

    2016-02-01

    In this study we have used a VHF and GPS-SCINDA receiver located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya to investigate the climatology of ionospheric L-band scintillation occurrences for the period 2009 to 2012; and seasonal variation of the zonal plasma drift irregularities derived from a VHF receiver for the period 2011. The annual and diurnal variations of L-band scintillation indicate occurrence at post sunset hours and peaks in the equinoctial months. However VHF scintillation occurs at all seasons around the year and is characterized by longer duration of activity and a slow fading that continues till early morning hours unlike in the L-band where they cease after midnight hours. A directional analysis has shown that the spatial distribution of scintillation events is mainly on the Southern and Western part of the sky over Nairobi station closer to the edges of the crest of the Equatorial Ionization Anomaly. The distribution of zonal drift velocities of the VHF related scintillation structures indicates that they move at velocities in the range of 20-160 m/s and their dimension in the East-West direction is in the range of 100-00 km. The December solstice is associated with the largest plasma bubbles in the range of 600-900 km. The most significant observation from this study is the occurrence of post-midnight scintillation without pre-midnight scintillations during magnetically quiet periods. The mechanism leading to the formation of the plasma density irregularity causing scintillation is believed to be via the Rayleigh Tailor Instability; it is however not clear whether we can also attribute the post-midnight plasma bubbles during magnetic quiet times to the same mechanism. From our observations in this study, we suggest that a more likely cause of the east ward zonal electric fields at post-midnight hours is the coupling of the ionosphere with the lower atmosphere during nighttime. This however needs a further investigation based on relevant

  6. Mitigation of ion-induced drift instability in electron plasma by a transverse current through the Landau-resonant layer

    Science.gov (United States)

    Kabantsev, A. A.; Driscoll, C. F.

    2016-10-01

    Experiments and theory on electron columns have characterized an algebraic damping of diocotron modes, caused by a flux of electrons through the resonance (critical) layer. This flux-driven damping also eliminates the ion-induced exponential instability of diocotron modes. Our plasmas rotate at rate ωE × B, and the (nominally stable) diocotron modes are described by amplitude Ad ,kz = 0 ,mθ = 1 , 2 , . . , frequency ωd(mθ) , and a wave/plasma critical radius rc(mθ) , where ωE × B(rc) =ωd/mθ mθ. External fields produce a low density (1/100) halo of electrons moving radially outward from the plasma core, with flux rate F ≡(- 1/-1Ne) dNe/dt) dNe dt. We find that algebraicdamping of the diocotron modes begins when the halo reaches the critical radius rc(mθ) , proceeding as Ad(Δt) =Ad(0) - γΔt , with γ = β(mθ) F . We also investigated the diocotron instability which occurs when a small number of ions are transiting the electron plasma. Dissimilar bounce-averaged drifts of electrons and ions polarize the diocotron mode density perturbations, developing instability analogous to the classical flute instability. The exponential growth rate Γ is proportional to the fractional neutralization (Ni/Ne) and to the separation between electrons and ions in the wave perturbation. We have found that the algebraic damping can suppress the exponential ion-induced instability only for amplitudes satisfying Ad <= βF/Γ. Supported by NSF Grant PHY-1414570, DOE Grants DE-SC0002451.

  7. Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.

    2015-12-01

    > ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.

  8. Effects of plasma elongation on drift wave-zonal flow turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Angelino, P.; Garbet, X.; Grandgirard, V.; Sarazin, Y.; Ghendrih, P.; Dif-Pradalier, G.; Jolliet, S.; Bottino, A.; McMillan, B. F.; Tran, T. M.; Villard, L.

    2007-07-01

    The theoretical study of plasma turbulent transport is of central importance to fusion research. Experimental evidence indicates that the confinement time is in fact a consequence of the turbulent transport of energy. The magnitude of turbulent transport depends on the turbulent state resulting from nonlinear saturation mechanisms. The ion heat anomalous transport in the plasma core fusion devices seems to be dominated by a class of microinstabilities, the toroidal ion temperature gradient driven modes (ITGs). ITG turbulence is known to self organize to form coherent macroscopic structures extended in the direction perpendicular to the gradient. These structures are essentially axisymmetric flows denominated zonal flows. The amplitude of zonal flows can oscillate: these perturbations are known as Geodesic Acoustic Modes (GAMs). Zonal flows act as a regulating mechanism on plasma microturbulence, the saturated turbulent state being determined by the nonlinear interactions between ITGs, zonal flows and GAMs. We present an analytical study showing the strong impact that plasma geometry has on zonal flow collisionless linear damping. The GAM frequency is shown to scale inversely with the elongation and the aspect ratio. These results are supported by numerical linear analysis, which in addition shows that the GAM damping rate and the undamped zonal flow component are enhanced by elongation and smaller aspect ratio. The same parameters also modify the ITG linear growth rates. Therefore linear analysis suggests that geometry can play a role in the determination of the turbulent transport level. On the other hand, the extent of this action can be quantified only by means of full nonlinear calculations. We present the results of nonlinear gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria, focusing on the role of plasma elongation. The effect of the variation of this parameter on the ion heat transport and zonal flow-GAM interactions is

  9. Characteristics of the equatorial plasma drifts as obtained by using Canadian Doppler ionosonde over southern tip of India

    Science.gov (United States)

    Sripathi, S.; Singh, Ram; Banola, S.; Sreekumar, Sreeba; Emperumal, K.; Selvaraj, C.

    2016-08-01

    We present here characteristics of the Doppler drift measurements over Tirunelveli (8.73°N, 77.70°E; dip 0.5°N), an equatorial site over Southern India using Doppler interferometry technique of Canadian ionosonde. Three-dimensional bulk motions of the scatterers as reflected from the ionosphere are derived by using Doppler interferometry technique at selected frequencies using spaced receivers arranged in magnetic E-W and N-S directions. After having compared with Lowell's digisonde drifts at Trivandrum, we studied the temporal and seasonal variabilities of quiet time drifts for the year 2012. The observations showed higher vertical drifts during post sunset in the equinox followed by winter and summer seasons. The comparison of Doppler vertical drifts with the drifts obtained from (a) virtual height and (b) Fejer drift model suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height methods. Further, it is seen that vertical drifts exhibited equinoctial asymmetry in prereversal enhancement quite similar to such asymmetry observed in the spread F in the ionograms and GPS L band scintillations. The zonal drifts, on the other hand, showed westward during daytime with mean drifts of ~150-200 m/s and correlated well with equatorial electrojet strength indicating the role of E region dynamo during daytime, while they are eastward during nighttime with mean drifts of ~100 m/s resembling F region dynamo process. Also, zonal drifts showed large westward prior to the spread F onset during autumn equinox than vernal equinox, suggesting strong zonal shears which might cause equinoctial asymmetry in spread F.

  10. Sub-Auroral Ion Drifts as a Source of Mid-Latitude Plasma Density Irregularities

    Science.gov (United States)

    Sotnikov, V.; Kim, T.; Mishin, E.; Paraschiv, I.; Rose, D.

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At midlatitudes, such space weather events are caused mainly by subauroral electric field structures (SAID/SAPS) [1, 2]. SAID/SAPS -related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code was used to analyze competition between interchange and Kelvin Helmholtz instabilities in the equatorial region [3]. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ Defence Military Satellite Program (DMSP) satellite low-resolution data [2] during UHF/GPS L-band subauroral scintillation events. [1] Mishin, E. (2013), Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID, J. Geophys. Res. Space Phys., 118, 5782-5796, doi:10.1002/jgra.50548. [2] Mishin, E., and N. Blaunstein (2008), Irregularities within subauroral polarization stream-related troughs and GPS radio interference at midlatitudes. In: T. Fuller-Rowell et al. (eds), AGU Geophysical Monograph 181, MidLatitude Ionospheric Dynamics and Disturbances, pp. 291-295, doi:10.1029/181GM26, Washington, DC, USA. [3] V. Sotnikov, T. Kim, E. Mishin, T. Genoni, D. Rose, I. Paraschiv, Development of a Flow Velocity Shear Instability in the Presence of Finite Larmor Radius Effects, AGU Fall Meeting, San Francisco, 15 - 19 December, 2014.

  11. Spatial structure and dispersion of drift mirror waves coupled with Alfvén waves in a 1-D inhomogeneous plasma

    Directory of Open Access Journals (Sweden)

    D. Yu. Klimushkin

    2006-09-01

    Full Text Available The paper employs the frame of a 1-D inhomogeneous model of space plasma,to examine the spatial structure and growth rate of drift mirror modes, often suggested for interpreting some oscillation types in space plasma. Owing to its coupling with the Alfvén mode, the drift mirror mode attains dispersion across magnetic shells (dependence of the frequency on the wave-vector's radial component, kr. The spatial structure of a mode confined across magnetic shells is studied. The scale of spatial localization of the wave is shown to be determined by the plasma inhomogeneity scale and by the azimuthal component of the wave vector. The wave propagates across magnetic shells, its amplitude modulated along the radial coordinate by the Gauss function. Coupling with the Alfvén mode strongly influences the growth rate of the drift mirror instability. The mirror mode can only exist in a narrow range of parameters. In the general case, the mode represents an Alfvén wave modified by plasma inhomogeneity.

  12. ALTAIR Radar Plasma Drifts and in situ Electric and Magnetic Field Measurements on Two Sounding Rockets and the C/NOFS Satellite in the Low Latitude Ionosphere at Sunset

    Science.gov (United States)

    Kudeki, Erhan; Pfaff, Robert; Rowland, Douglas; Klenzing, Jeffrey; Freudenreich, Henry

    2016-07-01

    We present ALTAIR incoherent scatter radar plasma drifts and in situ electric field, magnetic field, and plasma density measurements made simultaneously with probes on two sounding rockets and the C/NOFS satellite in the low latitude ionosphere in the vicinity of Kwajalein Atoll. The coincident data were gathered during sunset conditions prior to a spread-F event during the NASA EVEX Campaign. The sounding rocket apogees were 180 km and 330 km, while the C/NOFS altitude in this region was ~ 390 km. Electric field data from all three platforms display upwards vertical plasma drifts, while the zonal drifts change direction as a function of altitude and/or local time. The variable drifts provide evidence of a dynamic plasma environment which may contribute to the unstable conditions necessary for spread-F instabilities to form.

  13. The effects of nonthermal electron distributions on ion-temperature-gradient driven drift-wave instabilities in electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Batool, Nazia [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); National Center of Physics (NCP), Quaid-i-Azam University campus, Islamabad (Pakistan); Masood, W. [National Center of Physics (NCP), Quaid-i-Azam University campus, Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH P. O. Nilore, Islamabad (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2012-08-15

    The effects of nonthermal electron distributions on electrostatic ion-temperature-gradient (ITG) driven drift-wave instabilities in the presence of equilibrium density, temperature, and magnetic field gradients are investigated here. By using Braginskii's transport equations for ions and Cairns as well as Kappa distribution for electrons, the coupled mode equations are derived. The modified ITG driven modes are derived, and it is found both analytically as well as numerically that the nonthermal distribution of electrons significantly modify the real frequencies as well as the growth rate of the ITG driven drift wave instability. The growth rate of ion-temperature-gradient driven instability is found to be maximum for Cairns, intermediate for Kappa, and minimum for the Maxwellian distributed electron case. The results of present investigation might be helpful to understand several wave phenomena in space and laboratory plasmas in the presence of nonthermal electrons.

  14. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements

    Science.gov (United States)

    Verhulst, Tobias G. W.; Sapundjiev, Danislav; Stankov, Stanimir M.

    2016-06-01

    The ionospheric behavior over Belgium during the partial solar eclipse of 20 March 2015 is analyzed based on high-resolution solar radio flux, vertical incidence sounding, and GPS TEC measurements. First results of ionosonde-based ionospheric plasma drift and tilt observations are presented and analyzed, including some traveling ionospheric disturbances caused by the eclipse. Also, collocated ionosonde and GPS measurements are used to reconstruct the time evolution of the vertical electron density distribution using the Royal Meteorological Institute (RMI) ionospheric specification system, called Local Ionospheric Electron Density profile Reconstruction (LIEDR).

  15. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    CERN Document Server

    Cook, J W S; Dendy, R O

    2010-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a regime relevant to tokamak fusion plasmas, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes under conditions approximating the outer mid-plane edge in a large tokamak, through which there pass confined centrally born fusion products on banana orbits that have large radial excursions. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the in...

  16. Effects of parallel sound wave damping and drift kinetic damping on the resistive wall mode stability with various plasma rotation profiles

    Science.gov (United States)

    Liu, Chao; Liu, Yue

    2015-10-01

    > The effect of a parallel viscous force induced damping and the magnetic precessional drift resonance induced damping on the stability of the resistive wall mode (RWM) is numerically investigated for one of the advanced steady-state scenarios in international thermonuclear experimental reactor (ITER). The key element of the investigation is to study how different plasma rotation profiles affect the stability prediction. The single-fluid, toroidal magnetohydrodynamic (MHD) code MARS-F (Liu et al., Phys. Plasmas, vol. 7, 2000, p. 3681) and the MHD-kinetic hybrid code MARS-K (Liu et al., Phys. Plasmas, vol. 15, 2008, 112503) are used for this purpose. Three extreme rotation profiles are considered: (a) a uniform profile with no shear, (b) a profile with negative flow shear at the rational surface ( is the equilibrium safety factor), and (c) a profile with positive shear at . The parallel viscous force is found to be effective for the mode stabilization at high plasma flow speed (about a few percent of the Alfven speed) for the no shear flow profile and the negative shear flow profile, but the stable domain does not appear with the positive shear flow profile. The predicted eigenmode structure is different with different rotation profiles. With a self-consistent inclusion of the magnetic precession drift resonance of thermal particles in MARS-K computations, a lower critical flow speed, i.e. the minimum speed needed for full suppression of the mode, is obtained. Likewise the eigenmode structure is also modified by different rotation profiles in the kinetic results.

  17. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods; Calculo Numerico de Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Metodos Numericos

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-10-12

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs.

  18. Experimental study of the recombination of a drifting low temperature plasma in the divertor simulator Mistral-B

    Energy Technology Data Exchange (ETDEWEB)

    Brault, C.; Escarguel, A.; Koubiti, M.; Stamm, R.; Pierre, Th.; Quotb, K.; Guyomarc' h, D. [Universite de Provence, Lab. PIIM, CNRS, 13 - Marseille (France)

    2004-07-01

    In a new divertor simulator, an ultra-cold (T{sub e} < 1 eV) high density recombining magnetized laboratory plasma is studied using probes, spectroscopic measurements, and ultra-fast imaging of spontaneous emission. The Mistral-B device consists in a linear high density magnetized plasma column. The ionizing electrons originate from a large cathode array located in the fringing field of the solenoid. The ionizing electrons are focused in a 3 cm diameter hole at the entrance of the solenoid. The typical plasma density on the axis is close to 2.10{sup 18} m{sup -3}. The collector is segmented into two plates and a transverse electric field is applied through a potential difference between the plates. The Lorentz force induces the ejection of a very-low temperature plasma jet in the limiter shadow. The characteristic convection time and decay lengths have been obtained with an ultra-fast camera. The study of the atomic physics of the recombining plasma allows to understand the measured decay time and to explain the emission spectra. (authors)

  19. Resistive Drift Waves in a Bumpy Torus

    Energy Technology Data Exchange (ETDEWEB)

    J.L.V. Lewandowski

    2004-01-12

    A computational study of resistive drift waves in the edge plasma of a bumpy torus is presented. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  20. Drift wave launching in a linear quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.Y.; Elliott, J.A.; Rusbridge, M.G. (Manchester Univ. (UK). Inst. of Science and Technology)

    1989-12-01

    Drift waves have been successfully launched from flag probes in a steady-state magnetized plasma, and the launching mechanism has been identified. Non-linear interactions are observed between launched and intrinsic waves. A wide range of further experimental studies is thus made possible, of fundamental relevance to plasma confinement. (author).

  1. Current-driven electron drift solitons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali, E-mail: aliahmad79@hotmail.com [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT) Islamabad (Pakistan); Saleem, H. [National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT) Islamabad (Pakistan)

    2013-12-09

    The soliton formation by the current-driven drift-like wave is investigated for heavier ion (such as barium) plasma experiments planned to be performed in future. It is pointed out that the sheared flow of electrons can give rise to short scale solitary structures in the presence of stationary heavier ions. The nonlinearity appears due to convective term in the parallel equation of motion and not because of temperature gradient unlike the case of low frequency usual drift wave soliton. This higher frequency drift-like wave requires sheared flow of electrons and not the density gradient to exist.

  2. Nonlinear Gyrokinetic Theory With Polarization Drift

    Energy Technology Data Exchange (ETDEWEB)

    L. Wang and T.S. Hahm

    2010-03-25

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .

  3. The influence of Hall drift to the ionization efficiency of anode layer Hall plasma accelerator%霍尔漂移对阳极层霍尔等离子体加速器电离效率的影响

    Institute of Scientific and Technical Information of China (English)

    耿少飞; 唐德礼; 邱孝明; 聂军伟; 于毅军

    2012-01-01

    The Hall drift of electrons in anode layer plasma accelerator is analyzed based on Lorentz transformation.It is shown that Hall drift does not exist always in the cross-field.If the ratio of E to B is lager than light speed,Hall drift will disappear.The further analysis shows that the Hall drift is not always in the form of gyration.It is also in the forms of wave and straight line,depending on electric-magnetic field configuration and initial energy of electrons.The electric-magnetic configuration determines the speed of drift,and then affects electron energy.This can determine the ionization efficiency in discharge.A numerical simulation using the Particle-in-Cell method is performed.The result indicates that a nice ratio of E and B will produce high ionization efficiency(for argon,this value is about 4×10~6).This value will change with working gas according to the ionization cross section determined by electron energy.%以洛伦兹变换方法为基础,分析了阳极层霍尔等离子体加速器中电子的霍尔漂移,结果表明在交叉场中,霍尔漂移并不总是存在的,E/B的比值大于光速时,霍尔漂移将不存在.进一步的分析表明,霍尔漂移也并不总是回旋形式的,不同的电磁场配置以及不同的电子初始能量将带来不同形式的漂移,包括回旋形式,波浪线形式,甚至直线形式.电磁场的配置也决定着霍尔漂移的速度,在很大程度上影响着电子的能量,这就决定了放电时的电离效率.对不同电磁场配置进行数值模拟发现,合理的电磁场比值能够得到更好的电离效率(对于氩,这个数值大约为4×10~6).不同的气体,根据其电离碰撞截面与电子能量的关系,都有不同的合理比值.

  4. A Parametric Study of Extended-MHD Drift Tearing

    CERN Document Server

    King, Jacob R

    2014-01-01

    The linear drift-tearing mode is analyzed for different regimes of the plasma-$\\beta$, ion-skin-depth parameter space with an unreduced, extended-MHD model. New dispersion relations are found at moderate plasma $\\beta$ and previous drift-tearing results are classified as applicable at small plasma $\\beta$. The drift stabilization of the mode in the regimes varies from non-existent/weak to complete. As the diamagnetic-drift frequency is proportional to the plasma $\\beta$, verification exercises with unreduced, extended-MHD models in the small plasma-$\\beta$ regimes are impractical. The new dispersion relations in the moderate plasma-$\\beta$ regimes are used to verify the extended-MHD implementation of the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Given the small boundary-layer skin depth, discussion of the validity of the first-order finite-Larmour-radius model is presented.

  5. Dike/Drift Interactions

    Energy Technology Data Exchange (ETDEWEB)

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  6. Drift waves in a high-density cylindrical helicon discharge

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.

    2005-01-01

    of the background plasma parameters. All experimentally observed features of the instability are found to be consistent with drift waves. A linear nonlocal numerical model for drift modes, based on the two-fluid description of a plasma, is used for comparison between the experimental observations and theory....... Comparing numerical and experimental frequencies, it is found that the experimentally observed frequencies are consistent with drift waves. The numerical results show that the high electron collision frequencies provide the strongest destabilization mechanism in the helicon plasma. (c) 2005 American...

  7. Modeling concept drift

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andrés R.

    2015-01-01

    An often used approach for detecting and adapting to concept drift when doing classification is to treat the data as i.i.d. and use changes in classification accuracy as an indication of concept drift. In this paper, we take a different perspective and propose a framework, based on probabilistic ...

  8. Abstraction of Drift Seepage

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package

  9. Mode selective control of drift wave turbulence

    DEFF Research Database (Denmark)

    Schröder, C.; Klinger, T.; Block, D.;

    2001-01-01

    Experiments on spatiotemporal open-loop synchronization of drift wave turbulence in a magnetized cylindrical plasma are reported. The synchronization effect is modeled by a rotating current profile with prescribed mode structure. Numerical simulations of an extended Hasegawa-Wakatani model show g...

  10. Autoresonant control of drift waves

    Science.gov (United States)

    Shagalov, A. G.; Rasmussen, J. Juul; Naulin, V.

    2017-03-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes.

  11. Autoresonant control of drift waves

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Rasmussen, Jens Juul; Naulin, Volker

    2017-01-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined...... on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear...... waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes....

  12. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  13. Drift in Diffusion Gradients

    Directory of Open Access Journals (Sweden)

    Fabio Marchesoni

    2013-08-01

    Full Text Available The longstanding problem of Brownian transport in a heterogeneous quasi one-dimensional medium with space-dependent self-diffusion coefficient is addressed in the overdamped (zero mass limit. A satisfactory mesoscopic description is obtained in the Langevin equation formalism by introducing an appropriate drift term, which depends on the system macroscopic observables, namely the diffuser concentration and current. The drift term is related to the microscopic properties of the medium. The paradoxical existence of a finite drift at zero current suggests the possibility of designing a Maxwell demon operating between two equilibrium reservoirs at the same temperature.

  14. Drift Scale THM Model

    Energy Technology Data Exchange (ETDEWEB)

    J. Rutqvist

    2004-10-07

    This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because

  15. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  16. SAA drift: Experimental results

    Science.gov (United States)

    Grigoryan, O. R.; Romashova, V. V.; Petrov, A. N.

    According to the paleomagnetic analysis there are variations of Earth’s magnetic field connected with magnetic moment changing. These variations affect on the South Atlantic Anomaly (SAA) location. Indeed different observations approved the existence of the SAA westward drift rate (0.1 1.0 deg/year) and northward drift rate (approximately 0.1 deg/year). In this work, we present the analysis of experimental results obtained in Scobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) onboard different Earth’s artificial satellites (1972 2003). The fluxes of protons with energy >50 MeV, gamma quanta with energy >500 keV and neutrons with energy 0.1 1.0 MeV in the SAA region have been analyzed. The mentioned above experimental data were obtained onboard the orbital stations Salut-6 (1979), MIR (1991, 1998) and ISS (2003) by the similar experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact that the SAA drifts westward. Moreover the analysis of fluxes of electrons with energy about hundreds keV (Cosmos-484 (1972) and Active (Interkosmos-24, 1991) satellites) verified not only the SAA westward drift but northward drift also.

  17. Negative Drift in Populations

    DEFF Research Database (Denmark)

    Lehre, Per Kristian

    2011-01-01

    An important step in gaining a better understanding of the stochastic dynamics of evolving populations, is the development of appropriate analytical tools. We present a new drift theorem for populations that allows properties of their long-term behaviour, e.g. the runtime of evolutionary algorithms...

  18. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  19. Development of drifting buoys

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, M.R.; Peshwe, V.B.; Tengali, S.

    . Considerable potential exists for the use of drifting buoys if the cost of data acquisition and processing systems is held at a reasonable level. As yet it is in infancy and further development is required before system reliability and longevity are considered...

  20. Dike Propagation Near Drifts

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-04

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.

  1. Transient chaotic transport in dissipative drift motion

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)

    2016-04-22

    Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.

  2. Style drift in private equity

    NARCIS (Netherlands)

    D. Cumming; G. Fleming; A. Schwienbacher

    2009-01-01

    We introduce the concept of style drift to private equity investment. We present theory and evidence pertaining to style drifts in terms of a fund manager's stated focus on particular stages of entrepreneurial development. We develop a model that derives conditions under which style drifts are less

  3. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  4. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing; Calculo Numerico del Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Convergencia y Comprobaciones

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-12-11

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs.

  5. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry; Calculo Numerico del Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-12-11

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs.

  6. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  7. Drift modes of a quasi-two-dimensional current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2012-03-15

    Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.

  8. Fingermark ridge drift.

    Science.gov (United States)

    De Alcaraz-Fossoul, Josep; Roberts, Katherine A; Feixat, Carme Barrot; Hogrebe, Gregory G; Badia, Manel Gené

    2016-01-01

    Distortions of the fingermark topography are usually considered when comparing latent and exemplar fingerprints. These alterations are characterized as caused by an extrinsic action, which affects entire areas of the deposition and alters the overall flow of a series of contiguous ridges. Here we introduce a novel visual phenomenon that does not follow these principles, named fingermark ridge drift. An experiment was designed that included variables such as type of secretion (eccrine and sebaceous), substrate (glass and polystyrene), and degrees of exposure to natural light (darkness, shade, and direct light) indoors. Fingermarks were sequentially visualized with titanium dioxide powder, photographed and analyzed. The comparison between fresh and aged depositions revealed that under certain environmental conditions an individual ridge could randomly change its original position regardless of its unaltered adjacent ridges. The causes of the drift phenomenon are not well understood. We believe it is exclusively associated with intrinsic natural aging processes of latent fingermarks. This discovery will help explain the detection of certain dissimilarities at the minutiae/ridge level; determine more accurate "hits"; identify potentially erroneous corresponding points; and rethink identification protocols, especially the criteria of "no single minutiae discrepancy" for a positive identification.

  9. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  10. The DRIFT Dark Matter Experiments

    CERN Document Server

    Daw, E; Fox, J R; Gauvreau, J -L; Ghag, C; Harmon, L J; Harton, J L; Gold, M; Lee, E R; Loomba, D; Miller, E H; Murphy, A St J; Paling, S M; Landers, J M; Phan, N; Pipe, M; Pushkin, K; Robinson, M; Sadler, S W; Snowden-Ifft, D P; Spooner, N J C; Walker, D; Warner, D

    2011-01-01

    The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Planned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the world's first 10 m3-scale directional Dark Matter detector.

  11. The KLOE drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; Lucia, E. De; Robertis, G. De; Sangro, R. De; Simone, P. De; Zorzi, G. De; Dell' Agnello, S.; Denig, A.; Domenico, A. Di; Donato, C. Di; Falco, S. Di; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U.V.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P. E-mail: paolo.valente@lnf.infn.it; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y

    2001-04-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K{sub L} produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm{sup 2} in size in the 12 innermost layers and 3x3 cm{sup 2} in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  12. High rate drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C. (Fermilab, Batavia, IL 60510 (United States)); Berisso, M.C. (Fermilab, Batavia, IL 60510 (United States)); Gutierrez, G. (Fermilab, Batavia, IL 60510 (United States)); Holmes, S.D. (Fermilab, Batavia, IL 60510 (United States)); Wehmann, A. (Fermilab, Batavia, IL 60510 (United States)); Avilez, C. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Felix, J. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Moreno, G. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Romero, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Sosa, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Forbush, M. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Huson, F.R. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Wightman, J.A. (Department of Physi

    1994-06-01

    Fermilab experiment 690, a study of target dissociation reactions pp[yields]pX using an 800 GeV/c proton beam and a liquid hydrogen target, collected data in late 1991. The incident beam and 600-800 GeV/c scattered protons were measured using a system of six 6 in.x4 in. and two 15 in.x8 in. pressurized drift chambers spaced over 260 m. These chambers provided precise measurements at rates above 10 MHz (2 MHz per cm of sense wire). The measurement resolution of the smaller chambers was 90 [mu]m, and the resolution of the larger chambers was 125 [mu]m. Construction details and performance results, including radiation damage, are presented. ((orig.))

  13. The KLOE drift chamber

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; Lucia, E D; Robertis, G D; Sangro, R D; Simone, P D; Zorzi, G D; Dell'Agnello, S; Denig, A; Domenico, A D; Donato, C D; Falco, S D; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Von Hagel, U; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nedosekin, A; Panareo, M; Pacciani, L; Pagès, P; Palutan, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K sub L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm sup 2 in size in the 12 innermost layers and 3x3 cm sup 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  14. Drift and ion acoustic wave driven vortices with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan)

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  15. DRIFT EFFECTS IN HGCDTE DETECTORS

    Directory of Open Access Journals (Sweden)

    B. PAVAN KUMAR

    2013-08-01

    Full Text Available The characteristics of temporal drift in spectral responsivity of HgCdTe photodetectors is investigated and found to have an origin different from what has been reported in literature. Traditionally, the literature attributes the cause of drift due to the deposition of thin film of ice water on the active area of the cold detector. The source of drift as proposed in this paper is more critical owing to the difficulties in acquisition of infrared temperature measurements. A model explaining the drift phenomenon in HgCdTe detectors is described by considering the deep trapping of charge carriers and generation of radiation induced deep trap centers which are meta-stable in nature. A theoretical model is fitted to the experimental data. A comparison of the model with the experimental data shows that the radiation induced deep trap centers and charge trapping effects are mainly responsible for the drift phenomenon observed in HgCdTe detectors.

  16. Bouchaud walks with variable drift

    CERN Document Server

    Parra, Manuel Cabezas

    2010-01-01

    In this paper we study a sequence of Bouchaud trap models on $\\mathbb{Z}$ with drift. We analyze the possible scaling limits for a sequence of walks, where we make the drift decay to 0 as we rescale the walks. Depending on the speed of the decay of the drift we obtain three different scaling limits. If the drift decays slowly as we rescale the walks we obtain the inverse of an \\alpha$-stable subordinator as scaling limit. If the drift decays quickly as we rescale the walks, we obtain the F.I.N. diffusion as scaling limit. There is a critical speed of decay separating these two main regimes, where a new process appears as scaling limit. This critical speed is related to the index $\\alpha$ of the inhomogeneity of the environment.

  17. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  18. On advanced fluid modelling of drift wave turbulence

    CERN Document Server

    Weiland, J; Zasenko, V

    2007-01-01

    The Dupree-Weinstock renormalization is used to prove that a reactive closure exists for drift wave turbulence in magnetized plasmas. The result is used to explain recent results in gyrokinetic simulations and is also related to the Mattor-Parker closure. The level of closure is found in terms of applied external sources.

  19. Drift approximation and ideal MHD of cold relativistic winds

    Science.gov (United States)

    Bogovalov, Sergey V.

    2016-06-01

    > and the curvature radius of the flow line is comparable with the light cylinder. It is shown that the electric currents in the cold plasma are the result of the inertial drift motion of the charged particles in the crossed electric and magnetic fields.

  20. Hemoglobin Drift after Cardiac Surgery

    Science.gov (United States)

    George, Timothy J.; Beaty, Claude A.; Kilic, Arman; Haggerty, Kara A.; Frank, Steven M.; Savage, William J.; Whitman, Glenn J.

    2013-01-01

    Introduction Recent literature suggests that a restrictive approach to red blood cell transfusions is associated with improved outcomes in cardiac surgery (CS) patients. Even in the absence of bleeding, intravascular fluid shifts cause hemoglobin levels to drift postoperatively, possibly confounding the decision to transfuse. We undertook this study to define the natural progression of hemoglobin levels in postoperative CS patients. Methods We included all CS patients from 10/10-03/11 who did not receive a postoperative transfusion. Primary stratification was by intraoperative transfusion status. Change in hemoglobin was evaluated relative to the initial postoperative hemoglobin. Maximal drift was defined as the maximum minus the minimum hemoglobin for a given hospitalization. Final drift was defined as the difference between initial and discharge hemoglobin. Results Our final cohort included 199 patients, 71(36%) received an intraoperative transfusion while 128(64%) did not. The average initial and final hemoglobin for all patients were 11.0±1.4g/dL and 9.9±1.3g/dL, respectively, an final drift of 1.1±1.4g/dL. The maximal drift was 1.8±1.1g/dL and was similar regardless of intraoperative transfusion status(p=0.9). Although all patients’ hemoglobin initially dropped, 79% of patients reached a nadir and experienced a mean recovery of 0.7±0.7g/dL by discharge. On multivariable analysis, increasing CPB time was significantly associated with total hemoglobin drift(Coefficient/hour: 0.3[0.1–0.5]g/dL, p=0.02). Conclusions In this first report of hemoglobin drift following CS, although all postoperative patients experienced downward hemoglobin drift, 79% of patients exhibited hemoglobin recovery prior to discharge. Physicians should consider the eventual upward hemoglobin drift prior to administering red cell transfusions. PMID:22609121

  1. 3-dimensional Oil Drift Simulations

    Science.gov (United States)

    Wettre, C.; Reistad, M.; Hjøllo, B.Å.

    Simulation of oil drift has been an ongoing activity at the Norwegian Meteorological Institute since the 1970's. The Marine Forecasting Centre provides a 24-hour service for the Norwegian Pollution Control Authority and the oil companies operating in the Norwegian sector. The response time is 30 minutes. From 2002 the service is extended to simulation of oil drift from oil spills in deep water, using the DeepBlow model developed by SINTEF Applied Chemistry. The oil drift model can be applied both for instantaneous and continuous releases. The changes in the mass of oil and emulsion as a result of evaporation and emulsion are computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into account. The properties of the oil depend on the oil type, and in the present version 64 different types of oil can be simulated. For accurate oil drift simulations it is important to have the best possible data on the atmospheric and oceanic conditions. The oil drift simulations at the Norwegian Meteorological Institute are always based on the most updated data from numerical models of the atmosphere and the ocean. The drift of the surface oil is computed from the vectorial sum of the surface current from the ocean model and the wave induced Stokes drift computed from wave energy spectra from the wave prediction model. In the new model the current distribution with depth is taken into account when calculating the drift of the dispersed oil droplets. Salinity and temperature profiles from the ocean model are needed in the DeepBlow model. The result of the oil drift simulations can be plotted on sea charts used for navigation, either as trajectory plots or particle plots showing the situation at a given time. The results can also be sent as data files to be included in the user's own GIS system.

  2. Two-fluid MHD Regime of Drift Wave Instability

    Science.gov (United States)

    Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong

    2015-11-01

    Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.

  3. Enhanced -->E*-->B drift effects in the TCV snowflake divertor

    NARCIS (Netherlands)

    G.P. Canal,; Lunt, T.; Reimerdes, H.; Duval, B. P.; Labit, B.; Vijvers, W. A. J.; TCV team,

    2015-01-01

    Measurements of various plasma parameters at the divertor targets of snowflake (SF) and conventional single-null configurations indicate an enhanced effect of the -->E*-->B drift in the scrape-off layer of plasmas in the SF configuration. Plasma boundary transport simulations using the EMC3-Ei

  4. Silicon Drift Detectors for ALICE

    CERN Document Server

    Navach, F; CERN. Geneva

    1992-01-01

    The Silicon Drift Detector (SDD) is a semiconductor, not yet extensively used in HEP experiment, which has an excellent spatial resolution and granularity about comparable to a pixel device requiring a number of readout channels two order of magnitude less.

  5. Drift Wave versus Interchange Turbulence in Tokamak Geometry Linear versus Nonlinear Mode Structure

    CERN Document Server

    Scott, B D

    2002-01-01

    The competition between drift wave and interchange physics in general E-cross-B drift turbulence is studied with computations in three dimensional tokamak flux tube geometry. For a given set of background scales, the parameter space can be covered by the plasma beta and drift wave collisionality. At large enough plasma beta the turbulence breaks out into ideal ballooning modes and saturates only by depleting the free energy in the background pressure gradient. At high collisionality it finds a more gradual transition to resistive ballooning. At moderate beta and collisionality it retains drift wave character, qualitatively identical to simple two dimensional slab models. The underlying cause is the nonlinear vorticity advection through which the self sustained drift wave turbulence supersedes the linear instabilities, scattering them apart before they can grow, imposing its own physical character on the dynamics. This vorticity advection catalyses the gradient drive, while saturation occurs solely through tur...

  6. Compact Toroid Propagation in a Magnetized Drift Tube

    Science.gov (United States)

    Horton, Robert D.; Baker, Kevin L.; Hwang, David Q.; Evans, Russell W.

    2000-10-01

    Injection of a spheromak-like compact toroid (SCT) plasma into a toroidal plasma confinement device may require the SCT to propagate through a drift tube region occupied by a pre-existing magnetic field. This field is expected to extert a retarding force on the SCT, but may also result in a beneficial compression. The effects of transverse and longitudinal magnetic fields will be measured using the CTIX compact-toroid injector, together with a fast framing camera with an axial view of the formation, coaxial, and drift-tube regions. In the case of longitudinal magnetic field, comparisons will be made with the predictions of two-dimensional numerical simulation. The use of localized magnetic field to reduce plasma bridging of the insulating gap will also be investigated.

  7. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  8. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  9. Measuring drift velocity and electric field in mirror machine by fast photography

    Science.gov (United States)

    Be'ery, I.; Seemann, O.; Fruchtman, A.; Fisher, A.; Nemirovsky, J.

    2013-02-01

    The flute instability in mirror machines is driven by spatial charge accumulation and the resulting E × B plasma drift. On the other hand, E × B drift due to external electrodes or coils can be used as a stabilizing feedback mechanism. Fast photography is used to visualize Hydrogen plasma in a small mirror machine and infer the plasma drift and the internal electric field distribution. Using incompressible flow and monotonic decay assumptions we obtain components of the velocity field from the temporal evolution of the plasma cross section. The electric field perpendicular to the density gradient is then deduced from E=-V × B. With this technique we analyzed the electric field of flute perturbations and the field induced by electrodes immersed in the plasma.

  10. Drift tubes of Linac 2

    CERN Multimedia

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  11. The CLAS drift chamber system

    CERN Document Server

    Mestayer, M D; Asavapibhop, B; Barbosa, F J; Bonneau, P; Christo, S B; Dodge, G E; Dooling, T; Duncan, W S; Dytman, S A; Feuerbach, R; Gilfoyle, G P; Gyurjyan, V; Hicks, K H; Hicks, R S; Hyde-Wright, C E; Jacobs, G; Klein, A; Klein, F J; Kossov, M; Kuhn, S E; Magahiz, R A; Major, R W; Martin, C; McGuckin, T; McNabb, J; Miskimen, R A; Müller, J A; Niczyporuk, B B; O'Meara, J E; Qin, L M; Raue, B A; Robb, J; Roudot, F; Schumacher, R A; Tedeschi, D J; Thompson, R A; Tilles, D; Tuzel, W; Vansyoc, K; Vineyard, M F; Weinstein, L B; Wilkin, G R; Yegneswaran, A; Yun, J

    2000-01-01

    Experimental Hall B at Jefferson Laboratory houses the CEBAF Large Acceptance Spectrometer, the magnetic field of which is produced by a superconducting toroid. The six coils of this toroid divide the detector azimuthally into six sectors, each of which contains three large multi-layer drift chambers for tracking charged particles produced from a fixed target on the toroidal axis. Within the 18 drift chambers are a total of 35,148 individually instrumented hexagonal drift cells. The novel geometry of these chambers provides for good tracking resolution and efficiency, along with large acceptance. The design and construction challenges posed by these large-scale detectors are described, and detailed results are presented from in-beam measurements.

  12. Global Theory to Understand Toroidal Drift Waves in Steep Gradient

    CERN Document Server

    Xie, Hua-Sheng

    2016-01-01

    Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf., Xie and Xiao, Phys. Plasmas, 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters `quantum number' $l$ and ballooning angle $\\vartheta_k$, (ii) local model can overestimate the growth rate largely, say, $>50\\%$, and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structu...

  13. Does the geoid drift west?

    Science.gov (United States)

    Backus, G. E.; Parker, R. L.; Zumberge, M. A.

    1985-01-01

    In 1970 Hide and Malin noted a correlation of about 0.8 between the geoid and the geomagnetic potential at the Earth's surface when the latter is rotated eastward in longitude by about 160 degrees and the spherical harmonic expansions of both functions are truncated at degree 4. From a century of magnetic observatory data, Hide and Malin inferred an average magnetic westward drift rate of about 0.27 degrees/year. They attributed the magnetic-gravitational correlation to a core event at about 1350 A.D. which impressed the mantle's gravity pattern at long wavelengths onto the core motion and the resulting magnetic field. The impressed pattern was then carried westward 160 degrees by the nsuing magnetic westward drift. An alternative possibility is some sort of steady physical coupling between the magnetic and gravitational fields (perhaps migration of Hide's bumps on the core-mantle interface). This model predicts that the geoid will drift west at the magnetic rate. On a rigid earth, the resulting changes in sea level would be easily observed, but they could be masked by adjustment of the mantle if it has a shell with viscosity considerably less than 10 to the 21 poise. However, steady westward drift of the geoid also predicts secular changes in g, the local acceleration of gravity, at land stations. These changes are now ruled out by recent independent high-accuracy absolute measurements of g made by several workers at various locations in the Northern Hemisphere.

  14. Drift compression of an intense neutralized ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  15. Experimental investigation of drift instabilities in E×B discharges

    Science.gov (United States)

    Gascon, Nicolas; Young, Chris V.; Lucca Fabris, Andrea; Ito, Tsuyohito; Cappelli, Mark A.

    2014-10-01

    Drift plasma instabilities are characterized in three E×B discharges operating on noble gases: two Hall-type plasma thrusters with insulating channel walls (70 mm outer diameter, 20 mm long, and 90 mm outer diameter, 80 mm long), and a small magnetron discharge (5 mm diameter). Plasma instabilities in the E×B discharges are investigated using arrays of electrostatic probes. The signals from the probes arrays are processed with wavelet filtering, and frequency-wavelength dispersion analysis tools. Results are compared to hybrid PIC-fluid axial azimuthal simulations and analyzed in light of recent theories of gradient-driven drift instabilities, in an effort to better understand the relation between drift instabilities and anomalous electron transport in these discharges. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. CVY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  16. Collisional transport across the magnetic field in drift-fluid models

    CERN Document Server

    Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul

    2015-01-01

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum and pressures in drift-fluid turbulence models and thereby obviate the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model...

  17. Collisional transport across the magnetic field in drift-fluid models

    DEFF Research Database (Denmark)

    Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry

    2016-01-01

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...... altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence...... simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field...

  18. Dispersal of invasive species by drifting

    NARCIS (Netherlands)

    Riel, van M.C.; Velde, van der G.; Vaate, bij de A.

    2011-01-01

    Drifting can be an effective way for aquatic organisms to disperse and colonise new areas. Increasing connectivity between European large rivers facilitates invasion by drifting aquatic macroinvertebrates. The present study shows that high abundances of invasive species drift in the headstream of

  19. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  20. Nonlinear evolution of drift instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.

    1984-01-01

    The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.

  1. A Pascalian lateral drift sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H., E-mail: hendrik.jansen@desy.de

    2016-09-21

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  2. A Pascalian lateral drift sensor

    Science.gov (United States)

    Jansen, H.

    2016-09-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  3. MPS II drift chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed.

  4. Shear wall ultimate drift limits

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, T.A. [Duffy, (T.A.) Tijeras, NM (United States); Goldman, A. [Goldman, (A.), Sandia, Los Alamos, NM (United States); Farrar, C.R. [Los Alamos National Lab., NM (United States)

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.

  5. The Electron Drift Instrument on Cluster: overview of first results

    Directory of Open Access Journals (Sweden)

    G. Paschmann

    Full Text Available EDI measures the drift velocity of artificially injected electron beams. From this drift velocity, the perpendicular electric field and the local magnetic field gradients can be deduced when employing different electron energies. The technique requires the injection of two electron beams at right angles to the magnetic field and the search for those directions within the plane that return the beams to their associated detectors after one or more gyrations. The drift velocity is then derived from the directions of the two beams and/or from the difference in their times-of-flight, measured via amplitude-modulation and coding of the emitted electron beams and correlation with the signal from the returning electrons. After careful adjustment of the control parameters, the beam recognition algorithms, and the onboard magnetometer calibrations during the commissioning phase, EDI is providing excellent data over a wide range of conditions. In this paper, we present first results in a variety of regions ranging from the polar cap, across the magnetopause, and well into the magnetosheath.

    Key words. Electron drift velocity (electric fields; plasma convection; instruments and techniques

  6. Dispersal of invasive species by drifting

    Directory of Open Access Journals (Sweden)

    M.C. VAN RIEL, G. VAN DER VELDE, A. BIJ DE VAATE

    2011-12-01

    Full Text Available Drifting can be an effective way for aquatic organisms to disperse and colonise new areas. Increasing connectivity between European large rivers facilitates invasion by drifting aquatic macroinvertebrates. The present study shows that high abundances of invasive species drift in the headstream of the river Rhine. Dikerogammarus villosus and Chelicorophium curvispinum represented up to 90% of the total of drifting macroinvertebrates. Drift activity shows seasonal and diel patterns. Most species started drifting in spring and were most abundant in the water column during the summer period. Drift activity was very low during the winter period. Diel patterns were apparent; most species, including D. villosus, drifted during the night. Drifting macroinvertebrates colonised stony substrate directly from the water column. D. villosus generally colonised the substrate at night, while higher numbers of C. curvispinum colonised the substrate during the day. It is very likely that drifting functions as a dispersal mechanism for crustacean invaders. Once waterways are connected, these species are no longer necessarily dependent on dispersal vectors other than drift for extending their distribution range [Current Zoology 57 (6: 818–827, 2011].

  7. Modelling substorm chorus events in terms of dispersive azimuthal drift

    Directory of Open Access Journals (Sweden)

    A. B. Collier

    2004-12-01

    Full Text Available The Substorm Chorus Event (SCE is a radio phenomenon observed on the ground after the onset of the substorm expansion phase. It consists of a band of VLF chorus with rising upper and lower cutoff frequencies. These emissions are thought to result from Doppler-shifted cyclotron resonance between whistler mode waves and energetic electrons which drift into a ground station's field of view from an injection site around midnight. The increasing frequency of the emission envelope has been attributed to the combined effects of energy dispersion due to gradient and curvature drifts, and the modification of resonance conditions and variation of the half-gyrofrequency cutoff resulting from the radial component of the ExB drift.

    A model is presented which accounts for the observed features of the SCE in terms of the growth rate of whistler mode waves due to anisotropy in the electron distribution. This model provides an explanation for the increasing frequency of the SCE lower cutoff, as well as reproducing the general frequency-time signature of the event. In addition, the results place some restrictions on the injected particle source distribution which might lead to a SCE.

    Key words. Space plasma physics (Wave-particle interaction – Magnetospheric physics (Plasma waves and instabilities; Storms and substorms

  8. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  9. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  10. Limits to Drift Chamber Resolution

    CERN Document Server

    Riegler, Werner

    1998-01-01

    ATLAS (A Large Toroidal LHC Apparatus) will be a general-purpose experiment at the Large Hadron Collider that will be operational at CERN in the year 2004. The ATLAS muon spectrometer aims for a momentum resolution of 10% for a transverse momentum of pT=1TeV. The precision tracking devices in the muon system will be high pressure drift tubes (MDTs) with a single wire resolution of 1100 chambers covering an area of ≈ 2500m2. The high counting rates in the spectrometer as well as the aim for excellent spatial resolution and high efficiency put severe constraints on the MDT operating parameters. This work describes a detailed study of all the resolution limiting factors in the ATLAS environment. A ’full chain’ simulation of the MDT response to photons and charged particles as well as quantitative comparisons with measurements was performed. The good agreement between simulation and measurements resulted in a profound understanding of the drift chamber processes and the individual contributions to the spat...

  11. Effects of electron drift on the collisionless damping of kinetic Alfv\\'en waves in the solar wind

    CERN Document Server

    Tong, Yuguang; Chen, Christopher H K; Salem, Chadi S; Verscharen, Daniel

    2015-01-01

    The collisionless dissipation of anisotropic Alfv\\'enic turbulence is a promising candidate to solve the solar wind heating problem. Extensive studies examined the kinetic properties of Alfv\\'en waves in simple Maxwellian or bi-Maxwellian plasmas. However, the observed electron velocity distribution functions in the solar wind are more complex. In this study, we analyze the properties of kinetic Alfv\\'en waves in a plasma with two drifting electron populations. We numerically solve the linearized Maxwell-Vlasov equations and find that the damping rate and the proton-electron energy partition for kinetic Alfv\\'en waves are significantly modified in such plasmas, compared to plasmas without electron drifts. We suggest that electron drift is an important factor to take into account when considering the dissipation of Alfv\\'enic turbulence in the solar wind or other $\\beta \\sim 1$ astrophysical plasmas.

  12. Drift chamber tracking with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  13. Snow Drift Management: Summit Station Greenland

    Science.gov (United States)

    2016-05-01

    ER D C/ CR RE L TR -1 6- 6 Engineering for Polar Operations, Logistics, and Research (EPOLAR) Snow Drift Management Summit Station...Drift Management Summit Station Greenland Robert B. Haehnel and Matthew F. Bigl U.S. Army Engineer Research and Development Center (ERDC) Cold...Engineering for Polar Operations, Logistics, and Research (EPOLAR) EP-ARC-15-33, “Monitoring and Managing Snow Drifting at Summit Station, Greenland” ERDC

  14. Redshift drift in a pressure gradient cosmology

    CERN Document Server

    Balcerzak, Adam

    2012-01-01

    We derive the redshift drift formula for the inhomogeneous pressure spherically symmetric Stephani universes which are complementary to inhomogeneous density Lema\\^itre-Tolman-Bondi (LTB) models. We show that there is a clear difference between the redshift drift predictions for these two models. The Stephani models have positive drift values at small redshift and behave qualitatively as the $\\Lambda$CDM models while the drift for LTB models is always negative. This prediction can be tested in future space experiments such as E-ELT, TMT, GMT or CODEX.

  15. THERMAL EVALUATION OF DIFFERENT DRIFT DIAMETER SIZES

    Energy Technology Data Exchange (ETDEWEB)

    H.M. Wade

    1999-01-04

    The purpose of this calculation is to estimate the thermal response of a repository-emplaced waste package and its corresponding drift wall surface temperature with different drift diameters. The case examined is that of a 21 pressurized water reactor (PWR) uncanistered fuel (UCF) waste package loaded with design basis spent nuclear fuel assemblies. This calculation evaluates a 3.5 meter to 6.5 meter drift diameter range in increments of 1.0 meters. The time-dependent temperatures of interest, as determined by this calculation, are the spent nuclear fuel cladding temperature, the waste package surface temperature, and the drift wall surface temperature.

  16. RF Breakdown in Drift Tube Linacs

    CERN Document Server

    Stovall, J; Lown, R

    2009-01-01

    The highest RF electric field in drift-tube linacs (DTLs) often occurs on the face of the first drift tube. Typically this drift tube contains a quadrupole focusing magnet whose fringing fields penetrate the face of the drift tube parallel to the RF electric fields in the accelerating gap. It has been shown that the threshold for RF breakdown in RF cavities may be reduced in the presence of a static magnetic field. This note offers a “rule of thumb” for picking the maximum “safe” surface electric field in DTLs based on these measurements.

  17. Lattice Boltzmann model for collisionless electrostatic drift wave turbulence obeying Charney-Hasegawa-Mima dynamics

    CERN Document Server

    Held, M

    2015-01-01

    A lattice Boltzmann method (LBM) approach to the Charney-Hasegawa-Mima (CHM) model for adiabatic drift wave turbulence in magnetised plasmas, is implemented. The CHM-LBM model contains a barotropic equation of state for the potential, a force term including a cross-product analogous to the Coriolis force in quasigeostrophic models, and a density gradient source term. Expansion of the resulting lattice Boltzmann model equations leads to cold-ion fluid continuity and momentum equations, which resemble CHM dynamics under drift ordering. The resulting numerical solutions of standard test cases (monopole propagation, stable drift modes and decaying turbulence) are compared to results obtained by a conventional finite difference scheme that directly discretizes the CHM equation. The LB scheme resembles characteristic CHM dynamics apart from an additional shear in the density gradient direction. The occuring shear reduces with the drift ratio and is ascribed to the compressible limit of the underlying LBM.

  18. Decameter type III bursts with positive and negative frequency drift rates

    Science.gov (United States)

    Melnik, V. N.; Brazhenko, A. I.; Konovalenko, A. A.; Briand, C.; Dorovskyy, V. V.; Zarka, P.; Frantzusenko, A. V.; Rucker, H. O.; Rutkevych, B. P.; Panchenko, M.; Zaqarashvili, T.; Shergelashvili, B.

    2013-09-01

    We report about observations of decameter type III bursts whose frequency drift rates vary their signs from negative to positive. Moreover drift rates of some bursts vary the sign some times. Positive drift rates for some bursts are changed from 0.44 MHz/s to 12 MHz/s. At the same time the negative drift rates of these bursts are standard values for decameter type III bursts. A possible interpretation of such phenomenon on the base of plasma mechanism of type III burst generation is discussed. The sense of this interpretation is that group velocity of type III electromagnetic waves generated by fast electrons at some conditions can be smaller than velocity of these electrons.

  19. Fermilab drift tube Linac revisited

    Energy Technology Data Exchange (ETDEWEB)

    Milorad Popovic

    2004-05-12

    Using the PARMILA code running under PC-WINDOWS, the present performance of the Fermilab Drift Tube Linac has been analyzed in the light of new demands on the Linac/Booster complex (the Proton Source). The Fermilab Drift Tube Linac (DTL) was designed in the sixties as a proton linac with a final energy of 200 MeV and a peak current of 100mA. In the seventies, in order to enable multi-turn charge exchange injection into the Booster, the ion source was replaced by an H- source with a peak beam current of 25mA. Since then the peak beam current was steadily increased up to 55mA. In the early nineties, part of the drift tube structure was replaced with a side-coupled cavity structure in order to increase the final energy to 400 MeV. The original and still primary purpose of the linac is to serve as the injector for the Booster. As an added benefit, the Neutron Therapy Facility (NTF) was built in the middle seventies. It uses 66MeV protons from the Linac to produce neutrons for medical purposes. The Linac/Booster complex was designed to run at a fundamental cycling rate of 15Hz, but beam is accelerated on every cycle only when NTF is running. Until recently the demand from the High Energy Physics program resulted in an average linac beam repetition rate of order 1 Hz. With the MiniBoone experiment and the NuMI program, the demands on the Proton Source have changed, with emphasis on higher beam repetition rates up to 7.5Hz. Historically the beam losses in the linac were small, localized at one spot, so activation was not an important issue. With higher beam rate, this has the potential to become the dominant issue. Until today all tuning in the linac and Proton Source was governed by two goals: to maximize the peak beam current out of the linac and to minimize the beam losses in the linac. If maximal peak current from the linac is no longer a primary goal, then the linac quadrupoles can be adjusted differently to achieve different goals.

  20. Sources of low-latitude ionospheric E × B drifts and their variability

    Science.gov (United States)

    Maute, A.; Richmond, A. D.; Roble, R. G.

    2012-06-01

    The complete mechanism of how upward propagating tropospheric tides connect to the upper atmosphere is not yet fully understood. One proposed mechanism is via ionospheric wind dynamo. However, other sources can potentially alter the vertical E × B drift: gravity and plasma pressure gradient driven current, the geomagnetic main field, and longitudinal variation in the conductivities. In this study we examine the contribution to the vertical drift from these sources, and compare them. We use March equinox results from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model. We found that the gravity and plasma pressure gradient driven current and the longitudinal variation of the conductivities excluding the variation due to the geomagnetic main field do not change the longitudinal variation of the vertical drift significantly. Modifying the geomagnetic main field will change the vertical drift at 5-6 LT, 18-19 LT and 23-24 LT at almost all longitudes. In general the influence of the geomagnetic main field on the vertical drift is larger, with respect to the maximum difference, at 18-19 LT and 23-24 LT, equal at 5-6 LT, and smaller at 14-15 LT than the influence due to nonmigrating tidal components in the neutral winds. Examination of the contribution from E- and F-region neutral winds to the vertical drift shows that their importance depends on the local time and the solar activity. This implies that the vertical drift has to be analyzed at specific local times to examine the relation between the wave number in the vertical drift and in the neutral winds.

  1. Silicon drift detectors with the drift field induced by pureB-coated trenches

    NARCIS (Netherlands)

    Nanver, Lis Karen; Kneževi´c, Tihomir; Suligoj, Tomislav

    2016-01-01

    Junction formation in deep trenches is proposed as a new means of creating a built-in drift field in silicon drift detectors (SDDs). The potential performance of this trenched drift detector (TDD) was investigated analytically and through simulations, and compared to simulations of conventional

  2. The Genetic Drift Inventory: A Tool for Measuring What Advanced Undergraduates Have Mastered about Genetic Drift

    Science.gov (United States)

    Price, Rebecca M.; Andrews, Tessa C.; McElhinny, Teresa L.; Mead, Louise S.; Abraham, Joel K.; Thanukos, Anna; Perez, Kathryn E.

    2014-01-01

    Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures…

  3. The ARGUS microvertex drift chamber

    Science.gov (United States)

    Michel, E.; Schmidt-Parzefall, W.; Appuhn, R. D.; Buchmüller, J.; Kolanoski, H.; Kreimeier, B.; Lange, A.; Siegmund, T.; Walther, A.; Edwards, K. W.; Fernholz, R. C.; Kapitza, H.; MacFarlane, D. B.; O'Neill, M.; Parsons, J. A.; Prentice, J. D.; Seidel, S. C.; Tsipolitis, G.; Ball, S.; Babaev, A.; Danilov, M.; Tichomirov, I.

    1989-11-01

    The ARGUS collaboration is currently building a new microvertex drift chamber (μVDC) as an upgrade of their detector. The μVDC is optimized for B-meson physics at DORIS energies. Important design features are minimal multiple scattering for low-momentum particles and three-dimensional reconstruction of decay vertices with equal resolutions in r- φ and r- z. Vertex resolutions of 15-25 μm are expected. Prototypes of the μVDC have been tested with different gas mixtures at various pressures. Spatial resolutions as small as 20 μm were obtained using CO 2/propane at 4 bar and DME at 1 bar. New readout electronics have been developed for the μVDC aiming at low thresholds for the TDC measurements. Employing a novel idea for noise and cross-talk suppression, which is based on a discrimination against short pulses, very low threshold settings are possible.

  4. Biology Undergraduates' Misconceptions about Genetic Drift

    Science.gov (United States)

    Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.

    2012-01-01

    This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct…

  5. Do Arctic waders use adaptive wind drift?

    NARCIS (Netherlands)

    Green, M; Alerstam, T; Gudmundsson, GA; Hedenstrom, A; Piersma, T; Gudmundsson, Gudmundur A.; Hedenström, Anders

    2004-01-01

    We analysed five data sets of night directions of migrating arctic waders ill relation to,winds, recorded by tracking radar and optical range finder, in order to find out if these birds compensate for wind drift, or allow themselves to be drifted by winds. Our purpose was to investigate whether arct

  6. Learning under Concept Drift: an Overview

    CERN Document Server

    e, Indr\\ e Žliobait\\

    2010-01-01

    Concept drift refers to a non stationary learning problem over time. The training and the application data often mismatch in real life problems. In this report we present a context of concept drift problem 1. We focus on the issues relevant to adaptive training set formation. We present the framework and terminology, and formulate a global picture of concept drift learners design. We start with formalizing the framework for the concept drifting data in Section 1. In Section 2 we discuss the adaptivity mechanisms of the concept drift learners. In Section 3 we overview the principle mechanisms of concept drift learners. In this chapter we give a general picture of the available algorithms and categorize them based on their properties. Section 5 discusses the related research fields and Section 5 groups and presents major concept drift applications. This report is intended to give a bird's view of concept drift research field, provide a context of the research and position it within broad spectrum of research fi...

  7. Ground Control for Emplacement Drifts for LA

    Energy Technology Data Exchange (ETDEWEB)

    Y. Sun

    2004-07-09

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c).

  8. Field investigation of the drift shadow

    Energy Technology Data Exchange (ETDEWEB)

    Su, Grace W.; Kneafsey, Timothy J.; Ghezzehei, Teamrat A.; Marshall, Brian D.; Cook, Paul J.

    2005-09-08

    A drift shadow is an area immediately beneath an undergroundvoidthat, in theory, will be relatively drier than the surrounding rockmass. Numerical and analytical models of water flow through unsaturatedrock predict the existence of a drift shadow, but field tests confirmingits existence have yet to be performed. Proving the existence of driftshadows and understanding their hydrologic and transport characteristicscould provide a better understanding of how contaminants move in thesubsurface if released from waste emplacement drifts such as the proposednuclear waste repository at Yucca Mountain, Nevada. We describe the fieldprogram that will be used to investigate the existence of a drift shadowand the corresponding hydrological process at the Hazel-Atlas silica-sandmine located at the Black Diamond Mines Regional Preserve in Antioch,California. The location and configuration of this mine makes it anexcellent site to observe and measure drift shadow characteristics. Themine is located in a porous sandstone unit of the Domengine Formation, anapproximately 230 meter thick series of interbedded Eocene-age shales,coals, and massive-bedded sandstones. The mining method used at the minerequired the development of two parallel drifts, one above the other,driven along the strike of the mined sandstone stratum. Thisconfiguration provides the opportunity to introduce water into the rockmass in the upper drift and to observe and measure its flow around theunderlying drift. The passive and active hydrologic tests to be performedare described. In the passive method, cores will be obtained in a radialpattern around a drift and will be sectioned and analyzed for in-situwater content and chemical constituents. With the active hydrologic test,water will be introduced into the upper drift of the two parallel driftsand the flow of the water will be tracked as it passes near the bottomdrift. Tensiometers, electrical resistance probes, neutron probes, andground penetrating radar may be

  9. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2011-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers. The differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest drift velocity monitoring results are discussed.

  10. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers because the drift velocity depends on it. Furthermore the differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest pressure monitoring results are discussed.

  11. A note on the drift waves in the presence of electrons added by meteors by ablation phenomena or by thermionic emissions

    Indian Academy of Sciences (India)

    V H Kulkarni; Shobha Kadam

    2012-07-01

    The role of added electrons on the drift dissipative instability in a nonuniform collisional plasma is analysed. We observe the presence of a drift wave that depends entirely on the added electrons through the collision frequency coupling and there is an additional damping. The present study is applied to the density irregularities caused by meteor ionization in the ionosphere.

  12. Electromagnetic transport components and sheared flows in drift-Alfven turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2003-01-01

    Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we...

  13. Alfvenic drift Kelvin-Helmholtz instability in the presence of an equilibrium electric field

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1992-01-01

    The Alfvenic drift Kelvin-Helmholtz instability of a high-beta plasma in the presence of equilibrium magnetic and electric fields perpendicular to each other are studied. The plasma components are assumed to have 2D sheared velocity in y and z directions. The dispersion relation is derived, and the instability criterion is determined. It is shown that the equilibrium electric field has either stabilizing or destabilizing effect depending on certain conditions discussed in the paper.

  14. Effect of primary electron drift on the negative ion efficiency of a volume hybrid multicusp H[sup [minus

    Energy Technology Data Exchange (ETDEWEB)

    Courteille, C.; Bruneteau, J.; Valckx, F.P.G.; Sledziewski, Z.; Bacal, M. (Laboratoire de Physique des Milieux Ionises, Laboratoire du CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France))

    1992-10-05

    A new, large, hybrid volume negative ion source is described. Observations of curvature and [ital grad] [ital B] primary electron drift in the multicusp magnetic field are reported. The direction of the electron drift changes from one filament to the neighboring one, because of the change in the direction of the magnetic field. For a given discharge current the extracted negative ion current and the plasma density at the center of the extraction region are affected by the direction of the primary electron drift of the active filaments. It was shown, however, that the negative ion current is controlled by the plasma density at the center of the extraction region. A trajectory calculation, effected in the guiding center approximation, allows to estimate the average drift velocity.

  15. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  16. Solving the drift control problem

    Directory of Open Access Journals (Sweden)

    Melda Ormeci Matoglu

    2015-12-01

    Full Text Available We model the problem of managing capacity in a build-to-order environment as a Brownian drift control problem. We formulate a structured linear program that models a practical discretization of the problem and exploit a strong relationship between relative value functions and dual solutions to develop a functional lower bound for the continuous problem from a dual solution to the discrete problem. Refining the discretization proves a functional strong duality for the continuous problem. The linear programming formulation is so badly scaled, however, that solving it is beyond the capabilities of standard solvers. By demonstrating the equivalence between strongly feasible bases and deterministic unichain policies, we combinatorialize the pivoting process and by exploiting the relationship between dual solutions and relative value functions, develop a mechanism for solving the LP without ever computing its coefficients. Finally, we exploit the relationship between relative value functions and dual solutions to develop a scheme analogous to column generation for refining the discretization so as to drive the gap between the discrete approximation and the continuous problem to zero quickly while keeping the LP small. Computational studies show our scheme is much faster than simply solving a regular discretization of the problem both in terms of finding a policy with a low average cost and in terms of providing a lower bound on the optimal average cost.

  17. Genetic drift of HIV populations in culture.

    Directory of Open Access Journals (Sweden)

    Yegor Voronin

    2009-03-01

    Full Text Available Populations of Human Immunodeficiency Virus type 1 (HIV-1 undergo a surprisingly large amount of genetic drift in infected patients despite very large population sizes, which are predicted to be mostly deterministic. Several models have been proposed to explain this phenomenon, but all of them implicitly assume that the process of virus replication itself does not contribute to genetic drift. We developed an assay to measure the amount of genetic drift for HIV populations replicating in cell culture. The assay relies on creation of HIV populations of known size and measurements of variation in frequency of a neutral allele. Using this assay, we show that HIV undergoes approximately ten times more genetic drift than would be expected from its population size, which we defined as the number of infected cells in the culture. We showed that a large portion of the increase in genetic drift is due to non-synchronous infection of target cells. When infections are synchronized, genetic drift for the virus is only 3-fold higher than expected from its population size. Thus, the stochastic nature of biological processes involved in viral replication contributes to increased genetic drift in HIV populations. We propose that appreciation of these effects will allow better understanding of the evolutionary forces acting on HIV in infected patients.

  18. Global theory to understand toroidal drift waves in steep gradient

    Science.gov (United States)

    Xie, Hua-sheng; Li, Bo

    2016-08-01

    Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from a typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf. H. S. Xie and Y. Xiao, Phys. Plasmas 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters "quantum number" l and ballooning angle ϑk , (ii) local model can overestimate the growth rate largely, say, >50 % , and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structures. With velocity space integral, semi-local theory predicts that the critical jump gradient of the most unstable ion temperature gradient mode from ground state l = 0 to non-ground state l = 1 is LT-1R ˜50 . These features can have important consequences to turbulent transport.

  19. Analysis of chaos in plasma turbulence

    DEFF Research Database (Denmark)

    Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.

    1996-01-01

    A two-dimensional slab model for resistive drift waves in plasmas consisting of two coupled nonlinear partial differential equations for the density perturbation n and the electrostatic potential perturbation phi is investigated. The drift waves are linearly unstable, and a quasi...

  20. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  1. Vacuum condensates and `ether-drift' experiments

    OpenAIRE

    Consoli, M.; Pagano, A.; Pappalardo, L.

    2003-01-01

    The idea of a `condensed' vacuum state is generally accepted in modern elementary particle physics. We argue that this should motivate a new generation of precise `ether-drift' experiments with present-day technology.

  2. An analytical model of iceberg drift

    CERN Document Server

    Wagner, Till J W; Eisenman, Ian

    2016-01-01

    Iceberg drift and decay and the associated freshwater release are increasingly seen as important processes in Earth's climate system, yet a detailed understanding of their dynamics has remained elusive. Here, an idealized model of iceberg drift is presented. The model is designed to include the most salient physical processes that determine iceberg motion while remaining sufficiently simple to facilitate physical insight into iceberg drift dynamics. We derive an analytical solution of the model, which helps build understanding and also enables the rapid computation of large numbers of iceberg trajectories. The long-standing empirical rule of thumb that icebergs drift at 2% of the wind velocity, relative to the ocean current, is derived here from physical first principles, and it is shown that this relation only holds in the limit of strong winds or small icebergs, which approximately applies for typical icebergs in the Arctic. It is demonstrated that the opposite limit of weak winds or large icebergs approxim...

  3. Stabilization Strategies for Drift Tube Linacs

    CERN Document Server

    AUTHOR|(CDS)2085420; Lamehi Rashti, Mohammad

    The average axial electric fields in drift tube linac cavities are known to be sensitive with respect to the perturbation errors. Postcoupler is a powerful stabilizer devices that is used to reduce this sensitivity of average axial field. Postcouplers are the cylindrical rod which is extended from cavity wall toward the drift tube without touching the drift tube surface. Postcouplers need to be adjusted to the right length to stabilize the average axial field. Although postcouplers are used successfully in many projects, there is no straightforward procedure for postcouplers adjustment and it has been done almost based on trial and errors. In this thesis, the physics and characteristics of postcouplers has been studied by using an equivalent circuit model and 3D finite element method calculations. Finally, a straightforward and accurate method to adjust postcouplers has been concluded. The method has been verified by using experimental measurements on CERN Linac4 drift tube linac cavities.

  4. CROSS DRIFT ALCOVE/NICHE UTILITIES ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    S. Goodin

    1999-07-08

    The purpose of this analysis is to provide the design basis and general arrangement requirements of the non-potable water, waste water, compressed air and ventilation (post excavation) utilities required in support of the Cross Drift alcoves and niches.

  5. The Electron Drift Instrument for MMS

    Science.gov (United States)

    Torbert, R. B.; Vaith, H.; Granoff, M.; Widholm, M.; Gaidos, J. A.; Briggs, B. H.; Dors, I. G.; Chutter, M. W.; Macri, J.; Argall, M.; Bodet, D.; Needell, J.; Steller, M. B.; Baumjohann, W.; Nakamura, R.; Plaschke, F.; Ottacher, H.; Hasiba, J.; Hofmann, K.; Kletzing, C. A.; Bounds, S. R.; Dvorsky, R. T.; Sigsbee, K.; Kooi, V.

    2016-03-01

    The Electron Drift Instrument (EDI) on the Magnetospheric Multiscale (MMS) mission measures the in-situ electric and magnetic fields using the drift of a weak beam of test electrons that, when emitted in certain directions, return to the spacecraft after one or more gyrations. This drift is related to the electric field and, to a lesser extent, the gradient in the magnetic field. Although these two quantities can be determined separately by use of different electron energies, for MMS regions of interest the magnetic field gradient contribution is negligible. As a by-product of the drift determination, the magnetic field strength and constraints on its direction are also determined. The present paper describes the scientific objectives, the experimental method, and the technical realization of the various elements of the instrument on MMS.

  6. Nonlinear electrostatic drift Kelvin-Helmholtz instability

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1993-01-01

    Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.

  7. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  8. The Bipolar Quantum Drift-diffusion Model

    Institute of Scientific and Technical Information of China (English)

    Xiu Qing CHEN; Li CHEN

    2009-01-01

    A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassical limit describes the relation between quantum and classical drift-diffusion models. Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity.

  9. Strange Attractors in Drift Wave Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    J.L.V. Lewandowski

    2003-04-25

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects.

  10. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  11. The role of coherent vorticity in turbulent transport in resistive drift-wave turbulence

    CERN Document Server

    Bos, Wouter J T; Benkadda, Sadruddin; Farge, Marie; Schneider, Kai; 10.1063/1.2956640

    2011-01-01

    The coherent vortex extraction method, a wavelet technique for extracting coherent vortices out of turbulent flows, is applied to simulations of resistive drift-wave turbulence in magnetized plasma (Hasegawa-Wakatani system). The aim is to retain only the essential degrees of freedom, responsible for the transport. It is shown that the radial density flux is carried by these coherent modes. In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the polarization-drift nonlinearity and vorticity strongly dominates strain, in contrast to the quasiadiabatic regime.

  12. Effect of a Dissipative Term in the Drift Waves Hamiltonian System

    CERN Document Server

    Oyarzabal, Ricardo S; Batista, Antonio M; Caldas, Iberê L; Viana, Ricardo L; Iarosz, Kelly C

    2015-01-01

    This paper analyses the Hamiltonian model of drift waves which describes the chaotic transport of particles in the plasma confinement. With one drift wave the system is integrable and it presents stable orbits. When one wave is added the system may or may not be integrable depending on the phase of each wave velocity. If the two waves have the same phase velocity, the system is integrable. When the phase velocities between the two waves are different, the system shows chaotic behaviour. In this model we add a small dissipation. In the presence of a weak dissipation, for different initial conditions, we observe transient orbits which converge to periodic attractors.

  13. Experimental investigation of the nonlinear evolution of an impurity-driven drift wave

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.R.; Yamada, M.; Rewoldt, G.; Tang, W.M.

    1982-04-01

    An impurity-driven drift wave is observed to be destabilized by the reversed density gradient of a singly-ionized heavy-impurity-ion population in a Q-machine plasma. The evolution of the instability is investigated as it progresses from the initial linear exponential growth phase, into a nonlinear saturated state, whereupon strong radially outward anomalous diffusion is observed. The relationship between the anomalous diffusion coefficient and the wave amplitude is in agreement with estimates obtained from the nonlinear drift-wave turbulence theory of Dupree.

  14. Thermodynamics Insights for the Redshift Drift

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2015-01-01

    The secular redshift drift is a potential measurement to directly probe the cosmic expansion. Previous study on the redshift drift mainly focused on the model-dependent simulation. Apparently, the physical insights on the redshift drift are very necessary. So in this paper, it is investigated using thermodynamics on the apparent, Hubble and event horizons. Thermodynamics could analytically present the model-independent upper bounds of redshift drift. For specific assumption on the cosmological parameters, we find that the thermodynamics bounds are nearly one order of magnitude larger than the expectation in standard ΛCDM model. We then examine ten observed redshift drift from Green Bank Telescope at redshift 0.09 < z < 0.69, and find that these observational results are inconsistent with the thermodynamics. The size of the errorbars on these measurements is about three orders of magnitude larger than the effect of thermodynamical bounds for the redshift drift. Obviously, we have not yet hit any instrumental systematics at the shift level of 1m s-1 yr-1.

  15. Suppressing drift chamber diffusion without magnetic field

    CERN Document Server

    Martoff, C J; Ohnuki, T; Spooner, N J C; Lehner, M

    2000-01-01

    The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 mu m has been achieved over a 15 cm drift path at 40 torr with ze...

  16. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    INSPIRE-00165402; Khachatryan, V; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  17. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  18. Transition from avalanche dominated transport to drift-wave dominated transport in a basic laboratory experiment

    Science.gov (United States)

    van Compernolle, Bart; Morales, George; Maggs, James; Sydora, Richard

    2016-10-01

    Results of a basic heat transport experiment involving an off-axis heat source are presented. Experiments are performed in the Large Plasma Device (LAPD) at UCLA. A ring-shaped electron beam source injects low energy electrons (below ionization energy) along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated plasma pressure embedded in a colder plasma, and far from the machine walls. The off-axis source is active for a period long compared to the density decay time, i.e. as time progresses the power per particle increases. Two distinct regimes are observed to take place, an initial regime dominated by avalanches, identified as sudden intermittent rearrangements of the pressure profile, and a second regime dominated by sustained drift-Alfvén wave activity. The transition between the two regimes is sudden, affects the full radial profile and is preceded by the growth of drift Alfvén waves. Langmuir probe data will be shown on the evolution of the density, temperature and flow profiles during the transition. The character of the sustained drift wave activity will also be presented. Work supported by NSF/DOE Grant 1619505, and performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  19. Applications of the wave kinetic approach: from laser wakefields to drift wave turbulence

    Science.gov (United States)

    Trines, R. M. G. M.; Bingham, R.; Silva, L. O.; Mendonça, J. T.; Shukla, P. K.; Murphy, C. D.; Dunlop, M. W.; Davies, J. A.; Bamford, R.; Vaivads, A.; Norreys, P. A.

    2010-12-01

    Nonlinear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave-kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. This approach has been applied to both photon acceleration in laser wakefields and drift wave turbulence in magnetized plasma edge configurations. Numerical simulations have been compared to experiments, varying from photon acceleration to drift mode-zonal flow turbulence, and good qualitative correspondences have been found in all cases.

  20. Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift

    DEFF Research Database (Denmark)

    Lehre, Per Kristian; Witt, Carsten

    2014-01-01

    these results handle a position-dependent (variable) drift that was not covered by previous drift theorems with tail bounds. Moreover, our theorem can be specialized into virtually all existing drift theorems with drift towards the target from the literature. Finally, user-friendly specializations...

  1. Electron drift velocities in fast Argon and CF4 based drift gases

    CERN Document Server

    van Apeldoorn, G

    1998-01-01

    98-063 Electron drift velocities in gas mixtures were measured in a tabletop experiment using a nitrogen laser to create the primary electrons. The maximum drift times for electrons in a 5 mm (10 mm) honeycomb drift cell at 2200 V anode voltage were 28 ns (53 ns) and 21 ns (61 ns) for Ar-Cf4-CH4 (75/18/6) and Ar-CF4-CO2 (68/27/5), respectively. Changing the ratio of the latter mix did not change the drift velocity very much. The gains of the gases are ~10^4 for a single primary electron. CF4 causes electron attachment. The measured drift times agree well with GARFIELD simulations.

  2. The KLOE drift chamber VCI 2001

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervell, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; De Lucia, E. E-mail: erika.delucia@roma1.infn.it; De Robertis, G.; De Sangro, R.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U. von.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y

    2002-02-01

    The main goal of the KLOE experiment at the Frascati DAPHINE phi-factory is the study CP violation in kaon decays. The tracking device of the experiment is a drift chamber whose dimensions, 4 m of diameter and 3.3 m length, provide a large acceptance volume for the decay products of low momentum K{sub L} ({lambda}{sub L}=3.4 m). A complete stereo geometry with 12.582 cells arranged in 58 layers guarantees a high and uniform efficiency in the reconstruction of the charged K{sub L} decays. Very light materials have been chosen both for the drift medium, a helium-based gas mixture, and for the mechanical structure, made of carbon fiber, to minimize multiple scattering and conversion of low-energy photons. The design requirements, the adopted solutions together with the calibration procedure and the tracking performances of the drift chamber are discussed.

  3. Epigenetic drift, epigenetic clocks and cancer risk.

    Science.gov (United States)

    Zheng, Shijie C; Widschwendter, Martin; Teschendorff, Andrew E

    2016-05-01

    It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.

  4. The KLOE drift chamber VCI 2001

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervell, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; De Lucia, E; De Robertis, G; De Simone, P; De Zorzi, G; De Sangro, R; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Murtas, F; Müller, S; Napolitano, M; Nedosekin, A; Pacciani, L; Pagès, P; Palutan, M; Panareo, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Von Hagel, U; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2002-01-01

    The main goal of the KLOE experiment at the Frascati DAPHINE phi-factory is the study CP violation in kaon decays. The tracking device of the experiment is a drift chamber whose dimensions, 4 m of diameter and 3.3 m length, provide a large acceptance volume for the decay products of low momentum K sub L (lambda sub L =3.4 m). A complete stereo geometry with 12.582 cells arranged in 58 layers guarantees a high and uniform efficiency in the reconstruction of the charged K sub L decays. Very light materials have been chosen both for the drift medium, a helium-based gas mixture, and for the mechanical structure, made of carbon fiber, to minimize multiple scattering and conversion of low-energy photons. The design requirements, the adopted solutions together with the calibration procedure and the tracking performances of the drift chamber are discussed.

  5. Dependence of ion drift velocity and diffusion coefficient in parent gas on its temperature

    Science.gov (United States)

    Maiorov, Sergey; Golyatina, Rusudan

    2016-09-01

    The results of Monte Carlo calculations of the ion drift characteristics are presented: ions of noble gases and Ti, Fe, Co, Cs, Rb, W and mercury ions in case of constant and uniform electric field are considered. The dependences of the ion mobility on the field strength and gas temperature are analyzed. The parameters of the drift velocity approximation by the Frost formula for gas temperatures of 4.2, 77, 300, 1000, and 2000 K are presented. A universal drift velocity approximation depending on the reduced electric field strength and gas temperature is obtained. In the case of strong electric fields or low gas temperatures, the deviation of the ion distribution function from the Maxwellian one (including the shifted Maxwellian one) can be very significant. The average energies of chaotic motion of ions along and across the electric field can also differ significantly. It is analyzed the kinetic characteristics of ion drift in own gas: ion diffusion coefficient along the field and across the field; thermal spread of velocities (temperature) along the field and across the field. The unexpected and nontrivial fact takes place: collision with backscattering represent only 10-50% of the total number of collisions. This calculation can be used when analyzing experiments with dusty plasma under cryogenic discharge, ultracold plasma. The work was supported by the Russian Science Foundation (grant RNF 14-19-01492).

  6. Magnetohydrodynamic Slow Mode with Drifting He$^{++}$: Implications for Coronal Seismology and the Solar Wind

    CERN Document Server

    Hollweg, Joseph V; Chandran, Benjamin D G

    2014-01-01

    The MHD slow mode wave has application to coronal seismology, MHD turbulence, and the solar wind where it can be produced by parametric instabilities. We consider analytically how a drifting ion species (e.g. He$^{++}$) affects the linear slow mode wave in a mainly electron-proton plasma, with potential consequences for the aforementioned applications. Our main conclusions are: 1. For wavevectors highly oblique to the magnetic field, we find solutions that are characterized by very small perturbations of total pressure. Thus, our results may help to distinguish the MHD slow mode from kinetic Alfv\\'en waves and non-propagating pressure-balanced structures, which can also have very small total pressure perturbations. 2. For small ion concentrations, there are solutions that are similar to the usual slow mode in an electron-proton plasma, and solutions that are dominated by the drifting ions, but for small drifts the wave modes cannot be simply characterized. 3. Even with zero ion drift, the standard dispersion ...

  7. Learning in the context of distribution drift

    Science.gov (United States)

    2017-05-09

    AFRL-AFOSR-JP-TR-2017-0039 Learning in the context of distribution drift Geoff Webb MONASH UNIVERSITY Final Report 05/09/2017 DISTRIBUTION A...Department of Defense, Executive Services, Directorate (0704-0188).   Respondents should be aware that notwithstanding any other provision of law, no person ...23 Apr 2015 to 22 Apr 2017 4.  TITLE AND SUBTITLE Learning in the context of distribution drift 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1

  8. Shock drift mechanism for Forbush decreases

    Science.gov (United States)

    Cheng, Andrew F.; Sarris, E. T.; Dodopoulos, C.

    1990-01-01

    Consideration is given to the way in which Forbush decreases can arise from variable drifts in nonuniform shocks, where the variation in shock strength along the shock front causes both the shock drift distance and the energy gain to become variable. More particles can then be transported out of a given region of space and energy interval than were transported in, so a spacecraft passing through this region can observe a Forbush decrease in this energy interval despite shock energization and compression. A simple example of how this can occur is presented.

  9. Ultra-low mass drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Assiro, R. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Cappelli, L. [Università di Cassino e del Lazio Meridionale (Italy); Cascella, M. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento Matematica e Fisica, Università del Salento (Italy); De Lorenzis, L. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento di Ingegneria dell' Innovazione, Università del Salento (Italy); Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Ignatov, F. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); L' Erario, A.; Maffezzoli, A. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento di Ingegneria dell' Innovazione, Università del Salento (Italy); Miccoli, A. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Onorato, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Università G. Marconi, Roma (Italy); Perillo, M. [EnginSoft S.p.a., Trento (Italy); Piacentino, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Fermilab, Batavia, IL (United States); Università G. Marconi, Roma (Italy); Rella, S. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Dipartimento di Ingegneria dell' Innovazione, Università del Salento (Italy); Rossetti, F. [EnginSoft S.p.a., Trento (Italy); Spedicato, M. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Tassielli, G., E-mail: giovanni.tassielli@le.infn.it [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Università G. Marconi, Roma (Italy); and others

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100–200 keV/c) for particle momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce.

  10. Directional change of particles in dissipative drift-wave turbulence

    Science.gov (United States)

    Kadoch, Benjamin; Bos, Wouter J. T.; Schneider, Kai

    2016-10-01

    We analyze the statistical properties of Lagrangian particle transport in dissipative drift-wave turbulence modeled by the Hasegawa-Wakatani system. The angle between subsequent particle displacement increments is evaluated as a function of the timelag and thus multi-scale geometric statistics can be performed. The evolution of the mean angle with the time lag is studied and the probability density function of the directional change are analyzed for the different flow regimes. By varying the adiabaticity parameter the flow regime can be modified from the hydrodynamic limit to a geostrophic limit, including the quasi adiabatic regime which has some relevance for edge turbulence of fusion plasmas in tokamaks. Support by the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA) is thankfully acknowledged.

  11. A nondissipative simulation method for the drift kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomo-Hiko; Sugama, Hideo; Sato, Tetsuya

    2001-07-01

    With the aim to study the ion temperature gradient (ITG) driven turbulence, a nondissipative kinetic simulation scheme is developed and comprehensively benchmarked. The new simulation method preserving the time-reversibility of basic kinetic equations can successfully reproduce the analytical solutions of asymmetric three-mode ITG equations which are extended to provide a more general reference for benchmarking than the previous work [T.-H. Watanabe, H. Sugama, and T. Sato: Phys. Plasmas 7 (2000) 984]. It is also applied to a dissipative three-mode system, and shows a good agreement with the analytical solution. The nondissipative simulation result of the ITG turbulence accurately satisfies the entropy balance equation. Usefulness of the nondissipative method for the drift kinetic simulations is confirmed in comparisons with other dissipative schemes. (author)

  12. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    CERN Document Server

    Pushkarev, Andrey V; Nazarenko, Sergey V

    2012-01-01

    Plasma turbulence described by the Hasegawa-Wakatani equations has been simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and of the particle transport. For high values of C, turbulence evolves toward highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of a turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model which contains the drift-wave/zonal-flow feedback loop prototypical of the LH transition in plasma devices.

  13. Psychometric Consequences of Subpopulation Item Parameter Drift

    Science.gov (United States)

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  14. Low-drift micro flow sensors

    NARCIS (Netherlands)

    Dijkstra, Marcel

    2009-01-01

    The emerging fields of micro total-analysis systems (micro-TAS), micro-reactors and bio-MEMS drives the need for further miniaturisation of sensors measuring quantities such as pressure, temperature and flow. The research described in this thesis concerns the development of low-drift micro flow sens

  15. Experimental design for drifting buoy Lagrangian test

    Science.gov (United States)

    Saunders, P. M.

    1975-01-01

    A test of instrumentation fabricated to measure the performance of a free drifting buoy as a (Lagrangian) current meter is described. Specifically it is proposed to distinguish between the trajectory of a drogued buoy and the trajectory of the water at the level of the drogue by measuring the flow relative to the drogue.

  16. Psychometric Consequences of Subpopulation Item Parameter Drift

    Science.gov (United States)

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  17. Ion Landau Damping on Drift Tearing Modes

    CERN Document Server

    Connor, J W; Zocco, A

    2012-01-01

    The equations governing the ion Landau damping (ILD) layers for a drift tearing mode are derived and solved to provide a matching to ideal MHD solutions at large $x$ and to the drift tearing solution emerging from the ion kinetic region, $k\\rho_{i}\\sim1$, at small $x,$ the distance from the rational surface. The ILD layers lie on either side of the mode rational surface at locations defined by $k_{y}xV_{Ti}/L_{s}=\\omega_{*e}(1+0.73\\eta_{e})$ and have been ignored in many previous analyses of linear drift tearing stability. The effect of the ILD layer on the drift tearing mode is to introduce an additional stabilizing contribution, requiring even larger values of the stability index, $\\Delta^{\\prime}$ for instability, than predicted by Connor Hastie and Zocco [PPCF,54, 035003, (2012)] and Cowley, Kulsrud and Hahm [Phys. Fluids,29, 3230, (1986)]. The magnitude and scaling of the new stabilizing effect in slab geometry is discussed.

  18. Plate Tectonics and Continental Drift: Classroom Ideas.

    Science.gov (United States)

    Stout, Prentice K.

    1983-01-01

    Suggests various classroom studies related to plate tectonics and continental drift, including comments on and sources of resource materials useful in teaching the topics. A complete list of magazine articles on the topics from the Sawyer Marine Resource Collection may be obtained by contacting the author. (JN)

  19. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using differ

  20. Visualizing CMS muon drift tubes’ currents

    CERN Document Server

    Hamarik, Lauri

    2015-01-01

    This report documents my work as a summer student in the CMS DT group at CERN in July and August of 2015. During that time, I have participated in relocating DT monitoring experiment to GIF++ site and creating software to analyze drift tubes’ wires current dependence on luminosity and radioactivity.

  1. A large acceptance cylindrical drift chamber detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, D.A. [Texas Univ., Austin, TX (United States); Bachman, M.G. [Texas Univ., Austin, TX (United States); Coffey, W.P. [Texas Univ., Austin, TX (United States); Glass, G. [Texas Univ., Austin, TX (United States); McNaughton, K.H. [Texas Univ., Austin, TX (United States); Riley, P.J. [Texas Univ., Austin, TX (United States); Adams, D.L. [Rice University, Houston, TX 77251 (United States); Gaussiran, T.L. [Rice University, Houston, TX 77251 (United States); Hungerford, E.V. [University of Houston, Houston, TX 77204 (United States); Lan, K.A. [University of Houston, Houston, TX 77204 (United States); Johnston, K. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); McNaughton, M.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Penttila, S.I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Supek, I. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    1995-10-01

    This paper describes a large acceptance cylindrical drift chamber detector designed and built for the study of the np{yields}pp{pi}{sup -} reaction at neutron beam energies in the range 500-800 MeV. Details of construction, electronics, testing, and detection efficiencies and resolutions are presented. (orig.).

  2. Stochastic Evolution Equations with Adapted Drift

    NARCIS (Netherlands)

    Pronk, M.

    2013-01-01

    In this thesis we study stochastic evolution equations in Banach spaces. We restrict ourselves to the two following cases. First, we consider equations in which the drift is a closed linear operator that depends on time and is random. Such equations occur as mathematical models in for instance

  3. Effects of Drifting Macroalgae in Eelgrass Ecosystems

    DEFF Research Database (Denmark)

    Canal Vergés, Paula; Valdemarsen, Thomas Bruun; Kristensen, Erik

    2010-01-01

    and physical damage on eelgrass can occur when macroalgae are drifting as bedload. The ballistic effect of moving macroalgae on surface sediment was tested in the field as well as in a series of annular flume experiments, where simultaneous measurements of macroalgae transport and turbidity were measured...

  4. Effects of Drifting Macroalgae in Eelgrass Ecosystems

    DEFF Research Database (Denmark)

    Canal Vergés, Paula; Valdemarsen, Thomas Bruun; Kristensen, Erik

    2010-01-01

    It has been suggested that current-driven macroalge transport in shallow lagoons and estuaries may negatively impact eelgrass through increased turbidity and physical stress. Increased turbidity and lower light availability for eelgrass may result when drifting macroalgae erode surface sediment a...

  5. Generalization of the one dimensional modeling and design considerations of spiral Si drift detectors: Flat (straight) drift channels and constant drift fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Manwen, E-mail: mwliu1993@163.com; Li, Zheng, E-mail: zhengli58@gmail.com

    2016-07-11

    The one-dimensional design consideration for the spiral (cylindrical geometry) Si drift detector (SDD) has been modified and generalized for small drift distance (R) compatible to the detector thickness (d), i.e. for R–d, and for non uniform backside biasing situations. By applying a non uniform biasing voltage with a gradient similar (proportional) to the front side, one can increase the reach-through voltage, resulting in a large drift field for carriers. This can be important for large R (>3 mm). With a careful design of electric field profiles on both sides, one can obtain the optimum case of a spiral SDD with a straight (flat) drift channel and constant drift field throughout the carrier drift channel. The previous solution in the literature is an approximation of this work for R»d and with a curved drift channel.

  6. Generalization of the one dimensional modeling and design considerations of spiral Si drift detectors: Flat (straight) drift channels and constant drift fields

    Science.gov (United States)

    Liu, Manwen; Li, Zheng

    2016-07-01

    The one-dimensional design consideration for the spiral (cylindrical geometry) Si drift detector (SDD) has been modified and generalized for small drift distance (R) compatible to the detector thickness (d), i.e. for R-d, and for non uniform backside biasing situations. By applying a non uniform biasing voltage with a gradient similar (proportional) to the front side, one can increase the reach-through voltage, resulting in a large drift field for carriers. This can be important for large R (>3 mm). With a careful design of electric field profiles on both sides, one can obtain the optimum case of a spiral SDD with a straight (flat) drift channel and constant drift field throughout the carrier drift channel. The previous solution in the literature is an approximation of this work for R»d and with a curved drift channel.

  7. Observation of Up-gradient Particle Flux in Collisional Drift-ITG Turbulence

    Science.gov (United States)

    Cui, Lang

    2015-11-01

    We report the observation of a net inward, up-gradient turbulent particle flux from two independent diagnostics in collisional drift-ITG plasma turbulence. At low magnetic fields (B = 1.2 kG) the drift-waves persist, an up-gradient inward particle flux develops, fluctuations propagating in the ion diamagnetic drift direction develop and a pronounced steepening of the ion temperature and mean density gradients occurs. The two different types of fluctuation features modulate and compete with each other and dominate in different radial location and magnetic field region. Linear stability analyses show that a robust ITG instability is excited for these conditions. The onset of net inward flux also coincides with the development of a strong intrinsic parallel flow shear that can drive an inward pinch when it is coupled with grad-Ti. However, we find that the ITG-driven inward pinch is more dominant in our experiments. This basic experiment provides for a detailed examination of turbulent-driven particle pinches and up-gradient fluxes in the presence of multiple free-energy sources. Moreover, the coexistence and competition of DWs and ITG have been observed to influence tokamak transport and remains a topic of interest for both magnetically confined fusion plasmas and space plasma systems. A detailed experimental study complemented by theory and linear and nonlinear simulations of these experiments is used to elucidate the physics of up-gradient particle transport. Supported by DOE (DE- SC0001961).

  8. Barber's Point, Oahu, Hawaii Drift Card Study 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drift cards were be released from Barber's Point, Oahu, approximately once a month during the two year span to get an idea of the distribution of card drift under...

  9. Exploring Genetic Drift and Natural Selection through a Simulation Activity.

    Science.gov (United States)

    Maret, Timothy J.; Rissing, Steven W.

    1998-01-01

    Reports on the development of a laboratory exercise that would allow students to explore the concept of genetic drift. Discusses the concept of genetic drift that is coincident with natural selection and that closely models the real world. (DDR)

  10. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  11. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices......A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  12. Longevity of Emplacement Drift Ground Support Materials

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David H.

    2001-05-30

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. REV 01 ICN 01 of this analysis is developed in accordance with AP-3.10Q, Analyses and Models, Revision 2, ICN 4, and prepared in accordance with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001a). The objective of this analysis is to update the previous analysis (CRWMS M&O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M&O 2000b), the Monitored Geologic Repository Project Description Document, which is included in the Requirements and Criteria for Implementing a Repository Design that can be Operated Over a Range of Thermal Modes (BSC 2001), input information, and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and granular natural material. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts. (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period. (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment. (4) Evaluate factors

  13. Drifting snow climate of the Antarctic and Greenland ice sheets

    NARCIS (Netherlands)

    Lenaerts, J.T.M.

    2013-01-01

    This study presents the drifting snow climate of the Earth's ice sheets, Antarctica and Greenland. For that purpose we use a regional atmospheric climate model, RACMO2. We included a routine that is able to calculate the drifting snow fluxes and accounts for the interaction between drifting snow on

  14. Drifting snow climate of the Antarctic and Greenland ice sheets

    NARCIS (Netherlands)

    Lenaerts, J.T.M.|info:eu-repo/dai/nl/314850163

    2013-01-01

    This study presents the drifting snow climate of the Earth's ice sheets, Antarctica and Greenland. For that purpose we use a regional atmospheric climate model, RACMO2. We included a routine that is able to calculate the drifting snow fluxes and accounts for the interaction between drifting snow on

  15. Characterization of Cable Gun Plasma with a Charge Collector Array

    Institute of Scientific and Technical Information of China (English)

    陈玉兰; 曾正中; 孙凤举; 蒯斌; 邱爱慈; 尹佳辉; 丛培天; 梁天学

    2003-01-01

    The density, drift velocity and reproducibility of the plasma produced by a cableplasma gun array have been measured with a charge collector array. The plasma is used to prefilla coaxial plasma-opening switch with a conducting time approaching 0.4μs. The reproducibilityof the plasma source in subsequent shots is better than 5%. Near the gun nozzle and the oppositeelectrode, the plasma density amounts to 1015cm-3, which is 2 times to 3 times that in the gapbetween the two coaxial electrodes. A plasma drift velocity of about 2.4 cm/μs is observed fromthe time of flight of the charged particles. Both plasma density and drift velocity increase almostlinearly with the rise in charge voltage.

  16. Rough differential equations with unbounded drift term

    Science.gov (United States)

    Riedel, S.; Scheutzow, M.

    2017-01-01

    We study controlled differential equations driven by a rough path (in the sense of T. Lyons) with an additional, possibly unbounded drift term. We show that the equation induces a solution flow if the drift grows at most linearly. Furthermore, we show that the semiflow exists assuming only appropriate one-sided growth conditions. We provide bounds for both the flow and the semiflow. Applied to stochastic analysis, our results imply strong completeness and the existence of a stochastic (semi)flow for a large class of stochastic differential equations. If the driving process is Gaussian, we can further deduce (essentially) sharp tail estimates for the (semi)flow and a Freidlin-Wentzell-type large deviation result.

  17. Clean Industrial Room for Drift Tube Assembling

    CERN Document Server

    Glonti, GL; Evtoukhovitch, P G; Kroa, G; Manz, A; Potrap, I N; Rihter, P; Stoletov, G D; Tskhadadze, E G; Chepurnov, V F; Chirkov, A V; Shelkov, G A

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has been confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volum (\\sim 190 m^3), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2 %). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer.

  18. Gas sensor with attenuated drift characteristic

    Science.gov (United States)

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  19. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...

  20. Some remarks on electronics for drift chambers

    CERN Document Server

    Verweij, H

    1973-01-01

    A brief outline of the required functions is given. Analogue and digital time measuring methods are compared. Amplifiers and current division circuits are discussed. A method for storage of analogue information, and the analogue shift register, is proposed. Functional block diagrams and more detailed information is given on complete systems, which are at present being developed at CERN. They allow the measurement of two orthogonal coordinates, one by the drift time, the other by the current division. (6 refs).

  1. Silicon drift detectors in the ALICE experiment

    CERN Document Server

    Bonvicini, V; Crescio, E; Giubellino, P; Hernández-Montoya, R; Kolojvari, A A; Mazza, G; Montaño-Zetina, L M; Nissinen, J; Nouais, D; Rashevsky, A; Rivetti, A; Tosello, F; Vacchi, A

    2000-01-01

    Silicon drift detectors (SDDs) are well suited to high-energy physics experiments with relatively low event rates. In particular SDDs will be used for the two intermediate layers of the Inner Tracking System of the ALICE experiment. Beam test results of linear SDD prototypes have shown a resolution of 40*30 mu m/sup 2/ and a cluster finding efficiency of essentially 100% with E=600 V/cm. (6 refs).

  2. The drift chambers of the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anfreville, M.; Astier, P.; Authier, M.; Baldisseri, A.; Banner, M.; Besson, N.; Bouchez, J.; Castera, A.; Cloue, O.; Dumarchez, J. E-mail: jacques.dumarchez@cern.ch; Dumps, L.; Gangler, E.; Gosset, J.; Hagner, C.; Jollec, C.; Lachaud, C.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Meyer, J.-P.; Ouriet, J.-P.; Passerieux, J.-P.; Margaley, T.P.T. Pedrol; Placci, A.; Pluquet, A.; Poinsignon, J.; Popov, B.A.; Rathouit, P.; Schahmaneche, K.; Stolarczyk, T.; Uros, V.; Vannucci, F.; Vo, M.K.; Zaccone, H

    2002-04-01

    We present a detailed description of the drift chambers used as an active target and a tracking device in the NOMAD experiment at CERN. The main characteristics of these chambers are a large area (3{center_dot}3 m{sup 2}), a self-supporting structure made of light composite materials and a low cost. A spatial resolution of 150 {mu}m has been achieved with a single hit efficiency of 97%.

  3. Unintended Positional Drift and Its Potential Solutions

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2013-01-01

    Walking-In-Place interaction techniques seem particularly useful in relation to immersive virtual environments where the user's movement is greatly constrained by a limited physical space. However, current techniques may not be particularly useful in combination with head-mounted displays since...... many users unintentionally move forward while walking in place. We refer to this phenomenon accidental movement as Unintended Positional Drift. The poster presents evidence of the phenomenon's existence and subsequently discusses different design solutions which potentially could circumvent the problem....

  4. The drift table: designing for ludic engagement

    OpenAIRE

    2004-01-01

    The Drift Table is an electronic coffee table that displays slowly moving aerial photography controlled by the distribution of weight on its surface. It was designed to investigate our ideas about how technologies for the home could support ludic activities-that is, activities motivated by curiosity, exploration, and reflection rather than externally-defined tasks. The many design choices we made, for example to block or disguise utilitarian functionality, helped to articulate our emerging un...

  5. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    OpenAIRE

    2016-01-01

    The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FE...

  6. Correlated Energy Exchange in Drifting Sea Ice

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2011-01-01

    Full Text Available The ice floe speed variations were monitored at the research camp North Pole 35 established on the Arctic ice pack in 2008. A three-month time series of measured speed values was used for determining changes in the kinetic energy of the drifting ice floe. The constructed energy distributions were analyzed by methods of nonextensive statistical mechanics based on the Tsallis statistics for open nonequilibrium systems, such as tectonic formations and drifting sea ice. The nonextensivity means the nonadditivity of externally induced energy changes in multicomponent systems due to dynamic interrelation of components having no structural links. The Tsallis formalism gives one an opportunity to assess the correlation between ice floe motions through a specific parameter, the so-called parameter of nonextensivity. This formalistic assessment of the actual state of drifting pack allows one to forecast some important trends in sea ice behavior, because the level of correlated dynamics determines conditions for extended mechanical perturbations in ice pack. In this work, we revealed temporal fluctuations of the parameter of nonextensivity and observed its maximum value before a large-scale sea ice fragmentation (faulting of consolidated sea ice. The correlation was not detected in fragmented sea ice where long-range interactions are weakened.

  7. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  8. Ambipolar Drift Heating in Turbulent Molecular Clouds

    CERN Document Server

    Padoan, P; Nordlund, A A; Padoan, Paolo

    1999-01-01

    Although thermal pressure is unimportant dynamically in most molecular gas, the temperature is an important diagnostic of dynamical processes and physical conditions. This is the first of two papers on thermal equilibrium in molecular clouds. We present calculations of frictional heating by ion-neutral (or ambipolar) drift in three-dimensional simulations of turbulent, magnetized molecular clouds. We show that ambipolar drift heating is a strong function of position in a turbulent cloud, and its average value can be significantly larger than the average cosmic ray heating rate. The volume averaged heating rate per unit volume due to ambipolar drift, H_AD ~ |JxB|^2 ~ B^4/L_B^2, is found to depend on the rms Alfvenic Mach number, M_A, and on the average field strength, as H_AD ~ M_A^2^4. This implies that the typical scale of variation of the magnetic field, L_B, is inversely proportional to M_A, which we also demonstrate.

  9. Longevity of Emplacement Drift Ground Support Materials

    Energy Technology Data Exchange (ETDEWEB)

    D. Tang

    2000-01-07

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for selection of materials for ground support that will function throughout the preclosure period. The Development Plan (DP) for this analysis is given in CRWMS M&O (Civilian Radioactive Waste Management System Management and Operating Contractor) (1999a). The candidate materials for ground support are steel (carbon steel, ductile cast iron, galvanized steel, and stainless steel, etc.) and cement. Steel will mainly be used for steel sets, lagging, channels, rock bolts, and wire mesh. Cement usage is only considered in the case of grouted rock bolts. The candidate materials for the invert structure are steel and crushed rock ballast. The materials shall be evaluated for the repository emplacement drift environment under a specific thermal loading condition based on the proposed License Application Design Selection (LADS) design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground control materials for use in emplacement drifts. (2) Review existing documents concerning behavior of candidate ground control materials during the preclosure period. The major criteria to be considered for steel are mechanical and thermal properties, and durability, of which corrosion is the most important concern. (3) Evaluate the available results and develop recommendations for material(s) to be used.

  10. Social diffusion and global drift on networks

    Science.gov (United States)

    Sayama, Hiroki; Sinatra, Roberta

    2015-03-01

    We study a mathematical model of social diffusion on a symmetric weighted network where individual nodes' states gradually assimilate to local social norms made by their neighbors' average states. Unlike physical diffusion, this process is not state conservational and thus the global state of the network (i.e., sum of node states) will drift. The asymptotic average node state will be the average of initial node states weighted by their strengths. Here we show that, while the global state is not conserved in this process, the inner product of strength and state vectors is conserved instead, and perfect positive correlation between node states and local averages of their self-neighbor strength ratios always results in upward (or at least neutral) global drift. We also show that the strength assortativity negatively affects the speed of homogenization. Based on these findings, we propose an adaptive link weight adjustment method to achieve the highest upward global drift by increasing the strength-state correlation. The effectiveness of the method was confirmed through numerical simulations and implications for real-world social applications are discussed.

  11. Wind tunnel observations of drifting snow

    Science.gov (United States)

    Paterna, Enrico; Crivelli, Philip; Lehning, Michael

    2016-04-01

    Drifting snow has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by drifting snow. Understanding the dynamic of snow saltation is crucial to the accurate description of the process. We applied digital shadowgraphy in a cold wind tunnel to measure drifting snow over natural snow covers. The acquisition and evaluation of time-resolved shadowgraphy images allowed us to resolve a large part of the saltation layer. The technique has been successfully compared to the measurements obtained from a Snow Particle Counter, considered the most robust technique for snow mass-flux measurements so far. The streamwise snow transport is dominated by large-scale events. The vertical snow transport has a more equal distribution of energy across the scales, similarly to what is observed for the flow turbulence velocities. It is hypothesized that the vertical snow transport is a quantity that reflects the local entrainment of the snow crystals into the saltation layer while the streamwise snow transport results from the streamwise development of the trajectories of the snow particles once entrained, and therefore is rather a non-local quantity.

  12. Chemotaxis when bacteria remember: drift versus diffusion.

    Directory of Open Access Journals (Sweden)

    Sakuntala Chatterjee

    2011-12-01

    Full Text Available Escherichia coli (E. coli bacteria govern their trajectories by switching between running and tumbling modes as a function of the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise between drift toward favorable regions and accumulation in favorable regions. A number of earlier studies assume that a bacterium resets its memory at tumbles - a fact not borne out by experiment - and make use of approximate coarse-grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion, whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In the adaptive case, favorable drift occurs together with favorable accumulation. We derive our results from detailed simulations and a variety of analytical arguments. In particular, we introduce a new coarse-grained description of chemotaxis as biased diffusion, and we discuss the way it departs from older coarse-grained descriptions.

  13. Internal Clock Drift Estimation in Computer Clusters

    Directory of Open Access Journals (Sweden)

    Hicham Marouani

    2008-01-01

    Full Text Available Most computers have several high-resolution timing sources, from the programmable interrupt timer to the cycle counter. Yet, even at a precision of one cycle in ten millions, clocks may drift significantly in a single second at a clock frequency of several GHz. When tracing the low-level system events in computer clusters, such as packet sending or reception, each computer system records its own events using an internal clock. In order to properly understand the global system behavior and performance, as reported by the events recorded on each computer, it is important to estimate precisely the clock differences and drift between the different computers in the system. This article studies the clock precision and stability of several computer systems, with different architectures. It also studies the typical network delay characteristics, since time synchronization algorithms rely on the exchange of network packets and are dependent on the symmetry of the delays. A very precise clock, based on the atomic time provided by the GPS satellite network, was used as a reference to measure clock drifts and network delays. The results obtained are of immediate use to all applications which depend on computer clocks or network time synchronization accuracy.

  14. Giving cosmic redshift drift a whirl

    Science.gov (United States)

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  15. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    Directory of Open Access Journals (Sweden)

    ABDELAZIZ BEDDIAF

    2016-03-01

    Full Text Available The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FEA made in COMSOL. The model solved by COMSOL environment takes into account the entire sensor and thermal effects due to the temperature considering the materials’ properties, the geometric shape and also the heat transfer mechanisms. By COMSOL we determine how the temperature affects the sensor during the manufacturing process. For that end, we calculated the thermal drift of capacitance at rest, the thermal coefficients and we compared them with experimental results to validate our model. Further, we studied the thermal drift of sensor characteristics both at rest and under constant and uniform pressure. Further, our study put emphasis on the geometric influence parameters on these characteristics to optimize the sensor performance. Finally, this study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the geometrical parameters.

  16. In-Drift Precipitates/Salts Analysis

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2001-01-10

    As directed by a written development plan (CRWMS M&O 1999a), an analysis of the effects of salts and precipitates on the repository chemical environment is to be developed and documented in an Analyses/Model Report (AMR). The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The purpose of this ICN is to qualify and document qualification of the AMR's technical products. The scope of this document is to develop a model of the processes that govern salt precipitation and dissolution and resulting water composition in the Engineered Barrier System (EBS). This model is developed to serve as a basis for the in-drift geochemical modeling work performed by PAO and is to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. However, the concepts may also apply to some near and far field geochemical processes and can have conceptual application within the unsaturated zone and saturated zone transport modeling efforts. The intended use of the model developed in this report is to estimate, within an appropriate level of confidence, the pH, chloride concentration, and ionic strength of water on the drip shield or other location within the drift during the post-closure period. These estimates are based on evaporative processes that are subject to a broad range of potential environmental conditions and are independent of the presence or absence of backfill. An additional intended use is to estimate the environmental conditions required for complete vaporization of water. The presence and composition of liquid water

  17. Ground Control for Emplacement Drifts for SR

    Energy Technology Data Exchange (ETDEWEB)

    Y. Sun

    2000-04-07

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k_0=0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the

  18. Reconnection and Spire Drift in Coronal Jets

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Falconer, David

    2015-04-01

    It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as

  19. Airborne organophosphate pesticides drift in Mediterranean climate: The importance of secondary drift

    Science.gov (United States)

    Zivan, Ohad; Segal-Rosenheimer, Michal; Dubowski, Yael

    2016-02-01

    Pesticide application is a short-term air-pollution episode with near and far field effects due to atmospheric drift. In order to better evaluate resulting air concentrations in nearby communities following pesticide application, measurements of airborne pesticides were conducted at ∼70 m from field edge. This was done following three different application events of the organophosphate pesticide Chlorpyrifos in a persimmon orchard. Complementary information on larger spatial scale was obtained using CALPUFF modeling in which application and meteorological data was used to better evaluate dispersion patterns. Measurements indicated high airborne concentrations during application hours (few μg m-3 for 8 h average), which dropped to tens of ng m-3 in the following days. Measured atmospheric concentrations show that secondary drift (i.e., post-application drift) involves significant loads of pesticides and hence should not be ignored in exposure considerations. Furthermore, CALPUFF modeling revealed the complex dispersion pattern when weak winds prevailed, and showed that during the 24 h after application air concentrations reached levels above the hourly Texas effect screening level (0.1 μg m-3). Interestingly, weak winds on the night after application resulted in a secondary peak in measured and modeled air concentrations. Long exposure time (when secondary drift is considered) and concentrations measured following such common air-assisted orchard application, suggest pesticide drift may have health repercussions that are currently unknown, and emphasize the need for further epidemiological studies.

  20. Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2011-01-01

    Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read...... and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A recent work identifies a specialization of this drift theorem that is much easier to apply. Nevertheless, it is not as simple and not as general as possible. The present paper picks up Hajek’s line...... of thought to prove a drift theorem that is very easy to use in evolutionary computation. Only two conditions have to be verified, one of which holds for virtually all EAs with standard mutation. The other condition is a bound on what is really relevant, the drift. Applications show how previous analyses...

  1. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  2. Quasineutral limit of a standard drift diffusion model for semiconductors

    Institute of Scientific and Technical Information of China (English)

    XIAO; Ling

    2002-01-01

    [1]Brenier, Y., Grenier, E., Limite singuliere de Vlasov-Poisson dans le regime de quasi neutralite: le cas independent du temps, C. R. Acad. Sci. Paris, 1994, 318: 121-124.[2]Cordier, S., Grenier, E., Quasineutral limit of Euler-Poisson system arising from plasma physics, Commun. in P. D. E., 2000, 23: 1099-1113.[3]Jüungel, A., Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci., 1995, 5: 497-518.[4]Chen, F., Introduction to Plasma Physics and Controlled Fusion, Vol. 1, New York: Plenum Press, 1984.[5]Ringhofer, C., An asymptotic analysis of a transient p-n-junction model, SIAM J. Appl. Math., 1987, 47: 624-642.[6]Cordier, S., Degond, P., Markowich, P. A. et al., Traveling waves analysis and jump relations for the Euler-Poisson model in the quasineutral limit, Asymptotic Anal., 1995, 11: 209-224.[7]Brézis, H., Golse, F., Sentis, R., Analyse asymptotique de l'équation de Poisson couplée  la relation de Boltzmann, Quasi-neutralité des plasmas, C. R. Acad. Sci. Paris, 1995, 321: 953-959.[8]Simon, J., Compact set in the space Lp(0, T; B), Anal. Math. Pure Appl., 1987, 166: 65-96.[9]Lions, J. L., Quelques méthodes des Résolution des Problémes aux Limites non Linéaires, Paris: Dunod-Gauthier-Villard, 1969.

  3. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  4. New interpretation of laser gyro drifts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Discuss and develop some contents which are relevant to the IEEE Std 647TM-2006 in this paper. The IEEE Std only involves Allan variance, and decomposes it into five primary noise terms, in which, however, the noise nature of the so called "rate random walk noise" and the "rate ramp" is doubted by the IEEE Std editors. Here we use a mathematical identity to entirely affirm the first query and partially the second query as mentioned above. Besides, we argue that only the classical variance can be used in navigation, not the Allan variance. In order to seek the true nature of all drift terms in the variance, we adopt our original work that represents the noises as damped oscillations, to obtain the power spectral density (PSD) of the noises which is then transformed back into time domain. When the damped time constant is much longer than the sampling interval, the re-sulting slow variation term may be expanded into three terms: ordinary bias instability, rate random walk, and rate ramp. Therefore, these "noise terms" are not independent, and they are more of deterministic errors than random noises, and can be explained quantitatively. The resulting fast variation drift may be expanded into two terms. The first term is the same as angle random noise, while the second term adds to the true quantization noise term to form a new combined term called "quantiza-tion noise term". As the result of our research, not only the IEEE Std editors’ suspicions above are answered completely, but a new theory to analyze the laser gyro drifts is also presented, with several supporting examples to explain and verify the theory.

  5. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  6. Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks

    CERN Document Server

    Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki

    2011-01-01

    An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.

  7. Collisional transport across the magnetic field in drift-fluid models

    DEFF Research Database (Denmark)

    Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry;

    2016-01-01

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...... simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field...... located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport....

  8. Measurements of Ion Drifts and Thermospheric Neutral Winds at the Jicamarca Radio Observatory

    Science.gov (United States)

    Meriwether, J. W.; Navarro, L.; Chau, J. L.; Fejer, B. G.

    2010-12-01

    Measurements of ion drifts and thermospheric neutral winds obtained simultaneously with zonal and vertical ion drift measurements of F-region plasma have been made at the Jicamarca Radio Observatory at different times during the year since August, 2009. This period is coincident with an anomalous period of extremely low solar activity. For campaigns taking place in September, 2009, March, 2010, and September, 2010, the Jicamarca 50 MHz radar operated to measure both vertical ion drifts and horizontal neutral winds from 200 to 800 km. The Jicamarca Fabry-Perot interferometer (FPI) was installed in August, 2009, and measurements have been ongoing since first light on 15 August, 2010. The FPI instrument is located in an observatory installed on a hill overlooking the Jicamarca valley and located above the cloud inversion layer, which improved the chances of observing during local summer. This instrument after an upgrade in August 2010 is able to make zonal and meridional thermospheric wind and temperature measurements with an accuracy of 5 to 10 ms-1 and 15 to 30 K. Also obtained during the measurement campaigns with the JRO radar facility were simultaneous measurements of thermospheric winds from the FPI observatory located in Arequipa, Peru, which is located 4 degrees latitude to the south of Jicamarca. The results obtained generally showed good agreement between the observed neutral winds and ion drifts. The vertical variation of the ion drifts is significant from the early evening twilight period to midnight suggesting that the transition from the E-region dynamo to the F-region dynamo takes place rather slowly as compared with more active solar flux periods.

  9. Drift Chamber Alignment using Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [Duke U.; Hays, Christopher P. [Oxford U.

    2014-05-07

    The Collider Detector at Fermilab (CDF) is a general-purpose experimental apparatus with an inner tracking detector for measuring charged particles, surrounded by a calorimeter for measurements of electromagnetic and hadronic showers, and a muon detector system. We present a technique for, and results of, a precise relative alignment of the drift chamber wires of the CDF tracker. This alignment has been an important component of the track momentum calibration, which is the basis for the charged-lepton calibration for the measurement of the W boson mass at CDF.

  10. The Mark II Vertex Drift Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

    1989-03-01

    We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

  11. Crowdsourcing and annotating NER for Twitter #drift

    DEFF Research Database (Denmark)

    Fromreide, Hege; Hovy, Dirk; Søgaard, Anders

    2014-01-01

    We present two new NER datasets for Twitter; a manually annotated set of 1,467 tweets (kappa=0.942) and a set of 2,975 expert-corrected, crowdsourced NER annotated tweets from the dataset described in Finin et al. (2010). In our experiments with these datasets, we observe two important points: (a......) language drift on Twitter is significant, and while off-the-shelf systems have been reported to perform well on in-sample data, they often perform poorly on new samples of tweets, (b) state-of-the-art performance across various datasets can beobtained from crowdsourced annotations, making it more feasible...

  12. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  13. Drift Chamber Alignment using Cosmic Rays

    CERN Document Server

    Kotwal, Ashutosh V

    2014-01-01

    The Collider Detector at Fermilab (CDF) is a general-purpose experimental apparatus with an inner tracking detector for measuring charged particles, surrounded by a calorimeter for measurements of electromagnetic and hadronic showers, and a muon detector system. We present a technique for, and results of, a precise relative alignment of the drift chamber wires of the CDF tracker. This alignment has been an important component of the track momentum calibration, which is the basis for the charged-lepton calibration for the measurement of the W boson mass at CDF.

  14. Royston Drift: new mine - new techniques

    Energy Technology Data Exchange (ETDEWEB)

    Round, C.; Lewis, S.

    1981-07-01

    Royston Drift Mine is described and the techniques and philosophy that have contributed to Royston proving to be one of Britain's most productive mines are reviewed. The whole mining concept, including the cognizance taken of the geological restriction is discussed. Transport systems and the design and organization of the record-breaking retreat faces are dealt with in detail. The introduction and testing of the Caledonian Arch support system and its potential is then described. Finally the future of the mine, in relation to monitoring and content of both underground and surface operations, is outlined.

  15. Characteristics of the ALICE Silicon Drift Detector

    CERN Document Server

    Bonvicini, V; Crescio, E; Giubellino, P; Hernández-Montoya, R; Kolojvari, A A; Montaño, L M; Nouais, D; Piemonte, C; Rashevsky, A; Tosello, F; Vacchi, A; Wheadon, R

    2001-01-01

    A Silicon Drift Detector (SDD) with an active area of 7.0 x 7.5 cm2 has been designed, produced and tested for the ALICE Inner Tracking System. The development of the SDD has been focussed on the capability of the detector to work without an external support to the integrated high voltage divider. Severalfeatures have been implemented in the design in order to increase the robustness and the long-term electrical stability of the detector. One of the prototypes has been tested in a pion beam at the CERN SPS. Preliminary results on the position resolution are given.

  16. PROSPECTS FIXATION DRIFT SANDS PHYSICOCHEMICAL METHOD

    Directory of Open Access Journals (Sweden)

    Maujuda MUZAFFAROVA

    2016-09-01

    Full Text Available This article is based on the theoretical foundations of secure mobile sand being considered for reducing the negative impact of one of the manifestations of exogenous plains on such an important natural-technical system as a railroad. It suggests practical measures to build a system of design protection against sand drifts. The article also suggests ways to conserve resources and rational use of machinery and performers as well as the consolidation of mobile sand wet with water soluble waste of local production of waste dextrin. Consolidation is exposed on dry and wet sand.

  17. Small-scale fluctuations in barium drifts at high latitudes and associated Joule heating effects

    Science.gov (United States)

    Hurd, L. D.; Larsen, M. F.

    2016-01-01

    Most previous estimates of Joule heating rates, especially the contribution of small-scale structure in the high-latitude ionosphere, have been based on incoherent scatter or coherent scatter radar measurements. An alternative estimate can be found from the plasma drifts obtained from ionized barium clouds released from sounding rockets. We have used barium drift data from three experiments to estimate Joule heating rates in the high-latitude E region for different magnetic activity levels. In particular, we are interested in the contribution of small-scale plasma drift fluctuations, corresponding to equivalent electric field fluctuations, to the local Joule heating rate on scales smaller than those typically resolved by radar or other measurements. Since Joule heating is a Lagrangian quantity, the inherently Lagrangian estimates provided by the chemical tracer measurements are a full description of the effects of electric field variance and neutral winds on the heating, differing from the Eulerian estimates of the type provided by ground-based measurements. Results suggest that the small-scale contributions to the heating can be more than a factor of 2 greater than the mean field contribution regardless of geomagnetic conditions, and at times the small-scale contribution is even larger. The high-resolution barium drift measurements, moreover, show that the fine structure in the electric field can be more variable than previous studies have reported for similar conditions. The neutral winds also affect the heating, altering the height-integrated Joule heating rates by as much as 12%, for the cases studied here, and modifying the height distribution of the heating profile as well.

  18. Field experiment on spray drift: Deposition and airborne drift during application to a winter wheat crop

    NARCIS (Netherlands)

    Wolters, A.; Linnemann, V.; Zande, van de J.C.; Vereecken, H.

    2008-01-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done

  19. Congenital Ulnar Drift in a Surgeon

    Directory of Open Access Journals (Sweden)

    Desirae McKee

    2015-01-01

    Full Text Available Windblown hand is a term used in many instances to describe ulnar deviations of the fingers with or without other malformations. In 1994 Wood reviewed all of the descriptions of cases of windblown hand and pointed out how many variants of congenital ulnar drift there are, suggesting that the many variations seen may all belong to a larger type of arthrogryposis. While the most common cause of ulnar deviation of the fingers is rheumatoid arthritis, it can also be caused by other conditions such as windblown hand or Jaccoud’s arthropathy. While most hand surgeons are familiar with presentations of congenital ulnar drift, few of them are knowledgeable about Jaccoud’s arthropathy as this is usually discussed within medical communities such as Rheumatology. We present a case of a surgeon who has had noticeable ulnar deviation of the digits at the level of the metacarpophalangeal joint since his early 20s. We propose that the current case is a demonstration of a type of windblown hand that has some hereditary component but is not immediately obvious at birth and presents physically more like Jaccoud’s arthropathy than traditional windblown hand.

  20. Coherent Vortex Evolution in Drift Wave Turbulence

    Science.gov (United States)

    Gatto, R.; Terry, P. W.

    1998-11-01

    Localized structures in turbulence are subject to loss of coherence by mixing. Phase space structures, such as drift-hole, (P. W. Terry, P. H. Diamond, T. S. Hahm, Phys. Fluids B) 2 9 2048 (1990) possess a self-electric field, which if sufficiently large maintains particle trapping against the tidal deformations of ambient turbulence. We show here that intense vortices in fluid drift wave turbulence avoid mixing by suppressing ambient turbulence with the strong flow shear of the vortex edge. Analysis of turbulence evolution in the vortex edge recovers Rapid Distortion Theory (G. K. Batchelor and I. Proudman, Q. J. Mech. Appl. Math.) 7 83 (1954) as the short time limit and the shear suppression scaling theory (H. Biglari, P. H. Diamond and P. W. Terry, Phys. Fluids B) 2 1 (1990) as the long time limit. Shear suppression leads to an amplitude condition for coherence and delineates the Gaussian core from the non Gaussian tail of the probability distribution function. The amplitude condition of shear suppression is compared with the trapping condition for phase space holes. The possibility of nonlinear vortex growth will be examined by considering electron dynamics in the vortex evolution.

  1. Nonquasineutral electron vortices in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  2. Ground Control for Non-Emplacement Drifts for LA

    Energy Technology Data Exchange (ETDEWEB)

    D. Tang

    2004-02-26

    The purpose of this calculation is to analyze the stability of repository non-emplacement drifts during the preclosure period, and to provide a final ground support method for non-emplacement drifts for the License Application (LA). This calculation will provide input for the development of LA documents. The scope of this calculation is limited to the non-emplacement drifts including access mains, ramps, exhaust mains, turnouts, intersections between access mains and turnouts, and intersections between exhaust mains and emplacement drifts, portals, TBM launch chambers, observation drift and test alcove in the performance confirmation (PC) facilities, etc. The calculation is limited to the non-emplacement drifts subjected to a combined loading of in-situ stress, seismic stress, and/or thermal stress. Other effects such as hydrological and chemical effects are not considered in this analysis.

  3. Effect of Stokes drift on upper ocean mixing

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; SONG Jinbao; SUN Qun

    2008-01-01

    Stokes drift is the main source of vertical vorticity in the ocean mixed layer.In the ways of Coriolis - Stokes forcing and Langmuir circulations,Stokes drift can substantially affect the whole mixed layer.A modified Mellor-Yamada 2.5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally.Results show that comparing surface heating with wave breaking,Stokes drift plays the most important role in the entire ocean mixed layer,especially in the subsurface layer.As expected,Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing.Also,influence of the surface heating,wave breaking and wind speed on Stokes drift is investigated respectively.Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying.The laboratory observations are supporting numerical experiments quantitatively.

  4. In-Drift Precipitates/Salts Model

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2004-11-09

    This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, OH{sup -}, H{sup +}, HSO{sub 4}{sup -}, Ca{sup 2+}, Mg{sup 2+}, CaHCO{sub 3}{sup +}, MgHCO{sub 3

  5. Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Pavel; Rauch, Albert

    2011-12-04

    The plasma over the magnetron’s erosion “racetrack” is not azimuthally uniform but concentrated in distinct dense plasma zones which move in the {vector E}×{vector B} direction with about 10% of the electrons’ {vector E}×{vector B}/B{sup 2} drift velocity. The plasma zones are investigated with a gated camera working in concert with a streak camera for Al, Nb, Cu, and W targets in Ar or Kr background gas. It is found that each plasma zone has a high density edge which is the origin of a plasma-generating electron jet leaving the target zone. Each region of strong azimuthal density gradient generates an azimuthal electric field which promotes the escape of magnetized electrons and the formation of electron jets and plasma flares. The phenomena are proposed to be caused by an ionization instability where each dense plasma zone exhibits a high stopping power for drifting high energy electrons, thereby enhancing itself.

  6. Detecting drift of quantum sources: not the de Finetti theorem

    CERN Document Server

    Schwarz, Lucia

    2011-01-01

    We propose and analyze a method to detect and characterize the drift of a nonstationary quantum source. It generalizes a standard measurement for detecting phase diffusion of laser fields to quantum systems of arbitrary Hilbert space dimension, qubits in particular. We distinguish diffusive and systematic drifts, and examine how quickly one can determine that a source is drifting. We show that for single-photon wavepackets our measurement is implemented by the Hong-Ou-Mandel effect.

  7. Compact drift-chambers for the OPAL forward detectors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.E.; Attree, D.J.; Charalambous, A.; Cranfield, R.; Cresswell, M.; Crone, G.; Dallavalle, G.M.; Dryburgh, M.; Kennedy, B.W.; Hayes, D.; Marradi, L.; Miller, D.J.; Sherwood, P.; Spreadbury, E.; Wood, N.C.; Young, K.K. (University Coll., London (UK). Dept. of Physics and Astronomy)

    1989-11-10

    Two planes of four chambers are mounted in front of the forward calorimeter at each end of OPAL. Beam tests at CERN show good linearity (within 0.5 mm over 130 mm maximum drift) and good resolution in the drift direction (average 300 {mu}m over the whole range of drift distances). The resolution along the wire is {plus minus}1 mm. (orig.).

  8. Anomalous drift of spiral waves in heterogeneous excitable media

    CERN Document Server

    Sridhar, S; Panfilov, Alexander V

    2009-01-01

    We study the drift of spiral waves in a simple model of heterogeneous excitable medium, having gradients in local excitability or cellular coupling. For the first time, we report the anomalous drift of spiral waves towards regions having higher excitability, in contrast to all earlier observations in reaction-diffusion models of excitable media. Such anomalous drift can promote the onset of complex spatio-temporal patterns, e.g., those responsible for life-threatening arrhythmias in the heart.

  9. Plasmaspheric trough evolution under different conditions of subauroral ion drift

    Institute of Scientific and Technical Information of China (English)

    HE Fei; ZHANG XiaoXin; CHEN Bo; FOK MeiChing

    2012-01-01

    The statistical characteristics of the subauroral ion drift (SAID) in the ionosphere and the plasmaspheric trough evolution under different conditions of SAID were investigated in this paper,based on 566 SAID events observed by Akebono,Astrid-2,DE-2,and Freja satellites.The relationships between the latitudinal location of SAID and the Kp,AL,and Dst indices for these events were also discussed.It was found that the SAID events happened mainly at invariant latitude (ILAT) of 60.4° and magnetic local time (MLT) of 21.6 MLT and that 92.4% of the events happened when the Kp index was below 5.0,indicating a medium geomagnetic activity.The latitudinal half-width of SAID varied from 0.5° to 3.0° with a typical half-width of 1.0°.The SAID would happen at low latitudes if the geomagnetic activity was high.The effects of SAID on equatorial outer plasmasphere trough evolutions were studied with the dynamic global core plasma model (DGCPM) driven by the statistical results of SAID signatures.It was noted that locations,shapes and density of troughs vary with ILAT,MLT,latitudinal width,cross polar cap potential and lifetime of SAID events.The evolution of a trough is determined by the extent of SAID electric field penetrating into plasmasphere and not all SAID events can result in trough formations.

  10. Variations of $P_2$ in subpulse drifting pulsars

    CERN Document Server

    Yuen, R; Samsuddin, M A; Tu, Z Y; Han, X H

    2016-01-01

    We develop a model for subpulse separation period, $P_2$, taking into account both the apparent motion of the visible point as a function of pulsar phase, $\\psi$, and the possibility of abrupt jumps between different rotation states in non-corotating pulsar magnetospheres. We identify three frequencies: (i) the spin frequency of the star, (ii) the drift frequency of the magnetospheric plasma in the source region, and (iii) the angular frequency of the visible point around its trajectory. We show how the last of these, which is neglected in traditional models by implicitly assuming the line of sight through the center of the star, affects the interpretation of $P_2$. We attribute the subpulse structure to emission from $m$ anti-nodes distributed uniformly in azimuthal angle about the magnetic axis. We show that variations of $P_2$ as a function of rotational phase or observing frequency arise naturally when the motion of the visible point is taken into account. We discuss possible application of our model in s...

  11. Temperature Drift Modeling of FOG Based on LS-WSVM

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ping; KONG Xiao-mei; FU Meng-yin; WANG Mei-ling; ZHANG Jia-wen; JIANG Ming

    2008-01-01

    Large temperature drift is an important factor for improving the performance of FOG. A trend term of temperature drift of FOG is obtained using stationary wavelets transform, and an FOG drift algorithm with least squares wavelet support vector machine (LS-WSVM) is developed. The algorithm used Maxihat wavelet as a kernel function of LSWSVM to establish an FOG drift model. It has better modeling precise than LS-WSVM model with Gauss kernel. Results indicate the efficiency of this algorithm of LS-WSVM.

  12. Calibration of the TWIST high-precision drift chambers

    CERN Document Server

    Grossheim, A; Olin, A; 10.1016/j.nima.2010.08.105

    2010-01-01

    A method for the precise measurement of drift times for the high-precision drift chambers used in the TWIST detector is described. It is based on the iterative correction of the space-time relationships by the time residuals of the track fit, resulting in a measurement of the effective drift times. The corrected drift time maps are parametrised individually for each chamber using spline functions. Biases introduced by the reconstruction itself are taken into account as well, making it necessary to apply the procedure to both data and simulation. The described calibration is shown to improve the reconstruction performance and to extend significantly the physics reach of the experiment.

  13. Spin drift in highly doped n-type Si

    Science.gov (United States)

    Kameno, Makoto; Ando, Yuichiro; Shinjo, Teruya; Koike, Hayato; Sasaki, Tomoyuki; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-03-01

    A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.

  14. Spin drift in highly doped n-type Si

    Energy Technology Data Exchange (ETDEWEB)

    Kameno, Makoto; Ando, Yuichiro; Shinjo, Teruya [Graduate School of Engineering Science, Osaka University Osaka (Japan); Koike, Hayato; Sasaki, Tomoyuki; Oikawa, Tohru [Advanced Technology Development Center, TDK Cooperation, Chiba (Japan); Suzuki, Toshio [AIT, Akita Research Institute of Advanced Technology, Akita (Japan); Shiraishi, Masashi, E-mail: mshiraishi@kuee.kyoto-u.ac.jp [Graduate School of Engineering Science, Osaka University Osaka (Japan); Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2014-03-03

    A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.

  15. Drifting snow and its sublimation in turbulent boundary layer

    Science.gov (United States)

    Li, Guang; Huang, Ning; Wang, Zhengshi

    2017-04-01

    Drifting snow is a special process of mass-energy transport in hydrological cycle especially in alpine region. It can not only change the snow distribution, but also result in phase change of ice crystal into water vapour, which is so called drifting snow sublimation. Thus drifting snow is of glaciological and hydrological importance in cold regions. In this paper, recent research on drifting snow and its sublimation is reviewed, and some new progresses by our research team in Lanzhou University are also introduced.

  16. Silicon Drift Detectors with the Drift Field Induced by PureB-Coated Trenches

    Directory of Open Access Journals (Sweden)

    Tihomir Knežević

    2016-10-01

    Full Text Available Junction formation in deep trenches is proposed as a new means of creating a built-in drift field in silicon drift detectors (SDDs. The potential performance of this trenched drift detector (TDD was investigated analytically and through simulations, and compared to simulations of conventional bulk-silicon drift detector (BSDD configurations. Although the device was not experimentally realized, the manufacturability of the TDDs is estimated to be good on the basis of previously demonstrated photodiodes and detectors fabricated in PureB technology. The pure boron deposition of this technology allows good trench coverage and is known to provide nm-shallow low-noise p+n diodes that can be used as radiation-hard light-entrance windows. With this type of diode, the TDDs would be suitable for X-ray radiation detection down to 100 eV and up to tens of keV energy levels. In the TDD, the drift region is formed by varying the geometry and position of the trenches while the reverse biasing of all diodes is kept at the same constant voltage. For a given wafer doping, the drift field is lower for the TDD than for a BSDD and it demands a much higher voltage between the anode and cathode, but also has several advantages: it eliminates the possibility of punch-through and no current flows from the inner to outer perimeter of the cathode because a voltage divider is not needed to set the drift field. In addition, the loss of sensitive area at the outer perimeter of the cathode is much smaller. For example, the simulations predict that an optimized TDD geometry with an active-region radius of 3100 µm could have a drift field of 370 V/cm and a photo-sensitive radius that is 500-µm larger than that of a comparable BSDD structure. The PureB diodes on the front and back of the TDD are continuous, which means low dark currents and high stability with respect to leakage currents that otherwise could be caused by radiation damage. The dark current of the 3100-µm TDD

  17. Electron drift across the magnetic field in a micro-ECR neutralizer

    Science.gov (United States)

    Takao, Yoshinori; Hiramoto, Kenta; Nakagawa, Yuichi; Koizumi, Hiroyuki; Komurasaki, Kimiya

    2016-09-01

    Although neutralization is required for ion propulsion systems to produce thrust by ion beams in space, a neutralizer itself should be low-power and low-propellant consumption because electrons make no thrust. To design such a micro neutralizer, the mechanisms of electron transport should be elucidated. In the present study, three-dimensional particle-in-cell simulations have been conducted for a 4.2-GHz microwave discharge neutralizer, using an electron cyclotron resonance xenon plasma. The size of the discharge chamber is 20 × 20 × 4 mm3 and a plate with four orifices is placed at the downstream of the chamber. The calculations were performed at the gas pressure of 1 mTorr and the absorbed power of 0.3 W. The simulation results have indicated that the electrostatic field inside the plasma source has a dominant effect on the electron extraction. When the electrons are trapped in the magnetic field passing close to the orifice, such electrons can be extracted from the plasma source to the outside at the orifice edge because of the E × B drift. The E × B drift also seems to play a significant role in electron transport from the ECR layer to the orifice plate across the magnetic field.

  18. Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment

    Science.gov (United States)

    Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; Friedman, A.; Gilson, E. P.; Grote, D.; Ji, Q.; Kaganovich, I. D.; Persaud, A.; Waldron, W. L.; Schenkel, T.

    2016-05-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.

  19. Drift-based scrape-off particle width in X-point geometry

    Science.gov (United States)

    Reiser, D.; Eich, T.

    2017-04-01

    The Goldston heuristic estimate of the scrape-off layer width (Goldston 2012 Nucl. Fusion 52 013009) is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of testing the heuristic model in a sophisticated numerical simulation including several physical mechanisms working together, the purpose of this work is to point out basic consequences for a drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic field configurations with X-points is employed. In a first step parameter scans in high-resolution grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with respect to the functional dependence of the scrape-off width on the poloidal magnetic field and plasma temperature. Particular features in the 2D-fluid calculations—especially the appearance of supersonic parallel flows and shock wave like bifurcational jumps—are discussed and can be understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings might give hints for experimental proof and implementation in more elaborated fluid simulations.

  20. Drift velocities of excess electrons in 2,2,4,4-tetramethylpentane and tetramethylsilane: A fast drift technique

    Science.gov (United States)

    Faidas, H.; Christophorou, L. G.; McCorkle, D. L.

    1989-11-01

    A new fast drift technique for the measurement of short drift times for excess electrons is dielectric liquids is described. The technique was used to measure the drift velocities of excess electrons in 2,2,4,4-tetramethylpentane and tetramethylsilane as a function of the applied uniform electric field E up to respectively 11.5 × 10 4 and 12.3 × 10 4 V cm -1; at these maximum values of E, the drift velocities are 2.6 × 10 6 and 7.4 × 10 6 cm s -1, respectively.

  1. Baseline neutron logging measurements in the drift scale test

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Carlson, R.; Neubaurer, D.

    1998-01-01

    The Drift Scale Test (DST) is one of the thermal tests being conducted in the Exploratory Studies Facility (ESF). One of the objectives of the DST is to study the coupled thermal-mechanical- hydrological-chemical (TMHC) processes in the ESF at the repository horizon of the potential high-level nuclear waste repository in Yucca Mountain, Nevada. The objectives, the test design, and the test layouts of the DST are included in the test design report by CRWMS M&O Contractor LLNL. The configuration of the DST includes a declining Observation Drift driven mostly east and downward from main tunnel in the ESF, at about 2.827 km from the North portal. The downward slope of the Observation Drift (11.5 to 14.0 percent) ensures a minimum 10 m of middle nonlithophysal Topopah Spring Tuff as the overburden for the DST. The length of the Observation Drift is about 136 m. At the elevation of the DST crown (nominally 10 m below the upper extent of the middle nonlithophysal Topopah Spring Tuff) the Connecting Drift breaks out to the north from the Observation Drift, 136 m from the main tunnel of the ESF. The Connecting Drift extends approximately 40 m to the north from the Observation Drift. A Heater Drift breaks out westward from the Connecting Drift at about 30 m from the Observation Drift. The Heater Drift consists of an 11 m long entry, which includes a plate- loading niche, and a 47 m long heated drift. The nominal diameter of the drifts is 5 m. The detail configuration of the DST, including diagrams showing the drift and borehole layout, is included in the test design report by CRWMS M&O Contractor LLNL. Thermal neutron logging is a method used to determine moisture content in rocks and soils and will be used to monitor moisture content in boreholes ESF-HD-NEU-1 to ESF-HD-NEU-10 (Boreholes 47 to 51 and 64 to 68), ESF-HD-TEMP-1 (Borehole 79), and ESF-HD-TEMP-2 (Borehole 80) in the DST. The neutron probe contains a source of high energy neutrons and a detector for slow (thermal

  2. Emergent gravity and ether-drift experiments

    CERN Document Server

    Consoli, M

    2009-01-01

    In principle, ether-drift experiments could distinguish phenomenologically emergent-gravity approaches, where an effective curvature emerges from hydrodynamic distortions of the same physical, flat-space vacuum, from the more conventional scenario where curvature is considered a fundamental property of space-time down to extremely small length scales and the speed of light represents a universal constant. From an experimental point of view, in this particular context, besides time modulations that might be induced by the Earth's rotation (and its orbital revolution), one should also consider the possibility of random fluctuations of the signal. These might reflect the stochastic nature of the underlying 'quantum ether' and be erroneously interpreted as mere instrumental noise. To test the present interpretation, we have extracted the mean amplitude of the signal from various experiments with different systematics, operating both at room temperature and in the cryogenic regime. They all give the same consisten...

  3. The Absence of Stokes Drift in Waves

    CERN Document Server

    Chafin, Clifford

    2015-01-01

    Stokes drift has been as central to the history of wave theory as it has been distressingly absent from experiment. Neither wave tanks nor experiments in open bodies detect this without nearly canceling "eulerian flows." Acoustic waves have an analogous problem that is particularly problematic in the vorticity production at the edges of beams. Here we demonstrate that the explanation for this arises from subtle end-of-packet and wavetrain gradient effects such as microbreaking events and wave-flow decomposition subtleties required to conserve mass and momentum and avoid fictitious external forces. These losses occur at both ends of packets and can produce a significant nonviscous energy loss for translating and spreading surface wave packets and wavetrains. In contrast, monochromatic sound wave packets will be shown to asymmetrically distort to conserve momentum. This provides an interesting analogy to how such internal forces arise for gradients of electromagnetic wavetrains in media. Such examples show that...

  4. Irradiation response of straw drift tubes

    CERN Document Server

    Dünnweber, W; Neumayr, J; Platzer, K

    2003-01-01

    Drift tubes filled with Ar/CF//4/CO//2 (74:20:6) were exposed to 26 MeV proton beams from the Munich Tandem accelerator to study the radiation effects and operation characteristics expected for the COMPASS experiment at CERN. Stable operation with no significant loss of gain and no significant Malter current was observed up to charge accumulations of 1.1 C/cm. For comparison, with Ar/CH//4 (90:10) the same detectors show a 23% loss of gain and large Malter currents under the same irradiation condition. For Ar/CF//4/CO//2 a thin ( less than 0.1 mum) surface layer is observed by means of SEM on the anode wire in the irradiated detector section. As revealed by an ERDA study, the prominent components of this layer are C, O and Si.

  5. Sonic drifting: sound, city and psychogeography

    Directory of Open Access Journals (Sweden)

    Budhaditya Chattopadhyay

    2013-12-01

    Full Text Available Studying and perceiving an emerging city by listening to its sounds might be phenomenologically reductive in approach, but it can lead to a framework for understanding the fabric of the urban environment through artistic practice. This paper describes a sound work, Elegy for Bangalore, and examines its artistic processes in order to shed light on the methodologies for listening to an expanding city by engaging with multilayered urban contexts and, subsequently, evoking the psychogeography of the city through sound-based artistic practice. The paper further investigates the project’s approach, development and method to speculate on present urban conditions in countries like India experiencing rapid growth. Devising the unfolding auditory situation of an Indian city in corresponding acts of drifting, listening, recording and composing, this paper examines the processes of perceiving an apparently chaotic and disorganised urban environment with its multisensory complexity.

  6. Wave propelled ratchets and drifting rafts

    Science.gov (United States)

    Eddi, A.; Terwagne, D.; Fort, E.; Couder, Y.

    2008-05-01

    Several droplets, bouncing on a vertically vibrated liquid bath, can form various types of bound states, their interaction being due to the waves emitted by their bouncing. Though they associate droplets which are individually motionless, we show that these bound states are self-propelled when the droplets are of uneven size. The driving force is linked to the assymetry of the emitted surface waves. The direction of this ratchet-like displacement can be reversed, by varying the amplitude of forcing. This direction reversal occurs when the bouncing of one of the drops becomes sub-harmonic. As a generalization, a larger number of bouncing droplets form crystalline rafts which are also shown to drift or rotate when assymetrical.

  7. Drift effects on electromagnetic geodesic acoustic modes

    Energy Technology Data Exchange (ETDEWEB)

    Sgalla, R. J. F., E-mail: reneesgalla@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-900 (Brazil)

    2015-02-15

    A two fluid model with parallel viscosity is employed to derive the dispersion relation for electromagnetic geodesic acoustic modes (GAMs) in the presence of drift (diamagnetic) effects. Concerning the influence of the electron dynamics on the high frequency GAM, it is shown that the frequency of the electromagnetic GAM is independent of the equilibrium parallel current but, in contrast with purely electrostatic GAMs, significantly depends on the electron temperature gradient. The electromagnetic GAM may explain the discrepancy between the f ∼ 40 kHz oscillation observed in tokamak TCABR [Yu. K. Kuznetsov et al., Nucl. Fusion 52, 063044 (2012)] and the former prediction for the electrostatic GAM frequency. The radial wave length associated with this oscillation, estimated presently from this analytical model, is λ{sub r} ∼ 25 cm, i.e., an order of magnitude higher than the usual value for zonal flows (ZFs)

  8. Giving Cosmic Redshift Drift a Whirl

    CERN Document Server

    Kim, Alex G; Edelstein, Jerry; Erskine, David

    2014-01-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of $10^{-9}$ require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 hour exposure on a 10-meter telesc...

  9. Multilevel Drift-Implicit Tau-Leap

    KAUST Repository

    Ben Hammouda, Chiheb

    2016-01-06

    The dynamics of biochemical reactive systems with small copy numbers of one or more reactant molecules is dominated by stochastic effects. For those systems, discrete state-space and stochastic simulation approaches were proved to be more relevant than continuous state-space and deterministic ones. In systems characterized by having simultaneously fast and slowtimescales, the existing discrete space-state stochastic path simulation methods such as the stochastic simulation algorithm (SSA) and the explicit tauleap method can be very slow. Implicit approximations were developed in the literature to improve numerical stability and provide efficient simulation algorithms for those systems. In this work, we propose an efficient Multilevel Monte Carlo method in the spirit of the work by Anderson and Higham (2012) that uses drift-implicit tau-leap approximations at levels where the explicit tauleap method is not applicable due to numerical stability issues. We present numerical examples that illustrate the performance of the proposed method.

  10. Redshift drift exploration for interacting dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Jia-Jia; Li, Yun-He; Zhang, Jing-Fei [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2015-08-15

    By detecting redshift drift in the spectra of the Lyman-α forest of distant quasars, the Sandage-Loeb (SL) test directly measures the expansion of the universe, covering the ''redshift desert'' of 2 drift observations would help break the geometric degeneracies in a meaningful way, thus the measurement precisions of Ω{sub m}, H{sub 0}, w, and γ could be substantially improved using future probes. (orig.)

  11. Axisymmetric Nonlinear Waves And Structures in Hall Plasmas

    CERN Document Server

    Islam, Tanim

    2011-01-01

    A Hall plasma consists of a plasma with not all species frozen into the magnetic field. In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature -- whistler drift modes that propagate along the electron drift as a Burger's shock, and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral -- are analyzed. We derive analytical and numerical solutions in an electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to electron-ion-gas Hall plasmas, in which the ions are coupled to the motion of gases in low ionized plasmas (lower ionosphere and protostellar disks), and to dusty Hall plasmas (such as molecular clouds), in which the much heavier charged dust may be collisionally coupled to the gas.

  12. Influence of the lower-hybrid drift instability on magnetic reconnection in asymmetric configurations.

    Science.gov (United States)

    Roytershteyn, V; Daughton, W; Karimabadi, H; Mozer, F S

    2012-05-04

    Using fully kinetic 3D simulations of magnetic reconnection in asymmetric antiparallel configurations, we demonstrate that an electromagnetic lower-hybrid drift instability (LHDI) localized near the X line can substantially modify the reconnection mechanism in the regimes with large asymmetry, a moderate ratio of electron to ion temperature, and low plasma β. However, the mode saturates at a small amplitude in the regimes typical of Earth's magnetopause. In these cases, LHDI-driven turbulence is predominantly localized along the separatrices on the low-β side of the current sheet, in agreement with spacecraft observations.

  13. Generating equally weighted test particles from the one-way flux of a drifting Maxwellian

    Science.gov (United States)

    Makkonen, T.; Airila, M. I.; Kurki-Suonio, T.

    2015-01-01

    The problem of generating equally weighted test particles from the one way flux of drifting Maxwellian is tackled. This paper extends previous work on the subject by presenting a simple and efficient rejection sampling algorithm together with C++ source files. The properties of the underlying probability distribution function, having the form of a normal distribution times x with positive support, are also disseminated. The method presented in this paper has been successfully used to combine fluid and kinetic models for trace impurity problems in plasma physics.

  14. Influence of Ion Nonlinear Polarization Drift and Warm Ions on Solitary Kinetic Alfvén Wave

    Institute of Scientific and Technical Information of China (English)

    DUAN Su-Ping; LI Zhong-Yuan

    2003-01-01

    Considering the effects of ion nonlinear polarization drift and warm ions, we adopt two-fluid model to results derived in this paper indicate that dip SKAW and hump SKAW both exist in a wide range in magnetosphere(for the pressure parameter β ~ 10-5 ~ 0.01, where βis the ratio of thermal pressure to magnetic pressure, i.e.region 1 > β > me/mi. These results are different from previous ones. That indicates that the effects of ion nonlinear polarization drift and warm ions are important and they cannot be neglected. The SKAW has an electric field parallel to the ambient magnetic field, which makes the SKAW take an important role in the acceleration and energization of field-aligned charged particles in magnetic plasmas. And the SKAW is also important for the heating of a local plasma.So it makes a novel physical mechanism of energy transmission possible.

  15. Rossby and Drift Wave Turbulence and Zonal Flows: the Charney-Hasegawa-Mima model and its extensions

    CERN Document Server

    Connaughton, Colm; Quinn, Brenda

    2014-01-01

    A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and also drift waves in a magnetically-confined plasma exhibit some remarkable and nontrivial properties, which in their qualitative form survive in more realistic and complicated models, and as such form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence -zonostrophy and the invariant cascades are shown to be characterised...

  16. Spectroscopic measurements with a silicon drift detector having a continuous implanted drift cathode-voltage divider

    CERN Document Server

    Bonvicini, V; D'Acunto, L; Franck, D; Gregorio, A; Pihet, P; Rashevsky, A; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A silicon drift detector (SDD) prototype where the drift electrode also plays the role of a high-voltage divider has been realised and characterised for spectroscopic applications at near-room temperatures. Among the advantages of this design, is the absence of metal on the sensitive surface which makes this detector interesting for soft X-rays. The detector prototype has a large sensitive area (2x130 mm sup 2) and the charge is collected by two anodes (butterfly-like detector). The energy resolution of a such a detector has been investigated at near-room temperatures using a commercial, hybrid, low-noise charge-sensitive preamplifier. The results obtained for the X-ray lines from sup 5 sup 5 Fe and sup 2 sup 4 sup 1 Am are presented.

  17. The initial value problem in Lagrangian drift kinetic theory

    Science.gov (United States)

    Burby, J. W.

    2016-06-01

    > Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model's initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, `renormalized' variational approach to drift kinetic theory that manifestly respects the parent model's initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual `field particle' Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.

  18. Height drift correction in non-raster atomic force microscopy

    NARCIS (Netherlands)

    Meyer, Travis R.; Ziegler, Dominik; Brune, Christoph; Chen, Alex; Farnham, Rodrigo; Huynh, Nen; Chang, Jen-Mei; Bertozzi, Andrea L.; Ashby, Paul D.

    2014-01-01

    We propose a novel method to detect and correct drift in non-raster scanning probe microscopy. In conventional raster scanning drift is usually corrected by subtracting a fitted polynomial from each scan line, but sample tilt or large topographic features can result in severe artifacts. Our method u

  19. Resistive drift wave turbulence in a three-dimensional geometry

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.

    1999-01-01

    The Hasegawa-Wakatani model describing resistive drift waves is investigated analytically and numerically in a three-dimensional periodic geometry. After an initial growth of the energy the drift waves couple nonlinearly to convective cells, which eventually dominate the system completely...

  20. The Semiclassical Limit in the Quantum Drift-Diffusion Model

    Institute of Scientific and Technical Information of China (English)

    Qiang Chang JU

    2009-01-01

    Semiclassical limit to the solution of isentropic quantum drift-diffusion model in semicon-ductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical drift-diffusion model. In addition, we also proved the global existence of weak solutions.

  1. SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL

    Institute of Scientific and Technical Information of China (English)

    Ju Qiangchang; Chen Li

    2009-01-01

    Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit ofthis solution satisfies the classical bipolar drift-diffusion model. In addition, the authors also prove the existence of weak solution.

  2. Wright and Fisher on Inbreeding and Random Drift

    OpenAIRE

    Crow, James F

    2010-01-01

    Sewall Wright and R. A. Fisher often differed, including on the meaning of inbreeding and random gene frequency drift. Fisher regarded them as quite distinct processes, whereas Wright thought that because his inbreeding coefficient measured both they should be regarded as the same. Since the effective population numbers for inbreeding and random drift are different, this would argue for the Fisher view.

  3. Dissipative electron drift modes in the H1-NF stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, M.; Rafiq, T.; Persson, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electromagnetics

    2001-09-01

    A resistive drift wave model is developed from the two fluids theory, and the associated eigenvalue problem is solved using the ballooning mode formalism for the 3D equilibrium magnetic field configuration of the H-1NF stellarator. The frequency spectrum and the localization of electron drift modes are driven unstable by collisional dissipation of electrons along the magnetic field lines. (orig.)

  4. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  5. Prediction of littoral drift with artificial neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.K.; Deo, M.C.; SanilKumar, V.

    of the rate of sand drift has still remained as a problem. The current study addresses this issue through the use of artificial neural networks (ANN). Feed forward networks were developed to predict the sand drift from a variety of causative variables...

  6. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...

  7. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    Directory of Open Access Journals (Sweden)

    A. I. Eriksson

    2006-03-01

    Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  8. Asymptotic-Preserving methods and multiscale models for plasma physics

    CERN Document Server

    Degond, Pierre

    2016-01-01

    The purpose of the present paper is to provide an overview of Asymptotic-Preserving methods for multiscale plasma simulations by addressing three singular perturbation problems. First, the quasi-neutral limit of fluid and kinetic models is investigated in the framework of non magnetized as well as magnetized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas under large magnetic fields is addressed. Finally efficient numerical resolutions of anisotropic elliptic or diffusion equations arising in magnetized plasma simulation are reviewed.

  9. Ulnar drift in rheumatoid arthritis: a review of biomechanical etiology.

    Science.gov (United States)

    Morco, Stephanie; Bowden, Anton

    2015-02-26

    The objective of this article is to summarize current understanding of biomechanical factors that cause ulnar drift in the hands of patients with rheumatoid arthritis. This was done through literature review of published articles on the mechanical etiology of ulnar drift. There are several theories regarding the cause of ulnar drift, however conclusive evidence is still lacking. Current mechanical factors that are postulated to play a role include: failure of the collateral ligaments, intra-articular pressure changes, degenerative changes in the carpal and metacarpal anatomy, muscle hypoxia induced changes in wrist tension, and exacerbating activities of daily living. Although current theories regarding ulnar drift almost universally include an at least partially mechanical rationale, the causes may be multifactorial. Significantly more research is needed to elucidate the relative importance of mechanical factors leading to significant ulnar drift concurrent with advanced rheumatoid arthritis.

  10. Electron drift in a large scale solid xenon

    CERN Document Server

    Yoo, J

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7\\,cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163\\,K), the drift speed is 0.193 $\\pm$ 0.003 cm/$\\mu$s while the drift speed in the solid phase (157\\,K) is 0.397 $\\pm$ 0.006 cm/$\\mu$s at 900 V/cm over 8.0\\,cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  11. Application of RPF in MEMS gyro random drift filtering

    Science.gov (United States)

    Guowei, GAO; Yan, XIE

    2017-08-01

    With the development of micro-mechanical inertial technology, how to suppress the MEMS gyro’s random drift increasingly become a hot topic. In order to filter a certain type of MEMS gyro’s random drift, this paper introduces the regularized particle filter algorithm. The derivation of the algorithm and its application in MEMS gyro’s filtering process are described in detail in this paper: First, acquiring MEMS gyro’s static drift data and conducting data pre-treatment; then establishing the AR model by using time series analysis method, and transforming it into the corresponding state space model; finally, executing the estimation and compensation for MEMS gyro’s random drift with regular particle filter algorithm, and comparing it with other common methods in engineering. Tests and simulation results show that the regularized particle filter algorithm could achieve a good effect on the suppression of MEMS gyro’s random drift, it has a higher practical application value.

  12. Non-Existence of Linear Universal Drift Functions

    CERN Document Server

    Doerr, Benjamin; Winzen, Carola

    2010-01-01

    Drift analysis has become a powerful tool to prove bounds on the runtime of randomized search heuristics. It allows, for example, fairly simple proofs for the classical problem how the (1+1) Evolutionary Algorithm (EA) optimizes an arbitrary pseudo-Boolean linear function. The key idea of drift analysis is to measure the progress via another pseudo-Boolean function (called drift function) and use deeper results from probability theory to derive from this a good bound for the runtime of the EA. Surprisingly, all these results manage to use the same drift function for all linear objective functions. In this work, we show that such universal drift functions only exist if the mutation probability is close to the standard value of $1/n$.

  13. Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria

    Science.gov (United States)

    Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.

    2015-11-01

    Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.

  14. Drift waves in the corona: heating and acceleration of ions at frequencies far below the gyro frequency

    CERN Document Server

    Vranjes, J

    2010-01-01

    In the solar corona, several mechanisms of the drift wave instability can make the mode growing up to amplitudes at which particle acceleration and stochastic heating by the drift wave take place. The stochastic heating, well known from laboratory plasma physics where it has been confirmed in numerous experiments, has been completely ignored in past studies of coronal heating. However, in the present study and in our very recent works it has been shown that the inhomogeneous coronal plasma is, in fact, a perfect environment for fast growing drift waves. As a matter of fact, the large growth rates are typically of the same order as the plasma frequency. The consequent heating rates may exceed the required values for a sustained coronal heating by several orders of magnitude. Some aspects of these phenomena are investigated here. In particular the analysis of the particle dynamics within the growing wave is compared with the corresponding fluid analysis. While both of them predict the stochastic heating, the th...

  15. Beam Test Results Monitoring the Drift Velocity in Silicon Drift Detectors by use of MOS Charge Injectors

    CERN Document Server

    Nouais, D; Cerello, P G; Giubellino, P; Hernández-Montoya, R; Mazza, G; Nissinen, J; Rashevsky, A; Rivetti, A; Tosello, F; Vacchi, A

    1999-01-01

    Prototypes of Silicon Drift Detectors (SDD) have been developed in the context of the ALICE experiment R&D program. They consist of high resolution 2D position-sensitive detectors based on the measurement of the drift time of an electron cloud produced by the passage of a particle, under the action of a constant electrostatic field. The largest prototype produced has a drift path of 35 mm which corresponds to the design value for the ALICE experiment. For a given electrostatic field, the drift velocity is very sensitive to the temperature variations. For this reason, MOS charge injectors have been implanted on the surface of the detectors in order to monitor the drift velocity during data taking. For the first time, this feature has been successfully used during test beam, leading to an optimal space resolution of 28 um.

  16. In-Drift Precipitates/Salts Model

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2003-10-21

    As directed by ''Technical Work Plan For: Engineered Barrier System Department Modeling and Testing FY03 Work Activities'' (BSC 2003 [165601]), the In-Drift Precipitates/Salts (IDPS) model is developed and refined to predict the aqueous geochemical effects of evaporation in the proposed repository. The purpose of this work is to provide a model for describing and predicting the postclosure effects of evaporation and deliquescence on the chemical composition of water within the proposed Engineered Barrier System (EBS). Application of this model is to be documented elsewhere for the Total System Performance Assessment License Application (TSPA-LA). The principal application of this model is to be documented in REV 02 of ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2003 [165601]). The scope of this document is to develop, describe, and validate the IDPS model. This model is a quasi-equilibrium model. All reactions proceed to equilibrium except for several suppressed minerals in the thermodynamic database not expected to form under the proposed repository conditions within the modeling timeframe. In this revision, upgrades to the EQ3/6 code (Version 8.0) and Pitzer thermodynamic database improve the applicable range of the model. These new additions allow equilibrium and reaction-path modeling of evaporation to highly concentrated brines for potential water compositions of the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O at temperatures in the range of 0 C to 125 C, pressures in the atmospheric range, and relative humidity in the range of 0 to 100 percent. This system applies to oxidizing conditions only, and therefore limits the model to applications involving oxidizing conditions. A number of thermodynamic parameters in the Pitzer database have values that have not been determined or verified for the entire temperature range. In these cases

  17. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  18. The PHENIX Drift Chamber Front End Electroncs

    Science.gov (United States)

    Pancake, C.; Velkovska, J.; Pantuev, V.; Fong, D.; Hemmick, T.

    1998-04-01

    The PHENIX Drift Chamber (DC) is designed to operate in the high particle flux environment of the Relativistic Heavy Ion Collider and provide high resolution track measurements. It is segmented into 80 keystones with 160 readout channels each. The Front End Electronics (FEE) developed to meet the demanding operating conditions and the large number of readout channels of the DC will be discussed. It is based on two application specific integrated circuits: the ASD8 and the TMC-PHX1. The ASD8 chip contains 8 channels of bipolar amplifier-shaper-discriminator with 6 ns shaping time and ≈ 20 ns pulse width, which satisfies the two track resolution requirements. The TMC-PHX1 chip is a high-resolution multi-hit Time-to-Digital Converter. The outputs from the ASD8 are digitized in the Time Memory Cell (TMC) every (clock period)/32 or 0.78 ns (at 40 MHz), which gives the intrinsic time resolution of the system. A 256 words deep dual port memory keeps 6.4 μs time history of data at 40 MHz clock. Each DC keystone is supplied with 4 ASD8/TMC boards and one FEM board, which performs the readout of the TMC-PHX1's, buffers and formats the data to be transmitted over the Glink. The slow speed control communication between the FEM and the system is carried out over ARCNET. The full readout chain and the data aquisition system are being tested.

  19. Redshift drift constraints on holographic dark energy

    Science.gov (United States)

    He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin

    2017-03-01

    The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.

  20. Redshift drift constraints on holographic dark energy

    CERN Document Server

    He, Dong-Ze; Zhang, Xin

    2016-01-01

    The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-$\\alpha$ forest of distant quasars, covering the "redshift desert" of $2\\lesssim z\\lesssim5$, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density $\\Omega_{m0}$ and the Hubble constant $H_0$ in other cosmological observations. For the considered two typical dark e...

  1. Travelling fronts in stochastic Stokes’ drifts

    KAUST Repository

    Blanchet, Adrien

    2008-10-01

    By analytical methods we study the large time properties of the solution of a simple one-dimensional model of stochastic Stokes\\' drift. Semi-explicit formulae allow us to characterize the behaviour of the solutions and compute global quantities such as the asymptotic speed of the center of mass or the effective diffusion coefficient. Using an equivalent tilted ratchet model, we observe that the speed of the center of mass converges exponentially to its limiting value. A diffuse, oscillating front attached to the center of mass appears. The description of the front is given using an asymptotic expansion. The asymptotic solution attracts all solutions at an algebraic rate which is determined by the effective diffusion coefficient. The proof relies on an entropy estimate based on homogenized logarithmic Sobolev inequalities. In the travelling frame, the macroscopic profile obeys to an isotropic diffusion. Compared with the original diffusion, diffusion is enhanced or reduced, depending on the regime. At least in the limit cases, the rate of convergence to the effective profile is always decreased. All these considerations allow us to define a notion of efficiency for coherent transport, characterized by a dimensionless number, which is illustrated on two simple examples of travelling potentials with a sinusoidal shape in the first case, and a sawtooth shape in the second case. © 2008 Elsevier B.V. All rights reserved.

  2. Redshift drift exploration for interacting dark energy

    CERN Document Server

    Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin

    2015-01-01

    By detecting redshift drift in the spectra of Lyman-$\\alpha$ forest of distant quasars, Sandage-Loeb (SL) test directly measures the expansion of the universe, covering the "redshift desert" of $2 \\lesssim z \\lesssim5$. Thus this method is definitely an important supplement to the other geometric measurements and will play a crucial role in cosmological constraints. In this paper, we quantify the ability of SL test signal by a CODEX-like spectrograph for constraining interacting dark energy. Four typical interacting dark energy models are considered: (\\romannumeral1) $Q=\\gamma H\\rho_c$, (\\romannumeral2) $Q=\\gamma H\\rho_{de}$, (\\romannumeral3) $Q=\\gamma H_0\\rho_c$, and (\\romannumeral4) $Q=\\gamma H_0\\rho_{de}$. The results show that for all the considered interacting dark energy models, relative to the current joint SN+BAO+CMB+$H_0$ observations, the constraints on $\\Omega_m$ and $H_0$ would be improved by about 60\\% and 30--40\\%, while the constraints on $w$ and $\\gamma$ would be slightly improved, with a 30-y...

  3. Background Assay and Rejection in DRIFT

    CERN Document Server

    Brack, Jeff; Dorofeev, Alexei; Ezeribe, Anthony; Gauvreau, Jean-Luc; Gold, Michael; Harton, John; Lafler, Randy; Lauer, Robert; Lee, Eric R; Loomba, Dinesh; Matthews, John; Miller, Eric H; Monte, Alissa; Murphy, Alex; Paling, Sean; Phan, Nguyen; Sadler, Steve; Scarff, Andrew; Snowden-Ifft, Daniel; Spooner, Neil; Telfer, Sam; Walker, Daniel; Williams, Matt; Yuriev, Leonid

    2014-01-01

    The DRIFT-IId dark matter detector is a m$^3$-scale low-pressure TPC with directional sensitivity to WIMP-induced nuclear recoils. Its primary backgrounds were due to alpha decays from contamination on the central cathode. Efforts to reduce these backgrounds led to replacing the 20 \\mu m wire central cathode with one constructed from 0.9 \\mu m aluminized mylar, which is almost totally transparent to alpha particles. Detailed modeling of the nature and origin of the remaining backgrounds led to an in-situ, ppt-sensitive assay of alpha decay backgrounds from the central cathode. This led to further improvements in the thin-film cathode resulting in over 2 orders of magnitude reduction in backgrounds compared to the wire cathode. Finally, the addition of O$_2$ to CS$_2$ gas was found to produce multiple species of electronegative charge carriers, providing a method to determine the absolute position of nuclear recoils and reject all known remaining backgrounds while retaining a high efficiency for nuclear recoil...

  4. Frequency Control Loop for Drift Tube Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Song, Young Gi; Jang, Ji Ho; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the preparation of the frequency tracking of the RCCS by connecting the RCCS to low level RF (LLRF) system is described. KOMAC 100-MeV proton accelerator is under operation and supply beam to users. We are developing frequency control function in the LLRF system to control the RCCS in frequency control mode. After the test in the test bench, the system will be applied to the 100-MeV DTL RCCS in order to supply better quality beam to users. A 100-MeV proton accelerator has been developed and the operation and beam service started at Korea Multipurpose Accelerator Complex (KOMAC) in June 2013. The accelerator consists of a 50-keV proton injector, a 3-MeV radio frequency quadrupole (RFQ) and 100-MeV drift tube linac (DTL). The resonance frequency of the DTL tanks are controlled by using the resonance frequency control cooling system (RCCS), which are installed at every each tank. Until now, the RCCS has been operating in constant temperature mode which means that the frequency was measured with respect to the RCCS supply temperature before the RF operation, and then the RCCS operates with that temperature throughout the whole operation. The constant temperature operation is simple but the RF stability is not good because many perturbations such as RCCS supply temperature error can cause a frequency change. To stabilize the system better, it is necessary to operate the RCCS in frequency tracking mode.

  5. Yucca Mountain drift scale test progress report

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

    1999-01-01

    The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

  6. On the inward drift of runaway electrons in plateau regime

    CERN Document Server

    Hu, Di

    2016-01-01

    The well observed inward drift of current carrying runaway electrons during runaway plateau regime after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The invariance of canonical angular momentum in such system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by taking the variation of canonical angular momentum. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in ideal wall case and no wall case, and the runa...

  7. Hydrodynamic transport of drifting macroalgae through a tidal cut

    Science.gov (United States)

    Biber, Patrick D.

    2007-09-01

    Drifting macroalgae are unattached seaweeds that are commonly found in many South Florida and Gulf of Mexico shallow-water seagrass habitats. They are primarily comprised of species of red algae (Rhodophyta) and some brown algae (Phaeophyta). Because of the unattached nature of these species, drift algae have the ability to be moved around the landscape primarily by tidal, as well as wind-driven and alongshore currents. Numerous invertebrates and some fish species are typically found associated with drift algal clumps and aggregations. Transport of drift algae is an important dispersal mechanism for both the plants and their associated fauna. Dispersal distances have been studied in numerous locations over a range of spatial scales. However, little is known about quantities of algal material that are involved. In this study I report on composition and biomass of drifting algae that are transported through a tidal inlet in Biscayne Bay, Florida. Sargassum (a brown alga) and about 12 genera of red algae were found in three seasonal collections (Aug., Dec., May). Total biomass collected varied among seasons, with larger average amounts of drift algae collected in May than the other two months sampled. From this data, I calculate the approximate quantities of drift algae that are potentially moving in, or out of, Biscayne Bay, about a half to one ton of biomass per day.

  8. Adaptive Online Sequential ELM for Concept Drift Tackling.

    Science.gov (United States)

    Budiman, Arif; Fanany, Mohamad Ivan; Basaruddin, Chan

    2016-01-01

    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect "underfitting" condition.

  9. Adaptive Online Sequential ELM for Concept Drift Tackling

    Directory of Open Access Journals (Sweden)

    Arif Budiman

    2016-01-01

    Full Text Available A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM and Constructive Enhancement OS-ELM (CEOS-ELM by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM. It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect “underfitting” condition.

  10. Slow axial drift in three-dimensional granular tumbler flow

    Science.gov (United States)

    Zaman, Zafir; D'Ortona, Umberto; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2013-07-01

    Models of monodisperse particle flow in partially filled three-dimensional tumblers often assume that flow along the axis of rotation is negligible. We test this assumption, for spherical and double cone tumblers, using experiments and discrete element method simulations. Cross sections through the particle bed of a spherical tumbler show that, after a few rotations, a colored band of particles initially perpendicular to the axis of rotation deforms: particles near the surface drift toward the pole, while particles deeper in the flowing layer drift toward the equator. Tracking of mm-sized surface particles in tumblers with diameters of 8-14 cm shows particle axial displacements of one to two particle diameters, corresponding to axial drift that is 1-3% of the tumbler diameter, per pass through the flowing layer. The surface axial drift in both double cone and spherical tumblers is zero at the equator, increases moving away from the equator, and then decreases near the poles. Comparing results for the two tumbler geometries shows that wall slope causes axial drift, while drift speed increases with equatorial diameter. The dependence of axial drift on axial position for each tumbler geometry is similar when both are normalized by their respective maximum values.

  11. Drift-kink instability induced by beam ions in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Kazumi; Horiuchi, Ritoku; Sato, Tetsuya [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-04-01

    The drift-kink instability in field-reversed configurations with a beam component is investigated by means of a three-dimensional particle simulation. The unstable mode with the toroidal mode number n=4 grows with the rate {gamma} {approx} 0.1 - 1.0{omega}{sub ci} for a strong beam current and deforms the plasma profile along the beam orbit in the vicinity of the field-null line. This mode is nonlinearly saturated as a result of the relaxation of current profile. Both the saturation level and the growth rate tend to increase as the ratio of the beam current to the plasma current I{sub b}/I{sub p} increases. It is also found that there is a threshold value of the beam velocity {upsilon}{sub b} {approx} {upsilon}{sub Ti} (ion thermal velocity) for the excitation of the instability. (author)

  12. Studying surface glow discharge for application in plasma aerodynamics

    Science.gov (United States)

    Tereshonok, D. V.

    2014-02-01

    Surface glow discharge in nitrogen between two infinite planar electrodes occurring on the same plane has been studied in the framework of a diffusion-drift model. Based on the results of numerical simulations, the plasma structure of this discharge is analyzed and the possibility of using it in plasma aerodynamics is considered.

  13. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-13

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  14. Drift-Scale Coupled Processes (DST and TH Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    J. Birkholzer; S. Mukhopadhyay

    2004-09-29

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  15. Drift correction of the dissolved signal in single particle ICPMS.

    Science.gov (United States)

    Cornelis, Geert; Rauch, Sebastien

    2016-07-01

    A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.

  16. Heuristic Drift-based Model of the Power Scrape-off width in H-mode Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-29

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Shlüter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of ~ 2aρp/R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Härm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data from deuterium plasmas. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  17. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  18. Observational Detection of Drift Velocity between Ionized and Neutral Species in Solar Prominences

    Science.gov (United States)

    Khomenko, Elena; Collados, Manuel; Díaz, Antonio J.

    2016-06-01

    We report the detection of differences in the ion and neutral velocities in prominences using high-resolution spectral data obtained in 2012 September at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife). A time series of scans of a small portion of a solar prominence was obtained simultaneously with high cadence using the lines of two elements with different ionization states, namely, Ca ii 8542 Å and He i 10830 Å. The displacements, widths, and amplitudes of both lines were carefully compared to extract dynamical information about the plasma. Many dynamical features are detected, such as counterstreaming flows, jets, and propagating waves. In all of the cases, we find a very strong correlation between the parameters extracted from the lines of both elements, confirming that both lines trace the same plasma. Nevertheless, we also find short-lived transients where this correlation is lost. These transients are associated with ion-neutral drift velocities of the order of several hundred m s-1. The patches of non-zero drift velocity show coherence in time-distance diagrams.

  19. Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment

    CERN Document Server

    Seidl, Peter A; Davidson, Ronald C; Friedman, Alex; Gilson, Erik P; Grote, David; Ji, Qing; Kaganovich, I D; Persaud, Arun; Waldron, William L; Schenkel, Thomas

    2016-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynam...

  20. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  1. Statistical properties of transport in plasma turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Garcia, O.E.; Nielsen, A.H.;

    2004-01-01

    The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...

  2. Magnetic field penetration of erosion switch plasmas

    Science.gov (United States)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.

    1988-10-01

    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.

  3. DRIFT-ARID: Application of a method for environmental water ...

    African Journals Online (AJOL)

    DRIFT-ARID: Application of a method for environmental water requirements ... of water required (EWR) to sustain ecosystem services in non-perennial rivers need ... river types, especially episodic rivers where data are scarce or non-existent.

  4. Snow drift: acoustic sensors for avalanche warning and research

    Science.gov (United States)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long

  5. Snow drift: acoustic sensors for avalanche warning and research

    Directory of Open Access Journals (Sweden)

    M. Lehning

    2002-01-01

    Full Text Available Based on wind tunnel measurements at the CSTB (Jules Verne facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b, or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a. On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966 are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations

  6. Transport of Na48 Drift Chambers to Dubna

    CERN Multimedia

    GOLOVATYUK, V

    2010-01-01

    On 22 July, in the occasion of the departure of the Na48 Drift Chambers from CERN, Mikhail Itkis (acting Director of the JIINR) and Rolf Heuer (CERN Director General) visited the NA62 experimental area.

  7. Modeling of Drift Effects on Solar Tower Concentrated Flux Distributions

    Directory of Open Access Journals (Sweden)

    Luis O. Lara-Cerecedo

    2016-01-01

    Full Text Available A novel modeling tool for calculation of central receiver concentrated flux distributions is presented, which takes into account drift effects. This tool is based on a drift model that includes different geometrical error sources in a rigorous manner and on a simple analytic approximation for the individual flux distribution of a heliostat. The model is applied to a group of heliostats of a real field to obtain the resulting flux distribution and its variation along the day. The distributions differ strongly from those obtained assuming the ideal case without drift or a case with a Gaussian tracking error function. The time evolution of peak flux is also calculated to demonstrate the capabilities of the model. The evolution of this parameter also shows strong differences in comparison to the case without drift.

  8. Nonparametric Bayesian drift estimation for multidimensional stochastic differential equations

    NARCIS (Netherlands)

    Gugushvili, S.; Spreij, P.

    2014-01-01

    We consider nonparametric Bayesian estimation of the drift coefficient of a multidimensional stochastic differential equation from discrete-time observations on the solution of this equation. Under suitable regularity conditions, we establish posterior consistency in this context.

  9. Silicon drift detector with reduced lateral diffusion: experimental results

    CERN Document Server

    Sonsky, J; Huizenga, John R; Hollander, R W; Eijk, C W E; Sarro, P M

    2000-01-01

    In a standard multi-anode silicon drift detector electron cloud broadening during the drifting towards the anode pixels deteriorates the energy and position resolution. This makes the detector less applicable for detection of low-energy X-rays. The signal charge sharing between several anodes can be eliminated by introducing sawtooth-shaped p sup + field strips. The sawtooth structure results in small electric fields directed parallel to the sensor surface and perpendicular to the drift direction which produce gutters. The drifting electrons are confined in these gutters of one saw tooth period wide. For a detector with a sawtooth period of 500 mu m, we have measured the maximum number of fully confined electrons as a function of the potential gutter depth induced by different sawtooth angles.

  10. IABP Drifting Buoy Pressure, Temperature, Position, and Interpolated Ice Velocity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The International Arctic Buoy Programme (IABP) maintains a network of drifting buoys to provide meteorological and oceanographic data for real-time operational...

  11. Teaching Evolutionary Mechanisms: Genetic Drift and M&M's.

    Science.gov (United States)

    Staub, Nancy L.

    2002-01-01

    Describes a classroom activity that teaches the mechanism of genetic drift to undergraduates. Illustrates a number of concepts that are critical in developing evolution literacy by sampling M&M milk chocolate candies. (MM)

  12. Don't worry. Lagrangian drift kinetics is OK

    Science.gov (United States)

    Burby, Joshua

    2015-11-01

    I show that standard Lagrangian (i.e. variational) drift kinetics with uE × B ~vth and Hgc =Ho + ɛH1 +ɛ2H2 has an unphysically-large phase space; where a valid initial condition ought to consist of (F , E , B) specified at t = 0 , Lagrangian drift kinetics requires initial time derivatives of the electromagnetic field to be specified as well. This phenomenon occurs because the guiding center coordinate transformation depends on time derivatives of the electromagnetic field, and this leads to the appearance of a time derivative of E in H2. I also show how to ``renormalize'' the Lagrangian approach to drift kinetics in a way that manifestly preserves the correct structure of the initial value problem. Starting from this modified Lagrangian procedure, I derive the drift kinetic system's Poisson bracket. Work supported by DOE contract # DE-AC02-09CH11466.

  13. Nonequilibrium drift-diffusion model for organic semiconductor devices

    Science.gov (United States)

    Felekidis, Nikolaos; Melianas, Armantas; Kemerink, Martijn

    2016-07-01

    Two prevailing formalisms are currently used to model charge transport in organic semiconductor devices. Drift-diffusion calculations, on the one hand, are time effective but assume local thermodynamic equilibrium, which is not always realistic. Kinetic Monte Carlo models, on the other hand, do not require this assumption but are computationally expensive. Here, we present a nonequilibrium drift-diffusion model that bridges this gap by fusing the established multiple trap and release formalism with the drift-diffusion transport equation. For a prototypical photovoltaic system the model is shown to quantitatively describe, with a single set of parameters, experiments probing (1) temperature-dependent steady-state charge transport—space-charge limited currents, and (2) time-resolved charge transport and relaxation of nonequilibrated photocreated charges. Moreover, the outputs of the developed kinetic drift-diffusion model are an order of magnitude, or more, faster to compute and in good agreement with kinetic Monte Carlo calculations.

  14. Electronics for the BaBar Central Drift Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, David P

    1998-12-07

    The central drift chamber for the BaBar detector at the SLAC B-factory is based on a hexagonal cell design with 7104 cells arranged in 40 layers and drift gas Helium:isobutane (80%:20%). Performance optimization and integration requirements led to an electronics design that mounts the amplifier-descriminator and digitizing circuitry directly on the endplate. High channel density is achieved using a 4-channel custom amplifier-discriminator IC and an 8-channel custom CMOS TDC/FADC IC on a single circuit board. Data read from the ends are multiplexed on 4 fiber optic links, and prompt trigger data are sent out continuously on 24 links. Analysis of cosmic ray data demonstrates that the electronics design meets the performance goals for the BaBar drift chamber. The final electronics were installed on the drift chamber in July, 1998. Installation of BaBar on beamline is scheduled for March, 1999.

  15. Tracking chamber made of 15-mm mylar drift tubes

    Science.gov (United States)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-05-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  16. Selective trapping of hydrogen plasma in mirror machine

    Science.gov (United States)

    Be'Ery, Ilan; Seemann, Omri; Fruchtman, Amnon; Fisher, Amnon; Ron, Amiram

    2013-10-01

    When ablation plasma, consisting mostly of hydrogen and carbon ions and neutral, is injected through the throat of a mirror machine, pure hydrogen plasma is observed to accumulate inside the mirror trap. In this work we study the formation of magnetized plasma beam, the scattering out of the loss cone, and the plasma decay in the mirror trap. The selective accumulation of hydrogen ions is shown to be a result of the difference in the magnetic channeling through a limiter and of difference in scattering probabilities into the trapped regions of phase space. The accumulation of plasma in the trap is limited by centrifugal drift instability, convecting plasma to the walls.

  17. Electron drift velocity measurements in liquid krypton-methane mixtures

    CERN Document Server

    Folegani, M; Magri, M; Piemontese, L

    1999-01-01

    Electron drift velocities have been measured in liquid krypton, pure and mixed with methane at different concentrations (1-10% in volume) versus electric field strength, and a possible effect of methane on electron lifetime has been investigated. While no effect on lifetime could be detected, since lifetimes were in all cases longer than what measurable, a very large increase in drift velocity (up to a factor 6) has been measured.

  18. Ethical drift: when good people do bad things.

    Science.gov (United States)

    Kleinman, Carole S

    2006-01-01

    There are many factors in today's healthcare environment which challenge nurses and nursing administration in adhering to ethical values. This article discusses the phenomenon of ethical drift, a gradual erosion of ethical behavior that occurs in individuals below their level of awareness. It is imperative for nurse managers and executives to be aware of the danger that workplace pressures pose in encouraging ethical drift at all levels of nursing, and to take steps to prevent this phenomena from occurring in their facilities.

  19. Ageing tests for the MEG II drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M., E-mail: marco.venturini@pi.infn.it [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baracchini, E. [ICEPP, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cei, F.; D' Onofrio, A. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dussoni, S.; Galli, L.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Signorelli, G.; Tenchini, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Zermini, A. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, Universita di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2016-07-11

    The MEG II drift chamber will track positrons from μ{sup +} decays in a very harsh environment. For testing the robustness of the chamber to ageing effects an irradiation facility was set up at INFN Pisa. - Highlights: • We built up an X-ray facility for ageing studies of particle detectors. • Stable irradiation conditions were obtained over one-month timescale. • A moderate gain loss is expected for the MEG II drift chamber.

  20. BaBar Level 1 Drift Chamber Trigger Upgrade

    CERN Document Server

    Halyo, V

    2002-01-01

    As PEP-II is exceeding the original design luminosity, BaBar is currently upgrading its Level 1 Drift Chamber Trigger (DCT) to reduce the rate of background Level 1 triggers by more than 50% while preserving the high Level 1 trigger physics efficiency. New Z-Pt-Discriminator VME boards (ZPD) utilizing the stereo hit information from the drift chamber are being built to extract the track z coordinate at the beam line with a resolution of a few centimeters.

  1. Gradient B drift transport of high current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Backstrom, R.C.; Halbleib, J.A.; Quintenz, J.P.; Wright, T.P.

    1984-12-01

    A 1-MeV, 200-kA electron beam was transported 89 cm in a low pressure background gas via gradient B drift in the 1/r azimuthal magnetic field of a current carrying wire. The electron drift velocity was measured and found to be in good agreement with theory. Measurements of x-ray production in the target indicated high transport efficiency.

  2. Drift solitons and their two-dimensional stability

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.

    1977-07-01

    The nonlinear equation governing low-frequency drift waves is considered. Utilizing the linear dispersion relation for such waves, it is shown that there exists a parameter range for which the drift waves are governed by a modified Korteweg--de Vries equation having a solitary solution in one and two dimensions. The one-dimensional solitons are unstable with respect to perturbations in the direction perpendicular to their motion.

  3. Measurements of electron drift velocity in pure isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B., E-mail: ccbueno@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    In this work we report on preliminary results related to the dependence of the electron drift velocity for pure isobutane as a function of reduced electric field (E/N) in the range from 100 Td up to 216 Td. The measurements of electron drift velocity were based on the Pulsed Townsend technique. In order to validate the technique and analyzing non-uniformity effects, results for nitrogen are also presented and compared with a numerical simulation of the Bolsig+ code. (author)

  4. Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET

    Science.gov (United States)

    Aho-Mantila, L.; Potzel, S.; Coster, D. P.; Wischmeier, M.; Brix, M.; Fischer, R.; Marsen, S.; Meigs, A.; Müller, H. W.; Scarabosio, A.; Stamp, M. F.; Brezinsek, S.; the ASDEX Upgrade Team; JET Contributors, the

    2017-03-01

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  5. Optimal measurement strategies for effective suppression of drift errors

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.

    2009-04-16

    Drifting of experimental set-ups with change of temperature or other environmental conditions is the limiting factor of many, if not all, precision measurements. The measurement error due to a drift is, in some sense, in-between random noise and systematic error. In the general case, the error contribution of a drift cannot be averaged out using a number of measurements identically carried out over a reasonable time. In contrast to systematic errors, drifts are usually not stable enough for a precise calibration. Here a rather general method for effective suppression of the spurious effects caused by slow drifts in a large variety of instruments and experimental set-ups is described. An analytical derivation of an identity, describing the optimal measurement strategies suitable for suppressing the contribution of a slow drift described with a certain order polynomial function, is presented. A recursion rule as well as a general mathematical proof of the identity is given. The effectiveness of the discussed method is illustrated with an application of the derived optimal scanning strategies to precise surface slope measurements with a surface profiler.

  6. Effect of unsteady wind on drifting snow: first investigations

    Directory of Open Access Journals (Sweden)

    J.-L. Michaux

    2002-01-01

    Full Text Available Wind is not always a steady flow. It can oscillate, producing blasts. However, most of the current numerical models of drifting snow are constrained by one major assumption: forcing winds are steady and uniform. Moreover, very few studies have been done to verify this hypothesis, because of the lack of available instrumentation and measurement difficulties. Therefore, too little is known about the possible role of wind gust in drifting snow. In order to better understand the effect of unsteady winds, we have performed both experiments at the climatic wind tunnel at the CSTB (Centre Scientifique et Technique des Bâtiments in Nantes, France, and in situ experiments on our experimental high-altitude site, at the Lac Blanc Pass. These experiments were carried out collaboratively with Cemagref (France, Météo-France, and the IFENA (Switzerland. Through the wind tunnel experiments, we found that drifting snow is in a state of permanent disequilibrium in the presence of fluctuating airflows. In addition, the in situ experiments show that the largest drifting snow episodes appear during periods of roughly constant strong wind, whereas a short but strong blast does not produce significant drifting snow.  Key words. Drifting snow, blowing snow, gust, blast, acoustic sensor

  7. Measurement of Spray Drift with a Specifically Designed Lidar System.

    Science.gov (United States)

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  8. Genetic drift and the population history of the Irish travellers.

    Science.gov (United States)

    Relethford, John H; Crawford, Michael H

    2013-02-01

    The Irish Travellers are an itinerant group in Ireland that has been socially isolated. Two hypotheses have been proposed concerning the genetic origin of the Travellers: (1) they are genetically related to Roma populations in Europe that share a nomadic lifestyle or (2) they are of Irish origin, and genetic differences from the rest of Ireland reflect genetic drift. These hypotheses were tested using data on 33 alleles from 12 red blood cell polymorphism loci. Comparison with other European, Roma, and Indian populations shows that the Travellers are genetically distinct from the Roma and Indian populations and most genetically similar to Ireland, in agreement with earlier genetic analyses of the Travellers. However, the Travellers are still genetically distinct from other Irish populations, which could reflect some external gene flow and/or the action of genetic drift in a small group that was descended from a small number of founders. In order to test the drift hypothesis, we analyzed genetic distances comparing the Travellers to four geographic regions in Ireland. These distances were then compared with adjusted distances that account for differential genetic drift using a method developed by Relethford (Hum Biol 68 (1996) 29-44). The unadjusted distances show the genetic distinctiveness of the Travellers. After adjustment for the expected effects of genetic drift, the Travellers are equidistant from the other Irish samples, showing their Irish origins and population history. The observed genetic differences are thus a reflection of genetic drift, and there is no evidence of any external gene flow.

  9. Numerical simulation of drifting snow sublimation in the saltation layer.

    Science.gov (United States)

    Dai, Xiaoqing; Huang, Ning

    2014-10-14

    Snow sublimation is an important hydrological process and one of the main causes of the temporal and spatial variation of snow distribution. Compared with surface sublimation, drifting snow sublimation is more effective due to the greater surface exposure area of snow particles in the air. Previous studies of drifting snow sublimation have focused on suspended snow, and few have considered saltating snow, which is the main form of drifting snow. In this study, a numerical model is established to simulate the process of drifting snow sublimation in the saltation layer. The simulated results show 1) the average sublimation rate of drifting snow particles increases linearly with the friction velocity; 2) the sublimation rate gradient with the friction velocity increases with increases in the environmental temperature and the undersaturation of air; 3) when the friction velocity is less than 0.525 m/s, the snowdrift sublimation of saltating particles is greater than that of suspended particles; and 4) the snowdrift sublimation in the saltation layer is less than that of the suspended particles only when the friction velocity is greater than 0.625 m/s. Therefore, the drifting snow sublimation in the saltation layer constitutes a significant portion of the total snow sublimation.

  10. Precursor wave structure, prereversal vertical drift, and their relative roles in the development of post sunset equatorial spread-F

    Science.gov (United States)

    Abdu, Mangalathayil; Sobral, José; alam Kherani, Esfhan; Batista, Inez S.; Souza, Jonas

    2016-07-01

    The characteristics of large-scale wave structure in the equatorial bottomside F region that are present during daytime as precursor to post sunset development of the spread F/plasma bubble irregularities are investigated in this paper. Digisonde data from three equatorial sites in Brazil (Fortaleza, Sao Luis and Cachimbo) for a period of few months at low to medium/high solar activity phases are analyzed. Small amplitude oscillations in the F layer true heights, representing wave structure in polarization electric field, are identified as upward propagating gravity waves having zonal scale of a few hundred kilometers. Their amplitudes undergo amplification towards sunset, and depending on the amplitude of the prereversal vertical drift (PRE) they may lead to post sunset generation of ESF/plasma bubble irregularities. On days of their larger amplitudes they appear to occur in phase coherence on all days, and correspondingly the PRE vertical drift velocities are larger than on days of the smaller amplitudes of the wave structure that appear at random phase on the different days. The sustenance of these precursor waves structures is supported by the relatively large ratio (approaching unity) of the F region-to- total field line integrated Pedersen conductivities as calculated using the SUPIM simulation of the low latitude ionosphere. This study examines the role of the wave structure relative to that of the prereversal vertical drift in the post sunset spread F irregularity development.

  11. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  12. Thermodynamic system drift in protein evolution.

    Directory of Open Access Journals (Sweden)

    Kathryn M Hart

    2014-11-01

    Full Text Available Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH proteins evolved. RNH proteins from Thermus thermophilus (ttRNH and Escherichia coli (ecRNH share similar structures but differ in melting temperature (T(m by 20 °C. ttRNH's greater stability is caused in part by the presence of residual structure in the unfolded state, which results in a low heat capacity of unfolding (ΔCp relative to ecRNH. We first characterized RNH proteins from a variety of extant bacteria and found that Tm correlates with the species' growth temperatures, consistent with environmental selection for stability. We then used ancestral sequence reconstruction to statistically infer evolutionary intermediates along lineages leading to ecRNH and ttRNH from their common ancestor, which existed approximately 3 billion years ago. Finally, we synthesized and experimentally characterized these intermediates. The shared ancestor has a melting temperature between those of ttRNH and ecRNH; the T(ms of intermediate ancestors along the ttRNH lineage increased gradually over time, while the ecRNH lineage exhibited an abrupt drop in Tm followed by relatively little change. To determine whether the underlying mechanisms for thermostability correlate with the changes in T(m, we measured the thermodynamic basis for stabilization--ΔCp and other thermodynamic parameters--for each of the ancestors. We observed that, while the T(m changes smoothly, the mechanistic basis for stability fluctuates over evolutionary time. Thus, even while overall stability appears to be strongly driven by selection, the proteins explored a wide variety of mechanisms of stabilization, a phenomenon we call "thermodynamic system drift." This suggests that even on lineages with strong selection to increase

  13. Plasma Diagnostic and Performance of a Permanent Magnet Hall Thruster

    CERN Document Server

    Ferreira, J L; Rego, I D S; Ferreira, I S; Ferreira, Jose Leonardo; Souza, Joao Henrique Campos De; Rego, Israel Da Silveira; Ferreira, Ivan Soares

    2004-01-01

    Electric propulsion is now a sucessfull method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Plasma Thruster, so called Hall Thruster or SPT (stationary plasma thruster) were primarily conceived in USSR (the ancient Soviet Union) and now it is been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work, we show plasma characteristics and performance of a Hall Thruster designed with an innovative concept which uses an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside its cylindrical plasma drift channel. Within this new concept, we expect to develop a Hall Thruster within power consuption that will scale up to small and medium size satellites. A plasma density and temperature space profiles inside and outside the thruster channel will be shown. Space plasma potential, ion temperat...

  14. An Heuristic Drift-Based Model of the Power Scrape-Off Width in H-Mode Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-02-28

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall mass flow pattern posited is a modification for open field lines of Pfirsch-Shlüter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of 2aρp/R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Härm parallel thermal conduction losses to the divertor. This results in an heuristic closed-form prediction for the power scrape-off width that is in remarkable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  15. Evaporation from Near-Drift Fractured Rock Surfaces

    Science.gov (United States)

    Manepally, C.; Fedors, R. W.; Or, D.; Das, K.

    2007-12-01

    The amount of water entering emplacement drifts from a fractured unsaturated rock is an important variable for performance evaluation of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. Water entering the drifts as liquid or gas may enhance waste package corrosion rates and transport released radionuclides. Liquid water in form of droplets may emerge from fractures, or flow along the drift wall and potentially evaporate and condense at other locations. Driven by pressure and temperature gradients, vapor may be transported along fractures, or liquid water may evaporate directly from the matrix. Within the drift, heat-driven convection may redistribute the moisture leading to condensation at other locations. The geometry of the evaporation front around the drift is not fully understood and this, in turn, influences processes related to reflux, rewetting as the thermal pulse dissipates. Existing models focus on processes in the porous media (e.g., two-phase dual-permeability models for matrix and fractures), or on processes in the drift (e.g., gas-phase computational fluid dynamics models). This study focuses on the boundary between these two domains, and the corresponding models, where evaporation at the solid rock/drift air interface appears to play an important role. Studies have shown that evaporation from porous media is a complex process sensitive to factors such as (i) hydrological properties of the porous media, (ii) pressure gradients in the porous media, (iii) texture of the interface or boundary, (iv) local vapor and temperature gradients, and (v) convective flow rate and boundary layer transfer. Experimental observations based on passive monitoring at Yucca Mountain have shown that the formation surrounding the drift is able to provide and transport large amounts of water vapor over a relatively short period. This study will examine the basic processes that govern evaporation in the unsaturated rock surrounding drifts for

  16. The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers

    DEFF Research Database (Denmark)

    Løfstrøm, Per; Bruus, Marianne; Andersen, Helle Vibeke

    2013-01-01

    at increasing distances. The vertical concentration profile downwind has a maximum just above the ground in our observations and calculations. The model accounts for the meteorological conditions, droplet ejection velocity and size spectrum. Model validation led to an R2 value of 0.78, and 91% of the calculated......In order to predict the exposure of hedgerows and other neighboring biotopes to pesticides from field-spray applications, an existing Gaussian atmospheric dispersion and deposition model was developed to model the changes in droplet size due to evaporation affecting the deposition velocity....... The Gaussian tilting plume principle was applied inside the stayed track. The model was developed on one set of field experiments using a flat-fan nozzle and validated against another set of field experiments using an air-induction nozzle. The vertical spray-drift profile was measured using hair curlers...

  17. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    Science.gov (United States)

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  18. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation

    Science.gov (United States)

    Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier

    2017-01-01

    The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622

  19. Quaternary Contourite Drifts of the Western Spitsbergen Margin

    Science.gov (United States)

    Laberg, J. S.; Rebesco, M.; Wahlin, A.; Schauer, U.; Beszczynska-Möller, A.; Lucchi, R. G.; Noormets, R.; Accettella, D.; Zarayskaya, Y.; Diviacco, P.

    2014-12-01

    The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.

  20. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation.

    Science.gov (United States)

    Diaz, Estefania Munoz; Caamano, Maria; Sánchez, Francisco Javier Fuentes

    2017-07-03

    The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios.

  1. Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming

    Science.gov (United States)

    Wangsness, David J.; Peterson, David A.

    1980-01-01

    Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)

  2. Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER

    Science.gov (United States)

    Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Makowski, M. A.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu; Voskoboynikov, S. P.

    2016-12-01

    SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width ({λq} ) for inter-ELM power exhaust. Guided by Goldston’s heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on {λq} in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D SOL) is scanned from 1 to 0.1 m2 s-1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (˜3-4 mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up-down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At {{D}\\text{SOL}}=0.1 m2 s-1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. This research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.

  3. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2007-10-01

    Full Text Available Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects

  4. Characteristic parameters of drift chambers calculation; Calculo de los parametros caracteristicos de camaras de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez-Laso, L.

    1989-07-01

    We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs.

  5. Precise Measurement of Drift Velocities in Active-Target Detectors

    Science.gov (United States)

    Jensen, Louis

    2016-09-01

    Nuclear experiments with radioactive beams are needed to improve our understanding of nuclei structure far from stability. Radioactive beams typically have low beam rates, but active-target detectors can compensate for these low beam rates. In active-target detectors that are also Time-Projection Chambers (TPC), ionized electrons drift through an electric fieldto a detection device to imagethe trajectory of charged-particle ionization tracks within the chamber's gas volume. The measurement of the ionized electrons' drift velocity is crucial for the accurate imaging of these tracks. In order to measure this drift velocity, we will use a UV laser and photo-sensitive foil in a the ND-Cubedetector we are developing, periodically releasingelectrons from the foil at a known timesand a known distance from the electron detector, thereby precisely measuring the drift velocity in situ. We have surveyed several materials to find a material that will work well with typical solid-state UV lasers on the market. We plan to determine the best material and thickness of the foil to maximize the number of photoelectrons. The precision that will be afforded by this measurement of the drift velocity will allow us to eliminate a source of systematic uncertainty.

  6. The initial value problem in Lagrangian drift kinetic theory

    CERN Document Server

    Burby, J W

    2015-01-01

    Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low-orders. These unphysical modes, which may be rapidly oscillating, damped, or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model's initial value problem (Vlasov-Poisson for electrostatics, Vlasov-Darwin or Vlasov-Maxwell for electromagnetics.) In short, the system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, "renormalized" variational approach to drift kinetic theory that manifestly respects the parent model's initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase space Lagrangian instead of the usual "field+particle" Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dime...

  7. Drift-scale thermomechanical analysis for the retrievability systems study

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, F.C. [M& O/Woodward Clyde Federal Services, Las Vegas, NV (United States)

    1996-04-01

    A numerical method was used to estimate the stability of potential emplacement drifts without considering a ground support system as a part of the Thermal Loading Systems Study for the Yucca Mountain Site Characterization Project. The stability of the drift is evaluated with two variables: the level of thermal loading and the diameter of the emplacement drift. The analyses include the thermomechanical effects generated by the excavation of the drift, subsequently by the thermal loads from heat-emitting waste packages, and finally by the thermal reduction resulting from rapid cooling ventilation required for the waste retrieval if required. The Discontinuous Deformation Analysis (DDA) code was used to analyze the thermomechanical response of the rock mass of multiple blocks separated by joints. The result of this stability analysis is used to discuss the geomechanical considerations for the advanced conceptual design (ACD) with respect to retrievability. In particular, based on the rock mass strength of the host rock described in the current version of the Reference Information Base, the computed thermal stresses, generated by 111 MTU/acre thermal loads in the near field at 100 years after waste emplacement, is beyond the criterion for the rock mass strength used to predict the stability of the rock mass surrounding the emplacement drift.

  8. Solar Energetic Particle drifts in the Parker spiral

    CERN Document Server

    Dalla, S; Kelly, J; Laitinen, T

    2013-01-01

    Drifts in the Parker spiral interplanetary magnetic field are known to be an important component in the propagation of galactic cosmic rays, while they are thought to be negligible for Solar Energetic Particles (SEPs). As a result they have so far been ignored in SEP propagation modelling and data analysis. We examine drift velocities in the Parker spiral within single particle first-order adiabatic theory, in a local coordinate system with an axis parallel to the magnetic field. We show that, in the presence of scattering in interplanetary space, protons at the high end of the SEP energy range experience significant gradient and curvature drift. In the scatter-free case, drift due to magnetic field curvature is present. The magnitude of drift velocity increases by more than an order of magnitude at high heliographic latitudes compared to near the ecliptic; it has a strong dependence on radial distance r from the Sun, reaching a maximum at r~1 AU at low heliolatitudes and r~10 AU at high heliolatitudes. Due t...

  9. Incremental learning of concept drift in nonstationary environments.

    Science.gov (United States)

    Elwell, Ryan; Polikar, Robi

    2011-10-01

    We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper.

  10. MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation

    Directory of Open Access Journals (Sweden)

    Howard Daniel

    2006-01-01

    Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .

  11. Extreme event statistics in a drifting Markov chain

    Science.gov (United States)

    Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur

    2017-07-01

    We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

  12. The zonal motion of equatorial plasma bubbles relative to the background ionosphere

    Science.gov (United States)

    Kil, Hyosub; Lee, Woo Kyoung; Kwak, Young-Sil; Zhang, Yongliang; Paxton, Larry J.; Milla, Marco

    2014-07-01

    The zonal motions of plasmas inside equatorial plasma bubbles are different from those in the background ionosphere. The difference was explained in terms of the tilt of bubbles by recent studies, but observational evidence of this hypothesis has not yet been provided. We examine this hypothesis and, at the same time, look for an alternative explanation on the basis of the coincident satellite and radar observations over Jicamarca (11.95°S, 76.87°W) in Peru. In the observations at premidnight by the first Republic of China satellite (altitude: 600 km, inclination: 35°), plasmas inside bubbles drift westward relative to ambient plasmas. The same phenomenon is identified by radar observations. However, the relative westward plasma motions inside bubbles occur regardless of the tilt of bubbles, and therefore, the tilt is not the primary cause of the deviation of the plasma motions inside bubbles. The zonal plasma motions in the topside are characterized by systematic eastward drifts, whereas the zonal motions of plasmas in the bottomside backscatter layer show a mixture of eastward and westward drifts. The zonal plasma motions inside backscatter plumes resemble those in the bottomside backscatter layer. These observations indicate that plasmas inside bubbles maintain the properties of the zonal plasma motions in the bottomside where the bubbles originate. With this assumption, the deviation of the zonal motions of plasmas inside bubbles from those of ambient plasmas is understood in terms of the difference of the zonal plasma flows in the bottomside and topside.

  13. Drift-free solar sail formations in elliptical Sun-synchronous orbits

    Science.gov (United States)

    Parsay, Khashayar; Schaub, Hanspeter

    2017-10-01

    To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this study is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the first-order necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. The validity of the first-order necessary conditions are illustrated by designing quasi-periodic relative motions. Next, nonlinear programming is applied to design truly drift-free two-craft solar sail formations. Lastly, analytic expressions are derived to determine the long-term dynamics and sensitivity of the formation with respect to constant attitude errors, uncertainty in orbital elements, and uncertainty in a sail's characteristic acceleration.

  14. Production of Magnetic Turbulence by Cosmic Rays Drifting Upstream of Supernova Remnant Shocks

    CERN Document Server

    Niemiec, Jacek; Stroman, Thomas; Nishikawa, and Ken-Ichi

    2008-01-01

    We present results of 2D and 3D PIC simulations of magnetic turbulence production by isotropic cosmic-ray ions drifting upstream of SNR shocks. The studies aim at testing recent predictions of a strong amplification of short wavelength non-resonant wave modes and at studying the evolution of the magnetic turbulence and its backreaction on cosmic rays. We confirm the generation of the turbulent magnetic field due to the drift of cosmic rays in the upstream plasma, but show that an oblique filamentary mode grows more rapidly than the non resonant parallel modes found in analytical theory. The growth rate of the field perturbations is much slower than is estimated using a quasi-linear approach, and the amplitude of the turbulence saturates at about dB/B~1. The backreaction of the turbulence on the particles leads to an alignment of the bulk-flow velocities of the cosmic rays and the background medium, which is an essential characteristic of cosmic-ray modified shocks. It accounts for the saturation of the instab...

  15. Theoretical aspects and practical implications of the heuristic drift SOL model

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J., E-mail: goldston@pppl.gov

    2015-08-15

    The heuristic drift (HD) model for the tokamak power scrape-off layer width provides remarkable agreement in both absolute magnitude and scalings with the measured width of the exponential component of the heat flux at divertors targets, in low gas-puff H-Mode tokamaks. This motivates further exploration of its theoretical aspects and practical implications. The HD model requires a small non-ambipolar electron particle diffusivity ∼10{sup −2} m{sup 2}/s. It also implies large parallel heat flux in ITER and suggests that more radical approaches will be needed to handle the ∼20 GW/m{sup 2} parallel heat flux expected in Demo. Remarkably, the HD model is also in good agreement with recent near-SOL heat flux profiles measured in a number of limiter L-Mode experiments, implying ubiquity of the underlying mechanism. Finally, the HD model suggests that the H-Mode and more generally Greenwald density limit may be caused by MHD instability in the SOL, rather than originating in the core plasma or pedestal. If the SOL width in stellarators is set by magnetic topology rather than by drifts, this would be consistent with the absence of the Greenwald density limit in stellarators.

  16. Potential Diagnostic and Prognostic Biomarkers of Epigenetic Drift within the Cardiovascular Compartment

    Directory of Open Access Journals (Sweden)

    Robert G. Wallace

    2016-01-01

    Full Text Available Biomarkers encompass a wide range of different measurable indicators, representing a tangible link to physiological changes occurring within the body. Accessibility, sensitivity, and specificity are significant factors in biomarker suitability. New biomarkers continue to be discovered, and questions over appropriate selection and assessment of their usefulness remain. If traditional markers of inflammation are not sufficiently robust in their specificity, then perhaps alternative means of detection may provide more information. Epigenetic drift (epigenetic modifications as they occur as a direct function with age, and its ancillary elements, including platelets, secreted microvesicles (MVs, and microRNA (miRNA, may hold enormous predictive potential. The majority of epigenetic drift observed in blood is independent of variations in blood cell composition, addressing concerns affecting traditional blood-based biomarker efficacy. MVs are found in plasma and other biological fluids in healthy individuals. Altered MV/miRNA profiles may also be found in individuals with various diseases. Platelets are also highly reflective of physiological and lifestyle changes, making them extremely sensitive biomarkers of human health. Platelets release increased levels of MVs in response to various stimuli and under a plethora of disease states, which demonstrate a functional effect on other cell types.

  17. Typical values of the electric drift E × B/B2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements

    Science.gov (United States)

    Lejosne, Solène; Mozer, F. S.

    2016-12-01

    The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L 2.6, as well as a slight radial transport of the order of 20 m s-1. The magnetic local time dependence of the electric drift is consistent with that of the ionosphere wind dynamo below L 2 and with that of a solar wind-driven convection electric field above L 2. A secondary longitudinal dependence of the electric field is also found. Therefore, this work also demonstrates that the instruments on board Van Allen Probes are able to perform accurate measurements of the electric drift below L 3.

  18. Polarization Drift Channel Model for Coherent Fibre-Optic Systems

    CERN Document Server

    Czegledi, Cristian B; Agrell, Erik; Johannisson, Pontus

    2015-01-01

    A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts. The model is described in the Jones, Stokes and real 4-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future optical systems, which to a higher and higher degree rely on transmission and detection on both polarizations jointly using sophisticated digital signal processing. Such analysis cannot be carried out using the more rudimentary polarization drift models in use today, which only account for deterministic effects. The proposed polarization drift model is the first of its kind and will likely be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue.

  19. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space....... It is operated in the planar transverse field (PTF) mode, with the purpose of demonstrating that the good energy resolution of the CZT drift detector can be combined with the high efficiency of the PTF configuration. Furthermore, we demonstrated and characterized the 3D sensing capabilities of this detector...... configuration.The CZT drift strip detector (10mm×10mm×2.5mm) was characterized in both standard illumination geometry, Photon Parallel Field (PPF) configuration and in PTF configuration. The detection efficiency and energy resolution are compared for both configurations . The PTF configuration provided a higher...

  20. D. phi. vertex drift chamber construction and test results

    Energy Technology Data Exchange (ETDEWEB)

    Clark, A.R.; Goozen, F.; Grudberg, P.; Klopfenstein, C.; Kerth, L.T.; Loken, S.C.; Oltman, E.; Strovink, M.; Trippe, T.G.

    1991-05-01

    A jet-cell based vertex chamber has been built for the D{O} experiment at Fermilab and operated in a test beam there. Low drift velocity and diffusion properties were achieved using CO{sub 2}(95%)-ethane(5%) at atmospheric pressure. The drift velocity is found to be consistent with (9.74+8.68( E -1.25)) {mu}m/nsec where E is the electric field strength in (kV/cm < E z 1.6 kV/cm.) An intrinsic spatial resolution of 60 {mu}m or better for drift distances greater than 2 mm is measured. The track pair efficiency is estimated to be better than 90% for separations greater than 630 {mu}m. 8 refs., 6 figs., 1 tab.

  1. Drift-wave stability in the field-reversed configuration

    Science.gov (United States)

    Lau, C. K.; Fulton, D. P.; Holod, I.; Lin, Z.; Binderbauer, M.; Tajima, T.; Schmitz, L.

    2017-08-01

    Gyrokinetic simulations of C-2-like field-reversed configuration (FRC) find that electrostatic drift-waves are locally stable in the core. The stabilization mechanisms include finite Larmor radius effects, magnetic well (negative grad-B), and fast electron short circuit effects. In the scrape-off layer (SOL), collisionless electrostatic drift-waves in the ion-to-electron-scale are destabilized by electron temperature gradients due to the resonance with locally barely trapped electrons. Collisions can suppress this instability, but a collisional drift-wave instability still exists at realistic pressure gradients. Simulation results are in qualitative agreement with C-2 FRC experiments. In particular, the lack of ion-scale instability in the core is not inconsistent with experimental measurements of a fluctuation spectrum showing a depression at ion-scales. The pressure gradient thresholds for the SOL instability from simulations are also consistent with the critical gradient behavior observed in experiments.

  2. Magnetic field decay with Hall drift in neutron star crusts

    CERN Document Server

    Kojima, Yasufumi

    2012-01-01

    The dynamics of magnetic field decay with Hall drift is investigated. Assuming that axisymmetric magnetic fields are located in a spherical crust with uniform conductivity and electron number density, long-term evolution is calculated up to Ohmic dissipation. The nonlinear coupling between poloidal and toroidal components is explored in terms of their energies and helicity. Nonlinear oscillation by the drift in strongly magnetized regimes is clear only around the equipartition between two components. Significant energy is transferred to the poloidal component when the toroidal component initially dominates. However, the reverse is not true. Once the toroidal field is less dominant, it quickly decouples due to a larger damping rate. The polar field at the surface is highly distorted from the initial dipole during the Hall drift timescale, but returns to the initial dipole in a longer dissipation timescale, since it is the least damped one.

  3. Drift Wave Test Particle Transport in Reversed Shear Profile

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.

    1998-06-01

    Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated.

  4. Image processing for drift compensation in fluorescence microscopy

    DEFF Research Database (Denmark)

    Petersen, Steffen; Thiagarajan, Viruthachalam; Coutinho, Isabel

    2013-01-01

    Fluorescence microscopy is characterized by low background noise, thus a fluorescent object appears as an area of high signal/noise. Thermal gradients may result in apparent motion of the object, leading to a blurred image. Here, we have developed an image processing methodology that may remove....../reduce blur significantly for any type of microscopy. A total of ~100 images were acquired with a pixel size of 30 nm. The acquisition time for each image was approximately 1second. We can quantity the drift in X and Y using the sub pixel accuracy computed centroid location of an image object in each frame....... We can measure drifts down to approximately 10 nm in size and a drift-compensated image can therefore be reconstructed on a grid of the same size using the “Shift and Add” approach leading to an image of identical size asthe individual image. We have also reconstructed the image using a 3 fold larger...

  5. Diffusive shock acceleration with magnetic field amplification and Alfvenic drift

    CERN Document Server

    Kang, Hyesung

    2012-01-01

    We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfvenic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is greater than 2x10^{-4}, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfven speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfvenic drift predicts that the postshock CR pressure saturates roughly at 10 % of the shock ram pressure for strong shocks...

  6. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.

    Science.gov (United States)

    Lefrancq, M; Imfeld, G; Payraudeau, S; Millet, M

    2013-01-01

    Surface runoff and spray drift represent a primary mode of pesticide mobilisation from agricultural land to ecosystem. Though pesticide drift has mainly been studied at small scale (inverse weighting distance and ordinary kriging) and ranged between 53 g and 61 g (5.8 and 6.6% of the total mass applied). The amount of KM drifted on roads was 50 times larger than that in runoff water collected at the outlet of the catchment. Although KM application was carried out under regular operational and climatic conditions, its deposition on non-target surfaces may be significant and lead to pesticide runoff. These results can be anticipated as a starting point for assessing pesticide deposition during spray application and corresponding pesticide runoff in agricultural catchments.

  7. Drift compensation and faulty display correction in robotic nano manipulation.

    Science.gov (United States)

    Liu, Lian-qing; Xi, Ning; Wang, Yue-chao; Dong, Zai-li

    2010-11-01

    Random drift and faulty visual display are the main problems in Atomic Force Microscopy (AFM) based robotic nanomanipulation. As far as we know, there are no effective methods available to solve these problems. In this paper, an On-line Sensing and Display (OSD) method is proposed to solve these problems. The OSD method mainly includes two subprocesses: Local-Scan-Before-Manipulation (LSBM) and Local-Scan-After-Manipulation (LSAM). During manipulation, LSBM and LSAM are on-line performed for random drift compensation and faulty visual display correction respectively. Through this way, the bad influence aroused from random drift and faulty visual display can be eliminated in real time. The visual feedback keeps consistent with the true environment changes during the process of manipulation, which makes several operations being finished without an image scan in between. Experiments show the increased effectiveness and efficiency of AFM based nanomanipulation.

  8. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  9. Spatial-temporal assessment of climate model drifts

    Science.gov (United States)

    Zanchettin, Davide; Woldeyes Arisido, Maeregu; Gaetan, Carlo; Rubino, Angelo

    2016-04-01

    Decadal climate forecasts with full-field initialized coupled climate models are affected by a growing error signal that develops due to the adjustment of the simulations from the assimilated state consistent with observations to the state consistent with the biased model's climatology. Sea-surface temperature (SST) drifts and biases are a major concern due to the central role of SST properties for the dynamical coupling between the atmosphere and the ocean, and for the associated variability. Therefore, strong SST drifts complicate the initialization and assessment of decadal climate prediction experiments, and can be detrimental for their overall quality. We propose a dynamic linear model based on a state-space approach and developed within a Bayesian hierarchical framework for probabilistic assessment of spatial and temporal characteristics of SST drifts in ensemble climate simulations. The state-space approach uses unobservable state variables to directly model the processes generating the observed variability. The statistical model is based on a sequential definition of the process having a conditional dependency only on the previous time step, which therefore corresponds to the Kalman filter formulas. In our formulation, the statistical model distinguishes between seasonal and longer-term drift components, and between large-scale and local drifts. We apply the Bayesian method to make inferences on the variance components of the Gaussian errors in both the observation and system equations of the state-space model. To this purpose, we draw samples from their posterior distributions using a Monte Carlo Markov Chain simulation technique with a Gibbs sampler. In this contribution we illustrate a first application of the model using the MiKlip prototype system for decadal climate predictions. We focus on the tropical Atlantic Ocean - a region where climate models are typically affected by a severe warm SST bias - to demonstrate how our approach allows for a more

  10. Zero drift of intraventricular and subdural intracranial pressure monitoring systems

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; DU Hang-gen; YIN Li-chun; HE Min; ZHANG Guo-jun; TIAN Yong; WANG Cheng

    2013-01-01

    Objective:To assess zero drift of intraventricular and subdural intracranial pressure (ICP) monitoring systems.Methods:A prospective study was conducted in patients who received Codman ICP monitoring in the neurosurgical department from January 2010 to December 2011.According to the location of sensors,the patients were categorized into two groups:intraventricular group and subdural group.Zero drift between the two groups and its association with the duration of ICP monitor were analyzed.Results:Totally,22 patients undergoing intraventricular ICP monitoring and 27 receiving subdural ICP monitoring were enrolled.There was no significant difference in duration of ICP monitoring,zero drift value and its absolute value between intraventricular and subdural groups (5.38 d±2.58 d vs 4.58 d±2.24d,0.77 mmHg±2.18 mm Hg vs 1.03 mmHg±2.06mmHg,1.68 mmHg±155 mmHg vs 1.70mmHg±153 mmHg,respectively; all P>0.05).Absolute value of zero drift in both groups significantly rose with the increased duration of ICP monitoring (P<0.05) while zero drift value did not.Moreover,daily absolute value in the intraventricular group was significantly smaller than that in the subdural group (0.27 mm Hg±0.32 mm Hg vs 0.29 mm Hg±0.18 mm Hg,P<0.05).Conclusion:This study demonstrates that absolute value of zero drift significantly correlates with duration of both intraventricular and subdural ICP monitoring.Due to the smaller daily absolute value,ICP values recorded from intraventricular system may be more reliable than those from subdural system.

  11. Studies of electron drift velocity in nitrogen and isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Univ. Catolica de Sao Paulo (PUC/SP), SP (Brazil); Vivaldini, Tulio C.; Lima, Iara B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    Full text: The electron drift velocity is one of the most important transport parameters used to describe the physical behaviour of gas discharges and the development of avalanches in gaseous detectors, mainly when temporal information is significant, as in drift chambers and in the recent Resistive Plate Chambers (RPCs). Although many filling gases, isobutane is frequently used in RPCs, due to its excellent timing properties, but at high electric fields conditions there are insufficient data available in literature. In the present work we report the preliminary results related to the dependence of the electron drift velocity for isobutane as function of the reduced electric field E/N, in the range of 100 Td up to 216 Td. There are different methods to determine electron drift velocity in a gas, and our measurements were based on the Pulsed Townsend technique, which consists of extracting electrons from a metallic cathode and accelerates them toward the anode by a uniform electric field. Once the drift distance and the transit time are known, the drift velocities can be determined. In our system, the incidence of a nitrogen laser beam (LTB MNL200-LD) liberates electron from the cathode made of aluminium (40mm diameter). By means of a high voltage supply (Bertan, 225-30), these electrons are accelerated toward the anode (made of a high resistivity glass - 2:10{sup 12}{omega} cm) and this movement produces a fast electric signal in the anode, which is digitalized in an oscilloscope (LeCroy WavePro 7000) with 1 GHz bandwidth and 10 GS/s. The values obtained were compared to that ones of a Bolsig+ simulation code. In order to validate the technique and to analyze non-uniformity effects, results for nitrogen are also presented. (author)

  12. Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B

    Science.gov (United States)

    Khazanov, G. V.; Boardsen, S.; Krivorutsky, E. N.; Engebretson, M. J.; Sibeck, D.; Chen, S.; Breneman, A.

    2017-01-01

    We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of 0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth rates, their frequency distribution, and the frequency dependence of the ratio of the LHFR wave power spectral density (PSD) parallel and perpendicular to the ambient magnetic field to the total PSD were found. These characteristics of the growth rates were compared with the corresponding characteristics of the observed LHFR activity. Reasonable agreement between these features and the strong correlation between EMIC and LHFR energy densities support the assumption that the LHFR wave generation can be caused by the ions' polarization drift in the electric field of an EMIC wave.

  13. Axisymmetric nonlinear waves and structures in Hall plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Tanim [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551-0808 (United States)

    2012-06-15

    In this paper, a general equation for the evolution of an axisymmetric magnetic field in a Hall plasma is derived, with an integral similar to the Grad-Shafranov equation. Special solutions arising from curvature-whistler drift modes that propagate along the electron drift as a Burger's shock and nonlinear periodic and soliton-like solutions to the generalized Grad-Shafranov integral-are analyzed. We derive analytical and numerical solutions in a classical electron-ion Hall plasma, in which electrons and ions are the only species in the plasmas. Results may then be applied to the following low-ionized astrophysical plasmas: in protostellar disks, in which the ions may be coupled to the motion of gases; and in molecular clouds and protostellar jets, in which the much heavier charged dust in a dusty Hall plasma may be collisionally coupled to the gas.

  14. Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira

    2016-10-01

    The azimuthal plasma current in a magnetic nozzle of a radiofrequency plasma thruster is experimentally identified by measuring the plasma-induced magnetic field. The axial plasma momentum increases over about 20 cm downstream of the thruster exit due to the Lorentz force arising from the azimuthal current. The measured current shows that the azimuthal current is given by the sum of the electron diamagnetic drift and \\mathbf{E}× \\mathbf{B} drift currents, where the latter component decreases with an increase in the magnetic field strength; hence the azimuthal current approaches the electron diamagnetic drift one for the strong magnetic field. The Lorentz force calculated from the measured azimuthal plasma current and the radial magnetic field is smaller than the directly measured force exerted to the magnetic field, which indicates the existence of a non-negligible Lorentz force in the source tube.

  15. Annals of the international geophysical year ionospheric drift observations

    CERN Document Server

    Rawer, K; Beloussov, V V; Beynon, W J G

    2013-01-01

    Annals of the International Geophysical Year, Volume 33: Results of Ionospheric Drift Observations describes the systematic changes in individual ionospheric observations during the International Geophysical Year (IGY). This book is composed of four chapters, and begins with a presentation of the general data on stations and the lists of publications concerning drift work during IGY/IGC. The next chapter contains the results obtained mainly by intercomparison of the time shift between fadings observed on three antenna separated by a distance of roughly a wavelength. These data are followed by

  16. Organic Scintillator Detector Response Simulations with DRiFT

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Madison Theresa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bates, Cameron Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pinilla, Maria Isabel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, Jr., Clell Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sood, Avneet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.

  17. Assembly of Drift Tubes (DT) Chambers at CIEMAT (Madrid)

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    The construction of muon drift tube chambers (DT) has been carried out in four different european institutes: Aachen (Germany), CIEMAT-Madrid (Spain), Legnaro and Turin (Italy), all of them following similar procedures and quality tests. Each chamber is composed by three or two independent units called superlayers, with four layers of staggered drift cells each. The assembly of a superlayer is a succesive glueing of aluminium plates and I-beams with electrodes previously attached, forming a rectangular and gas-tight volume. These pictures illustrate the various processes of material preparation, construction, equipment and assembly of full chambers at CIEMAT (Madrid).

  18. Drift of rigidly rotating spirals under periodic and noisy illuminations.

    Science.gov (United States)

    Zhang, Hong; Wu, Ning-Jie; Ying, He-Ping; Hu, Gang; Hu, Bambi

    2004-10-15

    Under the weak deformation approximation, the motion of rigidly rotating spirals induced by periodic and noisy illuminations are investigated analytically. We derive an approximate but explicit formula of the spiral drift velocity directly from the original reaction-diffusion equation. With this formula we are able to explain the main features in the periodic and noisy illuminations induced spiral drift problems. Numerical computations of the Oregonator model are carried out as well, and they agree with the main qualitative conclusions of our analytical results.

  19. Drift chamber system for use in a high rate environment

    Energy Technology Data Exchange (ETDEWEB)

    Etkin, A

    1978-01-01

    A system of short drift distance (0.125'') drift chambers is described. This system is being built for use in the Brookhaven National Laboratory Multiparticle Spectrometer. These chambers will be able to handle beam rates of several million/pulse and give a spatial resolution of the order of 150 ..mu..m. Cathode readout will provide unique 3-dimensional points for each crack. The readout will utilize three custom built integrated circuits, a four channel amplifier-shaper, a four channel discriminator and a four channel shift register delay and time digitizer. A summary of test results on a prototype is also given.

  20. Drift chamber tests for the B1-spektrometer at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Hammann, Daniel [Physikalisches Institut, Bonn (Germany)

    2009-07-01

    At the Bonn electron accelerator ELSA photoproduction of mesons is studied at energies up to E{sub {gamma}}=3.5 GeV. Presently, a new experimental setup is being installed. To detect mixed charged final states, the BGO-Ball of the former GRAAL-Experiment is combined with an open magnetic spectrometer in forward direction. The spectrometer utilizes scintillating fibers for tracking in front of the magnet and large drift chambers behind the magnet. A prototype drift chamber has been tested for efficiency and position resolution. Testing of the full size chambers has started.

  1. Design of a Cavity of Drift Tube Linac

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiu-long; LV; Wei-xing; LI; Jin-hai; HUANG; Jun; WU; Qing-feng

    2013-01-01

    The drift tube Linac(DTL)is used as accelerating of low energy proton beam with high intensity.Its operating frequency is 325 MHz with handling power of 2.5 kW.The cavity of DTL consists of circularwaveguide,drift tube,post coupler and tuner.First,the beam parameters of the cavity of DTL is calculated by using beam dynamic codes,and then the electromagnetic field distribution and RF parameters of the cavity of DTL is calculated by using

  2. Comment on ``Electron drift mobility in doped amorphous silicon''

    Science.gov (United States)

    Overhof, H.; Silver, M.

    1989-05-01

    Experimental drift-mobility data obtained by different methods in doped amorphous silicon are compared. It is shown that the presence of a long-range random potential will lead to a modification of the drift mobility in one experiment while the corresponding values in other experiments are virtually unaffected. It is shown that this effect accounts for the apparent discrepancy between the results of these experiments rather than the shift of the mobility edge upon doping which was recently proposed by Street, Kakalios, and Hack [Phys. Rev. B 38, 5603 (1988)] in order to understand their data.

  3. Zero drift of intraventricular and subdural intracranial pressure monitoring systems

    OpenAIRE

    2013-01-01

    【Abstract】Objective: To assess zero drift of intra-ventricular and subdural intracranial pressure (ICP) moni-toring systems. Methods: A prospective study was conducted in pa-tients who received Codman ICP monitoring in the neuro-surgical department from January 2010 to December 2011. According to the location of sensors, the patients were ca-tegorized into two groups: intraventricular group and sub-dural group. Zero drift between the two groups and its as-sociation with the duratio...

  4. Hough transform method for track finding in center drift chamber

    Science.gov (United States)

    Azmi, K. A. Mohammad Kamal; Wan Abdullah, W. A. T.; Ibrahim, Zainol Abidin

    2016-01-01

    Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particles in the region of CDC.

  5. Hough transform method for track finding in center drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Azmi, K. A. Mohammad Kamal, E-mail: khasmidatul@siswa.um.edu.my; Wan Abdullah, W. A. T., E-mail: wat@um.edu.my; Ibrahim, Zainol Abidin [National Centre for Particle Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-01-22

    Hough transform is a global tracking method used which had been expected to be faster approach for tracking the circular pattern of electron moving in Center Drift Chamber (CDC), by transforming the point of hit into a circular curve. This paper present the implementation of hough transform method for the reconstruction of tracks in Center Drift Chamber (CDC) which have been generated by random number in C language programming. Result from implementation of this method shows higher peak of circle parameter value (xc,yc,rc) that indicate the similarity value of the parameter needed for circular track in CDC for charged particles in the region of CDC.

  6. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  7. Complete classification of discrete resonant Rossby/drift wave triads on periodic domains

    CERN Document Server

    Bustamante, Miguel D

    2013-01-01

    We consider the set of Diophantine equations that arise in the context of the barotropic vorticity equation on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the case of infinite Rossby deformation radius. The method is completely new, and relies on mapping the unknown variables to rational points on quadratic forms of "Minkowski" type. Classical methods invented centuries ago by Fermat, Euler, Lagrange and Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Our method...

  8. Measurements of electron drift velocity in isobutane using the pulsed Townsend technique

    Energy Technology Data Exchange (ETDEWEB)

    Vivaldini, Tulio C.; Lima, Iara B.; Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de Fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2010-07-01

    Full text. The electron drift velocity characterizes the electric conductivity of weakly ionized gases and is one of the most important transport parameters for simulation and modeling of radiation detectors and plasma discharges. This work presents the results of electron drift velocity as a function of the reduced electric field obtained in nitrogen and isobutane by the Pulsed Townsend technique. Due to its excellent timing properties, isobutane is a common component of standard mixtures used in RPCs (Resistive Plate Chambers), however, at moderate electric fields strength (50 Td <= E/N <= 200 Td), there are insufficient data available in literature for this gas. In our experimental apparatus, electrons are liberated from an aluminum cathode (40mm diameter) due to the incidence of a nitrogen laser beam (MNL202-LD LTB) and are accelerated by the applied electric field toward the anode, made of a high resistivity glass (2 x 10{sup 10} {Omega}{center_dot}m). The fast electric signals generated is amplified and were digitalized in a 1 GHz bandwidth oscilloscope to measure the electrons transit time and to calculate the electron drift velocity in different gaps between anode and cathode. As the timing information presented in the fast electric signal originated in the anode is significant in our application, the amplifier circuit had to hold special features in order to preserve the signal shape. The linear amplifier used, based on the BGM1013 integrated circuit (Philips R), reaches up to 2.1 GHz bandwidth with 35.5 dB gain and was developed and built at Laboratory of Instrumentation and Experimental Particles Physics/Portugal. In order to validate this method, measurements were initially carried out in pure nitrogen, in reduced electric fields ranging from 148 to 194 Td. These results showed good agreement with those found in the literature for this largely investigated gas. The measurements of electron drift velocities in pure isobutane were performed as a function

  9. Plasma physics for controlled fusion

    CERN Document Server

    Miyamoto, Kenro

    2016-01-01

    This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator includi...

  10. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  11. Shrinking equatorial plasma bubbles

    Science.gov (United States)

    Narayanan, V. L.; Gurubaran, S.; Shiokawa, K.; Emperumal, K.

    2016-07-01

    The formation of equatorial plasma bubbles (EPBs) associated with spread F irregularities are fairly common phenomenon in the postsunset equatorial ionosphere. These bubbles grow as a result of eastward polarization electric field resulting in upward E × B drift over the dip equator. As they grow they are also mapped to low latitudes along magnetic field lines. The EPBs are often observed as airglow depletions in the images of OI 630 nm emission. On occasions the growth of the features over the dip equator is observed as poleward extensions of the depletions in all-sky images obtained from low latitudes. Herein, we present interesting observations of decrease in the latitudinal extent of the EPBs corresponding to a reduction in their apex altitudes over the dip equator. Such observations indicate that these bubbles not only grow but also shrink on occasions. These are the first observations of shrinking EPBs. The observations discussed in this work are based on all-sky airglow imaging observations of OI 630.0 nm emission made from Panhala (11.1°N dip latitude). In addition, ionosonde observations made from dip equatorial site Tirunelveli (1.1°N dip latitude) are used to understand the phenomenon better. The analysis indicates that the speed of shrinking occurring in the topside is different from the bottomside vertical drifts. When the EPBs shrink, they might decay before sunrise hours.

  12. Littoral drift computations on mutual wave and current influence

    NARCIS (Netherlands)

    Bijker, E.W.

    1971-01-01

    11th Conference on Coastal Engineering in London 1968, the author presented a method for computing the littoral drift starting from the longshore current velocity as this is generated by the waves and with the assumption that the material is stirred up by the waves. In this paper measurements in a m

  13. Transport of parallel momentum by collisionless drift wave turbulence

    DEFF Research Database (Denmark)

    Diamond, P.H.; McDevitt, C.J.; Gurcan, O.E.

    2008-01-01

    This paper presents a novel, unified approach to the theory of turbulent transport of parallel momentum by collisionless drift waves. The physics of resonant and non‐resonant off‐diagonal contributions to the momentum flux is emphasized, and collisionless momentum exchange between waves and parti...

  14. Transport of parallel momentum by collisionless drift wave turbulence

    DEFF Research Database (Denmark)

    Diamond, P.H.; McDevitt, C.J.; Gürcan, O.D.

    2008-01-01

    This paper presents a novel, unified approach to the theory of turbulent transport of parallel momentum by collisionless drift waves. The physics of resonant and nonresonant off-diagonal contributions to the momentum flux is emphasized, and collisionless momentum exchange between waves and partic...

  15. Drift effects on the galactic cosmic ray modulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurenza, M.; Storini, M. [INAF/IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Vecchio, A. [Istituto Nazionale di Geofisica e Vulcanologia-Sede di Cosenza, I-87036 Rende (CS) (Italy); Carbone, V., E-mail: monica.laurenza@iaps.inaf.it [Dipartimento di Fisica, Università della Calabria, I-87036 Rende (CS) (Italy)

    2014-02-01

    Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effects on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.

  16. Sharp Bounds by Probability-Generating Functions and Variable Drift

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Fouz, Mahmoud; Witt, Carsten

    2011-01-01

    We introduce to the runtime analysis of evolutionary algorithms two powerful techniques: probability-generating functions and variable drift analysis. They are shown to provide a clean framework for proving sharp upper and lower bounds. As an application, we improve the results by Doerr et al. (G...

  17. Third-Order Apochromatic Drift-Quadrupole Beamline

    CERN Document Server

    Balandin, V; Decking, W; Golubeva, N

    2012-01-01

    In this paper we present the design of a straight drift-quadrupole system which can transport certain beam ellipses (apochromatic beam ellipses) without influence of the second and of the third order chromatic and geometric aberrations of the beamline transfer map.

  18. Quasineutral limit of a standard drift diffusion model for semiconductors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The limit of vanishing Debye length (charge neutral limit ) in a nonlinear bipolar drift-diffusion model for semiconductors without pn-junction (i.e. without a bipolar background charge ) is studied. The quasineutral limit (zero-Debye-length limit) is performed rigorously by using the weak compactness argument and the so-called entropy functional which yields appropriate uniform estimates.

  19. Role of core losses in drift-vortex interactions

    NARCIS (Netherlands)

    Westerhof, E.; Rem, J.; Schep, T. J.

    1997-01-01

    Dipole drift vortices in the Hasegawa-Mima-Charney equation are studied by means of particle-in-cell (PIC) calculations. Apart from providing an efficient and accurate solution of the equations, PIC provides additional information about the fluid flow such as exchange of fluid between regions interi

  20. Eye-safe lidar system for pesticide spray drift measurement.

    Science.gov (United States)

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R

    2015-02-04

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m.

  1. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    Science.gov (United States)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  2. Analysis of the SPS Long Term Orbit Drifts

    Energy Technology Data Exchange (ETDEWEB)

    Velotti, Francesco [CERN; Bracco, Chiara [CERN; Cornelis, Karel [CERN; Drøsdal, Lene [CERN; Fraser, Matthew [CERN; Gianfelice-Wendt, Eliana [Fermilab; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN

    2016-06-01

    The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.

  3. Local Muon Reconstruction in the Drift Tube Detectors

    CERN Document Server

    Amapane, Nicola; Bolognesi, Sara; Cerminara, Gianluca; Lacaprara, Stefano; Pelliccioni, Mario

    2009-01-01

    This note describes the local reconstruction in the Drift Tube subdetector of the CMS muon subsystem. The local reconstruction is the sequence of steps leading from the TDC measurements to reconstructed three-dimensional segments inside each DT chamber. These segments are the input to the muon track reconstruction. This note updates and supersedes CMS NOTE 2002/043

  4. Error detection and reduction within DriftLessTM

    NARCIS (Netherlands)

    Hall, E.W. van der

    2013-01-01

    This thesis presents an algorithm that can reduce the estimation errors made with the DriftLessTM bias estimation technique. The algorithm utilizes the autocorrelation function to detect the presence of errors, and a minimization function to reduce these errors. The algorithm has been validated with

  5. A cylindrical drift chamber with azimuthal and axial position readout

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Adams, T.; Bishop, J.M.; Cason, N.M.; Sanjari, A.H.; LoSecco, J.M.; Manak, J.J.; Shephard, W.D.; Stienike, D.L.; Taegar, S.A.; Thompson, D.R.; Brown, D.S.; Pedlar, T.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Massachusetts Univ., North Dartmouth, MA (United States)]|[Brookhaven National Laboratory, Upton, L.I., NY 11973 (United States)]|[Indiana University, Bloomington, IN 47405 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Northwestern University, Evanston, IL 60208 (United States)]|[Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    1997-02-21

    A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in {pi}{sup -}p interactions. We describe the chamber`s design considerations, details of its construction, electronics, and performance characteristics. (orig.).

  6. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  7. Exploring Ethical Dilemmas Using the "Drifting Goals" Archetype

    Science.gov (United States)

    Bardoel, E. Anne; Haslett, Tim

    2006-01-01

    This article demonstrates how the system archetype "drifting goals" can be used in the classroom to explore ethical dilemmas. System archetypes provide a framework that shifts the focus from seeing ethical dilemmas as stemming solely from the acts of individuals to exploring the systemic structures that are responsible for generic patterns of…

  8. Post Earnings Announcement Drift : More Risk than Investors can Bear

    NARCIS (Netherlands)

    Suijs, J.P.M.

    2002-01-01

    This paper shows how post earnings announcement drift may arise in a capital market with rational investors if the firm's earnings in consecutive periods are positively correlated and there is a fixed supply of the firm's shares.This result is driven by the fact that equilibrium share prices depend

  9. Drift of Spiral Waves in Complex Ginzburg-Landau Equation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.

  10. Identifying and dating buried micropodzols in Subatlantic polycyclic drift sands

    NARCIS (Netherlands)

    Wallinga, J.; van Mourik, J.M.; Schilder, M.L.M.

    2013-01-01

    Polycyclic soil sequences provide valuable archives of alternating unstable periods (sand drifting) and stable periods (soil formation) in NW-European coversand landscapes during the Subatlantic. Here we study six polycyclic soil sequences at the Weerterbergen (The Netherlands) to investigate how to

  11. Stabilized current source for lithium ion drift in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, I.T.; Sinitsyn, V.I.

    1976-01-01

    A proposal is made for designing a device for stabilizing current for the purpose of sustaining drift current within given limits in the production of Si(p-i-n) detectors. A diagram illustrates the main circuitry of a stabilized current source for one detector. 3 references, 1 figure.

  12. Når vi går i drift

    DEFF Research Database (Denmark)

    Svejvig, Per

    2012-01-01

    Implementering af store forretningssystemer til CRM og ERP optager mange danske virksomheder. Denne artikel fokuserer på forandringsledelse som en meget vigtig og integreret del af den samlede implementering. Artiklen berører især tiden efter at man er gået i drift med forretningssystemet....

  13. A Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik

    2013-01-01

    In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density f...

  14. Lyapunov exponents and particle dispersion in drift wave turbulence

    DEFF Research Database (Denmark)

    Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.

    1996-01-01

    The Hasegawa-Wakatani model equations for resistive drift waves are solved numerically for a range of values of the coupling due to the parallel electron motion. The largest Lyapunov exponent, lambda(1), is calculated to quantify the unpredictability of the turbulent flow and compared to other...

  15. A long time low drift integrator with temperature control

    Science.gov (United States)

    Zhang, Donglai; Yan, Xiaolan; Zhang, Enchao; Pan, Shimin

    2016-10-01

    The output of an operational amplifier always contains signals that could not have been predicted, even with knowledge of the input and an accurately determined closed-loop transfer function. These signals lead to integrator zero-drift over time. A new type of integrator system with a long-term low-drift characteristic has therefore been designed. The integrator system is composed of a temperature control module and an integrator module. The aluminum printed circuit board of the integrator is glued to a thermoelectric cooler to maintain the electronic components at a stable temperature. The integration drift is automatically compensated using an analog-to-digital converter/proportional integration/digital-to-analog converter control circuit. Performance testing in a standard magnet shows that the proposed integrator, which has an integration time constant of 10 ms, has a low integration drift (<5 mV) over 1000 s after repeated measurements. The integrator can be used for magnetic flux measurements in most tokamaks and in the wire rope nondestructive test.

  16. Drift due to two obstacles in different arrangements

    Science.gov (United States)

    Melkoumian, Sergei; Protas, Bartosz

    2016-12-01

    We study the drift induced by the passage of two cylinders through an unbounded extent of inviscid incompressible fluid under the assumption that the flow is two dimensional and steady in the moving frame of reference. The goal is to assess how the resulting total particle drift depends on the parameters of the geometric configuration, namely the distance between the cylinders and their angle with respect to the direction of translation. This problem is studied by numerically computing, for different cylinder configurations, the trajectories of particles starting at various initial locations. The velocity field used in these computations is expressed in closed form using methods of the complex function theory, and the accuracy of calculations is carefully verified. We identify cylinder configurations which result in increased and decreased drift with respect to the reference case when the two cylinders are separated by an infinite distance. Particle trajectories shed additional light on the hydrodynamic interactions between the cylinders in configurations resulting in different drift values. This ensemble of results provides insights about the accuracy of models used to study biogenic transport.

  17. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Sonnenthale

    2001-04-16

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation

  18. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The

  19. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data

  20. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities