WorldWideScience

Sample records for plasma diamagnetism

  1. Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma

    Science.gov (United States)

    Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon

    2016-12-01

    Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.

  2. Magnetic susceptibility and Landau diamagnetism of a quantum collisional Plasmas with arbitrary degree of degeneration of electronic gas

    CERN Document Server

    Latyshev, A V

    2013-01-01

    The kinetic description of magnetic susceptibility and Landau diamagnetism of quantum collisional plasmas with any degeration of electronic gas is given. The correct expression of electric conductivity of quantum collisional plasmas with any degeration of electronic gas (see A. V. Latyshev and A. A. Yushkanov, Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach. - Theor. and Math. Phys., V. 175(1):559-569 (2013)) is used.

  3. Measurement of plasma diamagnetism in the SINP tokamak by a flux loop system inside the vacuum vessel

    Science.gov (United States)

    Saha, S. K.; Kumar, R.; Hui, A. K.

    2001-11-01

    Plasma diamagnetism has been measured in the SINP tokamak by a toroidal flux loop placed inside the vacuum vessel. The flux due to the strong toroidal field has been compensated for by a coplaner annular loop which encircles but does not contain the plasma column. The influence of the eddy currents in the vacuum vessel and the conducting shell in these loops has been calculated analytically by a circuit model using the theory of linear networks and compensated accordingly. This method has been shown to yield an almost exact compensation for toroidal flux (˜0.01%) as well as pickups from other fields. Typical results with plasma shots have been presented.

  4. Research support for plasma diagnostics on Elmo Bumpy Torus: diamagnetic measurements and data analysis, and development of ring models for realistic representation of fields near the plasma

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, K.H.; Steimle, R.F.

    1984-10-01

    Theoretical and experimental studies relating to the diamagnetism of the EBT electron rings have contributed to a better understanding of ring energy and geometry. The primary experimental effort during the past year was the taking of data using the UMR Hall Effect Diamagnetic Diagnostic instrument with the probes mounted along the horizontal midplane at the large major radius position of an EBT cavity. Analysis of this data has confirmed earlier indications of an electron ring component being present near the cavity wall.

  5. Analysis of the diamagnetic effect in multipole Galatea traps

    Science.gov (United States)

    Bishaev, A. M.; Bugrova, A. I.; Gavrikov, M. B.; Kozintseva, M. V.; Lipatov, A. S.; Savel'ev, V. V.; Sigov, A. S.; Smirnov, P. G.; Tarelkin, I. A.; Khramtsov, P. P.

    2013-04-01

    The toroidal current emerging after the injection of a plasmoid through the magnetic shell of the Trimyx-3M (microwave) multipole trap is measured using the Rogowski loop. This current is due to diamagnetism of the plasma. The relation between the diamagnetic current and the maximal plasma pressure produced at the magnetic field separatrix is obtained. It is shown hence that magnetic measurements in a multi-pole trap for a known concentration make it possible to determine the plasma temperature in the trap and the energy confinement time.

  6. MHD equilibria with diamagnetic effects

    Science.gov (United States)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.

    1997-11-01

    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  7. Landau Diamagnetism: A Simple Calculation.

    Science.gov (United States)

    Dupre, A.

    1981-01-01

    Starting from the energy and degeneracy of the Landau levels of a free-electron gas in a magnetic field, the nonoscillatory term of the Landau diamagnetism is derived for T=O, using elementary algebra only. (Author/JN)

  8. Diamagnetic "bubble" equilibria in linear traps

    CERN Document Server

    Beklemishev, Alexei D

    2016-01-01

    The plasma equilibrium in a linear trap at $\\beta\\approx 1$ (or above the mirror-instability threshold) under the topology-conservation constraint evolves into a kind of diamagnetic "bubble". This can take two forms: either the plasma body greatly expands in radius while containing the same magnetic flux, or, if the plasma radius is limited, the plasma distribution across flux-tubes changes, so that the same cross-section contains a greatly reduced flux. If the magnetic field of the trap is quasi-uniform around its minimum, the bubble can be made roughly cylindrical, with radius much larger than the radius of the corresponding vacuum flux-tube, and with non-paraxial ends. Then the effective mirror ratio of the diamagnetic trap becomes very large, but the cross-field transport increases. The confinement time can be found from solution of the system of equilibrium and transport equations and is shown to be $\\tau_E\\approx\\sqrt{\\tau_\\parallel\\tau_\\perp}$. If the cross-field confinement is not too degraded by turb...

  9. The effect of diamagnetic flows on turbulent driven ion toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. P. [Courant Institute of Mathematical Sciences, New York University, New York, New York 10003 (United States); Barnes, M. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Parra, F. I. [Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1 3NP (United Kingdom); Belli, E. A.; Candy, J. [General Atomics, San Diego, California 92121 (United States)

    2014-05-15

    Turbulent momentum redistribution determines the radial profile of rotation in a tokamak. The momentum transport driven by diamagnetic flow effects is an important piece of the radial momentum transport for sub-sonic rotation, which is often observed in experiments. In a non-rotating state, the diamagnetic flow and the E × B flow must cancel. The diamagnetic flow and the E × B flow have different effects on the turbulent momentum flux, and this difference in behavior induces intrinsic rotation. The momentum flux is evaluated using gyrokinetic equations that are corrected to higher order in the ratio of the poloidal Larmor radius to the minor radius, which requires evaluation of the diamagnetic corrections to Maxwellian equilibria. To study the momentum transport due to diamagnetic flow effects, three experimental observations of ion rotation are examined. First, a strong pressure gradient at the plasma edge is shown to result in a significant inward momentum transport due to the diamagnetic effect, which may explain the observed peaking of rotation in a high confinement mode. Second, the direction of momentum transport is shown to change as collisionality increases, which is qualitatively consistent with the observed reversal of intrinsic rotation by varying plasma density and current. Last, the dependence of the intrinsic momentum flux on the magnetic shear is found, and it may explain the observed rotation changes in the presence of lower hybrid current drive.

  10. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  11. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    Science.gov (United States)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  12. The diamagnetic phase transition in Magnetars

    CERN Document Server

    Wang, Zhaojun; Zhu, Chunhua; Wu, Baoshan

    2016-01-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen (dHvA) effect and diamagnetic phase transition which is associated with magnetic domain formation. The "magnetic interaction" between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in "low-field" magnetar, the depinning phase transition of domain wall motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magne...

  13. Optical and diamagnetic anisotropy of graphene oxide

    Science.gov (United States)

    Exarhos, A. L.; Vora, P. M.; Lou, Z.; Johnson, A. T.; Kikkawa, J. M.

    2009-03-01

    We have recently shown that graphene oxide (GO) emits a broad photoluminescence (PL) band in both solid and aqueous preparations. The origin of this PL is not yet well understood, but for absorptive and emissive optical processes originating in the two dimensional GO plane, one expects an in-plane polarization. Studies of optical anisotropy can therefore help to clarify the origin of the PL. Here we use a method of optical nanomagnetometry (Torrens, et al, JACS 129, p. 252 (2007)) to extract these quantities, also determining the magnetic anisotropy. We find that when aqueous preparations of GO are placed in a magnetic field, diamagnetically induced alignment leads to marked linear polarization anisotropy of absorbance and photoluminescence. By taking six optical measurements at each magnetic field, we are able to extract the intrinsic polarization anisotropies of optical absorption and emission of GO flakes and to quantify the orbital diamagnetic anisotropy. We discuss how these quantities give insight into electronic delocalization in these systems.

  14. Diamagnetic pumping in a rotating convection zone

    Science.gov (United States)

    Kitchatinov, L. L.; Nepomnyashchikh, A. A.

    2016-10-01

    Solar dynamo models require some mechanism for magnetic field concentration near the base of the convection zone in order to generate super-kilogauss toroidal fields with sufficiently large (∼ 1024 Mx) magnetic flux. We consider the downward diamagnetic pumping near the base of the convection zone as a possible concentration mechanism and derive the pumping velocities with allowance for the effect of rotation. Transport velocities for poloidal and toroidal fields differ in rotating fluid. The toroidal field is transported downward along the radius only but the pumping velocity for the poloidal field has an equatorward meridional component also. Previous results for cases of slow and rapid rotation are reproduced and the diamagnetic pumping expressions adapted for use in dynamo models are presented.

  15. Diamagnetic pumping in a rotating convection zone

    CERN Document Server

    Kitchatinov, L

    2016-01-01

    Solar dynamo models require some mechanism for magnetic field concentration near the base of the convection zone in order to generate super-kilogauss toroidal fields with sufficiently large (~10^{24} Mx) magnetic flux. We consider the downward diamagnetic pumping near the base of the convection zone as a possible concentration mechanism and derive the pumping velocities with allowance for the effect of rotation. Transport velocities for poloidal and toroidal fields differ in rotating fluid. The toroidal field is transported downward along the radius only but the pumping velocity for the poloidal field has an equatorward meridional component also. Previous results for cases of slow and rapid rotation are reproduced and the diamagnetic pumping expressions adapted for use in dynamo models are presented.

  16. Fibonacci oscillators in the Landau diamagnetism problem

    Science.gov (United States)

    Marinho, André A.; Brito, Francisco A.; Chesman, Carlos

    2014-10-01

    We address the issue of the Landau diamagnetism problem via q-deformed algebra of Fibonacci oscillators through its generalized sequence of two real and independent deformation parameters q1 and q2. We obtain q-deformed thermodynamic quantities such as internal energy, number of particles, magnetization and magnetic susceptibility which recover their usual form in the degenerate limit q12+q22=1.

  17. Sensitivity of the diamagnetic sensor measurements of ITER to error sources and their compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fresa, R., E-mail: raffaele.fresa@unibas.it [CREATE/ENEA/Euratom Association, Scuola di Ingegneria, Università della Basilicata, Potenza (Italy); Albanese, R. [CREATE/ENEA/Euratom Association, DIETI, Università di Napoli Federico II, Naples (Italy); Arshad, S. [Fusion for Energy (F4E), Barcelona (Spain); Coccorese, V.; Magistris, M. de; Minucci, S.; Pironti, A.; Quercia, A.; Rubinacci, G. [CREATE/ENEA/Euratom Association, DIETI, Università di Napoli Federico II, Naples (Italy); Vayakis, G. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Villone, F. [CREATE/ENEA/Euratom Association, Università di Cassino, Cassino (Italy)

    2015-11-15

    Highlights: • In the paper we discuss the sensitivity analysis for the measurement system of diamagnetic flux in the ITER tokamak. • Some compensation formulas have been tested to compensate the manufacturing errors, both for the sources and the sensors. • An estimation of the poloidal beta has been carried out by estimating plasma's diamagnetism. - Abstract: The present paper is focused on the sensitivity analysis of the diamagnetic sensor measurements of ITER against several kinds of error sources, with the aim of compensating them for improving the accuracy in the evaluation of the energy confinement time and poloidal beta, via Shafranov formula. The virtual values of measurements at the diamagnetic sensors were simulated by the COMPFLUX code, a numerical code able to compute the field and flux values generated in a prescribed set of output points from massive conductors and generalized filamentary currents (with an arbitrary 3D shape and a negligible cross section) in the presence of magnetic materials. The major issue to face with has been to determine the possible deformations of sensors and electromagnetic sources. The analysis has been carried out considering the following cases: -deformed sensors and ideal EM (electromagnetic) sources; -ideal sensors and perturbed EM sources; -both sensors and EM sources perturbed. As regards the compensation, several formulas have been proposed, based on the measurements carried out by the compensation coils; they basically use the value of the flux density measured to compensate the effects of the poloidal eddy currents induced in the conducting structures surrounding the plasma. The static deviation due to sensor manufacturing and positioning errors has been evaluated, and most of the pollution of the diamagnetic flux has been compensated, meeting the prescribed specifications and tolerances.

  18. Modulated ECH power absorption measurements using a diamagnetic loop in the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Manini, A.; Moret, J.M.; Alberti, S.; Goodman, T.P.; Henderson, M.A

    2001-10-01

    The additional power absorbed by the plasma can be determined from the time derivative of the total plasma energy, which can be estimated from the diamagnetic flux of the plasma using a Diamagnetic Loop (DML). The main difficulty in using diamagnetic measurements to estimate the kinetic energy is the compensation of the flux measurement sensitivity to poloidal magnetic fields, which is not always easy to adjust. A method based on the temporal variations of the diamagnetic flux of the plasma during Modulated Electron Cyclotron Heating (MECH) has been developed. Using MECH has the advantage that these poloidal fields are not significantly modulated and a good compensation of these fields is not necessary. However, a good compensation of the vessel poloidal image current is crucial to ensure a sufficiently large bandwidth. The application of this diagnostic to studies of the extraordinary mode (X-mode) absorption at the third electron cyclotron harmonic frequency (X3) has been performed on the TCV Tokamak in plasmas pre-heated by X-mode at the second harmonic (X2). A MECH frequency scan has allowed the determination of an optimum modulation frequency, situated at about 200- 250 Hz. Based on this diagnostic, full single-pass absorption of the injected X3 power was measured with the X2 pre-heating in co-current drive. This high absorption is more than a factor of 2 higher than the one predicted by the linear ray tracing code TORAY. Experimental evidence indicates that a large fraction of the X3 power is absorbed by electrons in an energetic tail created by the X2 pre-heating. (author)

  19. Magnetophoresis of diamagnetic microparticles in a weak magnetic field.

    Science.gov (United States)

    Zhu, Gui-Ping; Hejiazan, Majid; Huang, Xiaoyang; Nguyen, Nam-Trung

    2014-12-21

    Magnetic manipulation is a promising technique for lab-on-a-chip platforms. The magnetic approach can avoid problems associated with heat, surface charge, ionic concentration and pH level. The present paper investigates the migration of diamagnetic particles in a ferrofluid core stream that is sandwiched between two diamagnetic streams in a uniform magnetic field. The three-layer flow is expanded in a circular chamber for characterisation based on imaging of magnetic nanoparticles and fluorescent microparticles. A custom-made electromagnet generates a uniform magnetic field across the chamber. In a relatively weak uniform magnetic field, the diamagnetic particles in the ferrofluid move and spread across the chamber. Due to the magnetization gradient formed by the ferrofluid, diamagnetic particles undergo negative magnetophoresis and move towards the diamagnetic streams. The effects of magnetic field strength and the concentration of diamagnetic particles are studied in detail.

  20. Diamagnetic expansions for perfect quantum gases

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine

    2006-01-01

    In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter omega......:=eB/c in different topologies. This allows us to prove the existence of the thermodynamic limit for the pressure and for all its derivatives with respect to omega (the so-called generalized susceptibilities)....

  1. The Diamagnetic Susceptibility of the Tubulin Dimer

    Directory of Open Access Journals (Sweden)

    Wim Bras

    2014-01-01

    Full Text Available An approximate value of the diamagnetic anisotropy of the tubulin dimer, Δχdimer, has been determined assuming axial symmetry and that only the α-helices and β-sheets contribute to the anisotropy. Two approaches have been utilized: (a using the value for the Δχα for an α-helical peptide bond given by Pauling (1979 and (b using the previously determined anisotropy of fibrinogen as a calibration standard. The Δχdimer≈4×10-27 JT−2 obtained from these measurements are similar to within 20%. Although Cotton-Mouton measurements alone cannot be used to estimate Δχ directly, the value we measured, CMdimer=1.41±0.03×10-8 T−2cm2mg−1, is consistent with the above estimate for Δχdimer. The method utilized for the determination of the tubulin dimer diamagnetic susceptibility is applicable to other proteins and macromolecular assemblies as well.

  2. How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead

    Science.gov (United States)

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  3. Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots

    Science.gov (United States)

    Rahmani, K.; Zorkani, I.; Jorio, A.

    2011-03-01

    The binding energy and diamagnetic susceptibility χdia are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility χdia depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy Eb shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.

  4. Diamagnetism and Strucure of Nitric Acid-Treated Bulk Polyethylene

    OpenAIRE

    Ania, F.; Baltá Calleja, F. J.; Cagiao, M.E.

    1982-01-01

    An alternative procedure to examine the nature of the end product of nitric-acid-treated bulk polyethylene involving the measurement of the diamagnetic susceptibility is reported. This simple non-destructive method complements previous results obtained by means of IR spectroscopy. Thus after selectively removing the surface layer of the polyethylene lamellae with nitric acid (t > 50h) the diamagnetic susceptibility substantially decreases to values wich are consistent with tilted paraff...

  5. Diamagnetic excitons and exciton magnetopolaritons in semiconductors

    Science.gov (United States)

    Seisyan, R. P.

    2012-05-01

    Interband magneto-absorption in semiconductors is reviewed in the light of the diamagnetic exciton (DE) concept. Beginning with a proof of the exciton nature of oscillating-magnetoabsorption (the DE discovery), development of the DE concept is discussed, including definition of observation conditions, quasi-cubic approximation for hexagonal crystals, quantum-well effects in artificial structures, and comprehension of an important role of the DE polariton. The successful use of the concept application to a broad range of substances is reviewed, namely quasi-Landau magnetic spectroscopy of the ‘Rydberg’ exciton states in cubic semiconductors such as InP and GaAs and in hexagonal ones such as CdSe, the proof of exciton participation in the formation of optical spectra in narrow-gap semiconductors such as InSb, InAs, and, especially, PbTe, observation of DE spectra in semiconductor solid solutions like InGaAs. The most fundamental findings of the DE spectroscopy for various quantum systems are brought together, including the ‘Coulomb-well’ effect, fine structure of discrete oscillatory states in the InGaAs/GaAs multiple quantum wells, the magneto-optical observation of above-barrier exciton. Prospects of the DE physics in ultrahigh magnetic field are discussed, including technological creation of controllable low-dimensional objects with extreme oscillator strengths, formation of magneto-quantum exciton polymer, and even modelling of the hydrogen behaviour in the atmosphere of a neutron star.

  6. Diamagnetic phase transitions in two-dimensional conductors

    Science.gov (United States)

    Bakaleinikov, L. A.; Gordon, A.

    2014-11-01

    A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.

  7. Diamagnetic phase transitions in two-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)

    2014-11-15

    A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.

  8. Probing the diamagnetic term in light-matter interaction

    Science.gov (United States)

    Rossi, Matteo A. C.; Bina, Matteo; Paris, Matteo G. A.; Genoni, Marco G.; Adesso, Gerardo; Tufarelli, Tommaso

    2017-03-01

    We address the quantum estimation of the diamagnetic, or A 2, term in an effective model of light-matter interaction featuring two coupled oscillators. First, we calculate the quantum Fisher information of the diamagnetic parameter in the interacting ground state. Then, we find that typical measurements on the transverse radiation field, such as homodyne detection or photon counting, permit to estimate the diamagnetic coupling constant with near-optimal efficiency in a wide range of model parameters. Should the model admit a critical point, we also find that both measurements would become asymptotically optimal in its vicinity. Finally, we discuss binary discrimination strategies between the two most debated hypotheses involving the diamagnetic term in circuit QED. While we adopt a terminology appropriate to the Coulomb gauge, our results are also relevant for the electric dipole gauge. In that case, our calculations would describe the estimation of the so-called transverse P 2 term. The derived metrological benchmarks are general and relevant to any implementation of the model, cavity and circuit QED being two relevant examples.

  9. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yilong [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States); Song, Le [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Yu, Liandong, E-mail: liandongyu@hfut.edu.cn [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Xuan, Xiangchun, E-mail: xcxuan@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States)

    2016-08-15

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  10. Diamagnetism in wire medium metamaterials: theory and experiment

    CERN Document Server

    Yagupov, Ilya; Kosulnikov, Sergei; Hasan, Mehedi; Iorsh, Ivan; Belov, Pavel

    2015-01-01

    Strong diamagnetic response of wire medium with finite wire radius is reported. Contrary to the previous works where it was assumed that the wire medium exhibits only the electric response, we show that the non-zero magnetic susceptibility has to be taken into account for proper effective medium description of the wire medium. Analytical and numerical results are supported by the experimental measurements.

  11. Diamagnetic susceptibility of a confined donor in inhomogeneous quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, K; Zorkani, I; Jorio, A, E-mail: izorkani@hotmail.com [LPS, Faculte des sciences, Dhar Mehraz Fes, Fes, BP 1796 (Morocco)

    2011-03-15

    The binding energy and diamagnetic susceptibility {chi}{sub dia} are estimated for a shallow donor confined to move in GaAs-GaAlAs inhomogeneous quantum dots. The calculation was performed within the effective mass approximation and using the variational method. The results show that the binding energy and the diamagnetic susceptibility {chi}{sub dia} depend strongly on the core radius and the shell radius. We have demonstrated that there is a critical value of the ratio of the inner radius to the outer radius which may be important for nanofabrication techniques. The binding energy E{sub b} shows a minimum for a critical value of this ratio depending on the value of the outer radius and shows a maximum when the donor is placed at the center of the spherical layer. The diamagnetic susceptibility is more sensitive to variations of the radius for a large spherical layer. The binding energy and diamagnetic susceptibility depend strongly on the donor position.

  12. Diamagnetic Raman Optical Activity of Chlorine, Bromine, and Iodine Gases.

    Science.gov (United States)

    Šebestík, Jaroslav; Kapitán, Josef; Pačes, Ondřej; Bouř, Petr

    2016-03-01

    Magnetic Raman optical activity of gases provides unique information about their electric and magnetic properties. Magnetic Raman optical activity has recently been observed in a paramagnetic gas (Angew. Chem. Int. Ed. 2012, 51, 11058; Angew. Chem. 2012, 124, 11220). In diamagnetic molecules, it has been considered too weak to be measurable. However, in chlorine, bromine and iodine vapors, we could detect a significant signal as well. Zeeman splitting of electronic ground-state energy levels cannot rationalize the observed circular intensity difference (CID) values of about 10(-4). These are explicable by participation of paramagnetic excited electronic states. Then a simple model including one electronic excited state provides reasonable spectral intensities. The results suggest that this kind of scattering by diamagnetic molecules is a general event observable under resonance conditions. The phenomenon sheds new light on the role of excited states in the Raman scattering, and may be used to probe molecular geometry and electronic structure.

  13. Probing the diamagnetic term in light-matter interaction

    CERN Document Server

    Rossi, Matteo A C; Paris, Matteo G A; Genoni, Marco G; Adesso, Gerardo; Tufarelli, Tommaso

    2016-01-01

    Should the Dicke model of light-matter interaction include a diamagnetic term? This question has generated intense debate in the literature, and is particularly relevant in the modern contexts of cavity and circuit quantum electrodynamics. We design an appropriate probing strategy to address the issue experimentally. Applying the tools of quantum estimation theory to a general Dicke model, we quantify how much information about the diamagnetic term (or lack thereof) is contained in the ground state of the coupled system. We demonstrate that feasible measurements, such as homodyne detection or photon counting, give access to a significant fraction of such information. These measurements could be performed by suddenly switching off the light-matter coupling, and collecting the radiation that naturally leaks out of the system. We further show that, should the model admit a critical point, both measurements would become asymptotically optimal in its vicinity. We finally discuss binary discrimination strategies be...

  14. Energy Relations in Natural and Artificial Diamagnetic Materials

    Science.gov (United States)

    2016-06-09

    DISTRIBUTION/AVAILABILITY STATEMENT Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Positive semi- definite (nonnegative) expressions for the time...diamagnetic relations for power and energy with those of electric polarization to obtain positive semi- definite (that is, nonnegative) energy...magnetic fields are related by b = µ0h because S is in free-space. From Maxwell’s equations in an ideal dipolar continuum, it follows that the

  15. On the origin of hot diamagnetic cavities near the earth's bow shock

    Science.gov (United States)

    Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Quest, K. B.; Russell, C. T.

    1988-01-01

    The origin of hot diamagnetic cavities (HDCs) observed occasionally upstream from the earth's bow shock is investigated by examining the results of November 16, 1977, observation, when four of these events occurred on a single day, as well as plasma and field data from that day. The results suggest that HDCs may form as a result of an unusually strong interaction between shock-reflected ions and the incoming solar wind. It is proposed that this interaction stems from a temporary and localized reflection of a larger-than-normal fraction of the incident ions, which is stimulated by sudden changes in the upstream field orientation; the consequences of such a temporary overreflection are found to be consistent with many of the observed features of HDCs, including the strong slowing, deflection, and heating of the flow, as well as the localization, internal recoveries, and occasional formation upstream from the shock itself.

  16. The Diamagnetic Phase Transition of Dense Electron Gas: Astrophysical Applications

    Science.gov (United States)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua; Wu, Baoshan

    2016-10-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen effect and diamagnetic phase transition which is associated with magnetic domain formation. The “magnetic interaction” between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in “low-field” magnetar, the depinning phase transition of domain wall (DW) motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magnetized electron gas are consistent with observations of magnetar emission, and especially the threshold critical dynamics of driven DW can partially overcome the difficulties of “low-field” magnetar bursts and the heating mechanism of transient, or “outbursting” magnetar.

  17. Stable diamagnetic self-levitation of a micro-magnet by improvement of its magnetic gradients

    NARCIS (Netherlands)

    Profijt, H.B.; Pigot, C.; Reyne, G.; Grechishkin, R.M.; Cugat, O.

    2009-01-01

    A disc-shaped SmCo magnet with a diameter of 0.85 mm is levitated above a graphite diamagnetic plate at a height of about 14 μm. The magnet is magnetised into a double dipole. The levitation of multipolar magnets above a diamagnetic material was suggested in 1956 by Boerdijk and patented in 1995 by

  18. Stable diamagnetic self-levitation of a micro-magnet by improvement of its magnetic gradients

    NARCIS (Netherlands)

    Profijt, H.B.; Pigot, C.; Reyne, G.; Grechishkin, R.M.; Cugat, O.

    2009-01-01

    A disc-shaped SmCo magnet with a diameter of 0.85 mm is levitated above a graphite diamagnetic plate at a height of about 14 μm. The magnet is magnetised into a double dipole. The levitation of multipolar magnets above a diamagnetic material was suggested in 1956 by Boerdijk and patented in 1995 by

  19. Diamagnetic and Expansion Effects on the Observable Properties of the Slow Solar Wind in a Coronal Streamer

    CERN Document Server

    Rappazzo, A F; Einaudi, G; Dahlburg, R B; 10.1086/431916

    2010-01-01

    The plasma density enhancements recently observed by the Large-Angle Spectrometric Coronagraph (LASCO) instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft have sparked considerable interest. In our previous theoretical study of the formation and initial motion of these density enhancements it is found that beyond the helmet cusp of a coronal streamer the magnetized wake configuration is resistively unstable, that a traveling magnetic island develops at the center of the streamer, and that density enhancements occur within the magnetic islands. As the massive magnetic island travels outward, both its speed and width increase. The island passively traces the acceleration of the inner part of the wake. In the present paper a few spherical geometry effects are included, taking into account either the radial divergence of the magnetic field lines and the average expansion suffered by a parcel of plasma propagating outward, using the Expanding Box Model (EBM), and the diamagnetic force due t...

  20. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    Science.gov (United States)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For efficient vibration energy harvesting using the VDL system, ways to mitigate eddy current damping and a coil geometry for transduction were critically

  1. Charged scalar fields in an external magnetic field: Renormalisation and universal diamagnetism

    Science.gov (United States)

    Jana, Debnarayan

    1996-02-01

    The physical and mathematical mechanism behind diamagnetism of N (finite) spinless bosons (relativistic or non-relativistic) is well known. The mathematical signature of this diamagnetism follows from Kato's inequality while its physical way of understanding goes back to Van Leeuwen. One can guess that it might be true in the field theoretic case also. While the work on systems with a finite number of degrees of freedom suggests that the same result is true in a field theory, it does not by any means prove it. In the field theoretic context one has to develop a suitable regularisation scheme to renormalise the free energy. We show that charged scalar fields in (2+1) and (3+1) dimensions are always diamagnetic, even in the presence of interactions and at finite temperatures. This generalises earlier work on the diamagnetism of charged spinless bosons to the case of infinite degrees of freedom. We also discuss possible applications of the theory.

  2. Diamagnetic susceptibility of a magneto-donor in Inhomogeneous Quantum Dots

    Science.gov (United States)

    Mmadi, A.; Rahmani, K.; Zorkani, I.; Jorio, A.

    2013-05-01

    The binding energy and diamagnetic susceptibility χdia are investigated for a shallow donor confined to move in a spherical Inhomogeneous Quantum Dots "IQD" in the presence of a magnetic field. The calculation was performed with the use of a variational method in the effective mass approximation. We describe the effect of the quantum confinement by an infinite deep potential. The results for a spherical Inhomogeneous Quantum Dots made out of [Ga1-xAlxAs (Core)/GaAs (Well)/Ga1-xAlxAs (Shell)] show that the diamagnetic susceptibility and the binding energy increase with the magnetic field. There are more pronounced for large spherical layer. The binding energy and the diamagnetic susceptibility depend strongly on the donor position. We remark that the diamagnetic susceptibility presents a minimum corresponding to a critical value of the ratio of the inner radius to the outer radius , this critical value is important for nanofabrication techniques.

  3. Diamagnetism of poly(3-dodecylthiophene) doped with FeCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cik, G. E-mail: cik@chelin.chtf.stuba.sk; Sersen, F.; Dlhan, L

    2000-01-01

    The EPR spectroscopy and the measurement of AC magnetic susceptibility have been used to study the magnetic properties of poly(3-dodecylthiophene) doped with FeCl{sub 3}. The homogeneous doping (at a low level of the dopant) leads to a high degree of diamagnetism, the extent of which depends on conformational temperature changes and the amount of the dopant in a polymer. In this work, the potential mechanism of diamagnetism generated in the system will be discussed.

  4. On the alignment of diamagnetic molecules in interstellar magnetic fields

    Science.gov (United States)

    Papoular, R.

    2017-01-01

    This paper reports the results of new chemical modeling measurements of the Faraday rotation braking mechanism operating on a diamagnetic molecule in a magnetic field (see Papoular 2016). The time length of the experiment is extended, more relevant variables are measured (rotation, vibration, drift energies; molecule orientation), and more accurately, as a function of time. The polarization of light by the moving molecule is computed. The observed behavior of the molecule may be understood, and the rotation damping time more accurately deduced by fitting a mathematical model built upon the classical equations of motion in a field. This model, meant to include the essential physics involved in the experiment, with the minimum number of parameters, also allows the chemical modeling experimental results to be extrapolated to other molecular structures, shapes and sizes, and other magnetic fields. For a given particle, the rotation damping time scales like 1/H and is independent on rotation frequency. As an example, we follow the motion of a rod of homogeneous material, 10-5 cm in length, moving in a field 5 10-6 G in intensity. Its angular rotation is found to decrease to 0, while its axis settles perpendicularly to the field within a few years. Molecular vibrations appear as an illustration of the fluctuation-dissipation theorem: they absorb friction heat and, at the same time, are the very cause of this friction.

  5. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    Science.gov (United States)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  6. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    Science.gov (United States)

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level. © 2011 IEEE

  7. Heat capacity of paramagnetic nickelocene: Comparison with diamagnetic ferrocene

    Science.gov (United States)

    Sorai, Michio; Kaneko, Yuki; Hashiguchi, Takao

    2014-05-01

    Nickelocene [bis(η5-cyclopentadienyl)nickel: Ni(C5H5)2, electron spin S=1, the ground state configuration 3A2g] is paramagnetic and belongs to a typical molecule-based magnet. Heat capacities of nickelocene have been measured at temperatures in the 3-320 K range by adiabatic calorimetry. By comparing with those of diamagnetic ferrocene crystal, a small heat capacity peak centered at around 15 K and a sluggish hump centered at around 135 K were successfully separated. The low-temperature peak at 15 K caused by the spin is well reproduced by the Schottky anomaly due to the uniaxial zero-field splitting of the spin S=1 with the uniaxial zero-field splitting parameter D/k=45 K (k: the Boltzmann constant). The magnetic entropy 9.7 J K-1mol-1 is substantially the same as the contribution from the spin-manifold R ln 3=9.13 J K-1mol-1 (R: the gas constant). The sluggish hump centered at around 135 K arises from rotational disordering of the cyclopentadienyl rings of nickelocene molecule. The enthalpy and entropy gains due to this anomaly are 890 J mol-1 and 6.9 J K-1mol-1, respectively. As the hump spreads over a wide temperature region, separation of the hump from the observed heat capacity curve involves a little bit ambiguity. Therefore, these values should be regarded as being reasonable but tentative. The present entropy gain is comparable with 5.5 J K-1mol-1 for the sharp phase transition at 163.9 K of ferrocene crystal. This fact implies that although the disordering of the rings likewise takes place in both nickelocene and ferrocene, it proceeds gradually in nickelocene and by way of a cooperative phase transition in ferrocene. A reason for this originates in loose molecular packing in nickelocene crystal. Molar heat capacity and the standard molar entropy of nickelocene are larger than those of ferrocene beyond the mass effect over the whole temperature region investigated. This fact provides with definite evidences for the loose molecular packing in nickelocene

  8. Non-linear simulations of ELMs in ASDEX Upgrade including diamagnetic drift effects

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Krebs, Isabel; Franck, Emmanuel; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Orain, Francois; Morales, Jorge; Becoulet, Marina [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Huysmans, Guido [ITER Organization, 13067 Saint-Paul-Lez-Durance (France)

    2015-05-01

    Large edge localized modes (ELMs) are a severe concern for ITER due to high transient heat loads on divertor targets and wall structures. Using the non-linear MHD code JOREK, we have performed ELM simulations for ASDEX Upgrade (AUG) including diamagnetic drift effects. The influence of diamagnetic terms onto the evolution of the toroidal mode spectrum for different AUG equilibria and the non-linear interaction of the toroidal harmonics are investigated. In particular, we confirm the diamagnetic stabilization of high mode numbers and present new features of a previously introduced quadratic mode coupling model for the early non-linear evolution of the mode structure. Preliminary comparisons of full ELM crashes with experimental observations are shown aiming at code validation and the understanding of different ELM types. Work is ongoing to include toroidal and neoclassical poloidal rotation in our simulations.

  9. Diamagnetic anisotropy and orientation of alpha helix in frog rhodopsin and meta II intermediate.

    Science.gov (United States)

    Chabre, M

    1978-01-01

    The diamagnetic anisotropy of retinal rod outer segments, and its variation upon bleaching, have been measured with a rotating field device. A large molar diamagnetic asymmetry is found for rhodopsin. This cannot be explained by an anisotropy of the aromatic side chains of the protein, nor by the orientation of the retinal chromophore. However, it can be accounted for by an orientation perpendicular to the disc membrane of a major proportion of the alpha-helical segments of the protein. Upon bleaching a decrease of 9 +/- 2% of the diamagnetic asymmetry is observed when going to the meta II intermediate. This change is not mainly due to a reorientation of the retinal, since it is practically insensitive to detachment of the chromophore by addition of NH2OH. Comparison with recent UV linear dichroism results indicate that it may be due to the rotation of a trytophan residue in the bleaching sequence. PMID:310121

  10. Magnetic method for measuring moisture content using diamagnetic characteristics of water

    Science.gov (United States)

    Keiji, Tsukada; Yasuaki, Matsunaga; Yuta, Nakamura; Ryota, Isshiki; Kayo, Fujimoto; Kenji, Sakai; Toshihiko, Kiwa

    2017-01-01

    Moisture content measurements of rice kernels and soil are important for agriculture. Therefore, in this study, a new measurement method using the diamagnetic characteristics of water was developed for measurements of the moisture content of rice kernels and soil. The magnetic characteristics of the samples were determined using a magnetometer developed by us based on a superconducting quantum interference device. Because of the diamagnetic characteristics of water, the susceptibility of rice kernels became more negative with increasing moisture content. In the case of soil, which is a mixture of diamagnetic and ferromagnetic materials, a second-harmonic detection method using AC with DC bias magnetic field was applied to reduce the influence of the ferromagnetic signal. The intensity of the second-harmonic signal of a soil was determined to be proportional to its moisture content.

  11. Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.

    Science.gov (United States)

    Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2015-03-01

    The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.

  12. Quantitative Structure Property Relations (QSPR) for Predicting Molar Diamagnetic Susceptibilities, χm, of Inorganic Compounds

    Institute of Scientific and Technical Information of China (English)

    MU,Lai-Long; HE,Hong-Mei; FENG,Chang-Jun

    2007-01-01

    For predicting the molar diamagnetic susceptibilities of inorganic compounds, a novel connectivity index mG based on adjacency matrix of molecular graphs and ionic parameter gi was proposed. The gi is defined as gi= (ni0.5-0.91)4·xi0.5/Zi0.5, where Zi, ni, xi are the valence, the outer electronic shell primary quantum number, and the electronegativity of atom I respectively. The good QSPR models for the molar diamagnetic susceptibilities can be constructed from 0G and 1G by using multivariate linear regression (MLR) method and artificial neural network (NN) method. The correlation coefficient r, standard error, and average absolute deviation of the MLR model and NN model are 0.9868, 5.47 cgs, 4.33 cgs, 0.9885, 5.09 cgs and 4.06 cgs, respectively, for the 144 inorganic compounds. The cross-validation by using the leave-one-out method demonstrates that the MLR model is highly reliable from the point of view of statistics. The average absolute deviations of predicted values of the molar diamagnetic susceptibility of other 62 inorganic compounds (test set) are 4.72 cgs and 4.06 cgs for the MLR model and NN model. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an inorganic compound. Both MLR and NN methods can provide acceptable models for the prediction of the molar diamagnetic susceptibilities. The NN model for the molar diamagnetic susceptibilities appears more reliable than the MLR model.

  13. Topology optimization of magnetic source distributions for diamagnetic and superconducting levitation

    Science.gov (United States)

    Kuznetsov, Sergey; Guest, James K.

    2017-09-01

    Topology optimization is used to obtain a magnetic source distribution providing levitation of a diamagnetic body or type I superconductor with maximized thrust force. We show that this technique identifies non-trivial source distributions and may be useful to design devices based on non-contact magnetic suspension and other magnetic devices, such as micro-magneto-mechanical devices, high field magnets etc. Diamagnetic and superconducting suspensions are often used in physical experiments and thus we believe this approach will be interesting to physics community as it may generate non-trivial and often unexpected topologies and may be useful to create new experiments and devices.

  14. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W.; Walter, Marc D.

    2010-04-01

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange coupling between f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  15. One-dimensional hybrid simulations of the diamagnetic cavity boundary region of comet Halley

    Science.gov (United States)

    Puhl-Quinn, P.; Cravens, T. E.

    1995-11-01

    A one-dimensional hybrid technique (particle ions and fluid electrons) is used to study the cometary diamagnetic cavity surface (CS). This hybrid study is unique in that it includes the effects of binary ion-ion Coulomb collisions, an important process in the dense inner coma. The equilibrium location of the CS is maintained by a force balance mainly between the ion-neutral drag force and the magnetic pressure gradient force. However, the detailed structure of the CS layer also depends on properties of the plasma such as the thermal pressure. Significant variations of the ion density, ion flow speed, and magnetic field strength take place across the CS boundary layer. Our hybrid code description of the CS structure compares favorably with the data from experiments onboard the Giotto spacecraft. When compared to the magnetohydrodynamical (fluid) results of Cravens (1989), there is good agreement on the ``core'' width of the plasma density enhancement and on the width of the current layer associated with the magnetic field gradient, but a large discrepancy exists in the width of the ion flow speed transition because of the failure of the fluid model to discern particle effects. Related to this, the hybrid code ion density enhancement is not symmetric as a result of a magnetically reflected, backstreaming ion population within the cavity. The core width of this enhancement (Δn) is highly dependent upon the dissociative recombination rate coefficient, and the hybrid results agree to within 20 percent with the fluid model results of Cravens (1989). The width of the velocity transition (Δv), or the ``tail'' of the density enhancement, is determined by the collision time for the backstreaming ions. The effect of Coulomb collisions is to decrease Δv by a factor of 2. The magnetic field transition has a width (ΔB) that is of the order of a few ion gyroradii. Disrupting the ion gyration by including the effects of binary ion-ion Coulomb collisions alters the role of the

  16. Diamagnetic susceptibility of an off-center hydrogenic donor in pyramid-like and cone-like quantum dots

    Science.gov (United States)

    Avazzadeh, Z.; Bahramiyan, H.; Khordad, R.; Mohammadi, S. A.

    2016-04-01

    In this study, the diamagnetic susceptibility of an off-center hydrogenic donor impurity confined by pyramid and cone-like quantum dots has been investigated. To this end, the finite-element method and the Arnoldi algorithm are used to find energy eigenvalues and eigenvectors of the systems. Then, the effect of impurity position and dot size has been investigated on the diamagnetic susceptibility. We have found that the diamagnetic susceptibility has a maximum around the impurity position 4nm for two quantum dots. The diamagnetic susceptibility in the cone-like quantum dot is smaller than that in the pyramid quantum dot. Numerical studies reveal that the diamagnetic susceptibility depends strongly on the geometry of the dot.

  17. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.

    Science.gov (United States)

    Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A

    2011-03-06

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  18. Dynamic Analysis of Micro-machined Diamagnetic Stable Permanent Magnet Levitation System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel micro-machined diamagnetic stable-levitation system (MDSLS) which is composed of a free permanent magnetic rotor, a ring lifting permanent magnet and two diamagnetic stabilizers was presented. The static and dynamic stable characters of MDSLS were analyzed. The coupled non-linear differential equations were used to describe six-degree-of-freedom motion of the levitated rotor, and the equivalent surface current and combined diamagnetic image current method were utilized to model the interaction forces and torques between the lifting permanent magnet and rotor permanent magnet and also between the rotor permanent magnet and diamagnetic substrates. Because of difficulty to get analytical solution, the numerical calculation based on Runge-Kutta method was used to solve the dynamic model. The vibration frequencies were identified by fast Fourier transform (FFT) analysis. According to their resonance characteristics and parameters, the translational and angular dynamic stiffness were also calculated. The results show that the levitation of the rotor in MDSLS is stable, and the MDSLS is potential for the application in levitation inertial sensor.

  19. Improved QSPR Study of Diamagnetic Susceptibilities for Organic Compounds Using Two Novel Molecular Connectivity Indexes

    Institute of Scientific and Technical Information of China (English)

    MU Lailong; HE Hongmei; YANG Weihua

    2009-01-01

    For predicting the molar diamagnetic susceptibilities of organic compounds, a variable molecular connectivity index mχ' and its converse index mχ" based on adjacency matrix of molecular graphs and the variable atomic valence connectivity index δi' were proposed. The optimal values of parameters x, a, and y included in definition of δi', mχ' and mχ" can be found by an optimization method. When x=2.9, a= 1.10, and y=0.36, a good five-parameter model for the molar diamagnetic susceptibilities can be constructed from 0χ',1χ',2χ',1χ" and 2χ" by using the best subset re-gression analysis method. The correlation coefficient r, standard error s, and average absolute deviation of the mul-tilinear regression (MLR) model are 0.9930, 4.96 cgs, and 3.74 cgs, respectively, for the 721 organic compounds (training set). The cross-validation by using the leave-one-out method demonstrates that the MLR model is highly reliable from the point of view of statistics. The average absolute deviation of predicted values of the molar dia-magnetic susceptibility of another 360 organic compounds (test set) is 4.37 cgs for the MLR model. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic suscep-tibility of an organic compound. The MLR method can provide an acceptable model for the prediction of the molar diamagnetic susceptibilities of organic compounds.

  20. Toroidal and poloidal plasma rotation measurements in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Hess, W.R.; Garbet, X.; Guirlet, R.; Hesse, M.; Payan, J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1993-12-31

    Plasma rotation measurements by visible spectroscopy and by a CO{sub 2}-laser scattering experiment (ALTAIR) are presented. The ALTAIR diagnostic is used to study the turbulence changes at the plasma edge during operation of the ergodic divertor (ED). Heterodyne detection allows discrimination between waves propagating in the electron or in the ion diamagnetic direction. (author) 6 refs., 4 figs.

  1. 3-D mesoscale MHD simulations of magnetospheric cusp-like configurations: cusp diamagnetic cavities and boundary structure

    Directory of Open Access Journals (Sweden)

    E. Adamson

    2012-02-01

    Full Text Available We present results from mesoscale simulations of the magnetospheric cusp region for both strongly northward and strongly southward interplanetary magnetic field (IMF. Simulation results indicate an extended region of depressed magnetic field and strongly enhanced plasma β which exhibits a strong dependence on IMF orientation. These structures correspond to the Cusp Diamagnetic Cavities (CDC's. The typical features of these CDC's are generally well reproduced by the simulation. The inner boundaries between the CDC and the magnetosphere are gradual transitions which form a clear funnel shape, regardless of IMF orientation. The outer CDC/magnetosheath boundary exhibits a clear indentation in both the x-z and y-z planes for southward IMF, while it is only indented in the x-z plane for northward, with a convex geometry in the y-z plane. The outer boundary represents an Alfvénic transition, mostly consistent with a slow-shock, indicating that reconnection plays an important role in structuring the high-altitude cusp region.

  2. Effect of electron diamagnetic drifts on cylindrical double-tearing modes

    CERN Document Server

    Abbott, Stephen

    2015-01-01

    Double-tearing modes (DTMs) have been proposed as a driver of `off-axis sawtooth' crashes in reverse magnetic shear tokamak configurations. Recently differential rotation provided by equilibrium sheared flows has been shown capable of decoupling the two DTM resonant layers, slowing the growth the instability. In this work we instead supply this differential rotation using an electron diamagnetic drift, which emerges in the presence of an equilibrium pressure gradient and finite Larmor radius physics. Diamagnetic drifts have the additional benefit of stabilizing reconnection local to the two tearing layers. Conducting linear and nonlinear simulations with the extended MHD code MRC-3d, we consider an m=2, n=1 cylindrical double-tearing mode. We show that asymmetries between the resonant layers and the emergence of an ideal MHD instability cause the DTM evolution to be highly dependent on the location of the pressure gradient. By locating a strong drift near the outer, dominant resonant surface are we able to sa...

  3. Diamagnetic measurements based on the compensation of TF current diffusion in J-TEXT

    Science.gov (United States)

    Zhu, L. Z.; Chen, Z. P.; Li, F. M.; Liu, H.; Chen, Z. Y.; Zhuang, G.

    2016-11-01

    Due to the existence both of toroidal ripples and toroidal field (TF) current diffusion, the toroidal flux changes with time when the TF current is at the flat-top. A diamagnetic measurement based on the compensation of TF current diffusion has been built in J-TEXT to solve this problem. The measurement system includes a double-loop installed in the vacuum vessel and an array of small printed circuit board (PCB) magnetic probes placed on the mid-plane of one TF coil. A model was proposed to analyze and compensate the effect of TF current diffusion. Experiment results show that the residual flux is about 1 × 10-4 Wb after the compensation and it can meet the need of diamagnetic measurement in J-TEXT.

  4. Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism

    Science.gov (United States)

    Boyer, Timothy H.

    2016-11-01

    Electromagnetism is a relativistic theory, and one must exercise care in coupling this theory with nonrelativistic classical mechanics and with nonrelativistic classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: (1) the neglect of classical electromagnetic zero-point radiation, and (2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we review the treatment of classical blackbody radiation, and show that the presence of Lorentz-invariant classical electromagnetic zero-point radiation can explain both the Planck blackbody spectrum and Landau diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statistical mechanics is applied only in the low-frequency limit when zero-point energy makes no contribution.

  5. Magnetic field dependent polarizability and electric field dependent diamagnetic susceptibility of a donor in Si

    Science.gov (United States)

    Muthukrishnaveni, M.; Srinivasan, N.

    2016-09-01

    The polarizability and diamagnetic susceptibility values of a shallow donor in Si are computed. These values are obtained for the cases bar{E}allel bar{B} and bar{E} bot bar{B}. The anisotropy introduced by these perturbations are properly taken care of in the expressions derived for polarizability and magnetic susceptibility. Our results show that the numerical value of the contribution from electric field to diamagnetic susceptibility is several orders smaller than that of the magnetic field effect. Polarizability values are obtained in a magnetic field by two different methods. The polarizability values decrease as the intensity of magnetic field increases. Using the Clausius-Mossotti relation, the anisotropic values of the refractive indices for different magnetic fields are estimated.

  6. Field-Induced Dynamic Diamagnetism in a Charge-Density-Wave System

    Science.gov (United States)

    Harrison, N.; Mielke, C. H.; Christianson, A. D.; Brooks, J. S.; Tokumoto, M.

    2001-02-01

    ac susceptibility measurements of the charge-density-wave (CDW) compound α-\\(BEDT-TTF\\)2-KHg\\(SCN\\)4 at magnetic fields, μ0H>23 T, above its Pauli paramagnetic limit, reveal unambiguously that the magnetic hysteresis observed previously within this CDW phase is diamagnetic and can only be explained by induced currents. It is argued that the ensemble of experimental techniques amounts to a strong case for dissipationless conductivity within this phase.

  7. A new source of lunar electromagnetic induction - Forcing by the diamagnetic cavity

    Science.gov (United States)

    Sonett, C. P.; Wiskerchen, M. J.

    1977-01-01

    Analysis of the power spectral densities (PSD's) of eight 50-hour time series from Apollo 12 lunar surface magnetometer (LSM) and isochronous Explorer 35 Ames magnetometer data points to the existence of a new source of electromagnetic induction in the interior of the moon which is independent of the transverse electric mode. This source is hypothesized to arise from extension of the cavity diamagnetic field into the moon in analogy with the fringing field of a solenoid.

  8. Dia-magnetic to ferro-magnetic behavioral change of Fe-catalysts based nitrogenated carbon nanotubes (NCNTs) by the process of chlorination/oxidation.

    Science.gov (United States)

    Ray, S C; Sahu, D R; Papakonstantinou, P

    2011-09-01

    In this work, we have synthesized multiwall nitrogenated carbon nanotubes (MW-NCNTs) with Fe-catalysts by the microwave plasma-enhanced chemical vapor deposition process @950 degrees C and subsequently functionalized with chlorine and oxygen. The dia-magnetic behavioral M-H loop of non-functionalized MW-NCNTs were turn into ferromagnetic behaviors by the process of chlorination and oxidation respectively; which were characterized by means of superconducting quantum interference device magnetometer within the temperature range 5-300 K. A prominent cusp like behavior is also observed at around approximately 45 K in M(FC) and M(ZFC) measurements confirming the ferromagnetic behaviors of these MW-NCNTs after chlorination and oxidation.

  9. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Science.gov (United States)

    Liu, Mei; Gao, Hong; Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin

    2011-01-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm). The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  10. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  11. Simultaneous effects of pressure and temperature on the binding energy and diamagnetic susceptibility of a laser dressed donor in a spherical quantum dot

    Science.gov (United States)

    Vaseghi, B.; Sajadi, T.

    2012-07-01

    Binding energies and diamagnetic susceptibility of an impurity in a spherical GaAs quantum dot under the simultaneous influence of static pressure, temperature and laser radiation are investigated. Pressure- and temperature-dependent dressed potential which is produced by the combined effects of laser radiation and impurity considerably change the energy spectrum and diamagnetic susceptibility of the system. It is shown that binding energies and diamagnetic susceptibility increase with increasing pressure. Moreover, laser radiation effects on the diamagnetic susceptibility are not significant in comparison with its effects on the binding energy.

  12. Simultaneous effects of pressure and temperature on the binding energy and diamagnetic susceptibility of a laser dressed donor in a spherical quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Vaseghi, B., E-mail: behroozv1@yahoo.com [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Sajadi, T. [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)

    2012-07-15

    Binding energies and diamagnetic susceptibility of an impurity in a spherical GaAs quantum dot under the simultaneous influence of static pressure, temperature and laser radiation are investigated. Pressure- and temperature-dependent dressed potential which is produced by the combined effects of laser radiation and impurity considerably change the energy spectrum and diamagnetic susceptibility of the system. It is shown that binding energies and diamagnetic susceptibility increase with increasing pressure. Moreover, laser radiation effects on the diamagnetic susceptibility are not significant in comparison with its effects on the binding energy.

  13. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  14. Nucleation Kinetics, Growth and Characterization Studies of a Diamagnetic Crystal-Zinc Sulphate Heptahydrate (ZSHH

    Directory of Open Access Journals (Sweden)

    R. Kanagadurai

    2009-01-01

    Full Text Available Solubility, metastable zone width and induction period measurements have been performed on zinc sulphate heptahydrate (ZSHH. Interfacial tension values determined from induction period measurements have been used for the evaluation of the nucleation parameters such as radius of critical nucleus and the free energy of formation of critical nucleus. ZSHH crystallizes in the orthorhombic structure. Crystals of diamagnetic zinc sulphate heptahydrate have been grown by temperature lowering solution growth technique with the optimized growth parameters. The as-grown ZSHH crystals were characterized by the powder X-ray diffraction, UV-VIS absorption and transmittance, FT-IR absorption, TG-DTA, microhardness and etching studies.

  15. Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, Anton, E-mail: tkacha@rpi.edu; Lu, James J.-Q.

    2015-07-01

    This paper presents a directed self-assembly (DSA) approach for assembling small electronic components, such as semiconductor dies, into sparse 2D arrays using diamagnetic levitation. The dies attached to a diamagnetic layer can be levitated at a room temperature over a stage made of magnets arranged in a checkerboard pattern. By selecting a proper die design, levitation height, and vibration pattern of the magnetic stage we assemble the dies into a regular 2D array with a specific lateral and vertical orientation of the dies. The assembled dies are transferred to a receiving substrate using capillary force. - Highlights: • Self-assembly of semiconductor dies into arrays using diamagnetic levitation. • Control over the die orientation in vertical and lateral dimensions. • Simulation shows good scalability of assembly time with the number of dies. • Suitable for assembly of LED panels, displays and microcell photovoltaics.

  16. g factors and diamagnetic coefficients of electrons, holes, and excitons in InAs/InP quantum dots

    Science.gov (United States)

    van Bree, J.; Silov, A. Yu.; Koenraad, P. M.; Flatté, M. E.; Pryor, C. E.

    2012-04-01

    The electron, hole, and exciton g factors and diamagnetic coefficients have been calculated using envelope-function theory for cylindrical InAs/InP quantum dots in the presence of a magnetic field parallel to the dot symmetry axis. A clear connection is established between the electron g factor and the amplitude of those valence-state envelope functions that possess nonzero orbital momentum associated with the envelope function. The dependence of the exciton diamagnetic coefficients on the quantum dot height is found to correlate with the energy dependence of the effective mass. Calculated exciton g factor and diamagnetic coefficients, constructed from the values associated with the electron and hole constituents of the exciton, match experimental data well, however including the Coulomb interaction between the electron and hole states improves the agreement. Remote-band contributions to the valence-band electronic structure, included perturbatively, reduce the agreement between theory and experiment.

  17. Stress dependence of optically active diamagnetic point defects in silicon oxynitride.

    Science.gov (United States)

    Pezzotti, Giuseppe; Hosokawa, Koichiro; Munisso, Maria Chiara; Leto, Andrea; Zhu, Wenliang

    2007-08-30

    The cathodoluminescence (CL) spectrum arising from diamagnetic point defects of silicon oxynitride lattice was analyzed to extract quantitative information on local stress fields stored on the surface of a silicon nitride polycrystal. A calibration procedure was preliminarily made to obtain a relationship between CL spectral shift and applied stress, according to the piezo-spectroscopic effect. In this calibration procedure, we used the uniaxial stress field developed in a rectangular bar loaded in a four-point flexural jig. Stress dependence was clearly detected for the most intense spectral band of a doublet arising from diamagnetic ([triple bond]Si-Si[triple bond]) defects, which was located at around 340 nm. The shallow nature of the electron probe enabled the characterization of surface stress fields with sub-micrometer-order spatial resolution. As applications of the PS technique, the CL emission from [triple bond]Si-Si[triple bond] defects was used as a stress probe for visualizing the residual stress fields stored at grain-boundary regions and at the tip of a surface crack propagated in polycrystalline silicon nitride.

  18. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    Science.gov (United States)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  19. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  20. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc......An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond......-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ∼8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows...

  1. New Edge Coherent Mode Providing Continuous Transport in Long-Pulse H-mode Plasmas

    Science.gov (United States)

    Wang, H. Q.; Xu, G. S.; Wan, B. N.; Ding, S. Y.; Guo, H. Y.; Shao, L. M.; Liu, S. C.; Xu, X. Q.; Wang, E.; Yan, N.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Candy, J.; Bravenec, R.; Sun, Y. W.; Shi, T. H.; Liang, Y. F.; Chen, R.; Zhang, W.; Wang, L.; Chen, L.; Zhao, N.; Li, Y. L.; Liu, Y. L.; Hu, G. H.; Gong, X. Z.

    2014-05-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ˜8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

  2. Resistive Reduced MHD Modeling of Multi-Edge-Localized-Mode Cycles in Tokamak X -Point Plasmas

    Science.gov (United States)

    Orain, F.; Bécoulet, M.; Huijsmans, G. T. A.; Dif-Pradalier, G.; Hoelzl, M.; Morales, J.; Garbet, X.; Nardon, E.; Pamela, S.; Passeron, C.; Latu, G.; Fil, A.; Cahyna, P.

    2015-01-01

    The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X -point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.

  3. Co–Fe Prussian Blue Analogue Intercalated into Diamagnetic Mg–Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Cuijuan Zhang

    2016-04-01

    Full Text Available A heterostructure of diamagnetic magnesium‒aluminium layered double hydroxides (Mg‒Al LDHs and photomag‐ netic cobalt‒iron Prussian Blue analogue (Co‒Fe PBA was designed, synthesized and then designated as LDH‒PB. The cyanide-bridged Co‒Fe PBA was two-dimensionally intercalated into the Mg‒Al LDH template by the stepwise anion exchange method. LDH‒PB showed ferrimagnetic properties with in-plane antiferromagnetic exchange interactions, as well as small photo-induced magnetization by visible light illumination due to the low dimensional structures and the characteristic photo-induced electronic states of the mixed valence of FeIII(low spin, S = 1/2‒CN‒ CoII(high spin, S = 3/2‒NC‒FeII (low spin, S = 0.

  4. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system.

    Science.gov (United States)

    Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.

  5. Note on de Haas-van Alphen diamagnetism in thin, free-electron films

    Science.gov (United States)

    Grzesik, J. A.

    2012-03-01

    We revisit the problem of de Haas-van Alphen (dHvA) diamagnetic susceptibility oscillations in a thin, free-electron film trapped in a synthetic harmonic potential well. A treatment of this phenomenon at zero temperature was announced many years ago by Childers and Pincus (designated hereafter as CP), and we traverse initially much the same ground, but from a slightly different analytic perspective. That difference hinges around our use, in calculating the Helmholtz free energy F, of an inverse Laplace transform, Bromwich-type contour integral representation for the sharp distribution cutoff at Fermi level μ. The contour integral permits closed-form summation all at once over the discrete orbital Landau energy levels transverse to the magnetic field, and the energy associated with the in-plane canonical momenta ℏ k x and ℏ k z. Following such summation/integration, pole/residue pairs appear in the plane of complex transform variable s, a fourth-order pole at origin s = 0, and an infinite ladder, both up and down, of simple poles along the imaginary axis. The residue sum from the infinite pole ladder automatically engenders a Fourier series with period one in dimensionless variable μ/ ℏ ω (with effective angular frequency ω suitably defined), series which admits closed-form summation as a cubic polynomial within any given periodicity slot. Such periodicity corresponds to Landau levels slipping sequentially beneath Fermi level μ as the ambient magnetic field H declines in strength, and is manifested by the dHvA pulsations in diamagnetic susceptibility. The coëxisting steady contribution from the pole at origin has a similar cubic structure but is opposite in sign, inducing a competition whose outcome is a net magnetization that is merely quadratic in any given periodicity slot, modulated by a slow amplitude growth. Apart from some minor notes of passing discord, these simple algebraic structures confirm most of the CP formulae, and their graphic display

  6. Interaction of 4-rotational gauge field with orbital moment, gravi-diamagnetic effect and orbit experiment

    CERN Document Server

    Babourova, Olga V

    2010-01-01

    A direct interaction of the 4-rotational (Lorentzian) gauge field with the angular orbital momentum of an external field is considered. This interaction appears in a new Poincar\\'{e} gauge theory of gravitation, in which tetrads are not true gauge fields, but represent to be some functions of the translational and 4-rotational gauge fields. The given interaction leads to a new effect: the existence of an electronic orbits precession under the action of an intensive external gravitational field (gravi-diamagnetic effect), and also substantiates the existence of the direct interaction of the proper angular momentum of a gyroscope with the torsion field, which theoretically can be generated by the rotational angular momentum of the planet the Earth. The latter interaction can be detected by the experiment "Gravity Probe B" (GP-B) on a satellite orbit

  7. Design of a low temperature translation balance for the measurement of paramagnetic and diamagnetic susceptibilities

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, G.S.

    1979-05-01

    A modified Foex and Forrer Translation Balance has been designed for measuring the paramagnetic and diamagnetic properties of materials over the temperature range 77-300/sup 0/K. The systems' temperature range can eventually be extended to 4.2/sup 0/K. The apparatus incorporates a vertical Dewar of Standard variety in addition to a horizontal Dewar for cooling the sample holder and adjacent horizontal supports. The design also allows for the placement of a thermocouple junction in direct contact with a sample. The balance sensitivity, defined as the change in displacement per unit applied force, is 0.0044 cm/dyne. The precision of the balance is +- .5% with an accuracy of 1.5%.

  8. Exploring diamagnetic susceptibility of impurity doped quantum dots in presence of Gaussian white noise

    Science.gov (United States)

    Bera, Aindrila; Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2016-11-01

    We explore diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise. Noise has been introduced to the system additively and multiplicatively. In view of these profiles of DMS have been pursued with variations of several important quantities e.g. magnetic field strength, confinement frequency, dopant location, dopant potential, and aluminium concentration, both in presence and absence of noise. We have invariably envisaged noise-induced suppression of DMS. Moreover, the extent of suppression noticeably depends on mode of application (additive/multiplicative) of noise. The said mode of application also plays a governing role in the onset of saturation of DMS values. The present study provides a deep insight into the promising role played by noise in controlling effective confinement imposed on the system which bears significant relevance.

  9. Note on de Haas-van Alphen diamagnetism in thin, free-electron films

    Directory of Open Access Journals (Sweden)

    J. A. Grzesik

    2012-03-01

    Full Text Available We revisit the problem of de Haas-van Alphen (dHvA diamagnetic susceptibility oscillations in a thin, free-electron film trapped in a synthetic harmonic potential well. A treatment of this phenomenon at zero temperature was announced many years ago by Childers and Pincus (designated hereafter as CP, and we traverse initially much the same ground, but from a slightly different analytic perspective. That difference hinges around our use, in calculating the Helmholtz free energy F, of an inverse Laplace transform, Bromwich-type contour integral representation for the sharp distribution cutoff at Fermi level μ. The contour integral permits closed-form summation all at once over the discrete orbital Landau energy levels transverse to the magnetic field, and the energy associated with the in-plane canonical momenta ℏ k x and ℏ k z. Following such summation/integration, pole/residue pairs appear in the plane of complex transform variable s, a fourth-order pole at origin s = 0, and an infinite ladder, both up and down, of simple poles along the imaginary axis. The residue sum from the infinite pole ladder automatically engenders a Fourier series with period one in dimensionless variable μ/ ℏ ω (with effective angular frequency ω suitably defined, series which admits closed-form summation as a cubic polynomial within any given periodicity slot. Such periodicity corresponds to Landau levels slipping sequentially beneath Fermi level μ as the ambient magnetic field H declines in strength, and is manifested by the dHvA pulsations in diamagnetic susceptibility. The coëxisting steady contribution from the pole at origin has a similar cubic structure but is opposite in sign, inducing a competition whose outcome is a net magnetization that is merely quadratic in any given periodicity slot, modulated by a slow amplitude growth. Apart from some minor notes of passing discord, these simple algebraic structures confirm most of the CP formulae, and their

  10. High-Tc superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Science.gov (United States)

    Bhadrakumari, S.; Predeep, P.

    2006-08-01

    A series of composite samples of YBa2Cu3O7-x and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  11. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  12. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mayoral, Elena [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Negri, Viviana; Soler-Padros, Jordi [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Cerdan, Sebastian [Laboratorio de Imagen Espectroscopica por Resonancia Magnetica (LIERM), Instituto de Investigaciones Biomedicas ' Alberto Sols' , CSIC/UAM, c/Arturo Duperier 4, E-28029 Madrid (Spain); Ballesteros, Paloma [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain)], E-mail: pballesteros@ccia.uned.es

    2008-09-15

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T{sub 1} and T{sub 2} of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH{sub e}) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH{sub e}, independent of water relaxivity, diffusion or exchange.

  13. Magnetic bistability of isolated giant-spin centers in a diamagnetic crystalline matrix.

    Science.gov (United States)

    Vergnani, Luca; Barra, Anne-Laure; Neugebauer, Petr; Rodriguez-Douton, Maria Jesus; Sessoli, Roberta; Sorace, Lorenzo; Wernsdorfer, Wolfgang; Cornia, Andrea

    2012-03-12

    Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe(4) SMM and its Ga(4) analogue were prepared with no metal scrambling for Fe(4) molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe(4) phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe(4) phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe(4) concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment.

  14. Distinctive diamagnetic fabrics in dolostones evolved at fault cores, the Dead Sea Transform

    Science.gov (United States)

    Braun, D.; Weinberger, R.; Eyal, Y.; Feinstein, S.; Harlavan, Y.; Levi, T.

    2015-08-01

    We resolve the anisotropy of magnetic susceptibility (AMS) axes along fault planes, cores and damage zones in rocks that crop out next to the Dead Sea Transform (DST) plate boundary. We measured 261 samples of mainly diamagnetic dolostones that were collected from 15 stations. To test the possible effect of the iron content on the AMS we analyzed the Fe concentrations of the samples in different rock phases. Dolostones with mean magnetic susceptibility value lower than -4 × 10-6 SI and iron content less than ∼1000 ppm are suitable for diamagnetic AMS-based strain analysis. The dolostones along fault planes display AMS fabrics that significantly deviate from the primary "sedimentary fabric". The characteristics of these fabrics include well-grouped, sub-horizontal, minimum principal AMS axes (k3) and sub-vertical magnetic foliations commonly defined by maximum and intermediate principal AMS axes (k1 and k2 axes, respectively). These fabrics are distinctive along fault planes located tens of kilometers apart, with strikes ranging between NNW-SSE and NNE-SSW and different senses of motion. The obtained magnetic foliations (k1-k2) are sub-parallel (within ∼20°) to the fault planes. Based on rock magnetic and geochemical analyses, we interpret the AMS fabrics as the product of both shape and crystallographic anisotropy of the dolostones. Preferred shape alignment evolves due to mechanical rotation of subordinate particles and rock fragments at the fault core. Preferred crystallographic orientation results from elevated frictional heating (>300 °C) during faulting, which enhances c-axes alignment in the cement-supported dolomite breccia due to crystal-plastic processes. The penetrative deformation within fault zones resulted from the local, fault-related strain field and does not reflect the regional strain field. The analyzed AMS fabrics together with fault-plane kinematics provide valuable information on faulting characteristics in the uppermost crust.

  15. Signal processing methods for MFE plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  16. High-temperature large diamagnetism in ball-milled Sr0.6Ca0.4CuO2

    Science.gov (United States)

    Hernando, A.; Herrero, E.; Vázquez, M.; Alonso, J.; González, A.; Rivero, G.; Rojo, J. M.; Vallet-Regi, M.; González Calbet, J.

    1997-10-01

    The observation of a large effective diamagnetic susceptibility of -3.4×10-6 emu g-1 Oe-1 up to temperatures above 1000 K in highly deformed ball-milled Sr0.6Ca0.4CuO2 is reported. These samples do not exhibit superconductivity at low temperature. This anomalously strong diamagnetism increases with milling time and reaches a maximum value after 500 h of milling. A model is proposed in which excess holes, introduced during milling, have wave functions that are extended over the CuO2 planes of the crystallites, resulting in large values of the diamagnetic susceptibility.

  17. Resistive reduced MHD modeling of multi-edge-localized-mode cycles in Tokamak X-point plasmas.

    Science.gov (United States)

    Orain, F; Bécoulet, M; Huijsmans, G T A; Dif-Pradalier, G; Hoelzl, M; Morales, J; Garbet, X; Nardon, E; Pamela, S; Passeron, C; Latu, G; Fil, A; Cahyna, P

    2015-01-23

    The full dynamics of a multi-edge-localized-mode (ELM) cycle is modeled for the first time in realistic tokamak X-point geometry with the nonlinear reduced MHD code jorek. The diamagnetic rotation is found to be instrumental to stabilize the plasma after an ELM crash and to model the cyclic reconstruction and collapse of the plasma pressure profile. ELM relaxations are cyclically initiated each time the pedestal gradient crosses a triggering threshold. Diamagnetic drifts are also found to yield a near-symmetric ELM power deposition on the inner and outer divertor target plates, consistent with experimental measurements.

  18. Evaluation of diamagnetic susceptibility effect on magnetic resonance phase images using gradient echo. On the partial volume effect in calcification

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Yamada, Yukinori; Doi, Toyozo [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-02-01

    To examine the ability of magnetic resonance imaging to visualize the diamagnetic susceptibility effects of calcification, phantom experiments using small lead balls in a dilute solution of copper chloride in water were carried out. Gradient echo phase images of the phantoms were obtained using varying imaging parameters (TR, TE, flip angle, slice thickness), and phase shift due to the lead balls was measured. Five choroid plexuses and three pineal glands with calcification were also examined using gradient echo phase images. As a result, it could be seen that the phase shift increased in proportion to both echo time and the ratio held by lead and calcification in a voxel (partial volume effect), and was independent of repetition time and flip angle. It could be confirmed that the gradient echo phase images are useful for detecting the diamagnetic susceptibility effects of calcification. (author).

  19. A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.

    Science.gov (United States)

    Cao, Hui-Ling; Sun, Li-Hua; Li, Jian; Tang, Lin; Lu, Hui-Meng; Guo, Yun-Zhu; He, Jin; Liu, Yong-Ming; Xie, Xu-Zhuo; Shen, He-Fang; Zhang, Chen-Yan; Guo, Wei-Hong; Huang, Lin-Jun; Shang, Peng; He, Jian-Hua; Yin, Da-Chuan

    2013-10-01

    High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and the Rmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals.

  20. Method of compensation spires for the detection of the diamagnetic effect in a Tokamak; Metodo de espiras de compensacion para la deteccion del efecto diamagnetico en un Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Colunga S, S

    1990-09-15

    In this report the classical detection method of the diamagnetic effect by means of a rolled spire on the discharges chamber in the poloidal direction and the difficulties related with this are analyzed. An alternative method that increases considerably the detection sensibility of the diamagnetic effect and that for its simplicity it is quite attractive for its application to the Tokamak Novillo of the ININ is presented. (Author)

  1. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster.

    Science.gov (United States)

    Herranz, Raul; Larkin, Oliver J; Dijkstra, Camelia E; Hill, Richard J A; Anthony, Paul; Davey, Michael R; Eaves, Laurence; van Loon, Jack J W A; Medina, F Javier; Marco, Roberto

    2012-02-01

    Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM). We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  2. Theory of anisotropic diamagnetism, local moment magnetization and carrier spin-polarization in Pb1-EuTe

    Indian Academy of Sciences (India)

    R C Patnaik; R K Das; R L Hota; G S Tripathi

    2001-10-01

    We present theoretical analyses of anisotropic lattice diamagnetism, magnetization due to magnetic ions and carrier spin-polarization in the diluted magnetic semiconductor, Pb1-EuTe. The lattice diamagnetism results from orbital susceptibility due to inter band effects and spin-orbit contributions. The spin-orbit contribution is found to be dominant. However, both the contributions show pronounced anisotropy. With increase inx, the diamagnetism decreases. We consider contributions from randomly distributed isolated magnetic ions and clusters of pairs and triads for the local moment magnetization. The isolated magnetic-ion contribution is the dominant one. We calculate the magnetization for two typical magnetic ion concentrations: = 0.03 and = 0.06. Temperature dependence of the magnetization is also considered. Apart from lattice and localized magnetic ions, the carrier contribution to the spin-density is also calculated for a carrier density of = 1018 cm-3. The relative spin-density of carriers increases with increase in the magnetic field strength and magnetic ion concentration. The agreement with experiment where available is reasonably good.

  3. Microcrystal-like cellulose fibrils as the diamagnetic director for microfluidic systems

    Science.gov (United States)

    Miyashita, Y.; Iwasaka, M.; Kimura, T.

    2014-05-01

    In recent years, nanostructures and nanostructuring of biogenic materials have been studied intensively, with a view to "high-tech" applications of sustainable, biologically derived materials. Magnetic orientation is useful for creating industrial products. Techniques for diamagnetic alignment of materials using fields of several Tesla (T) or more have been reported. In the present study, we explore the optical characteristics of microcrystalline cellulose whisker (CW), under sub-Tesla magnetic fields. Our eventual target is to create a biogenic optical device. We isolated microcrystalline CWs with high aspect ratio using centrifugation and found that these anisotropic whiskers, when in an aqueous suspension, respond to sub-T order magnetic fields, as observed using an optical microscope and a spectrometer. During observations with dark-field illumination, we found that the scattered light intensity changed during the magnetic orientation process, and depended on the directions of the magnetic field and dark-field illumination. These oriented microcrystalline CWs can be bio-mimetic optical tools for microscale wet processes, such as bio-MEMS.

  4. Electron exchanges in nuclear spin conversion of hydrogen physisorbed on diamagnetic insulators

    Science.gov (United States)

    Ilisca, Ernest; Ghiglieno, Filippo

    2014-10-01

    Models are provided and discussed to interpret new experiments on the ortho-para conversion of hydrogen "physisorbed" on dielectric and diamagnetic surfaces. Electro-static and dynamical molecule-surface interactions complemented by hyperfine contacts are shown to be generally more effective than the magnetic ones. Coulomb repulsion induces exchanges of molecular and surface electrons and excites triplet spin states which are effective in the angular momenta transfers to the catalyst. The conversion time is obtained as the square of a ratio of two energies: the exchange and excitation ones. The main channel is found composed of triplet excitations of the order of the eV, induced by molecule-surface exchanges of about a hundred of meV. It explains the zinc and oxygen rates of about one minute observed on the MOF samples as well as the about ten times slower ones on the ASW. The same mechanism is also shown to occur in the transient regime, but faster. Finally it explains also the conversion of a few hours observed for interstitial hydrogen in silicium by transitions to the conduction band induced by about 10 meV electron exchanges. The molecule-surface orbital geometries of the MOF and ASW configurations are displayed and the quantum path when unfolded exhibits the successive broken symmetries.

  5. Anisotropy of diamagnetic susceptibility in Thassos marble: A comparison between measured and modeled data

    Science.gov (United States)

    de Wall, Helga; Bestmann, Michel; Ullemeyer, Klaus

    2000-11-01

    A study of shear zones within the calcite marble complex of the island of Thassos (Greece) shows that the low field anisotropy of magnetic susceptibility (AMS)-technique can be successfully applied to diamagnetic rocks for characterizing rock fabrics. The strain path involves both an early pure shear stage and a simple shear overprint that is documented by a transition from triaxial (neutral) to uniaxial (prolate) shapes of AMS ellipsoids. The maximum susceptibility is oriented perpendicular to the rock foliation, reflecting the preferred orientation of calcite c-axes in the protolith as well as in the mylonites. For three samples that represent different types of calcite fabrics, the AMS was recalculated from neutron and electron backscatter diffraction textural data. A comparison of the measured and modeled data shows a good coincidence for the orientation of the principal AMS axes and for the recalculated anisotropy data. Both measured and modeled data sets reflect the change from neutral to distinct prolate ellipsoids during progressive deformation.

  6. Multi-frequency ferromagnetic resonance investigation of nickel nanocubes encapsulated in diamagnetic magnesium oxide matrix

    Science.gov (United States)

    Nellutla, Saritha; Nori, Sudhakar; Singamaneni, Srinivasa R.; Prater, John T.; Narayan, Jagdish; Smirnov, Alex I.

    2016-12-01

    Partially aligned nickel nanocubes were grown epitaxially in a diamagnetic magnesium oxide (MgO:Ni) host and studied by a continuous wave ferromagnetic resonance (FMR) spectroscopy at the X-band (9.5 GHz) from ca. 117 to 458 K and then at room temperature for multiple external magnetic fields/resonant frequencies from 9.5 to 330 GHz. In contrast to conventional magnetic susceptibility studies that provided data on the bulk magnetization, the FMR spectra revealed the presence of three different types of magnetic Ni nanocubes in the sample. Specifically, three different ferromagnetic resonances were observed in the X-band spectra: a line 1 assigned to large nickel nanocubes, a line 2 corresponding to the nanocubes exhibiting saturated magnetization even at ca. 0.3 T field, and a high field line 3 (geff ˜ 6.2) tentatively assigned to small nickel nanocubes likely having their hard magnetization axis aligned along or close to the direction of the external magnetic field. Based on the analysis of FMR data, the latter nanocubes possess an anisotropic internal magnetic field of at least ˜1.0 T in magnitude.

  7. An effective quantum defect theory for the diamagnetic spectrum of a barium Rydberg atom

    Institute of Scientific and Technical Information of China (English)

    Li Bo; Liu Hong-Ping

    2013-01-01

    A theoretical calculation is carried out to investigate the spectrum of a barium Rydberg atom in an external magnetic field.Using an effective approach incorporating quantum defect into the centrifugal term in the Hamiltonian,we reexamine the reported spectrum of the barium Rydberg atom in a magnetic field of 2.89 T [J.Phys.B 28 L537 (1995)].Our calculation employs B-spline basis expansion and complex coordinate rotation techniques.For single photon absorption from the ground 6s2 to 6snp Rydberg states,the spectrum is not influenced by quantum defects of channels ns and nd.The calculation is in agreement with the experimental observations until the energy reaches E =-60 cm-1.Beyond this energy,closer to the threshold,the calculated and experimental results do not agree with each other.Possible reasons for their discrepancies are discussed.Our study affirms an energy range where the diamagnetic spectrum of the barium atom can be explained thoroughly using a hydrogen model potential.

  8. Double peak structure and diamagnetic wings of the magnetotail current sheet

    Directory of Open Access Journals (Sweden)

    G. Zimbardo

    2004-07-01

    Full Text Available Recent Cluster observations in the magnetotail at about 20 Earth radii downtail have unambiguously shown that sometimes the current sheet is bifurcated, i.e. it is divided in two layers. We report numerical simulations of the ion dynamics in a quasi-neutral sheet in the presence of magnetic turbulence, which is often observed in the magnetotail, and for various anisotropies of the ion distribution function. Ions are injected at the boundary of the simulation box with a velocity distribution corresponding to a shifted Maxwellian. The simulation parameters, are adjusted to be similar to those of Cluster observations. We find that even for moderate fluctuation levels, the computed current density profile develops a double peak, in agreement with the observations. By varying the anisotropy of the injected distribution function, we are able to reproduce, for weak anisotropy, the magnetic field overshoots which are sometimes observed prior to magnetotail traversals. Therefore, we suggest an ion current profile with a double peak due to magnetic turbulence, and with possible diamagnetic current wings, present in the case of weak anisotropy of the ion distribution function.

  9. Paramagnetic and diamagnetic defects in e - and UV-irradiated TeO 2 single crystal

    Science.gov (United States)

    Watterich, A.; Kappers, L. A.; Gilliam, O. R.; Bartram, R. H.; Földvári, I.; Korecz, L.

    2002-05-01

    A study is reported of the influence of illumination on generation and decay of point defects in TeO 2 crystals following electron irradiation at ˜400 K. Electron irradiation is believed to cause a large concentration of diamagnetic oxygen vacancies denoted by V Ox and a smaller concentration of vacancies with one trapped electron denoted by V Orad . When the sample is UV illuminated at 330 nm and 77 K or lower, electron spin resonance (ESR) measurements show that the number of V Orad centers increases and a comparable gain of V O' centers (three electrons in the vacancy) occurs. A brief illumination at 660 nm causes the V O' signal to disappear and the V Orad signal to decrease and return to its original value. Changes in the crystal's optical absorption obtained from spectra measured with polarized light are given. When V O' centers are removed by bleaching, or by thermal annealing, broad bands at 600 and 700 nm disappear and there are increases in optical absorption at 380, 440 and 480 nm. The source of these bands is discussed. These processes are reversed by a new UV illumination at 330 nm and 77 K. The growth and decay kinetics of V O' centers and V Orad centers measured by ESR indicate the same rates of percentage change in their concentrations. Explanation of these reversible processes supports selected models for the three different vacancy centers.

  10. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.;

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...

  11. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  12. Effect of diamagnetic contribution of water on harmonics distribution in a dilute solution of iron oxide nanoparticles measured using high-T{sub c} SQUID magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Saari, Mohd Mawardi, E-mail: en19463@s.okayama-u.ac.jp; Tsukamoto, Yuya; Kusaka, Toki; Ishihara, Yuichi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2015-11-15

    The magnetization curve of iron oxide nanoparticles in low-concentration solutions was investigated by a highly sensitive high-T{sub c} superconducting quantum interference device (SQUID) magnetometer. The diamagnetic contribution of water that was used as the carrier liquid was observed in the measured magnetization curves in the high magnetic field region over 100 mT. The effect of the diamagnetic contribution of water on the generation of harmonics during the application of AC and DC magnetic fields was simulated on the basis of measured magnetization curves. Although the diamagnetic effect depends on concentration, a linear relation was observed between the detected harmonics and concentration in the simulated and measured results. The simulation results suggested that improvement could be expected in harmonics generation because of the diamagnetic effect when the iron concentration was lower than 72 μg/ml. The use of second harmonics with an appropriate bias of the DC magnetic field could be utilized for realization of a fast and highly sensitive detection of magnetic nanoparticles in a low-concentration solution. - Highlights: • We measured iron oxide nanoparticles solutions using a high-T{sub c} SQUID magnetometer. • Diamagnetic contribution of water in diluted solutions was observed. • Improvement in harmonics generation due to diamagnetism of water could be expected. • Linear relation between harmonics and concentration in diluted solutions was shown. • Detection using second harmonics showed high sensitivity.

  13. Mercury's Plasma Mantle – a survey of MESSENGER observations

    Science.gov (United States)

    Jasinski, Jamie Matthew; Slavin, James A.; Raines, Jim; DiBraccio, Gina

    2016-10-01

    The plasma mantle is a region of solar wind plasma entry into the nightside high-latitude magnetosphere. We present a survey of plasma mantles identified in particle and magnetic field measurements from four years of MESSENGER spacecraft observations of Mercury's magnetosphere. The two common observational signatures of this region are ion energy latitude dispersions as well as diamagnetic depressions. From these observations we estimate the contribution of plasma from the solar wind via the mantle and infer magnitude and variability in the cross-magnetospheric electric fields present at Mercury's dynamic magnetosphere.

  14. Experimental identification of an azimuthal current in a magnetic nozzle of a radiofrequency plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Chiba, Aiki; Komuro, Atsushi; Ando, Akira

    2016-10-01

    The azimuthal plasma current in a magnetic nozzle of a radiofrequency plasma thruster is experimentally identified by measuring the plasma-induced magnetic field. The axial plasma momentum increases over about 20 cm downstream of the thruster exit due to the Lorentz force arising from the azimuthal current. The measured current shows that the azimuthal current is given by the sum of the electron diamagnetic drift and \\mathbf{E}× \\mathbf{B} drift currents, where the latter component decreases with an increase in the magnetic field strength; hence the azimuthal current approaches the electron diamagnetic drift one for the strong magnetic field. The Lorentz force calculated from the measured azimuthal plasma current and the radial magnetic field is smaller than the directly measured force exerted to the magnetic field, which indicates the existence of a non-negligible Lorentz force in the source tube.

  15. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  16. Diamagnetic vortex barrier stripes in underdoped BaFe2(As1-xPx) 2

    Science.gov (United States)

    Yagil, A.; Lamhot, Y.; Almoalem, A.; Kasahara, S.; Watashige, T.; Shibauchi, T.; Matsuda, Y.; Auslaender, O. M.

    2016-08-01

    We report magnetic force microscopy (MFM) measurements on underdoped BaFe2(As1 -xPx)2 (x =0.26 ) that show enhanced superconductivity along stripes parallel to twin boundaries. These stripes of enhanced diamagnetic response repel superconducting vortices and act as barriers for them to cross. The width of the stripes is hundreds of nanometers, on the scale of the penetration depth, well within the inherent spatial resolution of MFM and implying that the width is set by the interaction of the superconductor with the MFM's magnetic tip. Unlike similar stripes observed previously by scanning SQUID in the electron doped Ba (Fe1 -xCox)2As2 , the stripes in the isovalently doped BaFe2(As1 -xPx)2 disappear gradually when we warm the sample towards the superconducting transition temperature. Moreover, we find that the stripes move well below the reported structural transition temperature in BaFe2(As1 -xPx)2 and that they can be much denser than in the Ba (Fe1 -xCox)2As2 study. When we cool in finite magnetic field we find that some vortices appear in the middle of stripes, suggesting that the stripes may have an inner structure, which we cannot resolve. Finally, we use both vortex decoration at higher magnetic field and deliberate vortex dragging by the MFM magnetic tip to obtain bounds on the strength of the interaction between the stripes and vortices. We find that this interaction is strong enough to play a significant role in determining the critical current in underdoped BaFe2(As1 -xPx)2 .

  17. Principle, features and applications of diamagnetic levitation%抗磁悬浮的原理、特点和应用

    Institute of Scientific and Technical Information of China (English)

    李世鹏; 张卫平; 陈文元; 刘武; 成宇翔

    2011-01-01

    抗磁物质处在磁场中时,在重力和抗磁力的作用下,会稳定悬浮,利用这个原理可以实现抗磁物质的捕获、移动等微操纵.本文详细介绍了抗磁悬浮的两个分类:传统的抗磁悬浮和磁阿基米德抗磁悬浮,并对二者的特点、应用等作了介绍,然后详细分析了抗磁悬浮有关的关键因素,例如磁化率的计算、磁场分布的产生等,最后结合永磁体的小尺寸效应和MEMS(微机械系统)技术,重点分析了抗磁悬浮在生物芯片领域的应用.%Diamagnetic substance can be suspended stably in magnetic field under the influence of gravity and diamagnetic force. According to this principle, we can achieve micro-manipulation of diamagnetic substance, such as capture and move. The paper describes two categories of diamagnetic levitation: traditional diamagnetic levitation and magneto-Archimedes levitation, and presents different characteristics and applications of both, then introduces the key factor of diamagnetic levitation, for example, the calculation of magnetic susceptibility, the generation of magnetic field distribution, etc. Finally, combining with the small size effect of permanent magnet and MEMS (Microelectromechanical Systems) technology, the paper analyzes the application of diamagnetic levitation in the field of bio-chip.

  18. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Herranz Raul

    2012-02-01

    Full Text Available Abstract Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM. We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  19. Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion.

    Science.gov (United States)

    Upadhyay, Apoorva; Singh, Saurabh Kumar; Das, Chinmoy; Mondol, Ranajit; Langley, Stuart K; Murray, Keith S; Rajaraman, Gopalan; Shanmugam, Maheswaran

    2014-08-18

    Field induced single-molecule-magnet behaviour is observed for both a heterodinuclear [ZnDy(L(-))2](3+) complex (1) and a mononuclear [Dy(HL)2](3+) complex (2), with effective energy barriers of 83 cm(-1) and 16 cm(-1), respectively. Insights into the relaxation mechanism(s) and barrier heights are provided via ab initio and DFT calculations. Our findings reveal an interesting observation that the U(eff) of SMMs can be enhanced by incorporating diamagnetic metal ions.

  20. Intrinsic rotation driven by non-Maxwellian equilibria in Tokamak plasmas.

    Science.gov (United States)

    Barnes, M; Parra, F I; Lee, J P; Belli, E A; Nave, M F F; White, A E

    2013-08-02

    The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of cocurrent toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

  1. Intrinsic rotation driven by non-Maxwellian equilibria in tokamak plasmas

    CERN Document Server

    Barnes, M; Lee, J P; Belli, E A; Nave, M F F; White, A E

    2013-01-01

    The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of co-current toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

  2. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  3. Plasma waves observed by the IRM and UKS spacecraft during the AMPTE solar wind lithium releases - Overview

    Science.gov (United States)

    Haeusler, B.; Woolliscroft, L. J.; Anderson, R. R.; Gurnett, D. A.; Holzworth, R. H.

    1986-01-01

    The wave measurements from the Ion Release Module and the United Kingdom Satellite in the diamagnetic cavity, the transition region, and the upstream region are examined. Solar wind conditions during the releases on September 11 and 20, 1984 are described. The quasi-static electric field, wideband, high-frequency waves, and medium and VLF waves observations are analyzed. The data reveal that extremely low levels of wave activity are observed in the boundary between the diamagnetic cavity and external magnetic field, medium and VLF waves in the ion acoustic electrostatic cyclotron harmonic modes are detected in the transition region from the diamagnetic cavity to the solar wind, and decay in the magnetic field strength and density, and an increase in the quasi-static electric field is seen in the upstream edge of the transition region. The emissions observed are related to the different phases of the Li cloud development and different spatial regimes of the Li plasma-solar wind interaction.

  4. Diamagnetic measurements in the STOR-M tokamak by a flux loop system exterior to the vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Trembach, Dallas; Xiao Chijin; Dreval, Mykola; Hirose, Akira [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2009-05-15

    Diamagnetic measurements of poloidal beta have been performed in the STOR-M tokamak by a flux loop placed exterior to the vacuum chamber with compensation for the vacuum toroidal field using a nonenclosing coplanar coil, and vibrational compensation from auxiliary coils. It was found that in STOR-M conditions (20% toroidal magnetic field decay over discharge) there is significant influence on the diamagnetic flux measurements from strong residual signals, presumably from image currents being induced by the toroidal field coils, requiring further compensation. A blank (nonplasma) shot is used specifically to eliminate the residual component which is not proportional to the toroidal magnetic field. Data from normal Ohmic discharge operation is presented and calculations of poloidal beta from coil data ({beta}{sub {theta}}{approx}0.5) is found to be in reasonable agreement with the values of poloidal beta obtained from measurements of electron density and Spitzer temperature with neoclassical corrections for trapped electrons. Contributions present in the blank shot (residual) signal and the limitations of this method are discussed.

  5. Diamagnetic measurements in the STOR-M tokamak by a flux loop system exterior to the vacuum vessel

    Science.gov (United States)

    Trembach, Dallas; Xiao, Chijin; Dreval, Mykola; Hirose, Akira

    2009-05-01

    Diamagnetic measurements of poloidal beta have been performed in the STOR-M tokamak by a flux loop placed exterior to the vacuum chamber with compensation for the vacuum toroidal field using a nonenclosing coplanar coil, and vibrational compensation from auxiliary coils. It was found that in STOR-M conditions (20% toroidal magnetic field decay over discharge) there is significant influence on the diamagnetic flux measurements from strong residual signals, presumably from image currents being induced by the toroidal field coils, requiring further compensation. A blank (nonplasma) shot is used specifically to eliminate the residual component which is not proportional to the toroidal magnetic field. Data from normal Ohmic discharge operation is presented and calculations of poloidal beta from coil data (βθ˜0.5) is found to be in reasonable agreement with the values of poloidal beta obtained from measurements of electron density and Spitzer temperature with neoclassical corrections for trapped electrons. Contributions present in the blank shot (residual) signal and the limitations of this method are discussed.

  6. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla

    Science.gov (United States)

    Stier, Andreas V.; McCreary, Kathleen M.; Jonker, Berend T.; Kono, Junichiro; Crooker, Scott A.

    2016-02-01

    In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 μeV T-1 (g-factor ~=-4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of ~1.53 and ~1.16 nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials.

  7. Ion rotational velocity of a field-reversed configuration plasma measured by neutral beam probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y.; Tanjyo, M.; Ohi, S.; Goto, S.; Ishimura, T.

    1987-01-01

    The ion rotational angular velocity ..cap omega.. and the ion temperature T/sub i/ of a translated field-reversed configuration (FRC) plasma are measured using neutral beam probe spectroscopy. The value of ..cap omega.. is --(1.0--1.2) x ..cap omega..* at the onset time of the n = 2 rotational instability, where ..cap omega..* is the ion diamagnetic frequency for a rigid-rotor equilibrium. The ion rotational direction is the same as the ion diamagnetic direction. The value of ..cap omega.. is smaller than the angular frequency ..omega../sub re/ of the n = 2 instability, which can yield experimental evidence of the ion kinetic effects on the n = 2 instability in the FRC plasma. When the octupole field is applied to the plasma in order to suppress the n = 2 deformation, ..cap omega.. is slightly reduced. The ion temperature T/sub i/ is --70 eV at the onset time of the n = 2 instability.

  8. Relaxed states in electron-depleted electronegative dusty plasmas with two-negative ion species

    Science.gov (United States)

    Iqbal, M.; Iqbal

    2014-02-01

    The relaxation of an electron-depleted electronegative dusty plasma with two-negative ions is investigated. When the ratio of canonical vorticities to corresponding flows of all the plasma species is the same and all inertial and non-inertial forces are present, the relaxed state appears as a double Beltrami magnetic field which is the superposition of two force-free relaxed states. The numerical results show that highly diamagnetic relaxed magnetic fields can be obtained by controlling the flow and vorticities through a single Beltrami parameter. The study is useful to investigate the creation of diamagnetic plasma configurations which are considered to be very important in the context of nuclear fusion.

  9. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  10. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Science.gov (United States)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Huijsmans, G.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Chapman, I.; Kirk, A.; Thornton, A.; Hoelzl, M.; Cahyna, P.

    2013-10-01

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  11. Measurement of the dynamo effect in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ji, H. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Prager, S.C.; Almagri, A.F.; Sarff, J.S. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Hirano, Y. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan). Plasma Section; Toyama, H. [Univ. of Tokyo (Japan). Dept. of Physics

    1995-11-01

    A series of the detailed experiments has been conducted in three laboratory plasma devices to measure the dynamo electric field along the equilibrium field line (the {alpha} effect) arising from the correlation between the fluctuating flow velocity and magnetic field. The fluctuating flow velocity is obtained from probe measurement of the fluctuating E x B drift and electron diamagnetic drift. The three major findings are (1) the {alpha} effect accounts for the dynamo current generation, even in the time dependence through a ``sawtooth`` cycle; (2) at low collisionality the dynamo is explained primarily by the widely studied pressureless Magnetohydrodynamic (MHD) model, i.e., the fluctuating velocity is dominated by the E x B drift; (3) at high collisionality, a new ``electron diamagnetic dynamo`` is observed, in which the fluctuating velocity is dominated by the diamagnetic drift. In addition, direct measurements of the helicity flux indicate that the dynamo activity transports magnetic helicity from one part of the plasma to another, but the total helicity is roughly conserved, verifying J.B. Taylor`s conjecture.

  12. A Numerical Approach to Solving the Hall MHD Equations Including Diamagnetic Drift (Preprint)

    Science.gov (United States)

    2008-02-19

    Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9300-06-D-0002 0003 A Numerical Approach to Solving the Hall MHD...Loverich and U. Shumlak. Nonlinear full two-fluid study of m=0 sausage instabilities in an axisymmetric z pinch. Physics of Plasmas, (13), 2006. [19

  13. Experiment study of edge localized mode with plasma vertical jogging in HL-2A tokamak

    Science.gov (United States)

    Wu, N.; Chen, S. Y.; Song, X. M.; Mou, M. L.; Huang, J.; Wang, Z. T.; Tang, C. J.; Song, X.; Xia, F.; Jiang, M.; HL-2A Team

    2017-09-01

    The effect of plasma vertical jogging on edge localized modes (ELMs) is investigated in HL-2A tokamak. During the experiment, plasma jogging with a period of about 75 ms is performed, and the results show that both the ELM amplitude and period decrease when the plasma moves upward, which are qualitatively explained by the simulation based on the theory of peeling-ballooning mode including the resistivity effect. The upward movement of plasma causes a change in pedestal parameters, and then the dominant toroidal mode shifts to a relatively high-n mode with the effects of resistivity and diamagnetic, which lead to smaller ELM amplitudes.

  14. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    Science.gov (United States)

    Saha, Surajit; Ganguly, Jayanta; Bera, Aindrila; Ghosh, Manas

    2016-11-01

    We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  15. High-T{sub c} superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhadrakumari, S [Department of Physics, St. Berchman' s College, Changanassery, Kerala (India); Predeep, P [Condensed Matter Physics Laboratory, Department of Physics, Sree Narayana College, Kollam 691 001, Kerala (India)

    2006-08-15

    A series of composite samples of YBa{sub 2}Cu{sub 3}O{sub 7-x} and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  16. Tokamak edge plasma rotation in the presence of the biased electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ghoranneviss, M.; Mohammadi, S. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elahi, A. Salar, E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Arvin, R. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2013-02-15

    Electrode biasing system was designed, constructed, and installed on the IR-T1 tokamak, and then biasing experiments were carried out. Also, using a Mach probes the effects of radial electric field (produced by biased electrode) on the poloidal and toroidal components of the edge plasma velocity were investigated. The results showed an increase in both toroidal and poloidal components of the edge plasma velocity during biasing regime. Results compared and discussed. During positive biasing, increased E{sub r} tends to slow the poloidal rotation in the electron diamagnetic drift direction, i.e., to speed up rotation in the ion diamagnetic drift direction. An increased toroidal rotation velocity has the opposite effect on the poloidal rotation.

  17. Influence of plasma pedestal profiles on access to ELM-free regimes in ITER

    Science.gov (United States)

    Medvedev, S. Yu.; Ivanov, A. A.; Martynov, A. A.; Poshekhonov, Yu. Yu.; Konovalov, S. V.; Polevoi, A. R.

    2016-05-01

    The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reaching high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10-40 to n = 3-20.

  18. Detection and optical imaging of induced convection under the action of static gradient magnetic field in a non-conducting diamagnetic fluid

    CERN Document Server

    Morarka, Amit R

    2016-01-01

    The report elaborates experimental observations of magnetically induced convection in a non- conducting diamagnetic fluid. Suspension of Deionized (DI) water and Lycopodium pollen grains was used as the fluid in a test tube. Permanent magnets having field strength of 0.12T each were used to provide the static gradient magnetic field. The convections were visually observed and recorded using travelling microscope attached with a web camera. Various geometrical configurations of magnets in the vicinity of test tube were used which provided different types of orientation of convective flows in the test tube. Convections were observed over a range of fluid volumes from 0.2ml-10ml. The experimentally observed results provide proof of concept that irrespective of the weak interactions of diamagnetic fluids with magnetic fields, these effects can be easily observed and recorded with the use of low tech laboratory equipments.

  19. Green's Dyadic Approach of the Self-Stress on a Dielectric-Diamagnetic Cylinder with Non-Uniform Speed of Light

    CERN Document Server

    Cavero-Pelaez, I; Cavero-Pelaez, Ines; Milton, Kimball A.

    2006-01-01

    We present a Green's dyadic formulation to calculate the Casimir energy for a dielectric-diamagnetic cylinder with the speed of light differing on the inside and outside. Although the result is in general divergent, special cases are meaningful. It is pointed out how the self-stress on a purely dielectric cylinder vanishes through second order in the deviation of the permittivity from its vacuum value, in agreement with the result calculated from the sum of van der Waals forces.

  20. 1H-NMR study of diamagnetic cytochrome P450cam: assignment of heme resonances and substrate dependance of one cysteinate beta proton.

    Science.gov (United States)

    Mouro, C; Bondon, A; Simonneaux, G; Jung, C

    1997-09-08

    The 1H-NMR study of diamagnetic cytochrome P450cam FeII-CO has been performed for the first time. Chemical shifts of the cysteinate fifth ligand protons and of several heme protons have been assigned through 1- and 2-dimensional spectra at 500 MHz. A substrate dependance has been observed for the resonance of the cysteinate proton detected in the high-field region.

  1. Attempt to detect diamagnetic anisotropy of dust-sized crystal orientated to investigate the origin of interstellar dust alignment

    Science.gov (United States)

    Takeuchi, T.; Hisayoshi, K.; Uyeda, C.

    2013-03-01

    Diamagnetic anisotropy Δ χ dia was detected on a submillimeter-sized calcite crystal by observing the rotational oscillation of its magnetically stable axis with respect to the magnetic field direction. The crystal was released in an area of microgravity generated by a 1.5-m-long drop shaft. When the oscillations are observable, the present method can measure Δ χ dia of crystal grains irrespective of how small they are without measuring the sample mass. In conventional Δ χ measurements, the background signal from the sample holder and the difficulty in measuring the sample mass prevent measurement of Δ χ dia for small samples. The present technique of observing Δ χ dia of a submillimeter-sized single crystal is a step toward realizing Δ χ dia measurements of micron-sized grains. The Δ χ dia values of single micron-sized grains can be used to assess the validity of a dust alignment model based on magnetic torque that originates from the Δ χ dia of individual dust particles.

  2. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  3. Paramagnetic and diamagnetic defects in e{sup -} and UV-irradiated TeO{sub 2} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Watterich, A.; Kappers, L.A. E-mail: kappers@uconnvm.uconn.edu; Gilliam, O.R.; Bartram, R.H.; Foeldvari, I.; Korecz, L

    2002-05-01

    A study is reported of the influence of illumination on generation and decay of point defects in TeO{sub 2} crystals following electron irradiation at {approx}400 K. Electron irradiation is believed to cause a large concentration of diamagnetic oxygen vacancies denoted by V{sub O}{sup x} and a smaller concentration of vacancies with one trapped electron denoted by V{sub O}{sup {center_dot}}. When the sample is UV illuminated at 330 nm and 77 K or lower, electron spin resonance (ESR) measurements show that the number of V{sub O}{sup {center_dot}} centers increases and a comparable gain of V{sub O}{sup '} centers (three electrons in the vacancy) occurs. A brief illumination at 660 nm causes the V{sub O}{sup '} signal to disappear and the V{sub O}{sup {center_dot}} signal to decrease and return to its original value. Changes in the crystal's optical absorption obtained from spectra measured with polarized light are given. When V{sub O}{sup '} centers are removed by bleaching, or by thermal annealing, broad bands at 600 and 700 nm disappear and there are increases in optical absorption at 380, 440 and 480 nm. The source of these bands is discussed. These processes are reversed by a new UV illumination at 330 nm and 77 K. The growth and decay kinetics of V{sub O}{sup '} centers and V{sub O}{sup {center_dot}} centers measured by ESR indicate the same rates of percentage change in their concentrations. Explanation of these reversible processes supports selected models for the three different vacancy centers.

  4. Hot Plasma Flows in the Solar Corona

    Science.gov (United States)

    Shibasaki, K.

    2012-12-01

    The Solar Corona is a non-equilibrium open system. Energy and mass are supplied from the lower atmosphere and flow upwards through the corona into the interplanetary space. Steady state could be possible but not equilibrium state. Temperature of the corona varies depending on solar activities. However, even under very quite state, coronal temperature is still kept around million degrees. Coronal heating mechanisms have to work under such condition. Temperature of plasma is an averaged kinetic energy of random motion of particles. Motion of charged particles in magnetic field generates Lorenz force and particles gyrate around magnetic field lines. Gyration of charged particles generates magnetic moment which is directed anti-parallel to the surrounding magnetic field. This is the origin of diamagnetism of plasma. Each particle can be considered as a small magnet directed opposite to the surrounding magnetic field. When these magnets are put in inhomogeneous magnetic field, they are pushed toward weak field region. In case of open magnetic field region in the solar corona, plasma particles are pushed upwards. If this force (diamagnetic or mirror force) exceeds the gravity force, plasma flows upwards. Magnetic moment of each charged particle in thermal plasma is proportional to temperature and inversely proportional to magnetic field strength. The condition for plasma to flow upwards in an open magnetic field is that the scale length of the change of magnetic field strength is shorter than the hydrostatic scale length, which is determined by temperature and the gravity acceleration. This can be a mechanism to regulate the coronal temperature around million degree. The solar corona is filled with magnetic field, which is rooted at the photosphere in the form of flux tubes. Flux tubes connect directly the corona and the sub-photospheric layer where temperature is higher than the photosphere. Hot plasma, trapped in the flux tubes when they are generated around the bottom

  5. Wall mode stabilization at slow plasma rotation

    Science.gov (United States)

    Hu, Bo; Betti, Riccardo; Reimerdes, Holger; Garofalo, Andrea; Manickam, Janardhan

    2007-11-01

    Unstable pressure-driven external kink modes, which become slowly growing resistive wall modes (RWMs) in the presence of a resistive wall, can lead to tokamak plasma disruptions at high beta. It has been shown that RWMs are stabilized by fast plasma rotation (about 1-2% of the Alfv'en frequency) in experiments. Conventional theories attribute the RWM suppression to the dissipation induced by the resonances between plasma rotation and ion bounce/transit or shear Alfv'en frequencies [1]. In those theories, the kinetic effects associated with the plasma diamagnetic frequencies and trapped-particle precession drift frequencies are neglected. It has been observed in recent experiments [2,3] that the RWM suppression also occurs at very slow plasma rotation (about 0.3% of the Alfv'en frequency), where the conventional dissipation is too small to fully suppress the RWMs. Here it is shown, that the trapped-particle kinetic contribution associated with the precession motion [4] is large enough to stabilize the RWM in DIII-D at low rotation. Work supported by the US-DoE OFES. [1] A. Bondeson and M. S. Chu, Physics of Plasmas, 3,3013 (1996). [2] H. Reimerdes et al., Physical Review Letters, 98,055001 (2007). [3] M. Takechi et al., Physical Review Letters, 98,055002 (2007). [4] B. Hu and R. Betti, Physical Review Letters, 93,105002 (2004).

  6. In-plane and transverse superconducting fluctuation diamagnetism in the presence of charge-density waves in 2H-NbSe2 single crystals

    Science.gov (United States)

    Soto, F.; Berger, H.; Cabo, L.; Carballeira, C.; Mosqueira, J.; Pavuna, D.; Vidal, F.

    2007-03-01

    The fluctuation-diamagnetism (FD) above the superconducting transition was measured in 2H-NbSe2 single crystals. The moderate uniaxial anisotropy of this compound, and some experimental improvements, allowed us to measure the superconducting fluctuation effects in the two main crystallographic directions. These results reveal that the nonlocal electrodynamic effects on the FD are highly anisotropic, and they also discard a possible contribution to the FD coming from the charge-density waves (CDWs) appearing below TCDW>TC in 2H-NbSe2 , in agreement with a phenomenological estimate.

  7. Faraday rotation dispersion measurements of diamagnetic organic liquids and simultaneous determination of natural optical rotatory dispersion using a pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Miyamoto, Kayoko; Watarai, Hitoshi

    2013-01-01

    We constructed an apparatus to measure the wavelength dispersion of the Faraday rotation in the visible region, and determined the Verdet constants of diamagnetic organic liquids, including aliphatic compounds, benzene derivatives, and naphthalene derivatives. These three groups were easily distinguished by the magnitudes of their Verdet constants. Based on the theory developed by Serber, we determined the enhancing effect of π*←π transitions on the visible-light Faraday rotation angles observed for aromatic compounds. Furthermore, we propose a novel approach for simultaneously observing Faraday rotation dispersion and natural optical rotatory dispersion.

  8. Superconducting phase fluctuations in SmFeAsO0.8F0.2 from diamagnetism at a low magnetic field above Tc

    Science.gov (United States)

    Prando, G.; Lascialfari, A.; Rigamonti, A.; Romanó, L.; Sanna, S.; Putti, M.; Tropeano, M.

    2011-08-01

    Superconducting fluctuations (SFs) in SmFeAsO0.8F0.2 (characterized by superconducting transition temperature Tc≃52.3 K) are investigated by means of isothermal high-resolution dc magnetization measurements. The diamagnetic response above Tc to magnetic fields up to 1 T is similar to that previously reported for underdoped cuprate superconductors and justified in terms of metastable superconducting islands of nonzero order parameter lacking long-range coherence because of strong phase fluctuations. In the high-field regime (H≳1.5 T) scaling arguments predicted on the basis of the Ginzburg-Landau theory for conventional SFs are confirmed, at variance with what is observed in the low-field regime. This fact shows that two different phenomena are simultaneously present in the fluctuating diamagnetism, namely the phase SFs of novel character and the conventional SFs. High magnetic fields (1.5 T ≲H≪Hc2) are found to suppress the former while leaving unaltered the latter.

  9. Dynamics of Exploding Plasma Within a Magnetized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dimonte, G; Dipeso, G; Hewett, D

    2002-02-01

    This memo describes several possible laboratory experiments on the dynamics of an exploding plasma in a background magnetized plasma. These are interesting scientifically and the results are applicable to energetic explosions in the earth's ionosphere (DOE Campaign 7 at LLNL). These proposed experiments are difficult and can only be performed in the new LAPD device at UCLA. The purpose of these experiments would be to test numerical simulations, theory and reduced models for systems performance codes. The experiments are designed to investigate the affect of the background plasma on (1) the maximum diamagnetic bubble radius given by Eq. 9; and (2) the Alfven wave radiation efficiency produced by the induced current J{sub A} (Eqs. 10-12) These experiments involve measuring the bubble radius using a fast gated optical imager as in Ref [1] and the Alfven wave profile and intensity as in Ref [2] for different values of the exploding plasma energy, background plasma density and temperature, and background magnetic field. These experiments extend the previously successful experiments [2] on Alfven wave coupling. We anticipate that the proposed experiments would require 1-2 weeks of time on the LAPD. We would perform PIC simulations in support of these experiments in order to validate the codes. Once validated, the PIC simulations would then be able to be extended to realistic ionospheric conditions with various size explosions and altitudes. In addition to the Alfven wave coupling, we are interested in the magnetic containment and transport of the exploding ''debris'' plasma to see if the shorting of the radial electric field in the magnetic bubble would allow the ions to propagate further. This has important implications in an ionospheric explosion because it defines the satellite damage region. In these experiments, we would field fast gated optical cameras to obtain images of the plasma expansion, which could then be correlated with magnetic

  10. IMF dependence of energetic oxygen and hydrogen ion distributions in the near-Earth plasma sheet

    Science.gov (United States)

    Luo, Hao; Kronberg, Elena; Nykyri, Katariina; Daly, Patrick; Chen, Gengxiong; Du, Aimin; Ge, Yasong

    2017-04-01

    Energetic ion distributions in the near-Earth plasma sheet can provide important information for understanding the entry of ions into the magnetosphere, and their transportation, acceleration, and losses in the near-Earth region. In this study, 11 years of energetic proton and oxygen observations (> 100 keV) from Cluster/RAPID were used to statistically study the energetic ion distributions in the near-Earth region. The dawn-dusk asymmetries of the distributions in three different regions (dayside magnetosphere, near-Earth nightside plasma sheet, and tail plasma sheet) are examined in northern and southern hemispheres. The results show that the energetic ion distributions are influenced by the dawn-dusk IMF direction. The enhancement of intensity largely correlates with the location of the magnetic reconnection at the magnetopause and the consequent formation of a diamagnetic cavity in the same quadrant of the magnetosphere. The results imply that substorm-related processes in the magnetotail are not the only source of energetic ions in the dayside and the near-Earth plasma sheet. We propose that large-scale cusp diamagnetic cavities can be an additional source and can thus significantly affect the energetic ion population in the magnetosphere. We also believe that the influence of the dawn-dusk IMF direction should not be neglected in models of the particle population in the magnetosphere.

  11. Electron vortex magnetic holes: a nonlinear coherent plasma structure

    CERN Document Server

    Haynes, Christopher T; Camporeale, Enrico; Sundberg, Torbjorn

    2014-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional PIC simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is ...

  12. Coupled evolutions of the stellar obliquity, orbital distance, and planet's radius due to the Ohmic dissipation induced in a diamagnetic hot Jupiter around a magnetic T Tauri star

    CERN Document Server

    Chang, Yu-Ling; Gu, Pin-Gao

    2012-01-01

    We revisit the calculation of the Ohmic dissipation in a hot Jupiter presented in Laine et al. (2008) by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modelled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced Ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small co-rotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/anti-parallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model in Laine...

  13. Covalent Metal-Metal-Bonded Mn4 Tetrahedron Inscribed within a Four-Coordinate Manganese Cubane Cluster, As Evidenced by Unexpected Temperature-Independent Diamagnetism.

    Science.gov (United States)

    Vaddypally, Shivaiah; Jovinelli, Daniel J; McKendry, Ian G; Zdilla, Michael J

    2017-04-03

    The electronic structures of the manganese(IV) cubane cluster Mn(μ3-N(t)Bu)4(N(t)Bu)4 (1) and its one-electron-oxidized analogue, the 3:1 Mn(IV)/Mn(V) cluster [Mn(μ3-N(t)Bu)4(N(t)Bu)4](+)[PF6](-) (1(+)[PF6]), are described. The S = 0 spin quantum number of 1 is explained by a diamagnetic electronic structure where all metal-based d electrons are paired in Mn-Mn bonding orbitals. Temperature- and power-dependent studies of the S = (1)/2 electron paramagnetic resonance signal of 1(+) are consistent with an electronic structure described as a delocalized one-electron radical.

  14. Two-fluid biasing simulations of the large plasma device

    Science.gov (United States)

    Fisher, Dustin M.; Rogers, Barrett N.

    2017-02-01

    External biasing of the Large Plasma Device (LAPD) and its impact on plasma flows and turbulence are explored for the first time in 3D simulations using the Global Braginskii Solver code. Without external biasing, the LAPD plasma spontaneously rotates in the ion diamagnetic direction. The application of a positive bias increases the plasma rotation in the simulations, which show the emergence of a coherent Kelvin Helmholtz (KH) mode outside of the cathode edge with poloidal mode number m ≃6 . Negative biasing reduces the rotation in the simulations, which exhibit KH turbulence modestly weaker than but otherwise similar to unbiased simulations. Biasing either way, but especially positively, forces the plasma potential inside the cathode edge to a spatially constant, KH-stable profile, leading to a more quiescent core plasma than the unbiased case. A moderate increase in plasma confinement and an associated steepening of the profiles are seen in the biasing runs. The simulations thus show that the application of external biasing can improve confinement while also driving a Kelvin-Helmholtz instability. Ion-neutral collisions have only a weak effect in the biased or unbiased simulations.

  15. PREDICTIONS OF ION PRODUCTION RATES AND ION NUMBER DENSITIES WITHIN THE DIAMAGNETIC CAVITY OF COMET 67P/CHURYUMOV-GERASIMENKO AT PERIHELION

    Energy Technology Data Exchange (ETDEWEB)

    Vigren, E.; Galand, M., E-mail: e.vigren@imperial.ac.uk [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-07-20

    We present a one-dimensional ion chemistry model of the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko, the target comet for the ESA Rosetta mission. We solve the continuity equations for ionospheric species and predict number densities of electrons and selected ions considering only gas-phase reactions. We apply the model to the subsolar direction and consider conditions expected to be encountered by Rosetta at perihelion (1.29 AU) in 2015 August. Our default simulation predicts a maximum electron number density of {approx}8 Multiplication-Sign 10{sup 4} cm{sup -3} near the surface of the comet, while the electron number densities for cometocentric distances r > 10 km are approximately proportional to 1/r {sup 1.23} assuming that the electron temperature is equal to the neutral temperature. We show that even a small mixing ratio ({approx}0.3%-1%) of molecules having higher proton affinity than water is sufficient for the proton transfer from H{sub 3}O{sup +} to occur so readily that other ions than H{sub 3}O{sup +}, such as NH{sub 4} {sup +} or CH{sub 3}OH{sub 2} {sup +}, become dominant in terms of volume mixing ratio in part of, if not throughout, the diamagnetic cavity. Finally, we test how the predicted electron and ion densities are influenced by changes of model input parameters, including the neutral background, the impinging EUV solar spectrum, the solar zenith angle, the cross sections for photo- and electron-impact processes, the electron temperature profile, and the temperature dependence of ion-neutral reactions.

  16. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  17. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  18. Fluctuation signatures of rotation reversals and non-local transport events in KSTAR L-mode plasmas

    CERN Document Server

    Shi, Yuejiang

    2016-01-01

    Experiments in KSTAR tokamak show that non-local heat transport (NLT) is closely connected to toroidal rotation reversal. We demonstrate that NLT can be affected by electron cyclotron resonance heating (ECH), and the intrinsic rotation direction follows the changes of NLT. The cut-off density of NLT can be significantly extended by ECH. Without ECH, NLT disappears as the line averaged density ne increases above 1.25*10e19me-3. By applying ECH, NLT reappears with the ne= 2.4*10e19me-3. At the same density level, the core toroidal rotation also changes from counter-current to co-current direction by applying ECH. The poloidal flow of turbulence in core plasma estimated from MIR is in electron diamagnetic direction in ECH plasmas and ion diamagnetic direction in high density OH plasma. The auto-power spectra of density fluctuation measured by MIR are almost the same in the outer region for ECH and OH plasma. On the other hand, in the core region of ECH plasmas, the power spectra of the density fluctuations are b...

  19. Laser plasma simulations of the generation processes of Alfven and collisionless shock waves in space plasma

    Science.gov (United States)

    Prokopov, P. A.; Zakharov, Yu P.; Tishchenko, V. N.; Shaikhislamov, I. F.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Terekhin, V. A.

    2016-11-01

    Generation of Alfven waves propagating along external magnetic field B0 and Collisionless Shock Waves propagating across B0 are studied in experiments with laser- produced plasma and magnetized background plasma. The collisionless interaction of interpenetrating plasma flows takes place through a so-called Magnetic Laminar Mechanism (MLM) or Larmor Coupling. At the edge of diamagnetic cavity LP-ions produce induction electric field Eφ which accelerates BP-ions while LP-ions rotate in opposite direction. The ions movement generates sheared azimuthal magnetic field Bφ which could launches torsional Alfven wave. In previous experiments at KI-1 large scale facility a generation of strong perturbations propagating across B0 with magnetosonic speed has been studied at a moderate value of interaction parameter δ∼0.3. In the present work we report on experiments at conditions of 5∼R2 and large Alfven-Mach number MA∼10 in which strong transverse perturbations traveling at a scale of ∼1 m in background plasma at a density of ∼3*1013 cm-3 is observed. At the same conditions but smaller MA ∼ 2 a generation, the structure and dynamic of Alfven wave with wavelength ∼0.5 m propagating along fields B0∼100÷500 G for a distance of ∼2.5 m is studied.

  20. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  1. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  2. Interaction of a neutral cloud moving through a magnetized plasma

    Science.gov (United States)

    Goertz, C. K.; Lu, G.

    1990-01-01

    Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.

  3. Coupled Evolutions of the Stellar Obliquity, Orbital Distance, and Planet's Radius due to the Ohmic Dissipation Induced in a Diamagnetic Hot Jupiter around a Magnetic T Tauri Star

    Science.gov (United States)

    Chang, Yu-Ling; Bodenheimer, Peter H.; Gu, Pin-Gao

    2012-10-01

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay by the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.

  4. Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments

    Science.gov (United States)

    Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.

    1996-01-01

    First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current

  5. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  6. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  7. Turbulent transport of alpha particles in tokamak plasmas

    Science.gov (United States)

    Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.

    2017-03-01

    We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.

  8. Fractal Structure of the Heliospheric Plasma Sheet at the Earth's Orbit

    Institute of Scientific and Technical Information of China (English)

    M. V. Eselevich; V. G. Eselevich

    2005-01-01

    An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind,flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density(N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from2°-3° (at the Earth's orbit, it is equivalent to 3.6-5.4 h, or(5.4-8.0) × 106 km) to the minimum about0.025°, i.e. the angular siz.e of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift)current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore,the value of β = 8π[N(Te + Tp)]/B2 within the tube exceeds the value of β outside the tube. In many cases total pressure P = N(Te + Tp) + B2/8π is almost constant within and outside the tubes at any one of the aforementioned scales.

  9. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Science.gov (United States)

    Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  10. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  11. Experiments on Plasma Injection into a Centrifugally Confined System

    Science.gov (United States)

    Messer, S.; Bomgardner, R.; Brockington, S.; Case, A.; Witherspoon, F. D.; Uzun-Kaymak, I.; Elton, R.; Young, W.; Teodorescu, C.; Morales, C. H.; Ellis, R. F.

    2009-11-01

    We describe the cross-field injection of plasma into a centrifugally-confined system. Two different types of plasma railgun have been installed on the Maryland Centrifugal Experiment (MCX) in an attempt to drive that plasma's rotation. The initial gun was a coaxial device designed to mitigate the blowby instability. The second one was a MiniRailgun with a rectangular bore oriented so that the MCX magnetic field augments the railgun's internal magnetic field. Tests at HyperV indicate this MiniRailgun reaches much higher densities than the original gun, although muzzle velocity is slightly reduced. We discuss the impact of these guns on MCX for various conditions. Initial results show that even for a 2 kG field, firing the MiniRailgun modifies oscillations of the MCX diamagnetic loops and can impact the core current and voltage. The gun also has a noticeable impact on MCX microwave emissions. These observations suggest plasma enters the MCX system. We also compare diagnostic data collected separately from MCX for these and other guns, focussing primarily on magnetic measurements.

  12. Analytical and numerical treatment of resistive drift instability in a plasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Mirnov, V. V., E-mail: vvmirnov@wisc.edu; Sauppe, J. P.; Hegna, C. C.; Sovinec, C. R. [University of Wisconsin-Madison and the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas (United States)

    2016-05-15

    An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron−ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear in unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.

  13. Plasma Antenna

    OpenAIRE

    N M Vijay

    2014-01-01

    The fundamental base of plasma antenna is the use of an ionized medium as a conductor. The plasma antenna is a radiofrequency antenna formed by a plasma columns, Filaments or sheets, which are excited by a surface wave. The relevance of this device is how rapidly it can be turned on and off, only applying an electrical pulse. Besides its wide carrier frequency, the great directivity and controllable antenna shape. Otherwise a disadvantage is that it needs energy to be ionized....

  14. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  15. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Science.gov (United States)

    Yamanaka, N.; Sahoo, B. K.; Yoshinaga, N.; Sato, T.; Asahi, K.; Das, B. P.

    2017-03-01

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.

  16. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  17. Poloidal Beta, Paramagnetism, and Diamagnetism

    Science.gov (United States)

    Schnack, Dalton D.

    In the lecture we present some fundamental characteristics of MHD equilibria. For simplicity, we illustrate these concepts in cylindrical geometry, although they are generally applicable to other configurations as well.

  18. Plasma chromograninx

    DEFF Research Database (Denmark)

    Goetze, Jens P; Hilsted, Linda M; Rehfeld, Jens F

    2014-01-01

    Cardiovascular risk assessment remains difficult in elderly patients. We examined whether chromogranin A (CgA) measurement in plasma may be valuable in assessing risk of death in elderly patients with symptoms of heart failure in a primary care setting. A total of 470 patients (mean age 73 years......) were followed for 10 years. For CgA plasma measurement, we used a two-step method including a screening test and a confirmative test with plasma pre-treatment with trypsin. Cox multivariable proportional regression and receiver-operating curve (ROC) analyses were used to assess mortality risk...... of follow-up showed significant additive value of CgA confirm measurements compared with NT-proBNP and clinical variables. CgA measurement in the plasma of elderly patients with symptoms of heart failure can identify those at increased risk of short- and long-term mortality....

  19. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  20. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  1. plasma treatment

    Directory of Open Access Journals (Sweden)

    Puač Nevena

    2014-11-01

    Full Text Available In this paper we will present results for plasma sterilization of planktonic samples of two reference strains of bacteria, Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212. We have used a plasma needle as a source of non-equilibrium atmospheric plasma in all treatments. This device is already well characterized by OES, derivative probes and mass spectrometry. It was shown that power delivered to the plasma is bellow 2 W and that it produces the main radical oxygen and nitrogen species believed to be responsible for the sterilization process. Here we will only present results obtained by electron paramagnetic resonance which was used to detect the OH, H and NO species. Treatment time and power delivered to the plasma were found to have the strongest influence on sterilization. In all cases we have observed a reduction of several orders of magnitude in the concentration of bacteria and for the longest treatment time complete eradication. A more efficient sterilization was achieved in the case of gram negative bacteria.

  2. Plasma metallization

    CERN Document Server

    Crowther, J M

    1997-01-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of s...

  3. Performance characterization of a permanent-magnet helicon plasma thruster

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod

    2012-10-01

    Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.

  4. PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping

    Science.gov (United States)

    Noguchi, Koichi; Liang, Edison; Wilks, Scott

    2004-11-01

    One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.

  5. Plasma Drifts in the Intermediate Magnetosphere: Simulation Results

    Science.gov (United States)

    Lyon, J.; Zhang, B.

    2016-12-01

    One of the outstanding questions about the inner magnetosphere dynamics is how the ring current is populated. It is not clear how much is due to a general injection over longer time and spatial scales and how much due to more bursty events. One of the major uncertainties is the behavior of the plasma in the intermediate magnetosphere: the region where the magnetosphere changes from being tail-like to one where the dipole field dominates. This is also the region where physically the plasma behavior changes from MHD-like in the tail to one dominated by particle drifts in the inner magnetosphere. No of the current simulation models self-consistently handle the region where drifts are important but not dominant. We have recently developed a version of the multi-fluid LFM code that can self-consistently handle this situation. The drifts are modeled in a fashion similar to the Rice Convection Model in that a number of energy "channels" are explicitly simulated. However, the method is not limited to the "slow flow" region and both diamagnetic and inertial drifts are included. We present results from a number of idealized cases of the global magnetosphere interacting with a southward turning of the IMF. We discuss the relative importance of general convection and bursty flows to the transport of particles and energy across this region.

  6. Plasma dynamo

    CERN Document Server

    Rincon, F; Schekochihin, A A; Valentini, F

    2015-01-01

    Magnetic fields pervade the entire Universe and, through their dynamical interactions with matter, affect the formation and evolution of astrophysical systems from cosmological to planetary scales. How primordial cosmological seed fields arose and were further amplified to $\\mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major theoretical puzzle still largely unconstrained by observations. Extragalactic plasmas are weakly collisional (as opposed to collisional magnetohydrodynamic fluids), and whether magnetic-field growth and its sustainment through an efficient dynamo instability driven by chaotic motions is possible in such plasmas is not known. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field a...

  7. Plasma medicine

    CERN Document Server

    Fridman, Alexander

    2012-01-01

    This comprehensive text is suitable for researchers and graduate students of a 'hot' new topic in medical physics. Written by the world's leading experts,  this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners. The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medic

  8. Effect of the shear viscosity on plasma sheath in an oblique magnetic field

    Science.gov (United States)

    Wang, Ting-Ting; Li, Jing-Ju; Ma, J. X.

    2016-12-01

    In a magnetized plasma sheath, strong velocity shear exists owing to the three-dimensional nature of ion velocity. Thus, the ion viscosity should have an important effect on the sheath structure, which has not been studied. This article presents the study of the effect of ion shear viscosity on the sheath in an oblique magnetic field within the framework of classical cross-field transport. It is shown that the inclusion of the shear viscosity in the ion momentum equation results in a significant reduction in the sheath thickness. It is also shown that the "generalized Bohm criterion" is not affected by the shear viscosity within the present model. However, additional boundary conditions such as the velocity shear arise in the viscous case. The appropriate boundary conditions are formulated, accounting for E × B and diamagnetic drifts at the sheath edge, which affects the criterion and sheath profiles.

  9. Thermal effects on seeded finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Held, M; Madsen, J; Kendl, A

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that a temperature perturbation increases the maximal blob velocity and that a finite Larmor radius contributes to highly compact blob structures with finite poloidal motion. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the ion diamagnetic to the perpendicular vorticity, exceeds unity. The maximal blob velocities excellently agree with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the radial transport and verify the here presented empirical scaling law for the maximal radia...

  10. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  11. Magnetoresistive waves in plasmas

    Science.gov (United States)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  12. The penetration of plasma clouds across magnetic boundaries the role of high frequency oscillations

    CERN Document Server

    Hurtig, T; Raadu, M A; Hurtig, Tomas; Brenning, Nils; Raadu, Michael A.

    2004-01-01

    Experiments are reported where a collisionfree plasma cloud penetrates a magnetic barrier by self-polarization. We here focus on the resulting anomalous magnetic field diffusion into the plasma cloud, two orders of magnitude faster than classical, which is one important aspect of the plasma cloud penetration mechanism. Without such fast magnetic diffusion, clouds with kinetic beta below unity would not be able to penetrate magnetic barriers at all. Tailor-made diagnostics has been used for measurements in the parameter range with the kinetic beta ? 0.5 to 10, and with normalized width w/r(gi) of the order of unity. Experimental data on hf fluctuations in density and in electric field has been combined to yield the effective anomalous transverse resistivity eta(EFF). It is concluded that they are both dominated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop that is set up in the plasma in the penetration process. The anomalous magnetic diffusion rate, ca...

  13. Electrosurgical plasmas

    Science.gov (United States)

    Stalder, Kenneth R.; McMillen, Donald F.; Woloszko, Jean

    2005-06-01

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  14. Electrosurgical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stalder, Kenneth R; McMillen, Donald F; Woloszko, Jean [ArthroCare Corp., Sunnyvale, CA 94085-3523 (United States)

    2005-06-07

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  15. Modifications of aluminum film caused by micro-plasmoids and plasma spots in the effluent of an argon non-equilibrium plasma jet

    Science.gov (United States)

    Engelhardt, Max; Ries, Stefan; Hermanns, Patrick; Bibinov, Nikita; Awakowicz, Peter

    2017-09-01

    aluminium is a reason for the extraction of some pieces of metal and the formation of erosion tracks and holes in the metal film. In the absence of metal atomization, the extracted aluminium forms spherical micro-particles, which are distributed over the surface of the treated metal film by the gas flow. A thin (100 nm) gold (diamagnetic) layer on top of the aluminium film surface reduces the erosion rate of plasma spots and plasmoids drastically (more than three orders of magnitude).

  16. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  17. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  18. X-Point Effect on Plasma Blob Dynamics.

    Science.gov (United States)

    Avino, F; Fasoli, A; Furno, I; Ricci, P; Theiler, C

    2016-03-11

    Plasma blob dynamics on the high-field side in the proximity of a magnetic field null (X point) is investigated in TORPEX. A significant acceleration of the blobs towards the X point is observed. Close to the X point the blobs break apart. The E×B drifts associated with the blobs are measured, isolating the background drift component from the fluctuating contribution of the blob internal potential dipole. The time evolution of the latter is consistent with the fast blob dynamics. An analytical model based on charge conservation is derived for the potential dipole, including ion polarization, diamagnetic, and parallel currents. In the vicinity of the X point, a crucial role in determining the blob motion is played by the decrease of the poloidal magnetic field intensity. This variation increases the connection length that short circuits the potential dipole of the blob. Good quantitative agreement is found between the model and the experimental data in the initial accelerating phase of the blob dynamics.

  19. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Hu, Liqun, E-mail: Kychen@ipp.cas.cn, E-mail: lqhu@ipp.cas.cn; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Yubao [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey–predator model was found to reproduce the fishbone nonlinear process well.

  20. Plasma Free Metanephrines

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Plasma Free Metanephrines Share this page: Was this page helpful? Also known as: Plasma Metanephrines Formal name: Fractionated Plasma Free Metanephrines (Metanephrine ...

  1. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  2. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  3. Crossover from paramagnetic to diamagnetic ac-susceptibility in Bi2Sr2CaCu2O{}_{8+\\delta } superconductor for {\\bf{H}}| | c {-} {\\rm{axis}}

    Science.gov (United States)

    Pissas, M.; Tamegai, T.

    2017-10-01

    Ac-susceptibility measurements of the superconducting Bi2Sr2CaCu2O{}8+δ single crystal for {H}| | c-axis are presented. In low frequency measurements the first harmonic ac-susceptibility, {χ }1={χ }1{\\prime }-{{i}}{χ }1{\\prime\\prime }, is real and independent of the amplitude of the ac-magnetic field (linear behavior) and positive, implying that it represents the slope of the magnetization curve as the temperature changes below T c2. The positive ac-susceptibility before becoming negative, at low temperatures, forms a positive local maximum arising from the melting transition of the Abrikosov vortex lattice. For higher frequencies the response becomes diamagnetic due to the eddy currents. The signature of the discontinuous change of the magnetization, at the melting transition in higher frequency measurements, is a sharp shoulder near the complete screening. The presence of second harmonic susceptibility in the liquid regime implies nonlinear variation of the equilibrium magnetization.

  4. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  5. International movement of plasma and plasma contracting.

    Science.gov (United States)

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined.

  6. Communication through Plasma Sheaths

    CERN Document Server

    Korotkevich, A O; Zakharov, V E

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.

  7. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  8. Magnetic loop generation by collisionless gravitationally bound plasmas in axisymmetric tori.

    Science.gov (United States)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2013-04-01

    Current-carrying string loops are adopted in astrophysics to model the dynamics of isolated flux tubes of magnetized plasma expected to arise in the gravitational field of compact objects, such as black holes. Recent studies suggest that they could provide a framework for the acceleration and collimation of jets of plasma observed in these systems. However, the problem remains of the search of physical mechanisms which can consistently explain the occurrence of such plasma toroidal structures characterized by nonvanishing charge currents and are able to self-generate magnetic loops. In this paper, the problem is addressed in the context of Vlasov-Maxwell theory for nonrelativistic collisionless plasmas subject to both gravitational and electromagnetic fields. A kinetic treatment of quasistationary axisymmetric configurations of charged particles exhibiting epicyclic motion is obtained. Explicit solutions for the species equilibrium phase-space distribution function are provided. These are shown to have generally a non-Maxwellian character and to be characterized by nonuniform fluid fields and temperature anisotropy. Calculation of the relevant fluid fields and analysis of the Ampere equation then show the existence of nonvanishing current densities. As a consequence, the occurrence of a kinetic dynamo is proved, which can explain the self-generation of both azimuthal and poloidal magnetic fields by the plasma itself. This mechanism can operate in the absence of instabilities, turbulence, or accretion phenomena and is intrinsically kinetic in character. In particular, several kinetic effects contribute to it, identified here with finite Larmor radius, diamagnetic and energy-correction effects together with temperature anisotropy, and non-Maxwellian features of the equilibrium distribution function.

  9. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  10. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  11. Nonlinear plasma wave in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-08-15

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.

  12. Alfvenic Ion Temperature Gradient Activities in a Weak Magnetic Shear Plasma

    CERN Document Server

    Chen, W; Li, Y Y; Shi, Z B; Du, H R; Jiang, M; Yu, L M; Yuan, B S; Li, Y G; Yang, Z C; Shi, P W; Ding, X T; Dong, J Q; Liu, Yi; Xu, M; Xu, Y H; Yang, Q W; Duan, X R

    2016-01-01

    We report the first experimental evidence of Alfvenic ion temperature gradient (AITG) modes in HL-2A Ohmic plasmas. A group of oscillations with $f=15-40$ kHz and $n=3-6$ is detected by various diagnostics in high-density Ohmic regimes. They appear in the plasmas with peaked density profiles and weak magnetic shear, which indicates that corresponding instabilities are excited by pressure gradients. The time trace of the fluctuation spectrogram can be either a frequency staircase, with different modes excited at different times or multiple modes may simultaneously coexist. Theoretical analyses by the extended generalized fishbone-like dispersion relation (GFLDR-E) reveal that mode frequencies scale with ion diamagnetic drift frequency and $\\eta_i$, and they lie in KBM-AITG-BAE frequency ranges. AITG modes are most unstable when the magnetic shear is small in low pressure gradient regions. Numerical solutions of the AITG/KBM equation also illuminate why AITG modes can be unstable for weak shear and low pressure...

  13. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  14. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence

  15. Reviews of plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Shafranov, Vitalii Dmitrievich (ed.); Bakunin, Oleg G. (comps.) [Rossijskij Nauchnyj Tsentr ' ' Kurchatovskij Inst.' ' , Moscow (Russian Federation). Nuclear Fusion Inst.; Rozhansky, V. [St. Petersburg State Polytechnical Univ. (Russian Federation)

    2008-07-01

    Reviews of Plasma Physics Volume 24, edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence (orig.)

  16. Numerical Study of Velocity Shear Stabilization of 3D and Theoretical Considerations for Centrifugally Confined Plasmas and Other Interchange-Limited Fusion Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hassam, Adil [Univ. of Maryland, College Park, MD (United States)

    2015-09-21

    We studied the feasibility of resonantly driving GAMs in tokamaks. A numerical simulation was carried out and showed the essential features and limitations. It was shown further that GAMs can damp by phase-mixing, from temperature gradients, or nonlinear detuning, thus broadening the resonance. Experimental implications of this were quantified. Theoretical support was provided for the Maryland Centrifugal Experiment, funded in a separate grant by DOE. Plasma diamagnetism from supersonic rotation was established. A theoretical model was built to match the data. Additional support to the experiment in terms of numerical simulation of the interchange turbulence was provided. Spectra from residual turbulence on account of velocity shear suppression were obtained and compared favorably to experiment. A new drift wave, driven solely by the thermal force, was identified.

  17. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  18. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  19. Plasma and wave phenomena induced by neutral gas releases in the solar wind

    Directory of Open Access Journals (Sweden)

    H. Laakso

    Full Text Available We investigate plasma and wave disturbances generated by nitrogen (N2 gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986. N2 molecules are ionized by solar UV radiation at a rate of ~ 7 · 10-7 s-1 and give rise to a plasma cloud expanding around the spacecraft. Strong disturbances due to the interaction of the solar wind with the N+2 ion cloud are observed with a plasma and wave experiment (APV-V instrument. Three gas releases are accompanied by increases in cold electron density and simultaneous decreases of the spacecraft potential; this study shows that the spacecraft potential can be monitored with a reference sensor mounted on a short boom. The comparison between the model and observations suggests that the gas expands as an exhaust plume, and approximately only 1% of the ions can escape the beam within the first meters. The releases are also associated with significant increases in wave electric field emission (8 Hz–300 kHz; this phenomenon lasts for more than one hour after the end of the release, which is most likely due to the temporary contamination of the spacecraft surface by nitrogen gas. DC electric fields associated with the events are complex but interesting. No magnetic field perturbations are detected, suggesting that no significant diamagnetic effect (i.e. magnetic cavity is associated with these events.

    Key words. Ionosphere (planetary ionosphere – Space plasma physics (active perturbation experiments; instruments and techniques

  20. Plasma and fields in the wake of Rhea: 3-D hybrid simulation and comparison with Cassini data

    Directory of Open Access Journals (Sweden)

    E. Roussos

    2008-03-01

    Full Text Available Rhea's magnetospheric interaction is simulated using a three-dimensional, hybrid plasma simulation code, where ions are treated as particles and electrons as a massless, charge-neutralizing fluid. In consistency with Cassini observations, Rhea is modeled as a plasma absorbing obstacle. This leads to the formation of a plasma wake (cavity behind the moon. We find that this cavity expands with the ion sound speed along the magnetic field lines, resulting in an extended depletion region north and south of the moon, just a few Rhea radii (RRh downstream. This is a direct consequence of the comparable thermal and bulk plasma velocities at Rhea. Perpendicular to the magnetic field lines the wake's extension is constrained by the magnetic field. A magnetic field compression in the wake and the rarefaction in the wake sides is also observed in our results. This configuration reproduces well the signature in the Cassini magnetometer data, acquired during the close flyby to Rhea on November 2005. Almost all plasma and field parameters show an asymmetric distribution along the plane where the corotational electric field is contained. A diamagnetic current system is found running parallel to the wake boundaries. The presence of this current system shows a direct corelation with the magnetic field configuration downstream of Rhea, while the resulting j×B forces on the ions are responsible for the asymmetric structures seen in the velocity and electric field vector fields in the equatorial plane. As Rhea is one of the many plasma absorbing moons of Saturn, we expect that this case study should be relevant for most lunar-type interactions at Saturn.

  1. Microwave Argon Plasma Torch

    Science.gov (United States)

    2013-07-01

    an electron-ion pair in the discharge. Fig. 2. EEDF is non - Maxwellian and changes along the plasma column The electron–neutral collision...plasma radius. Even at atmospheric pressure the EEDF is non - Maxwellian and it is changing along the plasma column. ...18 31st ICPIG, July 14-19, 2013, Granada, Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

  2. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  3. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  4. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  5. Plasma in dentistry

    OpenAIRE

    Cha, Seunghee; Park, Young-Seok

    2014-01-01

    This review describes the contemporary aspects of plasma application in dentistry. Previous studies on plasma applications were classified into two categories, surface treatment and direct applications, and were reviewed, respectively according to the approach. The current review discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of polymerization, surface coating and plasma cleaning under the topics of surface treatment. Microbicidal activities, deco...

  6. The Plasma Universe

    Science.gov (United States)

    Suplee, Curt

    2009-09-01

    Preface; 1. The fourth state of matter; 2. The music and dance of plasmas; 3. The Sun-Earth connection; 4. Bringing the Sun to Earth: the story of controlled thermonuclear fusion; 5. The cosmic plasma theater: galaxies, stars, and accretion disks; 6. Putting plasmas to work; Index.

  7. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Manini, A

    2002-07-01

    -ray measurements can be used to determine the MECH power deposition location. A method for determining the MECH power absorption from the measurement of the MECH variations induced to the diamagnetic flux of the plasma is presented. The plasma diamagnetic flux, which is proportional to the total plasma kinetic energy, is measured using the DiaMagnetic Loop (DML) diagnostic. The application of the diagnostic to studies of the extraordinary mode (X-mode) absorption at the third electron cyclotron frequency (X3) has been performed in plasmas pre-heated by X-mode at the second harmonic (X2). Based on this diagnostic, full single-pass absorption of the injected X3 power has been measured with the X2 pre-heating in co-current drive. Experimental evidence indicates that a large fraction of the X3 power is absorbed by electrons in an energetic tail created by the pre-heating. (author)

  8. Global magnetosphere-like 3D structure formation in kinetics by hot magnetized plasma flow characterized by shape of the particle distribution function

    Science.gov (United States)

    Gubchenko, Vladimir

    The task was to provide an analytical elementary magnetosphere-like model in kinetics for verification of the 3D EM PIC codes created for space/aerospace and HED plasmas applications. Kinetic approach versus cold MHD approach takes into account different behavior in the EM fields of resonant and non resonant particles in the velocity phase space, which appears via shape characteristics of the particle velocity distribution function (PVDF) and via the spatial dispersion effect forming the collisionless dissipation in the EM fields. The external flow is a hot collisionless plasma characterized by the particle velocity distribution function (PVDF) with different shapes: Maxwellian, kappa, etc. The flow is in a “hot regime”: it can be supersonic but its velocity remains less the thermal velocity of the electrons. The “internal” part of the magnetosphere formed by trapped particles is the prescribed 3D stationary magnetization considered as a spherical “quasiparticle” with internal magnetodipole and toroidal moments represented as a broadband EM driver. We obtain after the linearization of Vlasov/Maxwell equations a self-consistent 3D large scale kinetic solution of the classic problem. Namely, we: model the “outer” part of the magnetosphere formed by external hot plasma flow of the flyby particles. Solution of the Vlasov equation expressed via a tensor of dielectric permittivity of nonmagnetized and magnetized flowing plasma. Here, we obtain the direct kinetic dissipative effect of the magnetotail formation and the opposite diamagnetic effect of the magnetosphere “dipolization”. We get MHD wave cone in flow magnetized by external guiding magnetic (GM) field. Magnetosphere in our consideration is a 3D dissipative “wave” package structure of the skinned EM fields formed by the “waves” excited at frequency bands where we obtain negative values and singularities (resonances) of squared EM refractive index of the cold plasma. The hot regime

  9. 抗磁性物质磁悬浮方法在空间生物学与生物技术中的应用%Application of Magnetic Levitation of Diamagnetic Materials for Space Biology and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    曹建平; 尹大川; 骞爱荣; 田宗成; 续惠云; 黄勇平; 商澎

    2011-01-01

    Weightlessness is one of the important physical characteristics of space environment. For several decades, weightless environment in space has been used for investigation and exploration in many scientific fields. Because of shortage and limit of experiments in real space environment, many kinds of ground-based simulated techniques and methods inspired by space experimental environments were developed for simulating the weightlessness of space environment and the effects of weightlessness. However, these techniques and methods have limitations not only in principle, but also in application for space biology and biotechnology. In this paper, we introduced a new technique for simulating weightlessness, magnetic levitation of diamagnetic materials produced by large gradlient high magnetic field, and summarized the research progress by using this technique in crystal growth of proteins, molecular cell biology and integrated biology.%失重是特定空间运动条件下的重要环境物理特征之一,一般以微重力环境来表示.几十年来人类利用空间失重环境进行了多学科领域的科学研究与探索.由于真实空间失重环境下科学实验机会稀少,人类为研究空间失重环境或效应,开发了多种地基的空间模拟实验技术方法.然而,对于空间生物学和空间生物技术研究而言,已有的各种模拟实验技术手段在原理上和应用上均存在一定的局限性.本文介绍了抗磁性物质在大梯度强磁场中的悬浮现象,及将其用于模拟空间失重环境的方法与原理;简述了近年来利用抗磁性物质悬浮方法进行生物大分子晶体生长、分子细胞生物学及整体生物学等方面研究与应用的进展.

  10. Fundamental ion cyclotron resonance heating of JET deuterium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krasilnikov, A. V. [Troitsk Institute of Nuclear Physics (TRINITI), Russia; Van Eester, D. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Lerche, E. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Ongena, J. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Amosov, V. N. [Troitsk Institute of Nuclear Physics (TRINITI), Russia; Biewer, Theodore M [ORNL; Bonheure, G. [Laboratory for Plasma Physics-ERM/KMS (LPP-ERM/KMS), Brussels, Belgium; Crombe, K. [Ghent University, Belgium; Ericsson, G. [Uppsala University, Uppsala, Sweden; Esposito, Basilio [ENEA, Frascati; Giacomelli, L. [Uppsala University, Uppsala, Sweden; Hellesen, C. [Uppsala University, Uppsala, Sweden; Hjalmarsson, A. [Uppsala University, Uppsala, Sweden; Jachmich, S. [EURATOM / UKAEA, UK; Kallne, J. [Uppsala University, Uppsala, Sweden; Kaschuck, Yu A [Troitsk Institute of Nuclear Physics (TRINITI), Russia; Kiptily, V. [EURATOM / UKAEA, UK; Leggate, H. [EURATOM / UKAEA, UK; Mailloux, J. [EURATOM / UKAEA, UK; Marocco, D. [ENEA, Frascati; Mayoral, M.-L. [EURATOM / UKAEA, UK; Popovichev, S. [EURATOM / UKAEA, UK; Riva, M. [ENEA, Frascati; Santala, M. [EURATOM / UKAEA, UK; Stamp, M. F. [EURATOM / UKAEA, UK; Vdovin, V. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Walden, A. [EURATOM / UKAEA, UK

    2009-03-01

    Radio frequency heating of majority ions is of prime importance for understanding the basic role of auxiliary heating in the activated D T phase of ITER. Majority deuterium ion cyclotron resonance heating (ICRH) experiments at the fundamental cyclotron frequency were performed in JET. In spite of the poor antenna coupling at 25 MHz, this heating scheme proved promising when adopted in combination with D neutral beam injection (NBI). The effect of fundamental ICRH of a D population was clearly demonstrated in these experiments: by adding ~25% of heating power the fusion power was increased up to 30 50%, depending on the type of NBI adopted. At this power level, the ion and electron temperatures increased from Ti ~ 4.0 keV and Te ~ 4.5 keV (NBI-only phase) to Ti ~ 5.5 keV and Te ~ 5.2 keV (ICRH + NBI phase), respectively. The increase in the neutron yield was stronger when 80 keV rather than 130 keV deuterons were injected in the plasma. It is shown that the neutron rate, the diamagnetic energy and the electron as well as the ion temperature scale roughly linearly with the applied RF power. A synergistic effect of the combined use of ICRF and NBI heating was observed: (i) the number of neutron counts measured by the neutron camera during the combined ICRF + NBI phases of the discharges exceeded the sum of the individual counts of the NBI-only and ICRF-only phases; (ii) a substantial increase in the number of slowing-down beam ions was detected by the time of flight neutron spectrometer when ICRF power was switched on; (iii) a small D subpopulation with energies slightly above the NBI launch energy was detected by the neutral particle analyzer and -ray spectroscopy.

  11. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  12. Plasma Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    Rajkumar Diwan

    2011-01-01

    Full Text Available Definition: Plasma, the fourth state of matter, is a collection of charged particles (electrons, ions, neutral atoms. Recent demonstration of plasma technology in treatment of living cells, tissue and organs are creating a new field at the intersection of plasma science and technology with biology and medicine known as plasma medicine. Plasma medicine is one of the newest fields of modem applied plasma chemistry. It appeared several years ago and comprises studies concerning the direct action of low-temperature, one atmosphere air plasma (cold plasma/nonthermal plasmalnonequilibrium on body tissues for various noninvasive therapeutic treatments or diagnostics purpose. The study of plasma holds promise for a myriad of applications ranging from lasers and electronics, hazardous decontamination, sterilization and disinfection of foods, soil, water, instruments, to medical uses in wound healing and treating certain types of tumors and cancers. Plasma represents a new state-of-the-art sterilization and disinfection treatment for certain oral and environmental pathogens, heat-sensitive materials, hard and soft surfaces, and may assist health care facilities in the management of various health concerns. The role that low temperature atmospheric pressure plasma (LTAPP could play in the inactivation of pathogenic microorganisms might prove to be a new, faster, more economical alternative.

  13. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  14. Laminar Plasma Dynamos

    CERN Document Server

    Wang, Z; Barnes, C W; Barnes, D C; Wang, Zhehui; Pariev, Vladimir I.; Barnes, Cris W.; Barnes, Daniel C.

    2002-01-01

    A new kind of dynamo utilizing flowing laboratory plasmas has been identified. Conversion of plasma kinetic energy to magnetic energy is verified numerically by kinematic dynamo simulations for magnetic Reynolds numbers above 210. As opposed to intrinsically-turbulent liquid-sodium dynamos, the proposed plasma dynamos correspond to laminar flow topology. Modest plasma parameters, 1-20 eV temperatures, 10^{19}-10^{20} m^{-3} densities in 0.3-1.0 m scale-lengths driven by velocities on the order of the Alfven Critical Ionization Velocity (CIV), self-consistently satisfy the conditions needed for the magnetic field amplication. Growth rates for the plasma dynamos are obtained numerically with different geometry and magnetic Reynolds numbers. Magnetic-field-free coaxial plasma guns can be used to sustain the plasma flow and the dynamo.

  15. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  16. New laser power sensor using diamagnetic levitation.

    Science.gov (United States)

    Pinot, P; Silvestri, Z

    2017-08-01

    This paper presents a preliminary study of an elementary device consisting of a small plate made from pyrolytic carbon levitated above a magnet array which is sensitive to any irradiating laser power. This device might provide an interesting alternative to power meters based on thermal measurement techniques via the Stefan-Boltzmann law or the photon-electron interaction. We show that the photo-response of a pyrolytic carbon plate in terms of levitation height versus irradiation power in the range of 20 mW to 1 W is sufficiently linear, sensitive, and reproducible to be used as a laser power sensor. The elevation height change as a function of irradiance time appears to be a suitable measurement parameter for establishing a relation with the irradiating laser power. The influence of some quantities affecting the measurement results has been highlighted. The study demonstrates that such a device should prove useful for applications in metrology, industry, or emerging technologies.

  17. Diamagnetism of quantum gases with singular potentials

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Savoie, Baptiste

    2010-01-01

    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is analytic with respect to the chemical potential and the intensity of the external magnetic...

  18. Vibrations of a diamagnetically levitated water droplet

    CERN Document Server

    Hill, R J A

    2010-01-01

    We measure the frequencies of small-amplitude shape oscillations of a magnetically-levitated water droplet. The drop levitates in a magnetogravitational potential trap. The restoring forces of the trap, acting on the droplet's surface in addition to the surface tension, increase the frequency of the oscillations. We derive the eigenfrequencies of the normal mode vibrations of a spherical droplet in the trap and compare it with our experimental measurements. We also consider the effect of the shape of the potential trap on the eigenfrequencies.

  19. Strong diamagnetism for general domains and applications

    DEFF Research Database (Denmark)

    Fournais, Søren; Helffer, Bernard

    2007-01-01

    We consider the Neumann Laplacian with constant magnetic field on a regular domain. Let $B$ be the strength of the magnetic field, and let $\\lambda_1(B)$ be the first eigenvalue of the magnetic Neumann Laplacian on the domain. It is proved that $B \\mapsto \\lambda_1(B)$ is monotone increasing for ...

  20. Plasmas for medicine

    Science.gov (United States)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous

  1. Nonlinear Plasma Wave in Magnetized Plasmas

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke

    2013-01-01

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].

  2. Plasma Biomedicine in Orthopedics

    Science.gov (United States)

    Hamaguchi, Satsohi

    2012-10-01

    Various effects of plasmas irradiation on cells, tissues, and biomaterials relevant for orthopedic applications have been examined. For direct application of plasmas to living cells or tissues, dielectric barrier discharges (DBDs) with helium flows into ambient air were used. For biomaterial processing, on the other hand, either helium DBDs mentioned above or low-pressure discharges generated in a chamber were used. In this presentation, plasma effects on cell proliferation and plasma treatment for artificial bones will be discussed. First, the conditions for enhanced cell proliferation in vitro by plasma applications have been examined. The discharge conditions for cell proliferation depend sensitively on cell types. Since cell proliferation can be enhanced even when the cells are cultured in a plasma pre-treated medium, long-life reactive species generated in the medium by plasma application or large molecules (such as proteins) in the medium modified by the plasma are likely to be the cause of cell proliferation. It has been found that there is strong correlation between (organic) hydroperoxide generation and cell proliferation. Second, effects of plasma-treated artificial bones made of porous hydroxyapatite (HA) have been examined in vitro and vivo. It has been found that plasma treatment increases hydrophilicity of the surfaces of microscopic inner pores, which directly or indirectly promotes differentiation of mesenchymal stem cells introduced into the pores and therefore causes faster bone growth. The work has been performed in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  3. Plasma detachment in linear devices

    Science.gov (United States)

    Ohno, N.

    2017-03-01

    Plasma detachment research in linear devices, sometimes called divertor plasma simulators, is reviewed. Pioneering works exploring the concept of plasma detachment were conducted in linear devices. Linear devices have contributed greatly to the basic understanding of plasma detachment such as volume plasma recombination processes, detached plasma structure associated with particle and energy transport, and other related issues including enhancement of convective plasma transport, dynamic response of plasma detachment, plasma flow reversal, and magnetic field effect. The importance of plasma detachment research using linear devices will be highlighted aimed at the design of future DEMO.

  4. Advanced plasma diagnostics for plasma processing

    Science.gov (United States)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  5. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  6. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  7. Ultracold Neutral Plasmas

    CERN Document Server

    Killian, T C; Gupta, P; Laha, S; Martinez, Y N; Mickelson, P G; Nagel, S B; Saenz, A D; Simien, C E; Killian, Thomas C.

    2005-01-01

    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach $10^{11}$ cm$^{-3}$. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr$^+$ ${^2S_{1/2}} -> {^2P_{1/2}}$ transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.

  8. What is a plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

  9. Pulsed plasma electron sourcesa)

    Science.gov (United States)

    Krasik, Ya. E.; Yarmolich, D.; Gleizer, J. Z.; Vekselman, V.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.

    2009-05-01

    There is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E ≤105 V/cm and duration ≤10-5 s. In this review, several types of plasma electron sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) plasma sources. The operation of passive sources is governed by the formation of flashover plasma whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode plasma sources the plasma parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the plasma and generated electron beam were characterized.

  10. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  11. Atmospheric Plasma Depainting

    Science.gov (United States)

    2014-11-19

    Plasma Carbon Dioxide Water Vapor 11 Atmospheric Plasma Depainting, ASETSDefense, Nov 19, 2014 Features and Benefits of APCR Technology Feature...Depainting, ASETSDefense, Nov 19, 2014 14 APC on Aluminum Removal to Primer RAM on Carbon Fiber Partial Topcoat Removal APC Topcoat RAM...60Hz Plasma Flux™ Power Supply VENT To Facility HEPA <= Filtration COTS Six-Axis Robot Aircraft part Particulate Collection System

  12. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  13. Plasma adiabatic lapse rate

    CERN Document Server

    Amendt, Peter; Wilks, Scott

    2012-01-01

    The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.

  14. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  15. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  16. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  17. Solid expellant plasma generator

    Science.gov (United States)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  18. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  19. Plasma and particles

    Science.gov (United States)

    Špatenka, Petr; Vacková, Tat'ana; Nováček, Vojtěch; Jeníková, Zdenka

    2016-12-01

    Plasma has been proved as a standard industrial method for surface treatment of solid bulk materials. Recently plasma has also been used in connection with production, treatment and functionalization of powder and granulate materials. Functionalization was originally developed for hydrophylization of hydrophobic surfaces of particles made from various materials. An industrial scale device with a capacity of several hundreds of tons per year based on plasma treatment will be presented. As examples of the applications are given plasma treated polyethylene powder dispersed in the water; and very good adhesion of polymer powders to metals or glass, which is promising for development of new generation of thermoplastic composites.

  20. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. Q., E-mail: xxu@llnl.gov [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Ma, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States); Li, G. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2014-12-15

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode (ELM) crashes and the consistent collisionality scaling of ELM energy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELM energy losses vs collisionality via a density scan. Linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lower n. Nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELM energy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. The critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.

  1. Electron temperature fluctuation in the HT-7 tokamak plasma observed by electron cyclotron emission imaging

    Institute of Scientific and Technical Information of China (English)

    Xu Xiao-Yuan; Wang Jun; Yu Yi; Wen Yi-Zhi; Yu Chang-Xuan; Liu Wan-Dong; Wan Bao-Nian; Gao Xiang; N. C. Luhmann; C. W. Domier; Jian Wang; Z. G. Xia; Zuowei Shen

    2009-01-01

    The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number kg is calculated to be about 1.58 cm-1, or keps ≈0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation.

  2. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  3. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  4. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up

  5. [Acute plasma cell leukemia].

    Science.gov (United States)

    Monsalbe, V; Domíngues, C; Roa, I; Busel, D; González, S

    1989-01-01

    Plasma Cell Leukemia is a very rare form of plasmocytic dyscrasia, whose clinical and pathological characteristics warrant its recognition as a distinct subentity. We report the case of a 60 years old man who presented a rapidly fatal acute plasma cell leukemia, with multiple osteolytic lesions, hipercalcemia, renal and cardiac failure.

  6. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Department of Engineering Physics and Mechanics, Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from a plasma reflects the anisotropic properties of the plasma, especially the angular anisotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and the GAMMA-10 tandem mirror machines. The soft x-ray laser line from the neonlike germanium was also found polarized. (author)

  7. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iwamae, Atsushi; Inoue, Takeru; Tanaka, Akihiro; Kawakami, Kazuki; Fujimoto, Takashi [Kyoto Univ., Dept. of Engineering Physics, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from plasma reflects the anisotropic properties of the plasma, especially the angular isotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and GAMMA 10 tandem mirror device. (author)

  8. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  9. Plasma etching an introduction

    CERN Document Server

    Manos, Dennis M

    1989-01-01

    Plasma etching plays an essential role in microelectronic circuit manufacturing. Suitable for researchers, process engineers, and graduate students, this book introduces the basic physics and chemistry of electrical discharges and relates them to plasma etching mechanisms. Throughout the volume the authors offer practical examples of process chemistry, equipment design, and production methods.

  10. Modelling of Complex Plasmas

    NARCIS (Netherlands)

    Akdim, M.R. (Mohamed Reda)

    2003-01-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a r

  11. "Angular" plasma cell cheilitis.

    Science.gov (United States)

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-17

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  12. "Angular" plasma cell cheilitis

    OpenAIRE

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida Jr, Hiram Larangeira; Lorencette, Nadia Aparecida; Netto, Jose Fillus

    2014-01-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  13. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  14. Innovations in plasma sensors

    Science.gov (United States)

    Zurbuchen, Thomas H.; Gershman, Daniel J.

    2016-04-01

    During the history of space exploration, ever improving instruments have continued to enable new measurements and discoveries. Focusing on plasma sensors, we examine the processes by which such new instrument innovations have occurred over the past decades. Due to risk intolerance prevalent in many NASA space missions, innovations in plasma instrumentation occur primarily when heritage systems fail to meet science requirements, functional requirements as part of its space platform, or design constraints. We will review such innovation triggers in the context of the design literature and with the help of two case studies, the Fast Imaging Plasma Spectrometer on MErcury Surface, Space ENvironment, GEochemistry, and Ranging and the Fast Plasma Investigation on Magnetosphere Multiscale. We will then discuss the anticipated needs for new plasma instrument innovations to enable the science program of the next decade.

  15. Wakes in inhomogeneous plasmas

    CERN Document Server

    Kompaneets, Roman; Nosenko, Vladimir; Morfill, Gregor E

    2014-01-01

    The Debye shielding of a charge immersed in a flowing plasma is an old classic problem in plasma physics. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region. We address the role of the plasma inhomogeneity by rigorously calculating the point charge potential in the collisionless Bohm sheath. We demonstrate that the inhomogeneity can dramatically modify the wake, making it non-oscillatory and weaker.

  16. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  17. Microphysics of cosmic plasmas

    CERN Document Server

    Bykov, Andrei; Cargill, Peter; Dendy, Richard; Wit, Thierry; Raymond, John

    2014-01-01

    This title presents a review of the detailed aspects of the physical processes that underlie the observed properties, structures and dynamics of cosmic plasmas. An assessment of the status of understanding of microscale processes in all astrophysical collisionless plasmas is provided. The topics discussed include  turbulence in astrophysical and solar system plasmas as a phenomenological description of their dynamic properties on all scales; observational, theoretical and modelling aspects of collisionless magnetic reconnection; the formation and dynamics of shock waves; and a review and assessment of microprocesses, such as the hierarchy of plasma instabilities, non-local and non-diffusive transport processes and ionisation and radiation processes.  In addition, some of the lessons that have been learned from the extensive existing knowledge of laboratory plasmas as applied to astrophysical problems are also covered.   This volume is aimed at graduate students and researchers active in the areas of cosmi...

  18. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  19. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    as reactive splvent (as shown in Figure 1). 1] H. Biederman, in Plasma Polymer Films. (ed.) H. Biederman. Imperial College Press, Singapore, 13-24 ~OO~· '. , [2] R. d'Agostino et.a!. in Plasma Depd~itiqn, 'Treatment, and Etching ofPolymers. (ed.) R. d'Agostino, Academic Press, U.S. (1990). [3] F. F. Shi......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...

  20. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Phadnaik Mangesh

    2010-01-01

    Full Text Available Plasma cell granuloma is a rare reactive lesion composed of polyclonal plasma cells. It manifests primarily in the lungs, but may occur in various other anatomic locations like the oral cavity. Intraoral plasma cell granulomas involving the tongue, lip, oral mucosa and gingiva have been reported in the past. This case presents a 54-year-old female with chronic periodontitis and mandibular anterior gingival overgrowth treated by Phase I therapy (scaling and root planing and excisional biopsy. Histological examination revealed inflammatory cell infiltrate containing sheets of plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma. This case highlights the need to biopsy for unusual lesions to rule out potential neoplasms.

  1. Diagnostics of Nanodusty Plasma

    Science.gov (United States)

    Greiner, Franko; Groth, Sebastian; Tadsen, Bejamin; Piel, Alexander

    2015-11-01

    The diagnostic of nanodusty plasmas, i.e. plasmas including nano-sized dust particles, is a challenging task. For both, the diagnostic of the nanodusty plasma itself, and the in-situ diagnostic of the nanoparticles, no standard diagnostic exist. Nanodust particle size and density can be estimated using light scattering techniques, namely kinetic Mie ellipsometry and extinction measurements. The charge of the nanoparticles can be estimated from the analysis of dust density waves (DDW). Parameters like the electron density, which give information about the plasma itself, may be deduced from the DDW analysis. We present detailed investigations on nanodust in a reactive Argon-Acetylene plasma created in an rf-driven parallel plate reactor at low pressure using the above mentioned portfolio of diagnostic. Funded by DFG under contract SFB TR-24/A2.

  2. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  3. Electronegative Plasma Instabilities in Industrial Pulsed Plasmas

    Science.gov (United States)

    Pribyl, Patrick; Hansen, Anders; Gekelman, Walter

    2016-10-01

    Electronegative gases that are important for industrial etch processes have a series of instabilities that occur at process relevant conditions. These have been studied since the 1990s, but are becoming a much more important today as plasma reactors are being pushed to produce ever finer features, and tight control of the etch process is becoming crucial. The experiments are being done in a plasma etch tool that closely simulates a working industrial device. ICP coils in different configurations are driven by a pulsed RF generators operating at 2-5 MHz. A computer controlled automated probe drive can access a volume above the substrate. The probe can be a Langmuir probe, a ``Bdot'' probe, or an emissive probe the latter used for more accurate determination of plasma potential. A microwave interferometer is available to measure line-averaged electron density. The negative ion instability is triggered depending upon the gas mix (Ar,SF6) , pressure and RF power. The instability can be ``burned through'' by rapidly pulsing the RF power. In this study we present measurements of plasma current and density distribution over the wafer before, after and during the rapid onset of the instability. Work suported by NSF-GOALI Award and done at the BAPSF.

  4. Observation of ion cyclotron range of frequencies mode conversion plasma flow drive on Alcator C-Moda)

    Science.gov (United States)

    Lin, Y.; Rice, J. E.; Wukitch, S. J.; Greenwald, M. J.; Hubbard, A. E.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Reinke, M. L.; Tsujii, N.; Wright, J. C.; Alcator C-Mod Team

    2009-05-01

    At modest H3e levels (n3He/ne˜8%-12%), in relatively low density D(H3e) plasmas, n¯e≤1.3×1020 m-3, heated with 50 MHz rf power at Bt0˜5.1 T, strong (up to 90 km/s) toroidal rotation (Vϕ) in the cocurrent direction has been observed by high-resolution x-ray spectroscopy on Alcator C-Mod. The change in central Vϕ scales with the applied rf power (≤30 km s-1 MW-1), and is generally at least a factor of 2 higher than the empirically determined intrinsic plasma rotation scaling. The rotation in the inner plasma (r /a≤0.3) responds to the rf power more quickly than that of the outer region (r /a≥0.7), and the rotation profile is broadly peaked for r /a≤0.5. Localized poloidal rotation (0.3≤r/a≤0.6) in the ion diamagnetic drift direction (˜2 km/s at 3 MW) is also observed, and similarly increases with rf power. Changing the toroidal phase of the antenna does not affect the rotation direction, and it only weakly affects the rotation magnitude. The mode converted ion cyclotron wave (MC ICW) has been detected by a phase contrast imaging system and the MC process is confirmed by two-dimensional full wave TORIC simulations. The simulations also show that the MC ICW is strongly damped on H3e ions in the vicinity of the MC layer, approximately on the same flux surfaces where the rf driven flow is observed. The flow shear in our experiment is marginally sufficient for plasma confinement enhancement based on the comparison of the E ×B shearing rate and gyrokinetic linear stability analysis.

  5. Nonthermal plasma chemistry and physics

    CERN Document Server

    Meichsner, Jurgen; Schneider, Ralf; Wagner, Hans-Erich

    2013-01-01

    In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications.Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemist

  6. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  7. Urine and plasma propranolol.

    Science.gov (United States)

    Andreasen, F; Jakobsen, P; Kornerup, H J; Pedersen, E B; Pedersen, O L

    1983-01-01

    Eight hypertensive patients who had been followed in an outpatient clinic during long-term therapy with propranolol (40 to 160 mg twice daily) were studied during a 24-hr stay in the ward. The usual oral dose was given and the total and free plasma concentrations were determined during the 24 hr and the urinary excretion of unchanged drug was measured. Average free plasma concentration of propranolol (y free) was calculated from: y free = Excreted propranolol (ng/24 hr)/Creatinine clearance (ml/24 hr). There was a significant relationship between log y free and average free plasma concentration (means free) determined from the directly measured plasma concentration curve: log y free = 0.0743 means free - 0.0466 (r = 0.98, P less than 0.001). In another group of propranolol-treated hypertensive patients there was a significant positive relationship between orosomucoid concentration and reciprocal of the free propranolol fraction in plasma. From this relationship the average total drug concentration (y total) was calculated from y free; there was a significant correlation with directly measured total plasma level: log y total = 0.0038 . means total + 1.0895 (r = 0.91, P less than 0.001). It is suggested that individually determined values of y free below 30 ng/ml and y total below 400 ng/ml (the concentration range studied) can be used to calculate the average mean 24-hr free and total plasma concentrations.

  8. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  9. Plasma Science Committee (PLSC)

    Science.gov (United States)

    1990-12-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences - National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues.

  10. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  11. Stirring Unmagnetized Plasma

    CERN Document Server

    Collins, C; Wallace, J; Jara-Almonte, J; Reese, I; Zweibel, E; Forest, C B; 10.1103/PhysRevLett.108.115001

    2012-01-01

    A new concept for spinning unmagnetized plasma is demonstrated experimentally. Plasma is confined by an axisymmetric multi-cusp magnetic field and biased cathodes are used to drive currents and impart a torque in the magnetized edge. Measurements show that flow viscously couples momentum from the magnetized edge (where the plasma viscosity is small) into the unmagnetized core (where the viscosity is large) and that the core rotates as a solid body. To be effective, collisional viscosity must overcome the ion-neutral drag due to charge exchange collisions.

  12. Optical plasma microelectronic devices

    CERN Document Server

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  13. Radiofrequency power in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document includes the various communications that were presented at the 11th topical conference on radio frequency power in plasmas which took place in Palm Springs in May 1995. It includes current diffusion studies to assess the non-inductive current deposition profiles, experiments for plasma to reach quickly an equilibrium state, and modelling of electrons in plasma. Some comparison studies also reveal the efficiency of the Quasi-Optical Grill antenna for reactor applications. Finally, a scenario for efficient mode conversion heating in the ion cyclotron range of frequency is presented. Separate abstracts were prepared for the 6 papers in this volume. (TEC).

  14. Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas

    OpenAIRE

    Titus, Monica Joy

    2010-01-01

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactio...

  15. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Amitkumar B Pandav

    2012-01-01

    Full Text Available Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma.

  16. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  17. Understanding Micro Plasmas

    CERN Document Server

    Winter, J; Böke, M; Ellerweg, D; Hemke, T; Knake, N; Mussenbrock, T; Niermann, B; Schröder, D; der Gathen, V Schulz-von; von Keudell, A

    2011-01-01

    Micro plasmas are operated around atmospheric pressure exhibiting pronounced non-equilibrium characteristics, i.e. they possess energetic electrons while ions and neutrals remain cold. They have gained significant interest due to their enormous application potential e.g. in the biomedical, surface modification and light source areas, just to name a few. Many different configurations are in use. Their understanding and quantification is mandatory for further progress in applications. We report on recent progress in the diagnostics and simulation of the entire micro plasma system from gas introduction, via the plasma discharge up to the samples at the example of a plasma jet operated in He/O2 in an ambient air environment.

  18. Plasma Cell Cheilitis

    Directory of Open Access Journals (Sweden)

    Thami Gurvinder P

    1999-01-01

    Full Text Available A case of plasma cell cheilitis with good response to glucocorticoids, is described for its rarity and probable aetiological correlation with habit of use of nasal snuff is discussed.

  19. The plasma scalpel.

    Science.gov (United States)

    Link, W J; Incropera, F P; Glover, J L

    1976-01-01

    The plasma scalpel simultaneously cuts tissue and cauterizes blood vessels measuring 3 mm in diameter with a small, hot (3000 C) gas jet. In animal studies, the amount of hemorrhage has been shown to be less with the plasma scalpel than with steel or electrosurgical scalpels, and incisions have healed without complications. Amount of damaged tissue is limited. Human trials are under way, and the device shows promise as a clinical tool.

  20. Plasma Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the course of plasma spray, the plasma jet is comprehensively functioned by such effects as thermal pinch, magnetic pinch and mechanical compression and the flow is jetting at a high speed, the energy is concentrated and its center temperature is so high as to reach upwards of 15 000 ℃ which is capable of melting various kinds of materials inclusive of ceramic, it has a broad applied prospects in the fields of automobile, electronics, telecommunications, medical treatment, air navigation & space navigati...

  1. Plasma-aided manufacturing

    Science.gov (United States)

    Shohet, J. L.

    1993-12-01

    Plasma-aided manufacturing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. Plasma-aided manufacturing has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both the high-technology and the more traditional industries in the United States.

  2. Cluster view of the plasma sheet boundary layer and bursty bulk flow connection

    Directory of Open Access Journals (Sweden)

    O. W. Lennartsson

    2009-04-01

    separations. Altogether, the Cluster observations described here mesh rather well with theories about so called plasma sheet "bubbles," i.e. earthward drifting closed magnetic flux tubes with reduced particle pressure and enhanced magnetic field strength at their apex. It is argued that such bubbles may be initiated by localized diamagnetic instabilities.

  3. Particle acceleration by plasma

    CERN Document Server

    Ogata, A

    2002-01-01

    Plasma acceleration is carried out by using potential of plasma wave. It is classified by generation method of plasma wave such as the laser wake-field acceleration and the beat wave acceleration. Other method using electron beam is named the plasma wake-field acceleration (or beam wake-field acceleration). In this paper, electron acceleration by laser wake-field in gas plasma, ion source by laser radiation of solid target and nanoion beam generation by one component of plasma in trap are explained. It is an applicable method that ions, which run out from the solid target irradiated by laser, are used as ion source of accelerator. The experimental system using 800 nm laser, 50 mJ pulse energy and 50 fs pulse width was studied. The laser intensity is 4x10 sup 1 sup 6 Wcm sup - sup 2 at the focus. The target film of metal and organic substance film was used. When laser irradiated Al target, two particles generated, in front and backward. It is new fact that the neutral particle was obtained in front, because it...

  4. Plasma Injection Schemes for Laser-Plasma Accelerators

    OpenAIRE

    J. Faure

    2017-01-01

    Plasma injection schemes are crucial for producing high-quality electron beams in laser-plasma accelerators. This article introduces the general concepts of plasma injection. First, a Hamiltonian model for particle trapping and acceleration in plasma waves is introduced; ionization injection and colliding-pulse injection are described in the framework of this Hamiltonian model. We then proceed to consider injection in plasma density gradients.

  5. Plasma surface modification of polymers

    Science.gov (United States)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  6. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  7. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  8. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...

  9. Turbulent complex (dusty) plasma

    Science.gov (United States)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  10. Plasma treatment of onychomycosis

    Science.gov (United States)

    Xiong, Zilan; Roe, Jeff; Grammer, Tim; Him, Yeon-Ho; Graves, David B.

    2015-09-01

    Onychomycosis or fungal infection of the toenail or fingernail is a common affliction. Approximately 10% of the world's adult population is estimated to suffer from onychomycosis. Current treatment options such as topical creams, oral drugs, or laser treatments are generally limited by a variety of problems. We present results for an alternative onychomycosis treatment scheme using atmospheric pressure cold air plasmas. Using thinned cow hoof as a model nail material, we tested the ability of various plasma sources to act through the model nail to eradicate either bacteria or fungus deposited on the opposite side. Following 20 minute exposure to a surface microdischarge (SMD) device operating in room air, we observed a ~ 2 log reduction of E. coli. A similar result was obtained against T. rubrum after 45 min plasma treatment. NOx species concentration penetrating through the model nail as well as uptake into the nail were measured as a function of nail thickness. We propose that these plasma-generated species, or perhaps their reaction products, are responsible for at least part of the observed anti-microbial effect. We also explore the use of ultraviolet light acting in synergy with plasma-generated chemical species.

  11. Plasma coal reprocessing

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.

    2013-12-01

    Results of many years of investigations of plasma-chemical technologies for pyrolysis, hydrogenation, thermochemical preparation for combustion, gasification, and complex reprocessing of solid fuels and hydrocarbon gas cracking are represented. Application of these technologies for obtaining the desired products (hydrogen, industrial carbon, synthesis gas, valuable components of the mineral mass of coal) corresponds to modern ecological and economical requirements to the power engineering, metallurgy, and chemical industry. Plasma fuel utilization technologies are characterized by the short-term residence of reagents within a reactor and the high degree of the conversion of source substances into the desired products without catalyst application. The thermochemical preparation of the fuel to combustion is realized in a plasma-fuel system presenting a reaction chamber with a plasmatron; and the remaining plasma fuel utilization technologies, in a combined plasma-chemical reactor with a nominal power of 100 kW, whose zone of the heat release from an electric arc is joined with the chemical reaction zone.

  12. Alcohol and plasma triglycerides.

    Science.gov (United States)

    Klop, Boudewijn; do Rego, Ana Torres; Cabezas, Manuel Castro

    2013-08-01

    This study reviews recent developments concerning the effects of alcohol on plasma triglycerides. The focus will be on population, intervention and metabolic studies with respect to alcohol and plasma triglycerides. Alcohol consumption and fat ingestion are closely associated and stimulated by each other via hypothalamic signals and by an elevated cephalic response. A J-shaped relationship between alcohol intake and plasma triglycerides has been described. A normal body weight, polyphenols in red wine and specific polymorphisms of the apolipoprotein A-V and apolipoprotein C-III genes may protect against alcohol-associated hypertriglyceridemia. In contrast, obesity exaggerates alcohol-associated hypertriglyceridemia and therefore the risk of pancreatitis. High alcohol intake remains harmful since it is associated with elevated plasma triglycerides, but also with cardiovascular disease, alcoholic fatty liver disease and the development of pancreatitis. Alcohol-induced hypertriglyceridemia is due to increased very-low-density lipoprotein secretion, impaired lipolysis and increased free fatty acid fluxes from adipose tissue to the liver. However, light to moderate alcohol consumption may be associated with decreased plasma triglycerides, probably determined by the type of alcoholic beverage consumed, genetic polymorphisms and lifestyle factors. Nevertheless, patients should be advised to reduce or stop alcohol consumption in case of hypertriglyceridemia.

  13. Plasma diagnostics in plasma processing for nanotechnology and nanolevel chemistry

    Directory of Open Access Journals (Sweden)

    Hiroshi Akatsuka

    2004-01-01

    Full Text Available The author reviews the role of various plasma diagnostics in plasma processing for nanotechnology, and points out some essential methods of spectroscopic methods to diagnose plasmas for nanoprocessing. Two experimental examples are discussed between the characteristics of nanomaterials and plasma parameters. One is measurement of rotation temperature in processing of carbon nanotube. The other is that of vibrational temperature in surface nitriding of titanium by nitrogen plasma processing. We summarize what to measure and how to measure them from the technical viewpoint of plasma diagnostics.

  14. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  15. Plasma rico en plaquetas Platelet -rich plasma

    Directory of Open Access Journals (Sweden)

    J. González Lagunas

    2006-04-01

    Full Text Available El Plasma Rico en Plaquetas es una suspensión concentrada de la sangre centrifugada que contiene elevadas concentraciones de trombocitos. Durante los últimos años, este producto ha aparecido de forma repetida en publicaciones científicas y en medios de comunicación generales como un producto que por sus características induce la curación y regeneración de los tejidos. La premisa de su uso es que las elevadas concentraciones de plaquetas en el PRP, liberan cantidades significativas de factores de crecimiento. En este artículo se van a recoger las evidencias científicas que se han presentado en la literatura médica con respecto al PRP y a la curación ósea, así como las diferentes aplicaciones clínicas que se han sugerido.Platelet-rich plasma is a by-product of centrifuged whole blood that contains high levels of thrombocytes. In the last decade, scientific and media interest has been generated by this product that apparently has the capacity of inducing and promoting tissue healing and regeneration. The premise of its use is that the large number of platelets in PRP release significant amounts of growth factors. In this paper, a critical review of the medical literature regarding PRP and bone healing will be presented. Also, the suggested clinical applications of the product will be addressed.

  16. Co-current toroidal rotation-driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak

    Science.gov (United States)

    Zhao, K. J.; Shi, Yuejiang; Liu, H.; Diamond, P. H.; Li, F. M.; Cheng, J.; Chen, Z. P.; Nie, L.; Ding, Y. H.; Wu, Y. F.; Chen, Z. Y.; Rao, B.; Cheng, Z. F.; Gao, L.; Zhang, X. Q.; Yang, Z. J.; Wang, N. C.; Wang, L.; Jin, W.; Xu, J. Q.; Yan, L. W.; Dong, J. Q.; Zhuang, G.; J-TEXT Team

    2016-07-01

    The acceleration of the co-current toroidal rotations around resonant surfaces by resonant magnetic perturbations (RMPs) through turbulence is presented. These experiments were performed using a Langmuir probe array in the edge plasmas of the J-TEXT tokamak. This study aims at understanding the RMP effects on edge toroidal rotations and exploring its control method. With RMPs, the flat electron temperature T e profile, due to magnetic islands, appears around resonant surfaces (Zhao et al 2015 Nucl. Fusion 55 073022). When the resonant surface is closer to the last closed flux surface, the flat T e profile vanishes with RMPs. In both cases, the toroidal rotations significantly increase in the direction of the plasma current around the resonant surfaces with RMPs. The characteristics of turbulence are significantly affected by RMPs around the resonant surfaces. The turbulence intensity profile changes and the poloidal wave vector k θ increases with RMPs. The power fraction of the turbulence components in the ion diamagnetic drift direction increases with RMPs. The measurements of turbulent Reynolds stresses are consistent with the toroidal flows that can be driven by turbulence. The estimations of the energy transfer between the turbulence and toroidal flows suggest that turbulence energy transfers into toroidal flows. The result has the implication of the intrinsic rotation being driven by RMPs via turbulence.

  17. Plasma Colloquium Travel Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R.D.

    1998-09-14

    OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

  18. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  19. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M

    2013-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic......-pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds...... regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem cell transplantation if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding...

  20. Photon kinetics in plasmas

    Directory of Open Access Journals (Sweden)

    V.G. Morozov

    2009-01-01

    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  1. Large area plasma source

    Science.gov (United States)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  2. Plasma response to m/n  =  3/1 resonant magnetic perturbation at J-TEXT Tokamak

    Science.gov (United States)

    Hu, Qiming; Li, Jianchao; Wang, Nengchao; Yu, Q.; Chen, Jie; Cheng, Zhifeng; Chen, Zhipeng; Ding, Yonghua; Jin, Hai; Li, Da; Li, Mao; Liu, Yang; Rao, Bo; Zhu, Lizhi; Zhuang, Ge; the J-TEXT Team

    2016-09-01

    The influence of resonant magnetic perturbations (RMPs) with a large m/n  =  3/1 component on electron density has been studied at J-TEXT tokamak by using externally applied static and rotating RMPs, where m and n are the poloidal and toroidal mode number, respectively. The detailed time evolution of electron density profile, measured by the polarimeter-interferometer, shows that the electron density n e first increases (decreases) inside (around/outside) of the 3/1 rational surface (RS), and it is increased globally later together with enhanced edge recycling. Associated with field penetration, the toroidal rotation around the 3/1 RS is accelerated in the co-I p direction and the poloidal rotation is changed from the electron to ion diamagnetic drift direction. Spontaneous unlocking-penetration circles occur after field penetration if the RMPs amplitude is not strong enough. For sufficiently strong RMPs, the 2/1 locked mode is also triggered due to mode coupling, and the global density is increased. The field penetration threshold is found to be linearly proportional to n eL (line-integrated density) at the 3/1 RS but to (n eL)0.73 for n e at the plasma core. In addition, for rotating RMPs with a large 3/1 component, field penetration causes a global increase in electron density.

  3. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    Science.gov (United States)

    Held, M.; Wiesenberger, M.; Madsen, J.; Kendl, A.

    2016-12-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the \\boldsymbol{E}× \\boldsymbol{B} vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity scaling law over more than an order of magnitude. We show that the finite Larmor radius effect strength affects the poloidal and total particle transport and present an empirical scaling law for the poloidal and total blob velocities. Distinctions to the blob behaviour in the isothermal limit with constant finite Larmor radius effects are highlighted.

  4. Plasma Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a

  5. The 2012 Plasma Roadmap

    Science.gov (United States)

    Samukawa, Seiji; Hori, Masaru; Rauf, Shahid; Tachibana, Kunihide; Bruggeman, Peter; Kroesen, Gerrit; Whitehead, J. Christopher; Murphy, Anthony B.; Gutsol, Alexander F.; Starikovskaia, Svetlana; Kortshagen, Uwe; Boeuf, Jean-Pierre; Sommerer, Timothy J.; Kushner, Mark J.; Czarnetzki, Uwe; Mason, Nigel

    2012-06-01

    Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap. Although roadmaps are common in the microelectronic industry and other fields of research and development, constructing a roadmap for the field of low-temperature plasmas is perhaps a unique undertaking. Realizing the difficulty of this task for any individual, the plasma section of the Journal of Physics D Board decided to meet the challenge of developing a roadmap through an unusual and novel concept. The roadmap was divided into 16 formalized short subsections each addressing a particular key topic. For each topic a renowned expert in the sub-field was invited to express his/her individual visions on the status, current and future challenges, and to identify advances in science and technology required to meet these challenges. Together these contributions form a detailed snapshot of the current state of the art which clearly shows the lifelines of the field and the challenges ahead. Novel technologies, fresh ideas and concepts, and new applications discussed by our authors demonstrate that the road to the future is wide and far reaching. We hope that this special plasma science and technology roadmap will provide guidance for colleagues, funding agencies and government institutions. If successful in doing so, the roadmap will be periodically updated to continue to help in guiding the field.

  6. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  7. Kinetics of complex plasmas

    CERN Document Server

    Sodha, Mahendra Singh

    2014-01-01

    The presentation in the book is based on charge balance on the dust particles, number and energy balance of the constituents and atom-ion-electron interaction in the gaseous plasma. Size distribution of dust particles, statistical mechanics, Quantum effects in electron emission from and accretion on dust particles and nonlinear interaction of complex plasmas with electric and electromagnetic fields have been discussed in the book. The book introduces the reader to basic concepts and typical applications. The book should be of use to researchers, engineers and graduate students.

  8. Plasma Cell Disorders.

    Science.gov (United States)

    Castillo, Jorge J

    2016-12-01

    Plasma cell disorders are benign, premalignant, and malignant conditions characterized by the presence of a monoclonal paraprotein detected in serum or urine. These conditions are biologically, pathologically, and clinically heterogeneous. There have been major advances in the understanding of the biology of these diseases, which are promoting the development of therapies with novel mechanisms of action. Novel agents such as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have gained approval in the United States and Europe for the treatment of plasma cell disorders. Such therapies are translating into higher rates of response and survival and better toxicity profiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Plasma YKL-40

    DEFF Research Database (Denmark)

    Jensen, Peter; Wiell, C; Milting, K

    2013-01-01

    Background  Plasma YKL-40 is an inflammatory biomarker. No useful biomarker exists in patients with psoriasis or psoriatic arthritis. Objective  To measure YKL-40 and high-sensitivity C-reactive protein (hs-CRP) in patients with psoriasis or psoriatic arthritis before and during treatment. Methods......-CRP at inclusion and during 48 weeks of adalimumab treatment. The patients with psoriatic arthritis were divided into responders and non-responders. Results  In patients with psoriasis, the baseline median PASI score was 10.8 and baseline YKL-40 was 45 μg/L. Seventeen per cent had elevated plasma YKL-40 compared...

  10. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Iwamae, Atsushi (eds.) [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2008-07-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment. (orig.)

  11. Plasma Assisted Combustion

    Science.gov (United States)

    2007-02-28

    pressure hydrogen is given in Fig. 2.14. The regions typical for “common” glow discharges (negative glow, Faraday dark space, and positive column) are...Hollenstein Ch. Plasma Phys. Control. Fusion, 42 (2000) 93. [107] M.A. Heald and C.B. Wahrton, Plasma diagnostics with microwaves, John Wi- ley &Sons, New York...Nitrous Oxide J. Chem. Soc. Faraday Trans. 69 352 [194] Albers E A, Hoyermann K, Schacke H, Schmatjko K J, Wagner H Gg, Wolfrum J 1975 Absolute Rate

  12. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  13. Plasma scattering of electromagnetic radiation

    CERN Document Server

    Sheffield, John

    1975-01-01

    Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge

  14. Some plasma aspects and plasma diagnostics of ion sources.

    Science.gov (United States)

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  15. The field of plasmas. L'univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. (Direction des Recherches, Etudes et Techniques d' Armement (DRET), (France))

    1999-01-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo's fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  16. The field of plasmas; L`univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. [Direction des Recherches, Etudes et Techniques d`Armement (DRET), (France)

    1999-12-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo`s fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  17. Microwave Probing of Air-Plasma and Plasma Metamaterials

    Science.gov (United States)

    Schneider, Katherine; Rock, Ben; Helle, Mike

    2016-10-01

    Plasma metamaterials are of recent interest due to their unique ability to be engineered with specific electromagnetic responses. One potential metamaterial architecture is based on a `forest' of plasma rods that can be produced using intense laser plasma filaments. In our work, we use a continuous microwave source at 26.5 GHz to measure a single air plasma filament characteristics generated from a 5 mJ laser pulse within a cylindrical hole in a Ka-band waveguide. Preliminary results show the air plasma produces a strong shock and acts to reflect microwave radiation. A computational comparison using 3D EM modeling is performed to examine the reflection and transmission properties of a single plasma rod, and further, to investigate an array of plasma rods as a potential plasma based metamaterial.

  18. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  19. Plasma detachment with molecular processes in divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, N.; Ezumi, N.; Nishijima, D.; Takamura, S. [Dept. of Energy Engineering and Science, Graduate School of Engineering, Nagoya Univ., Nagoya, Aichi (Japan); Krasheninnikov, S.I.; Pigarov, A.Yu. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2000-01-01

    Molecular processes in detached recombining plasmas are briefly reviewed. Several reactions with vibrationally excited hydrogen molecule related to recombination processes are described. Experimental evidence of molecular activated recombination observed in a linear divertor plasma simulator is also shown. (author)

  20. Plasma flow in peripheral region of detached plasma in linear plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tanaka, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column in both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.

  1. Laser-plasma-based linear collider using hollow plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B., E-mail: CBSchroeder@lbl.gov; Benedetti, C.; Esarey, E.; Leemans, W.P.

    2016-09-01

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  2. Computations in Plasma Physics.

    Science.gov (United States)

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  3. Merging of plasma currents

    NARCIS (Netherlands)

    Bergmans, J.; Schep, T. J.

    2001-01-01

    The merging process of current filaments in a strongly magnetized plasma is described. The evolution is calculated using a contour dynamics method, which accurately tracks piecewise constant distributions of the conserved quantities. In the interaction of two screened currents, both develop dipolar

  4. Microscopic plasma Hamiltonian

    Science.gov (United States)

    Peng, Y.-K. M.

    1974-01-01

    A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.

  5. Flare Plasma Iron Abundance

    Science.gov (United States)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  6. Quark gluon plasma

    Indian Academy of Sciences (India)

    C P Singh

    2000-04-01

    Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.

  7. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  8. Plasma Theory and Simulation.

    Science.gov (United States)

    1982-12-31

    expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as

  9. Plasma Theory and Simulation.

    Science.gov (United States)

    1980-09-30

    William Nevins L439 LLL (422-7032) Lecturers , UCB; Physicists -LLL Dr. William Fawley Guest, UCB; Physicist LLL L321 LLL (422-9272) Yu-Jiuan Chen, Douglas... MHD - Particle Codes." Three abstracts of papers prepared for the APS Division of Plasma Physics Meeting, November 10-14, 1980, at San Diego, follow

  10. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  11. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  12. Magnetized Plasma Experiments Using Thermionic- Thermoelectronic Plasma Emitter

    Science.gov (United States)

    Kawamori, Eiichirou; Cheng, C. Z.; Fujikawa, Nobuko; Lee, Jyun-Yi; Peng, Albert

    2008-11-01

    We are developing a magnetic mirror device, which is the first magnetized plasma device in Taiwan, to explore basic plasma sciences relevant to fusion, space and astrophysical plasmas. Our research subjects include electromagnetically induced transparency (EIT), Alfven wave physics, and plasma turbulence. A large diameter (> 200 mm) plasma emitter1, which utilizes thermionic- thermoelectronic emission from a mixture of LaB6 (Lanthanum-hexaboride) and beta-eucryptite (lithium type aluminosylicate) powders, is employed as a plasma source because of its production ability of fully ionized plasma and controllability of plasma emission rate. The plasma emitter has been installed recently and investigation of its characteristics will be started. The employment of beta-eucryptite in plasma emitter is the first experimental test because such investigation of beta-eucryptite has previously been used only for Li+-ion source2. Our plan for magnetized plasma experiments and results of the plasma emitter investigation will be presented. 1. K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett., 37, 1980, pp. 37-38. 2. M. Ueda, R. R. Silva, R. M. Oliveira, H. Iguchi, J. Fujita and K. Kadota, J. Phys. D: Appl. Phys. 30 1997, pp. 2711--2716.

  13. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...

  14. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  15. Theory of gas discharge plasma

    CERN Document Server

    Smirnov, Boris M

    2015-01-01

    This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.

  16. Modelling of Complex Plasmas

    Science.gov (United States)

    Akdim, Mohamed Reda

    2003-09-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is

  17. Effect of plasma processing reactor circuitry on plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1997-12-31

    It is well known that external circuitry greatly influences the performance of plasma processing reactors. Simulation of external circuits difficult since the time in which the external circuit attains the steady-state is several orders of magnitude longer than typical plasma simulation time scales. In this paper, the authors present a technique to simulate the external circuit concurrently with the plasma, and implement it into the Hybrid Plasma Equipment Model (HPEM). The resulting model is used to investigate the influence of external circuitry on plasma behavior.

  18. Numerical simulation of dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D.

    1995-09-01

    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  19. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  20. The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States)

    2015-12-14

    fields, all of the instabilities co-exist, leading to rich plasma dynamics and fully developed broadband turbulence. Edge-Turbulence and Flow Experiments in NSTX: A series of Gas Puff Imaging (GPI) observations on NSTX revealed a quasi-periodic oscillation in the plasma edge preceding the L-H transition in a limited set of neutral beam heated plasmas. These ~3 kHz flow oscillations exhibit both long wavelength and long correlation lengths, suggesting they are zonal-flow-like. The flow oscillations are strongly correlated with modulations of the level of edge turbulence, thus the system appears to undergo a predator--prey-type limit-cycle preceding the L-H transition. However, a clear trigger for the L-H transition was not observed. Reynolds stress profiles were obtained directly from image velocimetry for L-mode periods ELM-Precursor Studies in NSTX: A separate study based on NSTX-GPI data captured the two-dimensional evolution of edge-localized mode (ELM) precursors. Precursor events were observed preceding ELMs and ELM-induced H–L back-transitions in radio-frequency heated H-mode plasmas, and the growth of the precursor mode through the ELM filamentation was imaged in the plane perpendicular to the local B-field. Strong edge intensity modulations appeared to propagate in the electron diamagnetic direction while steadily drifting radially outwards. Intensity fluctuations were observed at frequencies around 20 kHz and wavenumbers of 0.05-0.2 cm-1. Upon growing to a trigger point, precursor fluctuations were seen to form filamentary structures and move into the scrape-off layer (SOL) explosively with radial velocities peaking at 8 km/s. Once in the SOL, filaments reverse their propagation direction and travel in the ion diamagnetic direction. Edge intensity fluctuations were strongly correlated with magnetic signals from Mirnov coils, and toroidally distributed coils estimated toroidal mode numbers of n=5-10. Quantitatively similar precursors have been

  1. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  2. Qualifying plasma diagnostics for a high power microwave background of ECRH heated discharges

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Baldzuhn, J.; Endler, M.; Laux, M.; Zhang, D.; Laqua, H.P.; Noke, F.; Purps, F.; Ewert, K. [Max-Planck Institut fur Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany); Oosterbeek, J.W. [Technische Universiteit Eindhoven, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Associacion EURATOM/CIEMAT, av. Complutense 22, 28040, Madrid (Spain)

    2011-07-01

    Microwave background radiation resulting from multiple reflected unabsorbed ECRH / ECCD power may cause severe problems for microwave absorbing in-vessel components such as gaskets, bellows, windows, isolators and cable insulations in particular during long pulse operation. For qualifying in-vessel components of W7-X in the environment of an isotropic 140 GHz radiation the Microwave Stray Radiation Launch facility, MISTRAL is operated at IPP. Power flux densities of 10-40 kW/m{sup 2} are obtained with a pulsed power gyrotron launching the microwave via a corrugated transmission line and a vacuum window to the MISTRAL vessel. The focus of the program was on cable isolations as required e.g. for in-vessel magnetic diagnostics. Sufficient shielding is obtained in nearly closed metal pipes only. Cryo pumps require a temperature < 12 K where Hydrogen desorption starts. The cryo pumps are usually shielded from plasma radiation by so called chevron structures. It is investigated whether coating of these chevrons with a microwave absorbing layer yields a sufficient reduction of the stray radiation level to ensure cryo pump operation. Diagnostic windows have been tested also. Although the temperature rise even of uncooled ZnSe and quartz windows at 10 kW/m{sup 2} is uncritical with respect to damage the associated refractive index changes may be too high for some diagnostic purposes e.g. for interferometry. A possible shielding are meshes or {mu}W absorbing coatings. Integrated diagnostic mock-ups such as for the diamagnetic loop, the inner Rogowski coils, Mirnov coils and the bolometer head also have been tested

  3. Modulational interactions in quantum plasmas

    CERN Document Server

    Sayed, Fatema; Tyshetskiy, Yuriy; Ishihara, Osamu

    2013-01-01

    A formalism for treating modulational interactions of electrostatic fields in collisionless quantum plasmas is developed, based on the kinetic Wigner-Poisson model of quantum plasma. This formalism can be used in a range of problems of nonlinear interaction between electrostatic fields in a quantum plasma, such as development of turbulence, self-organization, as well as transition from the weak turbulent state to strong turbulence. In particular, using this formalism, we obtain the kinetic quantum Zakharov equations, that describe nonlinear coupling of high frequency Langmuir waves to low frequency plasma density variations, for cases of non-degenerate and degenerate plasma electrons.

  4. Closed inductively coupled plasma cell

    Science.gov (United States)

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  5. Experimental plasma research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  6. Experimental Plasma Research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  7. Plasma chemistry for inorganic materials

    Science.gov (United States)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  8. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  9. Basics of plasma astrophysics

    CERN Document Server

    Chiuderi, Claudio

    2015-01-01

    This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.

  10. Adiabatic plasma buncher

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Katsouleas, T.C. [Los Angeles Univ. of Southern California, Los Angeles, CA (United States); Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Ben Zvi, I. [Brookhaven National Laboratory, Upton, NY (United States)

    2000-07-01

    In this paper is presented a new scheme of injection into a plasma accelerator, aimed at producing a high quality beam while relaxing the demands on the bunch length of the injected beam. The beam dynamics in the injector, consisting of a high voltage pulsed photo-diode, is analyzed and optimized to produce a {lambda}{sub p}/20 long electron bunch at 2.5 MeV. This bunch is injected into a plasma wave in which it compresses down to {lambda}{sub p}/100 while simultaneously accelerating up to 250 MeV. This simultaneous bunching and acceleration of a high quality beam requires a proper combination of injection energy and injection phase. Preliminary results from simulations are shown to assess the potentials of the scheme.

  11. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  12. Cosmic Plasma Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P

    2004-04-26

    Recently we proposed a new cosmic acceleration mechanism which was based on the wakefields excited by the Alfven shocks in a relativistically owing plasma. In this paper we include some omitted details, and show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f({epsilon}) {proportional_to} 1/{epsilon}{sup 2}. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations.

  13. Plasma Trytophan and Sleep

    Science.gov (United States)

    Chen, C. N.; Kalucy, R. S.; Hartmann, M. K.; Lacey, J. H.; Crisp, A. H.; Bailey, J. E.; Eccleston, E. G.; Coppen, A.

    1974-01-01

    Free, bound, and total plasma tryptophan (F.P.T., B.P.T., and T.P.T.) levels have been measured throughout the night in six young female volunteers. All-night polygraphic sleep recordings were also made. No direct temporal relationship was found between plasma tryptophan levels and specific sleep stages. The mean F.P.T. levels, however, were found to have a positive correlation with rapid-eye-movement (R.E.M.) sleep and a negative correlation with non-R.E.M. sleep. An inverse relationship existed between the F.P.T. and B.P.T. levels. There appeared to be a diurnal variation in F.P.T. levels, with high readings in the first half of the night. PMID:4373116

  14. Microinstabilities in stellarator plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Nasim, M.H.; Persson, M. [Department of Electromagnetics and Euratom/VR Association, Chalmers University of Technology, Goeteborg (Sweden)

    2003-07-01

    Linear stability and localization of ion temperature gradient modes in fully 3-dimensional stellarator plasmas is calculated in the electrostatic limit. A ballooning mode formalism with WKB assumption is applied to reduce the equations into ordinary differential equation along the field lines which are solved numerically for different plasma parameters. The results are correlated with the geometrical effects such as magnetic curvature, local magnetic shear and its integrated value along the field line and the effects of trapped electrons are also investigated. The eigenfunctions of the most unstable modes are found to be localized but the nodes in the amplitude of the eigenfunctions may be large depending upon the location on the magnetic surface. The results are compared and contrasted with calculations in tokamak geometry and the implications on future stellarator design is also discussed. (orig.)

  15. Plasma dust crystallization

    Science.gov (United States)

    Goree, John; Thomas, H.; Morfill, G.

    1994-01-01

    In a ground-based definition study, a concept for a new type of microgravity experiment is developed. We formed a new state of matter: a crystalline lattice structure of charged micron-size spheres, suspended in a charge-neutral plasma. The plasma is formed by a low-pressure radio-frequency argon discharge. Solid microspheres are introduced, and they gain a negative electric charge. They are cooled by molecular drag on the ambient neutral gas. They are detected by laser light scattering and video photography. Laboratory experiments have demonstrated that a two-dimensional nonquantum lattice forms through the Coulomb interaction of these spheres. Microgravity is thought to be required to observe a three-dimensional structure.

  16. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  17. Topics in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Old Dominion Univ., Norfolk, VA (United States)

    2015-05-31

    During the period 1998-2013, research under the auspices of the Department of Energy was performed on RF waves in plasmas. This research was performed in close collaboration with Josef Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of Sciences), Martin Valovic and Vladimir Shevchenko (Culham). This research is detailed and all 38 papers which were published by this team are cited.

  18. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  19. Dusty plasma (Yukawa) rings

    CERN Document Server

    Sheridan, T E

    2010-01-01

    One-dimensional and quasi-one-dimensional strongly-coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the 1-ring were measured and found to be in very good agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-H\\"uckel) potential. These rings provide a new system in which to study one-dimensional and quasi-one-dimensional physics.

  20. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  1. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  2. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  3. Plasma Processing of Materials

    Science.gov (United States)

    1985-02-22

    used in France. In this case, three ’ movable electrodes arranged about the central axis with a coaxial sheath gas are employed. Initially the...Demiocratic Republic plasma furnace. chrome -magnesite; the bottom section is lined with rammed chrome -magnesite refractory. Due to the high heat loads... sheath injector design, cathode tip shape, and degree of water cooling are important parameters in providing a stable, uncontaminating, long-lifetime

  4. Final report for the NSF/DOE partnership in basic plasma science grant DE-FG02-06ER54906 'Laser-driven collisionless shocks in the Large Plasma Device'

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Christoph [UCLA, CA (United States); Gekelman, W. [UCLA, CA (United States); Winske, D. [LANL, NM (United States); Larsen, D. [LLNL, CA (United States)

    2012-12-14

    We have performed several thousand high-energy laser shots in the LAPD to investigate the dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma. Debris-ions expanding at super-Alfvenic velocity (up to MA=1.5) expel the ambient magnetic field, creating a large (> 20 cm) diamagnetic cavity. We observed field compressions of up to B/B{sub 0} = 1.5 at the edge of the bubble, consistent with the MHD jump conditions, as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston to super-Alfvenic speeds and swept outside the bubble volume. Nonlinear shear-Alfven waves ({delta}B/B{sub 0} > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. While the data is consistent with a weak magneto-sonic shock, the experiments were severely limited by the low ambient plasma densities (10{sup 12} cm{sup -3}). 2D hybrid simulations indicate that future experiments with the new LAPD plasma source and densities in excess of 10{sup 13} cm{sup -3} will drive full-blown collisionless shocks with MA>10 over several c/wpi and shocked Larmor radii. In a separate experiment at the LANL Trident laser facility we have performed a proof-of-principle experiment at higher densities to demonstrate key elements of collisionless shocks in laser-produced magnetized plasmas with important implications to NIF. Simultaneously we have upgraded the UCLA glass-laser system by adding two large amplitude disk amplifiers from the NOVA laser and boost the on-target energy from 30 J to up to 1 kJ, making this one of the world’s largest university-scale laser systems. We now have the infrastructure in place to perform novel and unique high-impact experiments on collision-less shocks at the LAPD.

  5. Plasma is a strategic resource.

    Science.gov (United States)

    Strengers, Paul F W; Klein, Harvey G

    2016-12-01

    Plasma-derived medicinal products (PDMPs) such as immunoglobulins and clotting factors are listed by the World Health Organization as essential medicines. These and other PDMPs are crucial for the prophylaxis and treatment of patients with bleeding disorders, immune deficiencies, autoimmune and inflammatory diseases, and a variety of congenital deficiency disorders. While changes in clinical practice in developed countries have reduced the need for red blood cell transfusions thereby significantly reducing the collection volumes of whole blood and recovered plasma suitable for fractionation, the need for PDMPs worldwide continues to increase. The majority of plasma supplies for the manufacture of PDMPs is met by the US commercial plasma industry. However, geographic imbalance in the collection of plasma raises concerns that local disruptions of plasma supplies could result in regional and global shortages of essential PDMPs. Plasma, which fits the definition of a strategic resource, that is, "an economically important raw material which is subject to a higher risk of supply interruption," should be considered a strategic resource comparable to energy and drinking water. Plasma collections should be increased outside the United States, including in low- and middle-income countries. The need for capacity building in these countries is an essential part to strengthen quality plasma collection. This will require changes in national and regional policies. We advocate the need for the restoration of an equitable balance of the international plasma supply to reduce the risk of supply shortages worldwide. Strategic independence of plasma should be endorsed on a global level. © 2016 AABB.

  6. Electrosurgical Plasma Discharges

    Science.gov (United States)

    Stalder, K. R.; Woloszko, J.

    2002-10-01

    Electrosurgical instruments employing plasmas to volumetrically ablate tissue are now enjoying widespread use in medical applications. We have studied several commercially available instruments in which luminous plasma discharges are formed near electrodes immersed in saline solutions when sufficiently large amplitude bipolar voltage waveforms are applied. Different aqueous salt solutions have been investigated, including isotonic NaCl solution as well as solutions of KCl, and BaCl_2. With strong driving voltage applied, a vapor layer is formed as well as visible and UV optical emissions. Spectroscopic measurements reveal the predominant emissions are from the low ionization potential salt species, but significant emissions from electron impact dissociated water fragments such as OH and H-atoms also are observed. The emissions also coincide with negative bias on the active electrode. These optical emissions are consistent with an electron density of about 10^12cm-3 and an electron temperature of about 4 eV. Experimental results and model calculations of the vapor layer formation process and plasma formation in the high-field region will be discussed.

  7. Plasma Modeling of Electrosurgery

    Science.gov (United States)

    Jensen, Scott; Friedrichs, Daniel; Gilbert, James; Park, Wounjhang; Maksimovic, Dragan

    2014-10-01

    Electrosurgery is the use of high frequency alternating current (AC) to illicit a clinical response in tissue, such as cutting or cauterization. Power electronics converters have been demonstrated to generate the necessary output voltage and current for electrosurgery. The design goal of the converter is to regulate output power while supplying high frequency AC. The design is complicated by fast current and voltage transients that occur when the current travels through air in the form of an arc. To assist in designing a converter that maintains the desired output power during these transients, we have used the COMSOL Plasma Module to determine the output voltage and current characteristics during an arc. This plasma model, used in conjunction with linear circuit elements, allows the full electrosurgical system to be validated. Two models have been tested with the COMSOL Plasma Module. One is a four-species, four-reaction model based on the local field approximation technique. The second simulates the underlying air chemistry using 30 species, 151 chemical reactions, and a coupled electron energy distribution function. Experimental output voltage and current samples have been collected and compared to both models.

  8. Sterilization by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Adir Jose; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Silva Zambon, Luis da; Silva, Monica Valero da; Verdonck, Patrick Bernard

    2004-07-31

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  9. Modeling electronegative plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A. [Univ. of California, Berkley, CA (United States)

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  10. PLASMA CELL LEUKEMIA

    Science.gov (United States)

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  11. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  12. EDITORIAL: Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics Stability and nonlinear dynamics of plasmas: A symposium celebrating Professor Robert Dewar's accomplishments in plasma physics

    Science.gov (United States)

    Bhattacharjee, Amitava

    2012-01-01

    covered in the talks at the Symposium. The paper by David Barmaz and coworkers published in this issue discusses the problem diamagnetic stabilization of ballooning instabilities in stellarators. It is not surprising that Bob's work on ballooning modes shows an accomplished master of WKB theory at work, for it is the culmination of a process that began many years earlier. His involvement in applications of WKB theory to problems involving instability and turbulence began in 1970, when he was a graduate student. At this time he wrote a very influential paper, discussed at the Symposium, on the interaction between hydromagnetic waves and a timedependent inhomogeneous medium. This paper is widely cited, especially in the astrophysical and space plasma literature, for it gives a rigorous method of evaluating the effects of lowfrequency hydromagnetic fluctuations on a slowly varying background medium. The method has found use in problems as diverse as the self-sustainment of molecular clouds, the heating and acceleration of the solar wind, and the effect of cosmic rays on the interplanetary medium. Attentive readers will note that Bob has been drafted as a co-author and participant in about half of the publications in this issue. This is a reflection of Bob's continued and tireless involvement in a wide spectrum of research problems that have their genesis in his fundamental contributions to plasma physics, as well as the eagerness with which we all welcome his involvement in our own projects. We hope to have this continue for many years to come.

  13. Proton driven plasma wakefield generation in a parabolic plasma channel

    Science.gov (United States)

    Golian, Y.; Dorranian, D.

    2016-11-01

    An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.

  14. Plasma Torch for Plasma Ignition and Combustion of Coal

    Science.gov (United States)

    Ustimenko, Alexandr; Messerle, Vladimir

    2015-09-01

    Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.

  15. Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations

    Directory of Open Access Journals (Sweden)

    Hermann eLühr

    2014-03-01

    Full Text Available Equatorial spread-F ionospheric plasma irregularities on the night-side, commonly called equatorial plasma bubbles (EPB, include electron density variations over a wide range of spatial scales. Here we focus on intermediate-scale structures ranging from 100 m to 10 km, which play an important role in the evolution of EPBs. High-resolution CHAMP magnetic field measurements sampled along north-south track at 50 Hz are interpreted in terms of diamagnetic effect for illustrating the details of electron density variations. We provide the first comprehensive study on intermediate-scale density structures associated with EPBs, covering a whole solar cycle from 2000 to 2010. The large number of detected events, almost 9000, allows us to draw a detailed picture of the plasma fine structure. The occurrence of intermediate-scale events is strongly favoured by high solar flux. During times of F10.7 < 100 sfu practically no events were observed. The longitudinal distribution of our events with respect to season or local time agrees well with that of the EPBs, qualifying the fine structure as a common feature, but the occurrence rates are smaller by a factor of 4 during the period 2000-2005. Largest amplitude electron density variations appear at the poleward boundaries of plasma bubbles. Above the dip-equator recorded amplitudes are small and fall commonly below our resolution. Events can generally be found at local times between 19 and 24 LT, with a peak lasting from 20 to 22 LT. The signal spectrum can be approximated by a power law. Over the frequency range 1 – 25 Hz we observe spectral indices between -1.4 and -2.6 with peak occurrence rates around -1.9. There is a weak dependence observed of the spectral index on local time. Towards later hours the spectrum becomes shallower. Similarly for the latitude dependence, there is a preference of shallower spectra for latitudes poleward of the ionisation anomaly crest. Our data suggest that the generation of

  16. The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States)

    2015-12-14

    fields, all of the instabilities co-exist, leading to rich plasma dynamics and fully developed broadband turbulence. Edge-Turbulence and Flow Experiments in NSTX: A series of Gas Puff Imaging (GPI) observations on NSTX revealed a quasi-periodic oscillation in the plasma edge preceding the L-H transition in a limited set of neutral beam heated plasmas. These ~3 kHz flow oscillations exhibit both long wavelength and long correlation lengths, suggesting they are zonal-flow-like. The flow oscillations are strongly correlated with modulations of the level of edge turbulence, thus the system appears to undergo a predator--prey-type limit-cycle preceding the L-H transition. However, a clear trigger for the L-H transition was not observed. Reynolds stress profiles were obtained directly from image velocimetry for L-mode periods ELM-Precursor Studies in NSTX: A separate study based on NSTX-GPI data captured the two-dimensional evolution of edge-localized mode (ELM) precursors. Precursor events were observed preceding ELMs and ELM-induced H–L back-transitions in radio-frequency heated H-mode plasmas, and the growth of the precursor mode through the ELM filamentation was imaged in the plane perpendicular to the local B-field. Strong edge intensity modulations appeared to propagate in the electron diamagnetic direction while steadily drifting radially outwards. Intensity fluctuations were observed at frequencies around 20 kHz and wavenumbers of 0.05-0.2 cm-1. Upon growing to a trigger point, precursor fluctuations were seen to form filamentary structures and move into the scrape-off layer (SOL) explosively with radial velocities peaking at 8 km/s. Once in the SOL, filaments reverse their propagation direction and travel in the ion diamagnetic direction. Edge intensity fluctuations were strongly correlated with magnetic signals from Mirnov coils, and toroidally distributed coils estimated toroidal mode numbers of n=5-10. Quantitatively similar precursors have been

  17. Online plasma diagnostics of a laser-produced plasma

    Science.gov (United States)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  18. Clinical use of Plasma and Plasma Fractions in Bleeding Disorders

    Institute of Scientific and Technical Information of China (English)

    王兆钺

    2008-01-01

    Internal and/or external bleeding is a common and sometimes very severe clinical manifestations of disorders of hemostasis. It may follow minor trauma or may arise apparently spontaneously. Disorders of hemostasis are generally divided into those caused by abnormalities of platelets, abnormalities of blood vessels, abnormalities of plasma coagulation factors, and hyperfibrinolysis, or com-binations of these. The use of plasma and plasma fractions dependents on the causing diseases and their severity. Several plasma products and plasma fractions are availa-ble in China and other plasma components and deriva-tives are commercially obtained. There have been the guidelines for their clinical use, and the revised ones will soon be published by Chinese Medical Association.

  19. Abelianization of QCD plasma instabilities

    Science.gov (United States)

    Arnold, Peter; Lenaghan, Jonathan

    2004-12-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what nonlinear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)×U(1) gauge theory.

  20. The diverse applications of plasma

    Science.gov (United States)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  1. The diverse applications of plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul, E-mail: mukulsharma@acropolis.edu.in; Darwhekar, Gajanan, E-mail: gdarwhekar@acropolis.edu.in [Acropolis Institute of Pharmaceutical Education & Research, Indore MP India (India); Dubey, Shivani, E-mail: dubeyshivani08@rediffmail.com [Mata Gujri College of Professional Studies, Indore MP India (India); Jain, Sudhir Kumar, E-mail: sudhirkjain1@rediffmail.com [School of Studies in Microbiology, Vikram University, Ujjain MP India (India)

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  2. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2013-10-01

    sensitive surfaces. In this paper, the consumed power for plasma generation (plasma power) has been estimated from voltage-current waveform analysis in... consumed power for plasma generation is calculated by integrating the product of the discharge voltage and current over one cycle; according to the...Faculty Symposium: Course Design for the Millennial Student, Texas A&M University – Corpus Christi, 2011. (Showcased by the Center for Faculty

  3. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    research associates. The PI and the research team have published over 10 journal articles and over 50 conference proceedings and over 50 symposiums...reflections. Optical interference filters with center wavelength at 5322 or 632.82 nm are used in front of the ICCD to suppress the plasma self- luminescence ...wavelength at 532 ± 2 nm was used in front of the ICCD to suppress the plasma jet self- luminescence . The shadow of the laser induced plasma falls onto

  4. A contoured gap coaxial plasma gun with injected plasma armature

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  5. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  6. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  7. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  8. Flexible plasma linear antenna

    Science.gov (United States)

    Zhao, Jiansen; Wang, Shengzheng; Wu, Huafeng; Liu, Yue; Chang, Yongmeng; Chen, Xinqiang

    2017-02-01

    In this work, we introduce a type of plasma antenna that was fabricated using flexible materials and excited using a 5-20 kHz alternating current (ac) power supply. The results showed that the antenna characteristics, including the impedance, the reflection coefficient (S11), the radiation pattern, and the gain, can be controlled rapidly and easily by varying both the discharge parameters and the antenna shapes. The scope for reconfiguration is greatly enhanced when the antenna shape is changed from a monopole to a helix configuration. Additionally, the antenna polarization can also be adjusted by varying the antenna shapes.

  9. The control of TCV plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J.B.; Hofmann, F.; Moret, J.M. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)] [and others

    1996-07-01

    The general control of tokamak plasmas has evolved considerably over the last few years with an increase in the plasma pulse length, an increase in the control of additional heating and fuelling and an increase in the degree to which the shape of the plasma can be varied. The TCV tokamak is specifically designed to explore the operational benefits of plasma shaping over a wide variety of plasma shapes. Consequently, considerable attention has been given to the control of the poloidal field coil currents which impose the desired shape. This paper deals with all aspects of the control of TCV plasmas, from the diagnostic measurements to the power supplies, via control algorithms and overall supervision. (author) 44 figs., tabs., 25 refs.

  10. MHD simulations of Plasma Jets and Plasma-surface interactions in Coaxial Plasma Accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Raja, Laxminarayan

    2016-10-01

    Coaxial plasma accelerators belong to a class of electromagnetic acceleration devices which utilize a self-induced Lorentz force to accelerate magnetized thermal plasma to large velocities ( 40 Km/s). The plasma jet generated as a result, due to its high energy density, can be used to mimic the plasma-surface interactions at the walls of thermonuclear fusion reactors during an Edge Localized Mode (ELM) disruption event. We present the development of a Magnetohydrodynamics (MHD) simulation tool to describe the plasma acceleration and jet formation processes in coaxial plasma accelerators. The MHD model is used to study the plasma-surface impact interaction generated by the impingement of the jet on a target material plate. The study will characterize the extreme conditions generated on the target material surface by resolving the magnetized shock boundary layer interaction and the viscous/thermal diffusion effects. Additionally, since the plasma accelerator is operated in vacuum conditions, a novel plasma-vacuum interface tracking algorithm is developed to simulate the expansion of the high density plasma into a vacuum background in a physically consistent manner.

  11. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  12. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    Science.gov (United States)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  13. Plasma cell granuloma of lip

    Directory of Open Access Journals (Sweden)

    B Sabarinath

    2012-01-01

    Full Text Available Plasma cells are medium-sized round-to-oval cells with eccentrically placed nuclei, usually found in the red pulp of the spleen, tonsils, medulla of the lymph nodes, nasal mucosa, upper airway, lamina propria of the gastrointestinal tract, and sites of inflammation. Plasma cell granuloma is a rare reactive tumor-like proliferation composed chiefly of plasmacytic infiltrate. Here, we present a case of plasma cell granuloma of lip in a female patient.

  14. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  15. Computational Methods in Plasma Physics

    CERN Document Server

    Jardin, Stephen

    2010-01-01

    Assuming no prior knowledge of plasma physics or numerical methods, Computational Methods in Plasma Physics covers the computational mathematics and techniques needed to simulate magnetically confined plasmas in modern magnetic fusion experiments and future magnetic fusion reactors. Largely self-contained, the text presents the basic concepts necessary for the numerical solution of partial differential equations. Along with discussing numerical stability and accuracy, the author explores many of the algorithms used today in enough depth so that readers can analyze their stability, efficiency,

  16. Autoresonant Excitation of Antiproton Plasmas

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  17. Plasma placental lactogen in pregnancy.

    Science.gov (United States)

    Raghuramulu, N

    1978-01-01

    Plasma placental lactogen (HPL) and urinary oestrogen levels were investigated in pregnant women belonging to low and high socio-economic groups. Plasma HPL levels increased progressively with increasing gestation in women of both the socio-economic groups. The mean values in the two groups were not statistically different at any period of gestation. No correlation was observed between the birth weight of the infant and the maternal plasma placental lactogen levels at term. A positive correlation was observed between urinary oestrogen excretion and plasma HPL concentration.

  18. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  19. The Framework of Plasma Physics

    Science.gov (United States)

    Cowley, Steven

    There have been relatively few good textbooks on plasma physics. Most become simple reference books that might be titled, “Plasma Physics Recipes.” Despite their utility such books do not make good textbooks. For teaching, one needs a book that shows how the basic results and models are part of a coherent whole. Richard Hazeltine and Francois Waelbroeck have written such a textbook: The Framework of Plasma PhysicsAn this book, plasma physics is developed carefully and logically from basic physics principles. The book is not, however, overly formal; physical arguments are used to reduce mathematical complexity.

  20. Plasma cell granuloma of gingiva

    Directory of Open Access Journals (Sweden)

    Balaji Manohar

    2011-01-01

    Full Text Available Plasma cell granuloma is a rare benign lesion characterized by the infiltration of plasma cells; primarily occurring in the lungs. It is also seen to occur in the brain, kidney stomach, heart, and so on. In the intraoral region it is seen to involve the tongue, oral mucosa, and gingiva. This case presents a 42-year-old female, with an enlargement in the maxillary anterior region, treated by excisional biopsy. Histological evaluation revealed plasma cell infiltrates in the connective tissue. The immunohistochemistry revealed kappa and lambda light chains with a polyclonal staining pattern, which confirmed the diagnosis of plasma cell granuloma.

  1. Plasma on a foundry cupola

    Science.gov (United States)

    Pineau, Didier

    An experiment of a plasma torch on a production foundry cupola is reported. The test runs were conducted on a hot blast cupola, the blast temperature in the absence of plasma being 400 C. With the torch, the temperature of the blast was increased to 1000 C. The experiment was conducted for the manufacture of car engines with a 2.5 MW transportable plasma system. The cupola was boosted with a 4 MW torch and results included an increase in production of 45 percent, a decrease in coke rate and no more new iron in the loads. The plasma torch and hot air cupola furnace are described.

  2. Criticality in Plasma Membranes

    Science.gov (United States)

    Machta, Benjamin; Papanikolaou, Stefanos; Sethna, James; Veatch, Sarah

    2011-03-01

    We are motivated by recent observations of micron-sized critical fluctuations in the 2d Ising Universality class in plasma membrane vesicles that are isolated from cortical cytoskeleton. We construct a minimal model of the plasma membrane's interaction with intact cytoskeleton which explains why large scale phase separation has not been observed in Vivo. In addition, we use analytical techniques from conformal field theory and numerical simulations to investigate the form of effective forces mediated by the membrane's proximity to criticality. We show that the range of this force is maximized near a critical point and we quantify its usefulness in mediating communication using techniques from information theory. Finally we use theoretical techniques from statistical physics in conjunction with Monte-Carlo simulations to understand how criticality can be used to increase the efficiency of membrane bound receptor mediated signaling. We expect that this sort of analysis will be broadly useful in understanding and quantifying the role of lipid ``rafts'' in a wide variety of membrane bound processes. Generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over relatively large distances.

  3. Measuring Kinetic Plasma Eigenmodes

    Science.gov (United States)

    Mattingly, Sean; Berumen, Jorge; Chu, Feng; Hood, Ryan; Skiff, Fred

    2015-11-01

    We present a method for measuring kinetic plasma eigenmodes of a cylindrical axially magnetized (1 kG) laboratory plasma (n ~109cm-3 , Te ~ 5eV , Ti ~ 0 . 06eV) by measuring velocity space correlation functions. This method simultaneously observes two separate laser induced fluorescence schemes. Each scheme has its own indepedently tunable laser and its own set of collection optics. With this setup, we are able to measure the time - averaged correlation function as a function of position on the cylindrical axis parallel to the magnetic field (z) and velocity on the deconvolved ion velocity distribution function (v) : C (z , v ,z' ,v' , τ) = t. The freedom of two lasers allows us to measure a two dimensional velocity correlation matrix. This matrix is investigated with the Vlasov equation in the collisionless and weakly collisional regime. The former case, which is continuous, is diagonalized with an integral transform defined by P. J. Morrison while the latter case, which is discrete, is diagonalized through the use of Hermite polynomials.

  4. Plasma Redshift Cosmology

    Science.gov (United States)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  5. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav

    2014-01-01

    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  6. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  7. Variation of plasma parameters in a modified mode of plasma production in a double plasma device

    Indian Academy of Sciences (India)

    A Phukan; M K Mishra; B K Saikia; M Chakraborty

    2010-03-01

    A modified mode of plasma production in a double plasma device is presented and plasma parameters are controlled in this configuration. Here plasma is produced by applying a discharge voltage between the hot filaments in the source (cathode) and the target magnetic cage (anode) of the device. In this configuration, the hot electron emitting filaments are present only in the source and the magnetic cage of this is kept at a negative bias such that due to the repulsion of the cage bias, the primary electrons can go to the grounded target and produce plasma there. The plasma parameters can be controlled by varying the voltages applied to the source magnetic cage and the separation grid of the device.

  8. Plasma volume nomograms for use in therapeutic plasma exchange.

    Science.gov (United States)

    Buffaloe, G W; Heineken, F G

    1983-01-01

    Nomograms have been developed for the convenient estimation of the plasma volumes of patients undergoing therapeutic plasma exchange (TPE), based on equations employing height, body weight, and hematocrit. These nomograms are offered as an aid to prescribing continuous-flow TPE procedure exchange volumes.

  9. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  10. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  11. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  12. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2000-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  13. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  14. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.

    2008-01-01

    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  15. Plasma probe characteristics in low density hydrogen pulsed plasmas

    CERN Document Server

    Astakhov, D I; Lee, C J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V; Bijkerk, F

    2014-01-01

    Probe theories are only applicable in the regime where the probe's perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas. Indeed, in the case studied here, probe measurements would lead to a large overestimate of the plasma density. In contrast, the ...

  16. On the excess energy of nonequilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A. V. [National Research Centre Kurchatov Institute, Institute of Hydrogen Power Engineering and Plasma Technologies (Russian Federation)

    2012-01-15

    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  17. Plasma treatment of crane rails

    Directory of Open Access Journals (Sweden)

    Владислав Олександрович Мазур

    2016-07-01

    Full Text Available Crane operation results in wear and tear of rails and crane wheels. Renovation and efficiency of these details is therefore relevant. Modern technologies of wheels and rails restoration use surfacing or high-frequency currents treatment. Surface treatment with highly concentrated streams of energy- with a laser beam, plasma jet- is a promising direction.. It is proposed to increase the efficiency of crane rails by means of surface plasma treatment. The modes of treatment have been chosen.. Modelling of plasma jet thermal impact on a solid body of complex shape has been made. Plasma hardening regimes that meet the requirements of production have been defined. Structural transformation of the material in the crane rails on plasma treatment has been investigated. It has been concluded that for carbon and low alloy crane steels the plasma exposure zone is characterized by a high degree of hardened structure dispersion and higher hardness as compared to the hardness after high-frequency quenching. As this takes place phase transformations are both shift (in the upper zone of plasma influence and fluctuation (in the lower zone of the plasma. With high-speed plasma heating granular or lamellar pearlite mainly transforms into austenite. The level of service characteristics of hardened steel, which is achieved in this case is determined by the kinetics and completeness of pearlite → austenite transformation. For carbon and low alloy rail steels plasma hardening can replace bulk hardening, hardening by high-frequency currents, or surfacing. The modes for plasma treatment which make it possible to obtain a surface layer with a certain service characteristics have been defined

  18. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  19. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  20. Research in plasma physics

    Science.gov (United States)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  1. COSMIC PLASMA DYNAMO

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new dynamo model based on the polarization of plasma is presented in this paper.From the Maxwell equations in a moving medium, a magnetization vector can be causedwith Rongon current. The steady solar magnetic field is solved from the equations. Onthe assumption that the meridianal flow is ignored, the distribution of magnetic field isput out. In the model, there is no additional parameter considered. The intensity ofmagnetic field inside the sun ranges from 1-6T. The surface magnetic field around thepole is in the order of 1×10-3T, at low latitude the calculated surface magnetic fieldhas the order of 1×10-2 T. The maximum magnetic field is around 30° in latitude.

  2. Optimization of plasma amplifiers

    Science.gov (United States)

    Sadler, James D.; Trines, Raoul M. Â. G. Â. M.; Tabak, Max; Haberberger, Dan; Froula, Dustin H.; Davies, Andrew S.; Bucht, Sara; Silva, Luís O.; Alves, E. Paulo; Fiúza, Frederico; Ceurvorst, Luke; Ratan, Naren; Kasim, Muhammad F.; Bingham, Robert; Norreys, Peter A.

    2017-05-01

    Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ , nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.

  3. Turbulent transport in magnetized plasmas

    CERN Document Server

    Horton, Wendell

    2012-01-01

    This book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.

  4. Plasma chemistry and organic synthesis

    Science.gov (United States)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  5. Biocompatibility of plasma nanostructured biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bačáková, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2013-07-15

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell’s adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  6. Waves and instabilities in plasmas

    CERN Document Server

    Chen Liu

    1987-01-01

    The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

  7. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  8. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  9. Plasma generation induced by triboelectrification

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul

    2009-01-01

    A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...

  10. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  11. Plasma-heating by induction

    Science.gov (United States)

    Harrington, K.; Thorpe, M. L.

    1969-01-01

    Induction-heated plasma torch operates with an input of 1 Mw of direct current of which 71 percent is transferred to the plasma and the remainder is consumed by electrical losses in the system. Continuous operation of the torch should be possible for as long as 5,000 hours.

  12. Spectroscopy of Low Temperature Plasma

    CERN Document Server

    Ochkin, Vladimir N

    2009-01-01

    Providing an up-to-date overview on spectroscopical diagnostics of low temperature plasma Spectroscopy of Low Temperature Plasma covers the latest developments and techniques. Written by a distinguished scientist and experienced book author this text is applicable to many fields in materials and surface science as well as nanotechnology and contains numerous appendices with indispensable reference data.

  13. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  14. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  15. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    Science.gov (United States)

    Titus, Monica Joy

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactions are characterized as a function of plasma species and processing parameters. Complementary simulations accompany each focus study to supplement experimental findings. Wafer heating mechanisms in inductively coupled molecular gas plasmas are explored with PlasmaTemp(TM), a novel "on-wafer" diagnostic tool. Experimental wafer measurements are obtained with the PlasmaTemp(TM) wafer processed in argon (Ar) and argon-oxygen (Ar/O2) mixed plasmas. Wafer heating mechanisms were determined by combining the experimental measurements with a 3-dimensional heat transfer model of the wafer. Comparisons between pure Ar and Ar/O2 plasmas demonstrate that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. Thermal heat conduction from the neutral gas and O-atom recombination on wafer surface can contribute as much as 60% to wafer heating under conditions of low-energy ion bombardment in molecular plasmas. Measurements of a second novel "on-wafer" diagnostic sensor, the PlasmaVolt(TM), were tested and validated in the ICP system for Ar plasmas varying in power and pressure. Sensor measurements were interpreted with a numerical sheath simulation and comparison to scaling laws derived from the inhomogeneous sheath model. The study demonstrates sensor measurements are proportional to the RF-current through the sheath and the scaling is a function of sheath impedance. PlasmaVolt(TM) sensor measurements are proportional to the

  16. Intermittent transport in edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.; Juul Rasmussen, J. [Association EURATOM-Riso National Laboratory, Optics and Plasma Research, Roskilde (Denmark)

    2004-07-01

    The properties of low-frequency convective fluctuations and transport are investigated for the boundary region of magnetized plasmas. We employ a two-dimensional fluid model for the evolution of the global plasma quantities in a geometry and with parameters relevant to the scrape-off layer of confined toroidal plasmas. Strongly intermittent plasma transport is regulated by self-consistently generated sheared poloidal flows and is mediated by burst ejection of particles and heat from the bulk plasma in the form of blobs. Coarse grained probe signals reveal a highly skewed and flat distribution on short time scales, but tends towards a normal distribution at large time scales. Conditionally averaged signals are in perfect agreement with experimental measurements. (authors)

  17. Helicon plasma thruster discharge model

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau, France and ONERA - The French Aerospace Lab, 91120 Palaiseau (France)

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  18. A Multibunch Plasma Wakefield Accelerator

    CERN Document Server

    Kallos, Efthymios; Ben-Zvi, Ilan; Katsouleas, Thomas C; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Yakimenko, Vitaly; Zhou, Feng

    2005-01-01

    We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.

  19. Plasma treatment advantages for textiles

    CERN Document Server

    Sparavigna, Amelia

    2008-01-01

    The textile industry is searching for innovative production techniques to improve the product quality, as well as society requires new finishing techniques working in environmental respect. Plasma surface treatments show distinct advantages, because they are able to modify the surface properties of inert materials, sometimes with environment friendly devices. For fabrics, cold plasma treatments require the development of reliable and large systems. Such systems are now existing and the use of plasma physics in industrial problems is rapidly increasing. On textile surfaces, three main effects can be obtained depending on the treatment conditions: the cleaning effect, the increase of microroughness (anti-pilling finishing of wool) and the production of radicals to obtain hydrophilic surfaces. Plasma polymerisation, that is the deposition of solid polymeric materials with desired properties on textile substrates, is under development. The advantage of such plasma treatments is that the modification turns out to ...

  20. Aerospace applications of pulsed plasmas

    Science.gov (United States)

    Starikovskiy, Andrey

    2012-10-01

    The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems. The same principles are still applied today to achieve high efficiency in various applications. Recently, the potential use of nonequilibrium plasma for ignition and combustion control has garnered increasing interest due to the possibility of plasma-assisted approaches for ignition and flame stabilization. During the past decade, significant progress has been made toward understanding the mechanisms of plasma chemistry interactions, energy redistribution and the nonequilibrium initiation of combustion. In addition, a wide variety of fuels have been examined using various types of discharge plasmas. Plasma application has been shown to provide additional combustion control, which is necessary for ultra-lean flames, high-speed flows, cold low-pressure conditions of high-altitude gas turbine engine (GTE) relight, detonation initiation in pulsed detonation engines (PDE) and distributed ignition control in homogeneous charge-compression ignition (HCCI) engines, among others. The present paper describes the current understanding of the nonequilibrium excitation of combustible mixtures by electrical discharges and plasma-assisted ignition and combustion. Nonequilibrium plasma demonstrates an ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions.

  1. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.

    2017-08-01

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

  2. Meter scale plasma source for plasma wakefield experiments

    Science.gov (United States)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-01

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 1017 cm-3 has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  3. Meter scale plasma source for plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J. [Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  4. Revisiting the plasma sheath - dust in plasma sheath

    CERN Document Server

    Das, G C; Bora, M P

    2015-01-01

    In this work, we have considered the formation of warm plasma sheath in the vicinity of a wall in a plasma with considerable presence of dust particles. As an example, we have used the parameters relevant in case of lunar plasma sheath, though the results obtained in this work could be applied to any other physical situation such as laboratory plasma. In the ion-acoustic time scale, we neglect the dust dynamics. The dust particles affect the sheath dynamics by affecting the Poisson equation which determines the plasma potential in the sheath region. We have assumed the current to a dust particle to be balanced throughout the analysis. This makes the grain potential dependent on plasma potential, which is then incorporated into the Poisson equation. The resultant numerical model becomes an initial value problem, which is described by a 1-D integro-differential equation, which is then solved self-consistently by incorporating the change in plasma potential caused by inclusion of the dust potential in the Poisso...

  5. Arc Plasma Gun With Coaxial Powder Feed

    Science.gov (United States)

    Zaplatynsky, Isidor

    1988-01-01

    Redesigned plasma gun provides improved metallic and ceramic coatings. Particles injected directly through coaxial bore in cathode into central region of plasma jet. Introduced into hotter and faster region of plasma jet.

  6. [Plasma technology for biomedical material applications].

    Science.gov (United States)

    Liu, Z; Li, X

    2000-03-01

    In this paper is introduced the plasma technology for the applications of several species biomaterial such as ophthalmological material, drug delivery system, tissue culture material, blood anticoagulant material as well as plasma surface clearing and plasma sterilization, and so on.

  7. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    Science.gov (United States)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  8. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  9. Plasma Dark Current in Self-Ionized Plasma Wakefield Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; /Southern California U.; Iverson, R.; Johnson, D.K.; Krejcik, P.; O' Connell, C.; Siemann, R.H.; Walz, D.; /SLAC; Clayton,; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA

    2006-01-30

    Evidence of particle trapping has been observed in a beam driven Plasma Wake Field Accelerator (PWFA) experiment, E164X, conducted at the Stanford Linear Accelerator Center by a collaboration which includes USC, UCLA and SLAC. Such trapping produces plasma dark current when the wakefield amplitude is above a threshold value and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam. Here we present experimental results.

  10. Range of fractionated plasma products to optimize plasma resources

    Institute of Scientific and Technical Information of China (English)

    Thierry Burnouf

    2010-01-01

    @@ HUMAN PLASMA is a source material that is crucial for the production of unique therapeutic fractionated products. Indeed, plasma contains hundreds of proteins ensuring many physiological functions. The most abun-dant proteins, albumin and immunoglobulin G (IgG) ,are present at about 35 and 10 g/L,respectively,repre-senting about 80% of all plasma proteins. However,other important therapeutic proteins include the coagu-lation factors (factor Ⅷ (F Ⅷ) ; FIX ; Von Willebrand Factor (VWF), fibrinogen) various protease inhibitors (alpha 1-antitrypsin ; antithrombin; C1-esterase) and anticoagulants (protein C) which exhibit potent physi-ological activity.

  11. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  12. Negative Plasma Densities Raise Questions

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2006-01-26

    Nearly all the matter encountered on Earth is either a solid, liquid, or gas. Yet plasma-the fourth state of matter-comprises more than 99 percent of the visible universe. Understanding the physical characteristics of plasmas is important to many areas of scientific research, such as the development of fusion as a clean, renewable energy source. Lawrence Livermore scientists study the physics of plasmas in their pursuit to create fusion energy, because plasmas are an integral part of that process. When deuterium and tritium are heated to the extreme temperatures needed to achieve and sustain a fusion reaction (about 100 million degrees), the electrons in these light atoms become separated from the nuclei. This process of separation is called ionization, and the resulting collection of negatively charged free electrons and positively charged nuclei is known as a plasma. Although plasmas and gases have many similar properties, plasmas differ from gases in that they are good conductors of electricity and can generate magnetic fields. For the past decade, x-ray laser interferometry has been used in the laboratory for measuring a plasma's index of refraction to determine plasma density. (The index of refraction for a given material is defined as the wavelength of light in a vacuum divided by the wavelength of light traveling through the material.) Until now, plasma physicists expected to find an index of refraction less than one. Researchers from Livermore and Colorado State University recently conducted experiments on aluminum plasmas at the Laboratory's COMET laser facility and observed results in which the index of refraction was greater than one. This surprising result implied a negative electron density. Livermore physicist Joseph Nilsen and his colleagues from Livermore and the University of Notre Dame have performed sophisticated calculations to explain this phenomenon. Previously, researchers believed that only free electrons contributed to the index

  13. Labotratory Simulation Experiments of Cometary Plasma

    OpenAIRE

    Minami, S; Baum, P. J.; Kamin, G.; R. S. White; 南, 繁行

    1986-01-01

    Laboratory simulation experiment to study the interaction between a cometary plasma and the solar wind has been performed using the UCR-T 1 space simulation facility at the Institute of Geophysics and Planetary Physics, the University of California, Riverside. Light emitting plasma composed of Sr, Ba and/or C simulating cometary coma plasma is produced by a plasma emitter which interacts with intense plasma flow produced by a co-axial plasma gun simulating the solar wind. The purpose of this ...

  14. Waves in plasmas (part 1 - wave-plasma interaction general background); Ondes dans les plasmas (Partie 1 - interaction onde / plasma: bases physiques)

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, R

    2004-07-01

    This document gathers a series of transparencies presented in the framework of the week-long lectures 'hot plasmas 2004' and dedicated to the physics of wave-plasma interaction. The structure of this document is as follows: 1) wave and diverse plasmas, 2) basic equations (Maxwell equations), 3) waves in a fluid plasma, and 4) waves in a kinetic plasma (collisionless plasma)

  15. Plasma Nanoscience: from Nano-Solids in Plasmas to Nano-Plasmas in Solids

    CERN Document Server

    Ostrikov, K; Meyyappan, M

    2013-01-01

    The unique plasma-specific features and physical phenomena in the organization of nanoscale solid-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter, to nano-plasma effects and nano-plasmas of different states of matter...

  16. Plasma medicine: an introductory review

    Science.gov (United States)

    Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.

    2009-11-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  17. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  18. Thomson scattering from laser plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  19. Couette Flow of Unmagnetized Plasma

    CERN Document Server

    Collins, C; Cooper, C M; Flanagan, K; Khalzov, I V; Nornberg, M D; Seidlitz, B; Wallace, J; Forest, C B

    2014-01-01

    Differentially rotating flows of unmagnetized, highly conducting plasmas have been created in the Plasma Couette Experiment. Previously, hot-cathodes have been used to control plasma rotation by a stirring technique [C. Collins et al., Phys. Rev. Lett. 108, 115001(2012)] on the outer cylindrical boundary---these plasmas were nearly rigid rotors, modified only by the presence of a neutral particle drag. Experiments have now been extended to include stirring from an inner boundary, allowing for generalized Couette flow and opening a path for both hydrodynamic and magnetohydrodynamic experiments, as well as fundamental studies of plasma viscosity. Plasma is confined in a cylindrical, axisymmetric, multicusp magnetic field, with $T_e< 10$ eV, $T_i<1$ eV, and $n_e<10^{11}$ cm$^{-3}$. Azimuthal flows (up to 12 km/s, $M=V/c_s\\sim 0.7$) are driven by edge ${\\bf J \\times B}$ torques in helium, neon, argon, and xenon plasmas. We present measurements of a self-consistent, rotation-induced, species-dependent rad...

  20. Special issue on transient plasmas

    Science.gov (United States)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-11-01

    This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is dedicated to the "spectroscopy of transient plasmas" covering plasma conditions produced by a range of pulsed laboratory sources including short and long pulse lasers, pulsed power devices, and free electron lasers (FELs). The full range of plasma spectroscopy up to high energy bremsstrahlung radiation, including line broadening analysis for application to data recorded with the ChemCam instrument on the Mars Science Laboratory rover Curiosity, is covered. This issue is timely as advances in optical lasers and x-ray FELs (XFEL) are enabling transient plasma to be probed at higher energies and shorter durations than ever before. New XFEL facilities being commissioned in Europe and Asia are adding to those operating in the US and Japan and the ELI high power laser project in Europe, due to open this year, will provide short pulse lasers of unprecedented power. This special issue represents a snapshot of the theoretical and experimental research in dense plasmas, electron kinetics, laser-induced breakdown spectroscopy of low temperature plasmas, inertial confinement fusion and non-equilibrium atomic physics using spectroscopy to diagnose plasmas produced by optical lasers, XFELs and pulsed-power machines.

  1. Modeling the Europa plasma torus

    Science.gov (United States)

    Schreier, Ron; Eviatar, Aharon; Vasyliunas, Vytenis M.; Richardson, John D.

    1993-12-01

    The existence of a torus of plasma generated by sputtering from Jupiter's satellite Europa has long been suspected but never yet convincingly demonstrated. Temperature profiles from Voyager plasma observations indicate the presence of hot, possibly freshly picked-up ions in the general vicinity of the orbit of Europa, which may be interpreted as evidence for a local plasma torus. Studies of ion partitioning in the outer regions of the Io torus reveal that the oxygen to sulfur mixing ratio varies with radial distance; this may indicates that oxygen-rich matter is injected from a non-Io source, most probably Europa. We have constructed a quantitative model of a plasma torus near the orbit of Europa which takes into account plasma input from the Io torus, sputtering from the surface of Europa, a great number of ionization and charge exchange processes, and plasma loss by diffusive transport. When the transport time is chosen so that the model's total number density in consistent with the observed total plasma density, the contribution from Europa is found to be significant although not dominant. The model predicts in detail the ion composition, charge states, and the relative fractions of hot Europa-generated and (presumed) cold Io-generated ions. The results are generally consistent with observations from Voyager and can in principle (subject to limitations of data coverage) be confirmed in more detail by Ulysses.

  2. Cold plasma decontamination of foods.

    Science.gov (United States)

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy.

  3. Multi-scale interaction between magnetic islands and microturbulence in magnetized plasmas; Modelisation et simulation de l'interaction multi-echelle entre ilots magnetiques et la microturbulence dans les plasmas de fusion magnetises

    Energy Technology Data Exchange (ETDEWEB)

    Muraglia, M.

    2009-10-15

    In a tokamak, it exists many kinds of instability at the origin of a damage of the confinement and worst of a lost of a confinement. This work presents a study of the dynamics of a magnetic island in presence of turbulence in magnetized plasmas. More precisely, the goal is to understand the multi-scales interaction between turbulence, generated by a pressure gradient and the magnetic field curvature, and a magnetic island formed thanks to a tearing mode. Thanks to the derivation of a 2-dimensional slab model taking into account both tearing and interchange instabilities, theoretical and numerical linear studies show the pressure effect on the magnetic island linear formation and show interchange modes are stabilized in presence of a strong magnetic field. Then, a numerical nonlinear study is presented in order to understand how the interchange mechanism affects the nonlinear dynamics of a magnetic island. It is shown that the pressure gradient and the magnetic field curvature affect strongly the nonlinear evolution of a magnetic island through dynamics bifurcations. The nature of these bifurcations should be characterized in function of the linear situation. Finally, the last part of this work is devoted to the study of the origin of the nonlinear poloidal rotation of the magnetic island. A model giving the different contributions to the rotation is derived. It is shown, thanks to the model and to the numerical studies, that the nonlinear rotation of the island is mainly governed by the ExB poloidal flow and/or by the nonlinear diamagnetic drift. (author)

  4. Paper-based plasma sanitizers

    Science.gov (United States)

    Xie, Jingjin; Chen, Qiang; Suresh, Poornima; Roy, Subrata; White, James F.; Mazzeo, Aaron D.

    2017-05-01

    This work describes disposable plasma generators made from metallized paper. The fabricated plasma generators with layered and patterned sheets of paper provide a simple and flexible format for dielectric barrier discharge to create atmospheric plasma without an applied vacuum. The porosity of paper allows gas to permeate its bulk volume and fuel plasma, while plasma-induced forced convection cools the substrate. When electrically driven with oscillating peak-to-peak potentials of ±1 to ±10 kV, the paper-based devices produced both volume and surface plasmas capable of killing microbes. The plasma sanitizers deactivated greater than 99% of Saccharomyces cerevisiae and greater than 99.9% of Escherichia coli cells with 30 s of noncontact treatment. Characterization of plasma generated from the sanitizers revealed a detectable level of UV-C (1.9 nWṡcm-2ṡnm-1), modest surface temperature (60 °C with 60 s of activation), and a high level of ozone (13 ppm with 60 s of activation). These results deliver insights into the mechanisms and suitability of paper-based substrates for active antimicrobial sanitization with scalable, flexible sheets. In addition, this work shows how paper-based generators are conformable to curved surfaces, appropriate for kirigami-like “stretchy” structures, compatible with user interfaces, and suitable for sanitization of microbes aerosolized onto a surface. In general, these disposable plasma generators represent progress toward biodegradable devices based on flexible renewable materials, which may impact the future design of protective garments, skin-like sensors for robots or prosthetics, and user interfaces in contaminated environments.

  5. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  6. Plasma spheroidization of nickel powders in a plasma reactor

    Indian Academy of Sciences (India)

    G Shanmugavelayutham; V Selvarajan

    2004-10-01

    Thermal spray coatings of surfaces with metal, alloy and ceramic materials for protection against corrosion, erosion and wear is an intense field of research. The technique involves injection of the powder into a plasma flame, melting, acceleration of the powder particles, impact and bonding with the substrate. Feedstock powders of metals, alloys and ceramics for thermal spray applications have to meet several requirements. Particle shape, size and its distribution, powder flow characteristics and density are the important factors to be considered in order to ensure high spray efficiency and better coating properties. For smooth and uniform feeding of powders into plasma jet, the powder particles have to be spherical in shape. High temperatures and steep temperatures present in thermal plasma is exploited to spheroidize particles in the present investigation. Nickel powder particles in the size range from 40–100 m were spheroidized using plasma processing. SEM and optical micrographs showed spherical shape of processed particles.

  7. Collapse of nonlinear electron plasma waves in a plasma layer

    Science.gov (United States)

    Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.

    2016-10-01

    The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.

  8. Dusty plasma as a unique object of plasma physics

    Science.gov (United States)

    Norman, G. E.; Timofeev, A. V.

    2016-11-01

    The self-consistency and basic openness of dusty plasma, charge fluctuations, high dissipation and other features of dusty plasma system lead to the appearance of a number of unusual and unique properties of dusty plasma. “Anomalous” heating of dusty particles, anisotropy of temperatures and other features, parametric resonance, charge fluctuations and interaction potential are among these unique properties. Study is based on analytical approach and numerical simulation. Mechanisms of “anomalous” heating and energy transfer are proposed. Influence of charge fluctuations on the system properties is discussed. The self-consistent, many-particle, fluctuation and anisotropic interparticle interaction potential is studied for a significant range of gas temperature. These properties are interconnected and necessary for a full description of dusty plasmas physics.

  9. The Absence of Plasma in"Spark Plasma Sintering"

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, Dustin M.; Anders, Andre; Dudina, Dina V.; Andersson, Joakim; Jiang, Dongtao; Unuvar, Cosan; Anselmi-Tamburini, Umberto; Lavernia, Enrique J.; Mukherjee, Amiya K.

    2008-04-10

    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions.

  10. The Absence of Plasma in"Spark Plasma Sintering"

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, Dustin M.; Anders, Andre; Dudina, Dina V.; Andersson, Joakim; Jiang, Dongtao; Unuvar, Cosan; Anselmi-Tamburini, Umberto; Lavernia, Enrique J.; Mukherjee, Amiya K.

    2008-04-10

    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions.

  11. Radiometric force in dusty plasmas

    CERN Document Server

    Ignatov, A M

    2000-01-01

    A radiofrequency glow discharge plasma, which is polluted with a certain number of dusty grains, is studied. In addition to various dusty plasma phenomena, several specific colloidal effects should be considered. We focus on radiometric forces, which are caused by inhomogeneous temperature distribution. Aside from thermophoresis, the role of temperature distribution in dusty plasmas is an open question. It is shown that inhomogeneous heating of the grain by ion flows results in a new photophoresis like force, which is specific for dusty discharges. This radiometric force can be observable under conditions of recent microgravity experiments.

  12. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  13. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  14. Radiation reaction in fusion plasmas.

    Science.gov (United States)

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  15. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  16. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Frandsen, Henrik Lund; Christensen, N J

    1991-01-01

    -induced hypoglycaemia with total autonomic blockade (alpha-adrenoceptor blockade combined with beta-adrenoceptor blockade and atropine); and insulin-induced hypoglycaemia without any autonomic blockade. In the experiments without autonomic blockade the peripheral venous hematocrit increased, plasma volume decreased......, intravascular albumin content decreased and the transcapillary escape rate of albumin increased. In both experiments with autonomic blockade the increase in venous haematocrit was abolished, yet plasma volume decreased, intravascular albumin content decreased and the transcapillary escape rate of albumin...... increased in these experiments. Thus, the changes in plasma volume and composition in response to hypoglycaemia are due to the combined actions of adrenaline and of insulin....

  17. Microwave Plasma Synthesis of Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Joseph; Lik; Hang; Chau

    2007-01-01

    1 Results and Discussion Nanopowders were synthesized by using microwave plasma synthesis technique.The microwave plasma was operated in atmospheric pressure at a frequency of 2.45 GHz.The reaction temperature is directly related to the power of the microwave generator that can be controlled by adjusting the actual operating current.Firstly,ionization and dissociation of precursor species will be occurred in the plasma,nucleus can then be formed by the collision of these molecules,followed by the growth...

  18. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  19. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2014-10-01

    Gadri, J. R. Roth , T. C. Montie, K. Kelly-Wintenberg, P. P. Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, Z. Y. Chen, and U. P. S...Edinburgh, Scotland : 39th IEEE International Conference on Plasma Science (ICOPS), 2012). 20. Magesh Thiyagarajan, Xavier Gonzales$, Heather...Anderson# and Megan Norfolk. Non-thermal Plasma Induction of Pre-Programmed Cell Death in Monocytic Leukemia Cells. (Edinburgh, Scotland : 39th IEEE

  20. Space Plasma Physics

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).